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In this paper, the variational principles of contact elastostatics, which were proposed
and proved by Fichera (1964) and Duvaut & Lions (1972) are developed in an engin-
eering fashion without use of functional analysis. The theory contains a number of new
elements, but the elegant existence proofs of the French-Italian school are missing. A
start is made by extending the principle of virtual work to normal and frictional contact
in such a manner that it needs no longer be known beforehand whether—in the case
of normal contact—actual contact is or is not established, or—in the case of frictional
contact—slip does or does not occur. Then the principle of minimal potential energy is
set up for a non-linear elastic body in contact with a rigid base. Uniqueness and minimal-
ity of the solution are proved under certain conditions, the Reissner principle is estab-
lished, and the principle of minimal complementary energy is derived. Finally the
principles are cast hi what is termed surface mechanical form, and two examples are
given: the variational principle for normal half-space contact problems, and a new
principle for time-dependent frictional half-space contact. Upon discretization, these
principles provide a quadratic object function to be minimized under linear or quadratic
inequality constraints. The positions of the contact area and of the regions of slip and
adhesion appear as by-products of the calculation.

1. Introduction

ATTEMPTS to solve contact problems by the adaptation of standard analytical tools of
classical mechanics often make it necessary to restrict consideration to two-dimensional
or axially symmetric geometries. With these simplifications, it is impossible to cover
the entire domain of contact mechanics, and a mathematical description is needed
which is specific for contact problems. Such a description is to be found in the theory
of variational inequalities developed in Italy and France in the last decade, by Signor-
ini (1959), Fichera (1964), Stampacchia (1967), and Duvaut & Lions (1972). This
school uses advanced functional analytic tools and lays emphasis on theoretical
development: for instance Duvaut & Lions (1972) confine themselves to existence
and uniqueness theorems.

By contrast, investigators in the Netherlands and the United States (Kalker, 1966,
1967, 1971a; Kalker & van Randen, 1972; Singh & Paul, 1974; Conry & Seireg,
1971; Engel, 1975; Johns & Leissa, 1975) turned to the variational formulation of
contact problems with the purpose of arriving at a numerical treatment. Although
such numerical methods are successful and compare with experiments and with
solutions obtained by other means, the variational formulation is mostly of an ad-hoc
character. A middle position is occupied by investigators in the Soviet Union and
Hungary (Fridman & Chernina, 1967; Pa^zelt, 1974, 1977) who developed finite
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element methods for the frictionless contact problem on the basis of the variational
principles described in the present paper.

The aim of the present paper is to treat the variational principles of the French-
Italian school in a manner in which functional analysis is avoided, while the proofs
that will be given are of an "engineering" character, i.e. they are rigorous if the
functions that occur are sufficiently often piecewise differentiable. The elegant exist-
ence proofs of the French-Italian school do not admit such a simplified treatment;
but for this existence there is abundant proof in the sense of the engineer in view of
the great number of contact problems that have been solved in the 96 years that have
elapsed since Hertz initiated the theory of contact elastostatics.

Notations
The coordinate system is Cartesian with coordinates <!;,, i = 1, 2, 3. Subscripts

/, j , h, k range through these same values, except in Section 2. A tensor is denoted by
its basic symbol; these basic symbols can be combined through addition and scalar
multiplication. A tensor V may be a function of a variable W; notation: V(W).
Most tensors V are functions of the variable W indicated in the Appendix; then V
denotes V{W). The length of a vector V (= tensor of rank 1) is denoted by | V\. The
components of a tensor V of rank 2, say, are given in index notation as VtJ. When
two equal indices occur in an expression, summation over them is understood.

When it leads to clearer expressions, matrix-vector notation is used: in Section 6.1
matrices and vectors are partitioned, and in Section 7, Remark 2, rigid displacements
are considered. Then, vectors are denoted by small, bold symbols, and matrices by
bold capitals, which are mostly identical with the basic symbols of the corresponding
tensors. In such a case, (K,) is sometimes used for V.

When V is prescribed, the prescribed value is indicated by P. Differentiation with
respect to xk is denoted by ,t (see equation (17)); differentiation with respect to time
is denoted by a dot over the symbol.

2. Extension of the Principle of Virtual Work
In statics, a system may be characterized by fixing its position by means of the

generalized coordinates {q,} and the generalized forces {Q,} associated with them.
The virtual work 5 W is the work done by the generalized forces when the system
undergoes a virtual displacement {dq,}:

5W=Q<5qi, (1)
{Sq,}: arbitrary virtual displacement; summation over repeated indices.

When the system is constrained, that is, if a relationship exists between the co-
ordinates qt or their variations &qt, for instance

//«i) = 0 => T^Sq, = 0; or, more generally, a;f<5g, = 0, (2)
dq,

a kinematically admissible virtual displacement is defined as a virtual displacement
{5q,} satisfying (2). Then, certain combinations of the generalized forces do no work;
in particular, when (2) are the constraints, then these combinations are of the form

RJt = Xaji, X: a multiplier. (3)
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The Rji are called reaction forces connected with theyth constraint. These reaction
forces may be left out of consideration in the virtual work (1); they do not influence
it. The remaining forces are called non-reaction forces; they will, again, be denoted
by Qt. In many cases the non-reaction forces may be derived from a potential V, in
the following manner,

V=V(qd,Qt=-dV/dqt. (4)

Under these circumstances we speak of monogenic forces.
The variations that are kinematically admissible (kin. adm.) in view of (2) have the

property that

{<5<7,} is kin. adm. => { — Sq,} is kin. adm. (5)

Constraints which possess the property (5) are called bilateral. If the constraints are
so that they may be expressed as functions of the coordinates they are called holo-
nomic. The principle of virtual work enunciates that in equilibrium the virtual work
of the non-reaction forces vanishes for all bilateral kin. adm. virtual displacements

8W = Q[5qt = 0, {Sqt} kin. adm. <=> equilibrium (6)

or, in other terms, that in equilibrium the non-reaction forces are expressible in the
reactions. In the case when we have a monogenic system with holonomic constraints,
(6) reduces to the demand that V is stationary under the equality constraints (2).

Apart from equality constraints such as (2) there also may be inequality constraints,
such as

fjtod > o. (?)
Such an inequality constraint will be investigated with the aid of an example, for
which we take a mass point m in a gravity field (see Fig. 1).

"""" ,.0

FIG. 1. A mass point in a gravity field.

Let the potential of the field be given by V = mgZ, and the inequality constraint
is that Z ^ 0. It is known that equilibrium occurs when the mass point lies on the
plane Z = 0. The contact force is acting upwards, but ceases to exist when contact
is broken. Hence the contact force performs no work in a kinematically admissible
variation of the coordinate Z, so that we will leave it out of the consideration. The
virtual work becomes:

8W = -mgdZ; V SZ: 3 e0 > 0: 0 < e < e0 => (Z+&5Z) 5* 0;

o Z = 0 => bZ ^ 0; Z > 0 => 5Z is arbitrary (8)

8 W < 0 in equilibrium, since Z = 0.
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If, on the other hand, we start from the demand that bW ^ 0 and Z > 0, we obtain

SW = -mgbZ < 0,Z ^ 0 => 3 eo:(Z+e<5Z) ^ 0 if 0 < e < e0. (9a)
(1) Let Z > 0: bZ is arbitrary; take bZ < 0 => violation of (9a). (9b)
(2) Let Z = 0: bZ ^ 0 => bW = -mgbZ < 0 since mg > 0: equilibrium. (9c)

In this case the equilibrium is described by
bW = QbZ <:0,Q: non-reaction force; Z > 0. (10)

It is seen from (8), (9c) that the constraint Z > 0 is not bilateral when Z = 0; it
will be called unilateral. In general, conditions (7) are also unilateral. We arrive, if
only from one simple case, at the conclusion that b W is non-positive for all kine-
matically admissible variations of the generalized coordinates. Similar considerations
led Fourier (1971) to the conclusion that the principle of virtual work should be
extended to the pronouncement that <5 W ^ 0 for all kinematically admissible virtual
displacements. We observe that we saw in (9) that for bilateral constraints bW < 0
=> bW = 0; indeed,

bW = Qfiq, < OVkin. adm. {bqt} => { — bqt} kin. adm.
Qi(-$<li) < 0 => bW = Qfat Js 0 =» Qfiq, = bW = 0

For monogenic forces and holonomic constraints, the principle reads

Equilibrium o bV ^ 0 subject to / , = 0,j = l(l)m;fj S* 0,y = m+ \{\)n. (12)

FIG. 2. An example involving friction.

The example given above was a frictionless contact problem. We will now apply the
principle (11)—(12) to an elementary problem involving friction (see Fig. 2). It will
appear as an example in which the virtual work itself is unilateral in character, i.e.

bW(bqt) / -bW(-bq,).
Consider a particle m subject to the inequality constraint Z ^ 0. An external force
Q acts on the particle, with Z-component, — N, and tangential component T. Cou-
lomb's friction law reads, in terms of the external force Q:

\T\ < nN, n: coefficient of friction. (13a)

If the particle is moved on the plane Z = 0 over a small shift s, Coulomb states that
the external force T must be given by

T, = fiNsJ\s\. (13b)

The work done by the force Tis T,j,; the work done by the generated frictional force
(no reaction force!) is (—fiN\s\). The virtual work and the equilibrium condition
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become
^ 0, subject to (Z+e5Z) > 0, 0 < e < i^; SS

arbitrary. (14)

We see whether (14) indeed describes the equilibrium condition by calculating the
external force corresponding to all possible configurations.

(1) Z > 0 => SZ, Ss arbitrary. Take Ss = 0 => 5\s\ = 0 => N = 0 (15a)
=> S W = Tids, < 0, Ss arbitrary => T = 0.

That means that equilibrium in free space can only occur when Q = (T, — N) = 0.
(2) Z = 0 => 5Z ^ 0, cfois arbitrary. Take & = 0 => 5|j| = 0 => N 5= 0; (15b)

take 5Z = 0=>5W= T^-nNSM < 0.
(a) Let s = 0. Then <5|.s| = |<5j|, & arbitrary => since N > 0:\T\ < fiN, cf. (13a)
(b) Let J ^ 0. Then <5|.s| = sfisj\s\, and SW = {T^fiNsJ^Ss, < 0, (15c)

Ss arbitrary; Whas now a bilateral character => Tt = //iVĵ /Jjl, cf. (13b).
Hence (13) follows from (14), and vice versa.

3. The Principle of Virtual Work in Contact Elastostatics

We wish to find the analogue of the virtual work equilibrium conditions (14) for
elastostatics. We consider an elastic body which in the undefonned state (particle x,
Cartesian coordinates: JC,) occupies the region G. Since the law of friction acts on
the velocity or the shift, an incremental theory is indicated. To construct it, we start
from an equilibrium reference state in which the particle x has the coordinates
yi-ty = y(x). This reference state is supposed to be the equilibrium state of the body
at the time t, and is assumed to be known. Ordinarily the displacement (y—x) is
small; but since little complication is met if we regard x -> y as a large deformation,
we will assume the latter.

At the time (j+x) (T: an increment of time) the body will be in the deformed state
in which the particle x has the coordinates (y,+t],); r\ = t](y). The deformation
y ~* y+1 is assumed to be small enough so that the small displacement gradient
theory of linear elasticity is applicable. In particular this means that the inner normal
N = N(y) on the body at the time t almost coincides with the normal N(y+t]) at the
time (t+x).

The time increment x is assumed to be large with respect to a typical response time
of the elastic body, but on the other hand small enough for the displacement with
respect to the reference state to be linear in time:

At the time f+0x(O < 6 < 1) the deformation is y -* y+Orj. (16)
This implies that inertia is neglected.

The body may be inhomogeneous and anisotropic, but its specific energy E must
depend on the metric tensor in the deformed state only:

E = EOyu + titJly^ + r,^, x); i,j, k:l, 2, 3; ^ = d/dxk. (17)
At the time ( /+T) the displacement t] is prescribed on the part of the surface of the
body which in the undefonned state is given by Su c dG. It is assumed that Su has a
non-zero area, which means that the body is properly supported:

r\ = i\ = prescribed for xeSucz dG; Area (SJ jt 0. (18)
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On another part Sj <= dG the surface load (p+n) = (p(*) + n(x)) is prescribed,
which, owing to the fact that /?, the surface load in the reference state, is known,
amounts to

nl = iii = prescribed on S* <= dG. (19)

On the remainder of the boundary C c dG, called the contact area, the body is in
contact with a smooth surfaced rigid body which at the time (t+x) occupies the
region

h(£, t+x) < 0, ^coordinates; xe Coh(y+t], t+x) = 0. (20)

The space derivatives of h are assumed to be of order unity; the time derivative is
assumed to be small with respect to the velocity of sound in the elastic body. The
contact area is not necessarily connected; it may depend on time, and is one of the
unknowns of the problem. Near but outside the contact area the surface of the body
will be assumed free of traction, which means that the region S*p completely surrounds
the contact area.

Elastic body

an
Rigid body

Elastic

Rigid

FIG. 3. An elastic body in contact with a rigid base.

It was stated that the contact area is unknown. It may, however, be embedded in a
larger region, called the potential contact area Sc, which consists of the contact area
C and part of the region S*p. The remainder of S? will be called Sp. This potential
contact area is chosen a priori by the investigator; it is assumed to have the following
properties necessary for contact:

(a) C c Sc e S* u C c dG; Scv SpuSu = dG.

(b) y' is the point of the surface of the rigid body nearest to y (see Fig. 3).
The distance y—y' is assumed to be O(rf) when xeSc. In addition,
the inner normal N(y) on the particle x in the deformed and reference
states is assumed to coincide almost with the outer normal on the
rigid body at y':

Nfo, t) ~ N,(y+ti, H-T) =* *„( / , t+x)l\h,\ s hy.iy, t)l\h,\,
with hyi = dh/dy,, so that hy = \hy\N.

(c) The area Sc carries a contact load only.

In Sc, the conditions that govern the contact are:

h{y + r\, t+r) 5s 0 (no penetration condition)

with h(y+t], t+x) = h(y, t + x)+ti,N,\hy\.

(21a)

(21b)

(21c)

(22a)

(22b)
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In order to define the shift which occurs in the fnctional part of the virtual work
equation (14), we introduce the following notations. Let V be a vector defined at
y or (y+tj) on the surface of the deformed body, and let N be the inner normal on
the body at y in the reference state. Then:

VN = normal component of V = VtNt (N: inner normal, VN: a scalar)
VT s tangential component of V; VT, = Vt — VNN,

If <j> = <£(/) is the displacement from t to (t+z) of the point y' (see (21b)) of the
rigid surface, then

the shift of the particle x with respect to the rigid surface = t]T~4>T- (24)

We also need an expression for the frictional traction. If (p + n) is the traction acting
on the surface particle of x of the elastic body at Sc, then

traction bound = n(pN + nN) = S> / i : coefficient of friction. (25)

The well-known principle of virtual work in elastostatics, which is conventionally
written in terms of bV = — 5W ^ 0, is modified by two elements, see (14):

(1) (22) is added as an auxiliary condition.
(2) A term

I g5\i\T-4>T\ dS
Sc

is added to the conventional variation 5V.
This term is comparable to the term — fiN5\s\ of (14), with the sign reversed since we
use bV = — 5W rather than 5W as was done in (14). We have

SV = -6W - I f f
T~4>T\ dS,

X = X{y) is the body force, independent of time; bV ^ 0 V ,5)
compatible with (27):

subject to t]t = ij{ on Su;
h\ > 0 in Sc.

(26)

Since the rj are small, the variational inequality (26) may be simplified by expanding
the energy E in powers of t]tJ; constant terms are dropped, and only linear and
quadratic terms are retained. We define:

sJtz = dE(ykJ/dy,j: the Piola stress tensor in the reference state; '
sJt + <Tji = SE(yhfk+tjk^)ldyij: the Piola stress tensor in the deformed state; (28a)
<jj,: increment of the Piola stress;

Eim = d2E(yi,J/dyi,jdyhy, °ji = Eljhkr]h:k. (28b)

When the reference state is so near the undeformed state that linear elasticity is valid,
then Sji reduces to the classical stress and E,Jhk to the elastic constants. The elastic
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energy becomes, apart from a term depending on y only:

u . (29)
We introduce (29) into (26):

(30)

= 5< [sjfaj+tEuufltjtii^-XflddG-l (pi+nift, dS>

gd\t,T-<t>T\+ g5\tiT-d>T\dS>0

subject to t], = fl, on Su; h(y, t+z)+r]N\hr\ ^ 0 on Sc-

The variation is performed with the proviso that 8rjt = 0 on 5G. All such 8r\ are
variations compatible with (27), and the Euler-Lagrange equations are

Sjij+Vjij+Xi = 0 equilibrium equations, time: t+r. (31a)

Now the reference state was assumed to be in equilibrium. Hence

Sjtj+Xt = 0 equilibrium, time: t. (31b)

Since Zis independent of time, see (26), the Xt in (31a, b) denote one and the same
quantity. Hence

oju = 0. (31c)
We identify

Pi = Sj,rij, 7T, = (Tj^ij, n: outer normal on dG at x (32)

with the surface load in the reference state at the particle x, and the increment of this
load respectively. The loads and stresses are measured with respect to surfaces in the
undeformed state.

The term sJttitj in (30) is partially integrated. We find, if (31, 32) are taken into
account, and a constant term

I
is dropped:

5V _ _

{pM+gt>\r\T-4>T\}ds, r ( 3 3 )

8\)c

I
subject to (27); 5V > 0 V<5>; compatible with (27).

We recall that g was defined in (25) as n(pN + nN), where \i is the (position dependent)
coefficient of friction. However, up to now it has not been proved possible to establish
existence and uniqueness of the solution of (33) when g depends on the deformation r\.
When g depends on position and time only, existence and uniqueness have been
established by Fichera (1964) for the case that g = \i = 0 (the "Signorini Problem",
also called "The normal contact problem"), and for# > 0 by Duvaut & Lions (1972),
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who, in addition, confine themselves to the case when the non-penetration condition
h > 0 is replaced by the condition that (pN+nN) is prescribed in Sc; this leads to a
variational principle which is given below in (41). Both proofs are restricted to
coercivity of the energy, see (39), which holds in the case of classical elasticity. In
addition, Duvaut & Lions gave a proof for the case of elastodynamics and visco-
elasticity. Regarding uniqueness, an elementary proof, based on Kirchhoff's unique-
ness theorem for classical elasticity has been given by Kalker (1971ft). In the present
paper, existence will not be proved; a uniqueness proof for the case that g - g(x, t+T)
will be given in the next section. Simultaneously it will be shown that the potential
energy V (which then exists) attains its unique minimum at the solution tj.

4. The Uniqueness and Minimality Property of the Solution

In order to prove uniqueness it is assumed that the traction bound g is a function
of position and time only:

g = g(x, t+z). (34)

Then the variational inequality (33) can be written as

=\ iE,jufi,fjnk.tdG-\ ZfltdS+\
Jc JSp Js (35)

V: potential energy; subject to (27); SV $5 0 V ^ compatible with (27). J

Let ^ be a solution of this problem and let r\' satisfy the auxiliary conditions (27).
V is the potential energy connected with t]'. Then

f , f - , f
K' = I iEiji^'^ jtj'i,^ dG— I itfli dS-\- I \Pi^l'i'\'gVl'T—'/'rl} dS (36a)

J G ' J Sp J Sc

= iElJhkriUjnk,kdG- \ nfl,dS+\ {Pir,t+g\r,T-<f>T\}dS+ ...V
JG J Sp J So

r r
° s ' . . . > 5 F > 0 (36b)

Jso

ifyttfal. y - ' / ' . yX»/i. *-1k.i)dS. ...>0

Jc
The first line of (36b) we identify with V. Regarding the second and third lines we
observe that (rj'—Ti) is an admissible variation of r\ except possibly on S, and Se_
But on Su we have

ri' = f} = t] on Su=>t]'-T, = 0; (37a)

further we have on Sc that

h(y+n', t+x) ^ 0, h(y + t], t + x) 2* 0

14
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so that by (22b)

\
= eh(y+ri', t+i)+(l-e)h(y+ti, t+x) > 0 if 0 *S e < 1. J

(37a, b) establish that (rj'—tf) is a feasible variation of TJ when (27) is taken into
account. Finally,

S\IT-4>T\ = i im

f 10

(37c)= lim {|(1 — eX^T~^
«io

whiles 5* 0, so that the second and third lines of (36b) are > 5V > 0. In the classical
theory of elasticity, (2?yn*yyywk) (y: linearized strain) is positive definite, so that the
fourth line of (36b) is non-negative. Hence

V > V; V is the (minimal) potential energy attained at tj. (38)
Now, if t}' is likewise a solution, we have that V — V, and hence, by the above,

with y: linearized strain associated with (>/' — rf).
It follows from the positive definiteness of (-Cyiityyywt) that y = 0, and then from
the fact that t\'—r\ = 0 on Su, which has a non-vanishing area, that r\' = r\ throughout
the body, which establishes uniqueness.

It is noted that the assumption of the validity of classical elasticity has been used
for its property of coercivity only, i.e. the property

Eim(i'i.j-m,jXi'h.k-1k,k) > ay,jytj, a > 0, constant
y = linearized strain associated with (tj'—rj).

If this property is assumed also in the non-classical case, the uniqueness-minimality
proof given above continues to hold.

Summarizing, we have found that if the traction bound g is a function of position
and time only, see (34), then there exists a potential energy V, defined by (35), which
upon minimization, yields the unique displacement r\, solution of the problem, if,
at any rate the coercivity relation (39) is satisfied.

5. Discussion of the Restriction (34) on the Traction Bound

The demand that g is a function of position and time only does not, in many cases,
hinder the calculation of contact problems by variational means. Such a situation
occurs in the classical theory of elasticity when an incompressible elastic half-space
is in contact with a rigid punch, and also when two bodies with equal elastic con-
stants, which, geometrically, are each other's mirror image with respect to a plane
through the contact area, are in contact with each other. In this connection it is
observed that although in classical elasticity the variational description of two
bodies in contact is more complicated than the one which we consider, this complica-
tion is not essential.
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In the two cases mentioned it may be shown (see, e.g., de Pater, 1962, p. 33) that
the normal pressure (pN+nN) is not affected by the value of g. Hence nN may be
calculated with g = 0 (the normal contact problem); the variational principle is:

min! VN= I \EimVu]r,KkdG- \ nimdS+\ /yj, dS, subject to (27). (40)
JO J s, J So

Next, the value of g is set equal to g = t](j>N+nN), and the final field is calculated
with the aid of the variational principle of Duvaut & Lions (1972) in which the
no-penetration condition (22) is replaced by prescribing in Sc nN = nN, the incre-
ment of the normal pressure, calculated from (40):

= iE,mt]UJtjKk dG-\
Jo JS

min! VT
• * * *J > U * | | | ^ I l l y l S • WWW

(41)

subject to nt = fjt in Su, g = pi(pN+nN).

In the case of asymmetric half-space contact the restriction (34) on g is not very
restrictive. The normal contact problem, in which /z = g = 0, is calculated first from
(40) or otherwise; from that result an approximation of the traction bound g is
taken. Then, two courses are open to the investigator. Either he calculates an approxi-
mation of the final field by minimizing VT, (see 41); this is Johnson's approximation
(1962), which is sufficiently accurate when the coefficient of friction is small enough
(say n = 0-3 in steel on aluminium contact). Or the problem (35) is solved with
9 = KPN+HN)> where iiN is the value of nN just calculated. Then a new value of ns

is found, which is used to correct g, etc. The question of the convergence of this
process, however, is open. It would seem that in half-space contact, which yields
already a good approximation of the contact elastic field when the contact is almost
flat and the diameter of the contact area is less than one fourth of the diameter of
the body (e.g. wheel-rail contact), convergence is assured when, say, n < 1, but
there is no direct evidence to support this. In many technological applications the
symmetry mentioned in the first paragraph of this section is present, as in the contact
between a steel rail and a steel wheel (half-space contact, which implies the geometric
symmetry, and steel-on-steel, which implies the material symmetry) or when a massive
rubber body is in contact with a concrete foundation (again half-space contact, while
rubber is almost incompressible, and the foundation is relatively rigid).

It is concluded that for most technological applications the restriction (34) on g
leads to acceptable calculating schemes, but it is of great theoretical significance to
clarify the general case.

6. Dual Theorems: the Variational Principles of Reissner and of Minimum Comple-
mentary Energy

We wish to dualize the problem (35). This is done according to the pattern set by
Noble & Sewell (1972) and Arthurs (1970). A difficulty arises when the variables r\
must be eliminated from the form Eijutlijik* with the aid of the dual variables



210 J. J. KALKER

Oj, = ElJhttikjc> owing to the fact that the (9 x 9) matrix (Eiimkk)) may be singular.
This elimination is studied in Section 6.1. In 6.2, Reissner's principle is proposed
and established through the identity of its equivalent local equations with those of
(35). Also, a mechanical interpretation is given to these local equations. Finally,
in 6.3, the principle of minimum complementary energy is established.

6.1. The Dualization of a Quadratic Form

We define:

d = Ee, with E =

a symmetric matrix. We assume that the last columns, transposed (E[2 E22) depend
upon the first, and that B is a regular symmetric matrix. Owing to this linear depend-
ence there exists a matrix A:

^\A {EI 2 =BA=> A = B~1E12

^JA = >lE22=Er2A=A-BA. <42>
Hence the matrix E becomes

E = (A?B A?BA) = ( A I 0 B ( I ' A ) - (43)

We wish to express the quadratic form eTEe as a quadratic form involving the d
variables (dualization); we will show that if

C s ( B
o J ) = Q B"» ft 0) -> 0TCd

= eTEe. (44)
Indeed,

drCd = eTECEe =

B-1B(I, A)e = erEe.

Now, the d's are no longer arbitrary, since the system d = Ee may not be contra-
dictory. We have:

d = (dl) = ( A ^ ) ^ 1 ' A)e = ( A ^ ) 8 " = ( A \ ) ^ d^ = ATd^ = EnB"1^. (45)

If the components of e are arbitrary, then also the components of v are arbitrary
which means that one can freely choose the components of d7 = Bv, owing to the
regularity of B. Then d̂  is completely fixed, according to (45); that is, (45) is equiva-
lent to the fact that E is singular. Hence

eTEe = dTCd subject to d̂  = E^B-'d/ = Ard/
T dj. (46)
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— &tti.h = Ei,

E =
'hUJ-

1̂1 12 £ l l 22 21

11 J12 12 •ti12 22 ^12 21

£22 11 £22 12 £22 22 £22 21

2̂1 11 £21 12 ^21 22 ^21 21

; B = 11 i n 12 £ n 22

£11 12 £12 12 £12 22

£11 22 £12 22 £22 22

E1 2 =

^11 12

£)2 12

£22 12

E22 — (£21 12)-

The matrix E1 2 equals the second column of B, hence

A r = (0, 1, 0); E2 2 = ArBA = (0,1,0)B = (£,2 12).

If o,j = Eimn**, and of = (ancr12a22), aA = (<x21),

we have that Eliat\hJir\it} = oJB'^j, subject to (o21) = oA = AT<r7 = (al2),

the familiar symmetry of the stress tensor.

6.2. Reissner's Variational Principle. The Equivalent Local Equations

The specific complementary energy is introduced:

Jo,, = £'i;Wk'/»jk, the Piola incremental stress tensor;

SIJkk is determined with the aid of the theory of Section 6.1. The Oj, are subject to
the relations

aA = A7"*,, see (46). (48)

It will be established that the problem (35) is described by the Reissner principle

0, V 5t]\ 8r<<,R > 0, V 5X', da compatible with the equations (51)"1 „ „
8.: variation with respect to the variable (.) /

-ft-
J.

Sp ' Su

ff:see(34);
(50)

-pM-ghr-trn dS;
I So

subject to aA = A T o / X\ > 0. (51)

This is done by identifying the local equations equivalent to (49, 50, 51) with those
equivalent to (35).
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The equations equivalent to S^R ^ 0 are:

% = Hi in Su (52a)

Ky+1. t+x) = 0 if Xi > O") f ft(y+»?, t+x) > 0 (52b)

> 0 if A; = OJ W ( y + i j , H-T) = 0;i, t+x) > 0 if A; = OJ W ( y + i j , H-T) = 0; (52c)

(52a, b) coincide with (27), the auxiliary conditions of problem (35). As to the equa-
tions equivalent to 8eR ^ 0 we introduce the notation of 6.1, that is

(%j) = (fil eft (ajd = («!, «D; ^ = AT°i- (53)
The variation of R becomes

5aR = dat {.-ajfli.j+tSijuPjPu'] dG
JG

= S°, I" [-<T/re,-fffAeA+i<TfB-1ff /] dG > 0, V<5er,
J G

=> e,+AeA = B~% => «, = B^+AeJ = B(I,

or, in index notation,

ffji = EtJllt}ih>k: the stress-strain relations (28b) follow from 8aR ^ 0. (54)

Hence, by (44), when 5aR > 0 subject to (51),

The equations equivalent to SRt, ^ 0 are, as regards G, Sp, Stt:

G: <7jlfJ = 0 (cf. (31)) (56a)

Sp: nt = nl = prescribed (56b)
SB: nt = X[ = free. (56c)

Regarding Sc we have, if use is made of the representation (22b) of h:

If we set 8t]T = 0, then 8\t\T—<j>T\ = 0, 8t]t = Ni8qN, with 8rjN free. Then

Sc: pN+nN = A;|/iy| > 0, (by (51)); X'Ji = 0 ( = (52c)) o (pN+nN)h = 0. (56d)

We are then left with

(ftTi+/':ri)<5'7ri+<7<5|f/T—<pT\ ^ 0.

If (riT~4>T) ^ 0 ^« <5|f7j-~(^>j| = (>iTi — <l>Ti)&riTil\f]T~(i>T\ ^ fyr

=> (llTt+PTi) = — g(t]Ti— <f>Tt)/\iT~4>T\>

which means that (Pr+^r). the s n e a r traction, has magnitude ^ and direction opposite
t o the slip (riT—(t>T).
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If (.iT-<t>T) = 0 => <5|f/T-4>rl = \8(1T-4>T)\ = l&lrl. so that
( r c r . + ^ r ^ T i + ^ T l 5= O o | ; i r+^ r | s% g,

which latter inequality is valid throughout iSc. Equivalent to the above is

Sc\ \pT+nT\ «S #, Or l + 7tr,)(';r,-0r,)+^l'7T-^rl = 0. (56e)
We will now show that the local equations (52, 54, 56) which are equivalent to (49,
50, 51) are identical with the local equations equivalent to (35).

Proof. (1) (52a, b) are identical with (27), the auxiliary conditions in (35); (52c) is
discussed in point (5).
(2) (54) is identical with (28) as far as a is concerned, while J enters neither in (49,
50, 51), nor in (35).
(3) (56a, b) also follow from (35).
(4) (56c) is the identification of a quantity not occurring in (35), and constitutes no
restriction.

(5) (56d), which includes (52c), also follows from (35), as we will show now.

According to (35),
-4>T\ > 0inS c 1

Jsubject to h(j>+7], t+x) = h(y, t+x)+t]N\k,\ 5= 0.

We set 5t]T = 0, so that 5t]t = N{5t}N, and we obtain

("N+PN^IN 2* 0 subject to h(y+tj, t+x) = h(y, t+z) + t]N\h,\ Ss 0.
If h(y+t\, t+x) > 0 => 8t]N is free, and nN+pN = 0.

1, t+x) = 0 => 8tjN 5= 0, and nN+pN > 0
> 0, (nN+pN)h = 0, i.e. (56d).

(6) (56e) follows from (57) if (56d) is taken account in the same way as (56e) was
established above. Q.E.D.

Hence (35) and (49, 50, 51) are equivalent. Finally we have by (52c), (52a), and (55)
that

- V = R at the common solution of (35) and (49, 50, 51). (58)

It is of interest to state the equivalent equations in mechanical terms, from which
it is seen that the local equivalent equations coincide with those used in classical
contact elastostatics:

((52a): displacement prescribed on Su;
5y i (52b): no-penetration condition;

((52c) = the second equation (56d);

$<r {(54): stress-strain relations for the incremental field;
(56a): equations of equilibrium;
(56b): surface load prescribed on Sp;
(56c): where the surface displacement is prescribed, the surface load is free;
(56d): in contact, the normal component of the load is compressive;
(56e): Coulomb's friction law if g = n(pN+nN);
(56d, e): outside contact, .Sc is free of traction.
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6.3. The Principle of Minimum Complementary Energy

In order to obtain the principle of minimum complementary energy, we integrate
the term (—Oyjfij) in (50) partially, and we take the equations equivalent to <5,i? < 0
(i.e. (56)) as auxiliary conditions, so that we do not have to vary n. In so doing we
eliminate X by (56c), (56d). We obtain:

8,C ^ 0, subject to oA = A7"*,; oJlt} = 0 in G; CJ^J = n, = nt in Sp; 1
\PT + KT\ < 9, iPN + nN) > 0, CPT(+7tT()('7rl-0r,)+5l'7T-^rl = 0 in 5C; J

R=C=\ iS^OjPuAG- I nfa
JG J Su

+
JS

(60)
_ _ _ , _ .. ,^dS.

I So "

We consider the integral over Sc, and take into account the second relation of (56e),
and (22b):

JS

=

ffl/r0rl}d

J so
,-(pT,+nTd4>T,} dS

so that (60) becomes

C =\ tS^WudG- [ M,
J c J su

R = C subject to (59). (61)
If the coercivity relation (39) holds, then also when oA = ATc7, StJkiGj,<Tkh > b<TjPJt,
b > 0, constant, and it may be established as in Section 4 that C has a unique global
minimum at the solution. Since then a is unique it follows that the linearized strains y
are unique; and since r\ equals ij on Sa it follows that t\ is unique, see Section 4.
Thus we have, by (58) and (61):

— K(admiss. n) ^ — K(solution) = .R(solution) = C(solution) < C(admiss. a). (62)

7. Surface Mechanical Formulation

In surface mechanics we are exclusively interested in the stress and strain on the
surface of the elastic body. The literature on contact mechanics is for the most part
surface mechanical in nature; for, if the stresses and strains on the surface are known,
the determination of the displacement-stress field inside the body is a matter which
lacks contact mechanical characteristics. In accordance with this we will formulate
the principles of minimum potential and complementary energy (35) and (61, 59)
in surface mechanical form.
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To that end we observe that in the solution t] and a are an equilibrium displacement-
stress field which satisfies the stress-strain relations:

Cji.j = 0 in G, <jji = El}htr]htk, aA = A7"©, in G. (63)

So in order to find the solution of (35) and (61, 59) we may confine ourselves to
fields which satisfy (63), but perhaps not the boundary conditions (27), (59). Con-
sider (35). The volume integral is integrated partially, and (63) is taken into account.
This gives

min! V = (i«,-«j)ij, dS+ faq, dS+ {(pi+±n,)r,i+g\r\T-<bT\} dS (64a)
n, n together J S p J S u Js < >

subject to t]t = rji in Su, h{y+rj, t+x) > 0 in Sc; (63). (64b)

In (61) we replace SlJhka}lGkh by its equivalent EtjHtlijihjf Then it follows from
(61, 59, 63) in the same manner

min! C = n^lt-fj^ dS+ {mm dS+
"•1 together J S - J S p

J. dS (65a)
Sc

subject to 7i, = S, in Sp, (pN+nN) > 0, \pT+nT\ < g in 5C. (65b)

It should be noted that

<5 {nfl, dS = 7r̂ 5f/( dS = m&ni dS. (66)
J tc J ec J «G

Remark 1. If we compare (64) with (65), or (35) with (61), it is seen that (64) and (35)
contain a term g\r\T—<f>T\, which is not differentiable if (tiT—<f>T) = 0. This causes
difficulties when the principles (64)-(35) are implemented numerically by discretizing
the integrals and by then applying an optimization algorithm (but see Kalker, 1971a).
In the principle of stationary complementary energy such difficulties are conspicuously
absent, which renders this principle, stated in (61, 59) and (65), a most fruitful prin-
ciple upon which to base a numerical implementation.

Remark 2. In the derivation of the principles (35), (61, 59), (64), (65) it has been
assumed that h and <j)T are given. This means in particular, that quantities like the
depth of penetration of the rigid body and its rigid motion with respect to the elastic
body are given. In many cases this is not realistic: instead of these kinematical quan-
tities the force and the moment that the rigid body exerts on the elastic body are
known, that is, in vector notation,

(p+n) dS = i = given, y x (p+n) dS = m = given (67)
J Sc J Se

with p = (/?,), n = (7t,), y = (yd> vectors; x : cross product (68)

The conditions (67) are isoperimetric in character, and may be entered in the mini-
mum principles of complementary energy with the aid of constant Lagrange multipliers
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yJ and Xm. We will do so in (65). The last integral becomes

I {in • i\+(pN+nN)lh(y, t+T)l\h,\-4-(i,~xy)N-]- [
sc Y (69)

(70)
with n = (nt), 4> = (0,);. : inner product;

subscript N: normal component (scalar);
subscript T: tangential component (vector).

This means, in effect, that the surface of the rigid body is now given up to an additive
constant X{, and the normal component of a rigid rotation about the origin (Xm x y)N.
The shift fy is likewise modified by the arbitrary rigid displacement 3i/+(Xm x y). The
conditions (67) now figure as auxiliary conditions.

One can also require that only the total force in a certain direction is prescribed
while in the other two directions orthogonal to it the displacement is given. This
means that the complementary energy principle is extremely flexible as regards the
global conditions that prevail in a contact.

7. Examples
7.1. Kalker-van Randen

The first example is the variational principle of Kalker-van Randen (1972) for
the normal half-space contact problem. Take

5, = oo, fj = 0; n = 0 on Sp, y = x =>pt = sJt = 0.

The problem is frictionless, hence g = 0. Surface displacement and normal load
are connected by the Boussinesq-Cerrutti integral representation (Love, 1952),

= KtJ(q—x)nj(q) dq, K: matrix kernel.
J sc

(71)

In this integral representation, the displacement r\ vanishes at infinity, and the traction
vanishes on Sp, the surface of the half-space outside Sc. The problem becomes

min! C = |
«, i) together J S

\ dS, nT = 0.

We introduce (71) in this problem, and find

N f
mm! C = intfa)KNN(q — x)n^(q) dqdx+ ^fAx)Kx)l\nx\ "x

JJ si J sc

subject to nN 3* 0 in Sc; KNN = N^uN,.

(72)

7.2. Frictional Contact of a Rigid Body with an Elastic Half-space

The half-space xN > 0 is fixed at infinity; its surface outside contact is free of
traction. Classical elasticity is taken to be valid. The surface traction is denoted by
X, the displacement with respect to the undeformed state x is denoted by u. We have:

, fc) , p
u, = u,(x, t); ut = 0 in SB = oo; uh utJ small; y = x+u

1
. J
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The equation of the surface of the rigid body is given by

h{£, t+x) = ZN-H(£T, t+x), t,i coordinates, H = O(u) in Sc; \
iN = 0: undeformed half-space surface; J- (74)

hfi = Nt, \h,\ = 1. J
We write

• = 8/dt; tit = xut, n, = xXt. (75)

As to the rigid body, let V = V(t) be the velocity of the rigid body at the origin
and co = co(t) its angular velocity about the origin. The velocity of the rigid body
fl> = <&(y') at y' is given by

O, = Vt+Eliky'j(ok, eIJk: alternating symbol (76)

so that the shift <j> = <£(/) becomes

<f>t = W + w W * -
Since in the contact area y' = y ~ x = xT, the tangential component of the shift
becomes

<t>Tt = (Yi + Eu^Tfii^-rX. (77)

In particular, if we take N as the x3-direction we have

xT = {xu x2,0), xN = x3; 1 ,jg.
4>n = 4>i = ( K 1 + ^ 2 ( B 3 ) T , 0r2 = 0 2 = (y2-Xi0}3)T, 4>T> = 0. J

A number of constant terms are omitted in (65), which thus appears to be equivalent to

min! C* = n^^-f}^ dS+\
*.»together J Su J $

I (79)
dS

Sc

subject to Ji = S in Sp; pN+nN 5= 0, |p r+7t r | ^ g in Sc.

Introduction of (73H77) into (79) yields:

min! C* = f {iX^+X^^-Hixr,

subject to XN+XNx ^ 0, \XT+xXT\ < g; '

Starting from known values of X at the time t, Xx and ux are calculated according
to a scheme analogous to the one given in Section 5. Then

X(t+x) = X{t)+xX(t),

and the time is advanced by a step x, etc.
Note that a state of steady rolling can only be found with this principle by taking

the limit as t -* oo. Although a state of steady rolling is virtually achieved when the
roller, under steady state conditions, has traversed approximately one contact width
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(see Kalker, 1971a), the principle (80) does not seem very suitable for the problem
of steady rolling. Variational principles which give the steady state directly are found
in Kalker, 1966, 1967 (a non-convex principle) and 1971a (a convex, non-differen-
tiable principle).
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Appendix: l ist of Symbols

Symbol

A
subscript A
B

C
E = EQy, ,+

E

fj

9

G
/>(.,.)
fiy = hy(y, t)\ hy,
H
subscript /

K, K,,, KNN
mg
m
N
N= N(y);N,

subscript N
P = P(x);Pi
<Ji> Qi
R

Rji
s
s = s(x); sji
Sc

s

Defined in

(2)
(42)
(44)
Section 6.1. above

(42)
(20); (61)

,x) (17), (29)
(28)
Section 6.1 above

(42)
(2)
(67)
(25), (34)

Section 3 above (16)
(20)
(21b), (27)
(47); (74)
(44)

(71), (72)
(8)
(67)
in Section 2: Fig. 2
Section 3 above (16)

(23)
(18) to (19), (32)
Section 2
(50)
(3)
Section 2: Fig. 2, (3)
(28), (31)
(21)
(21a)
(19)

Symbol

T
subscript T
u = u(x, t); ut
y= K(0; Vi

V
VN

VT

bv

bw
x;x,
X= X(y);Xl

y = y(x); yi
y'\y{
z
y ; y u
b

Eijk
A , Aj , A^

n

n = n(x); nt

a = <T(X); (TJ,

<t>= 4>(y')> 4>i
<j) = <J>(y'); O,
(o = co(t);cot

Defined in

in Section 2: Fig. 2
(23)
(73)
(75) to (76)

(4), (35)
(40)

(41)
(25) to (26)

(1)
Section 3 above (16)
(26), (31); in
Section 7.2: (73)
Section 3 above (16)
(21b) Fig. 3
Fig. 1;(8)
(39)
Variation symbol:

(37c)
(76)
(50), (51)
(69)
(13), (25)
Cartesian

coordinates
(18) to (19), (32)
(28), (31)
Section 3 above (16)
(23) to (24)
(76)
(75) to (76)




