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Abstract

Recent advances in LLMs have transformed AI coding assistants from simple autocompletion tools
into conversational partners that support a wide range of development tasks through natural language
interaction. While this shift promotes closer human-AI collaboration, this also places a burden on de-
velopers to craft precise prompts and integrate sufficient context to accomplish their task. To address
this, there is growing interest in proactive AI systems that can anticipate developer intent and surface
timely, contextually relevant suggestions — potentially revealing insights developers might not have
considered. However, existing research on proactive coding assistance has largely been confined
to controlled, experimental settings, leaving open questions about its effectiveness and integration in
real-world development environments.

In this work, we design and implement a proactive AI assistant within JetBrains Fleet, a polyglot enter-
prise IDE. Our system signals AI activity via in-editor cues and delivers context-aware code improve-
ment suggestions via a chat interface. We adopt heuristics based on IDE activity to determine when
it is timely to intervene, during various stages across the development workflow: formulating needs,
idea execution and committing changes. Lastly, we conducted a five-day in-the-wild study with 18
professional developers to evaluate its impact on user experience and engagement patterns.

Our findings demonstrate that timing is a critical aspect influencing perceived value of proactive AI
assistance. Suggestions delivered at natural workflow boundaries (e.g. post-commit) achieved the
highest engagement, while mid-task interventions were often dismissed. The consistent engagement
trends (and voluntary continued use) indicate strong potential for integrating proactive AI into everyday
software engineering workflows. Our study not only underscores the feasibility and practical value
of proactive assistance in enterprise development environments, but also provides actionable design
insights for future tools. While challenges remain — such as improving suggestion relevance and
supporting diverse user preferences — these highlight important directions for advancing adaptive,
intent-aware proactive systems that can further enhance developer workflows.
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1
Introduction

Software development has undergone amajor shift in recent years as LLM-powered programming tools
have emerged and revolutionized traditional coding workflows. These AI assistants have evolved from
simple code completion tools to sophisticated collaborative partners capable of supporting a wide range
of tasks, including explaining code, suggesting refactorings, or assisting with debugging workflows —
all through natural language interaction. This transition marks a fundamental change in how developers
interact with their development environments, with human-AI experience (HAX) playing an increasingly
critical role. Yet, even as these tools reshape coding workflows, the current generation of LLM-based
tools still faces important limitations in how they support developers in practice [45, 8, 36].

Most existing LLM-based programming tools operate reactively, requiring developers to explicitly in-
voke assistance through prompting. This reactive paradigm imposes significant cognitive burdens, as
developers must craft precise prompts, provide sufficient context, interpret responses, and manually
integrate suggestions into their codebase. Recent studies indicate that these interaction costs can
offset productivity gains, with developers spending considerable time formulating requests rather than
solving core programming challenges [35, 51, 24].

In response to these limitations, there is growing interest — both commercially and academically —
in proactive AI programming assistance [46]. Initial forms of proactive assistance appeared in auto-
completion tools such as GitHub Copilot [14] and Visual Studio IntelliCode [31], offering code comple-
tions without explicit user invocation. More recently, AI-first code editors, including Cursor [11] and
Windsurf [52], have introduced more sophisticated forms of proactive assistance, including next cursor
position prediction and smart code edits based on the surrounding code context, comments, or de-
tected errors. However, these primarily focus on localized suggestions tied to cursor position, missing
opportunities for broader programming support.

On the other hand, chat-based AI assistants can consider a wider project scope and higher-level project
goals. Moreover, their conversational nature enablesmore seamless human-AI collaborative workflows
that extend beyond mere code generation, promoting deeper code understanding through contextual
explanations and reasoning. Many now incorporate agentic capabilities, autonomously handling com-
plex tasks directly within code editors (Cursor Chat [11], Windsurf Cascade [52], JetBrains Junie [22])
or via sandbox environments on the web (OpenAI Codex [39], Devin [10]). Despite these advances,
the burden of help-seeking and intent articulation still falls on users. 1

Prior studies have explored proactive coding assistants that periodically surface suggestions via chat
interfaces, based on code context and user activity. These system-initiated suggestions have been
shown to enhance developer productivity by alleviating intent specification costs and surfacing valuable
ideas developers might not have considered [6, 55]. Further work extended proactive communication
channels beyond chat, through support for direct in-editor code edits, along with local chat threads and
visual indicators such as thought bubbles [43]. These richer representations were found to enhance

1Thus in this work, we define proactivity as the system initiating assistance by anticipating user needs, in contrast to agentic
systems that spin off tasks autonomously only after user-specified requests.
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2

users’ awareness of AI presence and thus reduce disruption. Nonetheless, a major limitation of prior
work is their evaluation in experimental coding environments, with predefined tasks carried out in single-
session Python-only contexts — or lacking user studies altogether [55]. This restricts generalizability
to real-world IDEs, where integrating proactivity introduces challenges including code maintainability
and workflow disruption possibly due to concurrent AI features.

This work addresses these gaps by designing, implementing and evaluating a proactive chat assistant
in JetBrains’ Fleet IDE 2 with focus on improving code quality. Specifically, our research aims to:

Research Objective 1

Build an understanding of when to show proactive suggestions to users, to minimize disruption to
developer workflows

Research Objective 2

Build an understanding of how to present proactive suggestions in the IDE, to ensure value-
alignment, transparency and maintain user control

Research Objective 3

Evaluate our prototype with end users to understand the impact on user experience and interaction
patterns across different development workflow stages

Addressing these objectives, we started out by outlining key design considerations shaped by the prac-
tical constraints of software development environments. Following our design goals, our prototype was
iteratively refined based on pilot studies with internal, professional developers. The final prototype de-
livers timely assistance across key stages of the development workflow, with assistance triggered on
in-IDE user events based on heuristics grounded in human-AI interaction literature [46, 35, 2]. The
assistant ensures suggestion relevance by drawing context from IDE artifacts including workspace
documents, IDE-detected problems, git diffs and chat history — with tool access to enrich context dy-
namically as needed. To enhance transparency, we signal AI activity via in-editor cues and visualize
the assistant’s working context via an in-chat context panel. Finally, we facilitate user control and own-
ership by providing explicit confirmation mechanisms when the AI intervenes, as well as options to
apply suggested patches on demand into their workspace when deemed useful.

Through an in-the-wild study with 18 professional developers over a five-day period, we found that
proactive AI assistance generally led to enhanced workflows — by surfacing useful insights developers
might not have considered and reducing the cognitive load of expressing their intent. Analysis of 229 AI
interventions revealed that timing plays a central role in shaping user receptivity. Suggestions delivered
at workflow boundary points (e.g. after commits) consistently achieved highest engagement, whereas
mid-task prompts were often perceived as disruptive. Importantly, we observed continued use be-
yond the formal study period, indicating strong potential integration into developers’ natural workflows.
Nonetheless, we also highlight challenges that should be further explored: enhanced intent modeling,
context integration and adaptivity to personal preferences. All in all, our design exploration and empir-
ical findings offer practical guidance for integrating proactive AI support into real-world development
workflows.

This work presents the following key contributions:

• An exploration of the design space for integrating proactive AI support into developer workflows,
with a particular focus on the timing and in-IDE representation of the AI

• A proactive AI assistant prototype integrated directly within an enterprise IDE, with in-editor cues
to signal its presence and code improving suggestions presented within a chat interface

• A five-day in-the-wild user study with professional developers to evaluate the impact of proactive
AI assistance on developer experience in real-world environments

2A polyglot, collaborative IDE that comes with built-in AI features including a chat assistant where we present proactive
suggestions. https://www.jetbrains.com/fleet/.

https://www.jetbrains.com/fleet/


2
Background & Related Work

2.1. AI Coding Tools: From Autocompletion to Vibe Coding
In recent years, software engineering workflows have been fundamentally reshaped by the rise of
LLM-powered programming tools. While early code assistance tools such as IntelliSense [30] and
Tabnine [48] focused on autocompletion, today’s coding assistants can act as collaborative partners
supporting a wide range of tasks from assisting in debugging workflows to coordinating multi-step refac-
torings across the codebase — all through natural language interaction with developers. This evolu-
tion represents a fundamental shift in how developers engage with their development environments,
making human-AI experience (HAX) an increasingly critical factor in the design and implementation of
AI-powered coding tools [45, 51, 24].

Despite rapid advances, current tools still face several important limitations in practice. Among these,
one particularly relevant to our work is that most systems operate in reactive modes, requiring explicit
developer invocation through prompting. This interaction style places substantial cognitive demands
on developers, who must formulate precise intents, provide sufficient context, interpret and verify AI
outputs, and manually integrate suggestions into their workspace. Prior studies [7, 36, 38] have shown
that these interaction costs can erode the very productivity gains these tools promise, as developers
often spend considerable time crafting requests instead of focusing on core programming tasks.

2.1.1. Growing Interest in Proactivity
Recognizing these limitations, there is growing commercial and academic interest in proactive AI to
assist in coding tasks — systems that can anticipate developer needs and surface relevant sugges-
tions without explicit prompting. Initial forms of proactive assistance emerged as inline autocompletion
tools, where predictive models generate completions based on caret context or coding patterns [31,
48]. Early research explored when and how to best surface completions [34, 37], balancing intrusive-
ness, accuracy, and developer control. More recently, the rise of AI-centric IDEs such as Cursor [11]
have enabled more sophisticated proactive behaviors. These systems incorporate next-edit and cursor
predictions, as well as smart refactorings, preemptively assisting developers in navigating and editing
code. Nonetheless, such features are largely tied to localized suggestions, with most proactive behav-
iors anchored around the immediate cursor context or adjacent code elements.

2.1.2. Chat Assistants and Agents
In contrast, chat-based AI assistants expand the scope of support by operating over larger programming
contexts and engaging with higher-level project goals. Moreover, their conversational nature enables
iterative, exploratory collaboration, allowing developers to ask for explanations, reason through design
alternatives, or coordinatemulti-step workflows. Modern assistants are typically integrated in IDEs such
as Cursor [11], Windsurf [52] and JetBrains IDEs [22], or operate on the cloud via sandbox environments
such as OpenAI’s Codex [39] and Google’s Jules [15]. Many now possess agentic capabilities allowing
them autonomously handle complex tasks: implementing features, running code, iteratively refining

3



2.2. Designing Proactive Assistants: Lessons and Challenges 4

solutions, and verifying outputs, often operating across multiple files or tools. This has given rise to
what some call a “vibe coding” paradigm [44], where developers express high-level intentions and the
system dynamically executes, adapts, and improves the solution across multiple interaction cycles.

However, despite their autonomy, these agents are still predominantly reactive: they wait for explicit
user commands or requests to trigger action. To clarify: we define proactivity as the system’s ability to
initiate assistance by anticipating user needs, while autonomy refers to the agent’s capacity to indepen-
dently spin-off tasks, typically after an initial user-specified request. This highlights a key opportunity
for chat assistants to proactively surface useful suggestions or insights that the developer might not
have explicitly requested, potentially increasing developer productivity and user experience.

In this work, we specifically explore proactivity in JetBrains Fleet [23] — a lightweight, polyglot IDE
equipped with a suite of AI-powered features. Its built-in AI Chat provides context-aware support
through integration with multiple IDE components — including the editor, terminal and git. It lever-
ages LLMs via JetBrains AI Service [21], incorporating models from cloud providers such as Anthropic,
Google, and OpenAI. At the time of building our prototype, this assistant had agentic capabilities to the
extent of executing commands or editing files on behalf of the uses. 1 Nonetheless, similar to other
existing chat assistants, it operates reactively: developers invoke it through explicit prompts or editor
actions. Hence our research aims to introduce proactivity, enabling it to anticipate developer needs
and offer timely suggestions without explicit user invocation.

2.2. Designing Proactive Assistants: Lessons and Challenges
Proactive AI systems, which take the initiative to offer help or suggestions without explicit user com-
mands, have long been studied in human-computer interaction (HCI). Early systems such asMicrosoft’s
Clippy are often cited as cautionary tales: their poor contextual awareness, poor timing, and lack of
user control led to annoyance and rejection [3, 6]. Subsequent research refined the principles of effec-
tive proactivity by exploring user expectations, emphasizing the importance of relevance, explainability,
and user-configurable control [29]. Moreover, Horvitz’s mixed-initiative framework [17] argues that suc-
cessful proactive systems blend human and machine contributions, adapting dynamically to context
and shifting initiative as appropriate.

Recent work explores proactive systems in diverse domains: spanning healthcare [25, 41, 28], climate
control [12], driving assistance [32] or the more well-known personal assistants such as Google Assis-
tant or Siri. Across these studies, it becomes clear that explainability is essential: proactive suggestions
are more likely to be accepted if users understand the reasoning behind them [33]. Moreover, timing
is crucial: proactive help must respect moments of low cognitive load, avoiding interruptions during
periods of focused attention [1].

2.2.1. Proactive Programming Assistance
Recent research has begun unpacking the design space for LLM-based proactive assistants in the
programming domain, focusing specifically on when and how to surface suggestions— and what trade-
offs arise between developer benefit and workflow disruption. Chen et al. [6] and Zhao et al. [55]
explored periodic system-initiated suggestions within an in-editor chat interface — finding that while
such proactive inputs can boost efficiency, excessive or poorly timed interventions quickly overwhelm
users and diminish productivity. Hence, they argue that proactive assistants should evaluate and time
their suggestions carefully, aligning them with the developer’s current programming context.

Another body of work explored proactive AI representations beyond chat interfaces, leveraging carets,
cursors and thought bubbles to signify the AI’s thinking and edit traces [43]. Pu et al. confirmed that
proactive AI assistance improved developer efficiency, but also raised concerns about workflow dis-
ruptions, code comprehension, and long-term maintainability of code. To address these risks, they
emphasize the importance of explainability, giving developers clear justifications for AI interventions,
and ensuring user control over when and how to apply suggestions. Furthermore, they recommend the
use of visible presence indicators within the editor to signal the AI’s activity — enhancing transparency
and thus mitigating user confusion and workflow disruption.

1At the time, Fleet’s AI Chat did not possess long-running agentic capabilities, sophisticated planning abilities nor long-term
memory yet.



2.3. Leveraging LLMs for Code Quality Enhancement 5

A major limitation of prior prototypes is the fact that these were integrated in experimental code edi-
tors, with evaluation limited to predefined tasks and Python-only contexts — or lacking user studies
altogether [55]. This restricts generalizability of their findings to real-world IDEs, where integrating
proactivity introduces challenges related to workflow disruption and code maintainability. Addressing
this gap, our work integrates proactive AI assistance directly into an enterprise IDE. Moreover, we
evaluate our prototype by conducting an in-the-wild user study with professional developers, spanning
five days formally, to assess the impact on practical development workflows. Based on the trade-offs
and lessons highlighted in prior works, we present a set of design considerations thereby taking into
account constrains imposed by real-world software development settings (in Section 3).

2.3. Leveraging LLMs for Code Quality Enhancement
Earlier research on AI-powered programming assistance has shown that developers tend to favor ac-
tionable assistance that boosts their productivity and improves their overall code quality [6, 49, 5].
Building on these findings, our work focuses on AI assistance specifically aimed at code quality im-
provements. In fact, recent advances show that LLMs are increasingly capable of improving code qual-
ity across multiple fronts, including refactoring, bug repair, code review, performance optimization, and
design smell detection. In refactoring, tools such as EM-Assist [42] integrate LLMs with static analysis
to recommend transformations such as “extract method” with higher recall than traditional rule-based
tools, though they often require human verification to guard against semantic errors or hallucinations.
MANTRA pushes this further with multi-agent, RAG-enhanced frameworks that deliver automated, com-
pilable refactorings, however also showing that current models still struggle with project-wide, cross-file
changes [54].

For bug repair, earlier systems including CORE [50] and RepairAgent [4] combine static analysis and
dynamic repair tools to fix complex bugs, achieving high success rates across multi-line patches. In
the realm of automated code review [9], recent frameworks [47, 20] show that AI-generated comments
can improve review depth but also introduce workflow trade-offs, sometimes increasing pull request
closure times or injecting irrelevant feedback. Similarly, LLM-based optimization systems [13] and smell
detectors [53] push beyond syntactic improvements to tackle performance and architectural issues,
though they typically require iterative, multi-pass refinement [40].

Aligning with the hybrid strategies explored in prior work, our approach augments LLM capabilities with
contextual signals directly from the IDE. We combine detected code inspection 2 issues (surfaced via
static analysis, or any of Fleet’s code-processing engines 3 and language servers) and “Quick Fixes“
with real-time code context, in-editor AI interactions and AI chat history. Differently from above works,
our focus is not on building specialized tools for dedicated code quality tasks, but rather on integrating
proactive assistance into real-world development workflows — spanning insights on best practices,
robustness, modularity, performance optimization etc. This addresses a critical limitation of earlier
tools: namely, that most of them operate offline, limiting the generalizability of their findings to practical
software development settings.

2https://www.jetbrains.com/help/idea/code-inspection.html
3In fact, Fleet relies on both IntelliJ IDEA and Rider code-processing engines.

https://www.jetbrains.com/help/idea/code-inspection.html
https://www.jetbrains.com/idea/
https://www.jetbrains.com/rider/


3
Designing The Proactive AI Assistant

3.1. Design Goals
Our design of a proactive assistant for code improvement carefully balances AI utility with real-world
development practicalities. These principles, summarized in Table 3.1, directly address key challenges
identified in existing literature on proactive assistance and human-AI collaboration.

(DG1) Timely proactive AI assistance focuses on anticipating developer needs in order to preserve
workflows and minimize disruption — especially alongside existing IDE features. Periodic suggestions
as seen in earlier work lead to disruption [6, 55] hampering developer productivity. Although smart
trigger models [34] represent a promising future direction, current limitations — including privacy reg-
ulations and overall lack of training data — make them impractical within our scope. To address the
above, we establish local heuristic triggers based on IDE events that serve as proxies for assistance-
seeking moments.

(DG2) Contextually relevant and applicable suggestions are crucial to ensure value-alignment with
developers. Rather than general-purpose suggestions [6, 55], we focus specifically on code quality
improvements such as optimizations, best practices and modularity that are directly applicable. For
suggestion generation, we adopt a hybrid approach in the sense that we leverage LLMs and code
inspection issues detected by the IDE. As real-time analysis of industrial-sized codebases is costly and
infeasible scalability-wise, we scope LLM context to live IDE signals given the intervention type (e.g.
code selections, commit diffs, inline prompts to AI). The AI assistant’s underlying LLM also has access
to tools to augment its context dynamically (e.g. getting the 10 most recently edited files) — which were
native to Fleet’s AI Chat so not specific to our study.

(DG 3) Explainability and transparency around AI assistance is crucial to build developer trust, par-
ticularly in industrial settings. Earlier work [43] highlighted how lack of understanding regarding AI sug-
gestions can lead to long-term maintenance and extensibility issues. Moreover, we aim to avoid visual
clutter from too many in-editor AI signals and potential distractions from varying interaction scopes [43].
To counter this, our design introduces minimal visual cues in-editor to signal AI activity with the global
chat serving as central communication channel. Moreover, clear explanations are provided upon in-
tervening or presenting in-chat suggestions. The AI chat assistant we built on top of also featured a
context panel, enhancing transparency with regards to the assistant’s working context.

(DG 4) Preserving user control is critical to ensure AI suggestions can be utilized efficiently while
ensuring ownership [43, 6]. Our design enables developers to quickly dismiss or engage with the
proactive AI whenever it intervenes in the editor. Moreover, we allow users to “Apply” generated patches
on demand in proactively invoked chat sessions, as opposed to having them applied automatically 1.
Lastly, to avoid loss of user control and code understanding, suggested code snippets are scaffolded
with expansion on demand.

1As can be seen in Cursor’s Agent Mode, and was also the default setting at the time. Note that the application itself relied
on Fleet’s applier feature which was still under active development at the time we were building the prototype.
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3.1. Design Goals 7

Table 3.1: Core design considerations adopted to explore the design and implementation space of proactive AI assistance,
thereby listing constraints imposed by real-world IDE settings and interventions we take to address these

Real-world Constraints Our Approach
Design Goal 1: Timely proactive AI interventions to preserve developer workflow

Intrusiveness & Technical Feasibility
• Periodic suggestions are costly and interrupt de-
veloper workflow

• Insufficient data for trigger models, also adding
inference overhead and costs, especially if cloud-
based

• Adopt heuristic-based triggers given IDE activity,
as proxies for assistance-seeking

• Directly leverage LLMs to infer intent from IDE ac-
tivity and developer context

Design Goal 2: Contextually relevant & applicable suggestions to provide value

Intrusiveness
• Raising too many non-actionable, merely informa-
tive, proactive suggestions can disrupt workflow

• Focus AI assistance on code quality improve-
ments (optimizations, best practices etc.)

Costs & Scalability
• Real-time analysis of industrial-sized codebases
infeasible

• Adopt a hybrid approach, leveraging context-
augmented LLMs with IDE-detected issues

• Provide LLM with tool access for dynamic context
augmentation

Design Goal 3: Explainability and transparency in AI presence to build developer trust
Intrusiveness
• Too many in-editor AI signals create visual clutter
• Varying interaction scopes distract users due to
context switching

• Minimal visual cues in-editor to signal AI activity,
within close proximity of user’s current working
scope

• Leverage global chat as central medium of com-
munication with AI

Code Maintainability & Extensibility
• Lack of code understanding may lead to devel-
oper distrust, but also long-term maintainability
and extensibility issues

• Provide clear explanations for AI interventions as
well as suggested patches

• In-chat context panel for transparency on the as-
sistant’s working context

Design Goal 4: Preserving user control and ownership to support productivity

Intrusiveness, Code Maintainability
• Excessive AI autonomy leads to loss of user con-
trol, workflow disruption and long-term code main-
tainability issues due to overreliance on AI

• Explicit confirmation mechanisms upon AI inter-
ventions to allow users to efficiently engage or dis-
miss

• Scaffolding of AI suggestions in the chat interface
e.g. allowing users to expand code snippets on
demand

• Integrating generated suggestions via “Apply” on-
demand when deemed relevant
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3.2. Formative Pilot Study
In order to ensure feasibility of our prototype, we iteratively refined it based on pilot studies (see Figure
5.2) — two rounds were performed. In total, we recruited seven professional developers from within
JetBrains to participate in a contextual inquiry [16] study. We ensured these participants were already
active users of Fleet, and were regular users of in-IDE AI tools — avoiding confounding factors.

Each session was conducted remotely and recorded, with each session taking around one hour. During
the session, participants used a development build version of the IDE with our early-stage prototype
of the proactive assistant while thinking out loud. We gathered feedback by semi-structured interviews
(see Appendix E) — for which all recordings were transcribed and analyzed to summarize recurring
themes and iterate on initial user feedback. This phase served to identify and address key usability
issues of the prototype and suggestions for improvement.

Below the main findings of the pilot studies:

Intrusiveness

Participants appreciated that the assistant inferred intent without requiring explicit prompts or manual
context passing. However, unsolicited invocations of the AI chat — as was the case in our early-stage
prototype — was generally seen as intrusive. Developers preferred lightweight, in-editor pop-ups to
confirm chat invocation, noting that suggestion rejection often stemmed from task switching rather than
disapproval.

Patch interaction

Receiving multiple small patches was preferred over a single large one. Participants valued the ability
to preview changes inside the editor upon applying, but requested finer-grained diffs within patches in
the chat itself. Suggestions felt more trustworthy when users could inspect changes suggested before
applying them.

Alignment with context

Suggestions were occasionally perceived as generic or redundant. Users recommended incorporating
prior edit history and avoiding repeated or already-attempted actions. Suggestions on detection of
vague user prompts and post-commit were seen as helpful, but only when clearly grounded in context.

Discoverability & Explainability

As the proactive interventions were timed in a way for which users first had to invoke a certain context
action, discoverability of the proactive suggestions was a recurring element. Participants proposed
having a explicit options, either via context menu or floating toolbars, to request code improvement
suggestions on demand. Also, terminology in the assistant’s messages and UI components also re-
quired refinement to better match user expectations.

Based on this feedback, we introduced in-editor confirmation options upon intervening to enhance user
control. Furthermore, we revised the type of interventions to align better with developers’ workflows,
and focused on presenting suggestions in separate, smaller patches that could be applied in tandem.
Moreover, we refined system prompts for more effective inference of edit history and user intent. Lastly,
we introduced an explicit context-menu AI action for manually requesting code improvements (on se-
lection or entire file), alongside proactive interventions — the latter still being the core of this study.



4
Integrating Proactive AI Into The IDE

4.1. System Design Overview
Our proactive, LLM-powered assistant integrates directly into the IDE through Fleet’s AI plugin, es-
tablishing bidirectional communication between IDE components, user interface, and the underlying
agentic system. To determine when it is timely to intervene (DG 1, Section 4.2), the system has access
to the user’s work context, including documents, in-editor activities, terminal outputs, git operations,
and code inspection issues. Rather than passively awaiting user requests, we use heuristics based
on IDE activity to determine when the programmer may need assistance, thereby aiming to minimize
workflow disruption. Upon deciding to intervene, the system collects relevant metadata from the current
context to generate targeted LLM suggestions for code quality improvements (DG 2, Section 4.3). The
user interface is where developers can verify, refine, and apply suggestions (DG 3-4, Section 4.4). The
underlying assistant has agentic capabilities including tool access for fetching relevant IDE data and
action execution, working memory in the form of conversation history, and internal planning through
the underlying model’s reasoning capabilities.

Figure 4.1: High-level system design depicting communication between IDE components, UI and Fleet’s AI plugin serving the
AI Chat Assistant. Note how the three main components were established already — our contribution is highlighted by the

orange labels, spanning our design goals.
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4.2. Timing of AI Interventions
In contrast to earlier works on proactive coding assistance raising periodic proactive suggestions [6, 43],
we adopt an event-driven approach to minimize unnecessary disruption and resource consumption in
real-world contexts. We leverage heuristics, partially grounded in existing literature, mapped to certain
IDE events serving as proxies for developers seeking assistance. Tominimize wasting of resources and
minimize latency, we implement event filtering logic and debouncing mechanisms to discard rapid input
noise from the user. Figure 4.2 depicts when the system proactively intervenes during various stages
across the development workflow. We refer to these interventions as Ambiguous Prompt, Declined Edit
and Commit Changes—with the context behind the first two being the developer iterating on code with
inline AI, via Fleet’s built in context action “Edit Code“ (depicted in Figure 4.8).

Ambiguous Prompt Detected (Stage: Formulating Needs)

Heuristic: intervene when user is potentially looking for assistance through implicit signals [38, 43]

As developers may struggle to articulate precise instructions for an AI assistant, the system evaluates
user prompts by adopting an LLM-as-judge approach with assessments against predefined criteria,
including ambiguity (e.g. “make this better“), lack of context (e.g. requesting a fix without providing error
details), or inconsistent references (e.g. using undefined variables). For this purpose, we specifically
use GPT-4o given its support for structured outputs, allowing for a systematic assessment of user
prompts. We avoid wasteful LLM requests by setting a minimum threshold of 15 characters for user
prompts before we initiate the analysis, based on statistics given prompts fed to JetBrains’ AI Assistant 1.
When a prompt is flagged as unclear, the system intervenes by suggesting more targeted approaches
to improve their code quality in the chat. Note that we adapt the AI’s intervention style according to the
underlying intervention type, which is more exploratory in this case.

User Declines AI Edits (Stage: Executing Idea)

Heuristic: intervene when user is signalling unmet needs.

If a developer rejects an AI-generated edit (in this case when editing code via the inline AI action “Edit
Code“), it signals that the provided solution may not fully meet their needs and further assistance can
be helpful. Engaging with proactive interventions in this scenario leads to invocation of the AI chat
assistant, where alternative suggestions are presented — possibly by explaining the reasoning behind
the original suggestion or pointing out other issues detected that may be worth addressing. Similarly
here, the AI’s intervention style is more exploratory.

Committing Changes (Stage: Finish Writing Code)

Heuristic: intervene at task boundary i.e. natural checkpoints [19, 43]

As the user signifies that they have finished writing code, the assistant can provide immediate feedback
on best practices and code quality in terms of criteria including modularity, efficiency, robustness etc.
Upon successful commits, developers get an option to “ReviewChanges with AI” which then invokes the
AI chat assistant. Here, its intervention style is more prescriptive compared to the above two scenarios.

Figure 4.2: When the system proactively intervenes during various stages across the development workflow, given heuristics
for assistance seeking.

1https://www.jetbrains.com/ai/

https://www.jetbrains.com/ai/
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4.3. Suggestion Generation
To ensure the proactive assistant provides actionable suggestions to ensure value-alignment, we specif-
ically target code quality improvements. Suggestions may cover refactoring opportunities, potential bug
fixes, adherence to coding standards, performance optimizations, and ways to modularize the code fur-
ther. By focusing on these high-impact areas, the assistant helps fostering developer productivity, while
minimizing workflow disruption.

We leverage the power of LLMs augmented with IDE context — enhanced with tools and working
memory (i.e. conversational history) — to provide contextually relevant assistance that adapts to the
developer’s needs and environment. Moreover, we augment the LLM’s context with code inspection
issues derived from either:

• Static analysis
• Fleet’s code processing engines (IntelliJ or Rider) or language servers (LSP-based)

The user prompt contents vary depending on the user event that invoked the AI intervention. For
instance, in the case of Ambiguous Prompt or Declined Edit, we attach the current user file with the
selected code marked using <begin of selection> and <end of selection> tags — along with the
prompt that the user fed to inline AI when using the “Edit Code“ feature. On the other hand, in the case
of reviewing Committed Changes, the LLM is provided with the associated git diffs.

By automatically incorporating the user’s programming context into the assistant, we eliminate burden
from the user having to gather necessary context himself. Instead, the user can shift his attention to
actual problem-solving. Furthermore, by explicitly emphasizing human-AI collaboration in the system
prompt, we steer the LLM to act as pair programmer. This is crucial to avoid loss of user control,
potentially leading to code understandability (and possibly long-term maintainability) issues.

Figure 4.3 provides an example of how suggestions are generated via LLM prompts. The underlying
action model is determined based on the user’s model picker choice, which included (at the time of
conducting our user study):

• Claude 3.5 / 3.7 / 4 Sonnet
• GPT-4o, GPT-4.1
• O3-mini, o4-mini

Figure 4.3: Illustrative overview of how suggestion prompts are curated given various IDE artifacts.
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4.3.1. IDE Context Integration
The proactive assistant integrates multiple sources of information from the user’s IDE environment as
can be seen in Figure 4.1:

• User’s workspace context: Recent changes, currently selected snippet, file opened etc.
• Editor activities: Navigations, code selections, interactions with AI etc.
• Terminal: Enabling the assistant to execute commands or intervene upon error messages
• Git: Any operation including metadata such as commits being pulled/pushed including descrip-
tions, authors and timestamps

• In-editor user prompts: User requests made when iterating on code via the inline “Edit Code“
feature — serving as indicators of user intent

• Code inspection issues: Issues detected in the user’s codebase, identifying potential areas for
improvement or fixing

Furthermore, the LLM has a short-termworkingmemory (i.e. chat message history) containing previous
interactions that help build incremental knowledge construction — aligning generated outputs with the
user.

4.3.2. LLM Tools
To enhance the assistant’s contextual awareness on-the-fly, and allow it to directly perform actions in
the IDE (on request), we provide the underlying LLM with access to the following tools 2:

• Context-retrieval tool: Retrieves additional context within the project workspace when nec-
essary, such as recently changed files or specific classes

• Web-search tool: Gathers relevant web content given search query, providing both summarized
insights and specific excerpts with associated URLs for traceability

• Question-user tool: Enables the assistant to ask clarifying questions, or confirmation questions
with multiple answer variants

• Search-in-embeddings tool: Allows the assistant to find snippets of code that are semantically
most relevant to the user’s search query in chat

To avoid wasting system resources and ensure efficient operation, we impose limits on the frequency of
tool invocations given a single request. These safeguards help maintain IDE responsiveness, prevent
excessive background operations, and reduce unnecessary computational overhead.

2All of these tools were native to Fleet’s AI Chat, thus not specifically introduced for this study.
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4.4. In-IDE Representation of Proactive AI
The user interface plays a central role when it comes to explainability and transparency in the AI as-
sistance to enhance developer trust, particularly crucial in the case of industrial settings. From earlier
pilot studies, we found that signalling AI activity in-editor close to the user’s current interaction scope
is necessary to minimize distraction. This is in contrast to earlier works [6, 55] that directly displayed
proactive suggestions in the chat interface without user confirmation. To this end, we introduce minimal
visual cues inside the editor to signal AI activity.

To illustrate, Figure 4.4 displays an inline banner that appears when the system detects ambiguous
user prompts and decides it is timely for the AI to intervene. Moreover, this provides the developer
with an explicit option to either dismiss or engage with the intervention, which would invoke the AI chat
panel to display suggestions for improving the user’s code.

Figure 4.4: Display of visual cue in the editor to signify AI intervening when ambiguous user prompts are detected

Similarly, Figure 4.5 depicts how developer’s receive a notification upon successful commits with the
option to “Review Changes with AI”. In this case, they can engage by clicking on that button or dismiss
by simply closing the notification.

Figure 4.5: Post-commit notification in the editor to provide developers with the option to review their changes, emphasizing
code quality and good practices.

By leveraging the IDE’s AI Chat as central communication channel between developer and AI, we
minimize workflow distraction due to varying scopes of communication leading to context switching.
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Figure 4.6: Chat interface showcasing display of code improvement suggestions that can be applied on user demand, which
will subsequently allow for accepting or rejecting (Figure 4.7). The in-chat context panel allows for transparency on the

assistant’s working context — in this example listing the commit being reviewed, which can be clicked on to navigate to the
commit directly in the git panel.

Figure 4.7: Chat interface showcasing display of code improvement suggestions, along with explanations and patches that can
be automatically applied into the editor via git diff format — after which developers can opt to accept, reject and undo changes.

Each suggestion includes a concise title, explanation that articulates both the problem with the current
code and rationale behind the proposed improvement, and an associated patch. This ensures that the
assistant can help developers gain not just declarative knowledge (facts), but also procedural (how)
and conditional knowledge (when, why) i.e. ensuring explainability. Any generated code snippet is
scaffolded by default, and can be expanded on user demand. Not only does this minimize cognitive
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overload, but also loss of user control and potential code understandability issues due to overreliance
on AI.

By having an explicit option for users to integrate suggestions into their code, as depicted in Figure 4.6,
we avoid unnecessary costs, latency and performance overhead— as each “Apply” incurs an additional
LLM request in the background. After applying patches, the associated diff will be displayed in the editor,
after which the developer can ultimately decide to “Accept” or “Reject” — either an individual snippet,
all snippets or chunk-by-chunk inside the editor.

When it comes to minimizing latency and performance overhead, we also emphasize the critical impor-
tance of handling complex or long-running background tasks asynchronously, in our case leveraging
Kotlin coroutines to ensure non-blocking execution. Specifcially, all operations that involve network
requests (e.g. LLMs on the cloud), file system access, or large-scale computations are dispatched off
the main thread to prevent UI freezes or unresponsiveness. On the other hand, any updates that af-
fect the UI — including visual feedback, status indicators, or editor changes — are explicitly scheduled
on the main thread to preserve optimal developer experience. This separation between background
processing and UI updates is essential: even small delays in the IDE interface can significantly disrupt
developer focus and workflow, leading to frustration and reduced productivity.

Lastly, we introduce an explicit AI Action in the context menu (on right-click in the editor) to manually
request code improvements from the AI —- depicted in Figure 4.8 — based on earlier feedback from
pilots. Moreover, this can allow future work better understand when proactive AI assistants should
intervene.

Figure 4.8: Additional manual AI Action via context menu to “Improve Code“ with AI, either for selected code or entire file (if
user does not have anything selected).



5
Evaluation Through an In-The-Wild

User Study

We conducted a five-day in-the-wild study to investigate the effects of proactive AI assistance on devel-
oper experience and productivity. The study employed a mixed-methods approach, combining quan-
titative telemetry data with qualitative survey responses to provide comprehensive insights into user
interactions across their workflow. The study was conducted in line with our company’s ethical stan-
dards, adhering to the values and guidelines outlined in the ICC/ESOMAR International Code [18]. The
research questions we aim to address are as follows:

Research Question 1

How do user interactions with proactive AI vary across different workflow stages?

Research Question 2

What is the effect of in-IDE proactive AI assistance on user experience?

5.1. Participants
We recruited participants through JetBrains’ research panel using a comprehensive screening (see
Appendix B). The screening process yielded 139 total responses with a 20.9% completion rate, resulting
in 29 qualified participants who met all selection criteria. Of these, 18 participants actively engaged with
the proactive AI features during the study period between 7 May 2025 and 3 June 2025 (two rounds).
Ultimately, 15 out of these 18 met the five-day participation protocol.

Participants were required to have regular experience with AI tools in day-to-day development work,
with 60.9% using AI tools multiple times daily. All participants indicated familiarity with JetBrains prod-
ucts, with 49.2% using IntelliJ IDEA Ultimate, 34.8% using PyCharm Professional, and 29.5% already
using Fleet IDE. Participants showed diverse AI tool usage, with 69.4% regularly using ChatGPT, 63.9%
using GitHub Copilot, 38.9% using Anthropic Claude, and 36.1% using JetBrains AI Assistant. Another
requirement to take part in the study was familiarity with in-IDE AI tools specifically, minimizing con-
founding variables as much as possible.

The participant pool consisted of various (possibly overlapping) job roles, with 89.7% identifying as
Developer/Programmer/Software Engineer roles, 27.6% in Team Lead positions, and 24.1% as Archi-
tects. Professional experience was substantial, with 55.1% having over 11 years of coding experience
and 24.1% having 6-10 years of experience. In terms of primary programming languages of the partici-
pants, Python (44.8%), Kotlin (37.9%), Java (20.7%), Go (20.7%), and TypeScript (20.7%) being most
common.

16
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Table 5.1: Participant Demographics

ID Job Role Languages Experience Frequency of AI Tool Usage
P1 Dev, DevOps C#, Groovy, Py 6–10y Multi/day
P2 Dev Kt, TS 11–16y 1/week
P3 Dev, Researcher Dart, Py, Shell 3–5y Multi/day
P4 Dev C# 16+y Multi/day
P5 Dev, DevOps Dart, Kt, Py 3–5y Few/week
P6 Dev Java, Kt, SQL 11–16y Multi/day
P7 Dev, Analyst Py, SQL, TS 6–10y Multi/day
P8 Dev Go, JS 11–16y Multi/day
P9 Architect Go, Kt, Py 16+y Multi/day
P10 Dev HTML, JS, Kt 1–2y 1/day
P11 Dev C#, TS 3–5y Multi/day
P12 Dev Dart, Rust, Swift 6–10y Multi/day
P13 Dev, ML Eng Py 6–10y Multi/day
P14 Dev, Architect Go, PHP, TS 16+y Multi/day
P15 Dev, Architect Kt, Py 11–16y Multi/day

Figure 5.1: In-IDE notifications to nudge users to fill in daily surveys, five minutes after interaction with any proactive AI
intervention.
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5.2. Procedure & Data Collection
An overview of our data collection approach is provided in Figure 5.2. The study followed a structured
timeline spanning four weeks in total, during which participants were required to actively use the system
for at least five days (not necessarily consecutive) during their day-to-day work. Participants were com-
pensated with their choice of either a USD 150 Amazon gift card or a one-year JetBrains All Products
Pack subscription.

In the initial screener survey, participants were asked to accept research terms and conditions 1. Partic-
ipants eligible for the study received comprehensive setup instructions, which included troubleshooting
guides and animated demonstrations of the proactive features. A key setup step involved explicitly
enabling data sharing, allowing for anonymous usage statistics to be collected as telemetry data for
analysis. Importantly, no personal data or sensitive information — such as file paths, the participant’s
source code, full-text inputs sent from the IDE to LLMs, or their corresponding outputs—were collected.

Throughout the study period, participants engaged in self-directed programming tasks reflective of their
routine professional work. There were no restrictions on the programming languages, frameworks, or
project types employed. See Appendix F for the user study manual that participants received.

To mitigate potential fraudulent participation, in-IDE notifications prompted users to complete short
“daily surveys” five minutes after interacting with any of the proactive features, limited to once per
IDE session 2 (see Figure 5.1). The survey (see Appendix C) asked participants about which specific
aspect of the proactive AI assistant they used, the task context they applied it to, their perceptions of its
behavior — and included an open-ended question for additional comments. We also used the survey
to track participation, as anonymous telemetry data from the prototype could not be linked to names.
Note how it was designed to take minimal effort i.e. users took approximately five minutes on average.

After using the feature for at least five days and completing five daily surveys, participants were asked to
complete a post-study survey (see Appendix D). This survey included five-point Likert-scale items from
the System Usability Scale (SUS) [26], as well as additional questions assessing perceived reliability,
intent alignment, intrusiveness, and the impact of the feature on efficiency. Two open-ended questions
invited participants to elaborate on how the suggestions affected their code quality and to provide
feedback on how the prototype could be improved to better support their workflow. Filling out this
post-study survey took 15 minutes on average.

All participants operated under consistent experimental conditions, using the same nightly build ver-
sions with the requisite feature toggles enabled. Furthermore, LLM temperature was explicitly set to
zero to ensure deterministic and consistent outputs across interactions. While participants could select
any LLM available via the AI Chat’s model picker, they were encouraged to use GPT-4o, as it had the
most robust support at the time.

1https://www.jetbrains.com/legal/docs/terms/general-research-terms/
2That is, the moment the user opens their workspace, to the moment of closing the IDE.

https://www.jetbrains.com/legal/docs/terms/general-research-terms/
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5.3. Data Analysis
Data collection employed both quantitative and qualitative sources:

• Telemetry data (N=18): Anonymous user interaction data was collected via Fleet’s Feature Usage
Statistics (FUS) system. This included fine-grained IDE events such as navigation patterns, UI
element interactions (e.g. proactive interventions), git operations etc.

• Daily survey responses (N=15): Short daily surveys were part of the study to monitor active
participation, and capture user experiences across the study period regarding helpfulness as
well as open-ended feedback.

• Post-study survey responses (N=15): A post-study survey collected self-reported ratings on sys-
tem usability, productivity and open-ended feedback regarding the overall user experience with
the proactive AI.

To investigate how user interactions with the proactive assistant varied across different workflow stages
(RQ 1), we analyzed telemetry data capturing interaction types and their rates of engagement, dis-
missal or ignoring — with a total of 229 interventions analyzed. We report descriptive statistics (e.g.
proportions and usage patterns) to characterize engagement, serving as indicator for effectiveness of
intervention strategies adopted. Appendix A provides some figures on general participation.

To assess the impact of the proactive assistant on user experience (RQ 2), we mainly analyzed re-
sponses from the post-study survey. This included both quantitative data from Likert-scale items and
qualitative feedback from open-ended questions. Moreover, we analyze interpretation times of AI sug-
gestions to evaluate impact on workflow efficiency.

By combining telemetry and survey data, we derive contextualized insights into the usability and per-
ceived usefulness of the deployed prototype.

Figure 5.2: Overview of our data collection approach, spanning both qualitative and quantitative sources.



6
Results

We present findings from our mixed-methods, in-the-wild study evaluating a proactive AI assistant
integrated into a real-world IDE. Our analysis combines in-IDE telemetry (N=18 machines with active
usage declining to 8 machines by day five) and a post-study questionnaire with open-ended feedback
(N=15).

6.1. RQ1: How Do Developers Interact with In-IDE Proactive AI Sug-
gestions Across Workflow Stages?

We analyzed 229 interventions (Figure 6.1) across three workflow-triggered intervention types: (1)
Ambiguous Prompt, (2) Declined Edit, and (3) Commit Changes over the study period of five days.
Each intervention provided developers with options to either engage with the AI for code improvement
suggestions, dismiss the notification, or ignore it entirely.

Ambiguous Prompt interventions (N=35) yieldedmoderate engagement at 46%, with 23% dismissed
and 31% ignored. The balanced distribution suggests varying underlying scenarios. In case of gen-
uinely struggling to articulate their needs, the developer is likely in an exploratory state where they are
more receptive to proactive suggestions that help refine their approach. However, others may know
their desired outcome but provide insufficient detail in their prompt due to brevity preferences rather
than uncertainty. Qualitative feedback revealed mixed reactions, with some developers expressing
surprise at proactive interventions, observing that “it seemed that ’simplify’ was insufficient context for
the AI to act upon” [P1] or noting “this behavior does not align with my experience with existing AI
assistants” [P3]. These suggest that developers feel disrupted by the AI and instead prefer having full
control when they are carrying out set tasks at hand.

Declined Edit interventions (N=39) achieved the lowest engagement rates at 31% and highest dis-
missal rates at 62%. Despite signaling unmet needs, these interventions appear to feel “like advertise-
ment” [P3], indicating unnecessary intrusion when developers have already formulated specific task
intentions. Also, context-switching between different AI interaction modalities appears to be causing
cognitive overload, with participants expressing confusion about “when to use inline AI and chat” [P15].
In fact, telemetry data reveals frequent dismissals coinciding with active ongoing chat sessions.

Commit Changes interventions (N=155) demonstrated the strongest reception, achieving 52% en-
gagement rates. This timing is based on natural workflow boundary points when developers complete
logical units of work and are “still in themindset of wanting to submit good code” [P5]. This suggests that
developers entering an evaluative mindset, having finished writing code, experience reduced cognitive
switching costs and thus are more receptive to engage with proactive AI.

Temporal analysis over the study period revealed stable interaction patterns across all intervention
types. For Commit Changes interventions, the consistent engagement rates throughout the study pe-
riod indicate that the effectiveness of boundary-point interventions is not diminished by repeated expo-

20
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Figure 6.1: Rates of interaction with proactive AI interventions across various development stages: formulating needs
(Ambiguous Prompt), executing idea (Declined Edit) and finish writing code (Commit Changes). Users can choose to “Invoke

chat” or “Dismiss” the pop-up — or ignore it by navigating away or reformulating their prompt in the case of “Ambiguous
Prompt”. In total, we recorded 229 proactive AI interventions over the 5-day study period.

sure. Daily survey feedback confirmed that having AI review changes after commits remains effective
and helpful, with users expressing desire to “continue using it once the feature becomes available”
[P5]. In contrast, Declined Edit interventions maintained consistently low engagement throughout the
study period, suggesting that poor reception was not due to an initial learning curve that users might
overcome, but rather reflects a more fundamental disruption to their workflow. Moreover, 8 of 15 par-
ticipants continued using the assistant beyond the required five days, indicating integration into regular
workflows rather than novelty-driven usage.

Research Question 1

The observed timing patterns underscore that proactive AI’s value depends critically on developers’
cognitive context and thus readiness to receive assistance. The most effective interventions occur
at natural workflow boundaries when developers are in the mindset of reviewing submitted code,
while interventions during focused implementation tasks often feel disruptive and intrusive (despite
signalling unmet needs).

6.2. RQ2: How Do Developers Experience the Interaction with In-
IDE Proactive AI Suggestions?

Having established when proactive AI interventions are most effective, we now examine what underly-
ing aspects influence how developers experience proactive AI assistance in their workflows. Here, we
primarily walk over the qualitative data obtained from the post-study survey (see Figure 6.2).

Overall, participants had a positive perception of the system’s usability, with 77.3% of participants
expressing interest in frequent system use. Moreover, this was reflected in an above-average SUS
score 1 (72.8 > 68). This score corresponds to a grade of B (indicating strong usability with room for im-
provement) and suggests that users are likely to be “passive” in NPS classification — holding generally
favorable opinions but not necessarily promoting the system to others.

The SUS score is calculated using the following formula:

SUS Score = 2.5×

(
5∑

k=1

(Xpos,k − 1) +

5∑
k=1

(5−Xneg,k)

)
(6.1)

where Xpos = {X1, X3, X5, X7, X9} represents the raw scores for positive statements (odd-numbered
items) and Xneg = {X2, X4, X6, X8, X10} represents the raw scores for negative statements (even-
numbered items). Each raw score Xi ranges from 1 to 5 based on the Likert scale responses. Likert

1https://measuringu.com/interpret-sus-score/

https://measuringu.com/interpret-sus-score/
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scale responses are mapped to numeric values: “Strongly disagree” = 1, “Disagree” = 2, “Neither agree
nor disagree” = 3, “Agree” = 4, and “Strongly agree” = 5.

6.2.1. Developers Engaged with Proactive AI for Varying Purposes
From our qualitative data analysis, we identify several aspects that shape developers’ perceived value
of proactive AI in terms of user experience and productivity — including alignment with developer intent
and mental model. Participants appreciated when the system successfully understood their intent, as
noted by P6: “In most cases the suggestions were exactly what I wanted. Most of them I was able to
accept as they fittedmy task I wanted to complete.” Moreover, from the post-study survey responses we
observed that 63.6% of participants indicated it was easy to understand how proactive AI suggestions
related to what they were trying to achieve.

Furthermore, we identified various underlying purposes for engaging with proactive AI. For exploratory
purposes, proactive AI served as an effective code quality gate, with participants appreciating its role
as a second pair of eyes for identifying overlooked issues or general enhancements. P3 noted: “There
were a few suggestions around safety ... an aspect that actually is really important in order to catch
senseless errors when speed coding and did improve my code significantly.” Similarly, P5 mentioned
how “[They] didn’t catch that loading the asset might through an error as [they were] following an im-
plementation guide from the library docs.” Participants also seemed to get an intuition for the AI’s
strengths: “the AI is helpful for identifying repetitive code and extracting it to improve modularity. It also
handles typing well.” [P13]

For accelerative purposes, while developers generally rejected proactive suggestions after declining
inline edits, some participants appreciated that the system proactively escalated to the AI chat with
relevant context to help them accomplish their task — particularly when the inline AI had failed to pro-
duce the desired results. This indicates that proactive AI can alleviate the burden of intent specification
or switch between different AI modalities, effectively “offering proactive code editing while [they were]
writing code so that [they wouldn’t] have to open a chat window or go somewhere else to fill in what’s
missing” as P12 explained.

The study reveals that proactive AI assistance generates overall positive effects on perceived productiv-
ity, with the majority indicating that using the proactive suggestions helped them complete tasks more
quickly (68.1%) and easily (59.1%). Comparing interpretation time of code snippets accepted or copied
over, across reactive and proactively invoked chat sessions, shows that users take significantly less
time to interpret proactive suggestions and incorporate them into their code, compared to manually
requested ones (Wilcoxon signed-rank test: W=109.00, p=0.0016 < 0.01), as illustrated in Figure 6.3.

6.2.2. User Experience was Largely Influenced by the AI's Contextual Understand-
ing

The perceived utility of proactive AI suggestions is also greatly affected by the AI’s contextual under-
standing of the developer’s workspace, impacting the quality of suggestions presented. However, only
31.8% believed that the suggestions generated in the AI chat were reliable, and 44.5% felt comfortable
accepting the LLM suggestions. Interestingly, P3 noted: “I did not feel that any suggestion was mis-
leading ... so perhaps the coder’s perception and friction with the code they are writing is an important
factor here.”

Trust diminished when AI “lacked understanding of current code patterns” [P3] leading to irrelevant
suggestions, or when higher-level intent behind design choices was not understood i.e. in some cases
“repetitiveness was necessary and unavoidable for the specific functionality intended to achieve”. De-
velopers working with specialized frameworks experienced frustration when AI “failed to account for
domain-specific syntax and patterns” or suggested “code refactoring that makes it unnecessarily com-
plicated for a neural network” [P13]. We note that LLM training data here plays a substantial role, as
models may lack sufficient exposure to specialized domain patterns or recent framework versions, lead-
ing to suggestions that appear syntactically correct but are contextually inappropriate. As P3 observed:
“However, at least half of the times that this happened, other LLM chats (asked after this tool’s response
had failed) would get it wrong in their first try as well.” To enhance suggestion relevance, participants
desired integration with broader codebase context “possibly using nearby open tabs or recently edited
files” [P3]. Note that the underlying LLM serving the AI chat did have tools available to invoke the latter
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dynamically, as passing this by default on every request is costly and not always necessary.

Furthermore, the application of patches 2 into the developer’s codebase impacts user experience, re-
gardless of suggestion quality. Overall, the majority (68.2%) thought that the various functions in the
system were well integrated. However, unreliable patch application that breaks builds or requires ad-
ditional manual editing creates workflow friction and disruption that outweighs potential benefits. Even
valuable suggestions lose utility when delivered through unreliable system integration, as P4 expe-
rienced: “The suggestions were sort of helpful but messed up the code file. I manually copied the
suggestions - undid the changes, then pasted the suggestions into the correct place.”

6.2.3. Developers Have Varying Needs and Preferences
Design aspects that impact developer engagement with proactive AI also come with personal devel-
oper preferences, indicating a need for adaptivity. In terms of user control around interaction with AI,
the majority indicated that most people would learn to use the system quickly (91%) and it was overall
easy to use (77.3%), as shown in Figure 6.2. Most valued explicit confirmation mechanisms, appreci-
ating that the system was “even better than some other IDEs with integrations with the AI agent and
the editor (e.g., offering custom UI in form of buttons when asking you for confirmation)” [P12]. The
transparency in AI presence also contributed to helping developers feel like they “always knew what
the suggestions were talking about” [P3]. In terms of when proactive interventions are triggered, de-
velopers generally prefer having control, as P5 noted: “I prefer to use hotkeys where possible ... or a
command or something that can be used.” However, other participants preferred more AI autonomy,
with P15 expressing: “I would like to immediately move the context to the ’Chat’ without even asking
me, since I didn’t accomplish what I tried to do - just move to the ’Chat’ and give me the answer.”

Regarding the degree of proactiveness, some participants indicated that “it would be good if the Review
Commit option could either be triggered automatically on any commit” [P5] or even “extend that ability to
any changes made in git” [P10]. Whereas others found the frequency of interventions excessive, noting
that suggestions were “not always necessary... dismissing the dialog is annoying” [P15]. For granularity
of suggestions, some participants desiredmore granular assistance, requesting “finegrained comments
in code and documentation generation” [P3] for detailed explanations. Similarly, when issues such
as code repetition were detected, some participants wanted comprehensive fixes rather than partial
demonstrations, noting frustration when AI chat “only shows a small part of the file” [P11]. Others
preferred brevity, indicating that they “would prefer for a suggested code to be returned ... no need for
explanation text” [P15]. Regarding types of suggestions, users indicated they wanted to “choose the
types of suggestions I want (e.g., performance, readability, security)” [P4].

Research Question 2

Our findings reveal that developers engage with proactive AI for both exploratory and accelerative
purposes, achieving higher perceived productivity and significantly faster code interpretation times
compared to reactive AI use. However, developer experience is largely constrained by the AI’s
contextual understanding of their workspace, with trust diminishing when suggestions lack domain-
specific knowledge or fail to integrate reliably into the codebase. The significant variation in devel-
oper preferences regarding proactiveness degree, suggestion granularity, and interaction control
highlights the critical need for adaptive and customizable proactive AI systems that can accommo-
date diverse individual workflows and requirements.

2Note that we relied on the built-in patch application system in Fleet, which was still under active development at the time of
conducting our user study i.e. not fully stable.
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(a) System Usability Scale (SUS) positive statement results

(b) System Usability Scale (SUS) negative statement results

(c) Additional post-study survey results

Figure 6.2: Responses from post-study surveys based on the 15 participants that participated consistently over the entire
study period.
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Figure 6.3: Comparison of interpretation time of in-chat code snippets across proactively invoked chat sessions and reactively
invoked chat sessions (manual). Specifically, this is the time recorded between the LLM response was received, and the user

either accepting or copying over the snippet into their code. To account for inactivity, we discard those response times
exceeding 10 minutes.



7
Discussion

7.1. Technical Implementation Challenges & Implications
The integration of LLMs in real-world IDEs presents several technical challenges that must be ad-
dressed to ensure developers receive a seamless and uninterrupted experience.

Dealing with the nondeterministic nature of LLMs, especially in multi-model scenarios, emerged as a
primary challenge. Specifically, sensitivity to prompt engineering made it difficult to ensure predictable
model behavior including patch generation (e.g. in specific git diff formats). To navigate this, it could
be beneficial to enforce structured outputs (e.g. JSON-based), integrate validation checks and have
fallback mechanisms to maintain reliability. Moreover, it could be worth exploring frameworks for mod-
ularizing prompts to enhance reusability.

Furthermore, managing chat interaction history posed challenges. As one participant noted, “I have
noticed that if a particular chat session gets long, then the model would start glitching out” [P7]. This
issue fundamentally stems from LLM token limits, for which it is non-trivial to precisely anticipate when
it will be reached — as the total number of tokens is the sum of prompt tokens and response tokens.
These constraints also impose constraints on context integration, suggesting a trade-off between re-
sponse accuracy and responsiveness. Note that in this work, we start a new chat session for each
proactive intervention by default. In fact, earlier work [27] has shown that increased context lengths
have also been linked to a greater chance of incorrect answers. To this end, it can be worth exploring
incremental chat summarization techniques to reduce token usage while preserving essential context.
Additionally, leveraging long-term memory mechanisms (e.g. vector databases) rather than relying on
short-term memory limited to the current chat session can be beneficial. The latter can also enable
persistent storage of user preferences and coding styles, allowing for more personalized interactions
across sessions.

There are also challenges that come with building LLM-powered applications in general. For instance,
testing and debugging is more complicated compared to traditional software engineering, due to the
inherent nondeterministic nature of LLMs. We highlight the need for systematic evaluation frameworks
and establishing proper traceability techniques for debugging, which could include logging intermediate
LLM reasoning steps. Moreover, as seen in this work, alignment with user intent is crucial — beyond
correctness (syntactic or semantic). However, formally specifying alignment with user goals is hard,
and online evaluation is often costly. Future research should explore scalable, efficient methods for
capturing and evaluating alignment to ensure user-centered model behavior. Lastly, to ensure smooth
performance for end users at any time, we stress the importance of asynchronous handling of complex
background tasks (e.g. requests to LLMs on the cloud) — with any UI changes visible to the users
scheduled on main thread.

26
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7.2. Design Implications From User Perspective
Here, we revisit our design goals based on our findings, and derive implications to navigate the future
design of proactive AI coding assistance in IDEs.

(DG1) Timely proactive AI assistance to preserve workflow.

Our findings reveal that timing is a crucial aspect that impacts developer engagement with proactive
AI in the IDE. In fact, workflow boundary interventions demonstrate the highest effectiveness, as ev-
idenced by sustained engagement patterns, due to minimized cognitive switching costs and natural
blending into developer workflows. On the other hand, mid-task interventions (e.g. after declined edits)
were frequently dismissed or ignored.

Implication: Developers’ workflow context and cognitive readiness must guide when interventions are
triggered.

Recommendation: Future designs should ideally achor proactive assistance to clear task boundaries
(e.g. commits, builds, test runs) where developers are cognitively ready to receive suggestions. For
mid-task interventions, we highlight the need for more accurate intent modeling and possibly tuning
down the AI’s prominence in the IDE.

(DG2) Contextually relevant & applicable suggestions to provide value.

Developers valued suggestions that reflected their current task at hand, responding positively when
interventions felt well-aligned (“exactly what I wanted” [P6]). Nonetheless, perceived value of sugges-
tions dimished when they were perceived as irrelevant, due to unawareness of domain-specific patterns
for instance — which can be attributed to both context integration and LLM training data. While our
proactive assistant’s underlying LLM was equipped with tools for dynamic context augmentation, these
may not always have been operationalized effectively.

Implication: Suggestion quality is largely influenced by the AI’s understanding of developer intent and
their workspace, highlighting the importance of enhanced integration with workspace context.

Recommendation: To further improve value-alignment with developers, we recommend more effective
heuristics for integrating external context sources, “possibly using nearby open tabs or recently edited
files” as noted by [P3]. We also underscore the need for enhanced prompt engineering strategies, as
well as more systematic tool instruction frameworks to optimize the way LLMs leverage provided con-
text. Notably, contemporary advancements in emerging context integration protocols such as MCP 1

offer promising directions in personalized, dynamic context augmentation. Lastly, when ambiguity re-
mains, it is essential that developers can be prompted proactively for clarification.

(DG3) Explainability and transparency to build developer trust.

From qualitative responses, we observed that overall transparency in AI presence within the IDE helped
establish reliability. Developers appreciated concise rationales, previewable changes, and minimal in-
editor cues that respected their workflow. To further enhance trustworthiness in AI assistance, earlier
pilots indicated that it “would be helpful if each suggestion came with a confidence level” or “clearer UI
on what changes are suggested by the AI”.

Implication: Proactive AI suggestions must be understandable at a glance, predictable in behavior, and
verifiable before application.

Recommendation: The above underscores the need to support more informed developer decision-
making by reinforcing transparency through clear diffs when presenting patches, and possibly indicators
of suggestion confidence or source (e.g., “based on recent edits”).

(DG4) User control to preserve ownership.

Control over when and how to engage with AI suggestions was a recurring theme throughout the entire
development process of our prototype. Early pilot studies revealed frustration with unsolicited chat win-
dow openings, which interrupted developer flow and created unwanted context switches. In response,
our final prototype featured clear, contextually-placed visual cues within the editor, which participants

1https://www.anthropic.com/news/model-context-protocol

https://www.anthropic.com/news/model-context-protocol
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valued as it allowed them to dismiss or engage with the proactive AI. However, preferences varied
across individuals; some preferred more autonomy, while others favored greater manual control via
hotkeys or context menu actions. Beyond interaction modalities, users expressed their desire to have
control over the type and granularity of suggestions.

Implication: To accommodate diverse user workflows and preferences, adaptive human-AI interaction
strategies are needed.

Recommendation: These findings point toward promising research directions in adaptive AI assistance,
that can learn from both explicit user feedback and implicit behavioral signals. It is worth exploring how
user configurability in intervention timing, frequency, and suggestion types could be combined with
gradual personalization mechanisms. Such systems help maintain user control while evolving to better
match individual developer needs and workflow styles over time.

7.3. Comparison To Prior Work
Here we compare our findings with earlier work on proactive coding assistance, highlighting both align-
ing findings and novel insights that emerge from real-world deployment settings.

Firstly, our work supports previous findings by Chen et al. [6] and Pu et al. [43] that proactive AI can
enhance perceived workflow efficiency through just-in-time suggestions and reducedmanual prompting.
Both studies also emphasized the importance of timing, with Pu et al. highlighting task boundaries
as especially effective moments for intervention — a pattern we similarly observed in our in-the-wild
study through sustained engagement patterns. Additionally, Pu et al. identified challenges with false
positives from heuristics based on implicit user signals. This became evident from our findings on
Declined Edit interventions as well, underscoring the need for more accurate inference of developer
intent and cognitive state.

Our findings further support Chen et al.’s characterization of proactive AI as a “second pair of eyes”
that helps developers catch potential issues early. As P11 described: “The review feature really helps
to spot some repetitive items in the code... gives some really nice pointers that you can check, and
rubber duck some potential issues with in your code base.” This reinforces the value of proactive AI
as code quality gate, enhancing developer confidence.

Nonetheless, our work extends earlier findings in several important ways. Firstly, earlier experiments
were confined to predefined tasks carried out during a single session in controlled environments and
Python-only contexts. In contrast, we were able to observe in-the-wild developer interactions across a
five-day study period, indicating stable engagement patterns and thus potential for proactive AI to be
integrated in real-world development workflows.

As our participants worked on self-directed professional programming tasks, spanning a variety of pro-
gramming languages and frameworks, we observed hiccups when working with specialized domains
or frameworks. This alludes to reduced suggestion quality due to underrepresentation in LLM training
data, and thus also points to the need for exploration into long-term effects of proactive AI assistance
across diverse technical contexts.

Furthermore, while Pu et al. found that flexible interaction scopes were effective, we find that in practice
this leads to distraction and confusion due to context switching. This nuance suggests that in real-
world IDEs, where various AI features may be integrated, future designs should even more carefully
consider concurrent AI interaction contexts to minimize cognitive overhead and maximize developer
productivity.
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Limitations & Future Work

8.1. Threats to Validity
While our findings provide strong real-world insights into usage of and interaction with proactive AI in
IDEs, several limitations must be acknowledged.

Construct Validity

Participants interacted with the proactive AI, integrated with a full-featured AI assistant. As such, post-
study perceptions may have been shaped by the assistant as a whole. We see this as a strength of
ecological integration, yet it introduces ambiguity in interpreting system usability scores. To this end,
qualitative data was analyzed rigorously, confirming that the proactive AI contributed to the observed
user experience — and thus making our qualitative analysis relevant nonetheless.

Internal Validity

Participants were exposed to all intervention types, but engagement varied by individual workflow (e.g.
in terms of IDE usage) and day-to-day conditions. As telemetry data was anonymous, mapping indi-
vidual machines to survey responses could not be done precisely. This means that in our work, both
datasets have been analyzed separately. We ensured qualitative data only spanned participants who
provided meaningful daily survey responses over at least five days (N=15). Due to the objective nature
of telemetry, we included data from all participants who engaged with the proactive AI, even if they
did not complete the full five-day protocol (N=18 machines in total with active usage declining to 8 ma-
chines by day five). This approach may have introduced noise, but nonetheless preserved participant
privacy whilst maximizing available data.

Moreover, there were several factors that may have influenced study outcomes. Due to the undetermin-
istic behavior of LLMs, participants experienced varied response quality; despite attempts to reduce
randomness (e.g. ensuring LLM temperature set to 0 at all times), this inconsistency may have led to
inaccuracy in findings. Also, we conducted our user studies on a nightly build of Fleet, hence not the
most stable and thus potentially led to confounding factors in terms of user experience.

External Validity

Our work closely mirrors adoption of proactive AI in practice: as the prototype was integrated into an
enterprise IDE, and our in-the-wild study participants engaged in self-directed tasks representative of
their professional work — with no limits on languages and project types. Compared to prior work con-
ducted in controlled laboratory environments [6, 43, 55], this approach offers higher ecological validity
by capturing natural developer behaviors. However, this realism also introduces variability across users
and sessions, which can complicate interpretation.

Participants, recruited from JetBrains’ research panel, underwent a screening survey to ensure they
were already familiar with the company’s IDEs, and in-IDE AI tools in general. While this enabled

29
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us to observe realistic use cases and workflows, findings may not fully generalize to developers less
experienced with these tools or to those newer to AI-assisted development.

Moreover, our sample size was limited (N=18 for quantitative analysis and N=15 for qualitative analysis)
— and engagement varied considerably across days and intervention types. Consequently, statistical
testing would have had limited power, increasing the risk of Type II errors.

Engagement patterns were analyzed over a relatively short five-day period, leaving longer-term adop-
tion dynamics unexplored. Additionally, we merely examined three heuristic-based intervention strate-
gies throughout the development workflow, to steer future research into smarter trigger models.

8.2. Future Work
This work demonstrates the feasibility of integrating proactive AI into a production-grade IDE and eval-
uating it in an in-the-wild setting, advancing research on proactive coding assistance in real-world envi-
ronments. Building on our design principles and empirical findings, several promising directions emerge
for future exploration.

First, future systems should expand both the variety and sophistication of proactive triggers. While task
boundaries (e.g. post-commit) proved effective, more advanced trigger models are needed to better
capture developer intent and dynamically adjust intervention strategies. Such models could leverage
richer signals from live code context, edit history and further in-IDE interactions. However, developing
smarter trigger models will require more research into developer intent modelling, more comprehensive
training data, and can introduce overhead costs.

Second, proactive support should move beyond code quality and could expand into domains such as
debugging and testing, where timely assistance could further improve developer productivity.

Third, long-term behavioral impacts of proactive AI remain underexplored. Future studies should in-
vestigate how developers’ trust, habituation, and reliance evolve over extended periods, as well as
potential downstream effects on code quality and maintainability — especially in industrial and team-
based settings.

Moreover, understanding individual differences in how developers accept, reject, or modify sugges-
tions can inform more personalized and adaptive intervention strategies. Future work could include
studies with larger and more diverse samples to assess the influence of factors such as experience
level, role, and language preferences. Controlled deployments, such as A/B tests, can be particularly
valuable here: they could systematically compare different proactive strategies, validate personaliza-
tion approaches, and complement our in-the-wild findings by providing clearer comparative insights.



9
Conclusion

This thesis contributes to the growing body of research on proactive AI assistance in software devel-
opment by designing, implementing, and evaluating a proactive chat assistant integrated within a com-
mercial IDE. Our five-day in-the-wild study with 18 professional developers demonstrated that timing
is a critical factor for engagement: suggestions delivered at workflow boundaries (e.g. post-commit)
achieved highest engagement rates, while mid-task interventions were often dismissed. Importantly,
we observed sustained engagement patterns over time, with half of the participants continuing to use
the assistant beyond the study period — highlighting strong potential for integration into real-world
development workflows.

Developers valued contextually relevant suggestions, particularly when the AI acted as a “second pair of
eyes” to surface overlooked issues, supporting both perceived productivity and code quality. The wide
variation in user preferences also underscores the need for adaptive, personalized proactive systems.
While our study relied on heuristic-based triggers and a modest sample size, these point toward rich
future directions in advanced intent modeling and longitudinal studies, possibly in A/B settings.

In conclusion, our work bridges the gap between experimental prototypes and practical integration,
providing actionable design insights and empirical evidence for integrating proactive AI into everyday
software engineering practice. This work lays a solid foundation for future research and industry adop-
tion, supporting more seamless developer-AI collaboration.
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A
General Usage Stats from Telemetry

Below we provide an overview of general usage patterns, based on quantitative telemetry data (N=18).
Note that we treat this as a separate dataset from the qualitative dataset (N=15), as the anonymous na-
ture of telemetry collected made accurate mapping from machines to participant names cumbersome.

Figure A.1: The total number of days participants were active in terms of general usage of the IDE, and interacting with the
proactive prototype under study specifically. Note that the type of interventions we introduced highly influence levels exposure

to the proactive assistant.
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Figure A.2: Boxplots providing an overview participation in terms of total number of sessions, average session duration and
total number of active days.



B
Qualification Screener Survey User

Study

This Appendix contains the qualification survey that all invited participants (from JetBrains’ research
panel) underwent to avoid confounding factors in our study as much as possible. Specifically, eligibility
criteria included:

• Having professional programming experience
• Being familiar with JetBrains IDEs
• Having regular experience with in-IDE AI tools in day-to-day development tasks
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Welcome page 
 

A.​ Survey Introduction: 
 

Thank you for your interest in our research! 
 
Please complete our five-minute survey, where we’ll ask you about your professional 
background and experience. 
 
 

B.​ Please read the General Research Terms and Conditions 
​ I have read and agree to the General Research Terms and Conditions 

 
C.​ Please provide your contact details: 

Note: Your email will only be used to match responses across study phases and will not 
be shared or used for other purposes. 
 
_____________ 

 
D.​ What type of reward would you like to receive if you fully participate in the study?​

(Radio button, select one) 
   One-year JetBrains All Products Pack subscription 

   USD 150 Amazon Gift Card 

   Nothing, thank you 

 

General questions  
 
Which of the following JetBrains products do you currently use? (Checkbox, select 
multiple) 

 None 

 IntelliJ IDEA Ultimate 

 IntelliJ IDEA Community Edition 

 RubyMine 

 PyCharm Professional Edition 

 PyCharm Community Edition 

 AppCode 

 CLion 



 PhpStorm 

 WebStorm 

 GoLand 

 DataGrip 

 DataSpell 

 Rider 

 Fleet 
 ReSharper 

 ReSharper C++ 

 dotCover 

 dotTrace 

 dotMemory 

 dotPeek 

 Space 

 TeamCity 

 YouTrack 

 Datalore 

 Upsource 

 Qodana 

 PyCharm Edu 

 IntelliJ IDEA Edu 

 JetBrains Academy 

 JetBrains Toolbox 

 Code With Me 

 JetBrains Gateway 

 MPS 
 
IF FLEET CHOSEN: 

How frequently do you use Fleet in software engineering projects?  
Never 

Less than once a month 

A few times a month 

About once a week 

A few times a week 



About once a day 

Multiple times a day 

 

How frequently do you use AI tools in your day-to-day development work?  
Never 

Less than once a month 

A few times a month 

About once a week 

A few times a week 

About once a day 

Multiple times a day 

 
 
IF AI [Never, Less than once a month, A few times a month] → end of survey. 
IF AI [About once a week, A few times a week, About once a day, Multiple times a day]: 
 
Which of the following AI tools do you use regularly? 
None 
Sourcegraph Cody 
Visual Studio IntelliCode 
Google Gemini (formerly Bard) 
Codeium 
Code Llama 
GitHub Copilot 
ChatGPT 
Tabnine 
JetBrains AI Assistant 
Gemini Code Assist (formerly Duet AI for Developers) 
CodeGPT plugin in an IDE 
Microsoft 365 Copilot 
Cursor 
Anthropic Claude 
Amazon Q Developer (previously CodeWhisperer) 
Other, please specify:  
 
IF AI [jb ai]: 
 
What type of JetBrains AI Assistant license do you have? (Radiobutton, select one) 

 Trial 
 Pro 



 Enterprise (the license was purchased by my company) 
 Other, please specify: ___________________________________________ 
 I am not sure 
 
 
Which of the following best describes your job role? (Checkbox, select multiple) 

 
 Developer / Programmer / Software Engineer 

 DevOps Engineer / Infrastructure Developer 

 Database Administrator 

 Architect 

 Tester / QA Engineer 

 Technical Support 

 Data Analyst / Data Engineer / Data Scientist 

 Business Analyst 

 Technical Writer 

 Team Lead 

 Systems Analyst 

 Product Manager / Marketing Manager 

 UX / UI Designer 

 CIO / CEO / CTO 

 Developer Advocate 

 Instructor / Teacher / Tutor 

 Other, please specify: _________________________________________________ 

 
 
What are your primary programming languages? Choose no more than 3 languages. 
(Checkbox, select multiple) 

 
 Assembly 

 C 

 C# 

 C++ 

 Clojure / ClojureScript 

 COBOL 

 CoffeeScript 



 Dart 

 Delphi 

 Elixir 

 F# 

 Go 

 GraphQL 

 Groovy 

 Haskell 

 HTML / CSS 

 Java 

 JavaScript 

 Julia 

 Kotlin 

 Lua 

 MATLAB 

 Objective-C 

 Perl 

 PHP 

 Platform-tied language (Apex, ABAP, 1C): 
_________________________________________________ 

 Python 

 R 

 Ruby 

 Rust 

 Scala 

 Shell scripting languages (bash/shell/powershell) 

 SQL (PL/SQL, T-SQL and other programming extensions of SQL) 

 Swift 

 TypeScript 

 Visual Basic 

 Other, please specify: _________________________________________________* 

 

 
 

 



How many years of professional coding experience do you have? (Radiobutton, select 
one) 

 Less than 1 year 

 1–2 years 

 3–5 years 

 6–10 years 

 11–16 years 

 16+ years 

 I don't have any professional coding experience 

 

Which platform(s) do you use when working on your projects? (Checkbox, select 
multiple) 

 Windows 

 Linux 

 macOS 

 Other, please specify: _________________________________________________ 

 
 

Thank you page 
Thank you for completing this survey! 
If your indicated experience matches our study criteria, you will receive a follow-up invitation 
within a week to participate in the main phase of the study.  
 
If there's anything else you'd like to discuss, please contact us at surveys@jetbrains.com. 
 



Thanks for using the Fleet IDE with our new proactive AI feature! 
 
This short form is part of an ongoing study to help us understand how proactive AI suggestions 
in the chat fit into your development workflow. It should take less than 2 minutes to complete. 
 
There are no right or wrong answers – we’re interested in your honest experience. 
 
 
1. Which of the following AI Actions have you interacted with? 
[ ] Edit Code 
[ ] Review Changes With AI 
[ ] I’m not sure / I don’t remember 
[ ] Other: __________ 
 
2. Which of the following were you involved in when the AI suggestion(s) appeared? 
[ ] Fixing a bug 
[ ] Improving quality or performance 
[ ] Refactoring or cleaning up code 
[ ] Reviewing my own commit 
[ ] Reviewing someone else's changes 
[ ] Writing new code 
[ ] Other: __________ 
 
3. Did you interact with the AI suggestion(s) in the AI chat? 
[ ] Yes, I applied and accepted them 
[ ] Yes, but I modified them 
[ ] No, I rejected them (actively dismissed or undid) 
[ ] No, I ignored them (didn’t respond to them at all) 
 
4. How helpful were the AI suggestion(s) for your task? 
Not at all helpful 
Slightly helpful 
Moderately helpful 
Quite helpful 
Very helpful 
 
5. Was there anything about the suggestion(s) that stood out to you? 
Were they surprising, confusing, helpful, unhelpful? Please describe some examples, like what 
the suggestion was and why you used or rejected it. If possible, please paste the chat 
messages or the generated code. 
 
 

C
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Welcome page 
 

A.​ Survey Introduction: 
 

Thank you for your participation in our research into proactive AI features in Fleet! 
 
Please complete our 15-minute survey, where we’ll ask you about your experience during the 
study. 
 
 

B.​ Please provide your contact details: 
Note: Your email address will only be used to match responses across study phases. It 
will not be shared or used for any other purposes. 
 
_____________ 

 

Questions 
All of the questions in this survey are focused on your experience with the proactive 
code improvement suggestions from AI. 
 

Please indicate your level of agreement or disagreement with each of the 
following statements about the system, meaning the proactive code 
improvement suggestions from AI. 
 
I think that I would like to use this system frequently. 
Strongly disagree 
Disagree 
Neither agree nor disagree 
Agree 
Strongly agree 
 
I found the system unnecessarily complex. 
Strongly disagree 
Disagree 
Neither agree nor disagree 
Agree 
Strongly agree 
 
I thought the system was easy to use. 

D
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Strongly disagree 
Disagree 
Neither agree nor disagree 
Agree 
Strongly agree 
 
I think that I would need the support of a technical person to be able to use this system. 
Strongly disagree 
Disagree 
Neither agree nor disagree 
Agree 
Strongly agree 
 
I found the various functions in this system were well integrated. 
Strongly disagree 
Disagree 
Neither agree nor disagree 
Agree 
Strongly agree 
 
I thought there was too much inconsistency in this system. 
Strongly disagree 
Disagree 
Neither agree nor disagree 
Agree 
Strongly agree 
 
I would imagine that most people would learn to use this system very quickly. 
Strongly disagree 
Disagree 
Neither agree nor disagree 
Agree 
Strongly agree 
 
I found the system very cumbersome to use. 
Strongly disagree 
Disagree 
Neither agree nor disagree 
Agree 
Strongly agree 
 
I felt very confident using the system. 
Strongly disagree 
Disagree 



Neither agree nor disagree 
Agree 
Strongly agree 
 
I needed to learn a lot of things before I could get going with this system. 
Strongly disagree 
Disagree 
Neither agree nor disagree 
Agree 
Strongly agree 
 
 

 
 

Please indicate how much you agree or disagree with the following 
statements about the proactive code improvement suggestions provided in 
the AI chat. 

 
“I feel comfortable accepting the proactive code improvement suggestions provided in the AI 
chat.” 
Strongly disagree 
Disagree 
Neither agree nor disagree 
Agree 
Strongly agree 
 
 
“I trust that proactive code improvement suggestions provided in the AI chat are reliable.” 
Strongly disagree 
Disagree 
Neither agree nor disagree 
Agree 
Strongly agree 
 
 
“It was easy to understand how proactive code improvement suggestions provided in the AI chat 
were related to what I was trying to do.” 
Strongly disagree 
Disagree 
Neither agree nor disagree 
Agree 
Strongly agree 



 
 
“The proactive nudges for code improvement suggestions felt well-timed and unobtrusive.” 
Strongly disagree 
Disagree 
Neither agree nor disagree 
Agree 
Strongly agree 
 
 
“Using the proactive code improvement suggestions provided in the AI chat made it easier to 
complete my tasks.” 
Strongly disagree 
Disagree 
Neither agree nor disagree 
Agree 
Strongly agree 
 
 
“Using the proactive code improvement suggestions provided in the AI chat helped me complete 
my tasks more quickly.” 
Strongly disagree 
Disagree 
Neither agree nor disagree 
Agree 
Strongly agree 
 
 
Could you please describe how the proactive suggestions affected the improvement of 
your code? 
Please include specific examples if possible, such as improvements in quality or performance, 
or suggestions that were unhelpful or misleading. If you strongly agreed or disagreed with any of 
the earlier statements, feel free to explain why here. 
(open-ended) 
 
 
What would you change about the proactive code improvement suggestions to make 
them more useful, reliable, or better integrated into your workflow? 
(open-ended) 
 
 
 
 
 



Hello, and thanks for joining us today! I’m ____, and this is ____. We are researchers in the 
Human-AI Experience team at JetBrains. 
 
Today, we’d like to explore a new AI feature prototype in Fleet that supports improving code. 
Have you participated in a study like this before? 
 
For this session, you’ll use a prototype to complete a small coding task. We’ll ask you to think 
aloud as you work so we can understand your impressions and thoughts. There are no right or 
wrong answers — our goal is to learn from your experience and refine the prototype. Your 
feedback, whether positive or negative, is incredibly valuable. 
 
Does that sound good? Great! 
 
Were you able to start the app successfully? 
→ If yes: Great! 
→ If no: Let’s quickly troubleshoot before proceeding. 
 
Also, we’d like to record this session for analysis. The recordings will remain confidential, used 
only to create anonymized summaries, and deleted after the research is complete. Is that okay 
with you? 
 
→ If yes: I’ll now start the recording and ask for your permission once more. 
 
[start recording] 
 
Can you please confirm that you consent to this session being recorded? 
→ If yes: Thank you! 
 
With all the technical setup done, let’s move on to the main part. 
 
To start, could you tell me a bit about your experience with Fleet and generative AI for coding? 
 

●​ How often do you use Fleet? 
●​ Overall, how long have you been using Fleet? 
●​ How familiar you are with AI actions in Fleet? 
●​ Which AI-assisted coding tools did you try? 
●​ Overall, how often do you use AI for coding-related tasks? 

 
Thank you! That’s really helpful to have more context. 
 
Now, let’s open Fleet and navigate to the project you have selected. 
 
Your task is to optimize any function of your choice using AI actions in Fleet. 
 

E
Semi-Structured Interview Pilot Study

49



As you work, please think aloud — share what you’re noticing, what you’re trying to do, and any 
thoughts or reactions you have. If something is confusing or unexpected, let us know. If you 
pause or feel unsure, describe what’s on your mind. 
 
Let’s begin! First, describe what you see on the screen. 
 
→ Let the participant explore and talk freely. 
 
Now, go ahead and try to optimize code using AI actions in Fleet. When you're done, just let us 
know. 
 
Thanks for completing the task! Now, let’s talk about your experience. 
 

●​ How do you think this prototype AI feature works? 
●​ How did you feel using it? 
●​ What did you like about this feature? 
●​ What didn’t you like about it? 
●​ How would you improve this feature to make it more useful for you? 

 
●​ What other triggers would be useful (and not intrusive)? 

 
Colleagues, do you have any questions here? 
 
Is there anything else you’d like to add? Do you have any questions for us? 
 
Thank you for your time and insights! Your feedback is incredibly valuable in shaping this 
feature. If you have any further thoughts later, feel free to reach out to us. 
 
Thanks again, and have a great day! 
 
[say goodbye] 
[stop the recording] 
 
 
 



Setup Instructions: Proactive AI Chat Assistance Study 
Welcome! 
 
This guide walks you through the required steps to ensure your Fleet IDE is setup correctly to 
successfully participate in the study on proactive AI assistance for code quality improvement.  
Note: all screenshots in this setup guide were taken on a MacOS X (15.3.2, aarch64) device, 
but the required setup steps are universal across different OS versions. 
 
In case you have questions or run into issues, please check the “Troubleshooting Tips” section 
–- or contact Nadine Kuo [nadine.kuo@jetbrains.com]. 
 

1.​ Installing Your Fleet Build 
 
Download the special Fleet build (v1.49.204) using any of the installers below, depending on 
your OS. 

●​ Mac ARM (M series) installer 
●​ Windows ARM installer 
●​ Linux ARM installer 
●​ Mac x86_64 (Intel) installer 
●​ Windows x86_64 installer 
●​ Linux x86_64 installer 

 
Note: MacOS users may experience “Apple could not verify “Fleet.app” is free of malware that 
may harm your Mac or compromise your privacy” when attempting to open the application. 
To bypass the above, you can execute the following in a terminal to clear extended attributes: 
 
xattr -c <path/to/your/installed/Fleet.app> 
 
 

2.​ Opening Your Workspace in Fleet 
 
Upon opening the installed Fleet application: 

●​ Check that the Fleet version is 1.49.204 (e.g. via Fleet – About Fleet in top menu on 
MacOS) 

●​ Open any project that is representative of your day-to-day development work.  
(see the screenshot on the next page) 
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If you have workspaces listed already, please remove these from recents first to delete any 
cached data from other Fleet versions you may have worked with earlier.  
Note: if it does not get erased from the list on clicking “Remove from Recents”, you may have to 
retry. 

 



3.​ Check Your JetBrains AI Assistant License 
 
If you are not logged into your JetBrains account yet, please do so first. In case you have an 
active license already (Pro, Enterprise, Trial), check that your license shows up correctly under 
Settings – License manager. Else, you can request a 30-day Pro Trial which is activated 
immediately. 

 
 
To check everything is working, invoke the AI Assistant via the chat icon in the top right corner: 

 
 
 
 



Check that you are able to send requests, possibly using mentions (@) and commands (/): 

 
Make sure that GPT-4o is selected at all times to ensure the most stable experience – we have 
only recently added support for the other models. 
 
 
 
 
More information on JetBrains Fleet AI features can be found here:  
https://www.jetbrains.com/help/fleet/ai-assistant.html 
 
 
In the circumstance that you run out of volume or your license expires during the study, please 
shoot an e-mail to Nadine Kuo [nadine.kuo@jetbrains.com] with the following information:  

●​ First and last name 
●​ E-mail associated with your JetBrains account (see 

https://account.jetbrains.com/profile-details) 
 
 
 
 



4.​ Configure Settings 
 
Navigate to Settings – Account – Data Sharing and ensure that at least “Send usage statistics” 
is checked, which allows us to analyze user interactions with the features under study. Here, we 
also detail what kind of data will (not) be collected from our participants. 
 

 
 
Next, navigate to “Edit in settings.json”. 
 
In the settings.json file that is opened, copy over the following to enable/disable all 
necessary feature toggles: 
 
{ 
 "ai.action.model.id": "openai-gpt-4o",  
 "ai.chat.patcher.enabled": true, 
 "ai.chat.context.enabled": true, 
 "ai.suggestions.chat.enabled": true, 



 "ai.git.review.commit.enabled": true, 
 "ai.actions.improve.code.enabled": true, 
 "ai.chat.lazy.enabled": false 
} 
 
 
Your settings.json file should now look like: 
 

 
 

 



Interacting with the AI Features Under Study 
 
In this study, our aim is to understand how developers interact with several experimental 
proactive AI features for code quality improvement.  
 
In the AI Assistant chat, these AI suggestions can be recognized by the following on top in the 
chat: “NOTE: This message is generated for the experimental proactive AI feature under study”. 
You may have to scroll a bit to the top to see this. 

 
 
In order to invoke these chat suggestions, we ask you to at least perform the following during 
your work in the provided Fleet build: 
 

●​ Iterating on code with AI – via the AI Action “Edit Code”, available upon selecting code 
via the floating toolbar, AltEnter popup or right-click menu [Link to GIF] 

●​ Committing code – via the Git version control panel on the left  [Link to GIF] 
 
Note: this study is focused on the in‑chat AI suggestions invoked via in-editor pop-ups as shown 
in the GIFs, not on the actions (e.g. Edit Code) themselves. 
 



Of course, you are free to use any other AI Actions in Fleet, and interact with the AI Assistant in 
any way you wish. The most important to us, is that the work performed is representative of your 
day-to-day development work. 
Again, make sure that GPT-4o is selected at all times to ensure the most stable experience. 
 
Before you start, we highly suggest you to read the Troubleshooting Tips below. 
 

How to Claim Your Reward? 
 
You will receive survey notifications upon interacting with any of the AI features under study – at 
most once per Fleet session. In case you prefer to fill it out after your work on a given day, use 
this link: https://surveys.jetbrains.com/s3/HAX-Proactivity-Daily-Survey.  
 
NOTE: in the top-right corner, check that your notifications are not muted (enabled by default). 

 
We will only reward those participants that have filled out: 

●​ Above survey at least once a day (~ 5 min.) across at least 5 days (need not be 
consecutive) between May 19, 2025 and May 28, 2025 

●​ The post-study survey (~ 15 min.) which you will receive per e-mail on May 28, 2025 



Troubleshooting Tips 
 
Unfortunately, instability is expected as this Fleet build used for the study is not a Public Preview 
version. You may ignore error notifications that can possibly occur whilst working with the 
application, unless you cannot proceed with your work – in that case, please have a look if any 
of the tips below help, or contact Nadine Kuo [nadine.kuo@jetbrains.com]. 
 
I’m encountering exceptions or unresponsiveness when using the Accept / Reject 
options in the floating toolbar inside the editor 
 
Please use the in-chat options to accept or reject snippets instead – our apologies for the 
inconvenience (this is a recent feature that is still in progress). 
 

 
 
I’m encountering exceptions or unresponsiveness during interaction with in-chat code 
snippets (applying, accepting, rejecting, undoing) 
 

1.​ Resend your prompt, or reinvoke the action that triggered chat invocation 
2.​ If the issue persists, try another code snippet, file or project 
3.​ Alternatively, you can manually copy over in-chat code snippets to your file 

 
Note: we are aware of issues that may occur in case of undo operations following rejected 
snippets – please try to refrain from performing this action. 
 
I’m getting “Client Error Exception during request to…” in the AI chat 
 

1.​ Ensure that your active license shows up under Settings - License Manager 
2.​ Restart the application and remove the workspace you are working in from recents (see 

step 2), after which you can try opening it again 
 
I’m seeing an eternal progress spinner instead of model picker in the AI chat 
 
Remove all contents from settings.json, save the file – after which you can paste the 
contents as shown above again. 
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