




Abstract

Advancements in radar technology such as phased array antennas, digital beamforming, and adapt-
able waveform generation have led to the flexibility in controlling radar resources such as scan time,
beamwidth and bandwidth during a radar mission. This new flexibility has led to a new research
topic, radar resource management.

Radar resource management involves the allocation of radar resources in order to achieve the highest
performance in a radar mission. This thesis focuses on a specific scenario where a radar is tasked
with deciding multiple object presence decisions located at multiple scan directions. The resource
considered is the scan time allocated to each scan direction.

To optimally allocate the scan time over the scan directions, a cost function is formulated, where the
expected performance of an individual decision of an object being present or absent is formulated
as the expected Bayes risk. The expected performance of all individual decisions in the same scan
direction, are summed to obtain an expected task performance. The global performance at the system
level is formulated using two approaches. The Sum approach formulates a cost function at the system
level as the sum of the expected cost of each task. The Max approach formulates a cost function that
minimizes the maximum of all expected task costs.

Simulations have been performed to demonstrate the flexibility of the Sum and Max approach to adapt
the scan time allocation based on different scenarios, including multiple object presence decisions per
scan direction, sequential measurements, and a birth-death process regarding the presence of an object
over time. Simulations demonstrate that using the Sum and Max approaches for the allocation of
scan time results in an improved performance compared to the uniform distribution of the scan time
resource over all scan directions.
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1 Introduction

A radar is a system that is able to observe its surrounding environment by emitting electromagnetic
waves (signal) and analysing the reflections on objects. The relative insensitivity of performance degra-
dation compared to other sensor technologies such as a camera or lidar due to weather conditions such
as rain, smoke, dark (absent of sunlight) makes radar a popular choice in a wide range of surveillance
applications.

In airborne ground surveillance, radar is used to search for and track objects on the ground from
a plane. In weather surveillance, radar is used to predict weather conditions such as the intensity
of rainfall or snowfall. In air traffic control, radar is used to monitor the movement of airplanes. In
security systems, radar is used to detect humans and vehicles that are trespassing. The examples given
are only a small subset of the total number of applications where a surveillance radar is used.

Traditionally, radars used mechanically rotating parabolic antennas. The parabolic antenna results in
a strong focused signal in the direction of the axis of symmetry of the parabolic shape. The disad-
vantage of radars using such antennas is that the direction of signal focus depends on the mechanical
orientation of the parabolic antenna. Changing the direction of signal focus requires mechanically
rotating the antenna.

Recently, phased array radar has gained popularity, where a phased array antenna is used to steer
the signal focus electronically. A phased array antenna has a maximum angle coverage of 180◦, but
is lower in practice. To obtain an angle coverage of 360◦, multiple phased array antennas or a single
phased array antenna that is capable of mechanical rotation are required. The advantage of elec-
tronically steering the scanning angle is the ability to change the direction of signal focus almost
instantaneously. In mechanically rotating parabolic antennas, the scan direction pattern is limited to
clockwise or counterclockwise. The flexibility of steering the angle for phased array radars angle can
be exploited in surveillance applications. Consider an air traffic controller setting where two airplanes
are tracked. If the two airplanes are present in different scan directions with respect to the radar,
but within the angle coverage of the phased array radar, a mechanically rotating parabolic antenna is
forced to rotate clockwise or counterclockwise when the radar switches between which object to track.
This results in an effective scan time on the two airplanes considerably lower than 100%. In such an
application, a phased array radar would allow for an almost instantaneous change in the scan angle,
resulting in an effective scan time allocation close to 100%.

Furthermore, the implementation of digital beamforming allows a radar to control multiple beams
simultaneously for different directions with an adjustable beamwidth. Consider the scenario in which
an airport wants to have an overview of drones near an airport. The first task is to be aware of the
presence of drones. The second task is to accurately follow the drones to locate and predict their
movement. If for both tasks a relatively wide beam is used, the drones will be detected relatively fast.
However, the location and trajectory prediction will be less accurate. When a relatively narrow beam
is used, the location and trajectory prediction will increase in performance, but it could take too long
before the drones are found. This example illustrates that different radar tasks benefit from different
radar beamwidth. The development in radar technology by using digital beamforming introduces
flexibility in radar parameters such as beamwidth. Using digital beamforming, a radar can use a wide
beamwidth to scan the whole search area relative fast, and use a narrow beamwidth to locate and
predict the trajectory of the drones found.

Where in the past only a single type of waveform was used in a radar, nowadays radars have the ability
to quickly switch to a different type of waveform during operation. The ability to change waveforms
allows the radar to quickly adapt to a changing radar environment. Consider a radar surveillance
scenario where the coastal guard is interested in trespassing boats. The transmitted waveforms will
reflect strongly on the sea, resulting in a low signal-to-clutter ratio, where the power resulting from
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1 Introduction

signal reflections on the sea is referred to as clutter power. Being able to adapt the transmitted wave-
forms based on the current behavior of the sea will lead to better radar performance in such scenarios.
[1]

The newly introduced degrees of freedom for the radar resources as mentioned above are a subset
of the total development within radar technology, but demonstrate the potential of increased radar
mission performance. The actual improved radar mission performance depends on the ability of the
radar to choose the resources such that it maximizes the performance.

1.1 Research goal and objectives

This research focuses on a scenario in which the radar is tasked with multiple decisions regarding the
presence of an object. The performance of each decision benefits from more allocated resources. The
resource considered is the scan time, which is divided over all scan directions that contain cells that
require an object presence decision. Given that each object presence decision has improved perfor-
mance as more scan time is allocated to that object, a trade-off is required to balance the performance
of the object presence decisions.

The main goal of this research was to formulate a cost function that predicts the expected detector
performance of multiple object presence decisions as a single function of the scan time allocated
to each scan direction, which includes flexibility for the radar user to prioritize individual detector
decisions.

To achieve this goal, the following objectives have been formulated:

• Review of literature on the formulation of cost functions to allocate resources for object detection

• Formulating cost performances for individual object presence decisions that have a direct inter-
pretation at the application level

• Formulate potential cost functions at the system level that take into account the cost of individual
object presence decisions

• Simulating radar measurements, allocating the scan time over the scan directions by minimizing
the found cost functions at the system level, to explain and compare performances

1.2 Outline of the thesis

This thesis consists of 7 chapters. Chapter 1 introduces the research topic and formulates the research
goal and objectives. Chapter 2 reviews the relevant literature on the research topic and identifies a
research gap. Chapter 3 derives explicit equations for the performance of individual object presence
decisions using common detectors, assuming simplified measurement models. Chapter 4 uses the
performance equations of Chapter 3 to formulate costs for individual object decisions and extends this
to a cost function at the system level for a scenario with a single object presence decision per scan
direction. Chapter 5 generalizes the scenario in Chapter 4 and reformulates the cost of individual
decisions and the cost function at the system level. Chapter 6 simulates the allocation of scan time and
corresponding detector choices, using the scenarios and cost functions formulated in Chapters 4 and
5 and explains the choices made and compares performance. Chapter 7 concludes the research and
gives recommendations for the potential continuation of this work.
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2 Literature Review

This chapter presents a review of the literature on the formulation of an objective function at the system
level to allocate sensor resources to improve the performance of detecting potential objects. The lack of
sufficient literature on this topic led to the decision to expand the search to include literature that had
a different main topic, but included the formulation of a utility or cost function to allocate resources
to detect objects.

The literature is divided into two different approaches to formulate an objective function at the system
level. Both approaches share that a performance, which is a function of the available resource, is
formulated for each individual spatial coordinate within the considered search volume or area. The
formulation of the performance of individual spatial coordinates for the literature reviewed in this
chapter involves the quantity of expected undetected objects or the expected detector performance
associated with object detection.

Section 2.1 presents the literature that formulates a cost or utility function at the system level by the
sum of local costs or utilities. Section 2.2 presents the literature that formulates a cost or utility function
at the system level by the maximum or minimum of subsets of local costs or utilities.

2.1 Objective functions at the system level based on the summation
of task objectives

The literature reviewed in this section obtains the performance at the system level by the sum or
integral of local performances. When the local performance is formulated as a cost, the distribution
of resources is found by minimizing the sum of the local performances. When local performance is
formulated as a utility, the distribution of resources is found by maximizing the sum of local utilities.

Williams [2] considered a scenario with a discretized search volume. Each cell within the search
volume had an intensity of undetected objects, representing the expected number of undetected objects
in that cell. The intensity of undetected objects was modeled by a Poisson process that included the
birth, death, and movement of objects. The posterior undetected object intensity was modeled by
multiplying the prior undetected object intensity by the probability of a missed detection, while the
probability of a false alarm was fixed. In order to distribute the scan time budget over different scan
directions, a cost function was formulated at the system level by minimizing the sum of the cost of
individual cells. The cost of an individual cell was formulated as a cost coefficient C multiplied by the
posterior undetected object intensity. Resulting in a cost function at the system level that distributes
the scan time budget to minimize the total expected cost due to undetected objects. This cost function
was evaluated for both the prediction of a single scan and multiple scans ahead. Increasing the
prediction horizon of the cost function resulted in a lower expected cost. The lower cost was obtained
by allocating the budget more sparse over the scan directions.

Boström-Rost et al. [3] considered a scenario where the radar was tasked to search for undetected
objects and simultaneously track detected objects. The radar observation area was modeled as con-
tinuous, with each point in space assigned a multiobject density using the Poisson multi-Bernoulli
mixture filter. The detection component of the multiobject density represented the undetected object
intensity. The cost function at the system level consisted of the sum of the utility of track cost and a
weighted detection performance. The weighting allowed the radar user to trade off the importance at
the system level of the track and detection performance. The detection performance at a single point
in the observation volume was the posterior undetected object intensity, assuming a Neyman-Pearson
detector. The detection performance at the system level was modeled as the surface integral of the
posterior undetected object intensity over the entire observation area. The detection component of the
cost function at the system level minimized the posterior number of undetected objects.
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2 Literature Review

Collins et al. [4] considered a wide area surveillance scenario, where the radar was tasked to track
detected objects and search for undetected objects, including classification. The observation area was
discretized into cells. The cost function at the system level is the sum of the track and search cost. The
available resource was the scan time, where multiple scans were predicted ahead. The cost function at
the system level consisted of the sum of the cost of the track and the combined detection and classifica-
tion performance. The detection and classification performance in individual cells was formulated as
a cost multiplied by the expected number of undetected objects multiplied by an entropy term related
to the probabilities of an object belonging to each class type. The detection and classification cost at
the system level was obtained by the sum of the cost of individual cells.

Hoffmann and Charlish [5] considered an airborne scenario. The search volume is discretized into
cells. Both the velocity and height of an object were included in this research. The scan time budget is
allocated over multiple scan directions, based on a utility function. Each scan direction is formulated
as a utility task. The utility of a task is formulated as the maximum range that has a probability of
detection greater than 0.9 using a Neyman-Pearson detector. The utility function at the system level is
obtained by the sum of each individual task.

2.2 Objective functions at the system level based on the maximum
of task objectives

The literature reviewed in this section has a similar approach. Given the local performances of in-
dividual spatial coordinates, all local performances sharing the same scan direction are summed to
obtain a task performance. Performance at the system level is evaluated by the maximum utility of
individual tasks.

White et al. [6] considered a scenario in which the radar was tasked with object detection and tracking.
The search area was discretized into cells. A fixed budget ratio was allocated to the detection and
tracking task, with the ratio specified by the radar user. Each cell consisted of an undetected object
intensity. The available budget was both the scan direction and the beamwidth. The entire budget was
allocated to object detection or tracking, with tracking using a narrower bandwidth. The detection
task chose the scan direction that resulted in the highest expected number of new detected objects.

Matthiessen [7] focused on the efficient beam scanning, energy and time allocation. The radar was
tasked with searching for undetected objects. The search area was discretized into cells. The available
budget was the power, scan direction, and the number of scans used. The entire budget is allocated
to the direction that maximizes the number of newly detected objects. The allocated power was
determined by maximizing ∆newly detected objects

∆S/N with S/N the signal-to-noise ratio.

Flint et al. [8] considered a path planning algorithm for autonomous UAV’s searching for objects while
navigating through an environment containing threats. The search area is discretized into cells. The
UAV scans the current position cell. The available search budget is the future UAV position. The
future position is the cell that is expected to produce the highest number of newly detected objects,
using a Neyman-Pearson detector.

Wang et al. [9] designed a sensor management scheme to detect potential objects, emphasizing the
number of scans for optimal budget allocation. The search area was discretized into cells. The detector
chosen is the minimum probability of error. This paper introduces an additional cost to take an extra
measurement before making a detector decision. The number of optimal scans is a trade-off between
the reduced probability of an error after multiple scans, at the cost of the additional cost per scan of
delaying a detector decision. Each cell has its own cost, inflicted by an incorrect detector decision,
assigned by the radar user. At the system level, the cost function determines the next scan direction
by choosing the cell with the lowest expected cost.

4
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2.3 Research gap

The considered papers allocate the resource by minimizing the expected cost or maximizing the ex-
pected utility functions. To unify both approaches, this section considers the equivalence of maximiz-
ing the utility and minimizing the negative utility. With the negative utility interpreted as a cost, each
paper now allocates the budget by minimizing a cost function.

All articles are categorized on the basis of two criteria:

• The ability of the radar user to provide costs to quantify preferences of individual object presence
decisions

• The mapping approach of individual cell performances to a single cost function at the system
level

Using the earlier definition of the sum of all the cell performances in a single scan direction as the task
performance, the second criteria is categorized in the following two approaches:

• A performance at the system level using the sum of task performances, referred to as the Sum
approach

• A performance at the system level using the maximum of all task performances, referred to as
the Max approach

The categorization is shown in table 2.1, which categorizes the literature based on the ability of the
radar user to quantify costs within the cost function at individual decisions and whether the Sum or
Max approach is used at the system level. Table 2.1 shows:

Category Cost No cost
Sum [2] [4] [3] [5]
Max [9] [6] [7] [8]

Table 2.1: Categorization of literature

• The literature’s lack of a preference between the Sum and Max approach

• A relative shortage of literature that provides a cost function at the system level which enables
the user to provide costs at individual cells.

This thesis aims to fill this research gap by formulating cost functions at the system level both using
the Sum and Max approach, while enabling the user to provide costs at individual cells, to prioritize
the performance of individual object decisions.
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3 Radar-based object detection

This chapter first gives a short radar introduction in Section 3.1. The detector makes the hypothesis
decisions in a radar, which is considered in Section 3.2. Subsections 3.2.1 and 3.2.2 formulate the mea-
surement equations for the assumed models under both object presence and absence. Subsection 3.2.3
derives the detector performance equations without assuming a specific type of detector. Subsections
3.2.4, 3.2.5, 3.2.6 and 3.2.7 derive explicit detector performance equations for the Neyman-Pearson,
minimum probability of error, minimax and minimum Bayes risk detector, respectively. This chapter
emphasizes the influence of the scan time on the object presence decision performance.

3.1 Radar

A radar is a system that observes the spatial environment of interest surrounding the radar, defined
as the search volume of the radar. The radar antenna emits propagating electromagnetic (EM) waves
into the radar search volume. The interaction of EM waves with objects of interest causes a fraction
of the EM wave energy to reflect back to the radar, termed the reflected signal. The reflected signal
received at the radar is analyzed to extract information of the object such as range, (Doppler) velocity,
object class, and the presence of that object.

Complicated electronic circuits are involved in the radar receiver to analyze the received signals. Elec-
tronic circuits generate noise as a result of internal thermal noise. Thermal noise is generated inde-
pendently of the presence of a received signal.

Object that aren’t of interest to the radar also reflect energy back to the radar and are referred to as
clutter. Clutter can have similar reflection characteristics compared to objects, making it difficult for
radars to distinguish between clutter and objects. This thesis assumes the absence of clutter and other
forms of interference, such as jamming and environmental electromagnetic radiation noise.

The detector within the radar is tasked with deciding whether the received signal consists of only ther-
mal noise or thermal noise combined with a reflected signal. The ability of the detector to distinguish
between the case of thermal noise or thermal noise combined with a reflected signal from objects of
interest depends on many radar parameters and physical phenomena. This thesis focuses on the effect
of:

• The effect of the allocated scantime to a specific scan direction within a single scan

• The range of a potential object

The effect of the allocated scan time to a specific scan direction affects both the thermal noise and the
reflected signal. The thermal noise is uncorrelated, resulting in a thermal noise power with a linear
dependence on the allocated scantime. The signal reflected from an object is assumed to be correlated
throughout the scan, resulting in a signal power with a quadratic dependency on the allocated scan
time.

The range of a potential object affects only the signal power, the noise power is unaffected. The
relation between the signal power received and the range of a potential object is given by the radar
range equation.

The Radar Range Equation has many forms, which relate the received signal to interference power ratio
taking into account physical dependencies such as antenna gain, receiver thermal noise, wavelength
and range of the object. A full chapter on the Radar Range equation can be found in Chapter 2 of [10].
This chapter focuses on the relevant dependencies considered in this thesis:

SNR ∝
σ

R4 (3.1)

6



3 Radar-based object detection

Where σ is the radar cross-section [m2] (RCS). R [m] is the radial distance (range) between the radar
and the object.

A higher SNR results in better detector performance. The relationship between SNR and the range in
equation 3.1 results in a better detector performance for objects at shorter range compared to objects
at larger range.

Section 3.2 explains how a detector decides on the presence or absence of an object.

3.2 Detector

The detector decides whether an object is present or absent by hypothesis testing. The presence or
absence requires two hypothesis to be tested and compared:

H1 : Object is present
H0 : Object is absent

The received signal has different statistical properties under H0 and H1. This enables the detector to
base the object presence decision on the statistical properties of the received signal. The difference
in statistical properties enables the radar to gather evidence for either hypothesis by performing a
measurement on the potential object.

When an object is absent, the statistical properties of thermal white noise fully characterize the received
signal. When an object is present, the combined statistical properties of the thermal white noise and
object reflection characterize the received signal.

Measurements can be real-valued or complex-valued. It is assumed that a square law detector is
used so that the measurements are continuous and real valued, noted by z ∈ R. Under hypothe-
ses H0 and H1, the probability density functions that describe the measurements are p

(
z/H0, T

)
and

p
(
z/H1, R, T

)
, described in Subsections 3.2.1 and 3.2.2, to relate the measurement z to either hypothe-

sis.

3.2.1 Object absent measurement model

When an object is absent, measurements are assumed to be generated by interference only. It is
assumed that the interference is dominated by internal thermal noise. The probability density function
of the internal thermal noise voltage is modeled by a zero mean Gaussian distribution

A detector that analyzes the voltage of a received signal is called a linear detector, while a detector
that analyzes the power of a received signal is called a square law detector. [10] states in Subsection
15.4.1 that, for a square-law detector, the power output of a coherent radar receiver for thermal noise
is modeled by an exponential distribution. The power of the signal in the receiver is defined as z
∈ R≥0. Under hypothesis H0, the probability density function that describes the measurement is the
following:

p
(
z, H0, T

)
=

1
Tσ2

n
e
− z

Tσ2
n (3.2)

and the cumulative distribution function for a threshold γ is:

p
(
z ≤ γ/H0, T

)
= 1 − e

− γ

Tσ2
n (3.3)

with σ2
n the noise variance normalized with respect to scan time. The product Tσ2

n is the noise variance
for an allocated scan time T on the object. The uncorrelated nature of thermal noise results in a linear
dependence on the scan time for the noise variance.

7
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3.2.2 Object present measurement model

For the case where an object is present, the measurements are generated by the superposition of noise
as characterized in Section 3.2.2 and reflections of the object. For simplicity, it is assumed that an
object consist of a large number of scatterers with approximately equal RCS and uniformly distributed
phases on (0, 2π). [10] states that the RCS of the object is characterized by an exponential distribution.
During the scan interval T, the object model assumes coherent processing. The noise variance of the
normalized reflected signal with respect to scan time T and range R is defined as σ2

s , resulting in a

variance of the reflected signal of T2σ2
s

R4 .

It is assumed that the noise and the reflected signal power are independent, resulting in a superposi-
tion of the variances for the probability density function.

Under the hypothesis H1, the probability density function that describes the measurement is:

p
(
z/H1, R, T

)
=

1

Tσ2
n + T2 σ2

s
R4

e
− z

Tσ2
n+T2 σ2

s
R4 (3.4)

and the cumulative distribution function for a threshold γ is described as:

p
(
z ≤ γ/H1, R, T

)
= 1 − e

− γ

Tσ2
n+T2 σ2

s
R4 (3.5)

The assumed coherent processing for the object component of the measurement model is reflected in
the quadratic dependence on T for the variance of the signal.

The detector’s ability to correctly decide on the existence of the object depends on SNR(R, T). SNR(R, T)

is defined as Signal power
Noise power = T

σ2
s

R4

σ2
n

. The amount of scan time available for a measurement has a direct
influence on SNR(R, T).

In the limit of lim
T→∞

, the probability density function assuming H1 is:

lim
T→∞

p
(
z/H1, R, T

)
≈ lim

T→∞

1

T2 σ2
s

R4

e
− z

T2 σ2
s

R4 (3.6)

Equation 3.6 does not depend on the noise power as the signal power dominates. Therefore, increasing
the available budget for a measurement causes the measurement models under H0 and H1 to diverge,
as the received object power dominates over the noise power, resulting in a detector with statistically
better performance.

In the limit of lim
T→0

, the probability density function assuming H1 is:

lim
T→0

p
(
z/H1, R, T

)
≈ lim

T→0

1
Tσ2

n
e
− z

Tσ2
n

= lim
T→0

p
(
z/H0, T

) (3.7)

Equation 3.7 does not depend on the signal power in the limit lim
T→0

, the noise power dominates over

the signal power.

For small T, the object absent and object present models will converge, as the signal variance decreases
quadratic with decreasing scan time, while the noise variance decreases linearly with decreasing scan
time.

Equations 3.4 and 3.5 rarely describe practical radar scenarios, as mentioned in [10]. However, the
measurement models in this thesis are used as tools to obtain the detector equations in Subsection 3.2.3,
justifying the use of equations 3.2 and 3.4 in order to simplify the detector equations in Subsection
3.2.3.
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3 Radar-based object detection

3.2.3 Detector decisions

The detector is the mechanism within a radar that decides which hypothesis is accepted, which is a
correct or incorrect decision. For a binary hypothesis testing problem, four different decision events
can occur.

When an object is present and the radar declares H0, the event is defined as a miss, with the corre-
sponding probability Pmiss(R, T). When the object is present and the radar accepts H1, the event is
defined as a detection, with corresponding probability Pdet(R, T). When an object is absent and the
radar accepts H0, the event is defined as a correct rejection (of the Null hypothesis), with the cor-
responding probability Prej(R, T). When the object is absent and the radar accepts H1, the event is
defined as a false alarm, with corresponding probability Pf a(R, T). The detectors considered in this
chapter are based on the probabilities of the four events described above.

The decision whether to accept H0 or H1 is based on whether the measurement exceeds a threshold
γ. The threshold γ is based on desired characteristics of the events Pf a(R, T), Prej(R, T), Pdet(R, T) and
Pmiss(R, T). Given a threshold γ, [11] states that the optimal decision is made by evaluating whether

the likelihood ratio
p
(

z/H1,R,T
)

p
(

z/H0,T
) exceeds γ:

p
(
z/H1, R, T

)
p
(
z/H0, T

) =
σ2

n

σ2
n + T σ2

s
R4

e

z
Tσ2

n
− z

Tσ2
n+T2 σ2

s
R4

H1
≷
H0

γ

(3.8)

Equation 3.8 states that when the measurement z is at least a factor 1
γ more likely to be generated

by the model corresponding to H1 than by the model corresponding to H0, the detector will accept

H1. The value of γ has a direct influence on the probabilities of Pf a(R, T) = P
(

L
(
z
)
> γ/H0, R, T

)
,

Prej(R, T) = P
(

L
(
z
)
< γ/H0, R, T

)
, Pdet(R, T) = P

(
L
(
z
)
> γ/H1, R, T

)
, and Pmiss(R, T) = P

(
L
(
z
)
<

γ/H1, R, T
)

.

For example, when γ >> 1, the detector will produce a relatively low Pf a(R, T) and high Prej(R, T),
but this is traded off by a relative high Pmiss(R, T) and low Pdet(R, T). On the contrary, choosing
γ << 1 will result in relatively low Pmiss(R, T) and high Pdet(R, T) with relative high Pf a(R, T) and
low Prej(R, T).

Therefore, the threshold parameter γ allows the detector to increase the probability of making a correct
decision for a given hypothesis by decreasing the probability of making a correct decision given the
other hypothesis.

Equation 3.8 is rewritten in equation 3.9 so that measurement z is the only term on the left side of
the equation. This enables the detector to directly compare the measurement to a modified threshold
γ′(R, T).

z
H1
≷
H0

log
(
γ
(
1 + SNR(R, T)

)) Tσ2
n + T2 σ2

s
R4

SNR(R, T)

= γ′(R, T)

(3.9)

The dependency of γ′(R, T) on T is a result of the dependency on T for the measurement models
p
(
z/H0, T

)
and p

(
z/R, H1, T

)
. As T increases, p

(
z/R, H1, T

)
is likely to create a relatively larger z

compared to p
(
z/H0, T

)
, causing γ′(R, T) to increase.

γ is still undetermined in equation 3.9. Sections 3.2.4, 3.2.5 and 3.2.7 determine γ for different common
detector frameworks, using the definitions of Pf a(R, T), Prej(R, T), Pdet(R, T) and Pmiss(R, T) as written
below.
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3 Radar-based object detection

The probability of a false alarm as function of R and T is: [11]

Pf a(R, T) = P
(

L
(
z
)
> γ/H0, R, T

)
=
∫
{z:L
(

z
)
>γ}

p
(
z/H0, T

)
dz

= e
− γ′(R,T)

Tσ2
n

= e−log
(

γ
(

1+SNR(R,T)
))

SNR(R,T)+1
SNR(R,T)

(3.10)

The probability of a correct rejection as function of R and T is:

Prej(R, T) = 1 − Pf a(R, T) (3.11)

The probability of a missed detection as function of R and T is: [11]

Pmiss(R, T) = P
(

L
(
z
)
< γ/H1, R, T

)
=
∫
{z:L
(

z
)
<γ}

p
(
z/H1, R, T

)
dz

= 1 − e
− γ′(R,T)

Tσ2
n+T2 σ2

s
R4

= 1 − e−log
(

γ
(

1+SNR(R,T)
))

1
SNR(R,T)

(3.12)

The probability of a detection as function of R and T is:

Pdet(R, T) = 1 − Pmiss(R, T) (3.13)

3.2.4 Neyman-Pearson

A Neyman-Pearson detector maximizes Pdet(R, T) by fixing Pf a(T) to a desired value α. The threshold
is determined by [11]:

PNP
f a (T) = 1 − e

− γNP(T)
Tσ2

n

= α

(3.14)

With the superscript NP denoting the probability of false alarm using the Neyman-Pearson detector.
γNP is solely determined by p

(
z/H0, T

)
, resulting in an independence of the range for Pf a(T).

Solving equation 3.14 for γNP(T) results in:

γNP(T) = −Tσ2
nlog(1 − α) (3.15)

PNP
rej (T), PNP

miss(R, T) and PNP
det (R, T) are determined using equations 3.11, 3.12, 3.13 and 3.15, resulting

in:

PNP
rej (T) = 1 − α

PNP
miss(R, T) = 1 − e−log

(
−Tσ2

n log(1−α)
(

1+SNR(R,T)
))

1
SNR(R,T)

PNP
det (R, T) = 1 − PNP

miss,R(T)

(3.16)

It is emphasized that Pf a(T), PNP
rej (T), PNP

miss(R, T) and PNP
det (R, T) all are monotone decreasing as func-

tion of T. Reflecting that increasing T will result in statistically better detector decisions.

The determination of γNP through equation 3.14 depends only on the measurement model of p
(
z/H0

)
,

and not on R, P(H0) and P(H1). An advantage of the Neyman-Pearson detector is that it can be
implemented when no prior probabilities are available. Deciding that an object is present often triggers
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3 Radar-based object detection

a reaction from the radar user that drains resources. [12] states that these two reasons together make
the Neyman-Pearson detector a popular detector choice for a wide range of applications.

The advantage of determining the threshold without taking into account the probabilities P(H0) and
P(H1) becomes a disadvantage when P(H0) and P(H1) are available. Subsection 3.2.5 follows a pop-
ular detector framework that includes P(H0) and P(H1) in the process of determining γ.

3.2.5 Minimum Probability of Error

The minimum probability of error detector minimizes the probability that the detector makes an incor-
rect decision. The incorrect events are a miss and false alarm as defined in Section 3.2. The probability
of an incorrect decision due to miss is the event that H0 is accepted while the object is present, denoted

by P
((

L(z) < γ
)
∩ H1/R, T

)
. The probability of making an incorrect decision due to a false alarm is

the event that H1 is accepted while the object is absent, denoted by P
((

L(z) > γ
)
∩ H0/R, T

)
. The

minimum probability of error detector bases its decision on [11]:

P
((

L(z) < γ
)
∩ H1/R, T

) H1
≷
H0

P
((

L(z) > γ
)
∩ H0/R, T

)
Pmiss(R, T)P(H1)

H1
≷
H0

Pf a(R, T)P(H0)

(3.17)

The threshold γPE that results in the minimum probability of error for a detector decision is γPE =
P(H0)
P(H1)

.

Choosing γPE as threshold in equations 3.10, 3.11, 3.12 and 3.13 results in:

PPE
f a (R, T) = e

−log
(

P(H0)
P(H1)

(
1+SNR(R,T)

))
SNR(R,T)+1

SNR(R,T)

PPE
rej (R, T) = 1 − PPE

f a (R, T)

PPE
miss(R, T) = 1 − e

−log
(

P(H0)
P(H1)

(
1+SNR(R,T)

))
1

SNR(R,T)

PPE
det (R, T) = PPE

miss(R, T)

(3.18)

The threshold of P(H0)
P(H1)

for a minimum probability of error detector is a general result and is not limited
to the specific choice of measurement models for H0 and H1. [11].

Choosing such a threshold value for γ enables the detector to adapt the threshold based on prior
knowledge of P(H0) and P(H1).

For P(H0) = xP(H1) the likelihood of a measurement generated by p
(
z/H1, R, T

)
must be a factor x

higher than the likelihood of p
(
z/H0, T

)
. For example, when P(H0) = 0.75 and P(H1) = 1− P(H0) =

0.25 require that the measurement is at least three times more likely to be generated by the object
presence model than by the object absence model, for the detector to decide that an object is present.

Including prior knowledge P(H0) and P(H1) in detector decisions has the advantage of including more
knowledge. A minimum probability of error detector is expected to make statistically the least number
of errors. Where a Neyman-Pearson detector does not change the threshold as P(H1) changes, the
minimum probability of error detector allows adaptation to a scenario by including P(H0) and P(H1)
in the threshold. A minimum probability of error detector does not take into account the impact of a
false alarm or a missed detection. The impact of false alarms and missed detection can have different
consequences for a radar user depending on the radar application.

For example, within an autonomous vehicle system, missed detections or false alarms made by a
collision avoidance radar have different consequences on the application level. A false alarm in short
range might lead to unnecessarily braking, while missed detection might lead to collision. In such a
case, it is likely that the autonomous car might favor relative more false alarms over more collisions. In
contrast, a perimeter control radar that periodically scans a large area every few seconds might favor
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relative more missed detections over false alarms. As a false alarm could trigger security responses,
and a missed detection might lead to a delayed detection.

The above two scenarios give motivation that the negative effects of missed detections and false alarms
differ per application. A minimum probability of error detector does not take into account the signifi-
cance of the negative effects of either incorrect decision.

Another decision framework used in radar is the minimax approach. The minimax approach allows
the user to specify the relative impact of a missed detection or false alarm. Section 3.2.7 does allow to
take into account the negative effects of misses and false alarms by assigning costs to either event.

3.2.6 Minimax

The minimax detector minimizes the conditional risk of the detector decision with respect to the
existence of the object. [13] Conditional risk for an object absence decision is defined as:

R0(R, T) = CmissPmiss(R, T) + CrejPrej(R, T) (3.19)

And the conditional risk for an object presence decision is defined as:

R1(R, T) = C f aPf a(R, T) + CdetPdet(R, T) (3.20)

With Crej, C f a, Cmiss and Cdet are the negative relative impacts on the application level for correct
rejection, false alarm, missed detection and correct detection for the detector decision regarding the
presence of an object. Conditional risk is the risk associated with a detector decision without taking
into account the probability of the hypothesis.

The minimax bases its decision on the following equation [13]:

R0(R, T)
H1
≷
H0

R1(R, T)

CrejPrej(R, T) + CmissPmiss(R, T)
H1
≷
H0

C f aPf a(R, T) + CdetPdet(R, T)
(3.21)

The assumption is made that Crej < C f a and Cmiss,R < Cdet,R, which implies that a correct decision
for a given hypothesis has less negative impact on the radar mission than an incorrect decision. The

threshold for the minimax detector is γminimax =
C f a−Crej

Cmiss−Cdet
.

Choosing γminimax as threshold in equations 3.10, 3.11, 3.12 and 3.13 results in:

Pminimax
f a (R, T) = e

−log
(

C f a−Crej
Cmiss−Cdet

(
1+SNR(R,T)

))
SNR(R,T)+1

SNR(R,T)

Pminimax
rej (R, T) = 1 − Pminimax

f a (R, T)

Pminimax
miss (R, T) = 1 − e

−log
(

C f a−Crej
Cmiss−Cdet

(
1+SNR(R,T)

))
1

SNR(R,T)

Pminimax
det (R, T) = 1 − Pminimax

miss (R, T)

(3.22)

Using a detector based on equation 3.22 enables the radar to influence the probabilities of Pminimax
f a (R, T)

and Pminimax
miss (R, T) by adjusting the values of Crej, C f a, Cmiss and Cdet.

Using the perimeter control radar example from Section 3.2.5, the user is more likely to assign relative
higher costs to C f a and Crej compared to Cdet and Cmiss, allowing the detector to require stronger
evidence for H1 than for H0 before deciding the presence of an object. Taking into account the costs
of Crej, C f a and Cmiss and Cdet to set the decision threshold allows the detector to weigh the impact of
the decision on the application level.

Subsection 3.2.7 considers a minimum Bayes risk detector, which combines the prior probability of an
object being present and the costs of detector decisions.
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3.2.7 Minimum Bayes risk

The minimum Bayes risk detector takes into account the prior knowledge P(H0) and P(H1) and the
relative impact of decisions Crej, C f a, Cmiss and Cdet to determine the value of the detector threshold.

The cost of an event multiplied by the probability that such an event occurs is defined as the risk. The
risk associated with an object absent decision is defined as:

RBR
0 (R, T) = CmissPmiss(R, T)P(H1) + CrejPrej(R, T)P(H0) (3.23)

And the risk associated with an object present decision is defined as:

RBR
1 (R, T) = C f aPf a(R, T)P(H0) + CdetPdet(R, T)P(H1) (3.24)

The minimum Bayes risk detector decides H0 or H1 based on comparing the risk of either decision:

RBR
0 (R, T)

H1
≷
H0

RBR
1 (R, T)

CmissPmiss(R, T)P(H1) + CrejPrej(R, T)P(H0)
H1
≷
H0

C f aPf a(R, T)P(H0) + CdetPdet(R, T)P(H1)

Cmiss,iPmiss,i(Ri, Ti)P(H1,i) + C f a,iPf a,i(Ri, Ti)P(H0,i)

(3.25)

The threshold for the minimum Bayes risk detector is γBR =
(C f a−Cr)P(H0)

(Cm−Cd)P(H1)
. Choosing γBR as threshold

in equations 3.10, 3.11, 3.12 and 3.13 results in:

PBR
f a,R(R, T) = e

−log
(

(C f a−Cr)P(H0)

(Cm−Cd)P(H1)

(
1+SNR(R,T)

))
SNR(R,T)+1

SNR(R,T)

PBR
rej (R, T) = 1 − PBR

f a,R(R, T)

PBR
miss(R, T) = 1 − e

−log
(

(C f a−Cr)P(H0)

(Cm−Cd)P(H1)

(
1+SNR(R,T)

))
1

SNR(R,T)

PBR
det (R, T) = 1 − PBR

miss(R, T)

(3.26)

γBR has the advantage that it includes both the probabilities P(H0) and P(H1) and the costs Crej,
C f a, Cmiss and Cdet, resulting in a minimized expected cost. In scenarios such as the autonomous
car example from chapter 3.2.5, a minimum Bayes risk detector is able to trade off the risk between
unnecessarily braking versus colliding by adjusting the ratio of Cmiss

C f a
and simultaneously taking into

account the prior probability of an object being present, P(H1).
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4 Formulating cost functions for a single object
presence decision per scan direction

Formulating cost functions for a single object presence decision per scan direction This chapter con-
siders a scenario with Id object presence decisions, each in a different scan direction. The goal of
this chapter is to present two optimization problems, which both provide a mathematical approach
to distribute the available resource, the scan time budget, over the Id scan directions. It formulates
the general problem formulation at the system level in Section 4.1. The costs for individual decisions
(tasks) are defined in Subsections 4.1.1, 4.1.3 and 4.1.4, assuming Neyman-Pearson, minimax and min-
imum Bayes risk detectors. Subsection 4.1.2 formulates both the cost for individual tasks and at the
system level for a minimum probability of error detector. Section 4.2 compares the costs presented in
Subsections 4.1.1, 4.1.2, 4.1.3 and 4.1.4 and provides arguments to continue with the cost formulation
of the minimum Bayes Risk detector at task level, to formulate a cost function at the system level in
Section 4.3.

4.1 The resource management problem formulation at the system
level

Consider a radar manager that is tasked with dividing radar resources in order to provide the highest
expected performance for a mission. The mission of the radar is to obtain the best, yet undefined,
performance to decide the presence of objects. In total, there are Id potential objects, each in different
directions.

The radar uses scans to gather evidence on the presence of each object. Given that an object is absent,
the measurement is generated by equation 3.2.1. Given that an object is present, the measurement is
generated by equation 3.2.2.

As mentioned in Subsection 3.2.2, the expected evidence for the true hypotheses, provided by a mea-
surement, increases as the scan time budget increases. The radar manager has a total scan time budget
T to distribute in Id directions. The ith performance of each of the Id object presence decisions is for-
mulated as a task ti(Ti), defined in Subsections 4.1.1, 4.1.2, 4.1.3 and 4.1.4, with Ti the budget allocated
to direction i. Given a total budget T, it must hold T = ∑Id

i=1 Ti.

Within a radar, the detector is assigned to decide the presence of an object, aided by the likelihoods of
both hypotheses, obtained through measurements. An incorrect detector decision on the presence of
an object causes either a false alarm or a missed detection, both of which have a direct interpretation
in a radar application context. Having a direct interpretation on the application level eases the task of
a radar user in formulating for each task the relative significance of both missed detections and false
alarms. For this reason, it is proposed to quantify the performance of each task based on the detector
used.

The detectors used in radar are Neyman-Pearson, minimum probability of error, minimax, and mini-
mum Bayes risk, the decision mechanism of each is formulated in chapter 3. The performance of each
detector improves as the budget increases. This chapter demonstrates how an optimization problem
can be formulated that includes a single cost function that combines all Id task performances into a
single cost function and uses an equality constraint to address the finite resource T available for the
mission.
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4 Formulating cost functions for a single object presence decision per scan direction

The proposed optimization problem structure is:

minimize
T1,...,TId

fsystem
(
t1(R1, T1), ..., tId(RId , TId)

)
subject to T =

Id

∑
i=1

Ti

Ti ≥ 0, i = 1, ..., Id

(4.1)

With fsystem
(
t1(R1, T1), ..., tId(RId , TId)

)
representing a cost function on the system level, that quantifies

the global performance of all Id decisions as a function of the scan time. Minimizing
fsystem

(
t1(R1, T1), ..., tId(RId , TId)

)
for [T1, ..., TId ] results in the desired scan time distribution.

The minimization in equation 4.1 assumes that fsystem
(
t1(R1, T1), ..., tId(RId , TId)

)
is a negative perfor-

mance, cost. An alternative is to maximize fsystem
(
t1(R1, T1), ..., tId(RId , TId)

)
, using an utility interpre-

tation. An overview of utility approaches for mission-driven resource allocation is given in [14].

To formulate fsystem
(
t1(R1, T1), ..., tId(RId , TId)

)
, the relative importance of each individual task is re-

quired. Each task is formulated as expected cost to have a single unifying interpretation at the system
level. The significance of each task is formulated in Subsections 4.1.1, 4.1.2, 4.1.3 and 4.1.4 assuming
Neyman-Pearson, minimum probability of error, minimax and minimum Bayes risk detectors, respec-
tively.

4.1.1 Task cost using a Neyman-Pearson detector

The Neyman-Pearson detector is used when the radar user constrains the probability of a false alarm,
notated PNP

f a,{i} for the ith task, to a fixed value. The corresponding detector threshold γNP
i (Ti) is fixed

by the constraint of a predetermined probability of false alarm for a given budget Ti. Therefore, fixing
a probability of false alarm implies a fixed PNP

miss,{i}(Ti, R), which is given by equation 3.16.

Allocating more budget to ti(Ti) only improves the monotonically decreasing function PNP
miss,{i}(R, Ti).

Therefore, using a Neyman-Pearson detector results in a cost function at system level that makes a
trade off between the probability of misses for different tasks.

The expected cost of the ith task is:

tNP
i (Ri, Ti) = C f a,iPNP

f a,{i}P(H0,i) + Cmiss,iPNP
miss,{i}(Ri, Ti)P(H1,i) (4.2)

with C f a,i and Cmiss,i quantifying the significance of a false alarm and missed detection occurring for
the ith task, provided by the user.

Including prior knowledge of which of the hypotheses is true, P(H0,i) and P(H1,i) enables the system
cost function to adjust the allocated budget depending on the uncertainty of the presence of an object.
Including C f a,i and Cmiss,i enables the system cost function to adjust the allocated budget according
to the significance of both events. Increasing the values of C f a,i and Cmiss,i relative to C f a,j and Cmiss,j

with i ̸= j, influences the cost function to increase Ti and decrease Tj. The interpretation of tNP
i (Ti) is

the expected cost as a function of the budget Ti, having a fixed probability of false alarm.

The left term in equation 4.2 lacks a dependency on the budget variable Ti, and remains constant
regardless of the value of Ti.

The resulting optimization problem is:

minimize
T1,...,TId

fsystem

(
tNP
1 (R1, T1), ..., tNP

Id
(RId , TId)

)
subject to T =

Id

∑
i=1

Ti

Ti ≥ 0, i = 1, ..., Id

(4.3)
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4 Formulating cost functions for a single object presence decision per scan direction

with fsystem yet undefined.

Within the current problem, a fixed budget T is assumed to be available for all Id tasks combined.
Within an MFR, the values C f a,i and Cmiss,i have additional meaning by impacting the total amount of
budget T available for the Id tasks, reducing the available budget for other radar functions.

Subsection 4.1.2 addresses how to quantify the significance of indvidiual tasks using a minimum
probability of error detector.

4.1.2 Task and system cost using a minimum probability of error detector

The minimum probability of error detector is used when the radar user aims to minimize the probabil-
ity of error for individual tasks regarding the presence of an object. Using this approach, the detector
assigns equal costs to a missed detection and a false alarm.

The minimum probability of error for a single decision can be interpreted as the minimum probability
of any error. This approach emphasizes how the minimum probability of error detector chooses the
threshold such that the probability of any error is minimized. Extending this to multiple decisions
leads to an interpretation of minimizing the probability that any error occurs. Defining the event that
l out of Id decisions are incorrect as El , the probability of any error is defined as:

Perror,any(R1, ..., RId , T1, .., TId) =
Id

∑
l=1

P
(
El(R1, ..., RId , T1, .., TId)

)
(4.4)

which can be reformulated by using 1 = P
(
E0(R1, ..., RId , T1, .., TId)

)
+ ∑Id

l=1 P
(
El(R1, ..., RId , T1, .., TId)

)
.

Minimizing ∑Id
l=1 P

(
El(R1, ..., RId , T1, .., TId)

)
is achieved by maximizing P

(
E0(R1, ..., RId , T1, .., TId)

)
, which

is the probability that all Id decisions are correct. This would result in an optimization problem of:

maximize
T1,...,TI

P
(
E0(R1, ..., RId , T1, .., TId)

)
subject to T =

Id

∑
i=1

Ti

Ti ≥ 0, i = 1, ..., Id

(4.5)

By merging all the error probabilities of each task into a single event, the freedom of the user to
express significance of the performance of individual tasks is eliminated. Multiplying Perror,any with a
cost coefficient can lead to an increase in the available budget T for object detection tasks in an MFR
setting, but does not influence the relative budget distribution between tasks.

The alternative is to formulate the cost of individual tasks as expected cost. The cost for the ith task is
formulated as:

tPE
i (Ri, Ti) = C f a,i

(
PPE

f a,{i}(Ri, Ti)P(H0,i) + Cmiss,iPPE
miss,{i}(Ri, Ti)P(H1,i)

)
(4.6)

Equation 4.6 is coherent with the minimum probability of error detector performance under the as-
sumption that C f a,i = Cmiss,i. In the case of C f a,i = Cmiss,i, the absolute value of C f a,i is used to
prioritize different tasks. Using a minimum probability of error detector with assigning C f a,i ̸= Cmiss,i
in equation 4.6 loses the interpretation of the cost function to predict the expected cost of the detector
decision.

Using equation 4.6 leads to the following optimization problem:

minimize
T1,...,TI

fsystem
(
tPE
1 (R1, T1), ..., tPE

Id
(RId , TId)

)
subject to T =

Id

∑
i=1

Ti

Ti ≥ 0, i = 1, ..., Id

(4.7)

with fsystem yet undefined.

Subsection 4.1.3 addresses how to quantify the significance of individual tasks using a minimax detec-
tor which enables different cost coefficients defined for false alarms and missed detections.
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4 Formulating cost functions for a single object presence decision per scan direction

4.1.3 Task cost using a minimax detector

The minimax detector is used when the user has provided costs coefficients for false alarms and missed
detections, but there is no (reliable) prior information available regarding the presence of the object.

The cost for the ith task is formulated as:

tminimax
i (Ri, Ti) = C f a,iPminimax

f a,{i} (Ri, Ti)P(H0,i) + Cmiss,iPminimax
miss,{i} (Ri, Ti)P(H1,i) (4.8)

Equation 4.8 is coherent with the minimax detector performance under the assumption that P(H0,i) =
P(H1,i). For a scenario with P(H0,i) ̸= P(H1,i), equation 4.8 does not predict the expected cost of the
detector. For the detector itself, only the ratio between C f a,i and Cmiss,i is important, while for the cost
function at the system level, the magnitude of both C f a,i and Cmiss,i relative to C f a,j and Cmiss,j for i ̸= j
has the additional meaning of expressing the relative importance of individual tasks at the system
level.

Using equation 4.8 leads to the following optimization problem:

minimize
T1,...,TId

fsystem
(
tminimax
1 (R1, T1), ..., tminimax

Id
(RId , TId)

)
subject to T =

Id

∑
i=1

Ti

Ti ≥ 0, i = 1, ..., IId

(4.9)

Subsection 4.1.4 addresses how to quantify the significance of individual tasks using a minimum Bayes
risk detector which enables different cost coefficients defined for false alarms and missed detections
while taking into account prior information P(H1,i).

4.1.4 Task cost using a minimum Bayes risk detector

The minimum Bayes risk detector both takes into account prior knowledge P(H1,i) and the costs
associated with false alarms and missed detections, C f a,i and Cmiss,i, respectively. The expected cost of
the ith task is formulated as:

tBR
i (Ri, Ti) = C f a,iPBR

f a,{i}(Ri, Ti)P(H0,i) + Cmiss,iPBR
miss,{i}(Ri, Ti)P(H1,i) (4.10)

tBR
i (Ri, Ti) represents the total expected risk. C f a,i and Cmiss,i enable the user to quantify the relative

significance on the system level of the ith task compared to the other tasks. Including P(H1,i) allows
the radar to focus its budget on objects with a high uncertainty of the presence of the object.

Using equation 4.10 results in the following optimization problem:

minimize
T1,...,TId

fsystem
(
tBR
1 (R1, T1), ..., tBR

Id
(RId , TId)

)
subject to T =

Id

∑
i=1

Ti

Ti ≥ 0, i = 1, ..., Id

(4.11)

In the minimum probability of error approach, a direct extension to system level was possible by
combining multiple events (error decisions of individual tasks) into one event at the system level as
given in equation 4.5. The minimum Bayes risk detector does not allow such an interpretation due to
the dimension of risk being (expected) cost instead of probability.

Section 4.2 compares tNP
i (Ri, Ti), tPE

i (Ri, Ti), tminimax
i (Ri, Ti) and tBR

i (Ri, Ti).
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4 Formulating cost functions for a single object presence decision per scan direction

4.2 Comparison

The type of detector directly influences the choice of ti(Ri, Ti) as demonstrated in Subsections 4.1.1,
4.1.2, 4.1.3 and 4.1.4. This Section motivates the proposal to choose the quantification of cost for an
individual task using tBR

i (Ri, Ti) as defined in equation 4.10 to achieve the research aims formulated
in the introduction.

Using a Neyman-Pearson detector resulted in tNP
i (Ti) from equation 4.2 as the cost quantification of

an individual task. In the scenario where the user requires a fixed probability of false alarm, tNP
i (Ti)

is proposed to represent the cost of individual tasks at the system level.

Using a minimum probability of error detector resulted in tPE
i (Ri, Ti) from equation 4.6 as the cost

quantification of an individual task. tPE
i (Ri, Ti) only has the interpretation of the expected cost of the

detector decision when Cmiss,i = C f a,i.

Using a minimax detector resulted in tminimax
i (Ri, Ti) from equation 4.8 as the cost quantification of an

individual task. tminimax
i (Ri, Ti) only has the interpretation of the expected cost of the detector decision

when P(Hi,1) = P(Hi,0).

Using a minimum Bayes risk detector resulted in tBR
i (Ri, Ti) from equation 4.10 as the cost quantifi-

cation of an individual task. tBR
i (Ri, Ti) has the interpretation of the expected cost of the detector

decision for all values of P(Hi,1), Cmiss,i and C f a,i.

tBR
i (Ri, Ti) is preferred over tPE

i (Ri, Ti) and tminimax
i (Ri, Ti) as tBR

i (Ri, Ti) retains the interpretation of
the expected cost of the detector decision for a larger domain of P(Hi,1), Cmiss,i and C f a,i.

The rest of this thesis assumes that the user does not require a fixed probability of false alarm. Under
this assumption, it is recommended that the significance of individual tasks is formulated as tBR

i (Ti)
from equation 4.10.

Section 4.3 formulates a cost function at the system level based on formulating individual tasks using
tBR
i (Ri, Ti).

4.3 Formulating a cost function at the system level

This section formulates fsystem
(
tBR
1 (R1, T1), ..., tBR

Id
(RId , TId))

)
in equation 4.11.

In order to maintain the meaning of tBR
i (Ti), fsystem

(
tBR
1 (R1, T1), ..., tBR

Id
(RId , TId))

)
must preserve the

dimension of risk. Two implementations of fsystem
(
tBR
1 (R1, T1), ..., tBR

Id
(RId , TId))

)
are proposed.

The first proposed implementation of fsystem
(
tBR
1 (R1, T1), ..., tBR

Id
(RId , TId))

)
is to minimize the expected

risk at the system level. Minimizing the expected risk at the system level is obtained by summing the
expected risk of each individual task. This results in the following optimization problem:

minimize
T1,...,TId

Id

∑
i=1

tBR
i (Ri, Ti)

subject to T =
Id

∑
i=1

Ti

Ti ≥ 0, i = 1, ..., Id

(4.12)

In the special case of Id = 1, the trivial solution of T = T1 results in equal cost functions at the system
level and at task level.

Solving the optimization problem in equation 4.12 for Id > 1 results in the distribution of T that is
expected to minimize the total risk of all Id tasks combined.
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4 Formulating cost functions for a single object presence decision per scan direction

The second proposed implementation of fsystem
(
tBR
1 (R1, T1), ..., tBR

Id
(RId , TId))

)
is to minimize the max-

imum risk of any individual task. This results in the following optimization problem:

minimize
T1,...,TId

max{tBR
1 (R1, T1), ..., tBR

Id
(RId , TId)}

subject to T =
Id

∑
i=1

Ti

Ti ≥ 0, i = 1, ..., Id

(4.13)

The optimization problem in equation 4.13 selects the distribution of T such that the maximum risk of
all Id tasks is minimized.
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5 Formulating cost functions for generalized
scenarios

This chapter generalizes the scenario in Section 4 and redefines the individual tasks and cost function
at the system level accordingly. Section 5.1 generalizes each scan direction to M object presence deci-
sions. Section 5.2 extends the scenario by considering previous measurements. Section 5.3 extends the
scenario by introducing a birth-death process for each potential object.

5.1 Extending each task to M object presence decisions

This section extends the scenario from Chapter 4 by extending each individual task to decide the
presence of multiple objects in the same direction, each at a different range.

The range in each task is discretized in J cells, motivated by the requirement of a Bayes risk detector
to have a prior probability instead of a prior probability density. The range discretization requires the
detector to make J decisions about the presence of an object per task. To simplify the notation, the
jth range cell is denoted by subscript j. For example, the probability that an object exists in the ith

direction at the jth range cell is notated as P(H1,{i,j}).

The assumption is made that the probability of object presence in each cell is independent of the
presence of objects in other cells, and a maximum of one object is simultaneously present in each
cell.

Having J different decisions to make per task, the user can provide J different cost coefficients for
misses and false alarms per task. The cost of a miss and false alarm occurring in the ith direction at
the jth range cell are notated as Cmiss,{i,j} and C f a,{i,j} respectively. Allowing the radar user to provide
costs per individual range cell and direction enables the radar user to assign spatial zones that are of
relative high or low importance. A relatively large Cmiss{i,j} and C f a{i,j} compared to Cmiss{i,m} and
C f a{i,m} would result in a higher contribution of the cost function at the system level caused by the jth

range cell compared to the mth range cell.

As explained in Chapter 3, both the probability of false alarm and missed detection for a minimum
Bayes risk detector depend on the range caused by SNR ∝ 1

R4 . Using a similar notation, the probability
of false alarms and missed detections for the ith direction at the jth range cell are defined as PBR

f a,{i,j}(Ti)

and PBR
miss,{i,j}(Ti) respectively.

The cost of a single range cell is now defined as:

t′BR
i,j (Ti) = C f a,{i,j}PBR

f a,{i,j}(Ti)P(H0,{i,j}) + Cmiss,{i,j}PBR
miss,{i,j}(Ti)P(H1,{i,j}) (5.1)

Each cell in the ith direction depends on the same budget Ti, resulting in an optimization problem that
still has Id different budget variables to optimize. It is proposed to redefine the ith task as the expected
total risk in the ith direction:

t′i,j
BR(Ti) =

J

∑
j=1

t′i,j
BR(Ti) (5.2)

Using the definition of each task as in equation 5.2 causes the cost on task level to preserve the costs
of individual cells. Rather than defining the task as t′i

BR(Ti) = max{t′i,1
BR(T1), ..., t′i,J

BR(TJ)}, which
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5 Formulating cost functions for generalized scenarios

reduces the cost of all cells to a single cell on the task level, thus losing the meaning of all but a single
cell within each scan direction.

Using the redefinition of the ith task as in equation 5.2, the optimization problem for the cost function
at the system level that minimizes the total expected risk is:

minimize
T1,...,TId

Id

∑
i=1

t′i,j
BR(Ti)

subject to T =
Id

∑
i=1

Ti

Ti ≥ 0, i = 1, ..., Id

(5.3)

The optimization problem formulated in equation 5.3 is a generalized version of 4.12. Equation 5.3 is
equal to equation 4.12 when J = 1.

Using the redefinition of the ith task as in equation 5.2, the optimization problem for the cost function
at the system level that minimizes the maximum expected risk of any individual task is:

minimize
T1,...,TId

max{t′1
BR(T1), ..., t′Id

BR(TId)}

subject to T =
Id

∑
i=1

Ti

Ti ≥ 0, i = 1, ..., Id

(5.4)

The optimization problem in equation 5.4 is a generalization of equation 4.12. Both equations are
equal under the condition that J = 1.

This extension demonstrated that the cost function at the system level can remain unchanged by
redefining the definition of individual tasks. Section 5.2 extends the current extension by including
previous measurements to update the prior information.

5.2 Sequential scans

The extension of this section is to perform multiple scans. Using multiple scans allows investigation
of the change of budget allocation as the number of scans increases.

Cells at short range have a relative higher SNR due to SNR ∝ 1
R4 . A high SNR will result in mea-

surements that are more likely to converge the probability of the true hypothesis to 1. The Bayes risk
detector threshold takes into account this probability and adjusts the detector, resulting in a significant
reduction in the risk for cells at short range.

Previous measurements update the probability of object presence. The posterior probability after a
measurement is obtained through Bayes theorem.[15] Defining the kth scan as the scan that is per-
formed in the time interval [(k − 1)T, kT], notated as Tk. The set of the first k time intervals is notated
as T1:k.

The measurement in the kth scan in the ith direction at the jth range cell is defined as, z{i,j}(Tk
i ), with

a simplified notation of zk
{i,j}. The set of the first k measurements given the allocated budgets T1:k

i is

defined as Z{i,j}(T1:k
i ) with a simplified notation of Zk

{i,j}.

Using the notation above, the updated posterior for the presence of the object at time index k at cell
{i, j}, given prior knowledge, is given as:

P(H1,{i,j}/Zk
{i,j}) =

p(zk
{i,j}/H1,{i,j})P(H1,{i,j}/Zk−1

{i,j})

p(zk
{i,j}/H0,{i,j})P(H0,{i,j}/Zk−1

{i,j}) + p(zk
{i,j}/H1,{i,j})P(H1,{i,j}/Zk−1

{i,j})
(5.5)
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With P(H1,{i,j}/Zk
{i,j}) the posterior probability of the presence of an object after k measurements.

p(zk
{i,j}/H0,{i,j}) and p(zk

{i,j}/H1,{i,j}) are the likelihoods of the measurement conditioned on the pres-

ence or absence of the object. P(H0,{i,j}/Zk−1
{i,j}) and P(H1,{i,j}/Zk−1

{i,j}) are the prior probability of the
absence or presence of the object at time index k.

After each scan, the probability of the presence of the object is updated considering that each mea-
surement provides evidence for both hypothesis. The relative difference in the evidence for both
hypotheses determines the posterior probability.

The cost of an individual cell is now defined as:

t′′BR,k
i,j (Tk

i ) = Ck
f a,{i,j}PBR

f a,{i,j}(T
k
i )P(H0,{i,j}/Zk−1

{i,j}) + Ck
miss,{i,j}PBR

miss,{i,j}(T
k
i )P(H1,{i,j}/Zk−1

{i,j}) (5.6)

Which can be used to define the task performance as:

t′′BR,k
i (Tk

i ) =
J

∑
j=1

t′′BR,k
i,j (Tk

i ) (5.7)

Resulting in an optimization problem that minimizes the expected risk as:

minimize
Tk

1 ,...,Tk
Id

Id

∑
i=1

t′′i
BR,k(Tk

i )

subject to Tk =
Id

∑
i=1

Tk
i

Tk
i ≥ 0, i = 1, ..., Id

(5.8)

And the optimization problem that minimizes the maximum expected risk of individual tasks as:

minimize
Tk

1 ,...,Tk
Id

max{t′′1
BR,k(Tk

1 ), ..., t′′Id
BR,k(Tk

Id
)}

subject to Tk =
Id

∑
i=1

Tk
i

Tk
i ≥ 0, i = 1, ..., Id

(5.9)

Both equations 5.8 and 5.9 take into account previous measurements. The optimization problems in
equations 5.3 and 5.4 can be seen as a special case of k = 1.

The current extension is a static scenario with respect to the presence of an object within a cell. The
magnitudes of ∑J

j=1 t′′BR,k
i,j (Tk

i ) and max{t′′1
BR,k(Tk

1 ), t′′I
BR,k(Tk

I )} will decrease as k increases. Theoreti-
cally, as limk→∞ both cost function go to zero.

In practice, a scenario changes over time. Section 5.3 introduces a birth-death process that results in
the presence of an object that changes over time.

5.3 Birth-death Markov process

This section introduces birth-death processes with respect to the presence of an object.

A birth is the appearance of a new object in a cell provided that the object was previously absent. This
event is modeled by a probability Pk

birth{i,j}, which represents the probability that an object is born after

the kth and before the (k + 1)th scan.

A death is the disappearance of an existing object in a cell. This event is modeled by a probability
Pk

death{i,j}, which represents the probability that an object disappears after the kth and before the (k +

1)th scan.
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The extension of a birth-death process enables to investigate the effect a changing object presence over
time has on the budget allocation, while fitting in the narrative of having a maximum of one object
per cell. The difference in budget allocation between the extension of Section 5.2 and this section will
illustrate the effect of a changing object presence over time. As the number of scans increases, this
difference is expected to increase as the effect of prior knowledge P(H1,{i,j}) becomes less significant
over time for non-zero Pk

birth{i,j} and Pk
death{i,j}.

The main difference of this extension is the time dependency of the presence of an object. The event
of an object existing at time index k is now formulated as Hk

1,{i,j}, with the superscript k emphasizing
the time dependency of the presence of the object.

Given the posterior at time index k-1, P(Hk−1
1,{i,j}/Zk−1

{i,j}) ,the prior probability of object presence for
time index k is given as [16]:

P(Hk
1,{i,j}/Zk−1

{i,j}) = Pk
birth{i,j}P(Hk−1

0,{i,j}/Zk−1
{i,j}) + (1 − Pk

death{i,j})P(Hk−1
1,{i,j}/Zk−1

{i,j}) (5.10)

Equation 5.10 emphasizes the difference between the posterior at time index k − 1 and the posterior at
time index k.

The introduction of a birth-death process also allows a method to calculate the prior P(H0
1,{i,j}). Given

that before the radar starts its mission at time index k = 0 there are no measurements performed, the
prior is entirely determined by the birth-death process. Using zero budget allocation in any negative
time index up to k = 0, a prior is found by recursively evaluating equation 5.10.

Modeling the birth and death mechanism as a Markov process results, using the definition of the
probability of object survival as Pk

survival{i,j} = 1 − Pk
death{i,j}, in:[

P(H−n+1
1,{i,j} )

P(H−n+1
0,{i,j} )

]
=

[
P−n

survival{i,j} P−n
birth{i,j}

P−n
death{i,j} 1 − P−n

birth{i,j}

] [
P(H−n

1,{i,j})

P(H−n
0,{i,j})

]
(5.11)

Under the assumption of constant probability of birth and death, a prior can be found by:[
P(H0

1,{i,j})

P(H0
0,{i,j})

]
= lim

n→∞

([
Psurvival{i,j} Pbirth{i,j}
Pdeath{i,j} 1 − Pbirth{i,j}

])n [
P(H−n

1,{i,j})

P(H−n
0,{i,j})

]
(5.12)

The matrix can be decomposed into its Eigenvalue decomposition with Eigenvalues λ1 = 1 and λ2 =
1 − Pbirth{i,j} − Pdeath{i,j}:

lim
n→∞

([
Psurvival{i,j} Pbirth{i,j}
Pdeath{i,j} 1 − Pbirth{i,j}

])n

= lim
n→∞

[
Pbirth,{i,j} 1
Pdeath,{i,j} −1

] [
1n 0
0 (1 − Pbirth,{i,j} − Pdeath,{i,j})

n

]
1

Pbirth,{i,j} + Pdeath,{i,j}

[
1 1

Pdeath,{i,j} −Pbirth,{i,j}

]
(5.13)

Assuming 0 < |Pbirth{i,j}| < 1 and 0 < |Pdeath{i,j}| < 1 results in λ2 to go to zero as n approaches
infinity, resulting in a limiting state of:[

P(H0
1,{i,j})

P(H0
0,{i,j})

]
= lim

n→∞

([
Psurvival{i,j} Pbirth{i,j}
Pdeath{i,j} 1 − Pbirth{i,j}

])n [
P(H−n

1,{i,j})

P(H−n
0,{i,j})

]

=

 Pdeath{i,j}
Pbirth{i,j}+Pdeath{i,j}

Pbirth{i,j}
Pbirth{i,j}+Pdeath{i,j}

 (5.14)

The prior at time index k entirely based on Pbirth{i,j} and Pdeath{i,j} given by equation 5.14 can be
reasoned. Given that an object is absent, it is expected that it requires 1

Pbirth{i,j}
time intervals for
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an object to be born. This newborn object is expected to live 1
Pdeath{i,j}

time intervals before it dies,

completing the cycle of birth and death. The fraction of the intervals that the object is alive is
1

Pdeath{i,j}
1

Pdeath{i,j}
+ 1

Pbirth{i,j}
=

Pbirth{i,j}
Pbirth{i,j}+Pdeath{i,j}

.

The cost of a cell is now defined as:

t′′′BR,k
i,j (Tk

i ) = Ck
f a,{i,j}PBR

f a,{i,j}(T
k
i )P(Hk

0,{i,j}/Zk−1
{i,j}) + Ck

miss,{i,j}PBR
miss,{i,j}(T

k
i )P(Hk

1,{i,j}/Zk−1
{i,j}) (5.15)

with the priors P(Hk
0,{i,j}/Zk−1

{i,j}) and P(Hk
1,{i,j}/Zk−1

{i,j}) obtained through applying equation 5.10 using
the posterior at time index k − 1.

The ith task is now defined as:

t′′′BR,k
i (Tk

i ) =
J

∑
j=1

t′′′BR,k
i,j (Tk

i ) (5.16)

The resulting optimization problem for minimizing the total expected risk is:

minimize
Tk

1 ,...,Tk
Id

Id

∑
i=1

t′′′i
BR,k(Tk

i )

subject to Tk =
Id

∑
i=1

Tk
i

Tk
i ≥ 0, i = 1, ..., Id

(5.17)

Similarly, the optimization problem for minimizing the maximum expected risk of an individual task
is:

minimize
Tk

1 ,...,Tk
Id

max{t′′′1
BR,k(Tk

1 ), ..., t′′′Id
BR,k(Tk

I )}

subject to Tk =
Id

∑
i=1

Tk
i

Tk
i ≥ 0, i = 1, ..., Id

(5.18)

Both optimization problems take into account a birth and death probability when predicting the prior
of the next scan, which is abstracted by t′′′BR,k

i (Tk
i ). fsystem as function of the tasks remains unchanged

for both approaches. The adjustment of the cost function is done by redefining individual tasks.

The optimization problems in equations 5.17 and 5.18 are a generalization of the optimization problems
in equations 5.8 and 5.9. When Pbirth{i,j} = 0 and Pdeath{i,j} = 0 for i ∈ [1, ..., Id] and j ∈ [1, ..., J],
equation 5.17 converges to 5.8 and equation 5.18 converges to 5.9.
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This chapter simulates the scenarios in Chapters 4 and 5 to examine the allocation of the scan time
budget by solving the corresponding optimization problems using the Sum and Max methods. The
Sum method refers to the cost functions that allocate the budget based on the minimization of the sum
of the expected risk of the tasks. The Max method refers to the cost functions that allocate the scan
time budget based on the minimization of the maximum expected risk of the tasks. The simulations
demonstrate the adaptability of both the Sum and Max methods to adjust the allocation of the scan time
budget depending on the specific scenario. In each scenario, a third allocation of the scan time budget
is used, the Uniform method, which uniformly distributes the budget over all tasks. The Uniform
method represents the allocation of the scan time budget in the absence of a cost function.

Table 6.1 gives a high-level overview of the scenarios considered in this chapter. Section 6.1 considers
a scenario as formulated in Section 4.1, where the radar has to distribute the scan time budget over
two tasks, each consisting of a single range cell, for a single measurement. The Sum and Max methods
in this scenario allocate the scan time budget by solving equations 4.12 and 4.13. This scenario is sim-
ulated for two different available scan time budget quantities, highlighting the effect of the magnitude
of T.

Section 6.2 considers a scenario as formulated in Section 5.1. This scenario extends the previous
scenario by extending each task to 991 range cells. The Sum and Max methods now distribute the scan
time budget over the two tasks by solving equations 5.3 and 5.4.

Subsection 6.3.1 considers the scenario as formulated in Section 5.2. The scenario extends the previous
scenario by extending the number of measurements to 32. The Sum and Max methods now distribute
the scan time budget over the two tasks by solving equations 5.8 and 5.9.

Subsection 6.3.2 considers the scenario as formulated in Section 5.3. The scenario extends the previous
scenario by including a nonzero probability of the birth and death of the object. In addition, the
number of scans is increased from 32 to 64 to better visualize the effect a birth-death process has on
the allocation of the scan time budget. The Sum and Max methods now distribute the scan time budget
over the two tasks by solving equations 5.17 and 5.18.

Section 6.4 considers the scenario as formulated in Section 5.3. The scenario extends the previous
scenario by increasing the number of tasks from two to three. The Sum and Max methods still distribute
the scan time budget over the two tasks by solving equations 5.17 and 5.18.

Section Tasks Range cells per task Scans Birth/Death Sum method Max method
6.1 2 1 1 × Eq 4.12 Eq 4.13
6.2 2 991 1 × Eq 5.3 Eq 5.4
6.3.1 2 991 32 × Eq 5.8 Eq 5.9
6.3.2 2 991 64 ✓ Eq 5.17 Eq 5.18
6.4 3 991 48 ✓ Eq 5.17 Eq 5.18

Table 6.1: High-level overview of scenarios

Each scenario uses a table such as Table 6.2 to present the chosen object parameters.

Task P(H1,x) Cmiss,x C f a,x SNR(T, R) Pbirth,x Pdeath,x

Table 6.2: Object parameters table

The meaning of each column in Table 6.2 is

25



6 Simulations and Results

• Task: Scan direction that contain cells that require an object presence decision

• P(H1,x): The prior probability that an object is present at the cell at position x

• Cmiss,x: The cost of a missed detection at the cell at position x

• C f a,x: The cost of a false alarm at the cell at position x

• SNR(R, T): The SNR at range R having the entire scan time budget T allocated to the considered
task

• Pbirth,x: The probability of the birth of an object at position x

• Pdeath,x: The probability of death of an object at position x

The performance of an individual simulation is measured by transforming the risk of the Sum, Max,
and Uniform methods into achieved cost caused by missed detections and false alarms based on sim-
ulated detector decisions.

Sections 6.1, 6.2, 6.3.1, 6.3.2 and 6.4 average the performance over 10000 simulations runs. Each
individual simulation run has randomized object presence in each cell with probability equal to the
prior probability P(H1,x).

6.1 One decision per task

This Section simulates a scenario with two tasks with each a single range cell, for a single scan, as is
shown in Table 6.3. The Sum and Max methods distribute the scan time budget solving equations 4.12
and 4.13. Two sets of object parameters are chosen, which differ in the magnitude of available scan
time budget only, resulting in different SNR(R, T). These two scenarios are compared to illustrate the
effect the relative scan time budget has on the solutions of equations 4.12 and 4.13.

Tasks Range cells per task Scans Birth/Death Optimization Sum Optimization Max
2 1 1 × Eq 4.12 Eq 4.13

Table 6.3: Simulation parameters

The object parameters for scenario 1A are presented in Table 6.4. Both prior probabilities of the
presence of the object are 0.5, representing the maximum uncertainty of the presence. Cmiss = C f a for
both tasks, with the first task having twice the cost compared to the second task. The double cost of
false alarms and missed detections for task one compared to task two is chosen to emphasize the effect
of the choice of the cost coefficients. Allocating the entire scan time budget to a single task results in
a SNR of 10 for either task.

The object parameters for scenario 1B are presented in Table 6.5. The difference between scenario 1A
and 1B is the maximum achievable SNR for a single task. For scenario 1B the maximum achievable
SNR is 1 for either task.

Task P(H1) Cmiss C f a SNR(T) Pbirth Pdeath
1 0.5 2 2 10 0 0
2 0.5 1 1 10 0 0

Table 6.4: Object parameters scenario 1A
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Task P(H1) Cmiss C f a SNR(T) Pbirth Pdeath
1 0.5 2 2 1 0 0
2 0.5 1 1 1 0 0

Table 6.5: Object parameters scenario 1B

The figure on the left in Figure 6.1 illustrates the risk per task as a function of the percentage of the
scan time budget assigned to task 1 for scenario 1A. The expected risk for zero allocated scan time to

a task is determined by min
(

CmissP(H1), C f a
(
1 − P(H1)

))
using the values in Tables 6.4 and 6.5.

Increasing T1 results in a decrease in risk for task 1 and an increase in risk for task 2, illustrating
the trade-off of task performances that the cost function makes. The risks of both tasks are equal in
magnitude at T1 = 0.822T.

The figure on the right in Figure 6.1 illustrates the derivative of the risk of both tasks with respect to
the scan time budget allocated to task 1 for scenario 1A, with the derivative of task 2 multiplied by −1
for illustration purposes. The derivatives of both tasks are equal at T1 = 0.645T.

Figure 6.1: Risk individual tasks: Scenario 1A

Figure 6.2 illustrates the same figures for scenario 1B. The reduction in available scan time budget
results in a flattening of the risk curves. The risk of task 1 is above the risk of task 2 within the entire
domain of the scan time budget of T1 in the figure on the left. The derivatives in the figure on the right
for both tasks are equal at T1 = 0.963T.

Figures 6.3a and 6.3b illustrate the cost functions used in equations 4.12 and 4.13 using the parameters
of scenarios 1A and 1B.

The value of T1 that results in a minimum for the Sum method in the figure on the left in Figure 6.3a
is equal to the value of T1 where the derivatives of both tasks are equal in the figure on the right in
Figure 6.1.

The value of T1 that results in a minimum for the Max method in the figure on the left in Figure 6.3a
is equal to the value of T1 where the risks of both tasks are the same in the figure on the left in Figure
6.1.

Similarly for scenario 1B, the value of T1 that results in a minimum for the Sum method in the figure
on the right in Figure 6.3b is equal to the value of T1 where the derivatives in the figure on the right
in Figure 6.2 are equal.
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Figure 6.2: Risk individual tasks: Scenario 1B

The absence of a risk crossing in the figure on the left in Figure 6.2 caused by the reduced available
scan time budget results in T1 = T for the Max method.

(a) Scenario 1A (b) Scenario 1B

Figure 6.3: Normalized cost functions for scenarios 1A and 1B

Both the Sum and Max method in scenarios 1A and 1B allocated more than 50% of the scan time budget
to task 1, caused by the higher costs of missed detection and false alarms in Table 6.4 compared to
Table 6.5.

The costs achieved after the measurement for both scenarios are illustrated in figure 6.4. The Sum, Max
and Uniform bins refer to the method of allocating the scan time budget. The Sum method allocates
the budget to minimize the sum of tasks cost and the Max method allocates the budget to minimize the
maximum task cost.

The Sum method in both figures on the left in Figures 6.4a and 6.4b achieves the lowest sum of tasks cost.
The Max method in both figures on the right in Figures 6.4a and 6.4b achieves the lowest maximum
task cost.

Figure 6.4 illustrates that the Sum method only minimizes the expected total cost and that the Max
method only minimizes the maximum cost of all individual tasks, highlighting the precision of each
method to minimize only its assigned cost criteria.
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(a) Scenario 1A (b) Scenario 1B

Figure 6.4: Achieved cost for scenarios 1A and 1B
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6.2 Multiple decisions per task

This section simulates a scenario with two tasks with each 991 range cells, for a single scan, as shown
in Table 6.6. The Sum and Max methods distribute the scan time budget solving Equations 5.3 and
5.4.

Tasks Range cells per task Scans Birth/Death Optimization Sum Optimization Max
2 991 1 × Eq 5.3 Eq 5.4

Table 6.6: Simulation parameters scenario 2

Task P(H1,x) Cmiss,x C f a,x SNR(T, 0.75Rmax) Pbirth,x Pdeath,x
1 Fig 6.5, x < 0 Fig 6.5, x < 0 Fig 6.5, x < 0 1 0 0
2 Fig 6.5, x > 0 Fig 6.5, x > 0 Fig 6.5, x > 0 10 0 0

Table 6.7: Object parameters scenario 2

The object parameters for scenario 2 are presented in Table 6.7. The prior probability of object presence,
cost of a missed detection and cost of a false alarm as function of position are illustrated in figure 6.5.
Task 1 is associated with the object presence decisions for x < 0 and task 2 for x > 0.

Figure 6.5: Parameters for scenario 2

The difference between the object parameters for scenario 2 for both tasks is the difference in RCS.
For task 1, SNR1(T1 = T, R = 0.75Rmax) = 10 and SNR1(T1 = T, R = 0.75Rmax) = 1, with Rmax the
maximum range.

Figure 6.6 illustrates the risk in cells within a single task as a function of the allocated scan time budget.
The top figure illustrates the risk at multiple cells in scan direction 1 as a function of the scan time
budget allocated to task 1, and the bottom figure illustrates the risk at multiple cells in scan direction
2.

As the scan time budget allocated to task 1 increases, the risk curve of each cell in the top figure
decreases. The blue curve illustrates the risk curve for the cell with the shortest range. A scan time
budget of T1 = 0.001T reduces the risk of this cell to 5.77 × 10−6, locally resulting in a large negative
slope. The red curve illustrates the risk of the cell in a range of R = 0.25Rmax. The increased range
compared to the blue curve results in a higher risk. With a full scan time budget of T1 = T, there is
a remaining risk of 0.0014 for the red curve, reflecting that there is not enough budget to reduce the
risk of the red curve asymptotically to zero within a single scan. The green curve illustrates the risk
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of the cell at R = Rmax, which has approximately a horizontal risk curve, reflecting the inability of the
amount of the scan time budget available to reduce the risk for cells at long range.

The lower figure in Figure 6.6 illustrates the risk curves in scan direction 2 as a function of T1, using
T = T1 + T2. Increased SNR for a potential object in scan direction 2 results in a lower risk for a cell in
scan direction 2 compared to a cell in scan direction 1, under the assumption that both cells have the
same range and scan time budget available. For example, the curves in the lower figure at T1 = 0.75T
have a lower risk compared to the curves in the upper figure with matching color at T1 = 0.25T.

Figure 6.6: Risk(T1) for multiple range cells

Figure 6.7 illustrates the risk as a function of the position for various values of T1. The area under each
curve for x < 0 is equal to the expected risk for task 1 defined by equation 5.2. The area under each
curve for x > 0 is equal to the expected risk for Task 2.

The purple curve in Figure 6.7 illustrates the risk when the entire scan time budget is allocated to
task 1. The risk for cells at close range for x < 0 are reduced to approximately zero, due to the high
SNR obtained. The risk remains approximately 0.01 in cells with R ≥ 0.6Rmax, due to the low SNR
obtained. In between, there is a transition between a relatively low risk of approximately zero and
a relatively high risk of approximately 0.01. The reduction of T1 to T′

1 > 0 results in a horizontal
compressed risk curve for x ∈ [−Rmax, 0.01Rmax]. The reduction of T1 results in the increase of T2,
resulting in a horizontal expansion of the risk curves for task 2 with x ∈ [0.01Rmax, Rmax]. The Sum
and Max methods each make a different trade-off decision for the horizontal expansion and retraction
of the risk curves for both tasks.

The figure on the right in Figure 6.8 illustrates the expected risk, t
′BR
1 (T1) and t

′BR
2 (T − T1), as defined

in equation 5.2. Task 1 has a large decrease in risk near T1 = 0 caused by the reduction in the risk
of cells at close range. t

′BR
1 (0.001) − t

′BR
1 (0) equals the area between the blue and red curves for

x < 0.01Rmax in the figure on the right in Figure 6.7. For task 2 a similar reasoning holds for the large
increase in risk near T1 = 1.

The figure on the left in Figure 6.8 illustrates the normalized Sum and Max cost functions. The Sum
cost function is obtained by taking the sum of both tasks in the figure on the right in Figure 6.8. The
Max cost function is obtained by taking the maximum of both tasks in the figure on the right in Figure
6.8. The Sum method has a minimum at T1 = 0.36T. The Max method has a minimum at T1 = 0.91T.

This scenario demonstrates that the Sum and Max methods allocate more of the scan time budget
to different tasks. The lower RCS for cells in scan direction 1 resulted in a lower scan time budget
allocated by the Sum method. The lower RCS for cells in scan direction 1 resulted in a higher scan
time budget allocated by the Max method.
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Figure 6.7: Riskx for multiple T1 choices

The resulting risk curves as a function of the position for the chosen values of T1 are illustrated in
Figure 6.9. By allocating T1 by solving equation 5.4, the Max method achieved a risk curve in Figure
6.9 that has equal risk for both tasks. The equal risk per task is visualized by equal areas under the
red curve for x < −0.01Rmax and x > 0.01Rmax.

By allocating T1 by solving equation 5.3, the Sum method achieved a risk curve in Figure 6.9 that has
the minimum combined expected risk for tasks 1 and 2. The Sum method allocates less budget to task
1, resulting in an increase in the expected risk for task 1. The increase in expected risk for task 1 is
equal to the area between the blue and red curves for x < −0.01Rmax in Figure 6.9. The area between
the red and blue curves for x > 0.01Rmax is larger than the area for x < −0.01Rmax, resulting in a
lower combined expected risk for the Sum method.

Figure 6.10 illustrates the cost achieved after the scan, using the value of T1 corresponding to the Sum,
Max and Uniform methods. The figure on the left illustrates the total cost achieved. The figure on the
right illustrates the maximum cost of either task.

The figure on the left in Figure 6.10 illustrates that the choice of T1 made by the Sum method results
in the lowest achieved sum of tasks cost. The figure on the right in Figure 6.10 illustrates that the choice
of T1 made by the Max method results in the lowest achieved maximum task cost.
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Figure 6.8: Risk at system and task level

Figure 6.9: Risk with chosen T1
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Figure 6.10: Achieved cost
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6.3 Sequential scans and birth-death process

This Section simulates two scenarios, each with two tasks with 991 range cells per task, for 32 and
48 scans. Subsection 6.3.1 considers scenario 3A, with simulation parameters shown in Table 6.8.
Subsection 6.3.2 considers scenario 3B, with simulation parameters shown in Table 6.9. The main
difference between scenarios 3A and 3B is the nonzero probability of object birth and death for scenario
3B.

Tasks Range cells per task Scans Birth/Death Optimization Sum Optimization Max
2 991 32 × Eq 5.8 Eq 5.9

Table 6.8: Simulation parameters scenario 3A

Tasks Range cells per task Scans Birth/Death Optimization Sum Optimization Max
2 991 64 ✓ Eq 5.17 Eq 5.18

Table 6.9: Simulation parameters scenario 3B

6.3.1 Sequential measurements

The object parameters for this scenario are shown in Table 6.10. The object parameters for both tasks
are equal, except for the cost coefficients Cmiss(x) and C f a,x and the prior probability P(H1,x), as illus-
trated in Figure 6.11. Task 1 has a range interval of x ∈ [−0.505Rmax,−0.01Rmax]. Task 2 has a range
interval of x ∈ [0.505Rmax, Rmax].

Task P(H1,x) Cmiss,x C f a,x SNR(T, 0.5Rmax) Pbirth,x Pdeath,x
1 Fig 6.11 , x < 0 Fig 6.11, x < 0 Fig 6.11, x < 0 10 0 0
2 Fig 6.11, x > 0 Fig 6.11, x > 0 Fig 6.11, x > 0 10 0 0

Table 6.10: Object parameters scenario 3A

Figure 6.12 illustrates the risk and object probability map before the first, second and third scan, using
the Uniform method for scan time budget allocation.

Given that an object is present in a cell results in that the probability that an object is present converges
to 1 as the number of scans increases. Given that an object is absent in a cell results in that the
probability that an object is present converges to 0 as the number of scans increases. The probability
that an object is present in cells with smaller range will converge with fewer scans. This is illustrated
in the bottom center figure in Figure 6.12. The object probability map for cells in the interval x ∈
[−0.01Rmax,−0.2Rmax] is approximately 0 or 1, resulting in 0 risk in deciding the presence or absence
of an object. For cells with a larger range, more scans are required for P(H1,x) to converge to 0 or 1.
The risk of each individual task for a static scenario converges to zero as the number of scans goes to
infinity.

Figure 6.13 illustrates the normalized cost functions for the first six scans for an individual simulation
run. Both tasks contain the same risk before the first scan. The Max method has a minimum at
T1 = 0.01T for the first scan. The probability of an object being present for cells in scan direction 1 at
short range converge to either 0 or 1, resulting in zero risk in cells at close range for subsequent scans.
The probability of an object being present for cells in scan direction 2 requires more scans to converge
to either 0 or 1, resulting in a higher risk in the second, third, fourth and fifth scan. The difference
in risk between both tasks is small enough in the sixth scan that T1 = 0.02T, meaning that both tasks
receive scan time.

The Sum method in Figure 6.13 has a minimum at T1 = T for the first two scans. As task 1 consists
of cells with shorter range compared to cells of task 2, the Sum method first reduces the risk in task
1. After two scans, the Sum method switches to T1 = T, reducing the risk for task 2, which requires
more scan time to reduce the same amount of risk compared to task 1.
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Figure 6.11: Parameters for scenario 3A and 3B

Figure 6.14 illustrates that on average the Sum method allocates 100%, 77% and 23% of the budget to
task 1 in the first three scans to reduce the risk of cells in close range. An average of T1 = 0.13T is
obtained for the Sum method for the subsequent scans. The Max method on average allocates less than
5% to task 1 for all 32 scans. The cells in task 2 are at a longer range compared to the cells in task 1,
requiring more scan time budget to even the risk in both tasks.

Figure 6.15 illustrates the allocation of T1 of individual simulation runs for the Sum method in the
figure on the left and for the Max method in the figure on the right. The color illustrates the percentage
of T allocated to T1.

The image in the figure on the left in Figure 6.15 illustrates that using the Sum method to find T1 often
results in assigning most of T to a single task, visualized by the dominant dark blue, orange, and
yellow colors. This image illustrates that the T1 values for the Sum method for single simulation runs
are not equal to the average values in Figure 6.14.

The image in the figure on the right in Figure 6.15 illustrates that using the Max method to find T1 for
individual simulation runs deviates less from the average value in Figure 6.14 for the first 18 scans,
compared to the Sum method. After 18 scans, individual simulation runs with outliers of T1 > 0.5T
become more frequent.

Figure 6.16 illustrates the achieved sum of tasks cost in the figure on the left, and the achieved maximum
task cost in the figure on the right. The Sum method has the lowest achieved sum of tasks cost for each
individual scan. The Max method achieves a lower achieved sum of tasks cost compared to the Uniform
method after the 19th scan, caused by the constant 50% allocation of T to task 1 by the Uniform method.
The Max method in the figure on the right of Figure 6.16 has the lowest achieved maximum task cost for
each scan.
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Figure 6.12: Riskx and object probability map

Figure 6.13: Normalized cost function: Scenario 3A
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Figure 6.14: Average scan time budget allocation: Scenario 3A

Figure 6.15: Scan time budget allocation for individual simulations: Scenario 3A
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Figure 6.16: Achieved cost: Scenario 3A
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6.3.2 Object birth-death process

The object parameters for this scenario are shown in Table 6.11. The object parameters in Table 6.11
are equal to the object parameters of scenario 3A in Table 6.10, except Pbirth,x and Pdeath,x.

Task P(H1,x) Cmiss,x C f a,x SNR(T, 0.5Rmax) Pbirth,x Pdeath,x
1 Fig 6.11, x < 0 Fig 6.11, x < 0 Fig 6.11, x < 0 10 Fig 6.17, x < 0 Fig 6.17, x < 0
2 Fig 6.11, x > 0 Fig 6.11, x > 0 Fig 6.11, x > 0 10 Fig 6.17, x > 0 Fig 6.17, x > 0

Table 6.11: Object parameters scenario 3B

Pbirth,x and Pdeath,x for scenario 3B are illustrated in figure 6.17. Both tasks have an equal probability
of object birth and death as a function of the range. Pdeath,x

Pbirth,x
= 0.99 in the position intervals x ∈

[−Rmax,−0.01Rmax] and [0.01Rmax, Rmax] resulting in the same prior probability of an object being
present in each cell as the top figure in Figure 6.11.

Figure 6.17: Object birth and object death probabilities

In scenario 3A, when the probability of the presence of an object in a cell is 0 or 1, it stays constant for
subsequent scans. For scenario 3B, the probability of the presence of an object does not remain 0 or
1, which is illustrated in Figure 6.18. The figures on the left illustrate the risk and object probability
map after the 31st scan. The figures on the right illustrate the risk and object probability map before
the 32nd scan.

Given that the probability of the presence of an object is 1 after the 31st scan, the birth-death process
causes the probability to decrease to

(
1 − Pdeath,x

)
before the 32nd scan. Given that the probability

of the presence of an object is 0 after the 31st scan, the birth-death process causes the probability to
increase to Pbirth,x before the 32nd scan.

The chosen Pdeath,x, Pbirth,x illustrated in Figure 6.17, combined with C f a,x and Cmiss,x, result in a greater
increase in risk for the cells with a probability of the presence of an object close to 1 compared to cells
with a probability close to 0.

Figure 6.19 illustrates the normalized cost functions for the 1st, 2nd, 3rd, 30th, 31st and 32nd scans for
an individual simulation run. The difference between the normalized cost functions for scenarios 3A
and 3B in Figures 6.13 and 6.19 increases with the number of scans. The normalized cost functions
in Figure 6.13 approach 1 for the 30th, 31st and 32nd scan. The normalized cost functions in Figure
6.19 have a larger range for the y-axis, indicating a greater potential risk reduction for the 30th, 31st

and 32nd scan in scenario 3B compared to scenario 3A. In scenario 3A, the remaining risk for the 30th,
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Figure 6.18: Riskx and object probability map

31st and 32nd is in cells with a larger range. On the contrary, the birth-death process in scenario 3B
introduces risk at cells both at short and high range after each scan, resulting in nonzero risk in cells at
short range. The nonzero risk for cells in short range results in a larger expected risk reduction within
a single scan compared to scenario 3A.

Figure 6.19: Normalized cost function: Scenario 3B

Figure 6.20 illustrates the allocation of the scan time budget averaged over 10000 simulation runs. The
allocation of T1 using the Max method in Figure 6.20 is not significantly changed by the introduction
of nonzero values for Pbirth,x and Pdeath,x in this scenario. The allocation of T1 using the Sum method
in Figure 6.20 does not average at t1 = 0.13T as in Figure 6.14, but increases to T1 = 0.665T. The Sum
method increases T1 to 0.665T to reduce the risk of task 1, induced by the birth-death process for cells
in scan direction 1, which have a smaller range compared to cells in scan direction 2.

Figure 6.21 illustrates the allocation of the scan time budget for individual simulations for scenario 3B.
The allocation using the Sum method is illustrated on the left, the allocation using the Max method is
illustrated on the right. The dominant presence of dark blue and bright yellow in the figure on the
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Figure 6.20: Average scan time budget allocation: Scenario 3B

left indicates the preference of the Sum method to allocate the entire budget to a single task. The scan
time budget allocation using the Max method in Figure 6.21 is similar to the right figure in Figure
6.15 for the first 32 scans. Between the 32nd and 64th scan, the average scan time budget allocation
in Figure 6.20 increases from 4.7% and 6.8%. The figure on the right illustrates that the Max method
between the 32nd and 64th scan starts to allocate more than 50% of the scan time budget to task 1 more
frequently.

Figure 6.21: Scan time budget allocation for individual simulations: Scenario 3B

Figure 6.22 illustrates the achieved sum of tasks cost in the figure on the left and the achieved maximum
task cost in the figure on the right. The Max method achieves a lower sum of tasks cost than the Sum
method after 42 scans. The Sum method allocates on average 67.5% of the budget to task 1 after 42
scans, resulting in a higher achieved cost for task 2 compared to the Max method. The lower achieved
sum of tasks cost after 42 scans for the Max method compared to the Sum method motivates to formulate
a non-myopic cost function for both the Sum and Max method.
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Figure 6.22: Achieved cost: Scenario 3B
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6.4 Three tasks

The simulation parameters are shown in Table 6.12. This section simulates a scenario with three tasks,
each with 991 range cells, for 48 scans. The first and third task include a birth-death process for
individual cells. The scan time budget allocation is obtained by solving equations 5.17 and 5.18 for the
Sum and Max method respectively.

Tasks Range cells per task Scans Birth/Death Optimization Sum Optimization Max
3 991 48 ✓ Eq 5.17 Eq 5.18

Table 6.12: Simulation parameters scenario 4

An overview of the object parameters is shown in Table 6.13. Cells within task 1 have an SNR ten
times smaller compared to tasks 2 and 3 at equal range using the same scan time budget. Figure 6.23
illustrates that task 2 has twice the costs of Cmiss,{2,x} and C f a,{2,x} for individual cells compared to
tasks 1 and 3. All cells have an equal prior probability of an object present of 0.01.

Task P(H1,x) Cmiss,x C f a,x SNR(T, 0.5Rmax) Pbirth,x Pdeath,x
1 Fig 6.23 Fig 6.23 Fig 6.23 1 Fig 6.24 Fig 6.24
2 Fig 6.23 Fig 6.23 Fig 6.23 10 Fig 6.24 Fig 6.24
3 Fig 6.23 Fig 6.23 Fig 6.23 10 Fig 6.24 Fig 6.24

Table 6.13: Object parameters scenario 4

Figure 6.23: Object probability map and cost coefficients

Figure 6.24 illustrates the probability of object birth and death for the three tasks. The presence of
objects for task 2 are constant over time, represented by Pbirth{2,x} = Pdeath{2,x} = 0. The probability of
object birth for individual cells within tasks 1 and 3 are Pbirth{1,x} = 1× 10−4 and Pbirth{3,x} = 2× 10−4.
The probability of object death for individual cells within tasks 1 and 3 are Pdeath{1,x} = 99Pbirth{1,x}
and Pdeath{3,x} = 99Pbirth{3,x}. Pbirth{1,x} and Pbirth{3,x} are 10 and 20 times larger compared to scenario
3B, to emphasize the effect of a birth-death process on the scan time budget allocation.

Figure 6.25 illustrates the cost functions for the Sum and Max method for an individual simulation run,
for the 1st and 48th scan. With three tasks, it holds that T = T1 + T2 + T3, resulting in two optimization
parameters. The horizontal axis in each figure in Figure 6.25 represents the percentage of T given to
task 1, the vertical axis represents the percentage of T given to task 2. The remaining scan time budget
is given to task 3. The color represents the risk associated to each method.
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Figure 6.24: Object birth and object death probabilities

The top figure on the left in Figure 6.25 has local maxima if all scan time budget is allocated to a single
task, which occurs at the corners of the triangle domain. The upper figure on the right in Figure 6.25
has the highest risk at the edges of the triangle domain, which occurs when at least one of T1, T2 or
T3 equals zero. The figures at the bottom of Figure 6.25 illustrate that both the Sum and Max method
have a high cost when T3 = 0 due to the large probabilities of object birth and object death for cells in
scan direction 3.

Figure 6.25: Normalized cost function 1st and 48th scan: Scenario 4

Figure 6.26 illustrates the average budget allocated using the Sum method for the figure on the left
and using the Max method for the figure on the right. The Sum method in the figure on the left first
prioritizes task 2, caused by the higher Cmiss,{2,x} and C f a,{2,x} for individual cells compared to tasks
1 and 3. As the number of scans increases, the average scan time budget allocated to task 2 for the
Sum method decreases to 0.5% as cells in task 2 do not have a birth-death process. The lower RCS of
individual cells and Pbirth{1,x} and Pdeath{1,x} of individual cells in scan direction 1 compared to scan
direction 3 results in a scan time budget allocation of 77% on average between the 32nd and 48th scan
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for the Sum method.

The lower RCS for individual cells in scan direction 1 compared to individual cells in scan direction 3
results in a scan time budget allocation of 85% on average between the 32nd and 48th scan for the Max
method in the figure on the right in Figure 6.26. The Max method allocates more scan time budget to
task 3 as it requires more budget to reduce the risk as objects within scan direction 3 have a lower RCS
compared to objects in scan direction 1.

Figure 6.26: Average scan time budget allocation

Figure 6.27 illustrates the scan time budget allocation for individual simulation runs for the Sum
method. Figure 6.28 illustrates the scan time budget allocation for individual simulation runs for the
Max method. The Sum method allocates scan time to each task within the first three scans, rather than
allocating the entire scan time budget to a single task as in the previous scenarios. The Max method
has a maximum of 16% of scan time allocated to task 2, compared to 100% in scenario 3B.

Figure 6.27: Scan time budget allocation for individual simulations using equation 5.17

Figure 6.29 illustrates the achieved sum of tasks cost in the figure on the left and the achieved maximum
task cost in the figure on the right. Both figures illustrate that none of the Sum, Max and Uniform
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Figure 6.28: Scan time budget allocation for individual simulations using equation 5.18

methods converge to zero risk as the number of scans increases. The achieved sum of task costs at the
48th scan are 10.3, 11.2 and 16.2 for the Sum, Uniform and Max methods respectively. The achieved
maximum task cost at the 48th scan are 5.7, 6.6 and 6.8 for the Max, Uniform and Sum methods respec-
tively. The nonzero probabilities of object birth and object death causes the achieved costs in Figure
6.29 to not converge to zero.

Figure 6.29 illustrates that in this scenario, allocating the scan time budget using the Sum method
results in the lowest achieved sum of tasks cost and allocating the scan time budget using the Max
method results in the lowest achieved maximum task cost.

Figure 6.29: Achieved cost: Scenario 4
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This final chapter presents the conclusions and recommendations. Section 7.1 concludes the method-
ology and simulation results and reflects back on the research goal in the introduction. Section 7.2
gives recommendations for possible new generalizations of scenarios.

7.1 Conclusion

The expected performance of the individual object presence decision has been formulated as Bayes
risk. Formulating for the first time, to our knowledge, the expected performance as Bayes risk enabled
the cost function to include prior knowledge and previous measurements regarding the probability of
an object being present. Furthermore, the expected performance of an individual decision formulated
as Bayes risk enabled the radar user to prioritize individual decisions by assigning relative higher cost
of a false alarm and missed detection. Both false alarms and missed detections have direct interpreta-
tions in the radar application, simplifying the assignment of costs to each event for radar users.

Using the definition of task performance as the sum of the Bayes risk of all object presence decisions
within a single scan direction, two cost functions have been proposed at the system level. The Sum
method takes the sum of the task performances. The Max method takes the maximum of the task
performances. Chapter 5 has demonstrated that to extend the scenario with sequential scans and
birth-death processes, the cost functions using the Sum and Max are obtained by reformulating the task
performance. Given the reformulation of the task performances, the cost functions remain unchanged
at the system level.

The Sum and Max method have demonstrated the flexibility to adapt the scan time allocation differ-
ently in simulations, depending on the scenario. For the first scan, the Sum method achieved a lower
average sum of tasks cost compared to the Max and Uniform methods and the Max method achieved a
lower average maximum task cost compared to the Sum and Uniform methods.

This research formulated myopic cost functions for the Sum and Max methods. The scenario in Sub-
section 6.3.2 demonstrated that a myopic implementation of the Sum method does not guarantee the
lowest achieved sum of tasks cost for sequential scans. Similarly, a myopic implementation of the Max
method does not guarantee the lowest achieved maximum task cost for sequential scans.

7.2 Recommendations

If this research work is continued, it is recommended:

• To implement a non-myopic cost-function. The simulations in this thesis only considered myopic
cost functions. Predicting multiple scans ahead has lead to more sparse resource allocation
and improved performance compared to the non-myopic cost function [2]. In a scenario as in
Subsection 6.3.2, the Sum method, that allocates the scan time budget solving equation 5.17,
potentially benefits from predicting multiple scans ahead, to improve its performance in the
figure on the left in Figure 6.22.

The formulation of a non-myopic cost function also introduces a trade-off between making an
object presence decision at the current or future scans. This trade-off can be made by introducing
a cost of making no decision in the current scan. [9]
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• Considering the probability of object birth and death and the cost coefficients for a missed detec-
tion and false alarm as functions of time. In real scenarios, such parameters are rarely constant.
Time-dependent parameters allow for more realistic application scenarios. For example, within
a security surveillance application, the probability of object birth and object death is potentially
different at night compared to daytime.

• Include the possibility of moving objects to allow for more realistic scenarios, as radars are often
operated in highly dynamic environments. When moving objects are included, it is recom-
mended to re-evaluate the assumption of a maximum of one object per range cell.
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