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Abstract

Federated Learning is a machine learning paradigm
where the computational load for training the
model on the server is distributed amongst a pool
of clients who only exchange model parameters
with the server. Simulation environments try
to accurately model all the intricacies of such
a system. However, current simulators do
not properly impose the concept of simulation
time, leading to global model inaccuracies and
difficulties of replicating reruns of the simulation,
which is most prominent in the asynchronous
scenarios. To this purpose, we propose a discrete-
event simulator for the central server asynchronous
case which timestamps all the events in the
system prior to execution, reducing variability in
client model updates on the server. We also
introduce a log-structure used to keep states of the
simulation, making client inspection possible based
on time. We evaluate the proposed discrete-event
simulator on the baseline simulator of Flower,
reducing standard deviation amongst server model
updates for 31.5% and improving accuracy with
heterogeneous clients in the MNIST case for 3.3%
on average.

1 Introduction

Federated Learning, exemplified with the FedAvg
algorithm [1], is a machine learning approach where
distributed devices collectively train a central global model.
In this approach a central server each round selects a
subset of clients that are used for independent training
of the model with their own data, after which the server
aggregates the model by combining the obtained model
parameters from clients. The characteristics of such an
environment are client resource and data heterogeneity,
which exist due to differences of client computational
resources and the non-IID distribution of data [2;
31

The landscape of Federated Learning has expanded rapidly
from the initial FedAvg algorithm to encompass a variety of
different network topologies, expanding to multi-server [4;
5] and fully decentralized topologies [6], and communication
primitives, where asynchronous algorithms [7], such as
FedAsync [8], have been introduced. In order to quickly test
and verify new ideas about FL algorithms, researchers resort
to simulation environments due to costly effects of real-life
deployments of Federated Learning.

Due to its relative recent appearance in the research field,
Federated Learning simulation environments, exemplified
with the popular framework Flower [9], are still very new
and do not have all the features of an ideal distributed
system simulation environment, such as of discrete-event
simulators [10]. Popular distributed systems discrete-event
simulators, such as the ns3 [11] network simulator and
the PeerSim [12] peer to peer simulator, provide tools for
correct event execution based on simulation time and tools
for tracking system state with simulation time.

Because of its heterogeneous nature, simulation
environments catered for Federated Learning need to
fulfill similar properties as the previously cited discrete-
event simulators. Without those properties, especially the
property of the global simulation time, Federated Learning
simulations can as a consequence have non-accurate global
states and showcase non-reproducibility between simulated
runs of the same experiment. This is especially relevant in
the asynchronous scenario where the global model is updated
as soon as the client request arrives. For example, clients
that update the global model more often on average, due
to variability in hardware resources and OS scheduling and
without proper simulation time, would bias the global model
towards their data distribution.

To this purpose, we will try to address and solve for the
following research questions:

* RQ1: How to ensure correct timings for a simulated FL.
system?

* RQ2: How can we inspect the results of the system for
any point in time?
The main contributions can be summarized as follows:

1. We propose a formal model for a discrete-event
simulator, based on the decentralized-learning-
simulator [13], in the central server asynchronous
Federated Learning scenario by defining all the events
in such a system together with a network and a
computation model used in the simulator. The final
result of running the simulator is a directed acyclic
graph of all the tasks in the system: from local client
training to server level aggregation, which is resolved
by one or multiple worker processes.

2. We propose a log-structure that keeps track of all
the states of the simulator when worker processes are
resolving the DAG. The log-structure serves the purpose
of inspecting system state at any point in time.

3. We extend the GitHub repository of the decentralized-
learning-simulator [13] to implement the central server
asynchronous FL scenario based on the formal definition
we give.

4. We validate the extended framework by comparing it
with the baseline framework of Flower [9] with the
aggregation algorithm of FedAsync [8] on global system
accuracy and reduction in standard deviation between
the reruns of the experiment.

The rest of the paper is organized in the following manner.
Section 2 will give an overview on the required background
knowledge and Section 3 will show the state of the art
papers on the topic. Following that, Section 4 will go
more in-depth into the problem that we are tackling, from
which Section 5 will continue and introduce solutions to the
research questions RQ1 and RQ2. Section 6 describes the
experimental setup and the results of the experiments, whose
results are further reasoned about in Section 7. Continuing
from there, Section 8 discusses the ethical principles of the
conducted research and finally Section 9 wraps up the paper
with the conclusion and gives insight into future research
directions.



2 Background

The following section will cover the important background
information needed to understand the paper, starting with the
concept of Federated Learning, then proceeding to Federated
Learning simulations and ending with an outlook on discrete-
event simulations.

2.1 Federated Learning

In the paper of FedAvg [1] the following model for Federated
Learning is presented, where K is the number of clients, ¢
the global round number, Py the set of data points for client k
and f;(w) = l(x;, y;; w) the loss of the prediction on example
(x4, y;) on model parameters w. The objective for each client
is to compute the minimum loss for parameters w, which is
described with the following equation:

1
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The goal of Federated Learning is then to minimize the loss
on all client model parameters by aggregating the values into

a global model:
K

witt =3
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In the synchronous approach, the server needs to wait
for all the selected clients to respond with their new model
parameters, thus faster clients are stuck waiting for the
slow clients to finish [2]. Due to this, an asynchronous
approach has been introduced, initially with the FedAsync [8]
algorithm, which does not wait for the selected group of
clients to finish before starting the aggregation process, rather
the server aggregates the model parameters as they arrive
one-by-one. The main objective can be described with the
following equation:

wt = (1 -a)xw' +a*xw) "

where w! represents the global model before aggregation,
wZ*T represents the client’s locally trained model on the
global model w'~" and a € (0, 1) represents the staleness

factor which can be defined as:
1

D e
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which is one of the options considered in the FedAsync [8]
approach.

2.2 Federated Learning Simulations

State of the art simulation environments for Federated
Learning do not resemble traditional simulation
environments, such as discrete-event simulators, rather
they serve the purpose of researchers quickly verifying
new algorithms without having real-life deployments. This
is demonstrated as most of the simulation environments
for Federated and Decentralized Learning utilize a single-
machine or a cluster environment [14].

Many existing frameworks, such as Flower [9], Flute [15]
and Pollen [16], offer different Federated Learning

algorithms already included in the framework and some
of them, such as Flower [9], provide extensibility when it
comes to the underlying Machine Learning platform used,
providing the choice between frameworks of PyTorch [17]
and TensorFlow [18].

From the computer architecture perspective, FL clients and
servers are represented in lots of ways. One approach models
each client and server instance as an individual process,
as in decentralize_py [14], meanwhile other FL simulators,
such as FL_PyTorch [19], model each client/server instance
as an individual CPU thread from the thread pool inside
the Python interpreter process. Other frameworks, such
as Flower [9] and Flute [15], abstract the mapping of
clients/servers to OS processes or CPU threads, thus leaving
the task of mapping processes/threads to clients/servers to the
underlying simulation engine used within the simulator.

2.3 Discrete-Event Simulations

In the sphere of Federated Learning simulations, there has
not been much research done in the development of a
discrete-event simulator. Only the decentralized-learning-
simulator [13] implements a discrete-event simulator for
the Decentralized Learning scenarios and a central server
synchronous Federated Learning case. Discrete-event
simulator is a simulation model in which the model state is
defined as a sequence of events and where the simulation
clock jumps from event time to event time, rather than the
clock “ticking” at regular intervals. In this way the current
simulation time is updated to the time of the next event and
changes in the system that occur with the next event state are
executed [20].

In order to properly model the operation of the
system assumptions need to be made about the underlying
components of the system. A popular approach is to
stochastically model the underlying components by assuming
a probability distribution based on the collected statistical
data of each component [21]. For example, famous discrete-
event simulators, such as network simulators ns3 [11] and
PeerSim [12], create a stochastic model for the underlying
resources of the system, such as: CPU compuation rate,
bandwidth and network latency [21].

3 Related Work

The following section will cover the state of the art solutions,
starting from the description of significant Federated
Learning simulators and finally the decentralized-learning-
simulator [13] we use to implement the asynchronous central
server scenario.

3.1 Federated Learning Simulators

The most widely used simulator for Federated Learning is
Flower [9]. A significant downside of Flower is that it is
a continuous simulator, without a proper concept of global
simulation time. This means that it is vulnerable to global
state inaccuracies between reruns of the same experiment,
which is especially relevant in the asynchronous scenario.
Another limitation of Flower is that it does not model
heterogeneous clients efficiently within the simulation, which



is where the simulator of Profea [22] improves the baseline
framework by increasing the performance of the simulator by
properly modelling for heterogeneous clients.

Another downside of Flower and the state of the art
Federated Learning simulators is in not properly modelling
the network elements inside of the simulation. This is
where the simulator of ns3-f1 [23] introduces a network
model into the baseline simulator by integrating the ns3 [11]
network simulator for properly modelling the latency of the
communication. The authors of ns3-fl propose the following
formula for modelling timing inside of the simulations:

LY =ty +t; + 1,
where t7, represents the time it takes client ¢ to establish a
connection with the server and retrieve the full global model
in round 7, ¢, represents the client local training time in round
T, t, represents the time it takes for the client to send the
updated model to the server in round r.

The authors of FEDL [24] state that the value of ¢/, can be
estimated based on the number of CPU cycles that the local
iteration of model updating would take on the client process.
On the other hand, authors of the simulator of Pollen [16]
state that the client training time inside the GPU cannot be
predicted based on dataset size and hardware specifications
as factors such as OS scheduling and memory bandwidth
introduce variability. Due to the discrepancy of conclusions
from the previously cited papers, we will assume that the
value t] if tied to a CPU process is not predictable based on
dataset size and hardware.

3.2 Discrete-Event Simulators

The only discrete-event simulator for Federated or
Decentralized Learning is the decentralized-learning-
simulator [13]. The simulator can be found in the GitHub
repository and is not yet backed by a research paper. The
simulator implements a discrete-event simulator for a large
pool of Decentralized Learning scenarios and the central
server synchronous Federated Learning scenario. It works
by time-stamping all the events in the system through the
execution of the discrete-event simulator which then builds a
directed acyclic graph of all the tasks in the system which is
then given to one or more worker processes to be resolved.
For modelling computation delay occurring with local client
training, the simulator increases the event time based on the
following formula:

simulated_speed
AUGMENTATION_FACTOR_SIM X local_steps X batch_size X | —————

1000
and for modelling the network it implements a bandwidth
scheduler that keeps track of transfer events within the
simulation based on which it increases simulation time.
Another noteworthy work is the paper of BlockSim [21]
which is a discrete-event simulator that simulates a
blockchain. The simulator proposes a network model based
on the model for latency and throughput. When it comes
to latency, the authors gather statistical data about ping
traces from different locations and for throughput, the authors
gather statistical data by gathering bandwidth measurement
data on two TCP endpoints in different geographical regions,
after which they approximate the probability distribution over
the data for latency and throughput.

4 Problem Description

This section will cover the main problems that we are trying
to address and solve for when it comes to correct timings and
inspecting simulation state correctly.

4.1 Formal Problem Description

A properly defined simulation environment needs to be able
to reproduce the performance of a system and its progress
over time [21]. This is not the case in majority of the
Federated Learning simulation frameworks, exemplified with
the framework of Flower, primarily because they lack the
property of the global simulation time. This means that the
simulations are susceptible to inaccurate results due to the
heterogeneous data distribution between the clients and the
client’s local training variability.

The observed variability between clients in local client
training time, ¢, is mostly influenced by the difference in the
underlying hardware resources of simulated clients as some
simulated clients can be run on the GPU and others can be
run on the CPU. Further, each client state can vary with the
operating system scheduling of internal processes or threads
and the memory layout of the processes [16].

Having correct timings of events and a global simulation
time is especially relevant in the asynchronous case, as
the global model state is updated immediately as the client
request arrives. An issue in simulations without a global
simulation time is that faster clients would dominate the
aggregation of the model, since they would have more
updates on the global model compared to slower clients, thus
having a global model show bias for the data distributed in
the faster clients.

Another issue of simulations without a concept of global
simulation time is the possibility of non-reproducibility of the
simulated run. This is mostly prevalent in the asynchronous
scenario, with simulations that deploy homogeneous clients,
such as clients having the same batch size and the same
underlying resources, as those clients are more dependent
on the scheduling in the OS. The variability in client local
computation time between the simulated runs means that the
order of updating the global model on the server has the
possibility of differing between multiple runs of the same
simulation experiment.

Moreover, having a proper timing model inside of the
simulation allows for inspection of the system at any point
in time, which can foster debugging the simulated run.

5 Time and State Tracking System Design

The following section will introduce a formal model for the
discrete-event simulator in the central server asynchronous
case which imposes a single global simulation time. The
section also showcases the log-structure used to inspect the
state of the simulator at any point in time. Both models will
be our proposed answers to problems defined in the previous
section.

5.1 Timing Model

In order to resolve the research question RQ1, a formal
model for the discrete-event simulator will be introduced



that imposes a global simulation time, which is used to
timestamp all the events in the system by developing a
directed acyclic graph of tasks within the system which is
then resolved by one or multiple worker processes. The idea
for such a discrete-event simulator stems from the GitHub
repository of the decentralized-learning-simulator [13]. The
decentralized-learning-simulator does not implement, thus
neither formally models, the central server asynchronous
case, which is what our contribution will be. Further, we will
introduce a different approach to compuational and network
times derived from the idea found in the BlockSim [21]
simulator.

Components of the simulator: The main components
of the simulator are: the global simulation clock, list of
simulation events, random variables for stochastic modelling
of network and computational resources and the directed
acyclic graph of main tasks in the central server asynchronous
FL scenario.

Global simulation clock: The simulation keeps track of
a single global simulation time which is initialized to O at
the start of the simulation. The clock moves from one event
time to the next event time as the simulation evolves; e.g.,
the global simulation time is updated to be equal to the event
time of the next to be executed event, which is updated as the
event is “popped” from the event list.

Events list: The simulation maintains a list of events to
be executed. Each event in the simulation is defined with
the global simulation time at which the event occurs and its
accompanied type. The main event types are the following:

* Initialization of client model parameters

« Start of local model client training

* End of local model client training

e Start of transfer of model parameters

* End of transfer of model parameters

» Server aggregation of updated client model parameters

The events list is organized as a priority queue sorted by event
time i.e., global simulation time of event occurrence.

Random variables: The simulator will construct a

stochastic model of the underlying resources: network
latency, network throughput and client-side training time, by
developing a probability distribution based on statistical data
of each resource within the FL scenario. To achieve this
we use the Kolmogorov-Smirnov test [25] to find the best
probability distribution fitted over the data. For the network
models we have considered the following distributions:
normal, log-normal and Weibull, as some were considered
a good fit over network data [26]. The presented models are
the following:

» Latency: For the communication delay between clients
and the server, the data is taken from the AWS Latency
Monitoring service [27], whose small sample can be
found in Table 1. Based on the data from the AWS
service and the results of the Kolmogorov-Smirnov
test [25] we assume a Gaussian distribution:

X ~ N (p, 0°)
with p = 154.385 and 0 = 93.297.

‘Latency(ms) ‘ Cape Town | Hong Kong | Sydney | Frankfurt

Cape Town 8.1 360.62 410.43 155.04

Hong Kong 365.1 1.27 129.27 219.68

Sydney 412.56 129.76 2.57 274.79
Frankfurt 162.01 217.15 275.78 3.54

Table 1: Sample of Latencies from the AWS Latency Monitoring
Service

e Throughput:  The throughput is calculated by
measuring the bandwidth over two TCP endpoints, one
from the client machine located in the Netherlands and
the other from the server machine located in Finland, by
using the iPerf3 [28] tool to capture throughput. Based
on the gathered data and the results of the Kolmogorov-
Smirnov test [25] we assume a Weibull distribution:

Y ~ f(z; M\ k, loc)

with A = 114.7387, k = 29.105 and an additional
shifting parameter [oc = —76.1569.

* Client training: Client training times are calculated by
running multiple full asynchronous FL scenarios with
varying batch sizes; 12, 64 and 100, and hardware
resources; CPU and GPU, amongst the clients. Based
on the results of the Kolmogorov-Smirnov test [25] we
assume a Log-normal distribution:

Z ~ Lognormal (u7 02)
with ¢ = 0.165 and 0 = 0.8632.

Directed Acyclic Graph: The DAG will be the outcome
of running the discrete-event simulator. Nodes in the DAG
will represent tasks in the central server asynchronous FL
system which will be executed by one or more worker
processes. Edges in the DAG will represent dependency
constraints between the tasks in the FL scenario; e.g., a client
local model update must occur before the server aggregates
that model into the global model. Each task will include a
list of input and output tasks, where the input list will form
a set of dependency constraints, the tasks upon which the
current task is dependent, and where the output list forms a
set of tasks dependent on the current task. There will be three
different types of tasks:

* Initialization task: This task will be the only source
node in the DAG; i.e., the entry task before no other task
can be executed.

¢ Aggregate task: The task represents server level
aggregation of the trained client model at server age
time ¢. Input tasks attached to the aggregate type of
task are the previous aggregate task, aggregate task that
happened at server age time ¢ — 1, and the training task
which represents the task whose execution lead to the
new client model update. When executing the aggregate
task, the worker process will aggregate the model based
on the approach of FedAsync.

» Training task: The task represents local model client
training and has a single task in its input tasks list, which
is the initialize or aggregate task. In its output list it also
contains a single task, an aggregate task.



Protocol: The simulator behaves in the following way:

1. Client initialization event is the first event to occur and
it updates the event list by appending start transfer of
model parameters events for each client to the list who
then update the event time as the current simulation
time added with the communication delay, which is
calculated as seen in Algorithm 1.

Algorithm 1 Communication Delay

latency + Sample X {sample only positive values}
throughput < Sample Y {sample only positive values}

throughput _bytes_per_sec <+ throughputx1,000,000

; MODEL_SIZE
transfer*tlme A throughput_bytes_per_sec

communication_time < latency + transfer_time X
1,000
return communication_time

2. Event cycle loop starts after the initialization event
finishes and this part resembles the classic central server
asynchronous FL scenario event loop, which contains
the following events: client local training of the model,
followed with sending the server new parameters, server
aggregation of the parameters into a global model and
transfer of the newly updated model to the client.
Every client experiences the same event loop, which is
visualized in Figure 1.

Communication

INITIALIZE Delay > Sample X,Y

START

TRANSFER
| END  ——> TRAINING
START !
TRANSFER Computation

S Delay - Sample Z

TRAINING
END

AGGREGATE
MODEL

Communication |
Delay > Sample X,Y
| TRANSFER % TRANSFER
END

START

Figure 1: Simulation Event-Cycle for a Single Client-Server Pair

3. Ending condition stops the simulation and is
represented as the aggregation event happening
after a certain number of aggregations has occurred.

5.2 State Model

In order to resolve the research question RQ2 we propose
the following log-structure which will serve the purpose of
gathering simulation traces which can be used to inspect the
simulated run at any point in time.

The result of the discrete-event simulator will be a DAG
of tasks. This DAG will be solved by one or many
worker processes, obeying the precedence constraints within
the DAG. In order to track system state accurately in the

execution of the DAG, a log-structure L is introduced, which
will form a mapping of each client to its list of states, where
a single state represents the events in the system from the
server sending the client the global model parameters, then
to the client local training on the model and finally the server
receiving the client’s local model parameters.

Each state structure Sf , with client ¢; and index of server-
client communication j, will as its parameters contain the
following:

* begin_timestamp: global simulation time when the client
receives the server’s model

* server parameters received at time tpegin _timestamp

* server age received at time tyegin_timestamp

* t.: sampled global simulation time for client training
* client updated model parameters

* client set of gradients for E epochs:
(VoL

* end_timestamp: global simulation time when the server
receives the model from the client

* server model parameters at time tepnd_timestamp

* server age at time tend_timestamp

6 Experimental Setup and Results

The discrete-event simulator was implemented as an
extension to the codebase of the decentralized-learning-
simulator [13]. The original repository did not implement
the asynchronous FL scenario, so it had to be extended for
that scenario. For the baseline FL framework, Flower [9]
was chosen because of its simplicity to run and configure.
The framework of Flower was also extended as it does
not implement the asynchronous FL scenario natively, for
which we have gotten help from the GitHub repository of
Sflower_async [29]. PyTorch [17] was chosen as the machine
learning library in both frameworks due to it having more
examples on GitHub compared to alternatives.

Datasets: The experiment is carried out on two image
classification tasks: MNIST [30] and CIFAR-10 [31]. The
MNIST dataset consists of 60000 training and 10000 testing
28x28 images of handwritten digits, consisting of a total of
10 different classes. The CIFAR-10 dataset consists of 60000
32x32 images of 10 different classes, representing airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships and trucks.

Architectures: We will consider a simple CNN
architecture [32] consisting of 3 fully connected layers and 2
convolutional layers, the only difference being in the number
of input channels for the first convolutional layer; 1 for the
MNIST and 3 for the CIFAR-10 dataset.

Hardware: The machine running the experiments has
a CPU AMD Ryzen 7 4800H with 8 cores and the GPU is
NVIDIA GeForce GTX 1650 with 896 CUDA cores.

Hyperparameters: For MNIST we consider: the learning
rate of 0.0005, number of epochs of 2 and momentum of 0.9.
For CIFAR-10 we consider: the learning rate of 0.01, number
of epochs of 3 and momentum of 0.9.



Sampling Strategy: In both experiments the clients will
experience a non-IID data distribution. To this purpose, we
have considered the approach of giving each client 2 classes
for 80% of the training data with the rest of the training
data being uniformly distributed over the remaining classes.
The approach is visualized in Figure 2. The idea behind the
approach came from trial-and-error experimentation, starting
by giving each client 2 classes for 100% of the training data,
which did not result in a convergence pattern on the MNIST
dataset. By having 20% of the data be uniformly distributed
over the rest of the classes, we saw a convergence pattern.
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Label 6
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3000
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Clients

Figure 2: Non-IID Data Distribution over Clients with each Client
Receiving 80% of Samples for 2 Labels and the Remaining 20% for
the Remaining Labels for the CIFAR-10 Dataset

6.1 Experiments

Experiments will consider two different variations of clients:
heterogeneous and homogeneous. In the experiment with
the heterogeneous clients we will as one metric compare
global model accuracy between the discrete-event simulator,
written as DES in figures, and Flower. The second metric
for heterogeneous clients is the standard deviation between
the reruns on each framework, which serves the purpose
of measuring variability between the frameworks. In the
homogeneous case, we will only compare the standard
deviation between reruns between the two frameworks. For
comparing the global model accuracy in the asynchronous
FL scenario, we will implement the aggregation approach
of FedAsync with a = 0.5 whose formula can be seen in
Section 2. The results will be averaged over different runs
in order to reduce the variance and for different experiments
different seeds will be used. Each experiment will consist of
10 clients, all running on the GPU.

Experiment 1: Heterogeneous Clients

The goal of the first experiment will be to capture the
intricacies between ’faster’ and ’slower’ clients and their
effects on the overall global state, specifically global model
accuracy, and the amount of variation between the reruns of
the experiment. Faster and slower clients will be modelled by
being assigned different batch sizes, specifically half of the
clients will be assigned the batch size of 10 and half of the
clients will be assigned the batch size of 300. The approach
with varying different batch sizes to introduce heterogeneity

is found in the simulator of Protea [22]. The experiment

consists of 8 worker processes and results are averaged on

3 different runs for each dataset-framework combination. For

the discrete-event simulator we have used the seed of 2 in the

MNIST case and the seed of 1 in the CIFAR-10 case.
Figures 3 and 4 showcase the results on MNIST.
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Figure 3: Average Global Accuracy with Heterogeneous Clients -
DES vs Flower on MNIST
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Figure 4: Standard Deviation Over Time Between Reruns with
Heterogeneous Clients - DES vs Flower on MNIST

From Figure 3 we can notice a higher global model
accuracy with the discrete-event simulator compared to the
baseline Flower, especially in the interval range from the
server age of around 60 to the server age of around 130.
From the server age of 130 both frameworks converge to a
similar accuracy value, but still the discrete-event simulator
shows slightly better accuracy. When it comes to the standard
deviation between the reruns, plotted in Figure 4, we can see
similar trends but overall a decrease in standard deviation
with the discrete-event simulator, especially visible around
the median values, where the gap with the Flower is the
largest. The mean value for standard deviation between
the reruns for the discrete-event simulator is 0.039 and for
Flower is 0.052.

Figures 5 and 6 showcase the results on CIFAR-10.
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Figure 5: Average Global Accuracy with Heterogeneous Clients -
DES vs Flower on CIFAR-10
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Figure 6: Standard Deviation Over Time Between Reruns with
Heterogeneous Clients - DES vs Flower on CIFAR-10

From Figure 5 we notice similar accuracy trends for
both frameworks, with the discrete-event simulator showing
slightly worse accuracy, most noticeable in the initial phases.
When it comes to the standard deviation, from Figure 6 we
can notice that the discrete-event simulator shows reduced
standard deviation between the reruns compared to Flower.
The mean value for standard deviation between the reruns for
the discrete-event simulator is 0.007 and is 0.016 for Flower.

Experiment 2: Homogeneous Clients
The goal of the second experiment is to capture the variability
in the underlying simulators imposed by the internals of the
OS under which the simulation is ran. In order to isolate
the variable of OS scheduling and not have influence over it,
clients will be homogeneous, having the same batch size of
64. The experiment consists of 4 worker processes and results
are averaged on 4 different runs for each dataset-framework
combination. For the discrete-event simulator we have used
the seed of 4 in the MNIST case and the seed of 3 in the
CIFAR-10 case.

Figures 7 and 8 and showcase the results of the experiment.

From Figure 7 we can see similar values for standard
deviations on both frameworks, with the discrete-event
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Figure 7: Standard Deviation Over Time Between Reruns with
Homogeneous Clients - DES vs Flower on MNIST

simulator showing slightly smaller standard deviation. This
is confirmed given that the mean value for standard deviation
between the reruns for the discrete-event simulator is 0.012
and is 0.015 for Flower.
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Figure 8: Standard Deviation Over Time Between Reruns with
Homogeneous Clients - DES vs Flower on CIFAR-10

From Figure 8 we see that the discrete-event simulator has
a smaller standard deviation between the reruns compared to
Flower, which is confirmed given that the mean value for
standard deviation for the discrete-event simulator is 0.009
and 0.012 for Flower.

7 Discussion

This section will take a closer look on what the results
entail and will showcase the log-structure, defined in
Subsection 5.2, used to inspect client progression over time.

7.1 Experimental Results

Global Model Accuracy: We have compared the two
frameworks on global model accuracy in the experiment
with heterogeneous clients. Our hypothesis was that with
the continuous simulator, such as Flower, faster clients
would dominate the aggregation and thus bias the global



model towards their data distribution in a non-IID scenario.
Our proposed mitigation, the discrete-event simulator, only
improves the global model accuracy in the MNIST case.
One possible reason could be that our proposed sampling
strategy does not capture the non-IIDness equally in both
datasets. In MNIST, the feature space is much smaller and
more homogeneous than in CIFAR-10, and with our non-
IID sampling strategy faster clients might have been assigned
more non-overlapping features compared to slower clients in
MNIST than in CIFAR-10.

In general, our approach with comparing two frameworks
on global model accuracy might have brought conflicting
results from both datasets, but the idea that strict ordering of
events prior to execution increases accuracy in heterogeneous
scenarios is sound, as we have started testing the two
frameworks by assigning clients the batch size of 10 and 200,
which has yielded similar results on MNIST. We have also
used a static learning rate which might not capture intricacies
of CIFAR-10 fully, possibly explaining the observed results.

Standard Deviation Between Reruns: We see reduced
standard deviation with the discrete-event simulator for all
experiments and datasets. This is the expected result as
our hypothesis was that the discrete-event simulator would
reduce variability between reruns which is found in the
continuous time simulator of Flower. The reduced standard
deviation comes with imposing deterministic client update
times with the discrete-event simulator which leads to slightly
more deterministic learning process results. Even with the
ordering of events, the discrete-event simulator is vulnerable
to the intrinsic non-determinism of the training process itself,
which is especially visible in MNIST cases, as in that
dataset the initial convergence rate is high, thus even slight
differences between reruns would lead to faster divergence in
accuracies, which is observed in Figures 4 and 7.

7.2 Inspecting Client State

From the log-structure we can visualize the progression of
clients and the server, exemplified in Figure 9.
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Figure 9: Accuracy of Clients and Server over Global Simulation
Time on MNIST

This is made possible since the disrete-event simulator
imposes a single simulation time, thus every client local

update is happening in a fixed interval of simulation time.

8 Responsible Research

The following section will take a closer look on how the
research we have conducted was done with integrity and
reproducibility in mind.

Integrity: Every idea that was not originally ours was
properly cited, as it is of great importance to give credit to
previously accomplished work. For example, for the idea and
the code of the decentralized-learning-simulator [13], which
has no published paper, authors were contacted in order to get
permission for us to reference them in this paper. To further
ensure integrity, any ideas and results must be truthfully
explained, without manipulating the results, which was done
throughout the paper.

Reproduciblity: When it comes to reproducibility, it is of
utmost importance for reviewers to be able to reproduce the
results of the experiments. To this purpose all experiments
and methods are defined in great detail, as can be seen in
Section 6. Further, it is inevitable that randomness plays a
factor in experimental results. In order to avoid randomness
and provide better reproducibility, each experiment was ran
multiple times after which the results were averaged. Further,
for each different variant of the experiment we have used a
different seed in the discrete-event simulator.

9 Conclusions and Future Work

In this section we will summarize what was accomplished
throughout the paper and consider our downfalls and possible
future improvements.

Conclusion: In the paper we have proposed a new

approach to imposing time in Federated Learning simulations
by formally modelling a discrete-event simulator and testing
its efficiency in the asynchronous central server FL scenario
against a continuous time simulator of Flower. Further, we
have introduced a log-structure that is used to collect traces
of the simulated run in order to foster debugging, which was
made possible due to the discrete-event simulator. We have
argued that with the new timing model the inefficiencies of
the state-of-the-art simulators would be reduced: we would
reduce variability between reruns and improve accuracy in the
heterogeneous scenario. To this purpose we have conducted
two experiments; one with heterogeneous clients and the
other with homogeneous clients. From the experiment
results, the discrete-event simulator has reduced standard
deviation between reruns for 31.5% from the baseline
framework of Flower and improved accuracy in the MNIST
case with heterogeneous clients for 3.3% on average.
Future Work: The proposed discrete-event simulator
can be improved by further developing the proposed
random variables by gathering real-life FL. deployment data.
Also, with a sampling strategy that better encapsulates
heterogeneity, the discrete-event simulator should be again
tested for accuracy on CIFAR-10. Further, the simulator
can be extended to incorporate multi-server synchronous
and asynchronous scenarios, as those could introduce new
conflicting variables when it comes to accuracy and timing
dependencies between the clients in simulations.
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