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Workflow insights can improve efficiency and safety in the Cardiac Catheterization Laboratory (Cath Lab). As 
manual analysis is labor-intensive, we aim for automation through camera monitoring. Literature shows that 
human poses are indicative of activities and therefore workflow. As a first exploration, we evaluate how marker-

less multi-human pose estimators perform in the Cath Lab. We annotated poses in 2040 frames from ten multi-

view coronary angiogram (CAG) recordings. Pose estimators AlphaPose, OpenPifPaf and OpenPose were run 
on the footage. Detection and tracking were evaluated separately for the Head, Arms, and Legs with Average 
Precision (AP), head-guided Percentage of Correct Keypoints (PCKh), Association Accuracy (AA), and Higher-

Order Tracking Accuracy (HOTA). We give qualitative examples of results for situations common in the Cath 
Lab, with reflections in the monitor or occlusion of personnel. AlphaPose performed best on most mean Full-pose 
metrics with an AP from 0.56 to 0.82, AA from 0.55 to 0.71, and HOTA from 0.58 to 0.73. On PCKh OpenPifPaf 
scored highest, from 0.53 to 0.64. Arms, Legs, and the Head were detected best in that order, from the views which 
see the least occlusion. During tracking in the Cath Lab, AlphaPose tended to swap identities and OpenPifPaf 
merged different individuals. Results suggest that AlphaPose yields the most accurate confidence scores and 
limbs, and OpenPifPaf more accurate keypoint locations in the Cath Lab. Occlusions and reflection complicate 
pose tracking. The AP of up to 0.82 suggests that AlphaPose is a suitable pose detector for workflow analysis in 
the Cath Lab, whereas its HOTA of up to 0.73 here calls for another tracking solution.

1. Introduction

The field of workflow analysis is gaining traction in medical envi-

ronments [1–4]. During surgery, insight into workflow is necessary in 
order to optimize procedures. Example use-cases are improved proce-

dure efficiency, safety, and training.

Manual workflow analysis is a laborious task that requires experts 
to carry out. Automation enables cost-effective, large-scale deployment 
and additional use-cases like real-time feedback or support [5–8]. Per-

sonnel activities, which can be found from human pose tracklets [9–11], 
are descriptive of workflow.

Multi-object keypoint detection—also called pose estimation—aims 
to localize predefined objects and their keypoints in an image. Fig. 1
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shows keypoints and edges (‘limbs’) for the ‘Human’ class as defined 
in [12]. Pose estimators output a continuous pixel (px) location and 
confidence score per detected keypoint. Modern works often take one 
of two approaches:

Top-down: Detect object bounding boxes [13] and estimate a pose in 
each of them [14–16].

Bottom-up: Detect keypoints and assemble them into objects [17–19].

In this work we refer to human keypoints using the abbreviations and 
groupings from Fig. 1a, where a leading ‘l’ or ‘r’ denotes ‘left’ or ‘right’.

The temporal element in videos gives need to multi-object tracking: 
the assignment of the same identity (ID) to the same object in different 
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Nomenclature

Algorithms

𝑇 Tracking

AlphaP AlphaPose

OpenPP OpenPifPaf

OpenP OpenPose

Metrics

AP Average Precision

AA Association Accuracy

DA Detection Accuracy

FN False Negative

FP False Positive

HOTA Higher-Order Tracking Accuracy

IoU Intersection over Union

OKS Object Keypoint Similarity

𝜏OKS OKS threshold

PCKh Head-guided Percentage of Correct Keypoints

TP True Positive

Units

px Pixel

pp Percentage Point

Fig. 1. (a) COCO pose [12] facing the reader, (b)-(e) Camera viewpoints with annotated poses, (f) Map of the Cath Lab with measurements in meters, table and 
cameras not to scale.

video frames. This can be done causally [20], non-causally [21], jointly 
with detection [18], or separately after detection [14]. We denote algo-

rithms with tracking capabilities with a superscript ‘𝑇 ’.

Annotations are required to train or test keypoint detectors and 
trackers. Human annotators label ‘ground-truth’ poses with their video-

specific ID, presence, and location. Algorithms learn to mimic the anno-

tation process and are tested against ground-truths.

Medical environments present challenges like significant occlusion 
between personnel and objects, and appearance similarities due to ster-

ile clothing. General-purpose datasets like [12] are not representative 
of such settings. Evaluating pose estimator performance requires record-

ings of real procedures, which are scarce due to privacy regulations [22]. 
MVOR [23] is a public dataset with recordings from the hybrid operating 
room (OR). It was recorded in four days during different procedures in 
a university hospital. To capture workflow information, however, more 
data and procedure uniformity are needed.

Human pose estimation in ORs was investigated in [24–26]. Refer-

ence [26] tests a state-of-the-art 2D pose estimator on a single metric, 
and focuses on the step to 3D pose estimation. To our knowledge, opti-

mality of the chosen 2D pose estimator in a medical setting has not been 
verified. References [27,28] investigate exoskeletal control through the 
tracking of local limb movements. Where their methods rely on measure-

ment through wearables, we investigate measurement through camera 
monitoring. Reference [29] investigates the scalability of object detec-

tion to different Cath Labs, but does not consider pose detection.

The Cardiac Catheterization Laboratory (Cath Lab) is a specialized 
operating room (OR) where minimally invasive cardiovascular proce-

dures take place. This work evaluates the performance of human pose 
estimators and trackers as a potential tool for workflow analysis in the 
Cath Lab. To this end, we record real coronary angiogram (CAG) proce-

dures in a regional hospital from the four camera (Axis M1125) views 
shown in Fig. 1. The videos capture workflow before, during and after 

procedures. Poses are annotated in ten procedures, showing five dif-

ferent workflow phases. The Cath Lab presents unique challenges to 
computer vision like concealing clothing, occlusion, and reflections. To 
our knowledge, no video dataset of real Cath Lab procedures exists in 
literature at the time of this study. An estimator to analyze any future 
recordings can be selected in line with results from this work.

We test several pre-trained state-of-the-art 2D human pose estima-

tors in the Cath Lab. Three algorithms were selected by the criteria 
that they i) can detect an arbitrary number of poses per image, and ii) 
provide implementation details in peer-reviewed work: AlphaPose [14] 
(AlphaP), OpenPifPaf [18] (OpenPP), and OpenPose [17] (OpenP). As 
AlphaP is a top-down estimator and OpenPP and OpenP are bottom-up, 
results should give an idea of which approach works best in the Cath 
Lab. AlphaP and OpenPP also provide causal tracking models AlphaP𝑇

and OpenPP𝑇 . We quantitatively measure detection- and tracking per-

formance and support these metrics with qualitative observations.

The main contributions of this work are:

• We introduce a unique multi-view dataset of real CAG procedures 
in the Cath Lab with pose annotations.

• We evaluate the performance of several state-of-the-art 2D human 
pose estimators in the Cath Lab.

• We discuss—from a workflow perspective—pitfalls for pose estima-

tion that are Cath Lab-specific.

Section 2 starts with a description of our dataset, included algo-

rithms, and evaluated metrics. Section 3 lists the results and highlights 
trends and differences. Then, section 4 discusses and explains observed 
outcomes. We theorize what the results imply for our setting and identify 
an algorithm for use in future work. Finally, section 5 gives a summary.
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2. Materials and methods

This section describes all components that make up our benchmark. 
Section 2.1 starts with a description of the dataset and its recording pro-

cess. Section 2.2 provides a brief explanation of the used pose estimators. 
Section 2.3 concludes with our used metrics and other evaluations.

2.1. Video recordings

Four cameras (Axis M1125) were hung in the Cath Lab of the Reinier 
de Graaf Gasthuis, Delft, NL. With approval of a local medical ethics 
committee and the hospital board, and informed consent from the pa-

tients and staff, CAG procedures were recorded from the viewpoints 
in Fig. 1 and stored with a resolution of 1920 px × 1088 px and fram-

erate of 25 frames per second. A cardiologist, scrub nurse, up to two 
lab assistants, and the patient were present during each procedure. We 
record and annotate ten procedures, where we ensure that each shows 
a different medical team for variability. CAGs follow a strict, consistent 
workflow with little to no variation. Because of this uniformity, the ten 
chosen procedures cover the typical cases. Local doctors helped select 
the procedures to include some rare deviations. For instance, there is a 
procedure during which the cardiologist had to move the monitor, one 
where ultrasound was needed to find the radial artery for endovascular 
access, and one where the staff struggled to reposition the lead shield.

2.1.1. Annotation

In each procedure, poses were annotated in 51 frames sampled uni-

formly over 30 seconds, from four synchronized viewpoints. This gives 
a total of 10 (procedures) × 51 (frames) × 4 (viewpoints) = 2040 anno-

tated frames. The 30 seconds per procedure were hand-picked to show 
one of five unique workflow phases:

• The patient entering and lying down.

• Realization of endovascular access through the wrist.

• Use of ultrasound to detect the radial artery for endovascular access.

• X-Ray imaging.

• Closure of the entrywound.

Each phase was selected twice from different procedures. Poses were an-

notated in Computer Vision Annotation Tool (CVAT) [30] by two of the 
authors with a background in engineering, and their quality confirmed 
by a third who has been a practicing interventional cardiologist for over 
13 years. We did not use the CVAT interpolation feature in order to pre-

serve fine positioning, which we expect to be important for workflow 
analysis in the Cath Lab. One annotated example frame is shown per 
viewpoint in Fig. 1. Fully occluded individuals and keypoint reflections 
in e.g. the monitor were not labeled. People in the control room and 
hallway were included.

We define a person to be ‘visible’ on a frame if any of their keypoints 
can be seen directly in that frame without obstruction. To describe the 
dataset we label each frame by presence of situations that arise in the 
Cath Lab:

• Occluded fully: A person is inside the camera view but not visible.

• Occluding person: Segmentations of visible persons overlap.

• Occluding object: An object segmentation overlaps a visible person.

• Occluding sheet: The surgical sheet overlaps the visible patient.

• Occluding clothes: Sterile clothes conceal visible elbows, knees or 
hips.

• Occluding window: The control room window overlaps a visible 
person.

• Occluding view: A wall or frame boundary overlaps a visible person.

• Horizontal patient: The visible patient shows non-vertically in the 
view.

• Reflecting monitor: The monitor shows a reflected person.

• Reflecting window: The control room window shows a reflected 
person.

Some situations are viewpoint-specific, e.g., CornerSE sees no reflective 
surfaces and the patient is vertical from WallS even when lying down. 
The situations are labeled per frame, i.e., if a situation occurs multiple 
times in the same frame it is counted as a single instance. In addition, we 
record the number of visible people per frame using the same method-

ology. Finally, we count the total number of annotated keypoints per 
class where multiple can be counted per frame.

2.2. Pose estimation

AlphaP is implemented as a parallel pipeline which aims for high 
inference speeds. A fast object detector [31,32] detects Human bound-

ing boxes, in each of which a Convolutional Neural Network (CNN) 
generates a heatmap per keypoint. At the maximum of this heatmap, 
the keypoint is placed. This per-bounding box processing makes AlphaP

a top-down algorithm. Optionally a second CNN extracts features per 
bounding box for tracking and trajectory smoothing, where background 
noise is mitigated by masking with the detected pose. A low object de-

tector confidence threshold avoids false negatives but yields redundant 
detections. Pose Non-Maximum Suppression removes resulting dupli-

cate poses. A translation-invariant approximation of the loss function 
gradient is used during optimization. Additionally, heatmaps are nor-

malized such that calculated confidences become invariant of keypoint 
scale.

OpenP has a CNN encode limb presence and orientation over the 
entire image into Part Affinity vector Fields (PAFs). A second CNN gen-

erates keypoint heatmaps and locations from these PAFs like AlphaP. 
Poses are assembled in bottom-up fashion with bipartite matching: each 
candidate limb is scored by integration over its PAF, and a set of limbs 
is selected to maximize the sum of scores.

OpenPP replaces heatmaps with Composite Intensity Fields which 
encode keypoint confidence, scale, and location offset. PAFs are re-

placed with Composite Association Fields (CAFs) which encode i) prob-

ability of limb presence and ii) endpoint scales and location offsets. 
Temporal CAFs model limbs between keypoints of the same class in adja-

cent frames for tracking. Poses are grown bottom-up by greedy matching 
from a high-confidence seed keypoint, guided by these intensity and 
association fields. Keypoint-level Non-Maximum Suppression removes 
duplicate poses. Redundant limbs are modeled for robustness against 
occlusion.

2.3. Experimental setup

The following sections describe the used pre-trained models, evalu-

ation metrics, and other validation procedures.

2.3.1. Model settings

Each algorithm offers several pre-trained models, which can be split 
into i) a backbone which extracts image features and ii) a head which 
estimates poses and/or IDs. We test the models in Table 1 on our dataset 
without retraining, using an NVIDIA GeForce RTX 3090 GPU. The used 
model parameters are available publicly for AlphaP,1 OpenPP2 and 
OpenP.3 For fair comparison we sample all outputs to the format from 
Fig. 1a. We define pose confidence as the mean of all its nonzero key-

point confidences.

1 Available: https://github.com/MVIG-SJTU/AlphaPose/blob/master/docs/

MODEL_ZOO.md.
2 Available: https://openpifpaf.github.io/intro.html.
3 Available: https://github.com/CMU-Perceptual-Computing-Lab/openpose/

tree/master/models.
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Table 1
Tested pose estimators where a superscript ‘𝑇 ’ denotes tracking capabilities.

Algorithm Backbone Head Training dataset 
AlphaP YOLOv3-SPP [31,32]+ResNet152 [33] FastPose (DUC) [14] COCO [12] 
AlphaP𝑇 YOLOv3-SPP [31,32]+ResNet152 [33] FastPose (DUC)+Human-ReID [14] COCO [12] 
OpenPP shufflenetv2k30 [18,34] CifCaf [18] COCO [12] 
OpenPP𝑇 tshufflenetv2k30 [18,34] TrackingPose [18] COCO [12] 
OpenP OpenPose [17] OpenPose [17] COCO [12]+Human Foot [17] 

Fig. 2. Number of frames per situation from section 2.1.1 per viewpoint. 

2.3.2. Quantitative metrics

Metrics measure detection- and tracking performance per viewpoint. 
They are calculated with True Positives (TPs), False Positives (FPs), and 
False Negatives (FNs), using only visible keypoints.

Average Precision (AP) [12,35] evaluates Full-pose detection. As it 
was designed for bounding boxes, we replace its use of Intersection 
over Union with Object Keypoint Similarity (OKS) as suggested in [12], 
where we estimate segmentation area with the tightest-fit pose bounding 
box. For a more detailed evaluation we calculate AP separately for three 
subposes: Head, Arms, and Legs, in addition to the Full pose. We calcu-

late AP𝜏OKS at OKS thresholds 𝜏OKS = 0.5 (low), 𝜏OKS = 0.75 (high), and 
averaged from 0.5 to 0.95 with step size 0.05 𝜏OKS = 0.5 ∶ 0.95 (ranged).

Head-guided Percentage of Correct Keypoints (PCKh) [36] evaluates 
detection per keypoint. We first use the Hungarian algorithm [37] to 
match annotated and estimated poses by OKS where—as opposed to 
AP—we do not threshold confidence. PCKh is evaluated per match. Since 
the COCO pose has no headbone, we threshold TPs with 0.5 times the 
longest annotated shr-ear distance instead, and only use poses with such 
an annotated limb. With the obtained per-keypoint TPs, FPs and FNs we 
calculate

PCKh = TP

TP + FP+ FN
. (1)

We evaluate tracking for each viewpoint and subpose with Associa-

tion Accuracy (AA) [38], and replace its use of Localization Similarity 
with OKS as was done for AP. Finally, Higher-Order Tracking Accuracy 
(HOTA) [38] summarizes detection and tracking performance in a single 
metric. Although HOTA is an aggregation of AA and Detection Accuracy, 
we do not evaluate the latter, as its purpose is similar to that of the more 
commonly used AP.

We show metrics evaluated per individual video, each of which 
shows one of five workflow phases from different procedures. Error bars 
show two standard deviations around the mean metric. If one situation 
yields a better score than others, we say this situation is ‘preferred’. 
Unless explicitly stated otherwise, discussed results are mean Full-pose 
scores for ranged 𝜏OKS.

2.3.3. Statistical significance

We evaluate the significance of performance differences between 
each pair of algorithms with a two-sample Hotelling’s T-Squared [39]. 
AP and PCKh are used as dependent variables, as AA and HOTA can not 
be calculated for every tested algorithm. Specifically, we include AP for 
each separate subpose with ranged 𝜏OKS, and PCKh per keypoint for a 

total of 3 (subposes)+17 (keypoints) = 20 parameters per sample. Each 
single-view video represents a sample for a total of 40 samples. We con-

sider p-values of 0.05 or below to show statistical significance.

We repeat the same analysis to compare AlphaP𝑇 and OpenPP𝑇 on 
AA, where again the three ranged-𝜏OKS subposes are used as separate 
input variables. Instead of repeating again with HOTA, we test on AA

jointly with AP and/or PCKh.

2.3.4. Qualitative analysis

To get insight into problems specific to our setting, results are man-

ually evaluated. Specific example situations are selected by the authors 
to demonstrate strengths and weaknesses of each algorithm. Results are 
shown with detected poses, confidence scores and IDs. We show all de-

tections regardless of their confidence.

3. Results

This section shares the results obtained from the experiments de-

scribed in section 2.3. Section 3.1 begins with an analysis of the dataset. 
Sections 3.2 to 3.5 report performance on various metrics. Statistical 
significance of the differences between algorithms is investigated in sec-

tion 3.6. Finally, section 3.7 shows some qualitative examples.

3.1. Dataset composition

Figs. 2 to 4 show a description of the dataset as described in sec-

tion 2.1.1. 1749 frames (85.7% of the dataset) contain occlusion be-

tween persons, 1771 (86.8%) occluding objects, and 1685 (82.6%) oc-

cluding clothes. CornerNW, CornerSE, CornerSW and WallS saw 3257, 
1484, 2519 and 2165 frame situations respectively, where counts exceed 
the dataset size due to single frames showing multiple situations. Most 
full occlusions and monitor reflections occur from CornerSW. Window 
occlusions- and reflections occur only from CornerNW. This viewpoint 
sees five persons on most frames and is the only viewpoint to ever see 
six. CornerSE usually sees four people and CornerSW and WallS three.

CornerNW, CornerSE, CornerSW and WallS respectively see a total of 
20 404, 15 317, 16 012 and 16 518 keypoints. CornerNW sees the highest 
counts per subpose and class except for the rear, rlbw and rhip, which 
are seen more often from CornerSW, and the wrists which are seen more 
from WallS. CornerNW sees the highest mean count per class of 1200.2, 
paired with the highest standard deviation of 320.7. The lowest total and 
average counts are seen by CornerSE, although CornerSW sees lower 
counts per class more often.
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Fig. 3. Number of frames per person count per viewpoint. 

Fig. 4. Number of appearances per keypoint class from Fig. 1a per viewpoint. 

Fig. 5. Average Precision per individual video where error bars show two standard deviations around mean results. 

3.2. Average precision

Fig. 5 shows AP. Here, AlphaP yields the highest Full-pose mean 
scores of up to 0.82. Non-tracking algorithms perform up to 11 percent-

age points (pp) better than their tracking counterparts. Arms yield the 
best scores of up to 0.72, and Head the worst of up to 0.64. AlphaP(𝑇 ) 
prefers the CornerSW viewpoint, OpenPP(𝑇 ) WallS, and OpenP Cor-

nerSE. CornerSW is most often preferred with up to 3 pp over the second-

choice viewpoint per individual algorithm. On the Head and Arms, 
AlphaP(𝑇 ) shows scoring drops of up to 10 pp and 26 pp between low 
and high 𝜏OKS, which is 22 pp and 37 pp for other algorithms. On the 
Legs, OpenPP(𝑇 ) shows the lowest scoring drop of up to 27 pp which is 
34 pp for others. Results on the Arms show standard deviations of up 
to 20 pp. For the Head and Legs this is 26 pp and 27 pp respectively. 
OpenP shows standard deviations of up to 17 pp, AlphaP(𝑇 ) of 20 pp

and OpenPP(𝑇 ) of 22 pp.

From CornerSE, one outlier procedure performs worse than the rest 
for all algorithms. Here the cardiologist and patient are mostly occluded 

by the monitor. Their few visible keypoints were not detected, or merged 
into a single pose.

3.3. Head-guided percentage of correct keypoints

PCKh in Fig. 6 shows that most keypoints prefer OpenPP or OpenPP𝑇

except the nose, which prefers AlphaP instead. All algorithms prefer 
WallS most often, followed by CornerSE for AlphaP and OpenPP, and 
CornerSW for AlphaP𝑇 and OpenP. AlphaP, OpenPP𝑇 and OpenP pre-

fer CornerNW least often, which is CornerSE for AlphaP𝑇 and CornerSW 
for OpenPP. With scores of up to 0.57 and 0.87 the Legs and Head score 
the lowest and highest respectively. The hips are detected worst with a 
maximum score of 0.23. All subposes prefer WallS. All algorithms had 
the highest standard deviation on CornerSW. The lowest standard devi-

ations for the Head are achieved on CornerSE and WallS, for the Arms 
on WallS, and for the Legs on CornerNW.

The outlier procedure from CornerSE at the end of section 3.2 shows 
the same poor performance on PCKh. From CornerSW, we see another 
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Fig. 6. Head-guided Percentage of Correct Keypoints over the entire dataset where error bars show two standard deviations around mean results. 

Fig. 7. Association Accuracy per viewpoint and subpose over the entire dataset where error bars show two standard deviations around mean results. 

procedure scoring below the others. This video shows two people stand-

ing close together, dressed in loose medical aprons and facing away from 
the camera whilst the instrument table occludes their legs.

3.4. Association accuracy

Looking at tracking, Fig. 7 shows that AlphaP𝑇 outperforms OpenPP𝑇

on mean Full-pose AA from all viewpoints except WallS. Arms are 
tracked best in most situations, and Legs the worst. AlphaP𝑇 shows 
little mean Full-pose scoring drop of up to 2 pp between low and high 

𝜏OKS, which is 26 pp for OpenPP𝑇 . On AA this drop is larger for OpenPP𝑇

than for AlphaP𝑇 for all subposes and viewpoints. However, OpenPP𝑇

yields lower standard deviation than AlphaP𝑇 for all subposes and the 
Full pose from all viewpoints.

3.5. Higher-order tracking accuracy

The integration of tracking and detection metrics with HOTA in 
Fig. 8 sees AlphaP𝑇 outperform OpenPP𝑇 everywhere except with low 
𝜏OKS for some subposes and viewpoints. OpenPP𝑇 still yields lower stan-
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Fig. 8. Higher-Order Tracking Accuracy per viewpoint and subpose over the entire dataset where error bars show two standard deviations around mean results. 

Table 2
p-value per algorithm pair from Hotelling’s T-Squared with 
AP and PCKh as parameters.

AlphaP𝑇 OpenPP OpenPP𝑇 OpenP

AlphaP 0.9999 <0.0001 <0.0001 <0.0001 
AlphaP𝑇 <0.0001 <0.0001 <0.0001 
OpenPP 0.9103 0.0003 
OpenPP𝑇 <0.0001 

dard deviations except for the Head from CornerSE and CornerSW, Legs 
from CornerSW and WallS, and Full pose from CornerSW. The high-

est achieved Full-pose mean scores are 0.73 for AlphaP𝑇 and 0.59 for 
OpenPP𝑇 . Arms and CornerSW are preferred in most situations.

3.6. Hotelling’s T-squared

Table 2 shows calculated p-values per pair of algorithms. The only 
non-significant differences occur when comparing tracking- and non-

tracking versions of the same algorithm, in which case p-values ap-

proach 1.

When excluding AP from the test, conclusions remain the same ex-

cept for a now statistically insignificant p-value between OpenPP and 
OpenP. Excluding PCKh instead gives insignificance between AlphaP𝑇

and OpenP.

Testing on AA yields an insignificant difference between AlphaP𝑇

and OpenPP𝑇 . Adding AP and/or PCKh lowers the p-value back below 
our significance threshold.

3.7. Qualitative results

Fig. 9 shows example detections. In the first column people are stand-

ing close together. OpenPP𝑇 merges the patient and cardiologist with 
0.87 confidence. AlphaP(𝑇 ) mistakes the patient as part of the cardiol-

ogist at 0.72. The cardiologist and assistant who stands close are never 
merged. Only OpenPP and OpenP see the patient and merge no-one. 
OpenP detects most correct poses, but with the lowest confidence. All 
models except OpenPP𝑇 are least confident about the cardiologist, who 
faces away from the camera.

The second column shows the cardiologist putting on an apron. 
AlphaP places a full pose with confidence 0.31 where only his Head 

is visible, and AlphaP𝑇 sees nothing. OpenPP(𝑇 ) correctly detects the 
shrs and hips at 0.82, although hip placements seem off. OpenPP𝑇 addi-

tionally sees a lower arm in the sleeve. Only OpenP detects the nkls. All 
algorithms detect the lab assistant where AlphaP, AlphaP𝑇 and OpenP

place the occluded lnkl wrongly with 0.84, 0.84 and 0.69 confidence.

In the third column the monitor reflects a lab assistant. All algo-

rithms detect the reflection, where OpenPP is most confident at 0.83
and OpenP the least at 0.63. AlphaP, AlphaP𝑇 and OpenP hallucinate 
two knes and/or nkls. These models detect the full cardiologist at 0.74, 
0.74 and 0.60 confidence, where OpenPP(𝑇 ) detects all but his legs at 
0.87 and 0.69. All models see the occluded assistant, where OpenPP(𝑇 ) 
is most confident at 0.95 and AlphaP(𝑇 ) the least at 0.62. Similarly to 
column two, AlphaP incorrectly detects a full pose around the head of 
the patient with 0.31 confidence. OpenPP correctly detects only their 
Head keypoints at 0.90.

The last column shows the instrument table with a sheet resembling 
clothing. AlphaP and OpenPP detect a pose here at 0.44 and 0.64 confi-

dence. The occluding assistants are fully detected by AlphaP at 0.72 and

0.66 and merged by OpenPP at 0.77. AlphaP𝑇 and OpenPP𝑇 only detect 
the closest assistant at 0.72 and 0.90. OpenP detects both assistants par-

tially at 0.73 and 0.57. It also sees Legs in the background bin with 0.22
certainty.

Fig. 10 shows tracking results from AlphaP𝑇 and OpenPP𝑇 . The first 
and third row show the cardiologist and assistant preparing, with a pa-

tient on the table. AlphaP𝑇 detects the partial cardiologist at the bottom 
in 3 frames, which is only 1 for OpenPP𝑇 . OpenPP𝑇 detects the patient 
more consistently and with higher confidence. AlphaP𝑇 moves ID 1 from 
the assistant to the cardiologist. OpenPP𝑇 yields no such identity swaps.

In the remaining rows the cardiologist exits and re-enters the room, 
with the patient waiting in the hallway. After their return, OpenPP𝑇

assigns the cardiologist a new ID whereas AlphaP𝑇 recognizes them from 
before. The same happens for the patient after the cardiologist passes 
them in front. When watching frame by frame, AlphaP𝑇 shows many 
identity swaps even with just one person visible.

4. Discussion

In this paper we introduced a dataset with footage from real CAG 
procedures in the Cath Lab, and provided benchmark results of sev-

eral pose estimation- and tracking algorithms. Quantitative metrics were 
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Fig. 9. Qualitative detections with confidences and tracking IDs. 

Fig. 10. Qualitative tracklets with confidences and tracking IDs. 

evaluated on our annotated dataset per subpose and viewpoint, and 
qualitative observations were shown.

We observe that AlphaP(𝑇 ) produces the best AP, whereas OpenPP(𝑇 ) 
performs better on PCKh. As AP is calculated on (sub)poses and PCKh

per keypoint, this suggests that OpenPP(𝑇 ) places keypoints more accu-

rately and AlphaP(𝑇 ) connects them into poses better. This is in line with 
the top-down approach of AlphaP, which applies local restrictions on 
matchable keypoint pairs. Another explanation is that AlphaP(𝑇 ) could 

score poses more accurately in the Cath Lab, as AP considers confidence 
score. This could explain why metrics on AlphaP(𝑇 ) do not drop much 
between low and high 𝜏OKS, as accurate scoring might compensate cases 
of poor localization. Measured AP scores are higher in the Cath Lab than 
those reported on the MVOR dataset [23], although different recording 
methods render these results not directly comparable.

AP and PCKh show differences per viewpoint and keypoint. Legs es-

pecially are subject to occlusion in clinical settings. Head keypoints are 
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hidden behind masks and hairnets. Different viewpoints see different 
levels of such occlusion, and therefore show varying results. AlphaP(𝑇 ) 
tends to detect the Head better, possibly by imposing a prior through 
object detection. Qualitative results show a drawback of this approach, 
where priors encourage placement of full poses on partially visible hu-

mans or inanimate objects. We do observe that these incorrect keypoints 
receive low confidences, which is in line with the theory that AlphaP

yields more accurate scores. Hence, in practice this drawback poses lit-
tle issue if confidence is considered appropriately.

On AA, AlphaP𝑇 scores better than OpenPP𝑇 for our dataset. 
OpenPP𝑇 tends to miss people in our setting or merge them; possi-

bly due to the temporal limbs providing more matching paths to do so 
in close proximity. AlphaP𝑇 still scored poorly with large variability 
between workflow phases. This could be due to its use of visual clues, 
which in combination with indistinguishable sterile clothing may have 
caused the many identity swaps. These issues could explain why the 
tracking models were outperformed by their non-tracking counterparts 
on AP, although this difference was only small and proved insignificant.

HOTA eases comparison by integrating detection and tracking per-

formance. Here, AlphaP𝑇 slightly outperforms OpenPP𝑇 . When looking 
purely at this combined metric, using AlphaP𝑇 from the CornerSW view-

point seems to perform best in the Cath Lab.

Procedures are carried out with Arms, and Head orientation indi-

cates where one is focusing. In our setting, Legs serve only to reposition 
oneself; something that can be inferred from other keypoints. Therefore 
for workflow analysis, Arms movement is probably the most descrip-

tive followed by the Head and then Legs. Hence, we should prioritize 
subpose detections in that order.

Monitor reflections and occlusion pose problems for pose detection-

and tracking in the Cath Lab. Reflections are a problem because the 
tested detectors are not trained to distinguish them from real human 
beings [40]. For workflow purposes the activity of persons is of interest, 
and their reflections serve only as noise. Occlusion renders persons invis-

ible from individual views, causing False Negatives, or causing detected 
body joints to be connected incorrectly. Especially during tracking this 
presents an issue, as re-identification is difficult after losing- or wrong-

fully detecting a person. Tracking algorithms solve this problem through 
visual re-identification, but that does not work in the Cath Lab where 
everyone is dressed similarly.

CornerSW and WallS yield the best results in most situations. Al-

though monitor reflections plague both, their limited occlusion and view 
of only the Cath Lab interior simplify the problem. CornerSE sees no re-

flections, but suffers from occlusions in the patient area by the monitor 
and operating table. CornerNW sees occlusion from the radiation shield 
and C-arm, reflections in the control room window and monitor, and 
people in the control room whose movements can be assumed to pro-

vide no relevant workflow information. The cardiologist facing away 
from CornerSW makes the use of this view for workflow analysis ques-

tionable. WallS, with its clear yet narrow view on the operating table 
surroundings, is an intuitive choice for workflow analysis during pro-

cedures. Before and after procedures, CornerSE provides a clearer view 
around the room entrances.

Human movement is descriptive of personnel activities [9–11], mak-

ing reliable tracking important for workflow analysis. Unfortunately, 
no tested model yielded good tracking results on our dataset. AlphaP𝑇

produced multiple identity swaps per minute and OpenPP𝑇 merged or 
missed people.

Our model selection was limited with only one top-down algorithm 
and the dataset was relatively small. We did not annotate occluded 
keypoints which may have unfairly increased scores for more occluded 
viewpoints.

4.1. Future research

In following studies, more estimators [15,16,19] could be tested. 
Tracking should be done with a separate algorithm for better tracking 

performance. To overcome the visual differences between clothing in 
the Cath Lab and in general datasets like COCO, domain adaptation- or 
generalization methods could be explored [41]. With enough annota-

tions, models could be re-trained for the Cath Lab or specific subposes. 
Interesting would be to annotate and detect keypoints in the C-arm, ta-

ble, or lead screen. Expanding from single-view to multiple-view or 3D 
pose detection could help mitigate occlusion, as explored for the OR 
in [24–26]. It can be investigated how yielded poses can be used for 
automated recognition of e.g. personnel activities, workflow phases, or 
radiation exposure.

The insights from this work can aid the design of new computer vi-

sion setups in the Cath Lab or OR. For instance, cameras are best placed 
in a position which provides a clear view on personnel from the front, 
excluding reflective monitors or windows. As occlusion can rarely be 
avoided, a clear view of the Arms should be prioritized. When exploring 
pose detection, an algorithm can be chosen based on discussed trade-

offs. In the design of a new pose detector one could focus on robustness 
against Cath Lab-specific occlusion, or distinguishing between real poses 
and reflections. When tracking, it is probably best not to use visual fea-

tures due to similarities in appearance from sterile clothing.

The study shows that, considering confidence scoring and keypoint 
matching, AlphaP is the best-suited tested model in the Cath Lab. When 
only keypoint locations are sought, OpenPP could be a better choice. 
Due to identity swaps and pose merging, no tested tracker seems suffi-

cient for use in workflow analysis. A new tracker should be developed 
based on the shortcomings highlighted in this paper. It should address 
the visual complexity of the Cath Lab specifically.

5. Conclusions

We annotated poses and identities in 2040 frames from ten CAG 
procedures. Detection- and tracking metrics AP, PCKh, AA and HOTA

were calculated for the models from Table 1. Models showed signifi-

cant performance differences, except when comparing different models 
of the same algorithm. The WallS and CornerSW viewpoints from Fig. 1
and the Arms keypoints were scored highest upon. The room coverage 
and decent results of CornerSE make this view a suitable alternative for 
workflow analysis, although its results vary with monitor positioning. 
OpenPP produced the most accurate keypoint locations in the Cath Lab. 
AlphaP(𝑇 ) yielded the best confidence scores, keypoint matching, and 
tracking results.
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