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Abstract

Parameter and ambiguity estimation in the temporal domain, for arcs of differential phase observations
between two persistent scatterers (PS), is a critical part in Persistent Scatterer Interferometry (PSI).
Deformation models, used as constraint in the parameter estimation, often do not capture the full
extent of the deformation behaviour. This results in a poor separation of signal and noise, and rejection
of arcs that do not behave conform the functional model. Previous work assumed that deformation
behaviour is stationary and that a full time series can be described with a single set of deformation
parameters. In order to develop a more broadly applicable deformation model, this study applies a
temporal smoothness constraint during parameter estimation, by assuming that deformation rates are
affected by a temporally correlated zero-mean random acceleration. This constraint is implemented
using recursive least-squares, similar to Kalman filtering, which also enables efficient updating of arcs
when new acquisitions are available.

Various kind of deformation types are simulated to create phase observations based on real TerraSAR-
X, Radarsat2 and ERS stacks of interferograms. This simulated data is processed using the new recur-
sive estimator and results are compared to that of a batch estimator using a steady-state assumption, to
analyse the impact of adding a priori information about the smoothness of the physical signal. Further-
more, a case study on real data is performed on an area where non-linear subsidence has occurred, due
to soil remediation. This study presents a mathematical framework for incorporating a priori knowledge
about the smoothness of the deformation signal as constraint for parameter and ambiguity estimation.
Especially non-linear deformation is better estimated using this method, resulting in a higher success-
rate, better separation of signal and noise, and more PS passing quality thresholds. The framework
moreover enables efficient updating of existing datasets when new acquisition are available.
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Figure 1: The current PSI approach.
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1
Introduction

1.1 Motivation

Persistent Scatterer Interferometry (PSI) is becoming a more frequently used geodetic technique for
deformation measurements. However, it remains difficult to extract various types of non-linear de-
formation patterns with PSI. The wish of near real-time monitoring and increasing sizes of datasets,
moreover provides the need for efficiently updating of datasets when new satellite acquisitions become
available. In this study, the deformation model parameterisation is changed to that of a temporal
smoothness constraint. The recursive form in which this constraint is implemented also allows for
efficient updating of time series.

1.2 Background

Since 1978, satellites have been in orbit that are equipped with synthetic aperture radar (SAR). This
type of satellites emits electro-magnetic pulses that are reflected by ground elements. The wavelength
of the electro magnetic pulses enables the satellite to look through clouds, making it able to monitor
the earth surface at a constant rate in contrary to optical satellites. Due to expanding infrastructure
and the need to monitor surface deformations in a timely fashion (e.g. preventing dike failures), SAR
has become an increasingly popular remote sensing technique. Using the complex phase data of
multiple SAR acquisitions of the same area, surface deformations can be measured [Gabriel et al.,
1989, Zebker and Goldstein, 1986]. Generally, man-made structures like roads, railways and buildings
have a high backscatter, making them highly visible in SAR imagery [Usai, 1997, Usai and Hanssen,
1997]. Furthermore, natural objects like hard surfaces and rock-covered mountains can backscatter
coherently, making them clearly visible in SAR.

A lot of progress has been made at the beginning of this century [Ferretti et al., 2000a, 2001,
Hanssen, 2001] resulting in the group of techniques referred to as persistent scatterer interferometry
(PSI). PSI is based on the backscatter of a coherent radar target, which can be one of earlier mentioned
natural or man-made objects. A target with a low geometrical and temporal decorrelation and a high
phase coherence is in general a good candidate for PSI. The relative deformation of this point can be
found by comparing it with another radar target in the same image at two successive times.

Despite the progress made so far, the ambiguous nature of phase measurements remains. SAR only
measures the fractional wave cycle, while the amount of integer cycles between target and satellite
remain unknown. This means that movement of a radar target, geometry changes, and propagation
delay can cause phase differences to another target to skip phase cycles. An analogy to clarify this
phenomenon in a simple way, would be that of a clock that shows the minutes, but not the hours. One
would still be able to keep track of time by looking at the clock regularly, but uncertainties become
larger when only looking at the clock once or less per hour, as is visualized in figure 1.1.

1



2 1 Introduction

Figure 1.1: Ambiguous phase measurement analogy. When information is available about the hours and minutes, a pretty good
guess can be made if it is lunchtime already. However, when the clock only shows the minute dial, we would need to check the
clock very frequently to get an indication of how many hours have passed.

In terms of deformation, the same happens in PSI. Given a wavelength of 𝜆 = 31 mm, only a
maximum deformation of 𝐷 ≈ 8 mm can be measured. A deformation of 𝐷 = 16 mm would appear as
𝐷 ≈ 0 mm. This does not necessarily pose a problem when the deformation signal is a slow temporal
process. However, when measured sparsely, e.g. yearly, more uncertainty enters the deformation
estimation, resulting in an unresolvable signal.

A common technique to resolve the ambiguities of these phase measurements is to assume a
certain deformation model for the movement of radar targets. A common made assumption is that
targets subside with a constant velocity (steady-state deformation) [Ferretti et al., 2001, Wright et al.,
2001, Zebker et al., 1997], but also more complex models like quadratic, seasonal and exponential
deformation [Ferretti et al., 2000b, Kampes and Hanssen, 2004, Samiei-Esfahany, 2008, van Leijen,
2014, Van Leijen and Hanssen, 2007] can be used.

Although the steady-state model is valid in many situations, many interesting deformation cases
are unresolvable. Especially when observing a longer period of time, the currently used deformation
models can no longer accurately describe the occurring patterns. External influences like major con-
struction work or fluid injection and extraction [van der Kooij, 1997] can induce sudden changes in
deformation patterns [Ketelaar, 2008] which would, with the currently used models, need very spe-
cific knowledge about the resulting deformation shape and times of external interferences. A paradox
comes into play here: The model needs to be known in order to estimate the unknown parameters,
however, to know the model, the unknown parameters need to be estimated. This implies the need for
incorporating a priori knowledge, which unfortunately is not always available. Improvements of these
commonly used unwrapping models, in the form of a more broadly applicable deformation model, is
hence desirable. Better deformation estimations and fewer errors in estimated ambiguities, will result
in more successfully identified Persistent Scatterers.

In this study the idea is explored to unwrap based on a temporal smoothness constraint. The
functional model is based on a steady-state deformation model which is not stationary over the full
time-series, but changes gradually over time. For this specific type of dynamic model Teunissen [2007]
has derived a solution based on recursive least squares, similar to Kalman filtering [Kalman, 1960],
which is the basis for applying the smoothness constraint and resolving the ambiguities. Moreover, the
recursive nature of this solution enables efficient updating when new observations become available.
Instead of reprocessing the complete time series in a batch adjustment, only the latest observation is
used for adjusting the unknown parameters and, implicitly, resolving the unknown ambiguity.

1.3 Research question

This research uses existing theory about recursive estimation and extents it to a suitable methodology
for phase unwrapping in PSI. To guide the scope of this study a broad research question is formulated:

Can a recursive estimator be used for phase unwrapping in PSI by applying a smoothness
constraint in the temporal domain? What are its advantages and challenges?
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To help find an answer, the research question is split up into various sub-questions which will be
answered subsequently as the study progresses:

1. What are the shortcomings of currently used unwrapping algorithms in PSI?

2. How can the temporal smoothness constraint be modelled and how can contextual knowledge
be incorporated in the parameters of this model?

3. How does the recursive estimator performs in comparison with the currently used algorithms?

4. Does the recursive estimator performs better on deformation types where current algorithms
have issues?

1.4 Goals

To set certain boundaries to the scope of the study a set of goals and limitations are defined:

1. Develop an recursive algorithm that can be used in the PSI processing chain to unwrap single-arcs
of double-difference phase observations.

(a) Unwrap steady-state deformation.
(b) Unwrap non linear deformation like breakpoint, quadratic and other types of temporally

smooth deformation.
(c) Estimate a thermal coefficient that describes the relation between temperature and thermal

dilations.
(d) Refine point height (Residual DEM height) during the recursive estimation.

2. Implement the algorithm in the SkyGeo processing chain.

3. Determine full variance-covariance matrix for the estimated parameters.

4. Demonstrate the recursive method on real data and compare the results with currently used
algorithms.

5. Propose a method to use the recursive estimator to update datasets when new acquisitions come
in.

1.5 Limitations

This study focusses on the unwrapping of single-arc double-difference phase observations, obtained
from differencing the interferometric phases, of two pixels from a coregistered single-master stack. To
narrow down the scope, this study will not focus on network creation and testing, nor will it concern
with estimation of orbital and atmospheric signals.

1.6 Outline

A short introduction to radar remote sensing and PSI is given in chapter 2. Thereafter, a short recap of
adjustment theory is provided in chapter 3, followed by the recursive least squares theory n which this
study is based. The practical implementation of this theory for unwrapping is discussed in chapter 4.
Chapter 5 and 6 are devoted to testing the proposed methods on simulated and real data. The same
data is also processed using conventional phase unwrapping methods for comparison. The results are
summarised and discussed in chapter 7.





2
Phase unwrapping in PSI

This introductory chapter will put phase unwrapping in the context of radar remote sens-
ing. First a short introduction to Radar remote sensing is given, thereafter, it is explained
how these radar observations can be used for observing a certain area using a repeat-pass
configuration. To accomplish this, first the concept of interferometric radar is introduced,
to follow with an introduction to Persistent Scatterer Interferometry (PSI).

2.1 Introduction to radar

Imaging radars, employed in some earth observation satellite missions are, among others, used for
earth surface measurements [Gabriel et al., 1989]. They produce imagery that differ from optical
images in multiple aspects:

• Radar operates in a much longer wavelength than optical sensors, which operate in the visible light
bandwidth, with wavelengths in the order of 10000 times larger. By using this longer wavelength,
radar is insensitive for optical obstructions like clouds, enabling radar to measure the earth surface
continuously.

• Whereas optical sensors rely on reflected sunlight, radar is self-illuminating by emitting electro-
magnetic pulses that are reflected by the earth’s surface. This ability makes it independent from
external illumination, and adds the capability to compare the emitted signal with the received
signal.

• Optical sensors can map pixels to a ray, such that it can derive from which direction a signal comes
from. Space-born radar sensors measure in a different way. They measure the two-way range
between sensor and earth surface, while travelling along the azimuth direction of the satellite
orbit. Hence the reference system for these imagery is range and azimuth.

From the complex observation of a radar pixel, two properties can be derived; amplitude and phase.
The amplitude is a measurement of the level of reflection back to the satellite. The phase indicates
the fraction of a wave cycle measured by the radar instrument. If an integer amount of wave cycles
fits in the 2-way distance between earth and the satellite, the measured phase is 0 radians. When this
distance is half a wavelength longer, the measured phase is 𝜋 radians. The exact amount of phase
cycles is not measured, and can only be computed when the exact distance between satellite and earth
surface is known. The measurement of pixel 𝑖 is stored as a complex value:

𝑦። =∣ 𝐴። ∣ 𝑒፣Ꭵᑚ , (2.1)

where the real part 𝐴። is the amplitude of the signal, and 𝜓። is the phase with 𝜓። ∈ [−𝜋, 𝜋).

5



6 2 Phase unwrapping in PSI

2.2 The phase measurement

In this study the interferometric phase observations of multiple radar images are used. This manifests
the difference in phase of one pixel between two epochs, which is calculated by multiplying the first
pixel times the complex conjugate of the second pixel:

𝑧 = 𝑦፭Ꮃ𝑦∗፭Ꮄ ,
=∣ 𝐴፭Ꮃ𝐴፭Ꮄ ∣ 𝑒፣(ᎥᑥᎳዅᎥᑥᎴ ),
=∣ 𝑧 ∣ 𝑒፣ᎣᑥᎳ,ᑥᎴ ,

(2.2)

where 𝑧 indicates the complex interferometric observation and 𝜑፭Ꮃ ,፭Ꮄ indicates the relative interfero-
metric phase between epoch 𝑡ኻ and 𝑡ኼ. The absolute phase difference is given by [Bamler and Hartl,
1998]:

𝜙፭Ꮃ ,፭Ꮄ =
−2𝜋2𝑅ኻ

𝜆 − −2𝜋2𝑅ኼ𝜆 ,

= −4𝜋Δ𝑅𝜆 ,
(2.3)

where 2𝑅 is the 2-way distance between the satellite and earth, 𝜆 is the wavelength of the satellite
and 2𝜋 is the amount of radians in a single wave-cycle. There are many contributors to this phase
measurement that change its value [Hanssen, 2001]:

𝜙 = 𝜙ref + 𝜙ጂፇ + 𝜙defo + 𝜙atmo + 𝜙orb + 𝜙scat + 𝜙noise. (2.4)

Reference surface 𝜙ref. A trivial contributor to the phase measurement is the reference surface,
𝜙ref. Assuming that a reference surface is available together with the satellite position during acquisi-
tion, it can be computed what the phase value would be for a reflection on the reference surface. This
is done by computing the range 𝑅 from the satellite to a reference surface and multiplying it by the
double wavenumber, which follows from Eq. (2.3):

𝜙ref = −
4𝜋
𝜆 Δ𝑅. (2.5)

Residual DEM height 𝜙ጂፇ. In practice the used reference surface, a digital elevation model (DEM),
is not enough to describe the position of a reflecting object, and hence a height difference is present be-
tween the reflecting object and the DEM; the residual DEM height Δ𝐻. This residual DEM height causes
a phase contribution which is different for every interferometric combination, and can be expressed in
terms of the perpendicular baseline of the interferometric combination [Zebker and Goldstein, 1986]:

𝜙ጂፇ =
−4𝜋
𝜆

𝐵ዊ
𝑅 sin(𝜃inc)

Δ𝐻,

= 𝐻2𝑃𝐻 × Δ𝐻.
(2.6)

The slant range from the master orbit pass and the reflecting object is indicated as 𝑅, 𝜃inc is the
iteratively updated incidence angle of the radar pulse, 𝐵ዊ is the perpendicular baseline of the slave
satellite pass to the location of the master pass and the location of the reflecting object, Δ𝐻 is the
height of the backscattering object above the reference surface and 𝐻2𝑃𝐻 is the Height-to-Phase
conversion factor that shortens the notation.

Deformation 𝜙defo The earth’s surface is not constant over time. The subsurface is a complex
system that can deform as result of multiple factors like external loadings, injection or extraction of fluids
or changing ground water levels. These factors can cause deformation of the backscattering object,
which may be also the parameter of interest in PSI research. The deformation phase contribution
between two acquisitions is given by:

𝜙፭Ꮃ ,፭Ꮄ ,defo = −
4𝜋
𝜆 𝐷፭Ꮃ ,፭Ꮄ , (2.7)

where 𝐷፭Ꮃ ,፭Ꮄ is the Line-of-Sight (LOS) deformation between epoch 𝑡ኻ and 𝑡ኼ, seen from the satellite.
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Orbit trend 𝜙orb. The orbit trend is caused by the imprecision of the orbit estimation. If the provided
orbit is incorrect, the reference phase will be incorrect as well. The phase contribution is referred to as
the orbital phase screen (OPS) [van Leijen, 2014], since the resulting phase, 𝜙orb, is a low frequency
spatially correlated signal.

Atmospheric delay 𝜙atmo. The error signal caused by the electro magnetic pulse travelling through
the atmosphere, is called the atmospheric delay. This contribution is also referred to as the atmospheric
phase screen (APS). It is estimated by using the full stack of interferograms and the assumption that
the atmospheric signal is uncorrelated in time [Hanssen, 2001].

Scattering phase & noise 𝜙scat,𝜙noise. These two contributions describe the noise in the phase
data. The scattering phase noise, 𝜙scat, is caused by temporal, geometrical, and volume decorrelation.
The other noise term, 𝜙noise, consists mainly out of thermal instrument noise and processing errors.

2.2.1 Double-Phase Differences

In PSI information is extracted from scatterers by looking at their difference to other scatterers. Since
one scatterer already embeds interferometric information of multiple acquisitions (i.e. the difference of
one acquisition to the master acquisition), the differences between different pixels are called Double-
Difference (DD) phase observations; phase differences in time and space. The connection between
the two pixels is also referred to as arc. The functional model for this is [van Leijen, 2014]:

𝜑።,፣
ኺ,፬
= 𝜑።

ኺ,፬
− 𝜑፣

ኺ,፬
,

= −2𝜋𝑎።,፣ኺ,፬ + 𝜙።,፣ኺ,፬,ጂፇ + 𝜙
።,፣
ኺ,፬,defo + 𝜙

።,፣
ኺ,፬,OPS/APS + 𝜙

።,፣
ኺ,፬,noise

,
(2.8)

where 𝑖 and 𝑗 are two different pixels, 0, 𝑠 is the difference in time of slave acquisition 𝑠 to master
acquisition 0 and 𝑎።,፣ኺ,፬ is the integer valued phase ambiguity. As can be seen, the notation 𝜑 is now
used instead of 𝜙. The difference between these two measures is that 𝜑 is the wrapped version of
the absolute phase difference 𝜙, meaning that the observation is now in the [−𝜋, 𝜋) interval. The
difference between 𝜑 and 𝜙 is −2𝜋𝑎.

One of the advantages of using DD phase observations is that the contribution of 𝜙OPS/APS is gen-
erally very low when 2 nearby pixels (e.g. arc distance 200m) are chosen, because both signals are
spatially smooth and hence do not change significantly over this short distance.

2.3 PSI processing steps

This section discusses the various steps of a PSI processing chain [van Leijen, 2014], in order to
understand where and how unwrapping plays a role in this chain.

2.3.1 Creating a stack of images

Radar image acquisitions are never taken from the exact same position, resulting in a slightly different
acquisition geometry per satellite pass. To be able to use multiple acquisitions for PSI, all slave acqui-
sitions must be coregistered to the master acquisition. All slave images get resampled in this process,
such that a stack of pixels, covering the same geometry, is created right on top of each other. This
process is illustrated in figure 2.1. The result is a stack of differential interferograms, often referred to
as simply stack [Kampes and Usai, 1999].
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Figure 2.1: The process of coregistration. Due to differences in acquisition geometry (i.e. a slightly different acquisition position),
the resulting images cover a slightly different area. In other words, a scatterer located in pixel ። of the master acquisition, can
be located in pixel j of a slave acquisition. The process of coregistration shifts the slave acquisitions such that the scattering
objects are aligned, which is crucial for PSI. Thereafter, the slave acquisitions get resampled to the same pixel locations as the
master acquisition, creating a stack of coregistered radar images.

2.3.2 PS selection

After obtaining the stack of images for a certain area, the next step is to start PSI processing of a
set of low-noise persistent scatterers to create an initial network. For this, an estimation should be
made regarding which radar pixels could be potential persistent scatterer candidates for this first order
network. The amplitude is used to approximate the phase dispersion of a scatterer. Ferretti et al.
[2001] showed that normalised amplitude dispersion is a good indicator of phase dispersion for points
with high signal to noise ratio. The normalised amplitude dispersion is given by:

𝐷ፚ =
𝜎ፚ
𝜇ፚ
≈ 𝜎Ꭻ , (2.9)

where 𝐷ፚ is the normalized amplitude dispersion, 𝜎ፚ is the standard deviation of amplitude values,
𝜇ፚ is the mean amplitude value and 𝜎Ꭻ is the dispersion of phase values. A threshold is chosen such
that only pixels with a low normalised amplitude dispersion cover the area of interest. These pixels are
called 1st order Persistent Scatterer candidates (PSc1) [van Leijen, 2014].

2.3.3 Network construction

The threshold in the previous step is chosen in such a way that PSc1’s are equally distributed over the
whole area of interest. This is done to create a first order network over this area of interest that can aid
in resolving more PS. A network is a collection of PS that are connected via arcs to form a redundant
system. This network is often formed by performing a Delauney triangulation [Delaunay, 1934]. The
DD phase observations are computed for all arcs and form the input for the next step.

2.3.4 Parameter estimation

With the arcs of the network as input, we arrive at the step where this study is centred around;
parameter estimation, also named unwrapping. The term parameter estimation is used in this study
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because the phase ambiguities are implicitly resolved by estimating the deformation over an arc. The
unknown parameters are the unknown integer ambiguities 𝑎ኺ,፬, the height difference between the two
PSc1 Δ𝐻, and the deformation for every interferometric pair 𝐷ኺ,፬. With a stack of 𝑇 images, this leads
to (𝑇 − 1)+ 1+ (𝑇 −1) = 2𝑇−1 unknown variables. Some assumptions have to be made to constrain
this estimation problem. A popular assumption is a steady-state model for the deformation, described
by one parameters: deformation rate. This changes the deformation to:

𝐷።,፣ኺ,፬ = 𝑣።,፣(𝑡፬ − 𝑡ኺ) (2.10)

where 𝑖, 𝑗 indicates the arc between pixel 𝑖 and 𝑗, and 𝑡፬ , 𝑡ኺ indicate the time of the slave and master
acquisition, respectively. The amount of unknown variables is now (𝑇 − 1) + 2 = 𝑇 + 1. Although
an rank defect remains, the ambiguities can be resolved by constraining the height and deformation
parameters, using pseudo-observations.

The pseudo observation for the residual DEM height depends on the quality of the DEM and the area
of interest. When an urban area is being processed, the DEM accuracy is most likely not describing the
building heights very well. In order to resolve large height differences over arcs, the pseudo-observation
should be of lower precision. The dispersion of the pseudo-observation can for example be loosened
in the form of 𝜎ጂፇ, indicating the standard deviation of possible Δ𝐻. With a 𝜎ጂፇ = 30m, the 2-sigma
confidence interval covers a Δ𝐻 of 60m. The same can be done for creating a pseudo-observation for
the deformation rate. When it is known a priori that the range of deformation rates within a certain
area is ±20𝑚𝑚/𝑦, the dispersion of the pseudo-observation could be set on 𝜎፯ = 10mm/y.

Due to the ambiguous nature of the phase measurement, there is a maximum resolvable deforma-
tion rate. Assuming that deformation is the only factor influencing two subsequent observations, the
maximum rate of deformation is given by:

𝑣 =
᎘
ኾ
Δ𝑡 , (2.11)

where 𝜆 is the wavelength and Δ𝑡 is the nominal repeat cycle of the satellite. In the case of TerraSAR-X
with 𝜆 = 31mm and Δ𝑡 = 11 days, this results in a LOS deformation rate of 257mm/y. However,
this is just a theoretical value assuming no noise. The addition of noise will lower this value, because
the maximum resolvable difference between two consecutive observations of ᎘

ኾ is now lowered by
observation phase noise, as illustrated in figure 2.2.

Figure 2.2: Derivation for maximum resolvable deformation rate, given that two consecutive phase observations are only influ-
enced by deformation and observation phase noise. The maximum resolvable deformation between the two phases is ᎝, minus
the phase noise. Assuming a resolvability success rate of 95%, and ignoring the lower tail of the probability density function
(PDF), the maximum resolvable deformation is given by ᎝ ዅ √ኼ(ኻ.ዀ኿᎟noise [rad]) ዆ ᒐ

Ꮆ ዅ ኼ(ኻ.ዀ኿᎟noise [m]). The factor √ኼ is to
include that both observations are stochastic.

When the constraint is set that 95% of observation noise instances should not cause violation of
the ᎘

ኾ restriction, the maximum resolvable linear rates can be computed by1:

𝑣 =
᎘
ኾ − √2 (1.65𝜎noise)

Δ𝑡 . (2.12)

The result of the maximal resolvable deformation rates, for different satellites and noise levels, is
displayed in figure 2.3. Note that deformation is measured in the line-of-sight (LOS) of the satellite,
therefore the deformation rates are also in the LOS direction. Additionally, note that these values are
deformation rates over an arc, thus the difference in deformation rate between two PS.
1assuming that the effect of the lower tail of observation phase noise in figure 2.2 can be neglected.
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Figure 2.3: Maximum resolvable deformation rate as a function of nominal repeat cycle and observation phase noise, assuming
only two consecutive images. It can be clearly observed that the maximum resolvable deformation rate decreases when noise
and repeat cycle time increase. The values for some satellite mission are plotted in the graph, with the nominal repeat cycle of
the satellite in parentheses behind the satellite name.

Integer least squares

One way of resolving the ambiguity resolution is using Integer Least-Squares (ILS) [Teunissen, 1993].
In this technique the system of equations:

𝐸 {𝑦} = 𝐴𝑎 + 𝐵𝑏, (2.13)

is solved where 𝑎 is the vector of unknown integer ambiguities and 𝑏 is the vector of parameters to
be estimated. First, the float solution of vector 𝑎 is obtained using ordinary Least-Squares. Thereafter,
an estimator is chosen to approximate the integer ambiguities. The simplest way is to round the
float ambiguities to the nearest integer. The best method to do this is to use Integer Least Squares
(ILS) [Teunissen, 1993] which presents an optimal estimation of the ambiguity resolution [Teunissen,
1999], but does this at the cost of computational efficiency [van Leijen, 2014] compared to the Integer
Bootstrapping method [Teunissen and Kleusberg, 1996].

Periodogram

A metric for quality is to estimate the temporal ensemble coherence [Ferretti et al., 2001, van Leijen,
2014]:

�̂� = | 1
𝑇 − 1

ፓዅኻ

∑
፭዆ኻ

𝑒፣(ᎣᎲ,ᑥዅᎣ̂Ꮂ,ᑥ)| , (2.14)

where �̂� is the estimated temporal ensemble coherence, 𝑡 is an acquisition, 𝑇 is the total amount of
acquisitions, 𝜑

ኺ፭
is the phase observation of interferometric pair 0, 𝑡 and �̂�

ኺ,፭
is the estimated phase ob-

servation of interferometric pair 0, 𝑡. This quality measure can be used as cost function for unwrapping
using a periodogram [Counselman and Gourevitch, 1981, Ferretti et al., 2001]. This method searches
the solution space for the parameters that maximize the temporal ensemble coherence as described in
van Leijen [2014] as the Ambiguity Function:

argmax
፛
|�̂�| = | 1𝑇

ፓ

∑
፭዆ኻ
𝑒፣(ᎣᎲ,ᑥዅᎣ̂Ꮂ,ᑥ(፛))| , (2.15)
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where 𝑏 is the vector of model parameters and �̂�
ኺ,፭
(𝑏) is the modelled deformation phase of epoch 𝑡

using parameters 𝑏. This method can be used to iteratively converge to a maximum by narrowing the
solution space stepwise. The solution space of this method gains an extra dimension for every param-
eter to be estimated and is therefore computationally expensive for higher order deformation models.
For this reason, the periodogram is mostly used for estimating the residual height in combination with
a constant velocity model, by modelling the phase as:

𝜑modeled(𝐵ዊ, 𝑡) = 𝜑ጂ፡(𝐵ዊ) + 𝜑፯(𝑡),

= −4𝜋𝜆
𝐵ዊ

𝑅 sin𝜃inc
Δ𝐻 + −4𝜋𝜆 𝑡.

(2.16)

2.3.5 Network parameter estimation

For every arc the deformation parameters, residual height and absolute phase observations are now
known. These values remain relative in space and only say something about the difference between
two PSc. Using the network of arcs created earlier, the parameters and ambiguities can be spatially
estimated using path integration to a single reference point, such that PS parameters can be compared
to each other now that they use the same reference. However, residues will inevitably be found due to
errors in some arcs, caused by wrongly unwrapped ambiguities. Kampes [2006] proposes the testing
of the network based on the estimated parameters, while van Leijen [2014] proposes testing of the
ambiguities per interferogram. The latter incorporates the B-method of testing [Baarda, 1968], and
allows for testing of different deformation models.

2.3.6 OPS/APS estimation

With the unwrapped and tested 1st order network, an estimation can be made concerning the orbital
and atmospheric phase screen (OPS/APS) [Ferretti et al., 2000a], both assumed to be spatially smooth
signals. Recap that the contributions to 𝜙 of a PS are:

𝜙 = 𝜙ጂፇ + 𝜙defo⏝⎵⎵⎵⏟⎵⎵⎵⏝
estimated

+𝜙atmo + 𝜙orb + 𝜙
scatt

+ 𝜙
noise⏝⎵⎵⎵⏟⎵⎵⎵⏝

low

.
(2.17)

This shows that the phase residuals of a PS, when corrected for height and deformation, are mainly
caused by 𝜙orb and 𝜙atmo. The atmospheric and orbit error signal of a PS can therefore be found
by high-pass filtering a PS, or simply by taking the residuals to the adjusted observations of the PS.
Per acquisition, these values of all PS are used to estimate an orbital and atmospheric phase screen.
The OPS is estimated as a plane and removed from the data. Then the APS can be estimated using
interpolation.

2.3.7 Densification

Using the 1st order network, together with the OPS and APS estimation, more PSc can be unwrapped.
Up until recently this was often done by solely redoing the initial point selection of step 2.3.2 while using
a lower threshold [van Leijen, 2014]. However, the increased computation power makes it feasible to
unwrap all radar pixels. This is of great interest, because not all pixels with usable signal-to-noise ratios
have a low amplitude dispersion. Unwrapping all pixels increases the amount of PS, as shown in the
area of interest aproach in [van Leijen, 2014] where for a certain small AOI all pixels are processed for
potential scatterers, to obtain more PS.

The densification is is done by correcting the new PSc by using the OPS and APS, and by creating
arcs to the 3 nearest network PS. The amount of 3 arcs enables testing of the unwrapping result [van
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Leijen, 2014]. PSc with a low quality metric value will be rejected and will hence not be used for the
final result.

This study focusses on the parameter estimation of arcs in PSI. It is used in the network creation
and densification steps of PSI processing.



3
Batch and recursive estimation

theory

A recap of adjustment theory is provided in this chapter. First, simple least squares will be
explained together with the weighted version of this algorithm. Second, it will be shown
what specific set of weights will lead to the Best Linear Unbiased Estimator (BLUE) and
will the relation between Maximum Likelihood Estimation (MLE) and the BLUE moreover
be explained. It will then be shown how these algorithms can be used in a recursive way.
First this will be done for fitting a static model, meaning that a reduced set of parameters
define the complete deformation time series of a PS. Then it is shown how this can be
rewritten for a time-varying case, to allow for a methodology for estimating a dynamic
process, resulting in displacement estimates per epoch.

3.1 Batch estimation

3.1.1 (Weighted) Least Squares

One of the most common methods for parameter estimation is Least Squares [Gauss, 1809]. The
method is built on the method of estimating parameters 𝑥 that minimise the sum of squared errors
between the observations 𝑦 and the adjusted observations �̂�. Given the functional model [Gauss, 1809,
Koch, 1999, Markov, 1900]:

𝐸 {𝑦} = 𝐴𝑥, (3.1)

where 𝑦 is an 𝑚 × 1 vector of 𝑚 stochastic observables, 𝐴 is an 𝑚 × 𝑛 model matrix that transforms
the 𝑛 × 1 vector 𝑥 of 𝑛 unknowns into 𝑦. The estimator �̂� is found by [Koch, 1999]:

�̂�ፋፒፐ = argmin
፱
(∥ 𝑦 − 𝐴𝑥 ∥ኼ),

�̂�ፋፒፐ = (𝐴
⊺𝐴)ዅኻ𝐴⊺𝑦, (3.2)

Different weights can be given to each observation, provided in a weight matrix 𝑊. This can be useful
when it is known that some observations have an higher precision than others [Koch, 1999]:

�̂�ፖፋፒፐ = argmin
፱
(∥ 𝑦 − 𝐴𝑥 ∥ኼፖ),

�̂�ፖፋፒፐ = (𝐴
⊺𝑊𝐴)ዅኻ𝑊𝐴⊺𝑦. (3.3)

Observe that Eq. (3.3) equals (3.2) in the case that the weight matrix 𝑊 equals 𝑐 × 𝐼, meaning any
identity matrix times a scalar, resulting in a diagonal matrix with equal entries for the weights.

13
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3.1.2 Maximum Likelihood Estimation and BLUE

MLE is an alternative method to estimate the parameters 𝑥 by maximising the conditional likelihood
of observation vector 𝑦. Given measurements with Gaussian-distributed errors, we can express the
functional model as [Koch, 1999]:

𝐸 {𝑦} = 𝐴𝑥,

𝐷 {𝑦} = 𝑄፲፲ with 𝑦 ∼ 𝒩(𝐴𝑥, 𝑄፲፲).
(3.4)

The likelihood 𝑓፲(𝑦 ∣ 𝑥) is given by:

𝑓፲(𝑦 ∣ 𝑥) =
1

√det (2𝜋𝑄፲፲)
exp(−12 ∥ 𝑦 − 𝐴𝑥 ∥

ኼ
ፐᎽᎳᑪᑪ). (3.5)

Since maximising the likelihood is the same as maximising the log likelihood, the problem can be
reduced to [Koch, 1999]:

�̂�ፌፋፄ = argmax
፱
(ln 𝑓፲(𝑦 ∣ 𝑥)),

= argmin
፱
(∥ 𝑦 − 𝐴𝑥 ∥ኼፐᎽᎳᑪᑪ),

(3.6)

which has an analytical solution for linear problems [Koch, 1999]:

�̂�ፌፋፄ = (𝐴
⊺𝑄ዅኻ፲፲𝐴)ዅኻ𝐴⊺𝑄ዅኻ፲፲𝑦,

𝑄፱̂MLE = (𝐴⊺𝑄ዅኻ፲፲𝐴)ዅኻ.
(3.7)

Observe that this analytical solution is the same as Eq. (3.3) when 𝑄ዅኻ፲፲ is used as weight matrix 𝑊
and 𝑦 is Gaussian distributed. This is also known as the Best Linear Unbiased Estimator (BLUE).

3.2 Recursive Least-Squares

When a continuous data stream is being estimated, measurements can come in on a fixed time interval.
In modern applications, the number of measurements can easily reach millions. For this purpose, it
would be beneficial if the estimator does not have to be recalculated for every incoming measurement.
This would not only save a lot of processing time, but also reduce the number of measurements that
have to be stored. This section is a summary of Teunissen [2007].

3.2.1 Static case

This section will show how the estimation of a linear system can be done recursively. Static refers to the
fact that a single set of parameters describes the complete model for every epoch. This is contrary to
estimating a dynamic process like tracking the position of a moving car, discussed later in this chapter,
which often cannot be described by a single set of parameters describing the period of interest. Given
a partitioned model for estimating a static model [Teunissen, 2007]:

𝐸{
⎡
⎢
⎢
⎢
⎣

𝑦
ኺ
𝑦
ኻ
⋮
𝑦
ፓ

⎤
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎣

𝐴ኺ
𝐴ኻ
⋮
𝐴ፓ

⎤
⎥
⎥
⎦
𝑥 ; 𝐷{

⎡
⎢
⎢
⎢
⎣

𝑦
ኺ
𝑦
ኻ
⋮
𝑦
ፓ

⎤
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎣

𝑄ኺ 0
𝑄ኻ

⋱
0 𝑄ፓ

⎤
⎥
⎥
⎦
, (3.8)
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where 𝑦
ኺ,ኻ,…,ፓ

are assumed to be uncorrelated vectors with corresponding variance-covariance matrices

𝑄ኻ,ኼ,…,ፓ. The solution of Eq. (3.8) is given by [Teunissen, 2007]:

�̂�(ፓ) = (
ፓ

∑
፭዆ኺ
𝐴⊺፭𝑄ዅኻ፭ 𝐴፭)ዅኻ(

ፓ

∑
፭዆ኺ
𝐴⊺፭𝑄ዅኻ፭ 𝑦፭),

𝑄፱̂(ᑋ) = (
ፓ

∑
፭዆ኺ
𝐴⊺፭𝑄ዅኻ፭ 𝐴፭)ዅኻ.

(3.9)

Writing this in a recursive form leads to [Teunissen, 2007]:

{
�̂�(፭) = (𝑄ዅኻ፱̂(ᑥᎽᎳ) + 𝐴

⊺
፭𝑄ዅኻ፭ 𝐴፭)ዅኻ(𝑄ዅኻ፱̂(ᑥᎽᎳ) �̂�(፭ዅኻ) + 𝐴

⊺
፭𝑄ዅኻ፭ 𝑦፭)

𝑄፱̂(ᑥ) = (𝑄ዅኻ፱̂(ᑥᎽᎳ) + 𝐴
⊺
፭𝑄ዅኻ፭ 𝐴፭)ዅኻ

Given the initial state:

{
�̂�(ኺ) = (𝐴⊺ኺ𝑄ዅኻኺ 𝐴ኺ)ዅኻ𝐴⊺ኺ𝑄ዅኻኺ 𝑦ኺ
𝑄፱̂(Ꮂ) = (𝐴⊺ኺ𝑄ዅኻኺ 𝐴ኺ)ዅኻ

, (3.10)

from which the recursive definition can also be written as:

𝑄፱̂(ᑥ) = (𝑄ዅኻ፱̂(ᑥᎽᎳ) + 𝐴
⊺
፭𝑄ዅኻ፭ 𝐴፭)ዅኻ.

�̂�(፭) = �̂�(፭ዅኻ) + 𝑄፱̂(ᑥ)𝐴
⊺
፭𝑄ዅኻ፭ (𝑦፭ − 𝐴፭�̂�(፭ዅኻ)),

(3.11)

This notation is often used in Maximum A Posteriori (MAP) estimation [e.g. Kalman, 1960], discussed
in section 3.4 (p. 23) for its similarities to recursive least-squares, where �̂�(፭) would indicate the prior
estimator and 𝑄፱̂(ᑥᎽᎳ) its covariance matrix.

3.2.2 Time varying case

The previous section describes the static case, for example estimating body temperature based on a
series of measurements. Assuming that a time varying parameter has to be estimated (e.g. position
of a moving car), Eq. (3.8) gets extended to [Teunissen, 2007]:

𝐸{
⎡
⎢
⎢
⎢
⎣

𝑦
ኺ
𝑦
ኻ
⋮
𝑦
ፓ

⎤
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎣

𝐴ኺ 0
𝐴ኻ

⋱
0 𝐴ፓ

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑥ኺ
𝑥ኻ
⋮
𝑥ፓ

⎤
⎥
⎥
⎦

; 𝐷{
⎡
⎢
⎢
⎢
⎣

𝑦
ኺ
𝑦
ኻ
⋮
𝑦
ፓ

⎤
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎣

𝑄ኺ 0
𝑄ኻ

⋱
0 𝑄ፓ

⎤
⎥
⎥
⎦
. (3.12)

This amount of unknown parameters is impractical for estimation due to rank deficit. However, the fact
that there may be a linear relationship between the values of the vector 𝑥ኻ∶ፓ can be used:

𝑥፭ = Φ፭,ኺ𝑥ኺ, (3.13)

where Φ፭,ኺ is the 𝑛 × 𝑛 transition matrix that transforms 𝑥ኺ into 𝑥፭.

Transition matrix

Suppose a deformation event can be described by:

𝑢(𝑡) = 𝑢(𝑡ኺ) + ∫
፭

፭Ꮂ
�̇�(𝜏)𝑑𝜏, (3.14)
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where 𝑢(𝑡) describes the 1-D deformation of the surface and �̇�(𝑡) is the continuous time derivative,
indicating the deformation rate. In the deterministic case, the first time derivative is zero and Eq. (3.14)
simplifies to:

𝑢(𝑡) = Φ፭,፭Ꮂ ⋅ 𝑢(𝑡ኺ),
Φ፭,፭Ꮂ = 𝐼,

(3.15)

showing that in the deterministic case Eq. (3.12) is the same as Eq. (3.8). Now assume that subsidence
is occurring with a continuous time derivative:

�̇�(𝑡) = �̇�(𝑡ኺ) + ∫
፭

፭Ꮂ
�̈�(𝜏)𝑑𝜏. (3.16)

Substituting Eq. (3.16) in (3.14) and using integration by parts, results in:

𝑢(𝑡) = 𝑢(𝑡ኺ) + ∫
፭

፭Ꮂ
(�̇�(𝑡ኺ) + ∫

Ꭱ

፭Ꮂ
�̈�(𝜌)𝑑𝜌)𝑑𝜏,

= 𝑢(𝑡ኺ) + �̇�(𝑡ኺ)(𝑡 − 𝑡ኺ) + ∫
፭

፭Ꮂ
(𝑡ኺ − 𝜏)�̈�(𝜏)𝑑𝜏,

(3.17)

showing that 𝑢(𝑡) is known when 𝑢(𝑡ኺ), �̇�(𝑡ኺ) and �̈�(𝑡) are known. Writing Eq. (3.14) and (3.17)
together in vector form:

[𝑢(𝑡)�̇�(𝑡)] = [
1 (𝑡 − 𝑡ኺ)
0 1 ] [𝑢(𝑡ኺ)�̇�(𝑡ኺ)] + ∫

፭

፭Ꮂ
[(𝑡 − 𝜏)1 ] �̈�(𝜏)𝑑𝜏, (3.18)

results in a direct expression for 𝑢(𝑡) and �̇�(𝑡). Assuming a constant velocity model, thus �̈� = 0, a
clear linear relation between 𝑥(𝑡) and 𝑥(𝑡ኺ) is visible:

[𝑢(𝑡)�̇�(𝑡)]⏝⎵⏟⎵⏝
፱ᑥ

= Φ፭,፭Ꮂ [
𝑢(𝑡ኺ)
�̇�(𝑡ኺ)]⏝⎵⏟⎵⏝
፱Ꮂ

,
(3.19)

so Φ፭,፭Ꮂ in the case of constant velocity is given by:

Φ፭,፭Ꮂ = [
1 (𝑡 − 𝑡ኺ)
0 1 ] . (3.20)

Similarly, it can be shown that for a constant acceleration model the following transition matrix can
be obtained:

[
𝑢(𝑡)
�̇�(𝑡)
�̈�(𝑡)

] = Φ፭,፭Ꮂ [
𝑢(𝑡ኺ)
�̇�(𝑡ኺ)
�̈�(𝑡ኺ)

]

Φ፭,፭Ꮂ = [
1 (𝑡 − 𝑡ኺ) ኻ

ኼ(𝑡 − 𝑡ኺ)ኼ
0 1 (𝑡 − 𝑡ኺ)
0 0 1

]

. (3.21)

As shown in Teunissen [2007, eq. 3.23] there are three important properties of transition models:

Initial value: Φ፭Ꮂ ,፭Ꮂ = 𝐼
Transition property: Φ፭,፭Ꮂ = Φ፭,፭ᎳΦ፭Ꮃ ,፭Ꮂ ∀ 𝑡, 𝑡ኺ, 𝑡ኻ
Inverse property: Φዅኻ፭,፭Ꮂ = Φ፭Ꮂ ,፭ ∀ 𝑡, 𝑡ኺ

. (3.22)

In Eq. (3.13) and Eq. (3.19) it is shown that 𝑥፭ = Φ፭,ኺ𝑥ኺ. The transition and inverse properties of the
transition model mentioned in (3.22) can be used to create an expression for an arbitrary time 𝑥። based
on 𝑥፭:

𝑥። = Φ።,፭𝑥፭ . (3.23)
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Figure 3.1: The difference between predicting, filtering, and hindcasting. Predicting is estimating a future epoch of which no
observations are available yet, filtering is estimating the most recent observation and hindcasting is updating past filter estimates
using more recent observations.

Substituting this in Eq. (3.12) results in the new expression for the time-varying case [Teunissen, 2007]:

𝐸{
⎡
⎢
⎢
⎢
⎣

𝑦
ኺ
𝑦
ኻ
⋮
𝑦
ፓ

⎤
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎣

𝐴ኺΦኺ,፭
𝐴ኻΦኻ,፭
⋮

𝐴ፓΦፓ,፭

⎤
⎥
⎥
⎦
𝑥፭ ; 𝐷{

⎡
⎢
⎢
⎢
⎣

𝑦
ኺ
𝑦
ኻ
⋮
𝑦
ፓ

⎤
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎣

𝑄ኺ 0
𝑄ኻ

⋱
0 𝑄ፓ

⎤
⎥
⎥
⎦
, (3.24)

from which we denote the estimator as �̂�፭∣ፓ, the estimator at time 𝑡, given the time series 1 ∶ 𝑇.
Three cases can be defined which will now be shortly discussed, and are clarified in figure 3.1.

1. Predicting: 𝑡 > 𝑇 When a time 𝑡 later than the most recent epoch 𝑇, is being estimated, this is
called predicting. The BLUE of this prediction, given �̂�ፓ∣ፓ is known, is given by [Teunissen, 2007]:

�̂�፭∣ፓ = Φ፭,ፓ�̂�ፓ∣ፓ ; 𝑡 > 𝑇,
𝑄፱̂ᑥ∣ᑋ = Φ፭,ፓ𝑄፱̂ᑋ∣ᑋΦ⊺፭,ፓ .

(3.25)

2. Filtering: 𝑡 = 𝑇 Filtering is performed when estimating the most current time step. It is needed
for both predicting and hindcasting to get the BLUE. The estimator �̂�ፓ∣ፓ is given by the Least Squares
solution of (3.24) [Teunissen, 2007]:

�̂�ፓ∣ፓ = (
ፓ

∑
፭዆ኺ
Φ⊺፭,ፓ𝐴⊺፭𝑄ዅኻ፭ 𝐴፭Φ፭,ፓ)ዅኻ(

ፓ

∑
፭዆ኺ
Φ⊺፭,ፓ𝐴⊺፭𝑄ዅኻ፭ 𝑦፭),

𝑄፱̂ᑋ∣ᑋ = (
ፓ

∑
፭዆ኺ
Φ⊺፭,ፓ𝐴⊺፭𝑄ዅኻ፭ 𝐴፭Φ፭,ፓ)ዅኻ.

(3.26)

3. Hindcasting: 𝑡 < 𝑇 We refer to the situation hindcasting when parameters of ”past” time in-
stances are updated based on the most current estimator. This optimal estimation of past epochs is not
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to be confused with smoothing [Teunissen, 2007] which is a more general term for conditioning past
estimates to some past and future observations. Section 3.3 will go into more detail about hindcasting.
The estimator looks similar to that of the predicting estimator but for the case of estimating stochastic
processes, this will no longer be the case.

�̂�፭∣ፓ = Φ፭,ፓ�̂�ፓ∣ፓ , 𝑡 < 𝑇 ;
𝑄፱̂ᑥ∣ᑋ = Φ፭,ፓ𝑄፱̂ᑋ∣ᑋΦ⊺፭,ፓ .

(3.27)

Recursive equations

We now want a set of recursive equations that express the estimator �̂�፭,፭ in terms of the previous
estimator �̂�፭ዅኻ,፭ዅኻ and the latest measurement 𝑦

፭
, to obtain a solution for the time-varying functional

model of Eq. (3.12). This is done by solving the model [Teunissen, 2007]:

𝐸{[
�̂�፭ዅኻ∣፭ዅኻ
𝑦
፭

]} = [Φ፭ዅኻ,፭𝐴፭ ] 𝑥፭ ; 𝐷{[
�̂�፭ዅኻ∣፭ዅኻ
𝑦
፭

]} = [𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳ 0
0 𝑄፲ᑥ

] . (3.28)

The model is solved in two parts. First, the part of the model is solved that is referred to as the
time-update, or prediction:

𝐸{�̂�፭ዅኻ∣፭ዅኻ} = Φ፭ዅኻ,፭𝑥፭ ; 𝐷{�̂�፭ዅኻ∣፭ዅኻ} = 𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳ . (3.29)

The solution of this model is given directly by inverting the transition matrix (see property: (3.22)) and
result in the time-update equations [Teunissen, 2007]:

�̂�፭∣፭ዅኻ = Φ፭,፭ዅኻ�̂�፭ዅኻ∣፭ዅኻ
𝑄፱̂ᑥ∣ᑥᎽᎳ = Φ፭,፭ዅኻ𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳΦ⊺፭,፭ዅኻ

. (3.30)

It can be seen that this set of equations is similar to the prediction equation in (3.25). The solution of
the time-update equations can now be used to solve (3.28) by solving:

𝐸{[
�̂�፭∣፭ዅኻ
𝑦
፭
]} = [ 𝐼𝐴፭] 𝑥፭ ; 𝐷{[

�̂�፭∣፭ዅኻ
𝑦
፭
]} = [𝑄፱̂ᑥ∣ᑥᎽᎳ 0

0 𝑄፲ᑥ
] , (3.31)

of which the solution is given in [Teunissen, 2007]:

𝑄፱̂ᑥ∣ᑥ = (𝑄ዅኻ፱̂ᑥ∣ᑥᎽᎳ + 𝐴
⊺
፭𝑄ዅኻ፲ᑥ 𝐴፭)ዅኻ

�̂�፭∣፭ = �̂�፭∣፭ዅኻ + 𝑄፱̂ᑥ∣ᑥ𝐴
⊺
፭𝑄ዅኻ፲ᑥ (𝑦፭ − 𝐴፭�̂�፭∣፭ዅኻ)

. (3.32)

Because the time-update is here combined with the new measurement these equations are called the
measurement-update which are similar to the previously described filtering step. An example result of
the time-varying recursive estimation is shown in figure 3.2.

3.2.3 Dynamic case

In the previous section of the time-varying case, it is assumed that the estimated system is static,
meaning that the time-varying vector 𝑥 is determined completely using a single time instance 𝑥፭. This
is a strict assumption that will not hold for many real life applications. Deformation is the result of a
complex combination of factors such as surface loads, subsurface injection, construction dynamics or
the composition of the soil. Treating deformation as a stationary static system, is hence a stringent
assumption which can cause a strong reduction of identified scatterers.
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Figure 3.2: Filtering with the time-varying method. The adjusted displacement results of the filter steps are shown in blue. Keep
in mind that every adjusted displacement value is only computed using all the observations on the left of that value, i.e. only
historic observations are used for adjusting a certain epoch. Due to this, the blue line behaves more smooth towards the end
of the time-series, where more data is used for the adjustment. The red line indicates the best estimate (the last epoch), after
hindcasting. This is done as described in Eq. (3.27), and is hence a linear extrapolation of the estimate at time ፓ, and the same
result as after doing batch least-squares adjustment. This same time-series is used later in this chapter to illustrate the result
of dynamic adjustment and the corresponding hindcasting.

In this section, the functional model will be changed, in such a way that it loses it static properties.
The assumption is made that the signal of interest is a temporal smooth signal. On small time scales the
behaviour approximates steady-state behaviour, while on longer time scales the steady-state behaviour
changes under the influence of a (random) acceleration. These changes are modelled in a difference
vector 𝑑.

Assume that the surface deformation dynamics are described by [Teunissen, 2007]:

�̇�(𝑡) = 𝐹(𝑡)𝑥(𝑡) + 𝐺(𝑡)𝑧(𝑡), (3.33)

where 𝐹(𝑡) and 𝐺(𝑡) are system matrices, 𝑥(𝑡) are the steady state parameters, and 𝑧(𝑡) is an external
input function, in this case describing the changes due to acceleration to the steady-state parameters.
Now the state transition Eq. (3.23) can be updated to [Teunissen, 2007]:

𝑥፭ = Φ፭,፭Ꮂ𝑥፭Ꮂ + 𝑑፭,፭Ꮂ , (3.34)

where 𝑑፭,፭Ꮂ is the difference vector, incorporating the changes due to acceleration to the steady-state
parameters. Difference vector 𝑑፭,፭Ꮂ is of the same size and units as 𝑥፭ and is given by the integral
[Teunissen, 2007]:

𝑑፭,፭Ꮂ = ∫
፭

፭Ꮂ
Φ(𝑡, 𝜏)𝐺(𝜏)𝑧(𝜏)𝑑𝜏. (3.35)

This changes the partial model to:

𝐸{
⎡
⎢
⎢
⎢
⎣

𝑦
ኺ
𝑦
ኻ
⋮
𝑦
ፓ

⎤
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎣

𝐴ኺΦኺ,፭
𝐴ኻΦኻ,፭
⋮

𝐴ፓΦፓ,፭

⎤
⎥
⎥
⎦
𝑥፭ +

⎡
⎢
⎢
⎣

𝐴ኺ𝑑ኺ,፭
𝐴ኻ𝑑ኻ,፭
⋮

𝐴ፓ𝑑ፓ,፭

⎤
⎥
⎥
⎦
; 𝐷{

⎡
⎢
⎢
⎢
⎣

𝑦
ኺ
𝑦
ኻ
⋮
𝑦
ፓ

⎤
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎣

𝑄ኺ 0
𝑄ኻ

⋱
0 𝑄ፓ

⎤
⎥
⎥
⎦
. (3.36)

The values for the difference vector in Eq. (3.36) are not known deterministically and can not be
estimated as unknowns due to the lack of redundancy in observations. Fortunately, they can be for
some applications added as pseudo-observations, when assuming that the acceleration is a zero-mean
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random process [Teunissen, 2007]:

𝐸{

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑦
ኺ
𝑑ኻ
𝑦
ኻ
⋮
𝑑ፓ
𝑦
ፓ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

} =

⎡
⎢
⎢
⎢
⎢
⎣

𝐴ኺ 0
−Φኻ,ኺ 𝐼

𝐴ኻ
⋱

−Φፓ,ፓዅኻ 𝐼
0 𝐴ፓ

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑥ኺ
𝑥ኻ
⋮

𝑥ፓዅኻ
𝑥ፓ

⎤
⎥
⎥
⎥
⎦

; 𝐷{

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑦
ኺ
𝑑ኻ
𝑦
ኻ
⋮
𝑑ፓ
𝑦
ፓ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

} =

⎡
⎢
⎢
⎢
⎢
⎣

𝑄፲Ꮂ 0
𝑄፝Ꮃ

𝑄፲Ꮃ
⋱

𝑄፝ᑋ
0 𝑄፲ᑋ

⎤
⎥
⎥
⎥
⎥
⎦

,

(3.37)
where 𝑄፝ᑥ is the VCM for the difference vector 𝑑. From this equation it can be derived that the
estimators �̂�፭ዅኻ∣፭ and �̂�፭∣፭ of 𝑥፭ዅኻ and 𝑥፭ depend solely on �̂�፭ዅኻ∣፭ዅኻ, 𝑑ፓ and 𝑦

ፓ
. Therefore, �̂�፭ዅኻ∣፭ and

�̂�፭∣፭ can be computed by solving [Teunissen, 2007]:

𝐸{
⎡
⎢
⎢
⎢
⎣

�̂�፭ዅኻ∣፭ዅኻ
𝑑፭

. . . . . . .
𝑦
፭

⎤
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎣

𝐼 0
−Φ፭,፭ዅኻ 𝐼
. . . . . . . . . . . . . .
0 𝐴፭

⎤
⎥
⎥
⎦
[𝑥፭ዅኻ𝑥፭ ] ; 𝐷{

⎡
⎢
⎢
⎢
⎣

�̂�፭ዅኻ∣፭ዅኻ
𝑑፭

. . . . . . .
𝑦
፭

⎤
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎣

𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳ 0 ⋮ 0
0 𝑄፝ᑥ ⋮ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 ⋮ 𝑄፲ᑥ

⎤
⎥
⎥
⎦
, (3.38)

which will be done in two steps. First, the top block of 3.38 is estimated:

𝐸{[
�̂�፭ዅኻ∣፭ዅኻ
𝑑፭

]} = [ 𝐼 0
−Φ፭,፭ዅኻ 𝐼] [

𝑥፭ዅኻ
𝑥፭ ] ; 𝐷{[

�̂�፭ዅኻ∣፭ዅኻ
𝑑፭

]} = [𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳ 0
0 𝑄፝ᑥ

] . (3.39)

This can be done directly by inverting [ ፈ ኺ
ዅጓᑥ,ᑥᎽᎳ ፈ ], because it is full rank:

[
�̂�፭ዅኻ∣፭ዅኻ
�̂�፭∣፭ዅኻ

] = [ 𝐼 0
Φ፭,፭ዅኻ 𝐼] [

�̂�፭ዅኻ∣፭ዅኻ
𝑑፭

] . (3.40)

The corresponding covariance matrices can be found by error propagation:

[ 𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳ 𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳ፱̂ᑥ∣ᑥᎽᎳ
𝑄፱̂ᑥ∣ᑥᎽᎳ፱̂ᑥᎽᎳ∣ᑥᎽᎳ 𝑄፱̂ᑥ∣ᑥᎽᎳ

] = [
𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳ 𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳΦ⊺፭,፭ዅኻ

Φ፭,፭ዅኻ𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳ (Φ፭,፭ዅኻ𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳΦ⊺፭,፭ዅኻ + 𝑄፝ᑥ)
] . (3.41)

The resulting recursive equations below are called the time-update equations. They show that the
predicted estimator �̂�፭∣፭ዅኻ is only dependent on the filtered estimator �̂�፭ዅኻ∣፭ዅኻ and the difference vector
𝑑፭ [Teunissen, 2007]:

Time-update equations
�̂�፭∣፭ዅኻ = Φ፭,፭ዅኻ�̂�፭ዅኻ∣፭ዅኻ + 𝑑፭
𝑄፱̂ᑥ∣ᑥᎽᎳ = Φ፭,፭ዅኻ𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳΦ⊺፭,፭ዅኻ + 𝑄፝ᑥ

. (3.42)

These equations are the result of solving Eq. (3.39). Using these time-update equations, Eq. (3.38)
can be solved by solving:

𝐸{
⎡
⎢
⎢
⎢
⎣

�̂�፭ዅኻ∣፭ዅኻ
. . . . . . .
�̂�፭∣፭ዅኻ
𝑦
፭

⎤
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎣

𝐼 ⋮ 0
. . . . . . . . . .
0 ⋮ 𝐼
0 ⋮ 𝐴፭

⎤
⎥
⎥
⎦
[𝑥፭ዅኻ𝑥፭ ] ; 𝐷{

⎡
⎢
⎢
⎢
⎣

�̂�፭ዅኻ∣፭ዅኻ
. . . . . . .
�̂�፭∣፭ዅኻ
𝑦
፭

⎤
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎣

𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳ ⋮ 𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳ፱̂ᑥ∣ᑥᎽᎳ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
𝑄፱̂ᑥ∣ᑥᎽᎳ፱̂ᑥᎽᎳ∣ᑥᎽᎳ ⋮ 𝑄፱̂ᑥ∣ᑥᎽᎳ 0

0 ⋮ 0 𝑄፲ᑥ

⎤
⎥
⎥
⎦
. (3.43)

It can be seen that 𝑥፭ only depends on the lower right block of the model matrix. Given this fact, the
system can be solved by reducing the functional and stochastic model to:

𝐸{[
�̂�፭∣፭ዅኻ
𝑦
፭
]} = [ 𝐼𝐴፭] 𝑥፭ ; 𝐷{[

�̂�፭∣፭ዅኻ
𝑦
፭
]} = [𝑄፱̂ᑥ∣ᑥᎽᎳ 0

0 𝑄፲ᑥ
] , (3.44)
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Figure 3.3: The same data as used in figure 3.2 is processed, but now while considering the signal of interest to be a dynamic
process. The blue line follows the data more closely than previously shown in figure 3.2, but appears less smooth than the signal
estimate in figure 3.2.

of which the solution is previously (3.32) given by:

Measurement-update equations
�̂�፭∣፭ = �̂�፭∣፭ዅኻ + (𝑄

ዅኻ
፱̂ᑥ∣ᑥᎽᎳ + 𝐴

⊺
፭𝑄ዅኻ፲ᑥ 𝐴፭)ዅኻ𝐴⊺፭𝑄ዅኻ፲ᑥ (𝑦፭ − 𝐴፭�̂�፭∣፭ዅኻ)

𝑄፱̂ᑥ∣ᑥ = (𝑄ዅኻ፱̂ᑥ∣ᑥᎽᎳ + 𝐴
⊺
፭𝑄ዅኻ፲ᑥ 𝐴፭)ዅኻ

. (3.45)

These equations are the measurement-update equations of the stochastic surface deformation model.
The final result of filtering the dataset used in figure 3.2 can be seen in figure 3.3. The filtered estimate
seems to follow the data more closely, but as a result of only using past epochs, the estimate is more
rough than the signal is expected to be.

3.3 Hindcasting

The filter algorithms that are discussed in this chapter until now, are optimal estimators for the most
recent observation. Those estimators only describe their current epoch, and as soon as new obser-
vations are available, the estimator is no longer based on all observations and is hence no longer the
best possible estimator.

To obtain the most optimal estimation of the parameters at a certain epoch, it is important to update
past estimators with newer observations. This process is often referred to as smoothing.

Smoothing is estimating a system state at a given time, conditioned to several past, present, and
future observations [e.g. Cosme et al., 2012]. This means that e.g. moving average and low-pass filters
both categorise as smoothing methods. Hence we introduce a new term to refer to optimal updating
of past estimators: hindcasting; a specific type of smoothing that returns the maximum a posteriori
(MAP) estimator [e.g. Rauch et al., 1965] for all or some specific epochs. MAP estimation can be used
to find the value of an unknown parameter, based on prior estimate and distribution, and empirical
data with a specific distribution. It differs from Maximum Likelihood estimation by incorporating a prior
distribution of the signal. The term hindcasting is used in meteorology and oceanography [e.g. Cardone
et al., 1975, Leetmaa and Ji, 1989] to indicate the testing of the performance of prediction models,
and is from now on used in the slightly different context of optimally updating parameter estimations
using all available observations. The difference in formulation between the MAP estimate of the filter
step, and the hindcasted MAP estimate is:

�̂�
MAP,Filter

= �̂�ፓ∣ፓ = argmax
፱
𝑓(𝑥ፓ ∣ 𝑦ኻ∶ፓ),

�̂�
MAP,Hindcasted

= �̂�፭∣ፓ = argmax
፱
𝑓(𝑥፭ ∣ 𝑦ኻ∶ፓ) for 𝑡ኺ ≤ 𝑡 ≤ 𝑇.

(3.46)
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Figure 3.4: Three types of hindcasting. Fixed-interval hindcasting is used to obtain estimates for all observed epochs (e.g. what
was the missile trajectory given the measurements of the whole flight). Fixed-point hindcasting is used to get the estimate on
one single epoch (e.g. what was the temperature on time ፭ given all surrounding observations). Fixed-lag hindcasting gives an
estimate of the ፤ epochs before the most recent one and is used for numerically efficient correction of only the latest number
of epochs (e.g. what is the current driving speed given the GPS measurements of the last few seconds).

The MAP filter estimate is the estimate of the most recent observation, at time 𝑇, based on all mea-
surements, while the MAP hindcasted estimate is the estimate of an arbitrary epoch based on all the
available observations. It can be seen from this formulation, by substituting 𝑡 with 𝑇, that the estimate
of the most recent observation is the same for the filter and hindcasting output. This is the reason that
hindcasting algorithms are often implemented in a backwards recursion [Rauch et al., 1965], after the
forward recursive filter pass that is performed by using Eq. (3.42) and (3.45).

Three types of hindcasting are highlighted [Cosme et al., 2012]:

• Fixed-interval: This type gives estimates for all epochs 𝑡 in the interval [𝑡ኺ, 𝑇]. This type is
mostly used when an optimal estimate of a dynamic process is needed, incorporating as much
data as possible.

• Fixed-point: This type calculates the estimate for one specific epoch 𝑡 in the [𝑡ኺ, 𝑇] interval,
every time a new measurement comes in.

• Fixed-lag: This type gives an estimate �̂�ፓዅ፤∣ፓ of a limited fixed amount of epochs, k, in the
past. The application of this type is to get a near real time estimate when the filter output is not
precise enough, but fixed-interval estimation is numerically too expensive.

Figure 3.4 visualises three different types of hindcasting. It shows that fixed-interval is most suitable for
deformation estimation, since it returns estimates for all epochs based on all observations. However,
this is also the most expensive one in computation time, since all epochs need to be re-estimated once
a new observation comes in. Fixed-lag smoothing could be of interest for longer time-series, where
hindcasting a few years in the past makes no significant change anymore to these estimates.

In the following, we will consider fixed-interval hindcasting as the used hindcasting method for this
study.



3.4 Similarities to Kalman filtering 23

Figure 3.5: Example of results after forward filtering, the subsequent combination of the time-update and measurement-update
equations, and backward hindcasting, the time-reversed updating of previous estimates which were based on limited time series.
A certain a priori assumption is made about the smoothness of the physical signal in the VCM of the difference vector ፐᑕ. The
filtered estimate is still more fluctuant than would be expected from the a priori estimated stochasticity of the dynamics—ፐᑕ.
The hindcasting estimate, however, shows a fit to the data corresponding with the expected signal behaviour. This visualisation is
included to show that the used functional model is now based on a smoothness constraint, as described in section 3.2.3 (p. 18).

3.3.1 Fixed-interval hindcasting

There are multiple methods to achieve fixed-interval hindcasting. One of the most popular algorithms
is that of Rauch, Striebel, and Tung [1965] who presented an efficient algorithm implemented in a
backwards recursive pass. The hindcasting is done purely in the parameter space and starts at the most
recent filter estimate of epoch 𝑇. As shown in Eq. (3.46), this filter estimate is equal to the hindcasting
estimate and is hence the initialisation of the hindcasting algorithm. From that point onwards, the
epochs are processed recursively in a time-reversed order back to the first epoch 𝑡ኺ [Rauch et al.,
1965]:

Iterate 𝑡 → 𝑇 ∶ −1 ∶ 𝑡ኺ
𝐺፭ = 𝑄፱̂ᑥ∣ᑥΦዉ፭ዄኻ,፭𝑄ዅኻ፱̂ᑥᎼᎳ∣ᑥ
�̂�፭∣ፓ = �̂�፭∣፭ + 𝐺፭ (�̂�፭ዄኻ∣ፓ − �̂�፭ዄኻ∣፭)

𝑄፱̂ᑥ∣ᑋ = 𝑄፱̂ᑥ∣ᑥ + 𝐺፭ (𝑄፱̂ᑥᎼᎳ∣ᑋ − 𝑄፱̂ᑥᎼᎳ∣ᑥ)𝐺ዉ፭

. (3.47)

Here 𝐺፭ is the hindcasting gain and �̂�፭∣ፓ indicates the estimate of epoch 𝑡 after hindcasting. The
parameter hindcasting is done purely based on filter estimates and VCM’s, as shown in Eq. (3.47). This
also means that the smoothness of the hindcasting result depends partly on the stochasticity of the
difference vector—𝑄፝ᑥ , which is implicitly in 𝑄፱̂ᑥ∣ᑥ and 𝑄፱̂ᑥᎼᎳ∣ᑥ . An example of the difference between
the filter and the hindcasting estimate is displayed in figure 3.5. The hindcasting estimate, indicated
by the red line, is based on all available observations, where the filter estimates, indicated by the blue
line, for each epoch are only based on previous epochs.

This study uses recursive least-squares, and models deformation as a dynamic process [Teunissen,
2007]. In signal processing another estimator is commonly used, of which the similarities will be
discussed in the next section.

3.4 Similarities to Kalman filtering

The groundwork for the theory used in this study is based on adjustment theory commonly used in
mathematical geodesy. In signal processing one might note the resemblance to the dynamic case in
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section 3.2.3 with the theory of Kalman filtering [Kalman, 1960]. He provides a commonly used filter
method in signal processing, because it returns a maximum a posteriori filter estimate when observation
noise follows a known Gaussian distribution, and given that the stochasticity of the process noise is
known.

It can be shown that Kalman filtering is the same as recursive least-squares when describing the
signal as a dynamic process (section 3.2.3). A common notation for the Kalman equations is [Bishop
and Welch, 2001]1:

Time-update
�̂�ዅ፤ = 𝐴፤�̂�፤ዅኻ
𝑃ዅ፤ = 𝐴፤𝑃፤ዅኻ𝐴⊺፤ + 𝑄፤

Measurement-update

𝐾፤ = 𝑃ዅ፤ 𝐻⊺፤ (𝐻፤𝑃ዅ፤ 𝐻⊺፤ + 𝑅)
ዅኻ

�̂�፤ = �̂�ዅ፤ + 𝐾፤ (𝑧፤ − 𝐻፤�̂�ዅ፤ )
𝑃፤ = (𝐼 − 𝐾፤𝐻፤) 𝑃ዅ፤

, (3.48)

where a direct link can be made from Kalman filtering notation, to the notation used in this thesis:

�̂�፤ = �̂�፭∣፭ ,
�̂�ዅ፤ = �̂�፭∣፭ዅኻ,
𝐴፤ = Φ፭,፭ዅኻ,
𝑃ዅ፤ = 𝑄፱ᑥ∣ᑥᎽᎳ ,
𝑃፤ = 𝑄፱ᑥ∣ᑥ ,
𝐻፤ = 𝐴፭ ,
𝑅 = 𝑄፲ᑥ ,
𝑧፤ = 𝑦፭ ,

(3.49)

resulting in a formulation that already looks similar to Eq. (3.42) and Eq. (3.45) used in the stochastic
case:

Time-update
�̂�፭∣፭ዅኻ = Φ፭,፭ዅኻ�̂�፭ዅኻ∣፭ዅኻ
𝑄፱ᑥ∣ᑥᎽᎳ = Φ፭,፭ዅኻ𝑄፱ᑥᎽᎳ∣ᑥᎽᎳΦ⊺፭,፭ዅኻ + 𝑄፝ᑥ

Measurement-update

𝐾፭ = 𝑄፱ᑥ∣ᑥᎽᎳ𝐴⊺ (𝐴፭𝑄፱ᑥ∣ᑥᎽᎳ𝐴⊺፭ + 𝑄፲ᑥ)
ዅኻ

�̂�፭∣፭ = �̂�፭∣፭ዅኻ + 𝐾፭ (𝑦፭ − 𝐴�̂�፭∣፭ዅኻ)
𝑄፱ᑥ∣ᑥ = (𝐼 − 𝐾፭𝐴)𝑄፱ᑥ∣ᑥᎽᎳ

. (3.50)

The equality of the solution of the stochastic case and that of Kalman filtering can be shown when
writing the functional model of the measurement-update in Eq. (3.44) in terms of condition equations
[Teunissen, 2000, Ch. 3] [Teunissen, 2007, Eq. (3.49)]:

[𝐴፭ 𝐼] 𝐸{[
�̂�፭∣፭ዅኻ
𝑦
፭
]} = 0 ; 𝐷{[

�̂�፭∣፭ዅኻ
𝑦
፭
]} = [𝑄፱̂ᑥ∣ᑥᎽᎳ 0

0 𝑄፲ᑥ
] , (3.51)

1Note that the control-input matrix and vector of the Kalman filter are omitted from the formulation, since they are irrelevant
for this application.
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which when solved, gives for the recursive measurement-update equations [Teunissen, 2007, Eq. (6.34)]:

Measurement-update
𝑄፯ᑥ = 𝑄፲ᑥ + 𝐴፭𝑄፱ᑥ∣ᑥᎽᎳ𝐴⊺፭
�̂�፭∣፭ = �̂�፭∣፭ዅኻ + 𝑄፱ᑥ∣ᑥᎽᎳ𝐴

⊺
፭𝑄ዅኻ፯ᑥ (𝑦፭ − 𝐴፭�̂�፭∣፭ዅኻ)

𝑄፱ᑥ∣ᑥ = (𝑄፱ᑥ∣ᑥᎽᎳ − 𝑄፱ᑥ∣ᑥᎽᎳ𝐴⊺፭𝑄ዅኻ፯ᑥ 𝐴፭𝑄፱ᑥ∣ᑥᎽᎳ)

. (3.52)

This result can, with simple substitution, be changed to the formulation of (3.50) where the Kalman
Gain, is given by:

𝐾፭ = 𝑄፱ᑥ∣ᑥᎽᎳ𝐴⊺፭𝑄ዅኻ፯ᑥ , (3.53)

and 𝑄፯ᑥ is considered to be the variance matrix of the predicted residual:

𝑄፯ᑥ = 𝑦፭ − 𝐴፭�̂�፭∣፭ዅኻ. (3.54)

Therefore it is shown that recursive least-squares for describing a dynamic process is the same as
Kalman filtering.





4
Recursive Least-Squares in Phase

Unwrapping

Recursive least squares can have multiple applications for InSAR. First of all, it can be
used for model fitting when new observations come in. This enables efficient updating
of model parameters without re-using whole time series in the calculation and moreover,
without changing past estimates. However, the scope of this study is phase unwrapping
of InSAR time series. Here we show that the set of recursive equations for the static case
(Eq. 3.10) can be used for real-time phase unwrapping. This means that the previously
adjusted parameters are used for unwrapping the newest observation. First the application
for the static case is shown, thereafter the theory is extended to be used in the dynamic
case for parameter and ambiguity estimation. The main goal is to limit the amount of
unmodeled deformation and reduce the amount of type-1 errors1, by using the dynamic
functional model in PSI processing.

4.1 Deformation as a static process

Chapter 3 discussed how the recursive equations are derived for the static and dynamic case. This
section will explain how the ambiguities of the double-difference phase observations can be resolved
using the recursive least squares equations with a static functional model. The term static indicates
here that a parametric model is used, for instance a steady-state model, to constrain the ambiguity
estimation. The notation in the equations of this chapter is adjusted to comply with Delft PSI literature
[e.g. Hanssen, 2004, Samiei-Esfahany, 2017, van Leijen, 2014]:

𝜑
፭
= 𝜑።,፣

ኺ,፭
, Wrapped double-difference phase observation of arc 𝑖, 𝑗, on epoch 𝑡 compared to reference epoch 0.

𝜙
፭
= 𝜙።,፣

ኺ,፭
, Absolute double-difference phase of arc 𝑖, 𝑗, on epoch 𝑡 compared to reference epoch 0.

1Rejection of scatterers that should be accepted, also referred to as: false negatives.

27
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4.1.1 Functional and stochastic model

Chapter 3 showed that the functional model can be written in a partitioned way as long as the stochastic
model is in the form of a block diagonal matrix:

𝐸{

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜙
ኺ
⋮
𝜙
፭
⋮
𝜙
ፓ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟

፲

} =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐴ኺ
⋮
𝐴፭
⋮
𝐴ፓ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟

ፀ

𝑥 ; 𝐷{

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜙
ኺ
⋮
𝜙
፭
⋮
𝜙
ፓ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟

፲

} =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑄ᎫᎲ 0
⋱

𝑄Ꭻᑥ
⋱

0 𝑄Ꭻᑋ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝

ፐᑪ

, (4.1)

where:

• 𝜙
፭
is short for 𝜙።,፣

ኺ,፭
, the absolute double phase difference between epoch 0 and 𝑡 of arc 𝑖, 𝑗,

• 𝑥 is the vector of unknown parameters,

• 𝐴፭ is the 1× 𝑛 matrix that transforms the parameters 𝑥 into the expectation of the double phase
difference at epoch 𝑡: 𝜙

፭
, where 𝑛 is the number of adjusted parameters.

Eq. (4.1) can be solved recursively based on the estimator of the previous iteration for which the
functional and stochastic model reduces to [Teunissen, 2007]:

𝐸{[
�̂�ፓዅኻ
𝜙
ፓ
]} = [ 𝐼𝐴ፓ] 𝑥 ; 𝐷{[

�̂�ፓዅኻ
𝜙
ፓ
]} = [

𝑄፱̂ᑋᎽᎳ 0
0 𝑄Ꭻ

ᑋ

] , (4.2)

where �̂�ፓዅኻ is the 𝑛 × 1 estimator of the previous iteration of the 𝑛 adjusted parameters.
Now assume that during parameter and ambiguity estimation, given a steady-state deformation

model, the following parameters may need to be estimated:

1. Velocity parameter 𝑣 [𝑚/𝑦]. The parameter modelling the steady-state deformation rate.

2. Height difference Δ𝐻 [𝑚]. This is the height of the scatterer with respect to the reference
scatterer, as is discussed in chapter 2.

3. Temperature dependence 𝛼 [𝒦ዅኻ]. It is also possible to estimate the temperature dependence
𝛼 of a scatterer. This is done by assuming that a scatterer is based on an object which reacts
linearly on temperature changes, such that the dilation in line-of-sight of the object is given by
[Chang, 2015]:

Δ𝐿፭ = 𝛼 ⋅ Δ𝐾፭ . (4.3)

Here are Δ𝐿፭ and Δ𝐾፭ respectively the change in dilation and temperature at time 𝑡, compared to
the reference epoch, and 𝛼 is the thermal coefficient of the object. When temperature information
is not available or the seasonal trend is not a linear function of temperature, a linearised sinusoidal
model can be used, adding two instead of one extra parameter [Kampes, 2005, Van Leijen and
Hanssen, 2008].

The vector 𝑥 is now formed by:

𝑥 = [
𝑣

Δ𝐻
𝛼
] . (4.4)

Matrix 𝐴፭ transforms the parameters 𝑥 into the expectation of the absolute double difference phase ob-
servations 𝜙

፭
. The line-of-sight deformation is estimated in meters and is thus multiplied by the double

wavenumber ዅኾ᎝᎘ times 𝑡, to obtain deformation in radians. The height difference Δ𝐻 is multiplied by
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the height-to-phase conversion factor (Eq. 2.6), and the temperature coefficient is multiplied by the
temperature times the double wavenumber, to obtain the temperature dilation in radians. Matrix 𝐴፭ is
thus given by:

𝐴፭ = [ዅኾ᎝᎘ 𝑡
ዅኾ᎝
᎘

ፁ�ᑥ
ፑ sin᎕ᑚᑟᑔ

ዅኾ᎝
᎘ Δ𝐾፭] . (4.5)

Inserting these expressions in Eq. (4.2) results in the recursive functional model:

𝐸{
⎡
⎢
⎢
⎢
⎣

�̂�፭ዅኻ̂Δ𝐻፭ዅኻ
�̂�፭ዅኻ
𝜑
፭

⎤
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1

ዅኾ᎝
᎘ 𝑡

ዅኾ᎝
᎘

ፁ�ᑥ
ፑ sin᎕ᑚᑟᑔ

ዅኾ᎝
᎘ Δ𝐾፭

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑣፭
𝑏
Δ𝐻፭
𝛼፭

⎤
⎥
⎥
⎦
,

𝐷{
⎡
⎢
⎢
⎢
⎣

�̂�፭ዅኻ̂Δ𝐻፭ዅኻ
�̂�፭ዅኻ
𝜑
፭

⎤
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎣

𝜎ኼ፯ 𝑠𝑦𝑚
𝜎፯,ጂፇ 𝜎ኼጂፇ
𝜎፯,ᎎᑋ 𝜎ጂፇ,ᎎ 𝜎ኼᎎ
0 0 0 𝜎ኼᎣᑥ

⎤
⎥
⎥
⎦
,

(4.6)

where ፭ዅኻ denotes the estimator of the previous time step and 𝜎፯,ጂፇ is the covariance between those
two estimators at the specified epoch 𝑡 − 1.

Equations (4.1) to (4.6) use the absolute double-difference phase 𝜙
፭
. Unfortunately, the avail-

able double-difference phase observations, 𝜑
፭
, are wrapped due to the complex nature of the radar

observation. In the next section it is discussed how to treat with the unknown integer amount of
phase cycles, that wrapped double-difference phase observations have to shift to equal the absolute
double-difference phase observation 𝜙

፭
.

4.1.2 Ambiguity resolution

As previously mentioned in chapter 1, the aim of this study is to apply a temporal smoothness constraint
to aid the ambiguity resolution. To accomplish this, the assumption is made that the expectation of
the absolute double-difference phase observation of the next epoch:

�̂�
፭∣፭ዅኻ

= 𝐴፭�̂�፭ዅኻ, (4.7)

is within half a wave cycle of the actual observation. In mathematical form:

|𝜙
፭
− �̂�

፭∣፭ዅኻ
| < 𝜋, (4.8)

where 𝜙
፭
is the absolute double-difference phase at epoch 𝑡 and �̂�

፭∣፭ዅኻ
is the estimator of the absolute

double-difference phase observation of the same arc and epoch, based on epoch 𝑡 − 1. The static
recursive equations are straight forward when the absolute double-difference phases, 𝜙ኺ∶ፓ, are known,
see Eq. (3.11):

�̂�፭ = �̂�፭ዅኻ + (𝑄
ዅኻ
፱̂ᑥᎽᎳ + 𝐴

⊺
፭𝑄ዅኻᎫᑥ𝐴፭)

ዅኻ
𝐴⊺፭𝑄ዅኻᎫᑥ (𝜙፭ − 𝐴፭�̂�፭ዅኻ)

𝑄፱̂ᑥ = (𝑄ዅኻ፱̂ᑥᎽᎳ + 𝐴
⊺
፭𝑄ዅኻᎫᑥ𝐴፭)

ዅኻ . (4.9)

Unfortunately, the absolute phases, 𝜙፭, are not known, but the wrapped observations, 𝜑፭, can also be
used as long as the condition of Eq. (4.8) holds. This can be shown by using the fact that:

𝜙
፭
= 𝜑

፭
+ 𝑎2𝜋, (𝑎 ∈ ℤ), (4.10)

where 𝑎 is the unknown amount of integer phase cycles. The wrapping operator 𝒲{…} is introduced
which is short for [Hanssen, 2001]:

𝒲{𝜙} = mod ኼ᎝(𝜙 + 𝜋) − 𝜋, (4.11)
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where mod ኼ᎝ is the modulo 2𝜋 operator; in this case transforming 𝜙 to the [−𝜋, 𝜋) interval. It can
be shown that the wrapped observations can be used when Eq. (4.8) holds:

𝒲{𝜑
፭
− 𝐴፭�̂�፭ዅኻ} = 𝒲{𝜙፭ − 𝐴፭�̂�፭ዅኻ − 𝑎2𝜋},

= mod ኼ᎝(𝜙፭ − 𝐴፭�̂�፭ዅኻ⏝⎵⎵⎵⏟⎵⎵⎵⏝
[ዅ᎝,᎝](4.8)

−𝑎2𝜋 + 𝜋 ) − 𝜋,

= mod ኼ᎝(𝜙፭ − 𝐴፭�̂�፭ዅኻ + 𝜋⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
[ኺ,ኼ᎝]

−𝑎2𝜋) − 𝜋,

=�����mod ኼ᎝(𝜙፭ − 𝐴፭�̂�፭ዅኻ�
�+𝜋���−𝑎2𝜋)��−𝜋,

= 𝜙
፭
− 𝐴፭�̂�፭ዅኻ.

(4.12)

Using this expression, the static recursive equations (3.11) can be written as:

�̂�፭ = �̂�፭ዅኻ + (𝑄
ዅኻ
፱̂ᑥᎽᎳ + 𝐴

⊺
፭𝑄ዅኻᎫᑥ𝐴፭)

ዅኻ
𝐴⊺፭𝑄ዅኻᎫᑥ𝒲{𝜑፭ − 𝐴፭�̂�፭ዅኻ}

𝑄፱̂ᑥ = (𝑄ዅኻ፱̂ᑥᎽᎳ + 𝐴
⊺
፭𝑄ዅኻᎫᑥ𝐴፭)

ዅኻ . (4.13)

The unwrapping constraint

The assumption made in Eq. (4.8) puts a constraint on the magnitude of acceptable observation phase
noise, 𝑄Ꭻᑥ , and on the precision of the previous estimator projected onto the current epoch, 𝑄Ꭳ̂ᑥ∣ᑥᎽᎳ .
The stochastic properties of the observation phase noise, for points with high SNR, are in PSI methods
often modelled as additive zero-mean and Gaussian distributed [Hanssen, 2004]. Eq. (4.8) can be
rewritten to:

|𝜙
፭
− �̂�

፭∣፭ዅኻ
| < 𝜋,

|Δ𝜙
፭
| < 𝜋,

(4.14)

where 𝜙
፭
is the latest double-difference phase observation, and �̂�

፭∣፭ዅኻ
is the a priori adjustment of the

same phase observation, based on the parameter estimator of the previous epoch:

�̂�
፭∣፭ዅኻ

= 𝐴፭�̂�፭ዅኻ. (4.15)

The variance-covariance matrix (VCM) of this matrix is given by:

𝑄Ꭻ̂ᑥ∣ᑥᎽᎳ = 𝐴፭𝑄፱̂ᑥᎽᎳ𝐴
⊺
፭ . (4.16)

The VCM of the residual double-difference phase observation Δ𝜙
፭
is now given by:

𝑄ጂᎫᑥ = 𝑄Ꭻᑥ + 𝐴፭𝑄፱̂ᑥᎽᎳ𝐴⊺፭ . (4.17)

Figure 4.1 illustrates how the standard deviation of the residual phase observation can be used to
determine the percentage of observations that comply with the unwrapping constraint in Eq. (4.14)—
the success-rate. The probability that:

𝑃 = 𝑃(Δ𝜙፭ < −𝜋) + 𝑃(Δ𝜙፭ > 𝜋), (4.18)

given the normal distribution:
𝒩(0, 𝑄ጂᎫᑥ), (4.19)
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Figure 4.1: Theoretical percentage of observations that comply with the unwrapping constraint of Eq. (4.14). The areas indicated
in blue correspond to the percentage of observations that can not be unwrapped to the correct cycle, due to the combination of
observation phase noise, ፐᒣ, and the precision of the a priori estimator of the phase observation, ፐᒣ̂ᑥ∣ᑥᎽᎳ .

equals the probability that an observation is unwrapped incorrectly. This distribution is zero-mean due
to �̂�

፭∣፭ዅኻ
from Eq. (4.15) being the unbiased a-priori estimator of epoch 𝑡 [Teunissen, 2007]. This

probability of incorrect unwrapping is illustrated in blue in figure 4.1. Figure 4.2 shows the unwrapping
success-rate as a function of unavailable acquisitions. For TerraSAR-X this means that when the next
epoch is the typically 11 days later, the probability is listed above zero on the x-axis. When the next
acquisition is 22 days later, this indicates that one acquisition was unavailable. The probabilities are
computed for 3 noise levels, ranging from 50∘ (X-Band: 2.2𝑚𝑚, C-Band: 3.9𝑚𝑚) to 70∘ (X-Band:
3.0𝑚𝑚, C-Band: 5.4𝑚𝑚). This is Gaussian distributed additive noise to the double-difference phase
observations. The decision of these noise levels will be motivated in chapter 5.3.3 (p. 56). From
figure 4.2 it can be deduced that when it is required to have a confidence interval of 2-sigma (≈ 95%),
observations can be unwrapped to the correct phase cycle, if the phase noise is 60∘ or lower.

As discussed in the previous paragraph, not all observations will be lying in the required interval and
hence some observations might be unresolvable and unwrapped to the wrong phase cycle. Therefore,
it is necessary to discuss the effect of those outliers on the overall result.

First, when looking at the gain part of Eq. (4.13), which determines the contribution of the new
observation to the adjustment:

Gain = (𝑄ዅኻ፱̂ᑥᎽᎳ + 𝐴
⊺
፭𝑄ዅኻᎫᑥ𝐴፭)

ዅኻ
𝐴⊺፭𝑄ዅኻᎫᑥ , (4.20)

it can be seen that the gain converges to very low values when the relative contribution of the obser-
vation variance to the VCM of adjusted parameters is very small:

𝐴⊺፭𝑄Ꭻᑥ𝐴፭ ≫ 𝑄፱̂ᑥᎽᎳ . (4.21)

From this it can be deduced that the gain is low as long as a large enough amount of observations
is already used for computing 𝑄፱̂Ꮂ; the initialisation VCM of the recursive equations (Eq. 3.10). Every
iteration decreases the values of 𝑄፱̂ᑥ , hence when assuming that 𝑄Ꭻᑥ does not change significantly
over time, Eq. (4.21) remains true. This process is illustrated in figure 4.3, showing that the effect of
unresolvable observations on the estimator is small. The gain is a vector of the same size as parameter
vector 𝑥, so for illustration purposes only the values corresponding to deformation are shown.

The second argument for the effect of occasionally unresolvable observations being minimal, is that
the distribution of 𝑄ጂᎫᑥ is zero-mean. Therefore, the instances of unresolvable observations happen
equally on both sides of the correct phase cycle—not biasing the estimator. This effect also means
that the apparent observation variance is slightly lower than what is described in 𝑄Ꭻᑥ . This results
in a computed 𝑄፱̂ᑥ which is slightly overestimated, nevertheless, given the minor magnitude and the
low occurrence of this effect (see figure 4.2), this effect is acknowledged but will be neglected in the
calculations.
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Figure 4.2: Computation of the theoretical probability that an observation does not comply with the unwrapping constraint of
Eq. (4.14), given different levels of observation phase noise. Because the value of ፐᑩ̂ᑥᎽᎳ depends on the amount of epochs
already processed and decreases over time, different lines are drawn given that a certain amount of observations are already
processed. As expected, the probabilities of incorrect unwrapping decrease when more epochs are already processed. On the
x-axis the effect is shown when one or more observations are not acquired. This shows that the chance of an observation being
unwrapped to the wrong phase cycle increases when ጂ፭ increases. The displayed behaviour is the same for different kind of
satellites, because the noise level in degrees is independent on the wavelength and the repeat-cycle ጂ፭ moreover scales ፐᑩ̂ᑥᎽᎳ
equally.

Figure 4.3: Decaying of the gain as a function of time (red line). The gain is a vector of the same size as parameter vector ፱,
determining how much the parameter adjustment is influenced by the new phase residual ጂᎫ̂

ᑥ
. A large gains means that the

new observation contributes greatly to the parameter adjustment, a small gain means the contrary. Only one of the gain values
is shown to indicate the principle that the deformation adjustment, and with that the phase unwrapping, is barely influenced
by an occasional unresolvable residual phase observation. The blue lines indicate how the different parts of the gain function
compare to each other, to motivate the claim made in Eq. 4.21. Only the variance value related to deformation is plotted, as is
similarly done for the plotted gain.
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4.2 Deformation as a dynamic process

As discussed in section 3.2.3, treating surface deformation in a parametric way is a stringent assumption
that puts a large constraint on the final unwrapping result. Especially on longer time series it does
become more difficult to define a functional model, able to describe the sometimes complex and time-
variable behaviour of surface deformation. Usually a steady-state (constant velocity) deformation model
is applied in temporal unwrapping algorithms as they provide maximum redundancy, but algorithms also
allow for more complex deformation models like seasonal, temperature, breakpoint, jump and higher
order polynomial models [Chang and Hanssen, 2016, Samiei-Esfahany, 2008]. While these models
can capture some of the dynamics in deformation time series, there are still a few disadvantages.
First, they are only applied when there is a priori information indicating the need for such models.
Second, using more models for unwrapping will increase the computation time, depending on the used
method, due to the increased amount of unknowns to be estimated. Third, the parameterisation of a
deformation process may not be stationary, that is, it may change over time. Particularly considering
human interaction with the subsurface this will be a problem. Another disadvantage is that some
models, like breakpoint and jump models, need a priori information about the date that a change
happened, or when this information is unavailable need to test the whole spectrum of possible dates.
Multiple approaches to adaptively select and test more complex deformation models during unwrapping
are proposed in van Leijen [2014], Van Leijen and Hanssen [2007], while the testing of a large library
of deformation models in an a posteriori step is performed in Chang and Hanssen [2016]. However,
these approaches are still relying on predefined deformation patterns.

All these problems may be mitigated when deformation is treated in a non-parametric way, using a
priori information on the expected smoothness of the deformation process. For this study it is assumed
that the behaviour of deformation on short time scales, e.g. months, approaches that of a steady-state
system. On longer time scales however, the steady-state can be influenced by an acceleration term,
required to change the subsidence rate over time. This temporal smoothness constraint can be applied
by combining the theory from section 3.2.3, making some assumptions about the expected temporal
smoothness of the signal.

4.2.1 Functional and stochastic model

The mathematical framework is based on the Gauss-Markov model and the partitioned functional model,
that were given in Eq. (3.36), showing that any difference to the modelled deformation is given by the
difference vector 𝑑፭ [Teunissen, 2007]:

𝐸{

⎡
⎢
⎢
⎢
⎢
⎣

𝜙
ኺ
⋮
𝜙
፭
⋮
𝜙
ፓ

⎤
⎥
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎢
⎣

𝐴ኺ
⋱

𝐴፭
⋱

𝐴ፓ

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑥ኺ
⋮
𝑥፭
⋮
𝑥ፓ

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

𝐴ኺ𝑑ኺ,ፓ
⋮

𝐴፭𝑑፭,ፓ
⋮

𝐴ፓ𝑑ፓ,ፓ

⎤
⎥
⎥
⎥
⎦

; 𝐷{

⎡
⎢
⎢
⎢
⎢
⎣

𝜙
ኺ
⋮
𝜙
፭
⋮
𝜙
ፓ

⎤
⎥
⎥
⎥
⎥
⎦

} =
⎡
⎢
⎢
⎢
⎣

𝑄ᎫᎲ 0
⋱

𝑄Ꭻᑥ
⋱

0 𝑄Ꭻᑋ

⎤
⎥
⎥
⎥
⎦

, (4.22)

with:

⎡
⎢
⎢
⎢
⎣

𝑥ኺ
⋮
𝑥፭
⋮
𝑥ፓ

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

Φኺ,ፓ
⋮
Φ፭,ፓ
⋮

Φፓ,ፓ

⎤
⎥
⎥
⎥
⎦

𝑥ፓ , (4.23)

where:

• Φ፭,ፓ is the transition matrix from Eq. (3.20), transforming parameter vector 𝑥ፓ to its expected
value 𝑥፭ at epoch 𝑡.

• 𝐴፭ is the system matrix that transforms the unknown parameters to the expectation of the abso-
lute double-difference phase 𝜙

፭
.
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• 𝑑፭,ፓ is the difference vector that describes how the unknown parameters of epoch 𝑡 differ from
epoch T. By multiplying this difference vector times 𝐴፭, the contribution to the expectation of the
absolute double-difference phase of epoch 𝑡 is computed.

Teunissen [2007] showed that when the difference vector, 𝑑፭, is treated as a pseudo-observation,
Eq. (4.22) can be rewritten to:

𝐸{

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜙
ኺ
𝑑ኻ
𝜙
ኻ
⋮
𝑑ፓ
𝜙
ፓ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

} =

⎡
⎢
⎢
⎢
⎢
⎣

𝐴ኺ 0
−Φኻ,ኺ 𝐼

𝐴ኻ
⋱

−Φፓ,ፓዅኻ 𝐼
0 𝐴ፓ

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑥ኺ
𝑥ኻ
⋮

𝑥ፓዅኻ
𝑥ፓ

⎤
⎥
⎥
⎥
⎦

;

𝐷{

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜙
ኺ
𝑑ኻ
𝜙
ኻ
⋮
𝑑ፓ
𝜙
ፓ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

} =

⎡
⎢
⎢
⎢
⎢
⎣

𝑄ᎫᎲ 0
𝑄፝Ꮃ

𝑄ᎫᎳ
⋱

𝑄፝ᑋ
0 𝑄Ꭻᑋ

⎤
⎥
⎥
⎥
⎥
⎦

,

(4.24)

where:

• 𝑥፭ are the unknown parameters of epoch 𝑡. Compared to the previous section, 4.1, the param-
eterisation of the vector of unknown parameters has changed to allow for changing parameters
over time. This is necessary because the time-varying pseudo-observation d is included in the
parameterisation. The new parameterisation allows for a changing deformation rate over time,
hence enabling deformation modelling based on expected smoothness. The functional model of
a single absolute double-difference phase is now given by:

𝜙
፭
= 𝐴፭𝑥፭ + 𝜖, (4.25)

where 𝜖 indicates the observation noise. Considering the steady-state assumption for short time
spans, the parameter vector now consists of:

𝑥፭ =
⎡
⎢
⎢
⎣

𝐷፭
𝑣፭

Δ𝐻፭
𝛼፭

⎤
⎥
⎥
⎦
, (4.26)

where 𝐷፭ is the deformation compared to the reference epoch, 𝑣፭ is the deformation rate of epoch
𝑡, Δ𝐻 is the height difference with respect to the reference scatterer, and 𝛼፭ is the temperature
correlation coefficient. While including the deformation rate 𝑣፭ in this vector might seem redun-
dant since 𝐷፭ already describes the deformation signal, it is of importance in the time-update
(see Eq. 3.42) step to provide an a priori estimate for the next epoch.

• 𝐴፭, as described in Eq. (4.5), also changes due to the new formulation of 𝑥፭:

𝐴፭ = [ዅኾ᎝᎘ 0 ዅኾ᎝
᎘

ፁ�ᑥ
ፑ sin᎕ᑚᑟᑔ

ዅኾ᎝
᎘ Δ𝐾፭] , (4.27)

where the first entry, the double wavenumber, transforms the deformation 𝐷፭ into radians. The
second entry is 0, because the time-update is made in the transition matrix and 𝑣፭ is not nec-
essary in the expectation of 𝜙፭ since all deformation is captured in 𝐷፭. The third entry is the
H2PH conversion factor and the last entry is the double wavenumber multiplied by the relative
temperature change between the current and reference epoch.
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• Φ፭,፭ዅኻ is the transition matrix from Eq. (3.20), transforming parameter vector 𝑥፭ to 𝑥፭ዅኻ. When
extended for the two extra unknown parameters, Δ𝐻 and 𝑎፭, of which the expectation does not
change over time, Φ፭,፭ዅኻ becomes:

Φ፭Ꮃ ,፭Ꮄ =
⎡
⎢
⎢
⎣

1 Δ𝑡 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎦
. (4.28)

• 𝑑፭ is short for 𝑑፭ዅኻ,፭, indicating the difference vector of epoch 𝑡, compared to epoch 𝑡 − 1. The
difference vector is added as a pseudo-observation in the functional model of Eq. (4.24) with a
zero-mean expectation [Teunissen, 2007].

• 𝑄፝ᑥ is the VCM that describes the stochasticity of the pseudo-observation 𝑑፭ዅኻ,፭. This implicitly
contains the expected smoothness of the deformation signal and should be obtained using a
priori knowledge, for instance obtained with expert elicitation. This topic will be discussed in
more detail in section 4.2.3.

The recursive equations needed to solve Eq. (4.24) are very similar to Eq. (4.13) [Teunissen, 2007]:

Time-update equations
�̂�፭∣፭ዅኻ = Φ፭,፭ዅኻ�̂�፭ዅኻ∣፭ዅኻ + 𝑑፭
𝑄፱̂ᑥ∣ᑥᎽᎳ = Φ፭,፭ዅኻ𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳΦ⊺፭,፭ዅኻ + 𝑄፝ᑥ

Measurement-update equations
�̂�፭∣፭ = �̂�፭∣፭ዅኻ + (𝑄ዅኻ፱̂ᑥ∣ᑥᎽᎳ + 𝐴

⊺
፭𝑄ዅኻᎫᑥ𝐴፭)

ዅኻ𝐴⊺፭𝑄ዅኻᎫᑥ 𝒲{𝜑፭ − 𝐴፭�̂�፭∣፭ዅኻ}
𝑄፱̂ᑥ∣ᑥ = (𝑄ዅኻ፱̂ᑥ∣ᑥᎽᎳ + 𝐴

⊺
፭𝑄ዅኻᎫᑥ𝐴፭)

ዅኻ

. (4.29)

The difference between Eq. (4.13) and (4.29) is in the time-update part of the equations, where the
difference vector, 𝑑፭, as well as its stochastic properties, 𝑄፝ᑥ , are both taken into account. Without
those two terms the same solution would be yielded as in the static case in Eq. (4.13). Similarly as
in the static case, the wrapping operator 𝒲 is used in the measurement-update. It will be shown in
section 4.2.4 (p. 42) under which conditions usage of the wrapping operator is allowed.

4.2.2 Stochastics of the observation vector

The variance-covariance matrix, 𝑄Ꭻ, describes the statistical properties of the double difference ob-
servations 𝜑ኺ,፭

።,፣
. This matrix can be derived from the original vector of SLC observations as done by

Hanssen [2004]. The vector of wrapped SLC phase observations for two points, 𝑖 and 𝑗, is given by:

𝜓 = [
𝜓።

𝜓፣] = [
𝜓።
ኺ
… 𝜓።

ፓ
𝜓፣
ኺ
… 𝜓፣

ፓ]
⊺
,

𝐷{𝜓} = 𝑄Ꭵ = 𝑄noise + 𝑄atmo + 𝑄defo.
(4.30)

The expression of 𝑄Ꭵ in 𝑄noise + 𝑄atmo + 𝑄defo is an addition by van Leijen et al. [2006] where:

• 𝑄noise is a block-diagonal matrix, describing temporal decorrelation and thermal noise.

• 𝑄atmo is a block-diagonal matrix, describing the contribution of atmospheric and orbit errors.
These atmospheric errors are correlated in space but not in time [Hanssen, 2001].

• 𝑄defo is describes the unmodeled deformation, correlated in time and space.
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The full covariance matrix for the vector of wrapped SLC phase observations 𝜓 is given by [Hanssen,
2004]:

𝐷{

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜓።
ኺ
⋮
𝜓።
ፓ
𝜓፣
ኺ
⋮
𝜓፣
ፓ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

} =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜎ኼᎥᑚᎲ
⋮ ⋱ 𝑠𝑦𝑚

𝜎ᎥᑚᎲ ,Ꭵᑚᑋ … 𝜎ኼᎥᑚᑋ
𝜎ᎥᑚᎲ ,ᎥᑛᎲ … 𝜎Ꭵᑚᑋ ,ᎥᑛᎲ 𝜎ኼ

ᎥᑛᎲ
⋮ ⋱ ⋮ ⋮ ⋱

𝜎ᎥᑚᎲ ,Ꭵᑛᑋ … 𝜎Ꭵᑚᑋ ,Ꭵᑛᑋ 𝜎ᎥᑛᎲ ,Ꭵᑛᑋ … 𝜎ኼ
Ꭵᑛᑋ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.31)

where:

• 𝜎ኼᎥᑚᑥ is the variance of one phase observation, consisting of: scattering noise, thermal noise,

atmospheric signal, orbital signal and unmodeled deformation.

• 𝜎ᎥᑚᑥᎳ ,ᎥᑚᑥᎴ is the covariance of one point between epoch 𝑡ኻ and 𝑡ኼ. Its main contributor is the
coherence change, but also unmodeled deformation contributes to this factor.

• 𝜎ᎥᑚᑥᎳ ,ᎥᑛᑥᎴ
is the covariance between two points at two different epochs. The only effector of this

value is the spatio-temporal correlation of unmodeled deformation.

• 𝜎Ꭵᑚᑥ ,Ꭵᑛᑥ is the covariance between two points at the same epoch and is here dominated by the
spatial correlated contributions of the atmospheric signal, orbital signal and unmodeled deforma-
tion.

The variances and covariances of the double difference phase observations can now be obtained by
error propagation [Kampes, 2006, van Leijen et al., 2006], with:

𝜑።,፣
ኺ,፭
= (𝜓።

፭
− 𝜓።

ኺ
) − (𝜓፣

፭
− 𝜓፣

ኺ
), (4.32)

the variances are given by:

𝜎ኼ
Ꭳᑚ,ᑛᎲ,ᑥ

= ∑
፩዆።,፣

∑
፪዆ኺ,፭

𝜎ኼᎥᑡᑢ

− 2( 𝜎ᎥᑚᎲ ,ᎥᑛᎲ⏝⎵⏟⎵⏝
𝐶atmo,ᎥᎲ(𝑙።፣)

+
𝐶defo,ᎥᎲ(𝑙።፣)

+ 𝜎Ꭵᑚᑥ ,Ꭵᑛᑥ⏝⎵⏟⎵⏝
𝐶atmo,Ꭵᑥ(𝑙።፣)

+
𝐶defo,Ꭵᑥ(𝑙።፣)

+ 𝜎ᎥᑚᎲ ,Ꭵᑚᑥ⏝⎵⏟⎵⏝
𝐶defo,Ꭵᑚ(Δ𝑡ኺ,፭)

+ 𝜎ᎥᑛᎲ ,Ꭵᑛᑥ⏝⎵⏟⎵⏝
𝐶defo,Ꭵᑛ(Δ𝑡ኺ,፭)

) + 4 𝜎ᎥᑚᎲ ,Ꭵᑛᑥ⏝⎵⏟⎵⏝
𝐶defo(𝑙።፣ , Δ𝑡ኺ,፭)

,

(4.33)
where:

𝜎ኼᎥᑡᑢ = 𝜎
ኼ
scat,Ꭵᑡ + 𝜎ኼatmo,Ꭵᑢ + 𝜎

ኼ
defo,Ꭵᑡᑢ

. (4.34)

The underbraces indicate the contributions of all components, in which the capital 𝐶 stands for a
covariance function. It can be seen that unmodeled deformation has a large influence on the variance
of the DD observation. In this study we assume that all of the unmodeled deformation is captured in
the difference vector 𝑑 of the functional model (Eq. 4.22) and that its statistics are accounted for in
the covariance matrix 𝑄፝. The expression for the variance can therefore be simplified to:

𝜎ኼ
Ꭳᑚ,ᑛᎲ,ᑥ

= ∑
፩዆።,፣

∑
፪዆ኺ,፭

(𝜎ኼscat,Ꭵᑡ + 𝜎ኼatmo,Ꭵᑢ) − 2( 𝜎ᎥᑚᎲ ,ᎥᑛᎲ⏝⎵⏟⎵⏝
𝐶atmo,ᎥᎲ(𝑙።፣)

+ 𝜎Ꭵᑚᑥ ,Ꭵᑛᑥ⏝⎵⏟⎵⏝
𝐶atmo,Ꭵᑥ(𝑙።፣)

), (4.35)

where:

• 𝜎ኼscat,Ꭵᑡ is the variance of the scattering phase noise for the whole time series of point 𝑝. This
term can be approximated by using the normalized amplitude dispersion 𝐷amp,Ꭵᑡ of that point
[Ferretti et al., 2001].
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• 𝜎ኼatmo,Ꭵᑥ is the variance of the atmospheric signal at epoch 𝑡, and is commonly approximated
during the APS estimation via the nugget of the experimental variogram.

• 𝐶atmo,Ꭵᑥ(𝑙።፣) is the covariance at epoch 𝑡 as function of the arc-length, 𝑙።፣, given by the computed
experimental variogram of the APS estimation.

Practical simplifications

In Ketelaar [2009], the covariances of 𝑄Ꭻ are shown to be dominated by unmodeled deformation.
In this study it is assumed that all deformation is modelled, making 𝑄Ꭻ in Eq. (4.29) a convenient
diagonal matrix. The diagonal terms of this matrix are variances of the atmospheric signal and the
temporal decorrelation. In the first parameter adjustment, the experimental variograms cannot yet be
computed because they rely on the results of this first parameter adjustment. As solution, the arcs
of the network are chosen to be sufficiently short, such that the influence of atmosphere over these
arcs is assumed to be small and zero-mean distributed. After APS estimation it is assumed that most
atmospheric signal is removed and only the temporal decorrelation term in Eq. (4.35) is left. For both
situations the temporal decorrelation is the dominant factor, which, with the method of normalized
amplitude dispersion [Ferretti et al., 2001] can be approximated with a variance factor:

𝑄Ꭻ = (2𝜎ኼscat,Ꭵᑚ + 2𝜎
ኼ
scat,Ꭵᑛ) 𝐼ፓ×ፓ ,

= 𝜎ኼ።,፣𝐼ፓ×ፓ ,
(4.36)

where 𝐼ፓ×ፓ is the identity matrix of size equal to the amount of observations, 𝜎ኼscat,Ꭵᑚ is the variance
contribution of temporal decorrelation approximated by normalized amplitude dispersion, and 𝜎ኼ።,፣ is the
total a priori variance factor for arc 𝑖, 𝑗. The downside of determining 𝑄Ꭻ with this method is that the
normalized amplitude dispersion is only a precise and accurate estimator of scattering noise for points
with a rather low amplitude dispersion, i.e. < 0.25 [Ferretti et al., 2001]. Moreover, the implementation
of this parameter and ambiguity estimator would benefit from a fixed variance factor for all evaluated
arcs, to improve computational efficiency by vectorisation. In chapter 5 it will hence be investigated if
a fixed a priori variance factor has a large influence on the parameter and ambiguity estimation. If this
is not the case, this method could be used to provide an a priori variance factor to approximate 𝑄Ꭻ.
After unwrapping an a posteriori variance factor �̂�ኼ።,፣ can be calculated via [Kampes, 2005]:

�̂�ኼ =
�̂�⊺𝑄ዅኻᎫ �̂�
𝑟 , (4.37)

with:
�̂� = �̂� − 𝜙, (4.38)

where �̂� is the vector of observation residuals, �̂� is the vector of adjusted absolute double-difference
phase observations, and 𝜙 is the vector of unwrapped double-difference phase observations. 𝑟 stands
for the redundancy of the functional model—the number of observations minus amount of adjusted
parameters. This a posteriori variance factor is an indication of how well 𝑄Ꭻ describes the dispersion
of the observations, assuming that the functional model and stochasticity of the difference vector, 𝑄፝,
are correct.

For the static case an a posteriori correction to the VCM of adjusted parameters can be made, given
that the a priori VCM of adjusted parameters is given by:

𝑄፱̂ = (𝐴⊺𝑄ዅኻᎫ 𝐴)ዅኻ, (4.39)

where 𝑄Ꭻ is estimated a priori by:
𝑄Ꭻ = 𝜎ኼ።,፣𝐼. (4.40)

Using the a posteriori variance factor of Eq. (4.37), 𝑄Ꭻ can be recalculated using the a posteriori
corrected 𝑄Ꭻ:

𝑄Ꭻ̂ = �̂�ኼ𝑄Ꭻ . (4.41)
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Equations (4.39) and (4.41) are combined to create an expression for the a posteriori VCM of adjusted
parameters:

𝑄፱̂,a-posteriori = (𝐴⊺𝑄ዅኻᎣ̂ 𝐴)ዅኻ,
= �̂�ኼ(𝐴⊺𝑄Ꭻ𝐴)ዅኻ,
= �̂�ኼ𝑄፱̂ .

(4.42)

The same can be done for the dynamic case, however, the above-mentioned direct method would
lead to an too optimistically 𝑄፱̂, due to the addition of 𝑄፝ in themeasurement-update of Eq. (4.29). The
iteration from Eq. (4.29) for computing 𝑄፱̂ᑥ∣ᑥᎽᎳ has to be rerun with an a posteriori 𝑄Ꭻ̂ from Eq. (4.41)
to obtain the correct 𝑄፱̂, adding computational effort.

4.2.3 Stochastics of the difference vector

The difference vector, 𝑑, is added in the functional model of the dynamic case in Eq. (4.24) as a pseudo-
observation. This pseudo-observation needs to be stochastically constrained, using 𝑄፝, in order to be
used. A popular way to do this for applications with steady-state behaviour on short time-scales, is to
assume that the steady-state is influenced by a random zero-mean acceleration term over time [Bar-
Shalom et al., 2004, Genovese, 2001, Teunissen, 2007]. When 𝑄፝ is set to be infinitely small, or zero, it
means that the dispersion of the pseudo-observation 𝑑 equals zero. In other words, 𝑑 is deterministic
with value 0, because of the zero-mean assumption. In this case the solution becomes equal to that
of the recursive equations (4.13) of the static deformation case in section 4.1.

On the other hand, when 𝑄፝ is set infinitely large, 𝑄፱̂ will also become infinitely large because
the time-update equation in Eq. (4.29) adds 𝑄፝ completely to 𝑄፱̂ᑥ∣ᑥᎽᎳ . As discussed before in chap-
ter 4.1.2, the gain of the measurement-update equation will be close to 0 as long as the contribution
of observation variance to the VCM of adjusted parameters is small:

𝐴⊺፭𝑄ዅኻᎫᑥ𝐴፭ ≪ 𝑄ዅኻ፱̂ᑥ∣ᑥᎽᎳ . (4.43)

However, the opposite is the case when 𝑄፝ is set to infinite, meaning that the gain is close to 1 and
thus ignoring the a priori estimate from the time-update equations: �̂�፭∣፭ዅኻ. This means that the next
deformation estimate is just the next phase observation, unwrapped to the nearest phase-cycle, com-
pletely ignoring the a priori estimate from the time-update step, and with that ignoring the steady-state
assumption. It follow from this that 𝑄፝ᑥ can be regarded as a smoothness parameter, indicating how
temporally smooth the deviation from the steady-state deformation model may be.

As stated in the above paragraph, it is necessary to describe the stochasticity of the difference
vector 𝑑. Teunissen [2007] describes two methods for doing this. Both methods use the fact that
changes in the steady-state model between two epochs are caused by an acceleration term. Hence.
instead of the steady-state propagation from epoch 𝑡ኻ to 𝑡ኼ:

𝐸{𝑣ኼ} = 𝐸{𝑣ኻ}, (4.44)

the expectation of 𝑣ኼ changes to:

𝐸{𝑣ኼ} = 𝐸{𝑣ኻ} + 𝐸{𝑎ኻ,ኼ}(𝑡ኼ − 𝑡ኻ). (4.45)

The first way of describing pseudo-observation 𝑑 regards the acceleration term in the difference vector,
as a Gaussian distributed zero-mean random acceleration. The zero-mean assumption is convenient,
because it turns the expectation of the difference vector 𝐸{𝑑} to 0, simplifying the time-update step.

This study focus on deformation signals that show a slow temporal-smooth signal, which on short
time scales (e.g. months), approximates stead-state behaviour. On longer time scales however, the
steady-state behaviour can change under influence of external forces (e.g. loading changes, subsurface
mechanics etc.), which induces acceleration per Newton’s second law. This acceleration is a temporal-
slow process. Describing this acceleration with a zero-mean Gaussian distribution would hence not be
accurate.
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Figure 4.4: Two time series, displayed in red and blue, are simulated by adding random acceleration to a not depicted stable
(ኺmm/y) time series. The used acceleration can be seen in the lowest sub-plot. The resulting velocity is shown in the middle and
the final deformation pattern in the first plot. The time series displayed in red is generated by uncorrelated normally distributed
acceleration and the time series displayed in blue is generated by temporally correlated acceleration using an exponential function.
The correlation of the acceleration can be clearly recognized in the third subplot where the blue line deviates more smoothly over
time between positive and negative values, while showing a similar standard deviation as the red line. The used acceleration
standard deviation is shown as the black dashed-dotted line.

Hence, a second way of describing 𝑑 is proposed [Teunissen, 2007]. A temporal correlation to the
acceleration process is introduced, such that the acceleration will only change slowly over time. The
diagonal form of the partitioned stochastic model in Eq. (4.24) makes it difficult to implement time
correlation, however, a solution is available for exponential correlation [Teunissen, 2007].

Correlated versus uncorrelated acceleration

The difference between the two models of acceleration is illustrated in figure 4.4. The model indicated
by the red line is accomplished by a adding a Gaussian distributed zero-mean acceleration to a stable
(0mm/y deformation) point. The model indicated by the blue line is similarly generated with the
exception that the acceleration is exponentially correlated in time, as evident from the third sub-plot.
In the plot the values of the uncorrelated time series acceleration can vary tremendously between two
epochs, while the correlated time series show a more smooth transition from a positive to a negative
acceleration. This smooth behaviour is more realistic for the slow dynamic subsurface processes that
are of interest in this study. The smooth acceleration also causes the deformation velocity to change
gradually over time which can be frequently observed in longer time series, where the deformation
pattern is more likely to be no longer stationary.

Exponential correlated acceleration in time [Teunissen, 2007]

This section will explain how the stochastics of the difference vector should be modelled to achieve ex-
ponential correlated acceleration in time for the recursive mathematical functional model in Eq. (4.24).
Given exponentially correlated acceleration with auto-covariance function [Teunissen, 2007]:

𝜎ፚፚ(Δ𝑡) = 𝜎ኼaccel𝑒
ዅ ᏺᑥ
ᑃcorr ; 𝐿corr > 0, (4.46)

which is plotted in figure 4.5. The variables of this function are:
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Figure 4.5: Exponential correlation as a function of ጂ፭. It can be seen from this figure that if for instance the correlation length
ፋcorr ዆ ኿ months, the correlation of two values with a ጂ፭ ዆ ኿ months is ፞ᎽᎳ ≈ ኺ.ኽ዁. After two times the correlation length, the
correlation is only ፞ᎽᎴ ≈ ኺ.ኻኾ.

• Auto-covariance 𝜎ፚፚ of the acceleration between two epochs. This value describes the corre-
lation of acceleration as a function of time difference Δ𝑡.

• Time separation Δ𝑡 between two epochs.

• Variance 𝜎ኼaccel of the acceleration of the system, to be estimated a priori using e.g. expert
elicitation, which will be discussed in more detail on page 42. This term describes the magni-
tude of the expected acceleration. In an area where no known effects are expected to change
the steady-state behaviour, this value will be very small, e.g. 𝜎 = 0.1𝑚𝑚/𝑦ኼ. In an area with
variable sub-surface dynamics, like during variations in gas extraction, the expected magnitude
of acceleration will be larger, e.g. 𝜎 = 10𝑚𝑚/𝑦ኼ.

• Correlation length 𝐿corr of the system acceleration. This parameter needs to be estimated
a priori which will be discussed in more detail on page 42. The influence of the correlation
length on the actual correlation is illustrated in figure 4.5. After passing a time period, equal to
the correlation length, the correlation between the two acceleration values is 𝑒ዅኻ = 0.37. After
passing a time period twice this length, the correlation is reduced to 𝑒ዅኼ = 0.14. In practice this
means that with a correlation length of for instance 𝐿corr = 5 months, the correlation would be
significantly reduced after 5 months, and almost negligible after 10 months. The value 𝐿corr = 5
months would result in a correlation between two typical TerraSAR-X observations (Δ𝑡 = 11days)
of 0.93.

The addition of correlated acceleration results in the need to add this parameter to the vector of
unknowns and the difference vector 𝑑 [Teunissen, 2007]:

𝑑፭ = [
𝐷፭
𝑣፭
𝑎፭
] , (4.47)

where 𝐷፭, 𝑣፭ and 𝑎፭ indicate the deformation, deformation rate, and deformation acceleration differ-
ence compared to the previous epoch 𝑡 − 1. When using auto-covariance function (4.46), 𝑄፝ᑥ is given
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by [Teunissen, 2007, Eq. 6.94]:

𝑄፝ᑥ = [
𝜎ኼፃᑥ 𝑠𝑦𝑚𝑚.
𝜎ፃᑥ ,፯ᑥ 𝜎ኼ፯ᑥ
𝜎ፃᑥ ,ፚᑥ 𝜎፯ᑥ ,ፚᑥ 𝜎ኼፚᑥ

] ,

= 𝜎ኼaccel [
𝑞ኻኻ 𝑠𝑦𝑚𝑚.
𝑞ኼኻ 𝑞ኼኼ
𝑞ኽኻ 𝑞ኽኼ 𝑞ኽኽ

]

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝑞ኻኻ = 2𝐿ኽ [Δ𝑡 −
Δ𝑡ኼ
𝐿 + Δ𝑡

ኽ

3𝐿ኼ − 2𝑒
ዅᏺᑥᑃ Δ𝑡 + 𝐿2(1 − 𝑒

ዅኼᏺᑥᑃ )]

𝑞ኼኻ = 2𝐿ኼ [−Δ𝑡 +
1
2𝐿Δ𝑡

ኼ + 𝑒ዅᏺᑥᑃ Δ𝑡 − 𝐿𝑒ዅᏺᑥᑃ + 𝐿2(1 + 𝑒
ዅኼᏺᑥᑃ )]

𝑞ኽኻ = 2𝐿 [−𝑒ዅ
ᏺᑥ
ᑃ Δ𝑡 + 𝐿2(1 − 𝑒

ዅኼᏺᑥᑃ )]

𝑞ኼኼ = 2𝐿 [Δ𝑡 −
3𝐿
2 + 2𝐿𝑒ዅᏺᑥᑃ − 𝐿2𝑒

ዅኼᏺᑥᑃ ]

𝑞ኽኼ = 2𝐿 [−𝑒ዅ
ᏺᑥ
ᑃ + 12(1 + 𝑒

ዅኼᏺᑥᑃ )]

𝑞ኽኽ = [1 − 𝑒ዅኼ
ᏺᑥ
ᑃ ]

,

(4.48)
where Δ𝑡 indicates the absolute time difference between epoch 𝑡 and 𝑡 −1. Because of the addition of
this exponentially correlated acceleration, the transition matrix also needs to be adjusted. [Teunissen,
2007, Eq. 6.93] shows that the transition matrix becomes:

Φ፭,፭ዅኻ =
⎡
⎢
⎢
⎢
⎣

1 (𝑡፭ − 𝑡፭ዅኻ) 𝐿ኼ (−1 + (፭ᑥዅ፭ᑥᎽᎳ)
ፋ + 𝑒ዅ

(ᑥᑥᎽᑥᑥᎽᎳ)
ᑃ )

0 1 𝐿 (1 − 𝑒ዅ
(ᑥᑥᎽᑥᑥᎽᎳ)

ᑃ )

0 0 𝑒ዅ
(ᑥᑥᎽᑥᑥᎽᎳ)

ᑃ

⎤
⎥
⎥
⎥
⎦

, (4.49)

which is different from the transition matrix for a constant acceleration model, as shown in Eq. (3.21).
The difference is that the model of Eq. (4.49) assumes a zero-mean acceleration, while the model of
Eq. (3.21) assumes a constant acceleration. The zero-mean acceleration assumption can most clearly
be seen in the lower right entry of the transition model. The constant acceleration transition model
has 1 as entry there, meaning that in the next time step the acceleration is expected to be the same.
Meanwhile, the transition model of the exponentially correlated acceleration has 𝑒ዅ

(ᑥᑥᎽᑥᑥᎽᎳ)
ᑃ as entry,

which is the expression for the correlation. This value converges to zero for time steps Δ𝑡 >> 𝐿,
effectively decorrelating the acceleration value and setting it to the expectation value—zero.

The entries for 𝑑፭, 𝑄፝ᑥ and Φ፭,፭ዅኻ have now been described for the deformation related parameters.
However, during parameter and ambiguity estimation the height difference Δ𝐻 and the temperature
correlation 𝛼 may also be estimated, expanding the vector of unknown parameters to:

𝑥፭ =
⎡
⎢
⎢
⎢
⎣

𝐷፭
𝑣፭
𝑎፭
Δ𝐻፭
𝛼፭

⎤
⎥
⎥
⎥
⎦

(4.50)

of which the last two, Δ𝐻 and 𝛼 are assumed to be constant over time. For the equations to be
consistent these parameters should be added to Φ፭,፭ዅኻ, 𝑑 and 𝑄፝ which results in:

Φ፭,፭ዅኻ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 (𝑡፭ − 𝑡፭ዅኻ) 𝐿ኼ (−1 + (፭ᑥዅ፭ᑥᎽᎳ)
ፋ + 𝑒ዅ

(ᑥᑥᎽᑥᑥᎽᎳ)
ᑃ ) 0 0

0 1 𝐿 (1 − 𝑒ዅ
(ᑥᑥᎽᑥᑥᎽᎳ)

ᑃ ) 0 0

0 0 𝑒ዅ
(ᑥᑥᎽᑥᑥᎽᎳ)

ᑃ 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (4.51)
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and

𝑑፭ =

⎡
⎢
⎢
⎢
⎢
⎣

Δ𝐷፭
Δ𝑣፭
Δ𝑎፭

Δ(Δ𝐻፭)
Δ𝛼፭

⎤
⎥
⎥
⎥
⎥
⎦

; 𝑄፝ᑥ = 𝜎ኼaccel

⎡
⎢
⎢
⎢
⎣

𝑞ኻኻ 𝑠𝑦𝑚𝑚.
𝑞ኼኻ 𝑞ኼኼ
𝑞ኽኻ 𝑞ኽኼ 𝑞ኽኽ
0 0 0 0
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

. (4.52)

It can be seen from the definition of 𝑄፝ᑥ that the residual DEM height Δ𝐻 and the temperature co-
efficient 𝛼 are assumed to be constant over time, since their variance for the difference vector is set
to 0. These matrices are then used in the time-update equations (4.29), where the sample values
for 𝑑፭ are set to zero. The initial value for acceleration 𝑎ኺ to initialise the recursive equations is set
to zero as well, with variance 𝜎ኼaccel, Eq. (4.46). The other values in the state vector 𝑥ኺ result from
adjusting a short time series, e.g. 25 observations, with integer least squares or ensemble coherence
maximisation (both described in section 2.3.4). In the latter case the initial state covariance matrix 𝑄፱Ꮂ
can be approximated by applying error propagation based on 𝑄ᎫᎲ .

Defining acceleration parameters

The assumption of exponentially correlated acceleration introduces two new parameters: the acceler-
ation variance, 𝜎ኼፚ, and correlation length, 𝐿corr. Those parameters describe the expected deformation
signal and should either be defined a priori by expert elicitation, or be determined based on experience.
These are very important parameters that ultimately define the expected smoothness of time series,
and consequently, the unwrapping result.

The correlation length can be determined based on a graph as depicted in figure 4.5. Remember
from Eq. (4.49) that the third column of the transition matrix determines how the acceleration influences
the expectation of the parameters of the next epoch. When a shorter correlation length is chosen, it is
expected that the acceleration returns to zero more quickly. This means that when a sudden change
of the deformation rate is expected, the correlation length should also be chosen accordingly.

If it is observed in situ for instance that after the maintenance to a building that lasted two months,
the steady-state behaviour of the object changed with an increase in subsidence rate, the correlation
length should be chosen to be about the same length. This causes the acceleration before and after
the maintenance to be only slightly (37%) correlated. On the other side of the scenario spectrum
could for instance be a long-term process like the reduction of ground water extraction in Delft over a
matter of years [Delft, 2017]. A suitable correlation length may be in the order of magnitude of one
year, but consulting domain experts about the expected dynamics of the subsidence could improve the
estimate, by incorporating for instance results of soil simulations. A sensitivity study on the influence
of this parameter is performed in chapter 5.

It is difficult to get an accurate value for the acceleration variance, because it is a harder to interpret
than for instance deformation and velocities. Therefore, it is proposed to express the acceleration
variance in the expected deformation rate behaviour. A function can be plotted, using entry 𝑞ኼኼ from
Eq. (4.48), indicating the added uncertainty in the subsidence rate adjustment Δ𝑣፭ in difference vector
𝑑፭. When the correlation length is already determined, multiple lines can be chosen from as options,
as is shown in figure 4.6. The Δ𝑣 values on the y-axis are 2 × 𝜎ጂ፯ to obtain the 2-sigma interval of
expected change of subsidence rate.

4.2.4 Wrapping operator in the dynamic case

Similarly as in section 4.1, the set of equations given in Eq. (4.29) uses the wrapping operator in the
measurement-update. In the previous section about deformation as a static process, an expression for
the uncertainty of the residual phase observation was already made in Eq. (4.14):

Δ𝜑
፭
= 𝜑

፭
− 𝐴፭�̂�፭∣፭ዅኻ.
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Figure 4.6: Multiple lines showing the range of possible ጂ፯, for different values of ᎟accel. In this case a correlation length of
ፋcorr ዆ ኼ months is assumed. The value ጂ፯ is estimated by taking the 2-sigma interval of ᎟Ꮄᏺᑧ.

Note that the notation changed slightly here due to the prior notation, 𝑡 ∣ 𝑡 − 1, of the estimator after
the time-update equation. At first glance it might seem that the VCM of the residual phase does not
change from the equation given in the previous chapter, because it still holds that:

𝑄ጂᎫᑥ = 𝑄Ꭻᑥ + 𝑄፱̂ᑥ∣ᑥᎽᎳ . (4.53)

However, the difference is that the formulation of 𝑄፱̂ᑥ∣ᑥᎽᎳ changed in Eq. (4.29) to:

𝑄፱̂ᑥ∣ᑥᎽᎳ = Φ፭,፭ዅኻ𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳΦ⊺፭,፭ዅኻ + 𝑄፝ᑥ , (4.54)

thus now incorporating the stochastic properties of the difference vector 𝑑፭. As seen in Eq. (4.48), the
values of 𝑄፝ᑥ are now based on correlation length and acceleration variance, which describe the physical
subsidence process. This means that the influence of 𝑄፝ᑥ is now different per satellite characteristic
because 𝑄፝ᑥ is dependent on the repeat cycle time. Figure 4.7 and 4.8 show the theoretical success
rates based on different values of 𝜎accel given as a function of unavailable observations. Because the
influence of 𝜎accel is very low the x-axis shows values for gaps in the stack of images up to half a
year. The y-axis is limited to 5%, because higher values lie outside the 2-sigma confidence interval for
resolvable observations. For figure 4.7 it is assumed that 𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳ is based on 25 observations, while
for figure 4.8 this is 50 observations. At first glance the results may look quite counter-intuitive, since a
larger Δ𝑡 means a better resolvability. However, the better resolvability is due to the fact that, although
the same number of observations is used, the period that those observations span increases with Δ𝑡.
Implicitly also resulting in a lower 𝑄፱̂ᑥᎽᎳ∣ᑥᎽᎳ for higher repeat cycles, which was previously shown in
figure 4.2 to be an important factor for deformation as a static process. It must be noted that this is
just a theoretical probability, which assumes that the functional model accurately describes the physical
process. Nevertheless, it gives insights into the behaviour around the important unwrapping constraint
in Eq. (4.8).

4.3 Processing scheme

In this section, all the necessary steps for unwrapping arcs are listed for the recursive estimator. One arc
consists out of the double-difference phase observations for two different pixels. In the implementation
of the recursive estimator, multiple arcs can be processed at the same time due to vectorisation, as
long as they share the same input parameters for the algorithm. The input parameters are listed below.
Most of them are commonly used in current approaches, with the exception of the acceleration variance
and correlation length:

• Double-difference wrapped phase observations (𝜑ኻ∶ፓ): Depending on the processing step,
these observations can already be corrected with estimated orbital and atmospheric phase screens
.
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Figure 4.7: Theoretical estimate for the resolvability of double-difference phase observations with recursive least squares, given
exponentially correlated acceleration. The graphs assume that ኼ኿ epochs are already processed for the determination of ፐᑩ̂ᑥᎽᎳ∣ᑥᎽᎳ .
Phase noise is based on ᎟ᒛ ዆ ዀኺ∘ (X-Band: ኼ.ዀ፦፦, C-Band: ኾ.ዀ፦፦), since it shown to be a good approximation of maximum
allowable phase noise in figure 4.2. The correlation length ፋcorr is fixed on 3 months, because this value does not change the
graphs significantly. The x-axis spans half a year for all graphs and shows different values due to the different repeat cycles
of the satellites. It can be seen that ᎟accel only starts to play a role after approximately a data gap of 3 months. Therefore,
the conclusions of section 4.1 concerning the ambiguity resolution in the case of deformation as a static process, still hold. The
unresolvability of observations is shown to be approximately ኻ.ኾ% for normal repeat cycles. It must be noted that this is just a
theoretical probability, which assumes that the functional model accurately describes the physical process. Nevertheless, it gives
insights into the behaviour around the important unwrapping constraint in Eq. (4.8).

Figure 4.8: For this figure the same theory applies as described in figure 4.7, with the exception of ፐᑩ̂ᑥᎽᎳ∣ᑥᎽᎳ now being computed
based on ኿ኺ processed epochs instead of ኼ኿. It can be seen that the influence of including more epochs is significant, because
all parameters result in a unresolvability of less than ኿%, and for a typical repeat cycle less than ኻ%. It must be noted that
this is again just a theoretical probability, which assumes that the functional model accurately describes the physical process.
Nevertheless, it gives insights into the behaviour around the important unwrapping constraint in Eq. (4.8).
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• Phase observation epochs (𝑡): This seems trivial but all the epochs of the double-difference
phase observations should be the same for all arcs being processed. This is to ensure that the
stochastic properties of the computed estimates are correct and only need to be computed once.

• Phase observation variance (𝑄Ꭳ): An estimate of the phase observation variance should be
available for every epoch, valid for all arcs being processed. This can be approximated based on
amplitude dispersion, but as discussed in section 4.2.2, it might be more convenient to model 𝑄Ꭳ
with an a priori variance factor: 𝜎ኼᎣ × 𝐼ፓ×ፓ.

• Initialisation parameters: The algorithm needs an initial set of parameters per arc to initialise
the recursive updating. The initialisation is done on a smaller subset of observations (e.g. the
first 25 observations) with one of the unwrapping methods described in chapter 2.

– Initialisation length (𝑛init): The initialisation length determines how many phase obser-
vations are used to get an initial approximation for estimator �̂�ኺ. A steady-state deformation
model is always used in this step under the assumption that the behaviour of the subsidence
is steady-state for shorter time spans. Depending on the repeat cycle of the used sensor,
this spans a certain length in time. For initialisation a trade-off has to be made between
including as many observations as possible to increase the success rate, and keeping a short
initialisation time span to increase the correctness of the steady-state assumption.

– Deformation rate regularisation (𝜎፯): The expectation of subsidence rates is set through
this variance term. It should be based upon a priori information or expert elicitation. The
maximum values can be derived from the maximum resolvable rates per sensor and expected
osbervation phase noise (see section 2.3.4).

– Residual height regularisation (𝜎ጂፇ): Inaccuracies in the used DEM cause the need to
estimate residual heights. The magnitude of the found residual heights depends on the used
DEM, type of land coverage, world region and objects of interest. Often a variance value
based on experience is used to estimate this term.

– Temperature correlation regularisation (𝜎ᎎ): This parameter regularises the temper-
ature correlation during initialisation. This parameter can be tuned based on objects of
interest, type of stack, and experience. The temperature correlation can be estimated in
the initialisation, but can also be assumed zero with this regularisation parameter as initial
variance.

• Correlation length (𝐿corr): The correlation length determines the degree of correlation of
acceleration in time. When acceleration occurs, the correlation length determines the shape of
expected acceleration reduction.

• Acceleration variance (𝜎accel): The magnitude of acceleration is determined by this variance
factor. When the expected deformation is steady-state, this term should be zero. When a lot of
dynamics are expected this term should be scaled accordingly.

• Temperature observations (optional):(𝐾ኻ∶፭): A strong temperature dependence in the scat-
terers conflicts with the steady-state behaviour, because this term is momentarily not in the
functional model. Therefore, temperature observations corresponding to the observation epochs
can be added to model the dilation of objects as a results of temperature changes.

The proposed algorithm can be best schematised in three essential steps:

1. Initialisation: The phase data of arcs to be processed simultaneously are fed into the initialisa-
tion algorithm. Initialisation is done based on the first 𝑛።፧።፭ observations of each arc and results
in an estimate per arc for: 𝑡ኺ offset, subsidence rate and residual height. Two possible methods
are described to obtain the initial parameters:

(a) Ensemble coherence maximisation: This method is also referred to as the ambiguity
function [Counselman and Gourevitch, 1981] and was discussed in more detail in chapter 2.
This method results in an unwrapped time series for the first 𝑛።፧።፭ observations and estimates
of the parameters. However, it does not return a full covariance matrix. This could be solved
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by applying Least Squares error propagation on the unwrapped time series, although this
does not take into account the uncertainty of the integer ambiguities. Nevertheless, this
method is often preferred on account of its computational efficiency.

(b) Integer Least Squares: This method does result in a full variance-covariance matrix and
optimal estimate, it is however up to a factor 100 slower compared to ensemble coherence
maximisation when noise and amount of observations increases [van Leijen, 2014].

2. Recursive Least Squares (Iterate: 𝑡ኺ → 𝑡ፓ): This part updates the previous estimator with
the latest observation and simultaneously unwraps that observation to the correct phase cycle,
given that the assumptions made about the signal are correct. The recursive Least Squares
algorithm is initiated with the parameters of step 1 and thereafter re-estimated for every new
observation. The result is a parameter estimation for every epoch �̂�፭∣፭, based on all previous
observations; �̂�፭∣ኻ∶፭ዅኻ. This part consists out of 2 steps (Eq. 4.29):

(a) Time-update: This part creates the prior estimation for the measurement-update. This
prior is created by ”transitioning” the parameters of the previous time step to the current
time step with the necessary error propagation.

(b) Measurement-update: In the measurement-update step the prior is updated with the
new observation to obtain a new estimate for the latest epoch. The ambiguity assumption
in Eq. (4.8) allows for the use of the wrapping operator, which enables the comparison of
the unwrapped prior with the wrapped observation. The results of this step become the
input for the time-update of the next epoch.

3. Hindcasting (Iterate: 𝑡ፓ → 𝑡ኺ): In this step the estimate �̂�፭∣ኻ∶፭ is transformed into �̂�፭∣ኻ∶ፓ, 𝑇
being the latest observation, meaning that the estimates are updated using all available obser-
vations. This thesis uses the Rauch-Tung-Striebel fixed-interval hindcasting algorithm [Rauch,
Striebel, and Tung, 1965] which is a popular and efficient fixed-interval hindcasting implementa-
tion.
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Figure 4.9: Processing scheme of the recursive parameter estimation algorithm. The estimation can be done for multiple arcs
at the same time, where above process is done in an vectorised implementation. The requirement for this approach is that all
arcs use the same input parameters (e.g. observation phase noise ፐᒛ.)





5
Application on Simulated Data

To assess the performance of the recursive method, data is simulated based on the char-
acteristics of three different sensors: TerraSAR-X, Radarsat-2 and ERS. Based on those
characteristics, arcs of double-difference phase observations are simulated for different
kind of deformation types and phase noise levels. These arcs are processed multiple times
using the recursive parameter estimation method, using different input parameters for ev-
ery run. The results are finally quantified to assess their performance and sensitivity to
different input parameters.

5.1 Stack characteristics

To test the performance of the recursive parameter estimation method, data is simulated based on
different satellite sensor characteristics. The main reason for this approach is that different radar
satellites have different repeat cycle times, operate with different wavelengths, and have different
perpendicular baseline configurations. For that matter, three actual stacks have been chosen that
cover the city of Delft for over more than 5 years. For each stack an already processed dataset of
Persistent Scatterers is selected and trimmed to only have 1000 PS. The actual perpendicular baselines
of each stack are used to simulate heights for every PS. Different type of deformation signals are
simulated and sampled on the acquisition dates of every stack. The satellite wavelength is used to
compute the phase contribution of the deformation signal. The resulting phase of every PS is stored
as complex value retain the wrapped nature of the simulated phase observation.

5.1.1 TerraSAR-X

TerraSAR-X operates in X-band with a wavelength of 𝜆 = 31𝑚𝑚. This means that a line-of-sight (LOS)
deformation of 𝜋 radians equals 15.5𝑚𝑚. TerraSAR-X is often used when high resolution is needed
because the default mode, stripmap, has a ground resolution of 3𝑚×3𝑚, which can be increased with
spotlight to 1𝑚×1𝑚 [Werninghaus et al., 2003]. It has been operational since 2008 and is still actively
obtaining imagery. Figure 5.1 shows the observation dates for the descending stack covering Delft, on
track 48.

49



50 5 Application on Simulated Data

Figure 5.1: Observation dates of the descending TerraSAR-X stack of track ኾዂ. The default repeat cycle time is ኻኻ days, but
regularly some acquisitions are skipped. In 2015 the acquisition intervals even increase to once a month for a longer period of
time, and is kept in the simulation to have a more realistic stack. The total amount of acquisitions is ኻዂኼ.

5.1.2 Radarsat-2

The SAR satellite Radarsat-2 is owned by the Canadian Space Agency and has been operational since
2008. It operates in C-band with a wavelength of 56𝑚𝑚 and is still actively acquiring images. The
used stack covers Delft and is recorded in the Descending track, with track number 102. Standard
ground resolution is approximately 5𝑚×20𝑚 [Morena et al., 2004]. Figure 5.2 shows the observation
dates of the stack used for simulation.

Figure 5.2: Observation dates for the Radarsat-2 stack of descending track ኻኺኼ. The nominal repeat cycle is ኼኾ days, but some
acquisitions are missing, especially during 2015. The total amount of acquisitions is ዃኼ.

5.1.3 ERS

The European Remote sensing Satellite (ERS) was the first earth observation satellite of the European
Space Agency (ESA). The first one, ERS-1, was launched in 1991, the second one, ERS-2, was launched
in 1995. They both have the same SAR sensor, C-band, operating on a wavelength of 56𝑚𝑚 [Attema,
1991]. For the greater part of their operations they shared the same nominal repeat cycle of 35 days,
flying in a tandem orbit with an one day interval. ERS-1 was operational until 2000 and ERS-2 up
until to 2011, while the data usable for inSAR only spans up to 2001 due to a gyroscope malfunction.
The used stack covers Delft during descending track number 423. The original stack does have data
available before 1995, but the large observation gap of more than a year has motivated the decision
to remove that data, to avoid unwrapping errors caused by a lack of data. The ground resolution is
4𝑚 × 20𝑚.

5.1.4 Stack comparison

Figure 5.4 shows the three different stacks used for simulation within one figure, with on the x-axis
the duration of the stacks. The improvements in repeat cycle times make near real-time monitoring of
subsidence more viable.
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Figure 5.3: Observation dates of the ERS descending track number ኾኼኽ, covering Delft. The nominal repeat cycle time is ኽ኿ days
and this stack only misses a few of those observations. The data before 1995 has been removed due to a very large data gap
of more than a year, making it a challenge to resolve the ambiguities correctly due to unknown possible subsidence behaviour
over this long time. The total amount of acquisitions is ዀኼ.

Figure 5.4: Comparison of the three stacks used for simulation to clearly visualize the differences in nominal repeat cycle times.
The ጂ፭ listed on the right are the average repeat cycle times for that specific stack.

5.2 Deformation characteristics

One of the advantages of the recursive parameter estimation is the ability to capture different types
of non steady-state deformation behaviour, without changing the functional model. There are two
input-parameters in this functional model that describe the expected smoothness of the deformation:
correlation length 𝐿corr and acceleration variance 𝜎ኼaccel. Later in this chapter it is explored how sensitive
those parameters are and if a rough approximation of these values yields the same results as the exact
values. To achieve this, sets of different deformation types are modelled. Of each type, 1000 realisa-
tions are made to test a wide range of deformation parameters. The different types of deformation are
discussed in the following sections.

5.2.1 Steady-state

One of the most common assumptions for deformation estimation in PSI is steady-state deformation,
shown in figure 5.5. This implies that the deformation rate is constant during the time series. In practice
there may be deviations, but with the steady-state assumption small deviations from that model, like
a small temperature correlation, are still resolvable in unwrapping. For this type of deformation the
range of values used in the simulation is 𝑣 = [0, 20]mm/y [SkyGeo, 2016].
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Figure 5.5: Ten realisations of the steady-state deformation. The deformation rates are in the range of 0mm/y to 20mm/y.

5.2.2 Steady-state with a constant acceleration term

The next deformation type is an extension to the steady-state model, adding an additional constant
acceleration term. The equation used for this is:

𝐷 = 𝑣(𝑡 − 𝑡ኺ) + 𝑎(𝑡 − 𝑡ኺ)ኼ, (5.1)

and the results can be seen in figure 5.6. The main motivation for this deformation type is that this
specific type of model is often used for unwrapping by the graduation company, whenever the results
of the default steady-state model indicate that many arcs are unwrapped incorrectly. The steady-state
rates vary from 𝑣 = [0, 20] mm/y and the acceleration terms are randomly chosen from the interval
𝑎 = [−1, 1]mm/y2 [SkyGeo, 2016].

Figure 5.6: Ten realisations of the extended steady-state deformation model, which has an additional constant acceleration term.
The steady-state rates are chosen from the interval ፯ ዆ [ኺ, ኼኺ]mm/y and the acceleration term is chosen from ፚ ዆ [ዅኻ, ኻ]mm/y2.

5.2.3 Dynamic

The second deformation type is called dynamic deformation. It is generated under the assumption of
the exponentially correlated acceleration (see section 4.2.3) and works in three steps:
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1. Per realization a random steady-state deformation parameter is initiated in the range of 𝑣ኺ =
[0, 20]mm/y.

2. Time series of exponentially correlated acceleration, 𝑎ኺ∶ፓ, are generated based on a correlation
length 𝐿corr =5months and an acceleration standard deviation of 𝜎accel =5mm/y2, 10mm/y2
and 20mm/y2. These values have been chosen based on visual inspection of the resulting time-
series, agreeing that these values result in different orders of non-linear behaviour as sometimes
experienced in real projects [SkyGeo, 2016].

3. Deformation values are generated iteratively based on the following recursion:

𝐷፭ = 𝐷፭ዅኻ + 𝑣፭ዅኻΔ𝑡 + 𝑎፭ዅኻ
1
2(Δ𝑡)

ኼ,
𝑣፭ = 𝑣፭ዅኻ + 𝑎፭ዅኻΔ𝑡,

(5.2)

where 𝐷ኺ =0mm, 𝑣ኺ is the in step 1 determined deformation rate and 𝑎ኺ∶ፓ is the realization of
the exponentially correlated acceleration.

This deformation model is thus generated under the same assumption as used in the functional model of
the recursive parameter estimation (section 4.2.3). Some sample realisations using the three different
values of 𝜎accel are shown in figure 5.7.

Figure 5.7: Realisations of the dynamic deformation type, for three different values of acceleration variance (5mm/y2, 10mm/y2
and 20mm/y2). It can be seen that the deviations from the steady-state model increase when ᎟accel increases.

5.2.4 Exponentially decaying

Due to consolidation of the soil, exponentially decaying subsidence often occurs in areas where new
objects are build. As a result of loading, e.g. newly build houses, the soil tends to subside rapidly
over a relatively short time span. This rapid deformation gradually slow downs until the remaining
deformation is approximately steady-state. The deformation is approximated by using:

𝐷 = 𝑏
exp
𝑒ln(ኻዅ᎞)

(ᑥᎽᑥᎲ)
ᑥᒖ , (5.3)

where 𝜌 = .99 and 𝑡᎞዆ዃዃ% = 700 days, based on settlement rod data from an high way construction
work [SkyGeo, 2014]. The magnitude of exponential decaying deformation is indicated as 𝑏

exp
. 𝑡ዃዃ%

Is the time when 99% of the exponentially decaying deformation has taken place. It can be seen from
figure 5.9 that the initial deformation rate 𝑣ኺ is very high and it is therefore important to determine
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for which magnitude 𝑏
exp

the deformation is still resolvable. The resolvability of the deformation is
determined similarly as previously depicted in figure 2.2, where it was shown which linear deformation
rates are resolvable for different sensors and noise levels. For this case it is desirable that the difference
between the first two observations is less than (figure 2.2):

4𝜋
𝜆 𝑏exp (𝑒

ln(ኻዅ᎞) ᏺᑥᑥᒖ − 1) < 𝜋 − 𝑟ᎎ𝜎phase noise, (5.4)

where Δ𝑡 indicates the nominal repeat cycle of the satellite, 𝑟ᎎ is the significance level factor of the one-
sided Gaussian distribution, and 𝜎 is the standard deviation of the double-difference phase observation.
For a significance level of 𝛼 = .05, 𝑟ᎎ = 1.65. When Eq. (5.4) is expressed in terms of 𝑏exp:

𝑏exp = (𝜋 − 𝑟ᎎ𝜎phase noise)
𝜆
4𝜋 (𝑒

ln(ኻዅ᎞) ᏺᑥᑥᒖ − 1)
ዅኻ
. (5.5)

The expression of 𝑏exp can be plotted as a function of repeat cycle and observation phase noise. The
result from this can be seen in figure 5.8, where theoretical resolvable values for 𝑏exp are shown as
function of repeat cycle and phase noise. Figure 5.8 can in combination with expert elicitation, provide
an approximation on when to start monitoring consolidation. Based on figure 5.8 it is decided to model
the consolidation with values of 𝑏exp = [50, 100]mm to be within the theoretical resolvable range of
TerraSAR-X. The reason why these values are chosen in the range of TerraSAR-X, is because of the
fast repeat cycle of this satellite, making it a popular choice for near real-time monitoring. Also, lower
values of 𝑏exp would make the deformation lie within only one or two phase cycles for C-band, and
would therefore be relatively easy for the ambiguity estimation. Figure 5.9 show ten realisations of the
consolidating soil.

Figure 5.8: Indication of the resolvable consolidation of soil when approximated by Eq. (5.3). The significance level is set to be
ᎎ ዆ .ኺ኿, ᎞ ዆ .ዃዃ, and ፭ᒖᎾᎻᎻ% ዆ 700 days [SkyGeo, 2016]. It can be seen that for long repeat cycles, like Radarsat-2 and ERS,
the resolvable consolidation is low. The resulting deformation phases would lie within one or two phase cycles, resulting in the
ambiguity resolution that can even be solved by a steady-state model. For simulation purposes the parameters are therefore
chosen in the range of ፛exp ዆ [኿ኺ, ኻኺኺ]mm, making them theoretically resolvable.

5.2.5 Single and double breakpoint

The last type of simulated deformation is the breakpoint model, used in e.g. Samiei-Esfahany [2008].
The breakpoint model is a steady-state model that changes on a certain moment in time to a new
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Figure 5.9: realisations of the approximated consolidation of soil. It can be seen that the total deformation ranges from
[኿ኺ, ኻኺኺ]mm.

steady-state model. The model is continuous on the breakpoint and are for the simulations of this
thesis modelled as single and double breakpoint. The steady-state parts of the deformation are at least
20 observations long, such that during initialisation the steady-state assumption holds. This results in
different periods of time that steady-state deformation is occurring, depending on the nominal repeat
cycle of the satellite. The location of the breakpoint in time is random per realisation and unknown a
priori for processing. The initial deformation rate is modelled as 𝑣 = [0, 20]mm/y and the size of Δ𝑣 is
modelled to be in the range of Δ𝑣 = ±[5, 10]mm/y to show a significant break in the time series. Ten
realisations of the single and double breakpoint models are shown in figure 5.10.

Figure 5.10: realisations of the single and double breakpoint models. The location in time of the breakpoints are random and have
the constraint that at least 20 observations are available before and after the breakpoint, subsiding in steady-state behaviour.
The initial deformation rate is ፯ ዆ [ኺ, ኼኺ]mm/y and the rate of change on a breakpoint is modelled as ጂ፯ ዆ ±[኿, ኻኺ]mm/y.

5.3 Simulated phase contributions

Besides deformation there are more phase contributions in the signal. They were previously discussed
in section 2.2 and in this section it will be described which contributions will be modelled in the simu-
lation.
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5.3.1 Atmospheric and orbital phase screens

The atmospheric and orbital phase contributions are considered to be correlated in space, but not
significantly in time [Hanssen, 2001]. Because of this, these contributions can be estimated when a
significant amount of images is available and as long as the spatio-temporal characteristics of the signal
do not show equivalence with the signal of interest. In this thesis we consider unwrapping of double-
difference phase observations obtained over arcs, generated between persistent scatterer candidates
(PSc). Two cases can be distinguished:

1. Initial network: The initial network is generated before orbital phase screen (OPS) and atmo-
spheric phase screen (APS) estimation. The PSc’s chosen for this network are expected to have a
low observation phase noise, and because the arcs are only made over short distances (< 800m),
the influences of the OPS and APS are assumed to be insignificant. This is due to the maximum
arc distance being set based on the spatial correlation length of the OPS and APS signal.

2. Densification: Since in the initial network arcs with low phase noise were used, an estimation
of the APS and OPS could be made. The estimated phase contributions of those phase screens
can now be subtracted from all PSc during densification, reducing the influence on arcs that have
larger observation phase noise.

For both cases it is thus assumed that the influence of the OPS and APS on the double-difference
phase observations is negligible. No specific phase screen is therefore simulated, because it is assumed
negligible or to be captured by the observation phase noise contribution.

5.3.2 Residual DEM heights

It cannot be assumed that a perfect DEM or digital surface model (DSM) is available in processing and
therefore residual DEM/DSM heights will always influence the double-difference phase observations. It
is essential to estimate this Δ𝐻dem, to be able to resolve the deformation signal. Residual DEM heights
are therefore simulated for the arcs using Eq. (2.6) and the actual perpendicular baselines, 𝐵ዊ, of the
stacks described in section 5.1. The range of residual heights are set to Δ𝐻dem = [−30, 30]m.

5.3.3 Observation phase noise

The contributions to the double-difference phase observations, other than deformation and residual
DEM heights, are modelled as zero-mean Gaussian noise [Hanssen, 2004]. The important question then
remains how to choose a realistic variance value for this noise. For this purpose some PSI datasets are
investigated. Datasets of TerraSAR-X, Radarsat-2, ERS and Envisat are chosen to get representative
values encountered in practice. These datasets have the estimated temporal ensemble coherence
stored per processed arc, which is described by Ferretti et al. [2001] as the absolute value of the
complex temporal ensemble coherence:

�̂� = | 1𝑇

ፓ

∑
፭዆ኻ

exp(𝑗(𝜑
፭
− 𝐴፭�̂�፭))|, (5.6)

where �̂� is the estimator of the temporal ensemble coherence, 𝑗 is the imaginary unit and 𝐴፭�̂�፭ is the
modelled phase observation of time 𝑡. It is essentially a normalized measure of fit to the estimated
phase observations and, assuming that the temporal correlated deformation term is estimated correctly,
a measure of the temporal phase dispersion. Since the estimated temporal ensemble coherence is the
only stored characteristic in the used datasets on arc-level, it’s desirable to approximate the observation
phase noise per arc based on these values.
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Figure 5.11: Relation between ᎐̂ and ᎟. The values are generated by simulating ኻኺኺኺ time series of ኼኺኺ observations. The
time series are generated with increasing values of ᎟ and their ᎐̂ estimated by using Eq. (5.6). The dispersion of the simulated
values around the theoretical relation increases with the noise level.

The relation between temporal ensemble coherence and observation phase noise is given by [e.g.
Pewsey et al., 2013]:

𝑅 = |𝑒ዅᒗ
Ꮄ
Ꮄ |, (5.7)

where 𝑅 is in literature referred to as the mean resultant vector which equals the expectation of the
temporal ensemble coherence, 𝐸{�̂�}. Eq. 5.6 can be used to show the relation between �̂� and noise
level 𝜎 as is shown in figure 5.11. The relation in Eq. 5.6 can be used to get realistic phase noise
variances for the simulations in this chapter, based on real processed datasets. The results are shown
in figure 5.12. The datasets do not have PS with temporal ensemble coherence values lower than 0.5.
That threshold is set to distinguish points with significant signal from points with mostly noise. The
values found in these datasets are most likely negatively biased (showing more phase noise), due to
unmodeled deformation being interpreted as noise. Based on the histograms in figure 5.12, observation
phase noise levels of 40∘ (X-Band: 1.7𝑚𝑚, C-Band: 3.1𝑚𝑚), 50∘ (X-Band: 2.2𝑚𝑚, C-Band: 3.9𝑚𝑚)
and 60∘ (X-Band: 2.6𝑚𝑚, C-Band: 4.7𝑚𝑚) are chosen, to cover the whole spectrum of phase noise
levels encountered in current projects.

5.4 Simulation input parameters

In this section the different kinds of simulation input parameters are discussed. Every instance of every
deformation type will be unwrapped by the recursive parameter estimator. As a reference, the data will
also be unwrapped by using a periodogram (section 2.3.4). The periodogram is applied with (i) solely
a steady-state model, and (ii) a combination of steady-state with a constant acceleration component.
Different input parameters will be varied independently, to investigate the sensitivity of the deformation
types to these parameters.



58 5 Application on Simulated Data

Figure 5.12: Estimated noise levels of arcs in four different data sets. These histograms are the basis for the decision of the
observation phase noise levels of ኾኺ∘ (X-Band: ኻ.዁፦፦, C-Band: ኽ.ኻ፦፦), ኿ኺ∘ (X-Band: ኼ.ኼ፦፦, C-Band: ኽ.ዃ፦፦) and ዀኺ∘
(X-Band: ኼ.ዀ፦፦, C-Band: ኾ.዁፦፦).

5.4.1 Initialisation length

First the influence of the initialisation length is investigated. The initialisation length 𝑛init, is the amount
of observations from the start of the time series that is used for an initial parameter estimation. The
estimated ambiguities of the initialisation interval is not used, only the parameters needed to initiate
the recursive parameter estimation are used. Initialisation is done based on a steady-state assumption
and estimates:

𝑣ኺ, Δ𝐻, (5.8)

where 𝑣ኺ is the deformation rate at epoch 0 and Δ𝐻 is the height difference over the arc. The time
subscript is omitted here because this is not a time-varying parameter, however, the parameter is
updated on every observation. While it may be tempting to choose the initialisation length as long
as possible, it must be considered that this will challenge the steady-state assumption. The longer
the initialisation length, the less deviation from the steady-state model is allowed. This is difficult
to quantify, but a period of time should be chosen during which the steady state behaviour is very
probable, and enough observations are available for redundancy of the estimation. Figure 5.13 shows
the relation between amount of observations and time, based on the nominal repeat cycle. This figure
can help to determine the amount of observations for initialisation. The lower limit is set to 𝑛init = 15
observations to assure a certain level of redundancy, which is a value based on experience [SkyGeo,
2016] for which a stack usually seems to generate reasonable results. To investigate the effect on the
success rate, the initialisation will be done with increasing values of 𝑛init of [15, 20, 25, 30, 35].

5.4.2 A priori acceleration correlation length

For the exponential correlated acceleration assumption, a value is needed that describes the smooth-
ness of the deformation, i.e., the correlation length 𝐿corr. It was already discussed in chapter 4 that
physical knowledge about the signal of interest, for instance obtained with expert elicitation, should
guide the decision of an a priori value for 𝐿corr. The correlation length can be interpreted as the amount
of time that an event can result in a certain acceleration. This can range from a very short period, e.g. a
month, caused by an instantaneous event, up to a long period of even a year due to e.g. permanent
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Figure 5.13: Relation between number of observations and the time span based on nominal repeat cycles (indicated in the
parenthesis in the legend). This figure can be used for determining the initialisation length. When the subsidence is expected
to be approximately steady-state in a period of 1 year, it can be determined that the ideal initialisation length for TerraSAR-X is
33 observations. The used initialisation length is then min([፧stack , ኽኽ]), where ፧stack is the amount of images in the stack. As
the stack grows over time, to over more than ኽኽ images, observations will be left out of initialisation.

ground water extraction. Because of this broad range the simulated input parameters for correlation
length 𝐿corr are chosen as [1, 3, 5, 7] months.

5.4.3 A priori acceleration variance

The acceleration variance determines the magnitude of the expected correlated acceleration. Chapter 4
provided the idea to determine this variance based on the expected steady-state subsidence rate change
over time, see figure 4.6. For this analysis, the same acceleration variance values are used, as in
the simulation of the dynamic subsidence data type: 𝜎accel = [0.1, 5, 10, 20]𝑚𝑚/𝑦ኼ. The value of
0.1𝑚𝑚/𝑦ኼ is added to show that for very small values of acceleration, the functional model of the
recursive parameter estimation method approximates a steady-state model.

5.4.4 A priori phase noise variance factor

The observation phase noise is described in 𝑄Ꭻ, see Eq. (4.24), and indicates the dispersion of the
phase observations. The phase noise in the simulations is modelled as a zero-mean Gaussian variance
factor, such that 𝑄Ꭻ = 𝜎ኼphase noise×𝐼ፓ. Since a quantitative prediction of the observation phase noise is
difficult, due to the many varying factors influencing this noise, the variance factor is also used as an a
priori estimation of the phase noise. Based on the analysis of phase noise in real data in figure 5.12, and
the consequences of the wrapping operator on the amount of acceptable phase noise in figure 4.2, the
maximum variance factor is set to 𝜎phase noise = 70∘. To investigate the influence of the a priori phase
noise factor on the unwrapping result, values in the range of 𝜎phase noise = [30∘.40∘.50∘.60∘.70∘][𝑑𝑒𝑔]
are used in unwrapping the simulated deformation.
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Figure 5.14: Example showing the difference between a single unwrapping outlier and a cycle-slip. It can be seen that where
the cycle-slip has a huge impact on the time series solution, the single unwrapping outlier time series still contains most of the
information content and is therefore allowed to occur. This decision will increase the overall success-rates.

5.5 Quantification

Observations are simulated for three satellites, with eight deformation types and three degrees of noise.
These observations are in total unwrapped 20 times, using different input parameters. This results in
a total of 3 × 8 × 3 × 20 = 1440 data sets, each containing 1000 unwrapped time series. To extract
useful statistics from those 1.4 million unwrapped arcs, three quality metrics are computed.

5.5.1 Success rate

The goal of unwrapping is to determine the amount of integer phase cycles that a wrapped observation
has to be shifted to obtain the original unwrapped phase observation. With real data it is impossible
to know if an observation is unwrapped correctly due to the ambiguous nature of the phase mea-
surement. Fortunately, all observations in this chapter are simulated and thus the original unwrapped
phase observations can be checked against the unwrapping result. From this the success rate can be
determined—the percentage of arcs in one data set that are correctly unwrapped. An arc is considered
to be unwrapped successful when all ambiguities are correctly estimated, with the exception of one or
more single outliers that are caused by large phase noise or other uncertainties. The effect of those
outliers on the deformation result are considered to be minimal. The overall success-rate will be higher
due to this. An example of a single outlier is given in figure 5.14.

5.5.2 Initialisation errors

Since the initialisation is paramount for the success of the recursive parameter estimation, it is done by
using already existing unwrapping methods. It is therefore interesting to distinguish incorrect unwrap-
ping caused by initialisation from incorrect unwrapping caused by the recursive algorithm. However,
this is not trivial, because initialisation solely provides estimates of the parameters and the final un-
wrapping is completely done by the recursive algorithm. To approximate if the initialisation parameters



5.6 Analysis of results 61

are the cause of an incorrect unwrapped time series, it is assumed that a correct set of initialisation
parameters should at least be able to unwrap the first 10 observation correctly. If the first 10 obser-
vations are unwrapped correctly, mistakes are thereafter assumed to be caused by the unwrapping
algorithm.

5.5.3 Deformation estimation

The final quality metric to introduce is the standard deviation of the displacement estimation. Since
displacement and derived products like subsidence rates are the main use of PSI, it is of interest to
know the degree of fit of the modelled displacement to the actual simulated displacement. For this the
standard deviation between simulated and adjusted displacement is calculated by:

𝜎defo = √
∑ፓ፭዆ኻ 𝜙፭,defo − �̂�፭,defo

𝑇 − 1 , (5.9)

where T is the amount of observations, 𝜙፭,defo is the simulated displacement phase at time 𝑡 and �̂�
፭,defo

is the adjusted displacement phase at time 𝑡.

5.6 Analysis of results

In this section the results of the simulations are summarised. The full set of results can be found
in appendix A, since not everything can be discussed in detail. First an overall comparison is made
between the recursive estimator, where extra a priori information is added in the functional model,
and the periodogram where only the (i) steady-state assumption and (ii) steady-state plus constant
acceleration assumption is made. This is done in order to evaluate the improvements that this kind of
a priori information can cause. Next, the sensitivity of the results to the different input parameters is
investigated. This is of importance, because in the first comparison the input parameters are chosen in
such a way that they are assumed to be optimal for the simulated data. In practice the exact behaviour
of subsidence can only be approximated, so it is of importance to know how precise this should be
done.

5.6.1 The value of adding a priori information

The recursive estimator is in the figures referred to as QUInSAR. Figure 5.15 shows the performance
of the recursive estimator versus the periodogram for TerraSAR-X data with a noise level of 40∘. Sec-
tion 5.3.3 explained that this level of observation phase noise in the data is already on the high end of
the spectrum of expected levels. For this level of phase noise the recursive estimator performs 100%
on all deformation types, this in comparison to the very poor performance of the periodogram with
steady-state assumption, highlighted in red. The lower part of figure 5.15 displays the standard devia-
tion of the adjusted displacement signal to the simulated signal, 𝜎defo, of correctly unwrapped arcs. The
recursive estimator consistently has a high precision and is only outperformed by the periodogram on
the steady-state deformation and the steady-state deformation including constant acceleration, since
their functional models describes these deformation type exactly.

Figure 5.16 displays the success rates of the same deformation signals, but now being simulated
using the characteristics of Radarsat-2 and ERS. The same remarks as for figure 5.15 hold, except
that the performance of the periodogram improved. This is caused by the fact that the deformation is
’observed’ with C-band which has almost double the wavelength as X-band, i.e. the same deformation
signal spans fewer wave cycles and thus is more likely to unwrap correctly with steady-state models.
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Table 5.1: Relation between time and ፧init. Time values are shown in years. Whereas ኻ኿ observations corresponds to half a
year of TerraSAR-X data, for ERS this corresponds to almost triple that amount; ኻ.ኾ years.

𝑛init[−] 15 20 25 30 35

TerraSAR-X (Δ𝑡 = 11 days)[y] 0.5 0.6 0.8 0.9 1.1
Radarsat-2 (Δ𝑡 = 24 days)[y] 1.0 1.3 1.6 2.0 2.3

ERS (Δ𝑡 = 35 days)[y] 1.4 1.9 2.4 2.9 3.4

QUInSAR outperforms the periodogram on all deformation types, with the exception of the steady-
state case with and without an acceleration term. This is because these deformation types are made
by the same functional model as used by the periodograms. Nevertheless, the results of the recursive
estimator are only marginally behind that of the periodogram, as can be seen in Figure 5.15 and 5.16.

Figure 5.15: Results of recursive ambiguity estimator and periodograms for data simulated with TerraSAR-X characteristics.
The top graph shows the success rates of the three methods per deformation type. Dynamic(5) indicates that the dynamic
deformation model is used with an acceleration variance of 5mm/y2. The lower graph shows the standard deviation of the
estimated displacement, ᎟defo. The recursive estimator is initiated with ኽ኿ observations, correlation length ፋcorr ዆ 5months,
and acceleration variance ᎟accel ዆ 10mm/y2. For the dynamic deformation types the same ᎟accel as used for creation of that
signal is used; 5mm/y2, 10mm/y2 and 20mm/y2. The commonly used steady-state periodogram estimator is highlighted in red.
It is clear that this estimator only performs well on the steady-state deformation type, while the recursive estimator performs
successfully on all types. The ᎟defo graph shows that the displacement estimation is also more precise for the recursive estimator.
This is not only true for the dynamic deformation type which is generated using a similar functional model as the estimator is
using, but also for other types like the breakpoint models.

5.6.2 Initialisation length

The initialisation length determines how many observations are used for estimating the initialisation
parameters. Using a fixed amount of observations results in different periods of time for different
nominal repeat cycle times. For evaluation purposes the range of used initialisation lengths is 𝑛init =
[15, 20, 25, 30, 35]. Corresponding time values can be found in table 5.1.
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Figure 5.16: Success rates for the Radarsat-2 and ERS datasets. The same remarks hold as for figure 5.15. The results
of ERS are slightly less than Radarsat-2, most likely due to the increased repeat cycle time, causing more dynamics to have
occurred per observation. It is interesting to note that the periodogram with an added constant acceleration term also has an
high performance, with exception of deformation cases where the dynamics are more likely to have both an accelerating and
decelerating part (e.g. double breakpoint model, modelled as an increase in deformation rate on the first break, followed by a
decrease to the first deformation rate in the second breakpoint).

Steady-state success rates

First the results of the steady-state deformation are inspected. Figure 5.17 displays the success rates
of the different initialisation lengths together with the periodogram results. For low noise levels (≤ 40°)
no significant difference is observed in the performance of different initialisation lengths. For higher
noise levels however it is found that success rate increases with larger values of 𝑛init, with a value
of 𝑛init = 35, highlighted in red, performing on par with the periodogram. Figure 5.18 reveals that
unwrapping errors for high noise (60°) are mainly caused by an erroneous initialisation.

Non-linear success rates

Only one of the three tested deformation types is steady-state deformation. The other types follow
more non-linear behaviour, which due to the used steady-state initialisation assumption could result in
additional errors. Figure 5.19 illustrates this effect. Where in figure 5.17 the success rate increased
with growing 𝑛init values, in figure 5.19 there seems to be an optimum. The shown values are for the
Dynamic (𝜎accel = 20𝑚𝑚/𝑦ኼ) very non-linear deformation type. The lower part of the figure shows
that the amount of initialisation errors increases again after a certain value, indicated by the increasing
heights of the bars coloured in red. For TerraSAR-X this occurs after 0.8 years, for Radarsat-2 after
1.3 years and for ERS after 2.4 years. The timespan for TerraSAR-X is shorter because of the use of
X-band. This increases the displacement steps between observations when expressed in wave-cycles
compared to C-band. It was expected for Radarsat-2 and ERS that the same length in time would be
found. However, ERS has its optimum on twice the length as Radarsat-2. A possible explanation can be
found in figure 5.17 where it was shown that ERS shows a stronger decrease of initialisation errors than
Radarsat-2 when 𝑛init increases. This effect could be superimposing the effect of decreasing success
rate for non-linear deformation, hence shifting the optimum value for 𝑛init.

Figure 5.20 shows the success rates and initialisation errors of the exponentially decaying deforma-
tion case, for TerraSAR-X. The success rates are the lowest of all in this simulation. The lower part of
the figure shows that the vast majority of errors are due to initialisation. This is not surprising since
initialisation is performed on the most non-linear part of the time-series, meaning that the steady-state
assumption used during initialisation does not hold. If there is reason to expect this kind of deformation
in real cases, the initialisation method should be adjusted in order to increase the success-rate.
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Figure 5.17: Success rates of unwrapping steady-state deformation with different initialisation lengths. The success rates of the
recursive estimator are shown together with the periodogram results, which, as a batch estimator, uses all observations at once.
For low noise levels (ጾ 40°) the results are equally well, but for higher noise levels (50°,60°) the need for longer initialisation
length is visible, in the increasing success rates when ፧init increases. For ፧init ዆ ኽ኿ the recursive estimator and the periodogram
show similar results.

Figure 5.18: Initialisation errors of the recursive estimator for steady-state deformation and ዀኺ∘ phase noise. The larger part of
errors are caused by errors in initialisation.

5.6.3 A priori acceleration variance

The input parameter defining the magnitude of non-linear deformation is the acceleration variance
factor 𝜎ኼaccel. An a priori estimate of this factor is needed to describe the amount of expected diversion
from the steady-state model. In this section the influence of and sensitivity to this parameter is dis-
cussed. Data is processed with values of 𝜎accel = 0mm/y2, 5mm/y2, 10mm/y2 and 20mm/y2. These
values are chosen, because they are the optimal values for respectively the steady-state and the three
realisations of the dynamic model.

Results of 𝜎accel on dynamic deformation models

Figure 5.21 presents the success rates of the dynamic deformation models for different values of 𝜎accel.
Per graph, the dataset using the optimal value of 𝜎accel is highlighted in red. As expected these values
result in the highest success rates. Results of 𝜎accel = 0mm/y2 are similar to the periodogram with
steady-state model, showing that the functional model of the recursive estimator indeed reduces to
steady-state for this value. An interesting observation is that the parameter 𝜎accel is not very sensitive,
since a high value of e.g. 𝜎accel = 20mm/y2 also performs very well on the Dynamic(5mm/y2) and
Dynamic(10mm/y2) data. This observation is not applicable vice versa.
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Figure 5.19: Success rates and initialisation errors for the most non-linear deformation case; Dynamic(᎟accel ዆ ኼኺ፦፦/፲Ꮄ). The
optimum values for ፧init are different per satellite. This is caused by the differences in wavelength and repeat cycle times.

Figure 5.20: Success rates and initialisation errors for the exponentially decaying deformation case. The majority of errors are
caused by initialisation. The high non-linear behaviour of this deformation type in the first year causes the initialisation, using a
steady-state assumption, to fail.

The displacement standard deviations are displayed in figure 5.22. Here it is once more shown
that choosing the optimal 𝜎accel value yields the highest precision, while not being crucial for a good
displacement estimation, since using other 𝜎accel values also yield low standard deviations for the
adjusted displacement. This low sensitivity of 𝜎accel results in the fact that the acceleration can be
estimated to be relatively high, while still yielding good results for steady-state deformation.

Results of 𝜎accel on other deformation models

The success rates of the other deformation models are shown in figure 5.23. Those models do not
have a specific optimal value of 𝜎accel, since this value was not used in the creation of the deformation.
Despite that, some experimentally obtained optimal values can be derived from this figure. The results
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Figure 5.21: Success rates of the dynamic deformation types for values of ᎟accel ዆ 0mm/y2, 5mm/y2, 10mm/y2 and 20mm/y2.
The optimal values for the different deformation types are highlighted in red. Using the optimal value for the specific data type
increases the success rate, but does not increase it significantly. Overestimating ᎟accel only lowers the success-rate by a few
percent, while underestimating ᎟accel can drastically lower the success-rate.

Figure 5.22: Standard deviations of the modelled displacement. The optimal values highlighted in red yield the best results.
Overestimating ᎟accel changes the results only slightly.

for the highest phase noise level of 60° are displayed because the effect is most visible there. The
highlighted values of 𝜎accel = 10mm/y2 in the top graph show the best result on average. In the
bottom graph however, the best results are obtained with 𝜎accel = 5mm/y2, but the differences are
very minimal.



5.6 Analysis of results 67

Figure 5.23: Results for TerraSAR-X on the non-dynamic deformation types, for a noise level of ዀኺ∘. The top graph shows the
success rates for values of ᎟accel ዆0mm/y2, 5mm/y2, 10mm/y2 and 20mm/y2. The bottom graph displays the quality of the
estimated displacement. Depending on the expected deformation type, a value of 5mm/y2 or 10mm/y2 yields the best results.

5.6.4 A priori acceleration correlation length

Figure 5.24 shows the success rates of input values of 𝐿corr =1months, 3months, 5months and
7months on TerraSAR-X data with a phase noise level of 60°. The theoretical optimal values per
deformation type have been highlighted. Only a small decrease in successes is visible for 𝐿corr = 1
month, where a much lower value is indicated than the used 5months for generating the data. The
effect on the deformation estimation 𝜎defo in the lower part of the figure is negligible. Similar results
are found for the other deformation types and are therefore not displayed here, but can be found in
appendix A. The correlation length 𝐿corr has arisen to have the least influence on the success-rate and
displacement precision.

5.6.5 A priori phase noise variance factor

For computing the variance covariance matrix of observations, 𝑄Ꭻ, a fixed phase noise variance factor
is used; 𝜎ኼᎫ. The used input parameters for the recursive estimation are 𝜎Ꭻ = 30°, 40°, 50°, 60° and
70°.

Effect of correct 𝑄Ꭻ on success rate

Figure 5.25 shows the success rates for the double breakpoint deformation type. In red the results
are highlighted that are obtained by using the simulated noise level as variance factor 𝜎ኼᎫ. The highest
success rates are mostly found close to this optimal 𝜎ኼᎫ value. Figure 5.26 shows the precision of
estimated deformation for the different phase noise variance factors. The optimal values are highlighted
in red and are found there where the best 𝜎defo values are used.

Consequences of using a fixed variance factor

In section 4.2.2 it was argued that using a fixed variance factor is a practical simplification, not expected
to have big consequences on the success rate of unwrapping. This statement can now be validated
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Figure 5.24: Success rates and deformation estimation precisions for the steady-state and dynamic deformation types for different
values of ፋcorr. The dynamic data is generated with a value of ፋcorr ዆ ኿ months, but this is barely visible in both the success
rates and ᎟defo values.

by looking at figure 5.27 where the success rates and deformation estimation precisions are shown for
the dynamic(10mm/y2) deformation type. Using the a priori variance factor 𝜎Ꭳ = 60°, highlighted in
red, has a high performance on all simulated phase noise levels, while having no noticeable effect on
the precision of the estimated deformation.
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Figure 5.25: Success rates for the double breakpoint deformation type, given different satellites and noise levels. The data is
processed using different values as a priori variance factor ᎟ᒣ ዆ 30°, 40°, 50°, 60° and 70°. The best success rates are found
when the correct variance factor value is used, but the differences are small.

Figure 5.26: Precision of the estimated deformation when using different values as a priori variance factor. The results show
that the precision is not strongly influenced by the choice of ᎟ᒣ.
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Figure 5.27: Success rates and estimated deformation precisions for the dynamic(10mm/y2) deformation type for TerraSAR-X
data. High ᎟ᒣ also performs well on data with lower simulated phase noise levels, showing that the decision for using an a priori
variance factor over a theoretically derived ፐᒣ is an efficient simplification.



6
Application on Real Data

Chapter 5 showed that the recursive estimator has high success-rates on different simu-
lated deformation circumstances. A small case study on real data will be presented in this
chapter as a proof of concept. The case study is centered around a building block located
in The Hague that subsided significantly during a small time window. The increase of
subsidence is correlated with ground water extraction in the area due to soil remediation.

6.1 Description

The case study in The Hague is located around the Anna Paulownaplein. In this area the soil is polluted
by a chemical cleaning corporation that was located at this square from 1960 until 1987. In October
2010, a soil redemption project started that extracted and cleansed the groundwater [”Municipality of
The Hague”, 2016 (accessed August 22, 2017]. The area processed for this case study is illustrated in
figure 6.1. It consists out of the main square and surrounding building blocks.

Figure 6.1: Extent of the area processed for the Anna Paulownaplein in the city of The Hague [Ku, 2017].
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6.2 Data & input

6.2.1 Stack

The area of interest (AOI) falls within a TerraSAR-X descending stack of track 048. This stack has 235
acquisitions, ranging from 08-Apr-2009 to 28-Jun-2017. The overview of acquisition dates is displayed
in figure 6.2 and the extent of the used TerraSAR-X stack is provided in figure 6.3.

Figure 6.2: Observation epochs of the used TerraSAR-X descending stack of track ኺኾዂ with 235 acquisitions (see figure 6.3).

Figure 6.3: Extent of the TerraSAR-X descending stack of track ኺኾዂ [Ku, 2017]. The stack covers The Hague, Delft and Rotterdam
in The Netherlands.

6.2.2 Processing scheme

A simple processing scheme is used for the proof of concept. Since the selected area is only a few
hundred meters in diameter, the effect of atmosphere and orbital errors are assumed to be negligible.
For all pixels within the AOI, arcs are created to the same pixel, creating a star network. This pixel is
chosen based on lowest normalized amplitude dispersion [Ferretti et al., 2001]. The recursive estimator
processed all arcs, using the same input parameters for every arc. Thereafter, it is determined which
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arcs have a temporal ensemble coherence value higher than a certain threshold. The arcs that pass the
threshold are unwrapped once more, now while using the periodogram with a steady-state assumption.
This scheme is used to show single-arc results of real data, processed with two different methods. The
single-arc part is important because it excludes influences in the final result caused by networks that
are often used as base for unwrapping.

In the following sections, the methodology and results of both methods are given. Finally the two
datasets will be compared in the analysis.

6.2.3 Input parameters

Based on the parameterisation described in chapter 5, and knowledge about the soil remediation, the
choices for the input parameters are described below.

Initialisation length

The case study data is expected to have non-linear deformation behaviour. The simulations revealed
that setting the initialisation length too long would cause these kind of deformation behaviour to be
wrongly unwrapped, while setting it too short would result in wrong initialisation due to the observation
phase noise. The starting date of the soil remediation is known, and it is assumed that during the
period before the deformation behaviour was steady-state. Therefore, the initialisation length is set to
35 observations.

A priori acceleration correlation length

As described in section 5.6.4, the correlation length 𝐿corr is an insensitive parameter. For breakpoint
models, the deformation type expected in this case study, it was shown that there is only a small
decrease in success rate when 𝐿corr is set to 1 month, while the success rate stayed constant for the
remaining values of 𝐿corr. For the case-study the correlation length is set to 5 months, due to lack of
further knowledge about the physical signal.

A priori acceleration variance

The sensitivity of the expected acceleration variance, 𝜎ኼaccel, is higher than that of the correlation length.
No knowledge about the expected acceleration variance is available for this case study, so the a priori
estimate will be based on results of the simulations. In section 5.6.3 it was shown that a value of
𝜎accel = 10mm/y2 performed best for multiple non-linear deformation types, but has as trade off that
some high-noise steady-state deformation might be missed (see figure A.5). Ideally, this decision
should be made based on external knowledge about the deformation patterns that occurred.

A priori observation phase noise variance factor

Observation phase noise is described by an a priori variance factor. The simulations of section 5.6.5
showed that overestimating the observation phase noise only has a minimal effect on arcs with lower
phase noise. In figure 6.3 it was shown that arcs with observation phase noise of ≤ 60° had a success-
rate of ≥ 95%. Therefore the a priori observation phase noise variance factor is set to the theoretical
maximum allowable 𝜎Ꭻ = 60°(2.6mm).

6.3 Results

The area of the Anna Paulownaplein is processed, using the above described processing scheme and
input parameters. The result is a data set of 4685 arcs that passed the temporal ensemble coherence
threshold of 0.6 after being unwrapped with the recursive estimator. All 6224 arcs are then also
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processed using the steady-state periodogram and the quality values are similarly recalculated for this
data set. To aid the analysis of both performances, figures with unwrapped time series are indicated.
These figures display data from an arc, first unwrapped with the recursive estimator, referred to as
QUInSAR, and thereafter unwrapped with the periodogram. The computed Root Mean Square Error
(RMSE) and arc quality value is moreover listed in the titles to indicate the quality of fit, together with
the estimated Δ𝐻 to the reference point. The arc quality represents the estimated ensemble phase
coherence, see Eq. (2.14), and can be interpreted as a goodness-of-fit value.

6.3.1 Steady-state behaviour

To start with the analysis, it is first investigated how arcs showing approximately steady-state defor-
mation are unwrapped. It is assumed that the arc temporal ensemble coherence, unwrapped with the
periodogram under the steady-state assumption, is an indicator of linearity of deformation over an arc.
Hence, in order to select arcs that have steady-state behaviour, only those arcs from the periodogram
dataset are chosen with a temporal ensemble coherence greater than 0.85. The RMSE and temporal
ensemble coherence values of these arcs are plotted against the quality values of the same arcs un-
wrapped with the recursive estimator in figure 6.4. A blue dot under the red line indicates an arc that
received a higher quality value when unwrapped with the recursive estimator. The majority of points

Figure 6.4: RMSE and temporal ensemble coherence of the recursive estimator versus the periodogram. The red line indicates
where both metrics are equal. Left: Arcs that lie above the red line have received a lower RMSE value with the recursive estimator
than with the periodogram. Right: Arcs that lie under the red line have received a higher temporal ensemble coherence value
with the recursive estimator. The better quality metric value results from the lower amount of unmodelled deformation with this
recursive estimator, resulting in less residuals and thus a better quality metric value.

lies under the red line, which is as expected, since the recursive estimator should model most of the
deformation that remain unmodelled by the periodogram, and thus yields slightly higher quality values.
An example of an arc having merely the same quality value when unwrapped with both methods, can
be seen in figure 6.5. An arc with higher quality after unwrapping with the periodogram can be seen in
figure 6.6. The reason for the latter receiving a lower quality value, is probably due to an initialisation
error. The upper graph of figure 6.6, showing the recursive estimator, seems to start with a strong
uplift that eventually causes two cycle-slips before the deformation pattern resembles the deformation
pattern of the bottom graph.
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Figure 6.5: Arc with a low amount of observation phase noise and deformation behaviour that approaches steady-state. The
solution provided by both methods is practically the same.

Figure 6.6: Arcs with a large difference in quality metric values between the two used methods. This difference is caused by an
initialisation error in the recursive estimator, which estimated an uplift when almost no deformation was happening. After two
years, QUInSAR recovered from the wrongly estimated uplift, and the solution becomes similar to that of the periodogram.
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6.3.2 Examples of non-linear deformation

Within the area of interest resides a building block that shows non-linear deformation due to soil
remediation [Hopman, 2016]. Two arcs are shown in figures 6.7 and 6.8 that were created between
the reference point and this building block. It can be seen that in the time frame of the soil remediation,
marked in red, the deformation rate increased temporarily. The periodogram of figure 6.7 was able
to capture this completely whereas the periodogram in figure 6.8 resolved a steady-state deformation
by causing a cycle-slip, resulting in missing about 15𝑚𝑚 of deformation. Moreover, this reduced the
quality value by 0.1, because the unmodelled deformation was interpreted as phase noise.

6.3.3 Unmodelled deformation

It is shown in figure 6.8 that the recursive estimator can increase the quality value by modelling
deformation that a steady-state model would miss. This can prevent arcs from being falsely rejected in
the network formation or during the final quality threshold. The term falsely relates to the fact that the
arc might have a higher signal to noise ratio than is assumed based on the steady-state assumption.
Figure 6.9 shows a RMSE and temporal ensemble coherence comparison for the whole dataset. The arcs
plotted below the red line increased in temporal ensemble coherence by using the recursive estimator
while the arcs above the red line decreases in temporal ensemble coherence by using the periodogram.
Two extreme cases, plotted in red, are investigated because of their unexpected extreme values. First
the arc represented by the top-left red dot in the RMSE plot is analysed (figure 6.10). This arc gained
0.34 in temporal ensemble coherence when unwrapped with the recursive estimator compared to the
periodogram result. The result of the periodogram got a value of 0.53; lying outside the most used
quality threshold. The low temporal ensemble coherence value is caused by a temporary subsidence
around 2011 as illustrated in figure 6.10, which distorts the steady-state. The arc represented by the
upper red dot in figure 6.9 is displayed in figure 6.11. Figure 6.11 clearly indicates that the reduction
of temporal ensemble coherence for the recursive estimator is caused by an initialisation error from
which it eventually recovers after having processed two years of observations. Although the estimation
for the deformation rate after these two years is similar to the steady-state results, the deformation
estimate is off by two cycles (31𝑚𝑚).
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Figure 6.7: Arc with double breakpoint behaviour due to soil remediation. The arc is similarly unwrapped with both the recursive
estimator and the periodogram. Since the periodogram modelled the deformation as steady-state, the quality value of that arc
is lower.

Figure 6.8: Another arc with double breakpoint behaviour. This time the periodogram was not able to resolve the deformation
pattern. One consequence of this is that the arc quality value of this point dropped, increasing the chance that this arc would be
rejected in standard processing procedures. Because the arc was not rejected due to its quality value, the estimated deformation
of this arc is about ኻ኿፦፦ off due to the cycle slip that happened during the period of increased subsidence rate.
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Figure 6.9: RMSE and temporal ensemble coherence of the recursive estimator versus the periodogram. The red line indicates
where both metrics are equal. Left: Arcs that lie above the red line have received a lower RMSE value with the recursive estimator
than with the periodogram. Right: Arcs that lie under the red line have received a higher temporal ensemble coherence value
with the recursive estimator. The better quality metric value results from the lower amount of unmodelled deformation with this
recursive estimator, resulting in less residuals and thus a better quality metric value. The red dots indicate the arcs with the
biggest difference in quality metric between the two used methods.

Figure 6.10: Arc that experiences some non-linear deformation in the form of temporary subsidence around ኼኺኻኻ. The recursive
estimator adapts to the local change of steady-state behaviour whereas the periodogram does not model this deformation. This
results in a quality value that is ኺ.ኽ኿ lower than that of the recursive estimator. This would mean in practice that the arc is
rejected for further processing.
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Figure 6.11: Arc where the recursive estimator performed significantly less than the periodogram. Close inspection reveals an
initialisation error for the recursive estimator, resulting in an estimated uplift of two cycles (ኽኻ፦፦). Thereafter, the recursive
estimator recovers by resolving the steady-state rate, nevertheless, the deformation estimation remains biased.





7
Discussion & Conclusions

Persistent Scatterer Interferometry (PSI) is becoming a more frequently used geodetic technique for
deformation measurements. However, this technique experiences difficulties with the extraction of
various types of non-linear deformation patterns. The wish of near real-time monitoring and increasing
sizes of datasets, moreover provides the need for efficiently updating of datasets when new satellite
acquisitions become available.

This study demonstrates that recursive least-squares can be used for phase unwrapping in PSI. It
moreover allows for applying a smoothness constraint in the temporal domain to help resolve different
kinds of deformation types. The designed mathematical framework can therefore both aid in resolving
temporal smooth deformation, and updating datasets with new acquisitions.

Extraction of temporal smooth deformation patterns

By changing the deformation model parameterisation to that of a temporal smoothness constraint, a
functional model emerges , similar to Kalman filtering, that describes deformation as a dynamic process.
More types of deformation patterns can be detected via this model compared to steady-state models
by adding more information about the expected temporal smoothness of the signal. The amount of
unmodelled deformation after adjustment is reduced by this model, aiding a better separation of signal
and noise in the time series. This results in a better quality value describing the signal to noise ratio,
improving the quality subsets made during processing.

The proposed method depends on an initialisation per arc on a subset of the time series. The amount
of observations used in the initialisation should be chosen based on the expected steady-state behaviour
of the deformation, while maintaining the redundancy of the estimation by including a minimal amount
of observations. The simulations in this study show an optimum of about 25 observations. Using
more observations has no significant result on the success-rate for steady-state deformation, while
even decreasing success-rates for non-linear deformation types, due to the steady-state assumption
used during initialisation. Using a fixed amount of observations results in different lengths of time
depending on the nominal repeat cycle of the used satellite. The resolvability of a signal therefore
strongly depends on the dynamic behaviour during the used initialisation period.

The unwrapping methods of Integer Least Squares (ILS) and the periodogram are discussed in
this research. Both can be used for initialisation. While ILS has the advantage of providing a full
variance-covariance matrix (VCM) of estimated parameters by taking into account the estimated integer
ambiguities, the periodogram has as advantage to be an order of magnitude faster, though at cost
of a slightly lower success-rate in the simulation. The VCM of the estimated parameters using the
periodogram is approximated by applying Least Squares error propagation. An unexpected result was
found when the recursive estimator was applied on real data. Despite the fact that the periodogram
initialisation performed slightly worse on simulated data compared to ILS, the periodogram resulted in
approximately 30% more points passing the quality threshold than when using ILS.
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The proposed method requires the VCM of the double-difference phase observations to be diagonal.
It is shown that this simplification does not pose a problem when describing the deformation as a
dynamic process. Furthermore it is shown in the simulations that using a high a priori observation phase
noise variance factor does not significantly influence the success-rate of arcs with a lower observation
phase noise than assumed a priori. However, arcs with a higher observation phase noise than assumed
a priori have a lower success-rate. It is therefore concluded that an overestimated a priori observation
phase noise variance factor can be used, that is tuned to the theoretical maximum allowed observation
phase noise. The VCM of the adjusted parameters can afterwards be adjusted with an a posteriori
variance factor, to give a better precision indication to the adjusted observations.

The difference vector, describing the deviations from the steady-state model, is in this study the key
to modelling the usually unmodelled deformation when a steady-state assumption is used. It is shown
that temporally smooth deformation signals can be modelled by being the result of a temporally cor-
related acceleration, of which the correlation is described by an exponential function. The simulations
indicate that the a priori acceleration correlation length does not significantly affect the unwrapping
success rate. In contrast, the a priori acceleration variance does influence the success rate significantly.
Underestimating the acceleration variance causes non-linear deformation types to be unwrapped in-
correctly, while overestimating only has a minimal negative effect on the success rates. This motivates
the conclusion that even when the majority of the deformation is expected to be steady-state, the a
priori acceleration variance factor should be tuned to the small amount of other deformation signals.
Tuning the variance factor in this way avoids a bias towards steady-state deformation while it does not
significantly alter the success rates for unwrapping steady-state deformation signals.

Conclusively, the recursive estimator does not only have a higher success-rate than the steady-state
periodogram during simulations, but the degree of fit to the simulated deformation is also better for
the recursive method. This is a trivial result since the functional method of the proposed recursive
estimator incorporates more knowledge about the deformation signals. The recursive estimator, how-
ever, estimates deformation patterns that are difficult to approximate with current reduced parametric
deformation models. This phenomenon is also evident in real data, as arcs with very low root mean
square error (rmse) can be identified after recursive processing, while those same arcs would have been
rejected when being processed by the steady-state periodogram. Even arcs with ‘steady-state’ defor-
mation are better adjusted by the recursive method than by the steady-state periodogram method,
since exact steady-state deformation does rarely occur in real life. Contrary to the periodogram, the
recursive estimator is capable to adapt to these small deviations from steady-state deformation rate.

Nevertheless, despite promising results, some remarks have to be made about the limitations of
this methodology. The unwrapping success-rate depends greatly on the adjusted parameters of an
arc, computed during the initialisation. Whereas batch methods use the full time series to estimate
the ambiguities, the recursive estimator only uses a subset. While the reason for this selection is well-
argued, it remains a weak point of the methodology. The simulation results showed that a significant
part of the wrongly unwrapped time series were caused by initialisation errors, pointing out that the
current approach/methodology leaves room for improvement.

Efficiently updating of datasets

The recursive form in which the temporal smoothness constraint is implemented in the recursive esti-
mator, allows efficiently updating of time series as it adjusts the newest observation of an arc, based
on the previously adjusted parameters. In this adjustment the unknown phase ambiguity is implicitly
estimated. By only executing one extra filter step, previous filter steps and initialisation can be skipped,
which improves the computational efficiency.

Performing the hindcasting step after every new acquisition may be unwanted, because this pro-
cedure changes historic adjusted observations. An optimal procedure in terms of user expectation
and processing efficiency would be to update time series in real-time (i.e. when a new acquisition is
acquired) by only doing the filter step of the recursive method. This is a highly efficient step, even for
datasets containing millions of points. A full reprocessing that includes orbital an atmospheric phase
screen estimation, point selection, and hindcasting can then be done periodically, e.g. every 3 months.
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This approach reduces computational load, while increasing the possibilities of real-time monitoring.
Computational load of hindcasting could be even further reduced, when replacing the fixed-interval

hindcasting method with a fixed-lag hindcasting method. A fixed-lag hindcasting only adjusts the 𝑛,
latest observations, where 𝑛 is the lag-length. The lag-length can be based on the chosen acceleration
correlation length, because both parameters assume a certain independence over larger time-spans.
If there is need for further reducing the numerical complexity of the algorithm, it could be researched
if changing the recursive formulation to condition equations [Teunissen, 2007] yields any further com-
putational improvements due to a reduction of matrix inversions.

Future research

Recursive estimation can be a powerful addition to PSI. The possibility to efficiently update data sets
when new acquisitions are available, while at the same time resolving deformation patterns that are
frequently missed with other methods, is of great value for this technique.

Furthermore, improvements can be realised with regularisation. Regularisation is used in initialisa-
tion, where it constrains the solution space. However, during the recursive estimation no regularisation
is currently applied, with the exception of the zero-mean acceleration assumption. Due to the lack of
regularisation, the adjustment sometimes diverges to very unlikely values of the unknown parameters.

Also, the decision for the a priori acceleration input parameters should be researched in more
detail. It is of importance to let knowledge of the physical signal guide the decision for the a priori
correlation length and acceleration variance. This knowledge could be obtained by expert elicitation,
but a translation step has to be made from this knowledge to actual parameters. Often, large areas are
processed using the same input parameters. Expert elicitation could help tune the input parameters to
specific locations to have the most optimal representation of the physical signal.

In addition, more research is needed in determining the quality of unwrapping. The functional
model of this recursive methodology has more degrees of freedom, which inevitably results in the risk
of cycle errors due to observation phase noise. This is especially important in the processing of real
data, where the actual observation phase noise does necessarily behave like Gaussian distributed noise,
as described in the stochastic model.

Last but not least, the implementation of this unwrapping methodology in current processing
schemes should be researched extensively. Especially the updating of the first order network should
be handled with care, to assure that this network is thoroughly tested, preventing errors propagating
over the dataset.
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Full simulation results

In this chapter the full simulation results figures are shown. They are ordered per satellite
and per satellite the order is: initialization length, a priori acceleration correlation length,
a priori acceleration variance and observation phase noise variance factor. Each input pa-
rameter has two figures: Success rates and, initialization errors or estimated deformation
standard deviation. A list of result figures is given below for easy reference.

List of Figures in Appendix A

A.1 TerraSAR-X, Initialisation, Success rates . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.2 TerraSAR-X, Initialisation, Initialisation errors . . . . . . . . . . . . . . . . . . . . . . . 87
A.3 TerraSAR-X, Correlation length, Success rates . . . . . . . . . . . . . . . . . . . . . . . 88
A.4 TerraSAR-X, Correlation length, Deformation estimation . . . . . . . . . . . . . . . . . . 89
A.5 TerraSAR-X, Acceleration variance, Success rates . . . . . . . . . . . . . . . . . . . . . 90
A.6 TerraSAR-X, Acceleration variance, Deformation estimation . . . . . . . . . . . . . . . . 91
A.7 TerraSAR-X, Phase noise factor, Success rates . . . . . . . . . . . . . . . . . . . . . . . 92
A.8 TerraSAR-X, Phase noise factor, Deformation estimation . . . . . . . . . . . . . . . . . 93
A.9 Radarsat-2, Initialisation, Success rates . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.10 Radarsat-2, Initialisation, Initialisation errors . . . . . . . . . . . . . . . . . . . . . . . 95
A.11 Radarsat-2, Correlation length, Success rates . . . . . . . . . . . . . . . . . . . . . . . 96
A.12 Radarsat-2, Correlation length, Deformation estimation . . . . . . . . . . . . . . . . . . 97
A.13 Radarsat-2, Acceleration variance, Success rates . . . . . . . . . . . . . . . . . . . . . 98
A.14 Radarsat-2, Acceleration variance, Deformation estimation . . . . . . . . . . . . . . . . 99
A.15 Radarsat-2, Phase noise factor, Success rates . . . . . . . . . . . . . . . . . . . . . . . 100
A.16 Radarsat-2, Phase noise factor, Deformation estimation . . . . . . . . . . . . . . . . . . 101
A.17 ERS, Initialisation, Success rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.18 ERS, Initialisation, Initialisation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.19 ERS, Correlation length, Success rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.20 ERS, Correlation length, Deformation estimation . . . . . . . . . . . . . . . . . . . . . 105
A.21 ERS, Acceleration variance, Success rates . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.22 ERS, Acceleration variance, Deformation estimation . . . . . . . . . . . . . . . . . . . . 107
A.23 ERS, Phase noise factor, Success rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.24 ERS, Phase noise factor, Deformation estimation . . . . . . . . . . . . . . . . . . . . . 109

85



86 A Full simulation results

Figure
A.1:

TerraSAR-X
success

rates
w
ith

varying
initialization

length.



87

Fi
gu

re
A.
2:

Te
rr
aS

AR
-X

in
iti
al
iz
at
io
n
er
ro
rs

w
ith

va
ry
in
g
in
iti
al
iz
at
io
n
le
ng

th
.



88 A Full simulation results

Figure
A.3:

TerraSAR-X
success

rates
w
ith

varying
a
prioriacceleration

correlation
length.



89

Fi
gu

re
A.
4:

Te
rr
aS

AR
-X

es
tim

at
ed

de
fo
rm

at
io
n
st
an

da
rd

de
vi
at
io
n
w
ith

va
ry
in
g
a
pr
io
ri
ac
ce
le
ra
tio

n
co
rr
el
at
io
n
le
ng

th
.



90 A Full simulation results

Figure
A.5:

TerraSAR-X
success

rates
w
ith

varying
a
prioriacceleration

variance.



91

Fi
gu

re
A.
6:

Te
rr
aS

AR
-X

es
tim

at
ed

de
fo
rm

at
io
n
st
an

da
rd

de
vi
at
io
n
w
ith

va
ry
in
g
a
pr
io
ri
ac
ce
le
ra
tio

n
va
ria

nc
e.



92 A Full simulation results

Figure
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Figure
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Figure
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Figure
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Figure
A.17:
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Figure
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