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Abstract: Ambiguity Resolution (AR) plays a vital role in precise GNSS positioning. Correctly-fixed
integer ambiguities can significantly improve the positioning solution, while incorrectly-fixed integer
ambiguities can bring large positioning errors and, therefore, should be avoided. The ratio test is
an extensively used test to validate the fixed integer ambiguities. To choose proper critical values of
the ratio test, the Fixed Failure-rate Ratio Test (FFRT) has been proposed, which generates critical
values according to user-defined tolerable failure rates. This contribution provides easy-to-implement
fitting functions to calculate the critical values. With a massive Monte Carlo simulation, the functions
for many different tolerable failure rates are provided, which enriches the choices of critical values
for users. Moreover, the fitting functions for the fix rate are also provided, which for the first time
allows users to evaluate the conditional success rate, i.e., the success rate once the integer candidates
are accepted by FFRT. The superiority of FFRT over the traditional ratio test regarding controlling
the failure rate and preventing unnecessary false alarms is shown by a simulation and a real data
experiment. In the real data experiment with a baseline of 182.7 km, FFRT achieved much higher fix
rates (up to 30% higher) and the same level of positioning accuracy from fixed solutions as compared
to the traditional critical value.

Keywords: GNSS; GPS; ambiguity resolution; ratio test; failure rate; fix rate

1. Introduction

Precise positioning uses the carrier phase measurements, which inherently contain unknown cycle
ambiguities [1]. The high precision is only achievable if the ambiguity is correctly fixed to integers.
On the contrary, incorrectly-fixed integer ambiguities may result in large positioning errors. In order to
exclude those incorrectly-fixed integer ambiguities, the validation of integer ambiguity is demanded.
Integer ambiguity validation has been richly researched, and several methods have been proposed,
such as the ratio test [2,3], the difference test [4,5], the projector test [6,7] and the F-test.

Among these methods, the most extensively used one is the ratio test with fixed critical
values [6,8–11]. Verhagen and Teunissen [12] studied the relations between failure rate, false alarm
rate and critical values based on the model strength. It was concluded that the traditional ratio test
using fixed critical values without distinguishing model strength may either raise false alarm rates or
imply no control of the failure rate.

Therefore, the Fixed Failure-rate Ratio Test (FFRT) was proposed, for which critical values
dependent on the model strength are selected. The critical value by which the failure rate threshold
is fulfilled was shown to be indexed by the number of ambiguities and the Integer Least-Squares
(ILS) [13–16] failure rate. A look-up table of critical values for two typical tolerable failure rates 0.01
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and 0.001 is given in [12]. Following the fixed failure-rate idea, Wang and Verhagen [5] studied the
Fixed Failure-rate Difference Test (FFDT) and provided the critical values by fitting functions according
to the tolerable failure rate and the model strength.

Brack and Günther [17] extends the fixed failure rate idea by proposing a General Integer Aperture
(GIA) estimation that tests each entry of the ambiguity vector with critical values calculated from the
tolerable failure rate. Supposedly, GIA may accept at least a subset of fixed integer ambiguities rather
than occasionally rejecting all.

Compared to the approach using a look-up table [12], this contribution provides fitting functions
to describe the relation between the critical value of the ratio test and the model strength even better.
A wider range of tolerable failure rates used for FFRT are provided, i.e., ranging from 0.0005 to 0.01,
as each user may have their own requirements on the failure rate of Ambiguity Resolution (AR).
Additionally, the resulting fix rate is provided by fitting functions, which for the first time will allow
users to evaluate the conditional success rate (i.e., the success rate once the integer candidates are
accepted by FFRT, see Equation (9)) before AR is performed. The fitting functions for both the critical
value of the ratio test and the corresponding fix rate are model dependent, meaning that users can
evaluate the possible fix rate and conditional success rate and decide whether AR is worthy or not
before the time-consuming AR process. Besides, the functions are easy-to-implement, requiring no
efforts to repeat the simulations the authors have done.

This paper is organized as follows. Section 2 briefly reviews the general models and describes
the procedure to find the fitting functions of critical values. Section 3 validates the performance of the
fitting functions in controlling the failure rate by simulation, and Section 4 shows an example where
the FFRT increases the fix rate compared to the conventional ratio test using a real data experiment.
Section 5 summarizes the main contributions.

2. Methodology

2.1. General Ambiguity Resolution Model

A GNSS observation model can be put in the following linearized equation:

y = Aa + Bb + e, with e ∼ N(0, Qee) (1)

where y ∈ Rm is the vector of code and carrier observations; a ∈ Zn is the vector of unknown integer
carrier phase ambiguities; b ∈ Rp is the vector of baseline coordinates and may possibly include
residual atmospheric delays, as well; e ∈ Rm is the vector of measurement noise, which is assumed to
have a zero-mean Gaussian normal distribution; A and B are the design matrices for the ambiguities
and baseline components, respectively; m, n and p are the number of measurements, number of integer
ambiguities and number of unknown baseline parameters, respectively.

GNSS precise positioning usually contains four steps [13–15]: (1) estimate the float ambiguities
and position coordinates; (2) fix float ambiguities to integer values; (3) validate the integer ambiguities;
and (4) update the position coordinates using fixed ambiguities.

The float ambiguities and baseline solution can be resolved by weighted least-squares estimation,
and their variance covariance (vc) matrix can be obtained using the error propagation law. The float
solution and vc-matrix are shown as:

[
â

b̂

]
= (

[
A, B
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ee

[
A, B

]
)−1
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The second step is referred to as Ambiguity Resolution (AR). AR fixes the float ambiguities
to integers:

ǎ = I(â) (3)

with I : Rn 7→ Zn the integer mapping from the n-dimensional space of real numbers to the
n-dimensional space of integers. The most extensively-used AR methods are Integer Rounding (IR),
Integer Bootstrapping (IB) [18,19] and ILS [13,14]. The mapping function I is different for different AR
methods. Due to the discrete nature of Zn, I will be a many-to-one map, which means different â can
be fixed to the same ǎ. The set of â that is mapped by I to the same integer z is defined as the pull-in
region of z [20] and can be written as:

Sz = {x ∈ Rn|z = I(x), z ∈ Zn} (4)

As an example, the pull-in regions of the ILS method for two-dimensional ambiguity vector a are
presented by the hexagons in Figure 1. More details of pull-in regions can be found in [20].

â1 [cycles]
-2 -1 0 1 2

â
2
[c
y
cl
es
]

-2

-1

0
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2

Ω
s

Ω
f

Ω
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Ω
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Figure 1. The two-dimensional acceptance region of the Fixed Failure-rate Ratio Test (FFRT). The green
and red areas are the regions of correct acceptance and incorrect acceptance. The orange and light
green areas are the region of false alarm and correct rejection.

The ILS method is efficiently implemented in the LAMBDA software [21]. ILS has the
optimal performance regarding the success rate, i.e., the probability of correctly fixing the integer
ambiguities [22]. In this study, we use ILS to solve the ambiguities.

The third step validates the fixed ambiguities using an ambiguity acceptance test, for instance the
ratio test [2,3], the difference test [4,5], the projector test [6,7] the F-test or the GIA test [17,23]. The most
extensively-used test is the ratio test with fixed critical values. Verhagen and Teunissen [12] proposed
the Fixed Failure-rate Ratio Test (FFRT), which tunes the critical value to control the failure rate.

The ratio test is given by:

Accept ǎ if: RT =
||â− ǎ||2Qââ

||â− ǎ2||2Qââ

< µ (5)

where ǎ, ǎ2 are the best and second best integer candidates (i.e., the closest and second closest integer
vectors to the float ambiguity vector â, respectively); ||.||2Q = (.)TQ−1(.); µ is the critical value of the
ratio test.

The ratio test defines aperture pull-in regions, such that the fixed solution ǎ is only accepted if the
corresponding float ambiguity solution â is within this region. The critical value µ determines the size
of the aperture and thereby determines the probability of incorrect fixing.
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A two-dimensional example of the aperture pull-in regions is shown in Figure 1. Since the
measurement y is normally distributed, the least-squares estimation â, b̂ from y is also normally
distributed. The float ambiguity solution â is distributed as:

â ∼ N(a, Qââ) (6)

where the true integer value is a = [0, 0]T . The hexagons (solid line) are the ILS pull-in regions, and the
aperture pull-in regions (i.e., acceptance regions) are shown, as well. The green and red float samples
reside in the acceptance regions Ωs and Ω f and are the correctly-fixed and incorrectly-fixed ambiguities,
respectively. The remaining regions are the rejection regions Ω f a and Ωcr, where the orange and light
green colors indicate samples that are falsely rejected and correctly rejected, respectively.

2.2. Probability Parameters of the Ratio Test

The probability parameters are calculated as the integrals of the Probability Density Function
(PDF) of â over the regions, as shown in Equation (7).

Ps =
∫

Ωs
fâ(x)dx

Pf =
∫

Ω f

fâ(x)dx

Pf a =
∫

Ω f a

fâ(x)dx

Pcr =
∫

Ωcr
fâ(x)dx

(7)

with the PDF of â:
fâ(x) =

1√
det(2πQââ)

exp{−1
2

xTQ−1
ââ x} (8)

Furthermore, the fix rate and conditional success rate are calculated as follows.

Pf ix = Ps + Pf

Ps f =
Ps

Pf ix
=

Pf ix − Pf

Pf ix

(9)

where the subscript (.)s f denotes successful fixing. The conditional success rate is the success rate
conditioned on the integer ambiguities being accepted by FFRT, which indicates the reliability of
validated ambiguities. If the failure rate Pf is close to zero, this conditional success rate will be close to
one. Thus, if the failure rate is small, users can be very confident about the correctness of the integer
ambiguities accepted by the ratio test. To evaluate Ps f , the failure rate and fix rate after FFRT validation
Pf ix are needed.

Due to the complex integration over the aperture pull-in regions of all discrete integer
candidates (see Equation (7)), it is impossible to calculate them with analytical formulas [20,21,24].
Therefore, we use Monte Carlo simulation to study the relation between the failure rate, fix rate and
the critical value of the ratio test. In total, 25,920 models with different satellite geometries (depending
on location and time), GNSS constellations, frequencies, ionospheric and tropospheric delays were
simulated, and for each model, 106 float solution samples were simulated. The detailed setup is
presented in Table 1. The notations σφ and σρ represent the standard deviations of undifferenced
phase and code measurements in the zenith direction, respectively; σι represents the standard
deviation of undifferenced ionospheric pseudo measurement in the zenith direction, as is used in
the ionospheric-weighted model [25]; el and Ptol

f represent elevation angle and tolerable failure rate,
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respectively; the cutoff angle is the elevation mask, such that the satellites with lower elevation angles
are not used.

The simulation procedure to obtain proper µ and Pf ix for different tolerable failure rates Ptol
f ,

ambiguity numbers n and ILS failure rates Pf ,ILS is described in Appendix A.

Table 1. The setup of the Monte Carlo simulations. ZTD, Zenith Troposphere Delay.

Date
22 November 2013, 23 November 2013,
0:1:23 h (in total 48 epochs)

Location([Lat, Lon])
[30N◦, 115E◦], [50N◦, 115E◦],
[30N◦, 140E◦]

Measurements

L1, B1 , L1B1,
L1L2, B1B2, L1L2 + B1B2,
B1B2B3, L1L2L5,
B1B2B3 + L1L2L5

σφ {2, 3} mm
σρ {100, 150} × σφ

σι {5, 10, 15, 20, 30} mm

Troposphere model
Canceled when σι = 5 mm, and
Estimate ZTD when σι > 5 mm

Ionosphere model Ionospheric weighted model [25]

Elevation (el) weight σ2(el) = σ2w(el), σ = σφ, σρ, σι

w(el) = 1 + 10× exp(−el/10) [26]
Cutoff angle 10◦

Ptol
f {5:1:9}×10−4, {1:1:10}×10−3

Take Ptol
f = 0.001 for an example, the scatter of µ against Pf ,ILS from the simulation is shown in

Figure 2. Comparing the upper panels, we can see that there is only ambiguity number differences
among these three different constellations considering the relation of µ and Pf ,ILS, and the changing
trend of the curve for each ambiguity number is not constellation dependent. Therefore, the three
constellations are not treated differently in studying the relation of µ and Pf ,ILS.

The upper panels show similar results as in [12]:

1. The values of µ are grouped by n. The more the ambiguities, the larger the value of µ.
2. µ decreases with the increase of Pf ,ILS and when the number of ambiguities is large, it later

increases again.

The reason for this trend is added in Appendix B.
The lower panels show the relation of Pf ix against Pf ,ILS with a fixed Ptol

f . The main findings are:

1. Pf ix decreases as Pf ,ILS increases.
2. The values of Pf ix are grouped by n. It does not show the monotonously increasing or decreasing

relation with n.
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Figure 2. The relation of critical value µ and the fix rate Pf ix against the Integer Least-Squares (ILS)
failure rate Pf ,ILS for the ratio test (see Equation (5)), with tolerable failure rate Ptol

f = 0.001. The upper
panels show µ against Pf ,ILS, and the lower panels show Pf ix against Pf ,ILS. The color bar indicates
the number of ambiguities. The left, middle and right panels show the GPS dual frequency, BDSdual
frequency and GPS + BDS dual frequency modes, respectively.

2.3. Fitting Functions for the Fixed Failure-Rate Ratio Test

We fit µ against Pf ,ILS within a certain range of Pf ,ILS. On the one hand, if Pf ,ILS < Ptol
f , the best

integer candidate is always accepted, and µ can be set equal to one. On the other hand, based on the
relation between Pf ix and Pf ,ILS, when Pf ,ILS is larger than 0.2, the acceptance region will be so small
that the fix rate will be low, which has also been mentioned in [12]. Considering this, we select the
range as Ptol

f ≤ Pf ,ILS < 0.2. In order to get a safe failure rate, we fit the minimum µ against Pf ,ILS,
which corresponds to the minimum values of µ within very small bins (i.e., the bin width is 0.001) over
Pf ,ILS. The minimum µ and its fitted counterpart will be denoted as µmin and µ̂min, respectively.

Several non-linear functions were tried in the fitting process, including polynomial function series,
exponential function series, power function series and rational function series, with the non-linear
least-squares method [27]. Among the above function series, four fitting functions were found to
perform well:

f1(x) = p1xp2

f2(x) = p1xp2 + p3

f3(x) = p1 ∗ ep2x + p3ep4

f4(x) = (p1x2 + p2x + p3)/(x + p4)

(10)

judged by the Root Mean Square Error (RMSE):

RMSE =

√
∑

nµ
i=1(µ

i
min − µ̂i

min)
2

nµ− np
(11)

where µi
min and µ̂i

min are the i-th µmin and its fitted counterpart through non-linear least squares; nµ and
np are the number of µmin samples and the number of coefficients, respectively. A RMSE value closer
to zero indicates a fit that is more useful for prediction. If two or more function candidates obtain a
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small RMSE, the candidate with fewer coefficients is preferred, since it requires less effort to implement
the function.

Due to the characteristic of least-squares fitting, there will be both positive and negative fitting
residuals, whereas for a safe failure rate, we only accept positive fitting residuals, i.e., the cases where
µ̂min ≤ µmin. Therefore, the 95% lower boundary of the fitted function is used instead of the original
function to prevent negative fitting residuals. Hence, from now on, the 95% lower boundary is referred
to as the fitting function. The example in Figure 3 shows the performances of the four fitting function
candidates with the number of ambiguities n = 8.

x : Pf,ILS

0 0.05 0.1 0.15 0.2

y
:
µ̂
m
in

0.2

0.4

0.6

0.8

1

RMSE:0.0011979

y = p1x
p2

µmin

µ̂min(fitted)

x : Pf,ILS

0 0.05 0.1 0.15 0.2
y
:
µ̂
m
in

0.2

0.4

0.6

0.8

1

RMSE:0.00012685

y = p1x
p2 + p3

µmin

µ̂min(fitted)
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0 0.05 0.1 0.15 0.2

y
:
µ̂
m
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0.6
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1

RMSE:0.00027009

y = p1e
p2x + p3e

p4x
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µ̂min(fitted)

x : Pf,ILS

0 0.05 0.1 0.15 0.2

y
:
µ̂
m
in

0.2

0.4

0.6

0.8

1

RMSE:0.00014877

y = (p1x
2 + p2x+ p3)/(x+ p4)

µmin

µ̂min(fitted)

Figure 3. The 95% lower boundary of fitting function candidates of µmin against Pf ,ILS and the RMSE
(see Equation (11)). The tolerable failure rate Ptol

f = 0.001 and the number of ambiguities is eight in
this example.

Functions f2(x) and f4(x) obtain the smallest RMSE, and f2(x) has one less parameter.
Therefore, f2(x) is chosen as the best function candidate. For each fi(x), i = 1, 2, 3, 4, the RMSEs
of all different numbers of ambiguities n are shown as dots in Figure 4. f2(x) and f4(x) obtain the
lowest RMSEs in most cases, ranging around 10−4; and f2(x) has one parameter less than f4(x).

f
1
(x) f
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Figure 4. The RMSE of fitting functions fi(x), i = 1, 2, 3, 4 for all different numbers of ambiguities n.
The tolerable failure rate Ptol

f = 0.001 and the color bar indexes n.
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Thus, the fitting function of µ is generally chosen as:

fµ(x) = p1xp2 + p3 (12)

The full table of coefficients for all Ptol
f in Table 1 can be found in the Electronic Supplementary

Material (ESM). As an example, the tables of the coefficients for Ptol
f = 0.01 and Ptol

f = 0.001 are given

in the Appendix C.1. The complete function of µ against Ptol
f for each n is as follows.

µ =


0, Pf ,ILS ≥ 0.2

fµ(Pf ,ILS), Ptol
f ≤ Pf ,ILS < 0.2

1, otherwise

(13)

Additionally, the range of µ should be [0, 1]. If fµ(Pf ,ILS) > 1, it is set to one.
Similarly, we fit the resulting Pf ix from µmin against Pf ,ILS. The range of Pf ,ILS is also

Pf ,tol ≤ Pf ,ILS < 0.2. The polynomial function series, exponential function series, power function
series and rational function series were tried, among which the best choice switches between two
functions for different numbers of ambiguities n, in favor of the smallest fitting residuals and then the
fewest coefficients:

f f ix(x) =

q1x3 + q2x2 + q3x + q4, n = 1
q1

x2+q2x+q3
, otherwise

(14)

An example of the fitted curve is shown in Figure 5.

Pf,ILS

0 0.05 0.1 0.15 0.2

P
f
ix

0

0.5

1

RMSE:0.035163

y = q1/(x
2 + q2x+ q3)

Pfix vs. Pf,ILS

ffix(x)

(a)

Pf,ILS

0 0.05 0.1 0.15 0.2

F
itt

ed
 r

es
id

ua
ls

-0.2

0

0.2
Pfix − P̂fix

Zero line

(b)

Figure 5. The fitting function of Pf ix against Pf ,ILS and its fitted residuals. Pf ix is resulted from µmin.
The upper panel shows the fitted curve, and the lower panel shows the fitted residuals. The tolerable
failure rate Ptol

f = 0.001, and the number of ambiguities is eight. (a) P̂f ix vs. Pf ,ILS; (b) Pf ix − P̂f ix
vs. Pf ,ILS.
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The full table of coefficients of Pf ix(x) for all Ptol
f in Table 1 can be found in the ESM. As an

example, the tables when Ptol
f = 0.001 and Ptol

f = 0.01 are shown in the Appendix C.2. The complete
function of the Pf ix against Pf ,ILS is as follows.

Pf ix =


0, Pf ,ILS ≥ 0.2

f f ix(Pf ,ILS), Ptol
f ≤ Pf ,ILS < 0.2

1, otherwise

(15)

Additionally, the range of f f ix should be [0, 1]. If f f ix(Pf ,ILS) > 1, it is set to one; and if
f f ix(Pf ,ILS) < 0, it is set to zero.

Note that for µ, a rigid conservative fitting is necessary; therefore, the fitted curve is chosen
to be lower than most of the µmin; while for Pf ix an approximation is enough; therefore, the fitted
least-squares curve is used. However, since the Pf ix resulting from µmin are used in the fitting process,
the fitting function of Pf ix is also conservative.

3. Numerical Validation

To show the performance of the fitted µ and Pf ix, we did a simulation with all of the models
listed in Table 1 and compared the failure rate, false alarm and fix rate with other validation methods.
For convenience, we denote µ from different methods as in Table 2.

Table 2. The notation of µ from different methods.

µ Meaning

µ1 = 1 Accept all candidates.
µ2 = 1/2 Commonly-used value [6,8,9].
µ3 = 1/3 Commonly-used value [10,11].

µtab From the look-up table [12].
µ f it Calculated by the fitting function.
µtrue Benchmark value from simulation.

Figure 6 shows the values of µ from different methods for all simulated models with n = 8 and
Ptol

f = 0.001, as well as the resulting failure rate, false alarm rate, fix rate and conditional failure
rate, i.e., the failure rate once integer ambiguities are accepted by the ratio test. Note that µtrue is the
benchmark critical value that exactly controls the tolerable failure rate, i.e., the dots in the upper panels
in Figure 2.

In Figure 6a–e, the horizontal axis represents µtrue and its corresponding probability parameters;
the vertical axis shows all other µ and corresponding probability parameters. In Figure 6f,
the horizontal axis represents Pf ,ILS, and the vertical axis shows the corresponding Pf for different µ.

Figure 6a shows that µtab and µ f it follow the trend of µtrue and are in fact slightly lower, as desired.
Figure 6f shows that only if Pf ,ILS < 10−3 (i.e., Ptol

f ) the failure rate with µtrue will be lower than

10−3, while in all other cases, it is very close to 10−3. The failure rates with µtab and µ f it are always
lower than 10−3, while with µ2 and µ3 are mostly much larger than 10−3, which is undesirable.

Figure 6b provides deeper insight into the Pf with different µ. When Pf (µtrue) < 10−3

(i.e., Pf ,ILS < 10−3), Pf (µtab) and Pf (µ f it) slightly vary around Pf (µtrue), but are always lower than
10−3, while Pf (µ2) and Pf (µ3) are much lower than Pf (µtrue) traded-off by many unnecessary false
alarms. When Pf (µtrue) is very close to 10−3, Pf (µtab) and Pf (µ f it) are always lower than Pf (µtrue),
while Pf (µ2) and Pf (µ3) are in many cases much larger than Pf (µtrue).

Figure 6c shows that the false alarm rates with all choices of the critical value will be larger than
with the benchmark result, but the false alarm rates with µtab and µ f it are lower than with µ2 and
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µ3. Note that when Pf a(µtrue) is close to one, Pf a(µ2) and Pf a(µ3) are lower than Pf a(µtrue) due to the
lenient critical values, which also cause high failure rates.

Figure 6d shows that the fix rates with µtab and µ f it are slightly lower than the benchmark result,
while with µ2 and µ3, the fix rates are much higher than the benchmark result, mainly due to the high
failure rates.

Figure 6e shows the conditional failure rate 1− Ps f . It can be seen that when the conditional
failure rate with µtrue is lower than 10−3, the performance with different µ is similar as with
Pf in Figure 6b, since the fix rate is close to one due to very small Pf ,ILS. In all other cases,
however, the conditional failure rates with µtab and µ f it are slightly lower than with µtrue, while with
µ2 and µ3, they are much higher than with µtrue.

(a) (b) (c)

(d) (e) (f)

Figure 6. The comparison of critical value µ, failure rate Pf , false alarm rate Pf a, fix rate Pf ix
and conditional failure rate (1− Ps f ) from different methods, with Ptol

f = 0.001 and n = 8. (a) µ vs.
µtrue; (b) Pf vs. Pf (µtrue); (c) Pf a vs. Pf a(µtrue); (d) Pf ix vs. Pf ix(µtrue); (e) (1− Ps f ) vs. [1− Ps f (µtrue)];
(f) Pf vs. Pf ,ILS.

The results with different ambiguity numbers are similar to the result as shown in Figure 6.
Those results are not shown here due to space limits and are given in the ESM of this paper.

Table 3 shows the percentage of the models where Pf is controlled below Ptol
f among all of the

simulated models. µtab and µ f it controlled the failure rate for 99.9% and 100% of all of the models,
while µ2 and µ3 controlled the failure rate for only 33.7% and 50.2% of all of the models. The difference
of performance between µ f it and µtab is slight. The slight difference of percentages between µ f it and
µtab is because µ f it is more conservative than µtab, since:

1. In the look-up table algorithm, the lowest values are chosen to be µ [12], while in the fitting
function algorithm, the 95% lower boundary of the original curve fitted from the lowest values is
chosen as the final fitting function of µ;

2. In the look-up table, µ is set to zero when Pf ,ILS ≥ 0.25 [12], while in the fitting function, µ is set
to zero when Pf ,ILS ≥ 0.20.

Table 3. The percentage of Pf being controlled below Ptol
f by critical values from different methods.

µ1 µ2 µ3 µtab µ f it µtrue

P(Pf < Ptol
f ) 17.9 33.7 50.2 99.9 100 100
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The comparison in Figure 6 and Table 3 indicates that FFRT should be used instead of constant
critical values.

4. Experiment Validation

To compare the performance of FFRT with respect to the traditional ratio test in real data cases,
one week of GPS dual-frequency data in a long baseline (182.7 km) is collected and processed with
modified RTKLIB [11,28] software. The experimental setup is shown in Table 4.

Table 4. The setup of the real data experiment. AR, Ambiguity Resolution.

Parameter Value

Time 20 February 2015–26 February 2015 (7 days, 20,160 epochs)

Baseline WSRA-DLF1(182.7 km)

Measurements L1L2 code and phase

Cutoff angle 10◦

Epoch interval 30 s

σφ 3 mm

σρ 30 cm

σι 2 cm

Troposphere model Estimate ZTD

Ionosphere model Ionosphere-weighted [25]

Elevation (el) weight
σ2(el) = σ2w(el), σ = σφ, σρ, σι

w(el) = 1 + 64
9sin(el) [28]

Process mode Kinematic

AR mode Continuous AR

In the data processing, the dual-frequency code and phase measurements are used. The ionosphere
weighted model [25] is considered and the Zenith Troposphere Delay (ZTD) is estimated every
epoch. The rover position is considered as kinematic, and the ambiguities are considered as constant,
i.e., the float ambiguities in each epoch are estimated using all of the data from the previous epochs.
The integer ambiguities are resolved in each epoch, and the LAMBDA[13,14,16,21] algorithm is
used to resolve them. For more details of the model and algorithm, see Appendix E in the RTKLIB
manual [28].

Figure 7 shows the ratios and the three thresholds µ3, µtab and µ f it for one day. The tolerable
failure rate for µtab and µ f it is Ptol

f = 0.01. As seen, to control the failure rate under Ptol
f , both µtab and

µ f it vary in different epochs as Pf ,ILS varies in different epochs.
Since the truth of the ambiguities is unknown, we cannot evaluate the failure rate and success

rate of the ambiguity resolution. Instead, to compare the performance with different µ, we show the
positioning errors of the ratio test-accepted fixed solutions and the fix rates achieved by different
µ. The positioning errors are calculated as the difference to the true baseline coordinates, where the
long-term average coordinates of these two stations from EUREF [29] are used as the true coordinates.
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Figure 7. The ratio of AR and µ values in one day. The upper, middle and lower panels relate to µ3,
µtab and µ f it, with Ptol

f = 0.01.

Figure 8 shows the positioning errors and empirical 3σ confidence region in the horizontal and
vertical directions. The upper and lower panels show the horizontal and vertical errors, and the left,
middle and right panels show the results of float, fixed without ratio test and fixed with ratio test
solutions. The positioning errors of fixed solutions with different µ for the ratio test are very similar;
hence, we do not distinguish them here. As seen, the fixed solutions with the ratio test has the smallest
confidence ellipse (semi-major axis = 5.71 cm) in the horizontal direction, followed by the float solution
(semi-major axis = 12.09 cm) and the fixed solution without ratio test (semi-major axis = 22.38 cm).
The performance in the vertical direction is similar. It is clear that the ratio test effectively prevents the
incorrectly-fixed ambiguities.
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Figure 8. The positioning errors and the 3σ confidence circle (bar) in the horizontal and vertical
directions. The left, middle and right panels show float, ILS fixed and ILS fixed with ratio test solutions.
The horizontal axis in the lower panels represent the day of 02/2015. (a) Float N-E; (b) Fixed N-E
without the ratio test; (c) Fixed N-E with the ratio test; (d) Float U-T; (e) Fixed U-T without the ratio
test; (f) Fixed U-T with the ratio test.
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Table 5 shows the fix rates, the probability of positioning errors ε ≤ 0.03 m, ε ≥ 0.10 m,
and ε ≥ 0.3 m, for different µ and the float solution. In this contribution, 0.03 m is used as the
criteria of centimeter accuracy, while 0.10 m is used as the criteria of sub-meter accuracy, and 0.3 m is
used as the criteria of large positioning errors caused by wrong fixing. As seen, µtab and µ f it achieve
much higher fix rates than µ2 and µ3 (around 30%) and achieve a higher probability of ε ≤ 0.03 m. The
probability of ε ≥ 0.10 m for all µ2, µ3, µtab and µ f it is below 0.01, while µtab and µ f it achieve much
higher fix rates. This indicates that µtab and µ f it prevent unnecessary false alarms raised by µ2 and
µ3 in this experiment. The probability of ε ≥ 0.3 m for all µ2, µ3, µtab and µ f it is 0.0002, while for µ1

is 0.0015. This indicates that although µtab and µ f it achieve high fix rates, it does not result in large
positioning errors as µ1 may do.

Table 5. Probability parameters. Ptol
f = 0.01 for µtab and µ f it. be denotes the estimated baseline

solutions, and the subscript (.)e represents estimation.

µ1 µ2 µ3 µtab µ f it Float

Pf ix 1 0.7732 0.5462 0.8715 0.8241 0
P(||be − b|| ≤ 0.03 m) 0.9353 0.7961 0.6719 0.8641 0.8487 0.4962
P(||be − b|| ≥ 0.10 m) 0.0125 0.0071 0.0071 0.0066 0.0067 0.0071
P(||be − b|| ≥ 0.3 m) 0.0015 0.0002 0.0002 0.0002 0.0002 0.0002

Figure 9 shows the probability P(||be − b|| ≤ ε) and P(||be − b|| ≥ ε) for different ε. As seen,
although µ1 achieves the highest probability of ||be − b|| ≤ ε, it also brings many large errors, which is
unacceptable. Except µ1, the highest probability of ||be − b|| ≤ ε is achieved by µtab and µ f it. In the
meantime, µtab and µ f it achieve a low probability of ||be − b|| ≥ ε, as well.

From this real data experiment, we see that the fixed solution with ratio test has the highest
accuracy, and compared to the constant µ values, µtab and µ f it significantly improve the fix rate
without bringing large errors. Therefore, FFRT should always be used instead of the ratio test with
constant critical values.
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Figure 9. The probability of ||be − b|| ≤ ε and ||be − b|| ≥ ε for the fixed solution with different µ and
the float solution. (a) P(||be − b|| ≤ ε); (b) P(||be − b|| ≥ ε).

5. Conclusions

In this study, we proposed and implemented fitting functions to calculate the critical values of
the ratio test according to the required failure rate and number of ambiguities. The functions of µ

and Pf ix for different Ptol
f and different n are provided. One example with Ptol

f = 0.001 and n = 8 is
given to show the performance of the new method. Compared to the commonly-used constant critical
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values, the fixed failure-rate ratio test provided variable critical values according to the model strength,
resulting in lower false alarms for strong models and controlled failure rates for weak models. The
fitting function method provides more choices of tolerable failure rate Ptol

f and more n than the critical
value table. Additionally, the fitting function to compute an approximate fix rate is also provided.

The processing of a 182.7-km baseline real data experiment shows that FFRT improves the
fix rate without bringing large positioning errors compared to the ratio test with constant critical
values. With the high accuracy of the ratio test accepted fixed solution, this means the improvement
of availability. For the above reasons, FFRT is to be preferred above the ratio test with constant
critical values.

In this experiment, FFRT contributes to the improvement of accuracy mainly because it avoids
unnecessary false alarms. To demonstrate the advantages of FFRT against the traditional ratio test
from different aspects, more real data experiment will be done, and the performances will be compared
in the future work.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/16/7/945/s1:
tables of the fitting function coefficient for µ: CoefficientMu.csv; tables of the fitting function coefficient for Pf ix:
CoefficientPfix.csv; probability parameters of different µ with a greater number of ambiguities: FigmoreN.zip.
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Appendix A. Generate the Critical Value of the Ratio Test and the Fix Rate

The simulation is to generate the failure rate and fix rate, with given critical values of the ratio
test. Then, the critical value µ with a tolerable failure rate Ptol

f is given. Moreover, the fix rate resulting
from this µ is given. The Monte Carlo simulation steps are as follows.

1. Generate many different models with various satellite geometries (system, time and
location), number of frequencies, measurement noise, baseline length and the accuracy of
atmospheric corrections.

2. For each model, calculate Qââ following the error propagation law, and generate N samples â
with the zero mean and variance Qââ.

3. For each sample âi, Z-transform âi to ẑi, and search the best and second best integer candidate of

žo,i and žs,i with LAMBDA. Calculate the ratio Ri =
||ẑo,i−žo,i ||2Qẑẑ
||ẑo,i−žs,i ||2Qẑẑ

.

4. For each µj ∈ [0.001, 0.002, ...1], calculate:

ω(Ri, µj) =

{
1, if Ri ≤ µj and žo,i = 0

0, otherwise
(A1)

and:

η(Ri, µj) =

{
1, if Ri ≤ µj

0, otherwise
(A2)

5. After all N samples of a specific model are processed in the above three steps, the failure rate and
fix rate for each µj are calculated as:

Pf (µj) =
N f (µj)

N
, Pf ix(µj) =

N f ix(µj)

N
(A3)

http://www.mdpi.com/1424-8220/16/7/945/s1
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with:

N f (µj) =
N

∑
i=1

ω(Ri, µj), N f ix(µj) =
N

∑
i=1

η(Ri, µj) (A4)

Specifically, when µj = 1, Pf (µj) is the ILS failure rate Pf ,ILS.
6. The maximum µj that meets Pf (µj) ≤ Ptol

f is set as the µ(Ptol
f ) for this model.

7. Find µ(Ptol
f ) for all generated models and different Ptol

f .

Appendix B. The Conceptual Explanation of the Trend of µ against the Pf ,ILS Curve

Starting from a relatively low Pf ,ILS, an increase of Pf ,ILS will result in a PDF with a larger
spread, and as a consequence, more samples will fall in the acceptance regions of incorrect integers,
comparing Figure B1a and B1b. Therefore, the µ should be decreased with increasing Pf ,ILS.

(a) (b)

(c)

Figure B1. The spread of float ambiguities with Pf ,ILS increases. (a) Low Pf ,ILS; (b) Higher Pf ,ILS;
(c) Even higher Pf ,ILS.

As the Pf ,ILS further increases, the PDF of float ambiguities will extend to the ILS pull-in regions
centered at even more incorrect integer candidates, i.e., not only the adjacent integers of the true
integer. With the µ value unchanged, more samples will fall in the rejection regions (i.e., the orange
and light green colored regions), and fewer samples will fall in the acceptance regions centered at the
adjacent integers (i.e., the density of samples is diluted), which brings a decrease of the failure rate .
Meanwhile, the samples that fall in the acceptance region centered at non-adjacent integers result in
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an increase of the failure rate (but less significantly than the previously-mentioned decreasing effect).
The sum of these two effects together slows down the decrease of the µ value.

The larger the Pf ,ILS, the slower the µ decreases, as seen in Figure 2. Specifically, for high
dimensions (i.e., more ambiguities), the ratio of the acceptance region’s volume against the ILS pull-in
region’s volume is very small even if µ is large. For instance, a scale of edge length s (0 < s < 1)
will lead to the scale of sn in the n -dimensional hypercube volume [30]. As a result, the spread of
the float ambiguity samples will result in a very significant decreasing effect and a very insignificant
increasing effect of the failure rate. If µ is unchanged, the failure rate (and the fix rate) will become
lower with increasing Pf ,ILS. Therefore, when the ambiguity number is large and Pf ,ILS is relatively
large, with increasing Pf ,ILS, µ can be larger to still keep the failure rate at the required value and
not lower.

Appendix C. The Coefficient Table for Fitting Functions

Appendix C.1. Coefficient Table for Fitting Functions of µ against Ptol
f in the Ratio Test

Table C1. The coefficients for the fitting function of µ against Pf ,ILS: fµ(x) = p1xp2 + p3. The tolerable
failure rate is Ptol

f = 0.01.

n p1 p2 p3 n p1 p2 p3 n p1 p2 p3

1 0.0916 −0.5801 −0.2850 23 0.0514 −0.4286 0.6342 45 0.0249 −0.4505 0.8036
2 0.1576 −0.4633 −0.3145 24 0.0519 −0.4202 0.6435 46 0.0269 −0.4332 0.8037
3 0.2164 −0.3864 −0.2878 25 0.0529 −0.4098 0.6531 47 0.0237 −0.4527 0.8119
4 0.3364 −0.2968 −0.3335 26 0.0425 −0.4442 0.6762 48 0.0250 −0.4390 0.8129
5 0.4401 −0.2435 −0.3686 27 0.0381 −0.4575 0.6916 49 0.0255 −0.4322 0.8148
6 0.3794 −0.2521 −0.2291 28 0.0458 −0.4183 0.6885 50 0.0259 −0.4265 0.8167
7 0.2904 −0.2793 −0.0730 29 0.0386 −0.4443 0.7059 51 0.0231 −0.4418 0.8240
8 0.2874 −0.2702 −0.0146 30 0.0387 −0.4380 0.7124 52 0.0217 −0.4504 0.8280
9 0.1797 −0.3314 0.1593 31 0.0385 −0.4329 0.7204 53 0.0220 −0.4457 0.8305

10 0.1569 −0.3439 0.2290 32 0.0384 −0.4287 0.7267 54 0.0253 −0.4180 0.8279
11 0.1310 −0.3615 0.2998 33 0.0393 −0.4191 0.7318 55 0.0211 −0.4461 0.8367
12 0.0793 −0.4428 0.3928 34 0.0360 −0.4300 0.7419 56 0.0193 −0.4585 0.8414
13 0.0839 −0.4222 0.4166 35 0.0392 −0.4103 0.7426 57 0.0166 −0.4850 0.8472
14 0.0721 −0.4411 0.4563 36 0.0345 −0.4277 0.7549 58 0.0243 −0.4120 0.8373
15 0.0700 −0.4381 0.4825 37 0.0323 −0.4356 0.7627 59 0.0179 −0.4638 0.8492
16 0.0664 −0.4378 0.5096 38 0.0300 −0.4443 0.7704 60 0.0205 −0.4360 0.8478
17 0.0645 −0.4339 0.5321 39 0.0286 −0.4493 0.7759 61 0.0195 −0.4434 0.8505
18 0.0674 −0.4175 0.5449 40 0.0264 −0.4594 0.7842 62 0.0145 −0.4951 0.8605
19 0.0683 −0.4074 0.5598 41 0.0245 −0.4695 0.7904 63 0.0166 −0.4634 0.8581
20 0.0647 −0.4090 0.5783 42 0.0267 −0.4501 0.7905 64 0.0149 −0.4873 0.8628
21 0.0659 −0.3980 0.5912 43 0.0254 −0.4545 0.7966 65 0.0071 −0.6131 0.8773
22 0.0661 −0.3910 0.6039 44 0.0249 −0.4550 0.8004 66 0.0228 −0.4002 0.8536
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Table C2. The coefficients for the fitting function of µ against Pf ,ILS: fµ(x) = p1xp2 + p3. The tolerable
failure rate is Ptol

f = 0.001.

n p1 p2 p3 n p1 p2 p3 n p1 p2 p3
1 0.0549 −0.4626 −0.1968 23 0.0347 −0.3933 0.5322 45 0.0095 −0.4982 0.7474
2 0.0507 −0.4739 −0.1450 24 0.0321 −0.3999 0.5500 46 0.0095 −0.4969 0.7525
3 0.0838 −0.3960 −0.1556 25 0.0318 −0.3958 0.5613 47 0.0085 −0.5058 0.7578
4 0.1343 −0.3225 −0.1755 26 0.0273 −0.4144 0.5805 48 0.0098 −0.4837 0.7602
5 0.1946 −0.2672 −0.1980 27 0.0261 −0.4147 0.5928 49 0.0105 −0.4706 0.7633
6 0.1876 −0.2651 −0.1429 28 0.0242 −0.4219 0.6072 50 0.0108 −0.4651 0.7673
7 0.1645 −0.2750 −0.0755 29 0.0226 −0.4288 0.6193 51 0.0072 −0.5210 0.7757
8 0.1751 −0.2605 −0.0404 30 0.0208 −0.4348 0.6309 52 0.0079 −0.5051 0.7767
9 0.1229 −0.3011 0.0634 31 0.0172 −0.4602 0.6431 53 0.0082 −0.4956 0.7819

10 0.1133 −0.3065 0.1151 32 0.0189 −0.4421 0.6524 54 0.0094 −0.4744 0.7840
11 0.0938 −0.3238 0.1795 33 0.0212 −0.4206 0.6574 55 0.0077 −0.5017 0.7885
12 0.0636 −0.3737 0.2505 34 0.0197 −0.4278 0.6673 56 0.0056 −0.5433 0.7956
13 0.0630 −0.3670 0.2833 35 0.0206 −0.4178 0.6716 57 0.0057 −0.5400 0.7998
14 0.0522 −0.3879 0.3263 36 0.0174 −0.4399 0.6852 58 0.0086 −0.4742 0.7975
15 0.0512 −0.3843 0.3543 37 0.0182 −0.4294 0.6901 59 0.0070 −0.4977 0.7998
16 0.0498 −0.3824 0.3789 38 0.0161 −0.4431 0.7004 60 0.0085 −0.4741 0.8039
17 0.0483 −0.3801 0.4054 39 0.0132 −0.4681 0.7071 61 0.0107 −0.4327 0.8016
18 0.0489 −0.3726 0.4257 40 0.0137 −0.4613 0.7155 62 0.0058 −0.5173 0.8121
19 0.0492 −0.3659 0.4450 41 0.0117 −0.4808 0.7232 63 0.0050 −0.5369 0.8181
20 0.0454 −0.3699 0.4690 42 0.0118 −0.4736 0.7286 64 0.0081 −0.4521 0.8137
21 0.0443 −0.3689 0.4880 43 0.0103 −0.4912 0.7351 65 0.0015 −0.7293 0.8205
22 0.0419 −0.3721 0.5072 44 0.0111 −0.4773 0.7402 66 0.0016 −0.7571 0.8317

Appendix C.2. Coefficient Table for Fitting Functions of Pf ix against Ptol
f in the Ratio Test

Table C3. The coefficients for the fitting function of Pf ix against Pf ,ILS. The tolerable failure rate is
Ptol

f = 0.01. The function is shown in Equation (14). Note ∗ q4 = 0.5035.

n q1 q2 q3 n q1 q2 q3 n q1 q2 q3

1∗ 0.0225 0.0242 −0.3189 23 0.0218 0.0906 0.0200 45 0.0203 0.0476 0.0195
2 0.0081 −0.0139 0.0082 24 0.0180 0.0549 0.0168 46 0.0203 0.0423 0.0196
3 0.0132 0.0260 0.0127 25 0.0204 0.0574 0.0194 47 0.0194 0.0352 0.0188
4 0.0153 0.0252 0.0148 26 0.0228 0.0906 0.0211 48 0.0206 0.0412 0.0200
5 0.0176 0.0337 0.0170 27 0.0218 0.0833 0.0202 49 0.0229 0.0567 0.0220
6 0.0192 0.0482 0.0183 28 0.0198 0.0535 0.0189 50 0.0238 0.0605 0.0228
7 0.0176 0.0407 0.0169 29 0.0230 0.0902 0.0213 51 0.0175 0.0210 0.0172
8 0.0177 0.0384 0.0171 30 0.0207 0.0668 0.0195 52 0.0207 0.0432 0.0201
9 0.0186 0.0537 0.0176 31 0.0206 0.0521 0.0197 53 0.0193 0.0281 0.0189

10 0.0196 0.0630 0.0184 32 0.0191 0.0417 0.0184 54 0.0210 0.0358 0.0205
11 0.0205 0.0704 0.0192 33 0.0227 0.0634 0.0217 55 0.0213 0.0426 0.0206
12 0.0163 0.0644 0.0149 34 0.0235 0.0717 0.0223 56 0.0164 0.0137 0.0162
13 0.0139 0.0331 0.0132 35 0.0243 0.0709 0.0231 57 0.0160 0.0114 0.0159
14 0.0116 0.0203 0.0111 36 0.0252 0.0803 0.0239 58 0.0191 0.0316 0.0187
15 0.0121 0.0229 0.0115 37 0.0270 0.0964 0.0253 59 0.0165 0.0099 0.0164
16 0.0136 0.0342 0.0128 38 0.0273 0.1016 0.0255 60 0.0231 0.0528 0.0223
17 0.0164 0.0541 0.0153 39 0.0223 0.0605 0.0213 61 0.0224 0.0516 0.0216
18 0.0164 0.0443 0.0155 40 0.0252 0.0812 0.0239 62 0.0172 0.0197 0.0170
19 0.0163 0.0413 0.0154 41 0.0261 0.1038 0.0242 63 0.0151 0.0094 0.0150
20 0.0158 0.0395 0.0149 42 0.0216 0.0604 0.0205 64 0.0153 0.0065 0.0153
21 0.0193 0.0579 0.0183 43 0.0218 0.0560 0.0209 65 0.0106 −0.0266 0.0110
22 0.0210 0.0686 0.0198 44 0.0210 0.0542 0.0201 66 0.0148 −0.0067 0.0149
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Table C4. The coefficients for the fitting function of Pf ix against Pf ,ILS. The tolerable failure rate is
Ptol

f = 0.001. The function is shown in Equation (14). Note ∗ q4 = 0.3811.

n q1 q2 q3 n q1 q2 q3 n q1 q2 q3

1∗ 0.0229 0.0584 −0.3400 23 0.0036 0.0557 0.0032 45 0.0040 0.0395 0.0038
2 0.0012 −0.0065 0.0013 24 0.0037 0.0529 0.0035 46 0.0039 0.0312 0.0038
3 0.0016 0.0058 0.0016 25 0.0040 0.0588 0.0037 47 0.0039 0.0328 0.0038
4 0.0023 0.0216 0.0022 26 0.0039 0.0635 0.0036 48 0.0042 0.0413 0.0041
5 0.0029 0.0275 0.0028 27 0.0038 0.0590 0.0035 49 0.0038 0.0299 0.0037
6 0.0028 0.0280 0.0027 28 0.0037 0.0488 0.0035 50 0.0040 0.0293 0.0039
7 0.0025 0.0255 0.0024 29 0.0037 0.0528 0.0034 51 0.0041 0.0358 0.0039
8 0.0026 0.0252 0.0025 30 0.0039 0.0484 0.0036 52 0.0039 0.0306 0.0037
9 0.0024 0.0272 0.0022 31 0.0035 0.0363 0.0034 53 0.0037 0.0228 0.0036

10 0.0023 0.0263 0.0022 32 0.0040 0.0452 0.0037 54 0.0042 0.0296 0.0041
11 0.0025 0.0321 0.0023 33 0.0044 0.0509 0.0041 55 0.0043 0.0385 0.0041
12 0.0014 0.0076 0.0014 34 0.0049 0.0629 0.0046 56 0.0034 0.0227 0.0034
13 0.0016 0.0127 0.0015 35 0.0045 0.0459 0.0043 57 0.0030 0.0143 0.0030
14 0.0013 0.0061 0.0013 36 0.0053 0.0753 0.0049 58 0.0034 0.0176 0.0033
15 0.0014 0.0068 0.0014 37 0.0056 0.0787 0.0052 59 0.0037 0.0216 0.0037
16 0.0017 0.0169 0.0016 38 0.0062 0.0980 0.0057 60 0.0038 0.0271 0.0037
17 0.0019 0.0195 0.0018 39 0.0055 0.0763 0.0052 61 0.0035 0.0215 0.0034
18 0.0025 0.0328 0.0023 40 0.0056 0.0817 0.0052 62 0.0031 0.0155 0.0030
19 0.0026 0.0304 0.0024 41 0.0050 0.0710 0.0046 63 0.0024 0.0033 0.0024
20 0.0029 0.0401 0.0027 42 0.0045 0.0489 0.0043 64 0.0028 0.0080 0.0028
21 0.0032 0.0400 0.0030 43 0.0045 0.0493 0.0043 65 0.0029 0.0030 0.0029
22 0.0035 0.0504 0.0033 44 0.0042 0.0426 0.0040 66 0.0040 0.0266 0.0040
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