MSC GEOMATICS - GRADUATION PROJECT

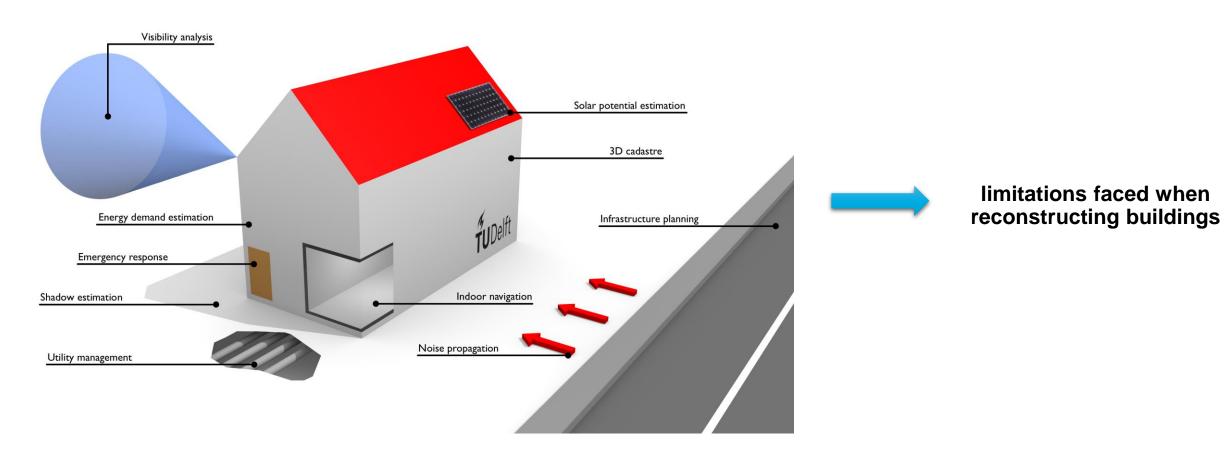
P5 PRESENTATION

SUPERVISOR #1: RAVI PETERS SUPERVISOR #2: WEIXIAO GAO

Semantic segmentation of the AHN dataset with the Random Forest Classier

Manos Papageorgiou

Contents


- 1. Introduction
- 2. Related work
- 3. Methodology
- 4. Datasets
- 5. Results and discussion
- 6. Conclusions

1. Introduction

1.1 Motivation

1.2 Research Sope & Challenges

Purpose:

assist in the reconstruction of 3D city models

Problem:

classified point clouds are not always available

reliable, accurate and efficient classifiers are needed

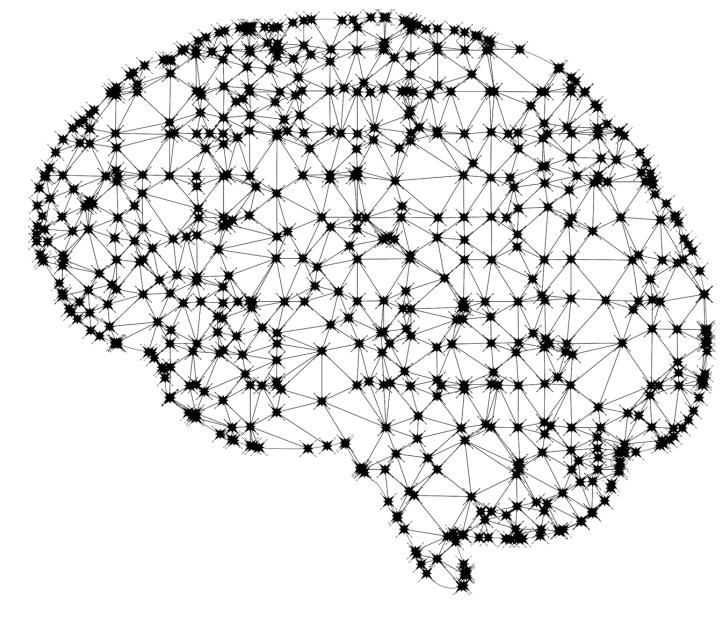
Random Forest Classifier

1.3 Research questions & objectives

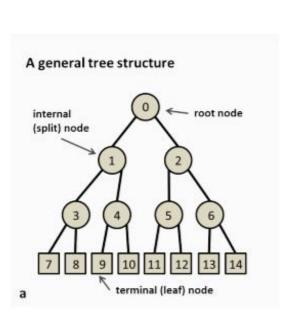
Main question:

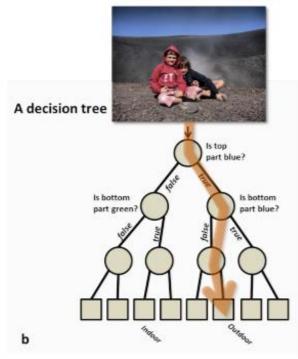
How well will existing machine learning algorithms perform when classifying a point cloud into three classes, namely ground, buildings and other, if we train and test them with the AHN3 dataset?

Sub-questions:


- Hyperparameters?
- 2. Point density?
- 3. Size?
- 4. Features?
- 5. Other datasets?
- 6. Machine Learning VS Deep Learning

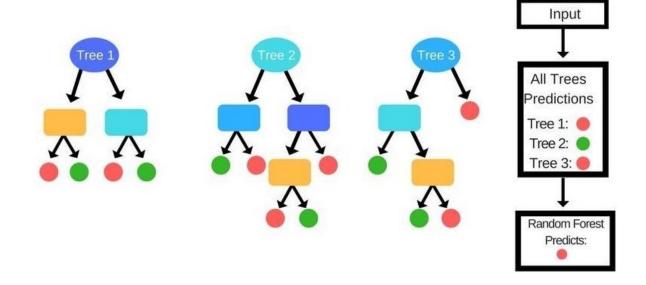
2. Related work


Classification with Machine Learning and Deep Learning algorithms



2.1 Decision Trees

- Internal node: contains a function, tests the input data and decides
- Branch: corresponds to the outcome of the tests
- Terminal node: contains a class label (prediction)
- splits complex problems into a hierarchy of simpler ones

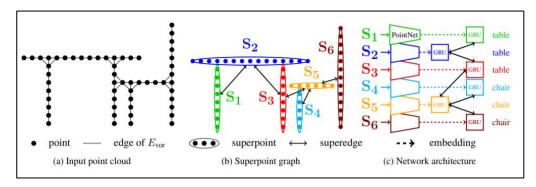


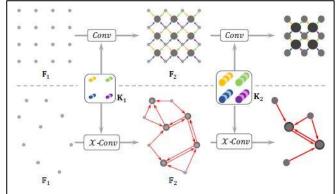
2.2 Random Forest Classifier

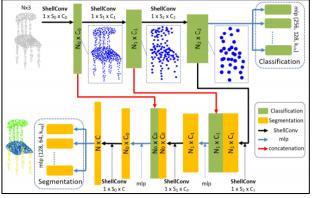
- Consists of multiple decision trees trained on a random subset
- Their predictions are aggregated to produce a more accurate prediction
- can handle well large datasets with high dimensionality and heterogeneous feature types

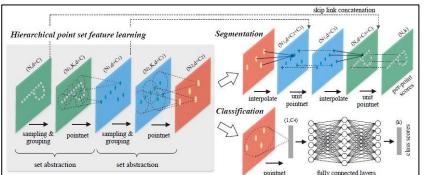
2.3 Multilayer perceptron

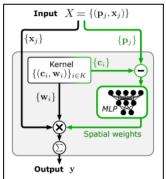
- Perceptron = algorithm for binary classification
- Feedforward artificial neural networks, cascade of singlelayer perceptrons.
- At least three layers of perceptrons:
 - 1. input layer
 - 2. hidden layer
 - 3. output layer
- hidden and output layers can use nonlinear activation functions

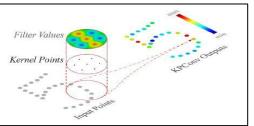




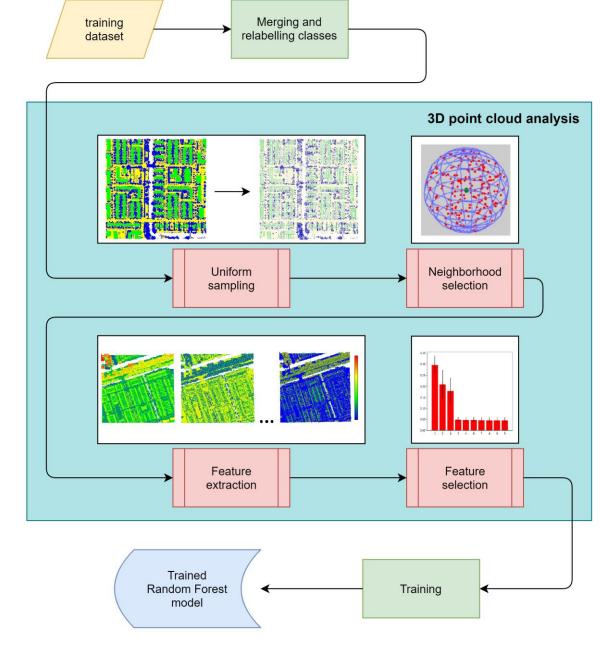

2.4 Convolutional Neural Networks


- KPConv
- PointNET++
- PointCNN
- ConvPoint
- ShellNet
- SuperPoint

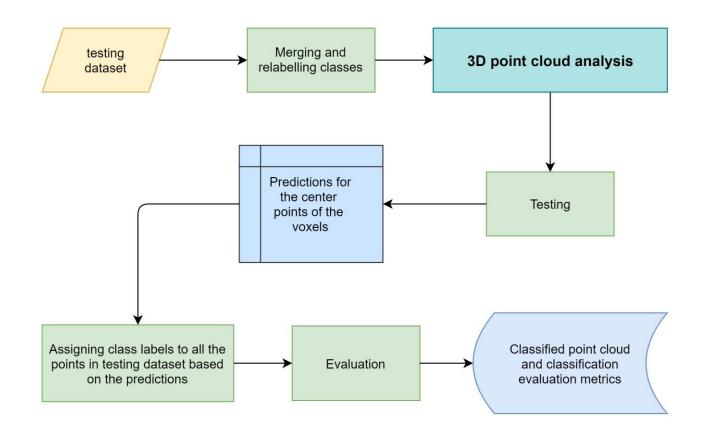




Machine Learning VS Deep Learning


Charactiristic	Machine Learning algorithm (Random Forests)	Deep Learning algorithm (CNNs)
Data dependancy	+	
Computer specifications	+	
Computational cost & time	+	
Features		•
Accuracy		•
Interpretability	+	

3. Methodology



3.1 Training flowchart diagram

3.2 Testing flowchart diagram

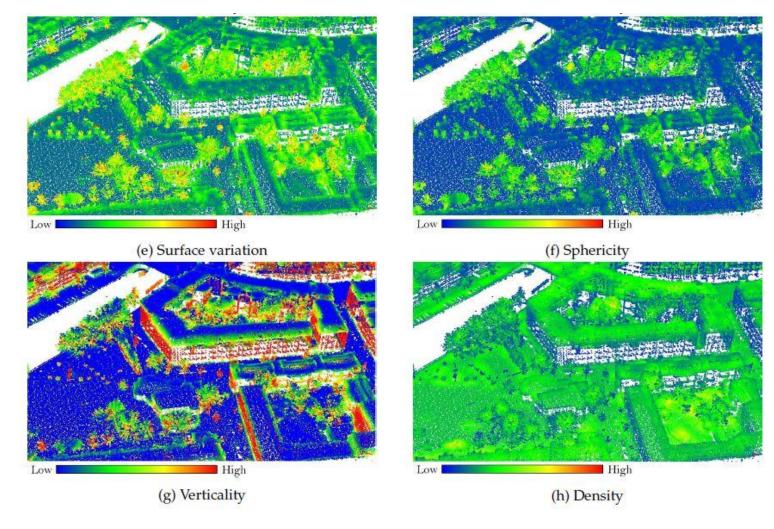
3.3 Equations

Data diversification:

$$F_m = \frac{\sum_{i=1}^{N_f} \sigma_i^2}{N_f} \qquad value_{normalized} = \frac{value - min}{max - min}$$

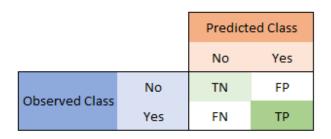
Height features:

$$Z_{normalized} = \sqrt{\frac{(Z_i - Z_{min})}{(Z_{max} - Z_{min})}} \qquad Z_{below} = Z_i - Z_{min}$$

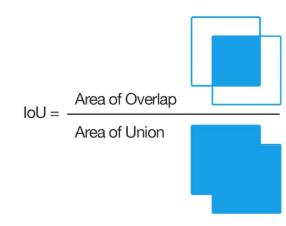

Eigen features:

$$con(N) = \frac{1}{N} \sum_{p \in N} (p - \overline{p})(p - \overline{p})^T$$
 $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge 0$

3.3.1 Eigen features & Density


Feature	Equation
Omnivariance	$(\lambda_1 \cdot \lambda_2 \cdot \lambda_3)^{\frac{1}{3}}$
Anisotropy	$(\lambda_1 - \lambda_3)/\lambda_1$
Planarity	$(\lambda_2 - \lambda_3)/\lambda_1$
Linearity	$(\lambda_1 - \lambda_2)/\lambda_1$
Surface Variation	$\lambda_3/(\lambda_1+\lambda_2+\lambda_3)$
Sphericity	λ_3/λ_1
Verticality	$1- n_z $

3.4 Evaluation metrics


Confusion matrix:

Overall accuracy:

Accuracy =
$$(TN+TP)/(TN+FP+FN+TP)$$

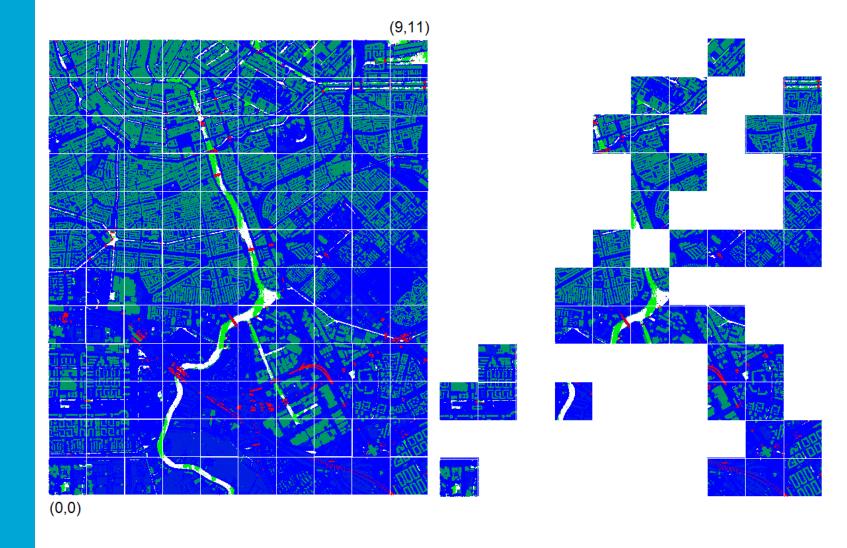
Intersection over Union:

Class Consistency Index:

$$CCI = 1 - \frac{\sigma^2}{|\overline{IoU}|}$$

• F1 score:

$$F_1 = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$



4. Datasets

4.1 AHN3 & AHN4

- Type: LiDAR datasets
- Number of classes: las classification codes + custom code 26
- Point density: 18 ± 12 and 42 ± 25 points per squared meter
- Number of tiles: 1100
- Size of tiles: 6.25 x 5 Km2
- → Tile area = 0.25 Km2

4.1.2 Feature diversity of tiles

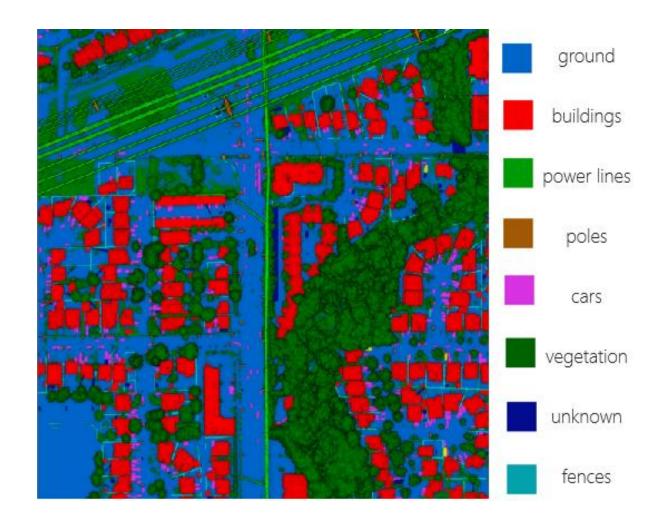
r	no.	tile	F_m	no. of classes	other (%)	building (%)	ground (%)	no. of points
ΙГ	1	(7,3)	0.0433	3	53.2	12.8	34.1	4,563,251
	2	(5,5)	0.043	3	39.5	33.7	26.8	3,017,251
	3	(9,0)	0.0428	3	48.1	17.8	34.1	4,114,615
	4	(7,2)	0.0428	3	46.5	19.4	34.2	4,519,839
	5	(5,4)	0.0427	3	62	10.3	27.7	3,596,646
	6	(3,2)	0.0425	3	70.9	0.5	28.6	4,681,849
	7	(9,1)	0.0421	3	55.7	11.9	32.4	4,513,323
	8	(8,0)	0.042	3	58.7	0.5	40.8	4,452,822
	9	(9,9)	0.0419	3	59.3	20.7	20	4,856,019
	10	(8,3)	0.0418	3	59	11.9	29.1	3,828,687
	11	(1,2)	0.0418	3	60.3	12.7	27.1	5,332,243
	12	(7,11)	0.0416	3	31.7	39.6	28.7	3,447,268
	13	(4,4)	0.0414	3	70.6	3.7	25.7	4,375,794
	14	(0,0)	0.0413	3	54.5	15.5	29.9	4,418,212
	15	(6,6)	0.0413	3	51.4	18.1	30.4	4,204,809
	16	(9,10)	0.0411	3	39.7	35.3	25	3,990,567
	17	(7,4)	0.0411	3	43	25.2	31.8	3,734,563
	18	(0,2)	0.0411	3	55.7	17.4	26.9	4,566,563
	19	(6,10)	0.041	3	57.1	22.3	20.6	4,415,975
	20	(9,8)	0.0409	3	46.1	16	37.9	3,860,100

no.	tile	F_m	no. of classes	other (%)	building (%)	ground (%)	no. of points	
1	(7,3)	0.0404	3	50.1	12.7	37.2	9,111,285	
2	(5,5)	0.0413	3	35.7	30.8	33.5	7,805,095	
3	(9,0)	0.0416	3	46.6	20	33.3	10,592,425	
4	(7,2)	0.0385	3	44.5	18.5	37	9,981,479	
5	(5,4)	0.0433	3	57.4	8.1	34.4	8,981,406	
6	(3,2)	0.0405	3	68.2	0.4	31.4	10,298,226	
7	(9,1)	0.0396	3	56.1	9.9	34	10,638,417	
8	(8,0)	0.0393	3	56.8	0.5	42.7	8,990,897	
9	(9,9)	0.0401	3	61.2	17.4	21.4	10,541,974	
10	(8,3)	0.0406	3	54.5	15.7	29.8	9,755,432	
11	(1,2)	0.0411	3	70.4	9.6	20	12,783,974	
12	(7,11)	0.0376	3	34.2	36.8	29	7,731,449	
13	(4,4)	0.0407	3	72.6	3.9	23.4	10,990,093	
14	(0,0)	0.0406	3	61.8	10.9	27.2	9,351,733	
15	(6,6)	0.0407	3	43.7	22.9	33.4	10,560,537	
16	(9,10)	0.0401	3	37.3	40.6	22.1	10,489,806	
17	(7,4)	0.0403	3	42.5	22.1	35.4	9,655,165	
18	(0,2)	0.0414	3	68.3	13.5	18.3	12,015,153	
19	(6,10)	0.0400	3	53.6	25.6	20.8	10,891,964	
20	(9,8)	0.0386	3	44.5	20.8	34.7	10,971,698	

AHN3 AHN4

4.2 DALES

Type: LiDAR dataset


Number of classes: 8

Point density: 50 ppm

Number of tiles: 40

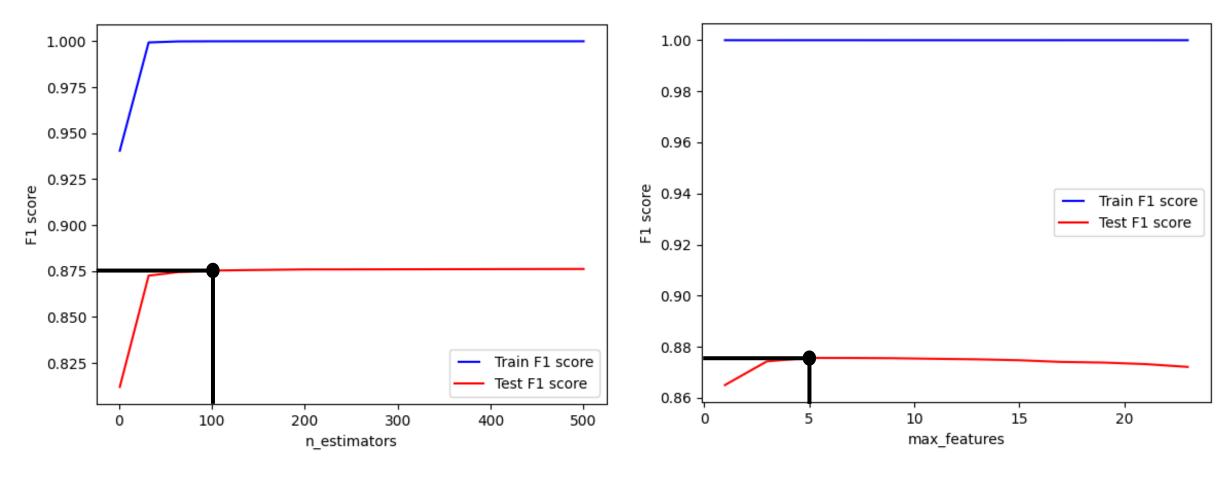
Size of tiles: 0.5 Km2

 Accuracy: 8.5 cm mean error for the hard surface vertical accuracy

5. Results and discussion

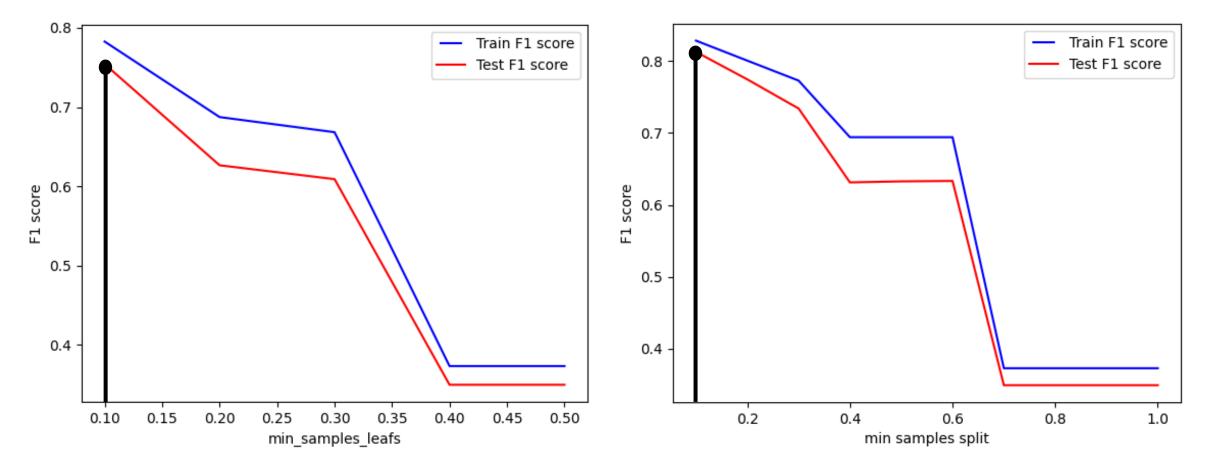
5. Experiments

- Hyperparameters
- 2. Point density (voxel size of uniform sampling algorithm)
- 3. No. of training tiles
- 4. Features
- Other datasets
- 6. Comparison with deep learning methods
- 7. Comparison with MLP
- 8. Comparison of LOD1 3D city models

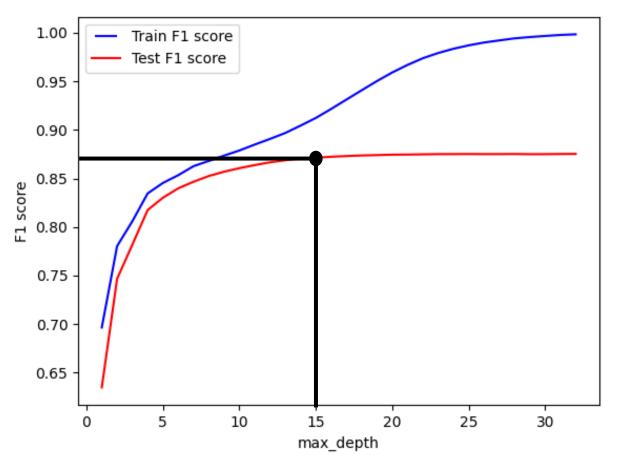


5.1.1 Hyperparameters

Parameter	Value (default)			
n_estimators	100			
criterion	Gini			
max_depth	None			
min_samples_split	2			
min_samples_leaf	1			
max_features	Sqrt			
bootstrap	True			
oob_score	False			



5.1.2 Hyperparameters

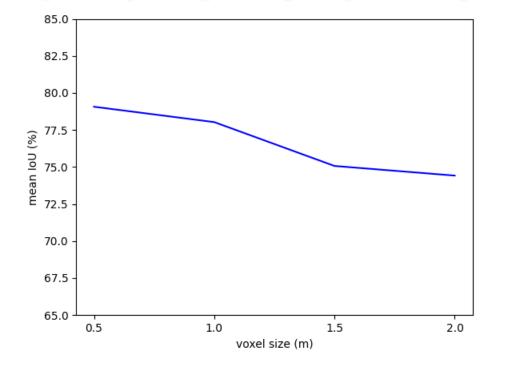


5.1.3 Hyperparameters

5.1.4 Hyperparameters

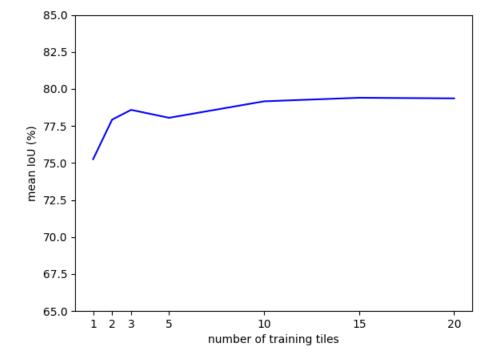
Parameter	Value
Bootstrap	True
criterion	Gini
out-of-bag samples	True

5.1.5 Hyperparameters


Parameter	Value (default)			
n_estimators	100			
criterion	Gini			
max_depth	None			
min_samples_split	2			
min_samples_leaf	1			
max_features	Sqrt			
bootstrap	True			
oob_score	False			

Parameter	Value (optimal)
n_estimators	100
criterion	Gini
max_depth	15
min_samples_split	2
min_samples_leaf	1
max_features	Sqrt
bootstrap	True
oob_score	True

5.2 Point density


			I	oU (%)]					
voxel size (m)	OA (%)	mean	other	building	ground	CCI (%)	F ₁ score	no. of points in the training data	training time (minutes)	RAM (GB)	model size (KB)
0.5	89.70	79.07	78.63	72.07	86.51	99.56	0.90	19,654,135	187.79	33.7	14,581,904
1	89.04	78.03	77.32	71.46	85.31	99.59	0.89	6,644,360	73.41	8.3	5,638,778
1.5	87.45	75.07	82.09	63.39	79.73	99.08	0.87	3,034,839	33.85	4.6	3,299,808
2	87.41	74.42	73.29	65.21	84.75	99.14	0.87	1,648,188	14.94	2.7	1,946,693
-	86.41	73.64	76.66	62.46	81.81	99.09	0.86	42,144,302	460.34	59.9	24,501,065

5.3 Training data size

			I	oU (%)]						
no. of training tiles	OA (%)	mean	other	building	ground	CCI (%)	F ₁ score	no. of points in the training data	training time (minutes)	RAM (GB)	model size (KB)	
1	87.21	75.26	76.63	66.93	82.21	99.47	0.87	662,595	6.74	1.1	569,095	
2	88.42	77.93	78.39	72.47	82.93	99.77	0.88	1,178,285	15.48	1.9	1,154,913	
3	88.82	78.59	78.67	73.53	83.57	99.79	0.89	1,777,401	25.82	2.9	1,618,543	
5	88.54	78.05	78.71	72.28	83.17	99.74	0.89	2,976,008	30.15	4.4	2,668,248	
10	89.27	79.17	78.99	73.92	84.58	99.76	0.89	6,644,360	80.04	9	5,496,317	
15	89.34	79.41	79.02	74.56	84.64	99.79	0.89	10,159,167	96.38	13.8	8,378,902	
20	89.27	79.36	79.24	74.54	84.32	99.80	0.89	13,290,986	129	24.4	11,704,444	

5.4.1 Features

- 1. diffferent number of features
- 2. different neighborhoods
- 3. different combinations

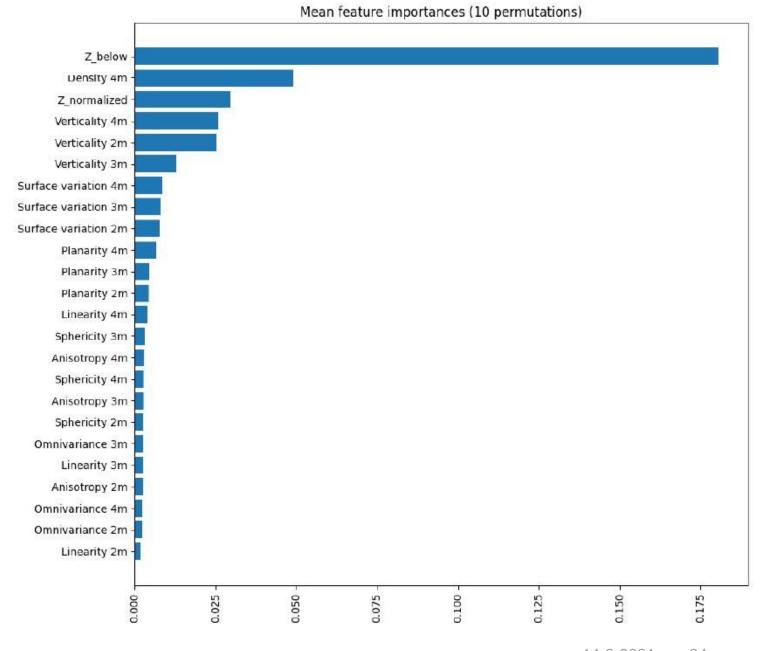
				Ic	oU (%)	i i			
no. of features	radii of spherical neighborhoods	OA (%)	mean	other	building	ground	CCI (%)	F ₁ score	training time (minutes)
10	2	86.34	72.74	72.49	61.95	83.77	98.91	0.86	7.17
10	3	86.91	74.39	73.19	66.92	83.06	99.41	0.87	5.62
10	4	87.16	75.29	72.85	70.28	82.72	99.62	0.87	5.41
17	2, 3	88.91	77.701	76.69	70.64	85.78	99.50	0.89	7.54
17	2, 4	89.68	79.29	78.13	73.50	86.23	99.65	0.90	7.46
17	3, 4	89.13	78.45	76.47	73.40	85.49	99.66	0.89	7.31
24	2, 3, 4	90.16	80.12	78.69	74.71	86.96	99.68	0.90	7.75

				I				
no. of features	features used for training	OA (%)	mean	other	building	ground	CCI (%)	F1 score
3	$Z_{normalized}$, Z_{below} , Density	75.58	56.97	54.17	43.04	73.67	97.18	0.76
4	$Z_{normalized}$, Z_{below} , Density, Omnivariance	80.68	64.23	63.49	51.72	77.49	98.27	0.81
5	Z _{normalized} , Z _{below} , Density, Omnivariance, Anisotropy	82.78	67.45	66.93	55.90	79.51	98.62	0.83
6	Z _{normalized} , Z _{below} , Density, Omnivariance, Anisotropy, Planarity	84.96	70.84	70.49	60.11	81.93	98.88	0.85
7	Z _{normalized} , Z _{below} , Density, Omnivariance, Anisotropy, Planarity, Linearity	85.26	71.33	70.73	60.92	82.35	98.92	0.85
8	Z _{normalized} , Z _{below} , Density, Omnivariance, Anisotropy, Planarity, Linearity, Surface Variation	85.49	71.72	70.87	61.61	82.67	98.96	0.85
9	Z _{normalized} , Z _{below} , Density, Omnivariance, Anisotropy, Planarity, Linearity, Surface Variation, Sphericity	85.06	71.00	70.58	60.36	82.08	98.89	0.85
10	Z _{normalized} , Z _{below} , Density, Omnivariance, Anisotropy, Planarity, Linearity, Surface Variation, Sphericity, Verticality	86.29	72.64	72.48	61.75	83.69	98.90	0.86
9	Z _{below} , Density, Omnivariance, Anisotropy, Planarity, Linearity, Surface Variation, Sphericity, Verticality	86.04	72.04	71.62	60.79	83.72	98.78	0.86
9	Z _{normalized} , Density, Omnivariance, Anisotropy, Planarity, Linearity, Surface Variation, Sphericity, Verticality	86.32	72.74	72.25	62.24	83.73	98.94	0.86

5.4.2 Features

Permutation importances:

observe how random re-shuffling (permutations) of the values of a feature influences the performance of the model.


Impurity based importances:

mean and standard deviation of accumulation of the impurity decrease within each tree

Impurity:

how homogeneous are the labels of a node which can be calculated using measures like the Gini impurity and entropy

5.5.1 Final model

1. Hyperparameters

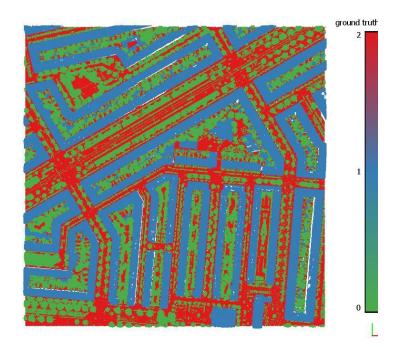
Parameter	Value (optimal)
n_estimators	100
criterion	Gini
max_depth	15
min_samples_split	2
min_samples_leaf	1
max_features	Sqrt
bootstrap	True
oob_score	True

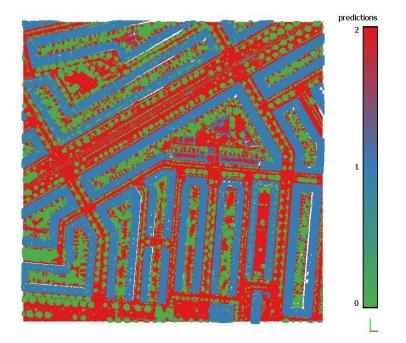
- 2. Point density → 1 meter voxel size
- 3. No. of training tiles \rightarrow 3 tiles
- 4. Features → 3 different spherical neighborhoods → more tests needed

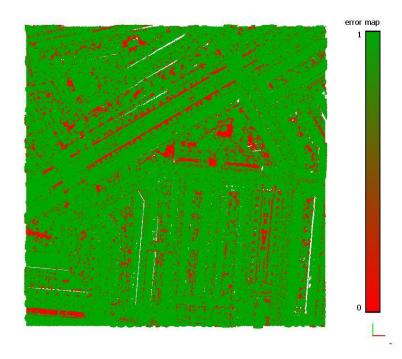
5.5.2 Final model

				I	oU (%)	58	1	
no. of features	feature removed	OA (%)	mean	other	building	ground	CCI (%)	F1 score
24	-	89.72	79.50	79.88	72.98	85.65	99.66	0.90
23	Linearity (2m)	89.73	79.52	79.91	73.01	85.64	99.67	0.90
22	Omnivariance (2m)	89.75	79.57	79.94	73.09	85.67	99.67	0.90
21	Omnivariance (4m)	89.76	79.60	79.94	73.18	85.67	99.67	0.90
20	Anisotropy (2m)	89.79	79.65	80.01	73.26	85.69	99.68	0.90
19	Linearity (3m)	89.78	79.65	80.01	73.27	85.68	99.68	0.90
18	Omnivariance (3m)	89.80	79.69	80.03	73.36	85.69	99.68	0.90
17	Sphericity (2m)	89.81	79.72	80.08	73.40	85.69	99.68	0.90
16	Anisotropy (3m)	89.82	79.73	80.11	73.41	85.69	99.68	0.90
15	Sphericity (4m)	89.84	79.74	80.08	73.40	85.75	99.68	0.90
14	Amsonopy (4m)	09.01	19.14	00.04	73.40	03.73	99.00	0.90
13	Sphericity (3m)	89.83	79.75	80.08	73.44	85.72	99.68	0.90
10	T::L- (A)	00.70	70 /0	00.00	72.24	05/0	00.70	0.00
11	Planarity (2m)	89.74	79.61	79.99	73.26	85.58	99.68	0.90
10	Planarity (3m)	89.64	79.43	79.87	73.00	85.42	99.68	0.90
9	Planarity (4m)	89.26	78.69	79.22	71.79	85.07	99.62	0.89
8	Surface Variation (2m)	89.16	78.49	78.58	71.68	85.20	99.61	0.89
7	Surface Variation (3m)	88.80	77.78	77.79	70.61	84.93	99.56	0.89
6	Surface Variation (4m)	86.71	73.51	73.27	62.90	84.37	98.96	0.86
5	Verticality (3m)	85.93	72.11	72.18	60.62	83.54	98.79	0.86
4	Verticality (2m)	82.87	67.21	67.08	54.30	80.25	98.33	0.86

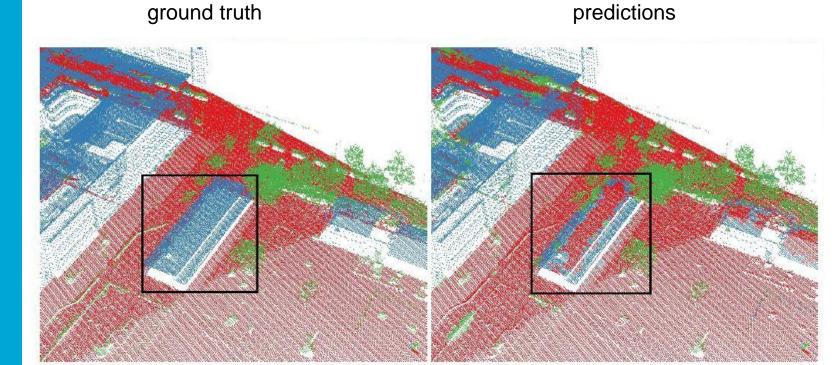
13 features of the final model Z_below Density (4m) **Z**_normalized Verticality (2m,3m & 4m) Surface variation (2m,3m & 4m) Planarity (2m,3m & 4m) Linearity (4m)


5.5.3 Final model classification results


				I	1			
no.	tile	OA (%)	mean	other	building	ground	CCI (%)	F1 score
1	(7,3)		-	-	-	-	-	-
2	(5,5)	1.0	2.00	3 - 3	-	-		7-
3	(9,0)	- 2	120	2		2	2	12
4	(7,2)	87.67	75.96	76.19	69.56	82.14	99.65	0.88
5	(5,4)	92.18	81.34	85.52	68.56	89.95	98.96	0.92
6	(3,2)	92.15	61.55	87.35	9.60	87.70	78.07	0.93
7	(9,1)	90.93	81.04	81.78	75.08	86.27	99.74	0.91
8	(8,0)	87.80	56.43	81.16	5.13	82.99	76.67	0.90
9	(9,9)	92.32	85.44	83.87	84.07	88.38	99.95	0.92
10	(8,3)	89.85	76.78	84.82	59.86	85.66	98.14	0.90
11	(1,2)	94.40	87.31	83.91	84.83	93.18	99.80	0.94
12	(7,11)	89.92	78.90	66.31	81.13	89.26	98.86	0.90
13	(4,4)	92.92	74.37	88.92	44.43	89.75	93.97	0.93
14	(0,0)	90.43	78.88	76.89	71.87	87.88	99.43	0.90
15	(6,6)	90.78	80.79	80.46	74.22	87.68	99.63	0.91
16	(9,10)	88.96	79.19	72.12	81.87	83.59	99.68	0.89
17	(7,4)	86.74	74.65	75.94	65.98	82.03	99.41	0.86
18	(0,2)	88.06	75.13	81.17	60.11	84.12	98.48	0.88
19	(6,10)	89.00	79.62	78.76	77.01	83.11	99.92	0.89


		89.82	79.75	80.09	73.47	85.69	99.69	0.90
40	(5,10)	89.92	81.06	81.10	76.52	85.54	99.83	0.90
39	(4,5)	89.66	80.72	76.24	80.17	85.76	99.81	0.90
38	(4,9)	85.56	73.40	66.07	72.73	81.42	99.46	0.86
37	(8,6)	88.40	76.06	83.13	62.50	82.54	98.79	0.88
36	(3,4)	91.95	81.61	86.28	71.13	87.43	99.32	0.92
35	(8,9)	91.96	83.75	74.10	87.89	89.25	99.44	0.92
34	(1,3)	91.03	80.41	69.43	83.49	88.32	99.20	0.91
33	(7,6)	90.18	68.58	87.25	33.76	84.73	91.14	0.90
32	(5,7)	89.30	79.50	74.22	77.20	87.10	99.62	0.89
31	(5,9)	90.97	83.15	78.67	83.33	87.44	99.85	0.91
30	(8,1)	81.56	61.39	72.92	38.34	72.92	95.67	0.82
29	(5,8)	89.30	79.41	70.02	82.66	85.55	99.43	0.89
28	(6,4)	84.33	67.92	67.72	54.20	81.85	98.12	0.84
27	(3,5)	90.16	81.13	72.31	84.67	86.40	99.52	0.90
26	(9,7)	90.89	82.65	81.35	80.32	86.27	99.92	0.91
25	(9,6)	93.73	84.39	89.47	73.77	89.93	99.33	0.94
24	(6,8)	90.68	82.80	78.94	83.03	86.43	99.89	0.91
23	(7,0)	85.52	55.49	77.27	8.24	80.97	79.84	0.87
22	(4,6)	90.03	81.19	75.79	81.35	86.42	99.77	0.90
21	(8,2)	91.49	78.96	88.04	62.98	85.86	98.37	0.91
20	(9,8)	86.62	71.96	71.34	60.45	84.08	98.70	0.87

5.5.4 Examples of results



5.5.5 Problems related to buildings

1. Short building parts

2. Small separated building parts under trees

3. Flat buildings roof surface

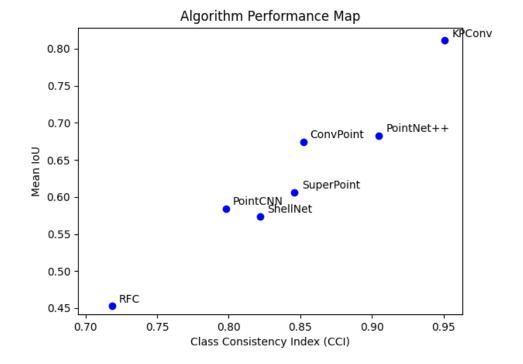
5.6 Testing with other datasets

Model - AHN3

			Io	U (%)			
Testing dataset	OA (%)	mean	other	building	ground	CCI (%)	F ₁ score
AHN3	88.419	77.929	78.387	72.471	82.929	99.765	0.88
AHN4	88.161	77.267	72.423	75.439	83.938	99.692	0.88
DALES	80.31	64.512	70.579	51.426	71.532	98.67	0.81

• Model - AHN4

			Io	U (%)			
Testing	OA (%)	mean	other	building	ground	CCI (%)	F. score
dataset	OA (70)	mean	oniei	Dunanig	ground	CCI (70)	1 ₁ score
AHN3	88.39	77.879	78.37	72.378	82.889	99.762	0.88
AHN4	88.16	77.266	72.442	75.436	83.921	99.694	0.88
DALES	80.382	64.611	70.595	51.59	71.65	98.685	0.81


• Model - DALES

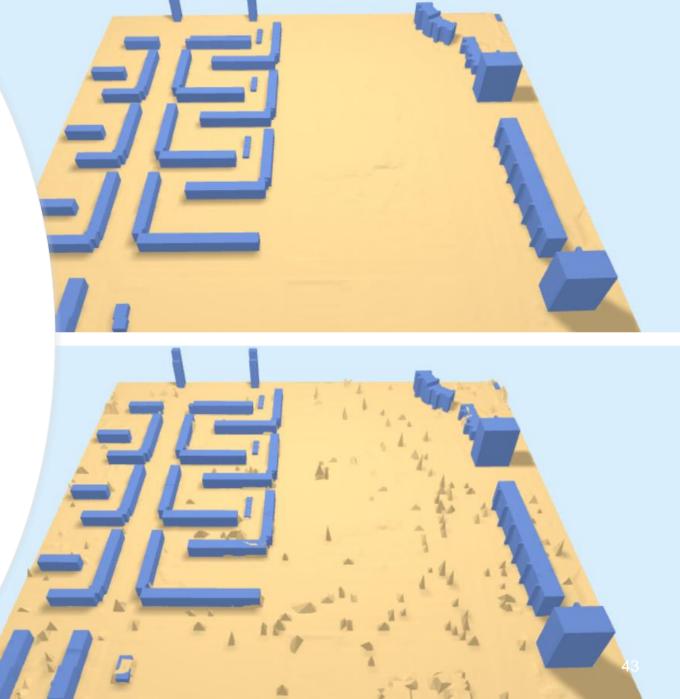
			Io	U (%)			
Testing	OA (%)	mean	other	building	ground	CCI (%)	F ₁ score
dataset	OA (70)	mean	outer	building	ground	CCI (76)	11 score
AHN3	86.581	74.533	75.926	67.118	80.556	99.583	0.86
AHN4	86.109	73.487	69.796	69.372	81.293	99.585	0.86
DALES	89.746	79.411	79.618	73.066	85.549	99.673	0.90

5.7 Comparison with CNNs on the DALES dataset

						IoU					
Method	OA	mean	ground	buildings	cars	trucks	poles	power lines	fences	vegetation	CCI
KPConv	0.978	0.811	0.971	0.966	0.853	0.419	0.75	0.955	0.635	0.941	0.951
PointNet++	0.957	0.683	0.941	0.891	0.754	0.303	0.4	0.799	0.462	0.912	0.905
ConvPoint	0.972	0.674	0.969	0.963	0.755	0.217	0.403	0.867	0.296	0.919	0.852
SuperPoint	0.955	0.606	0.947	0.934	0.629	0.187	0.285	0.652	0.336	0.879	0.846
PointCNN	0.972	0.584	0.975	0.957	0.406	0.048	0.576	0.267	0.526	0.917	0.798
ShellNet	0.964	0.574	0.96	0.954	0.322	0.396	0.2	0.274	0.6	0.884	0.822
RFC	0.890	0.451	0.860	0.720	0.059	0.000	0.202	0.817	0.149	0.799	0.721

5.8 Comparison with MLP on the AHN3 dataset

		á or -	I	oU (%)						
method	OA (%)	mean	other	building	ground	CCI (%)	F1 score	training time (minutes)	RAM (GB)	model size (KB)
RFC	89.82	79.75	80.09	73.47	85.69	99.69	0.90	12.45	1.1	229,494
MLP	88.25	76.79	79.58	67.70	83.10	99.44	0.88	72.26	0.79	598


- Pros:
 - less RAM
 - smaller model size
- Cons:
 - longer training time
 - less accurate

5.9 Application

20	build	ing roof surf	ace
no.	ground truth	predicted	h_dak_50p
1	10.782	10.783	10.784
2	10.744	10.744	10.742
3	10.813	10.813	10.816
4	10.888	10.887	10.888
5	1.854	1.851	1.858
6	24.627	24.636	24.632
7	24.738	24.738	24.745
8	1.744	1.745	1.743
9	10.813	10.813	10.820
10	1.824	1.821	1.801
11	10.869	10.868	10.871
12	42.518	43.919	44.106
13	1.861	1.854	1.862
14	10.895	10.895	10.894
15	1.846	1.840	1.845
16	1.809	1.814	1.798
17	10,866	10.866	10.868
18	10.747	10.747	10.748
19	13.686	13.683	13.691
20	1.845	1.842	1.846

ground truth	ng ground su predicted	h_dak_min
-0.654	-0.661	-0.640
-0.798	-0.796	-0.822
-0.757	-0.762	-0.735
-0.729	-0.697	-0.728
-0.752	-0.701	-0.817
-0.780	-0.739	-0.788
-0.670	-0.656	-0.680
-0.823	-0.807	1.681
-0.771	-0.774	-0.789
-0.714	-0.713	-0.700
-0.905	-0.899	-0.898
-0.915	-0.913	-0.964
-0.693	-0.672	1.798
-0.729	-0.731	-0.741
-0.697	-0.636	-0.675
-0.711	-0.711	-0.626
-0.621	-0.618	-0.610
-0.690	-0.685	-0.655
-0.581	-0.578	-0.550
-0.684	-0.622	-0.664

6. Conclusions

6.1 Answers to research questions

- 1. AHN3 as training data → F1 score 0.9 and mean IoU 0.79
- 2. Features → 13, 3 neighborhoods + Z coordinate features + density
- Testing with other datasets → accuracy ↓
- 4. Size of training data \rightarrow 0.75 Km2 \rightarrow ≤ F1 score 0.9 for 9.25 Km2
- 5. Density → 1 point per cubic meter
- 6. Machine learning < Deep learning

6.2 Limitations & future work

Limitations:

- Only 3 classes: other, building & ground
- Only 2 machine learnings algorithms were tested
- Low building IoU
- Sub-optimal parameters for efficiency

Future work:

- Test deep leaning methods on the AHN3 dataset
- Further improve the proposed methodology
- Additional processing steps for further automatization

Thank you for your attention

Manos Papageorgiou

