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A B S T R A C T

The analytical theory of statistical Coulomb interactions allows to determine the trajectory displacement in a
single rotationally symmetrical beam with well-behaved spatial and angular particle distributions. This can be
used to estimate the trajectory displacement in a multi-beam system using the so called fully-filled segment
approximation. This approach predicts full compensation of trajectory displacement for a specific setup of the
system. We show that this prediction is not consistent with Monte Carlo simulations and we develop a new
approach to the calculation, showing that two independent trajectory displacement contributions are present
in a multi-beam system. We support this calculation with Monte Carlo simulations as well as with experimental
data from a multi-beam system.
1. Introduction

An important characteristic of a probe forming instrument such as
a scanning electron microscope (SEM) or electron lithography machine
is the probe size which in turn determines the achievable resolution of
the system. The probe size is given by a combination of a variety of
factors such as the magnification of the source size, geometrical aber-
rations, chromatic aberration and diffraction [2]. In addition to these
effects, the beam is also affected by stochastic interactions between the
electrons in the beam. This effect can be divided into longitudinal and
transverse components. The longitudinal component is called Boersch
effect and it causes broadening of the energy distribution and thus
increases the spot size via chromatic aberration. In this article we
are interested in the transverse component which directly changes the
trajectory of electrons and therefore it is called trajectory displacement.
It manifests as an apparent enlargement of the source size which
corresponds to effective reduction of the source brightness.

There are several approaches to estimating the trajectory displace-
ment in an electron beam, but they can be roughly categorized into
three groups: Monte Carlo simulation, numerical calculation and ana-
lytical formulas. Each approach has its own advantages and disadvan-
tages. Monte Carlo simulation can provide the closest approximation
to a real system because equations of motion are solved directly for a
particle set, which requires very few assumptions about the system. On
the other hand Monte Carlo simulation can be very time consuming as

∗ Corresponding author.
E-mail addresses: jstopka@isibrno.cz (J. Stopka), p.kruit@tudelft.nl (P. Kruit).

1 For example a 1 keV beam of 100 nA current and radius of 1mm is a typical Holtzmark regime representative and 1 keV with 1 nA and 10 μm radius is in pencil-
beam regime. The Gaussian regime can only be relevant when angular current density divided by energy is comparable or more than about 0.005 Asrad−1 eV−1[1]

tracing of large numbers of interacting particles is a computationally
challenging task. Moreover, the results of such a simulation are quan-
tities and parameters (such as energy and position) for the simulated
particle set. These can be used to calculate the trajectory displacement
for a particular setting of the system, but it provides limited insight into
trends and dependencies of the trajectory displacement on the various
parameters of the system such as beam current or energy.

The numerical calculation covers a variety of methods to determine
the trajectory displacement ranging from quite general integrals based
on distribution of particle positions and velocities through complex
calculations using Markov chains [3] to very specific calculations such
as the slice method which is only valid in certain regimes of operation.
A large part of this category was developed by Jansen in his doctoral
thesis [4] and is based on the so-called extended two-particle approx-
imation. This model assumes that the individual scattering events a
certain particle experiences along its trajectory are uncorrelated. This
is a reasonable assumption in the case of electron microscopy.

The extended two-particle approximation of statistical Coulomb in-
teractions as presented by Jansen [4] starts by describing the trajectory
displacement in a beam with general spatial and angular distributions.
However, the general description can only give results in terms of a set
of integral expressions which give a little insight into the dependence
of the displacement on parameters of the system such as beam energy,
current etc. For a few special cases it is possible to evaluate the integrals
and obtain an analytical expression for the trajectory displacement.
vailable online 4 February 2021
304-3991/© 2021 Published by Elsevier B.V.

which usually never occurs in scanning electron microscope.
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These cases define the various regimes of Coulomb interactions in the
beam. The Coulomb interactions in an electron microscope are usually
dominated by weak collisions [5] and therefore the most important
regimes for a beam in an electron microscope are pencil-beam regime
that describes a beam of particles with longitudinal separation much
larger than their lateral distance and Holtzmark regime which corre-
sponds to the opposite — a beam of particles where direction to a
particle’s closest neighbors is unrelated to the beam orientation. We
only consider these two regimes and assume the contribution from
the Gaussian regime (several collisions per electron) is negligible.1

e also only consider Coulomb interactions accumulated along the
lectron column and we incorporate the interactions in the vicinity of
he electron source into virtual source size and energy spread [6].

The formulae for trajectory displacement in various regimes are
erived with the assumption of a field-free region with a cylindrically
ymmetrical beam (with uniform or Gaussian spatial and angular distri-
ution). We are interested in the behavior of trajectory displacement in
multi-beam scanning electron microscope (MBSEM) and the situation

n a MBSEM is more complicated. The system is not rotationally sym-
etrical and the spatial and angular distribution cannot be described by
simple function such as a uniform cylinder or a Gaussian. Evaluating

he integrals analytically is not feasible for such distributions. Although
umerical calculation of the trajectory displacement in a multi-beam
s still possible, it would provide only a limited insight into the de-
endence of the trajectory displacement on various parameters of the
ystem. On the other hand, an appropriate approximate description of
he multi-beam distributions can lead to fully analytical expressions.

. Beam geometry in a multi-beam system

A multi-beam scanning electron microscope is a probe forming
lectron microscope that utilizes an array of beamlets simultaneously
ocused onto the specimen to form an array of spots. Each of these
pots generates its own signal which is then processed from all the
pots simultaneously. The main advantage of a multi-beam SEM over
conventional SEM is the throughput increase provided by probing
ultiple sample locations in parallel.

Several concepts to generate multiple electron beams in an electron
icroscope exist [7], but over time one particular design became the
ost common approach. This design utilizes a single electron source

such as Schottky emitter) which illuminates an array of apertures. This
rray is on a different potential from nearby electrodes and thus each
perture acts as an individual electrostatic lens. If the aperture lenses
re strong enough, an array of images of the source can form below the
perture lens array. This can then be imaged using a conventional SEM
olumn onto the sample to create a focused array of spots. More about
he optics of a multi-beam is covered elsewhere such as in [8–13].

With such multi-beam geometry, there are a few places of interest
hat we will refer to further on in this article. A plane where all
eamlets are focused is called a beamlet cross-over plane or simply
beamlet cross-over. Between any two such planes there is always

nother plane where all beamlets meet (under paraxial approximation).
e call this plane the common cross-over plane or just a common cross-

ver. To minimize distortion of the pattern and probes due to lens
berrations, it is useful to set the system such that inside each lens there
s either the array of focused spots or the common cross-over where all
eamlets meet on the axis [13]. This is schematically depicted in Fig. 1.

. Slice method in a multi-beam SEM

The analytical formulae for trajectory displacement derived by
ansen are valid for a single electron beam with radially symmetri-
al spatial and angular distributions. If the number of beamlets of
he MBSEM is sufficiently large, we can approximate the multi-beam
ith a large single electron beam [14]. This approximation allows
2

o express the trajectory displacement with analytical formula as a e
Fig. 1. Schematic drawing of a multi-beam scanning electron microscope optical
column. From top to bottom there is a single electron source illuminating an aperture
lens array (ALA), which forms an array of beamlets. The beamlets form an array of
focused spots (1st beamlet cross-over) in the accelerator lens (ACC) which is then
imaged with a conventional imaging system (C2, INT and OBJ lenses) onto the sample.
To minimize distortion of the pattern due to lens aberrations, it is useful to set the
system such that inside each lens there is either the array of focused spots (beamlet
cross-over) or the common cross-over where all beamlets meet on the axis [13].

function of experimental variables such as beam current, energy and
beam geometry.

The following theory describes the trajectory displacement in the
central beamlet of a multi-beam system. It is possible to use the for-
mulae for a corner beamlet as well with a few parameter substitutions
and to estimate the trajectory displacement in all other beamlets using
interpolation between the two cases as they usually do not differ a
lot. We refer the reader to [14] for a detailed explanation of these
transformations.

For beams that are not clearly in one of two regimes, Jansen
proposes to add the separately calculated displacements using a power
sum rule. It is however not advisable to use the power sum rule for a
beam segment that has one end in the Holtzmark regime and the other
end in the Pencil beam regime. The reason is that the displacement in
the Holtzmark calculation will be dominated by the beam part that is
actually in the pencil beam regime and vice-versa [15]. The result is an
overestimation of the trajectory displacement.

One way around this problem is to use the slice method and use the
power sum to combine differential trajectory displacement contribu-
tions which are then numerically integrated along the beam trajectory.
In that case, as shown in [15], we can express the full-width 50% of
the total trajectory displacement in the image plane as

𝐹𝑊50 = −
𝐶𝛼

𝑚
√

𝑉 (𝑧𝑖) ∫

𝑧1

𝑧0
𝑠𝑐 (𝑧)𝑢𝛼(𝑧)

𝐼2

𝑉 3∕2(𝑧)
(

𝜒8∕7(𝑧) + 𝜒−6∕7(𝑧)
)−7∕6 d𝑧,

(1)

here 𝐶𝛼 = 1.02905 ⋅ 1018 V2 A−2 m−1, 𝑚 is angular magnification of
he system, 𝑉 (𝑧) is the beam energy along the axis,2 𝑢𝛼 is the axial

2 We could take relativistic effects into account by replacing 𝑉 with
the relativistic beam potential 𝑉 ∗ = 𝑉

(

1 + 𝑒𝑉 ∕2𝑚0𝑐2
)

. Usually though, the
rajectory displacement in an electron beam is negligible for relativistic beam
nergies.



Ultramicroscopy 223 (2021) 113223J. Stopka et al.

w

b
i
p

paraxial ray trajectory, 𝐼 is the beam current, 𝑠𝑐 (𝑧) is either 1 or −1
and changes sign with every common cross-over and finally 𝜒 is the
pencil-beam factor defined in [15] as

𝜒(𝑧) = 𝐶𝜒
𝐼𝑟(𝑧)

𝑉 (𝑧)1∕2

ith 𝐶𝜒 = 2.51979 ⋅ 1013 V1∕2 A−1 m−1 and 𝑟(𝑧) the beam radius.3 This
factor defines whether the beam is in a pencil-beam regime (𝜒 ≪ 1) or
in Holtzmark regime (𝜒 ≫ 1). The pencil-beam factor can be roughly
interpreted as the number of particles in a cubic volume of similar
dimensions to the diameter of the beam. Since the radius of the beam
varies a lot along the trajectory, it is not unusual for the beam to
transition between the two regimes.

Another approach to deal with the transition between the regimes
is to use analytical formula for the funnel regime. This is an expres-
sion which converges to Holtzmark and pencil-beam expressions in
the corresponding limiting cases, but interpolates well in the case a
transition between the two regimes occurs. Since the formula is rather
complicated, we omit it here and instead refer the reader to [15], where
both the (generalized) slice method and the funnel regime formula are
described in detail.

3.1. Compensation of trajectory displacement in MBSEM

Note the product 𝑠𝑐 (𝑧)𝑢𝛼(𝑧) in the slice method integral (1). These
parameters are the only factors which can change sign along the
trajectory. In standard single beam probe forming systems, the beam
crossovers coincide with the zeros of the ray trajectory and therefore
the sign of 𝑠𝑐 is equal to the sign of 𝑢𝛼 and the contribution to the
trajectory displacement is positive throughout the whole trajectory.
However, in the case of a MBSEM the 𝑠𝑐 changes sign at common
crossover(s) and 𝑢𝛼 corresponds to axial paraxial ray trajectory of
any particular beamlet and thus changes sign at the plane of beamlet
crossovers which is different from the common crossover position.

Consequentially, there are parts of the multi-beam path where the
trajectory displacement is in fact decreasing. This can be explained
using the fact that the displacements in subsequent slices are highly
correlated (a property of weak collisions). Thus the displacement expe-
rienced by a test particle traveling along the optical axis is in opposite
direction after the particle passes the common crossover (see Fig. 3
top).

A notable case is a segment of a multi-beam between two planes of
beamlet crossovers. Such a segment has a common crossover and a lens.
If both the common crossover and the lens are positioned in the middle
of such segment, the function 𝑢𝛼 is symmetric and 𝑠𝑐 anti-symmetric
with respect to the common crossover. Assuming the beam energy is
constant in the segment this means the integral (1) vanishes and the
trajectory displacement in such a segment would be zero.

This situation provides an ideal test case for comparison of the
theoretical calculation to a Monte Carlo simulation.

3.2. Comparison with Monte Carlo simulation

We will compare the slice method calculation to a Monte Carlo
simulation using the GPT software [16]. This software allows us to
trace individual electrons through the system by numerical solution
of equations of motion. The trajectory displacement can be calculated
by comparing calculation with and without the Coulomb interactions
taken into account. When a sufficient number of particles is traced, the
distribution of the trajectory displacement can be estimated by direct
comparison of particle positions in a particular plane along the axis in

3 The pencil-beam factor is also defined in earlier works by Jansen [1,4,5],
ut there is a slight difference in the constant 𝐶𝜒 . We used such value that

there are no additional constants in the sum in Eq. (1).
3

t

the two cases (with and without Coulomb interactions). Various metrics
of this distribution such as 𝐹𝑊 50 can then be calculated. We chose
parameters of the system to represent a typical situation in a MBSEM
such as the one described in [11,13].

The situation comprises of a square array of 13 × 13 point like
sources of particles at plane 𝑧 = 0. Electron beamlets from these sources
are directed towards a common crossover at 𝑧 = 𝐿∕2 = 0.15m. There
is a magnetic field of a lens located at the position of the common
cross-over. This lens images the array of points at 𝑧 = 0 into image
plane at 𝑧 = 𝐿 = 0.3m, thus the magnification of the lens is equal to
negative one. The pitch of the multi-beam pattern in the object plane is
80 μm. The particle energy is 10 keV. Finally, the size of the common-
crossover is chosen such that the angular current density of a beamlet
is 0.3mA∕srad. The calculation and simulation is done for a series of
beamlet currents. In the case of the smallest current, the multi-beam is
in pencil-beam regime across the whole segment. On the other hand for
the largest current in the series, the multi-beam is in Holtzmark regime
in the whole segment. For the intermediate values, there is a transition
between the regimes.

For better understanding of the trajectory displacement, we have
simulated and calculated the trajectory displacement (in the image
plane) as a cumulative function of the position in the segment. In other
words, we calculated the trajectory displacement as a function of the
upper bound 𝑧1 of the integral (1). This is a good way to visualize
the accumulation of the trajectory displacement in the first half of the
segment and consequent compensation in the second half. Both the
calculation and the simulation correspond to the central beamlet. The
comparison is shown in Fig. 2.

In the figure we can see that in the first half of the segment, the
slice method predicts a correct trend. However, after passing through
the common crossover, the slice method predicts full compensation of
the trajectory displacement, but the Monte Carlo simulation shows that
the trajectory displacement is not compensated and for larger currents
even continues to rise.

This is a large inconsistency between the theoretical prediction and
a Monte Carlo simulation that calls for a further investigation.

4. In-beamlet interactions

The discrepancy is caused by the unjustified assumption of the slice
method that the field particle maintains its orientation with respect to
the test particle’s trajectory.4 This is the case for a beam with a narrow
crossover. However, in the case of the multi-beam, the common cross-
over dimensions are not negligible and therefore a particle’s position
in the common cross-over and its vicinity is almost independent of the
position far from the common cross-over (i.e. independent of which
beamlet it is in). This means the displacement that a certain particle
experiences in the region of the common cross-over is independent of
the displacement from the regions outside of the common cross-over.
The situation is depicted in Fig. 3.

As a result it is necessary to calculate the common cross-over region
separately and then add it to the rest with an appropriate power sum
rule (corresponding to the distribution of the displacements). What
remains is how to divide the slices into common cross-over region and
the rest.

4 The test particle is a particle traveling along the optical axis. We are
nterested in the trajectory displacement of the test particle(s). The field
article on the other hand is any other particle that influences the test particle’s
rajectory.
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Fig. 2. The trajectory displacement as accumulated across a multi-beam segment with a lens in the common cross-over for various beamlet currents. The solid line shows the
esult of the slice method calculation using (1) and the dots show results of the Monte Carlo simulation.
Fig. 3. The force exerted on a test particle (solid line) by a field particle (dashed line) for two distinct field particles in a multi-beam segment with a lens in a common cross-over.
op: The field particle is from a different beamlet, but meets the test particle on axis in the common cross-over. The displacement above the common cross-over is compensated
y displacement below the common cross-over. This situation corresponds to the traditional expression for trajectory displacement described by Eq. (1). Bottom: The field particle
s significantly distant from the test particle in the common cross-over. The displacement accumulated near the common cross-over is not compensated. Moreover, the field particle
an be displaced in a direction perpendicular to the plane of the drawing, which also prevents the displacement from the common cross-over region to be compensated.
w
a
c
b
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.1. Two-component model of the interactions

We propose a model that takes the correlation in mutual particle
osition along the slices into account. The direction (and thus also the
isplacement) of the field particle with respect to the test particle near
he beamlet cross-overs is independent of the direction between the
wo particles at the common cross-over. Therefore, we can model the
wo displacements as mutually perpendicular dimensions; let us call
hem 𝑎 and �⃗� respectively.5 The displacement in a slice located at the

5 It is important not to confuse the abstract displacement dimensions 𝑎 and
�⃗� with real coordinate dimensions �⃗� and 𝑦. Both 𝑎 and �⃗� displacements can still
have any direction in the real space with the mean direction equal to zero.
4

beamlet cross-overs is in direction 𝑎 and the displacement in a slice at
the common cross-over is in direction �⃗�.

The last step is to assign some orientation in this new abstract
2D displacement space to all the other slices. That can be done by
interpolating:

𝑣(𝑧) =
𝑟𝛤 (𝑧)𝑎 + 𝑟𝛼(𝑧)�⃗�
√

𝑟𝛤 (𝑧)2 + 𝑟𝛼(𝑧)2
, (2)

here 𝑟𝛤 (𝑧) is the beamlet central trajectory of an average beamlet
nd 𝑟𝛼(𝑧) is the axial ray trajectory of an average particle of the
entral beamlet. The trajectory 𝑟𝛤 can be interpreted as the mean multi-
eam radius and 𝑟𝛼 as the mean beamlet radius. By taking those radii
igned (i.e. 𝑟𝛤 changing sign in the common cross-over and 𝑟𝛼 changing

sign in the beamlet cross-over) the two components correspond to the
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correlation of mutual particle transverse position at 𝑧 with their mutual
transverse position in the plane of beamlet cross-overs and the common
cross-over respectively. In (1) the correlation is represented by the sign
function 𝑠𝑐 (𝑧) but it is limited either to full correlation (𝑠𝑐 = 1) or full
nti-correlation (𝑠𝑐 = −1). The natural next step is to take the changing
orrelation into account and replace this sign function 𝑠𝑐 in the integral
ith the slice displacement direction 𝑣(𝑧) defined by (2).

With that we can finally express the two components of the trajec-
ory displacement as

𝑊50,𝑎 = −
𝐶𝛼

𝑚
√

𝑉 (𝑧𝑖) ∫

𝑧1

𝑧0

𝑟𝛤 (𝑧)
√

𝑟𝛤 (𝑧)2 + 𝑟𝛼(𝑧)2
𝑢𝛼(𝑧)

× 𝐼2

𝑉 3∕2(𝑧)
(

𝜒8∕7(𝑧) + 𝜒−6∕7(𝑧)
)−7∕6 d𝑧, (3)

𝐹𝑊50,𝑏 = −
𝐶𝛼

𝑚
√

𝑉 (𝑧𝑖) ∫

𝑧1

𝑧0

𝑟𝛼(𝑧)
√

𝑟𝛤 (𝑧)2 + 𝑟𝛼(𝑧)2
𝑢𝛼(𝑧)

× 𝐼2

𝑉 3∕2(𝑧)
(

𝜒8∕7(𝑧) + 𝜒−6∕7(𝑧)
)−7∕6 d𝑧. (4)

The two expressions differ only in the factor 𝑟𝛤 (𝑧) or 𝑟𝛼(𝑧) in the
integrand. We can see that the sign of the two integrands depends only
on the sign of 𝑟𝛤 (𝑧)𝑢𝛼(𝑧) and 𝑟𝛼(𝑧)𝑢𝛼(𝑧) respectively. The first product
can be positive or negative depending on the sign of the factors, but
the second product is always non-negative because 𝑟𝛼(𝑧) is a positive
multiple of 𝑢𝛼(𝑧). Consequentially, the 𝑎 component of the trajectory
displacement can be fully compensated with a suitable design of optical
trajectory, while the 𝑏 component always gives positive contribution to
the total trajectory displacement.

The total trajectory displacement distribution is a convolution of
the displacement distribution for 𝑎 and �⃗� directions. Its 𝐹𝑊50 can be
approximated with a power sum rule as

𝐹𝑊50 =
(

𝐹𝑊 𝛾
50,𝑎 + 𝐹𝑊 𝛾

50,𝑏

)1∕𝛾
. (5)

The power 𝛾 depends on the regime. We have 𝛾 = 1∕3 for pencil-beam
regime and 𝛾 = 3∕2 for Holtzmark regime [4]. In the case a transition
between the regimes occurs, some effective power in between the two
values should be chosen.

4.2. Comparison of the new model with Monte Carlo simulation

We can now compare the results calculated using the new model
with the Monte Carlo simulation from Section 3. The comparison is
depicted in Fig. 4. We can see that the new model of two mutually
uncorrelated contributions to the trajectory displacement agrees with
the simulation very well.

5. Experimental verification

Comparing a theoretical model to a Monte Carlo simulation is
useful, but not a full validation of the theory. After all, the real situation
can present unforeseen effects excluded both from the theory and
from the simulation. In the following, we try to verify the theoretical
prediction with an experimental measurement.

5.1. Description of the experiment

We use a modified FEI NovaNano SEM with a multi-beam source
(196 beamlets). This MBSEM has a parallel transmission detection
system [17]. A thin sample is put directly on a YAG screen. An array
of electron beams therefore creates an array of light sources which
are then imaged onto a light detector. In our setup we used a single
pixel detector to observe just one of the beamlets. Scanning with the
multi-beam pattern moves one of the beams across the sample which
varies the light intensity captured by the single pixel light detector thus
forming an image. By detecting only the light coming from one of the
beamlets we are able to form an image with a single beamlet.
5

In the standard mode of operation, the multi-beam source creates
an array of beamlet cross-overs inside the source module which is
then demagnified with the objective lens onto the sample. However,
this also demagnifies the trajectory displacement accumulated along
the trajectory. After such demagnification the trajectory displacement
is comparable or smaller than aberrations of the system. The only
information we get is provided by imaging a sample with the probe.
Spot size and even its distribution function can be deduced from these
images, but the trajectory displacement cannot be seen separately
from other effect influencing the spot size. Therefore, demagnifying
the trajectory displacement makes it hard to separate the trajectory
displacement from the final spot size.

Fortunately, there is a so called intermediate lens located in the
middle of the column. We can use this lens as a final lens to image
the array of beamlet cross-overs onto the sample with magnification
close to unity and thus reduce the demagnification of the trajectory
displacement and decreasing the effect of lens aberrations. This is
schematically shown in Fig. 5.

With such a configuration, the spot size on the sample is in the order
of hundreds of nanometers. This limits the sample choice. We have used
a sample with a pattern of stripes with a pitch of 1 μm. The width of
the stripes is 0.65 μm. Such sample has the advantage that we do not
need to have perfectly focused and stigmated spot, because in case of a
small defocus, we can use the stigmator to create a line focus parallel
to the stripes, therefore achieving the same image quality as if the spot
was perfectly stigmatic and in focus.

A typical image of the sample created with one of the central
beamlets is shown in Fig. 5. Darker intensity in corners of the image is
caused by the light spot missing the detector.

This image can then be automatically processed to calculate the
𝐹𝑊50 of the spot. A conventional approach to measure the spot size
would be to use deconvolution. The acquired image is theoretically
formed as a convolution of a sharp image of the sample and the
distribution function of the probe. However, in our case the image is
also influenced by limitation of the single pixel light detector which
causes the intensity to drop towards the edges of the image. Due to this
limitation, the deconvolution approach was unsuccessful and another
method had to be chosen.

The spot size is determined by calculating the ratio between maxi-
mum and minimum intensity in the central part of the image. This ratio
depends on the spot size, its distribution function, sample geometry and
the ratio between the intensity of a dark and light stripe for perfect
resolution image.

Let us assume that a point-like probe positioned inside the lighter
stripe corresponds to relative signal intensity 𝐴 and the probe posi-
tioned inside the darker stripe corresponds to intensity 𝐵. Next, let
us denote the width of the light stripe as 𝑎 and the width of the dark
stripe as 𝑏. Finally, let us assume the sample is illuminated only by a
single rotationally symmetrical electron probe with knife edge size of
𝐸25,75 = 2𝑅 and scaled linear cumulative distribution function 𝐹 . The
scaled linear cumulative distribution function can be calculated from
the probe distribution function 𝜌(𝑥, 𝑦) as

𝐹 (𝑟∕𝑅) ∝ ∫

𝑟

0
d𝑥∫

∞

−∞
d𝑦𝜌(𝑥, 𝑦) (6)

We assume the scale of the function 𝐹 to be such, that 𝐹 (0) = 0,
(1) = 0.5 and 𝐹 (∞) = 1.

The intensity of the light and the dark stripes imaged with a probe
ith distribution 𝐹 is then given respectively as

1 = 𝐵 + (𝐴 − 𝐵)

{

𝐹
( 𝑎
2𝑅

)

+
∞
∑

𝑖=1

[

𝐹
(

𝑎∕2 + 𝑖 ⋅ (𝑎 + 𝑏)
𝑅

)

−𝐹

(

−𝑎∕2 + 𝑖 ⋅ (𝑎 + 𝑏)
𝑅

)]}

= 𝐵 + (𝐴 − 𝐵)𝑆1(𝑅), (7)

2 = 𝐴 − (𝐴 − 𝐵)

{

𝐹
( 𝑏 )

+
∞
∑

[

𝐹
(

𝑏∕2 + 𝑖 ⋅ (𝑎 + 𝑏)
)

2𝑅 𝑖=1 𝑅
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Fig. 4. Comparison of the new model for the slice method with a Monte Carlo simulation. The trajectory displacement is plotted as it accumulates across a multi-beam segment
with a lens in the common cross-over for various beamlet currents. Top shows a typical multi-beam segment with wide common cross-over. Bottom shows the same situation with
a ten-times narrower common cross-over (a hundred times larger angular current density). Solid lines represent the total trajectory displacement given by Eq. (5) with 𝛾 = 3∕2,
dashed lines correspond to the 𝑎 component and dotted lines to the 𝑏 component in Eq. (4), markers show the results of the Monte Carlo simulation. The low current corresponds
to pencil-beam regime, the high current to Holtzmark regime and the middle current to an intermediate regime. We can see that in all cases the calculation agrees very well with
the Monte Carlo simulation. We also see that in case of a narrow cross-over (bottom part with low current), the 𝑏 component is smaller and the compensation of the 𝑎 component
is visible.
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t
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o
i

−𝐹

(

−𝑏∕2 + 𝑖 ⋅ (𝑎 + 𝑏)
𝑅

)]}

= 𝐴 − (𝐴 − 𝐵)𝑆2(𝑅). (8)

Although these expressions look complicated, their interpretation is
rather simple. The maximum intensity corresponds to the situation
where the spot center is in the middle of the light stripe. Thus we can
calculate it as a sum of the total dark stripe intensity 𝐵 and the fraction
of probe located on light stripes expressed as 𝑆1 times the intensity
ifference 𝐴 − 𝐵. Similarly we can calculate the minimum where the
pot is centered in the middle of the dark stripe.

We do not know the absolute values of 𝐴 and 𝐵, but we can express
the ratio of the intensities 𝐼1∕𝐼2 depending on the ratio 𝐴∕𝐵 which was
etermined from higher resolution images to be equal to 3.1 ± 0.2:
𝐼1
𝐼2

=
1 + (𝐴∕𝐵 − 1)𝑆1(𝑅)

𝐴∕𝐵 − (𝐴∕𝐵 − 1)𝑆2(𝑅)
. (9)

ith 𝐹 known, this is a monotonous function of 𝑅 which can be
6

umerically inverted to calculate the 𝐸25,75 and subsequently the 𝐹𝑊50
pot size. The accuracy of this measurement is in our case better than
5 nm. However, in some cases the deviation of the experimental data
rom the theory is larger due to random or systemic errors in acquiring
he data.

.1.1. Probe distribution function
The formula for the maximum and the minimum intensity depends

n the scaled linear cumulative distribution function 𝐹 . This function
s in general given by several combined effects:

• The image of the virtual source. We assume it has a gaus-
sian distribution. Its size does not depend much on the beamlet
current [6].

• The aberrations of the optical system. They are negligible
compared to the virtual source size because the optical system

is not demagnifying the virtual source.
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Fig. 5. Left: Schematic drawing of the system with intermediate lens used as a final lens. Right: Typical image of the sample created with one of the central beamlets for beam
energy 10 keV.
• The diffraction. This effect is completely negligible in our sys-
tem.

• The defocus and astigmatism. Because we use a striped sample,
we can actually achieve optimal resolution even with a slight
defocus or astigmatism if we use the stigmator to make a line
focus with the line parallel to the stripes.

• The trajectory displacement.We assume the trajectory displace-
ment has an isotropic Holtzmark distribution.

The actual distribution function is a composition of all these effects.
However, we can neglect the aberrations and the diffraction. Moreover,
assuming perfect line focus aligned with the sample, the spot shape
is equivalent to a convolution of the stigmatic probe shape with a
line segment parallel to the stripes. Because we integrate the direction
parallel to the stripes out, any astigmatism is integrated out of the
scaled linear cumulative distribution function.

We can determine the actual linear cumulative distribution function
by taking an image of a sharp edge with a pixel resolution much
larger than the probe size. The experiment verifies that the distribution
function is a mix between Gaussian and Holtzmark distributions. The
Gaussian contribution is larger that the Holtzmark and so for simplicity
we have chosen to use a power sum rule with 𝛾 = 2.

5.2. Results and discussion

We have measured the dependence of the trajectory displacement
on common cross-over position and beamlet current. The common
cross-over position can be altered by changing the strength of the
accelerator lens in the multi-beam source. The beamlet current was
changed by manipulating the source filament temperature (changing
the filament current).

In order to calculate the spot size, we need to know the position and
size of the common cross-over and also the base spot size without the
effect of trajectory displacement. Due to multiple unknown misalign-
ments in the system, the position and size of the common cross-over
and the spot size without Coulomb interactions are different from the
theoretical values and were instead fitted to the experimental data.

Comparison of the slice method with the experimental results is
shown in Fig. 6.
7

We see that the experimental values fit the theoretical prediction
very well. Especially scaling of the trajectory displacement with respect
to the beamlet current is completely in agreement with the theory, but
also the dependence on the position of common crossover seems to fit
theoretical values well.

From the results we can see that the non-compensatable part of
the trajectory displacement is dominant when the common cross-over
is located inside the final lens. This is not surprising, because in our
case the final lens is roughly in the middle of the column and thus
the compensatable part vanishes in that case. We can also see that
in general neither of the two contributions is negligible and both
contributions have to be taken into account.

6. Conclusions

We started this article with a general knowledge of trajectory dis-
placement in particle beams. We have discovered through Monte Carlo
simulations that the traditional approach does not accurately describe
the trajectory displacement in a multi-beam system. A detailed study of
the processes causing trajectory displacement in a multi-beam system
lead us to the two-component approximation.

The contribution from the vicinity of the common cross-over is
in fact uncorrelated with the contributions from other parts of the
trajectory, and thus the trajectory displacement can be viewed as a
composition of two independent components. Furthermore, we have
shown that with a suitable choice of trajectories (i.e. position of the
beamlet cross-overs and common cross-overs) the component originat-
ing from outside of the common cross-over regions can be completely
compensated. Unfortunately, the second contribution is always positive
and therefore cannot be compensated.

The last part of the article was devoted to the experimental verifica-
tion of such behavior on a multi-beam SEM with 196 beams. We were
able to successfully measure the dependence of the final spot size on the
beamlet current and on the shape of the optical path of the multi-beam
(position of the common cross-over). The experimental results fit the
predicted theoretical behavior very well and confirm that the theory
can be used to describe the trajectory displacement even outside the
idealized models used in Monte Carlo simulations.
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Fig. 6. 𝐹𝑊50 spot size as a function of common crossover position with respect to the final lens for various beamlet currents. Markers show the experimental values, the solid
line is the total calculated spot size including both contributions and a fitted intrinsic spot size. Dotted line shows results with only the compensatable 𝑎 component contribution
and dashed with only the uncompensatable �⃗� component contribution to the trajectory displacement. The accuracy of the method is below 15 nm.
We believe our work provides a valuable tool for characterization
of multi-beam systems, especially for determination of resolution in
probe-forming multi-beam systems such as the multi-beam SEM. It is,
however, not a closed chapter as many questions remain unanswered.
For example, it is not clear how to properly combine the trajectory
displacement with other contributions to the final spot size such as
the geometrical spot size and aberrations. Another possible path for
further development is a description of trajectory displacement in case
of non-ideal beam path. That includes for example enlargement of the
common cross-over due to aberrations of the lens near the first beamlet
crossover plane and misalignments which can potentially influence the
total trajectory displacement.

To conclude, there is still a lot of room for improvement even
in such a limited scope as trajectory displacement in a multi-beam
SEM. Nevertheless, we have greatly improved the way trajectory dis-
placement in these systems can be calculated and we have faith that
our results will help push the field of multi-beam electron microscopy
forward.

Acknowledgments

The authors acknowledge the early involvement of Erik Kieft, Ali
Mohammadi Gheidari, Bohuš Seďa and Bas van der Geer in the Monte
Carlo simulation of trajectory displacement in multi-beam systems. Jan
Stopka would like to thank Tomáš Radlička of Institute of Scientific
Instruments of the CAS for his helpful remarks and ThermoFisher Scien-
tific for supporting his placement at TU Delft, where the experimental
part was conducted. He would also like to thank his wife Adéla Stopka
for the enormous help with creating figures for this article.

The research was supported by the TA CR, Czech Republic
(TE01020118), the MEYS CR (LO1212), its infrastructure by the MEYS
CR, Czech Republic and the EC, Czech Republic (CZ.1.05/2.1.0 0/01.0
017) and by the CAS, Czech Republic (RVO:68081731).

References

[1] G.H. Jansen, Trajectory displacement effect in particle projection lithography
systems, J. Appl. Phys. 84 (8) (1998-10-15) 4549–4567, http://dx.doi.org/10.
1063/1.368681, URL http://aip.scitation.org/doi/10.1063/1.368681.

[2] J.E. Barth, P. Kruit, Addition of different contributions to the charged par-
ticle probe size, Optik 101 (1996) 101–109, URL https://ci.nii.ac.jp/naid/
80009062810/en/.
8

[3] T.R. Groves, Charged Particle Optics Theory, first ed., CRC Press, Boca Raton,
2015.

[4] G.H. Jansen, Coulomb Interactions in Particle Beams, Academic Press, Boston,
1990.

[5] P. Kruit, G.H. Jansen, Space charge and statistical Coulomb effects, in: J. Orloff
(Ed.), Handbook of Charged Particle Optics, second ed., CRC Press, Boca Raton,
2009, pp. 341–389.

[6] M.S. Bronsgeest, Physics of Schottky Electron Sources, Delft University of
Technology, Delft, 2009.

[7] Y. Zhang, A 100-Electron-Beam Source from a High Brightness Schottky Emitter
for Fast Patterning Applications, Delft University of Technology, Delft, 2008.

[8] Y. Zhang, P. Kruit, Design of a high brightness multi-electron-beam source,
Phys. Proc. 1 (1) (2008) 553–563, http://dx.doi.org/10.1116/1.588661, URL
https://linkinghub.elsevier.com/retrieve/pii/S187538920800148X.

[9] A. Mohammadi-Gheidari, C.W. Hagen, P. Kruit, Multibeam scanning electron
microscope, J. Vac. Sci. Technol. B 28 (6) (2010) C6G5–C6G10, http://dx.doi.
org/10.1116/1.3498749, URL http://avs.scitation.org/doi/10.1116/1.3498749.

[10] A. Mohammadi-Gheidari, P. Kruit, Electron optics of multi-beam scanning
electron microscope, Nucl. Instrum. Methods A 645 (1) (2011) 60–67, http:
//dx.doi.org/10.1016/j.nima.2010.12.090, URL https://linkinghub.elsevier.com/
retrieve/pii/S0168900210028706.

[11] A. Mohammadi-Gheidari, 196 Beams in a Scanning Electron Microscope, Delft
University of Technology, Delft, 2013.

[12] Y. Ren, P. Kruit, Transmission electron imaging in the delft multibeam scanning
electron microscope 1, J. Vac. Sci. Technol. B 34 (6) (2016) http://dx.doi.org/
10.1116/1.4966216, URL http://avs.scitation.org/doi/10.1116/1.4966216.

[13] Y. Ren, Imaging Systems in the Delft Multi-Beam Scanning Electron Microscope
1, Delft University of Technology, Delft, 2017.

[14] J. Stopka, P. Kruit, Statistical Coulomb interactions in multi-beam SEM, Inter-
nat. J. Modern Phys. A 34 (36) (2019) 1942021, http://dx.doi.org/10.1142/
S0217751X19420211.

[15] J. Stopka, Analytical formulae for trajectory displacement in electron beam
and generalized slice method, Ultramicroscopy 217 (2020) 113050, http://dx.
doi.org/10.1016/j.ultramic.2020.113050, URL http://www.sciencedirect.com/
science/article/pii/S0304399120302011.

[16] Pulsar Physics, General Particle Tracer, http://www.pulsar.nl/gpt.
[17] W. Zuidema, Y. Ren, J. Hoogenboom, C. Hagen, P. Kruit, Transmission imaging

of biological tissue with the delft multi-beam SEM, in: European Microscopy
Congress 2016: Proceedings, American Cancer Society, 2016, pp. 394–
395, http://dx.doi.org/10.1002/9783527808465.EMC2016.5737, arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/9783527808465.EMC2016.5737,
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527808465.
EMC2016.5737.

http://dx.doi.org/10.1063/1.368681
http://dx.doi.org/10.1063/1.368681
http://dx.doi.org/10.1063/1.368681
http://aip.scitation.org/doi/10.1063/1.368681
https://ci.nii.ac.jp/naid/80009062810/en/
https://ci.nii.ac.jp/naid/80009062810/en/
https://ci.nii.ac.jp/naid/80009062810/en/
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb3
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb3
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb3
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb4
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb4
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb4
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb5
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb5
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb5
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb5
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb5
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb6
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb6
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb6
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb7
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb7
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb7
http://dx.doi.org/10.1116/1.588661
https://linkinghub.elsevier.com/retrieve/pii/S187538920800148X
http://dx.doi.org/10.1116/1.3498749
http://dx.doi.org/10.1116/1.3498749
http://dx.doi.org/10.1116/1.3498749
http://avs.scitation.org/doi/10.1116/1.3498749
http://dx.doi.org/10.1016/j.nima.2010.12.090
http://dx.doi.org/10.1016/j.nima.2010.12.090
http://dx.doi.org/10.1016/j.nima.2010.12.090
https://linkinghub.elsevier.com/retrieve/pii/S0168900210028706
https://linkinghub.elsevier.com/retrieve/pii/S0168900210028706
https://linkinghub.elsevier.com/retrieve/pii/S0168900210028706
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb11
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb11
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb11
http://dx.doi.org/10.1116/1.4966216
http://dx.doi.org/10.1116/1.4966216
http://dx.doi.org/10.1116/1.4966216
http://avs.scitation.org/doi/10.1116/1.4966216
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb13
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb13
http://refhub.elsevier.com/S0304-3991(21)00019-X/sb13
http://dx.doi.org/10.1142/S0217751X19420211
http://dx.doi.org/10.1142/S0217751X19420211
http://dx.doi.org/10.1142/S0217751X19420211
http://dx.doi.org/10.1016/j.ultramic.2020.113050
http://dx.doi.org/10.1016/j.ultramic.2020.113050
http://dx.doi.org/10.1016/j.ultramic.2020.113050
http://www.sciencedirect.com/science/article/pii/S0304399120302011
http://www.sciencedirect.com/science/article/pii/S0304399120302011
http://www.sciencedirect.com/science/article/pii/S0304399120302011
http://www.pulsar.nl/gpt
http://dx.doi.org/10.1002/9783527808465.EMC2016.5737
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527808465.EMC2016.5737
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527808465.EMC2016.5737
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527808465.EMC2016.5737
https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527808465.EMC2016.5737
https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527808465.EMC2016.5737
https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527808465.EMC2016.5737

	Trajectory displacement in a multi beam scanning electron microscope
	Introduction
	Beam geometry in a multi-beam system
	Slice method in a multi-beam SEM
	Compensation of trajectory displacement in MBSEM
	Comparison with Monte Carlo simulation

	In-beamlet interactions
	Two-component model of the interactions
	Comparison of the new model with Monte Carlo simulation

	Experimental verification
	Description of the experiment
	Probe distribution function

	Results and discussion

	Conclusions
	Acknowledgments
	References


