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Abstract. Data-driven prediction of infrastructure aging is challenging due to the complex stochas-
tic nature of degradation effects and the ill-documented historical records. Degradation modeling is,
however, crucial for predictive maintenance that is key for infrastructure integrity. This study presents
a multi-attribute, data-driven approach for modelling stochastic degradation and maintenance effects
of roads, mining an extensive database of geo-located historical inspection and maintenance records
from the municipality of Amsterdam. Inspection data track pavement conditions at irregular inter-
vals across ten discrete states per road segment, following the Dutch CROW 146 protocol. Damage
severity and extent for eight damage modes is captured, i.e., for transverse unevenness, irregularities,
ravelling, edge damage, crack formation, joint filling, joint width, and settling. The maintenance
dataset includes >25k minor interventions across 17k road segments, indicating repair requirements,
and 200+ major maintenance projects, covering 21k segments where interventions are planned, all
without verifying completion. This complicates accurate modelling of natural degradation as it is
confounded by maintenance effects. To address the issue of irregular inspections, degradation is first
modelled as a continuous-time Markov chain. Thereby, transition rates are estimated, which are then
converted to discrete-time Markov chain transition probability matrices to eventually support regular
maintenance planning. We further learn the effects of minor and major maintenance activities, as de-
fined and recorded in the database. Based on the estimated degradation transitions, pre-maintenance
and post-maintenance state distributions are estimated. Instantaneous maintenance transition matrices
are computed by minimizing the cross-entropy between the pre-maintenance state after the interven-
tion and the post-maintenance state. The model allows for a multi-attribute approach, segmenting
roads based on construction material (e.g., asphalt, tiled pavement) and traffic loads (e.g., residential,
commercial/pedestrian). The approach is exemplified for tiled pavements for a section of the road
network of Amsterdam, where the effects of minor and major maintenance are ablated for long-term
predictions. Although applied to Amsterdam, this method is relevant to any infrastructure system
with discrete state datasets, providing a foundation for data-driven decision-making in infrastructure
management.
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1 INTRODUCTION

Urban transportation infrastructure is critical for mobility, economic activity, and the serviceabil-
ity of cities. The maintenance of these systems is essential to preserve operational reliability and
safety. However, infrastructure management involves complex, multi-objective decision-making un-
der resource constraints. Authorities do not only prioritise interventions based on urgency and cost-
effectiveness, but also consider broader system-level impacts such as network disruptions, emissions,
accessibility, and safety risks. To control these impacts as demands on infrastructure increase, effi-
cient resource allocation becomes more and more crucial.

Reactive, unplanned or corrective maintenance, where damage is addressed as it is observed, re-
main common practice by operating agencies. While these approaches minimise short-term expen-
ditures, they are generally associated with higher overall maintenance costs, increased risk of asset
failure, and reduced system reliability in the long run [1, 2, (3, 4]]. In contrast, predictive maintenance
(PdM) offers a more proactive alternative, using condition monitoring and data analysis to anticipate
infrastructure needs and optimise intervention timings [1} 3} 5].

Accurate degradation modelling facilitates the development of effective PAM decision-making sys-
tems. While data quality and availability have been limiting factors in the past, data-driven degrada-
tion models have become more and more prevalent and have been extensively explored for various
applications, using methods such as statistical inference, probabilistic graphs, including Markov mod-
els, and machine learning [6]. Similar models have been developed for pavements (e.g., [7, |8, 9, |10,
11, {12} |13} {14} [15]). These models are typically calibrated using indicators of pavement condition,
such as the pavement condition index (PCI), international roughness index (IRI), pavement service-
ability index (PSI), or pavement condition rating (PCR). Such continuous indices allow modeling
through continuous-state stochastic models such as gamma processes [16]]. Additionally, most stud-
ies focus on asphalt and concrete pavements, for which these indicators are available, limiting their
applicability to urban road networks characterised by heterogeneous attributes, such as diverse pave-
ment materials, traffic loads, damage modes and other functional classifications [17]. Moreover,
models explicitly quantifying the effect of maintenance activities on road condition are currently
limited. Although some studies have explored post-maintenance condition changes (e.g., 18}, [19]]),
there is limited integration between degradation and maintenance modelling in a unified probabilis-
tic framework. This omission constrains the accuracy of long-term maintenance planning and limits
the potential for rigorous predictive optimisation methods, such as Markov decision processes and
reinforcement learning, to be applied in practice [20, 16} 21} 22].

This study presents a data-driven, multi-attribute framework for the modelling of both road degra-
dation and maintenance effects, designed to support predictive maintenance in heterogeneous road
networks present in urban environments. The model is developed using inspection, maintenance and
road data from the municipality of Amsterdam, the Netherlands. The inspection data includes infor-
mation on the severity and extent of damage across up to eight predefined damage modes, with up to
six damage modes depending on pavement construction type. The methodology allows for condition
transitions to be modelled as probabilistic state changes conditioned on segment-specific attributes,
including construction type and traffic pattern categories. These transitions are initially formulated as
a continuous-time Markov chain (CTMC) to address the irregular time intervals present in the obser-
vational data and are subsequently converted into a discrete-time Markov chain (DTMC) to support
integration with regular, time-stepped maintenance planning frameworks. The resulting transitions
form a high-dimensional tensor, which enables detailed, scenario-based simulation of network condi-
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tion under varying intervention policies. As a result, the proposed framework supports future integra-
tion with decision-support tools for high-fidelity predictive maintenance planning at scale, offering
an interpretable and empirically grounded basis for modelling deterioration of diverse road networks.
Results regarding future prediction in an area of Amsterdam are discussed, ablating minor and major
maintenance scenarios.

2 METHODS
2.1 Data

Historical inspection and maintenance data provided by the municipality of Amsterdam are used.
The inspection dataset contains manually collected road condition data in accordance with the CROW
146b protocol, which is the national standard for infrastructure inspections in the Netherlands. Inspec-
tions are conducted per road segment, defined as a continuous section of road between intersections
with a maximum length of 100 metres. The dataset is primarily used by the municipality for mainte-
nance planning, administrative reporting, and compliance with regulatory obligations.

Inspection records have been collected since approximately 2015, with road segments inspected at
irregular time intervals, mostly every two to three years. Each inspection record includes a condition
label that reflects the most severe observed damage within the segment. These labels—G, L1-L3,
M1-M3, and E'1-E3—represent a combination of severity (G = Good, L = Light, M = Moderate,
E = Serious) and extent of the affected area (1 = small, 2 = average, 3 = large).

Eight damage modes are used in the classification: transverse unevenness; irregularities; ravelling;
edge damage; crack formation; joint filling; joint width; and settling. Up to six unique damage modes
are relevant per pavement category: asphalt segments exhibit transverse unevenness, irregularities,
ravelling, edge damage, cracking, and settling; tiled pavements show transverse unevenness, irregu-
larities, joint width, and settling; and concrete surfaces are assessed for irregularities, cracking, joint
filling, and settling. However, no or very limited degradation is represented in inspection records for
settling and joint filling. Although the CROW protocol defines boundary conditions for each label
and damage mode, expert opinion suggests a degree of human error in the dataset.

Additional features are available for each road segment, including geographical information (i.e.,
neighbourhood, region and geometry), construction type (e.g., asphalt, concrete, element pavement,
semi-paved, synthetic, unpaved), specific surface material, year of construction or last major recon-
struction, date of last conservation treatment, surface area, and traffic pattern classification (e.g.,
heavy, residential, cycle path). The completeness of this data varies across records.

In addition to inspection records, two separate datasets of maintenance records are used: one for
minor interventions and one for major interventions. The minor maintenance dataset contains 25,044
intervention points identified by road inspectors, which we can link to 17,813 unique road segments.
Each record includes coordinates, date of data collection, pavement type, damage category, damage
size, and corresponding unit of measurement. The major maintenance dataset includes 228 planned
interventions covering larger areas, represented spatially as polygons or multi-polygons. These poly-
gons typically include multiple road segments. Each record documents the date of data collection,
project name, category, budget, asset group, source, project status, and planned phases of execution:
preparation start, intervention start, and completion date, each recorded by year. The total area sched-
uled for maintenance is also included.
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2.2 Modelling Approach

In this study, both the degradation and maintenance effects are modelled through probabilistic
Markovian transition matrices, derived from empirical data. This section first outlines the fitting of
degradation probability matrices, followed by a description of how minor and major maintenance
effects are incorporated.

Degradation Modelling

Degradation of road infrastructure is modelled as a stochastic process using a continuous-time
Markov chain (CTMC). This model represents transitions between a finite set of condition states in
continuous time, which evolve over time depending on discrete actions. The probability of transi-
tioning to a future state adheres to the Markov property, meaning that the probability of moving to
a future state depends solely on the current state and not on the sequence of preceding states. The
CTMC model is based on several key assumptions. First, transitions between states are assumed to be
independent across road segments; that is, the degradation of one segment does not influence others.
Second, the model assumes stationarity of transition rates, implying that these remain constant over
time.

A Markov process is defined as { X (¢), ¢t > 0} on a finite state space S = {1,2,...,n}. In this
work, the state space has n = 10 states, corresponding to the inspection labels G—E3, described in
Section The transition between states is characterized by a transition probability matrix, where
the probability of transitioning from state ¢ € S to state 7 € S in exactly time At from an initial time
t is denoted as [23]]:

Py(t) = P(X(t + At) = jIX(AD) = i) (1)

This defines the transition probability matrix P(t) at time t:

Pi(t) Pio(t) -+ Pu(t)
P(t) = P21:(t) P22:(t> Pm:(t) )
Pnl (t) Pn2 (t) T Pnn(t)

Each row of P(t) sums up to 1, and all entries satisfy 0 < P,;(¢) < 1. The transition probabil-
ity matrix for timestep ¢ is used in discrete-time Markov processes, where P;;(t) can be estimated
empirically by the observed transition frequencies [24, 25, [26]:

Nij

Py(t) = ©
where n;; is the number of transitions from state 7 to state j over the observation period, and n; is
the total number of transitions from state ¢ to any other state in the state space. However, given that
the available inspection data in this study contains variable time intervals, a discrete-time approach is
not suitable. Therefore, we employ CTMCs to model the degradation process. In this case, transition
probability matrices are derived from transition rate matrices. Assuming exponentially distributed

sojourn and transition times, the transition rate matrix () takes the form:
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_)\1 >\12 T )\ln
>\21 _)\2 T )\2n

Q - : : .. : (4)
/\nl )\n2 Tt _/\n

Following Eq |1} each off-diagonal entry \;; for 7 # j is defined as the rate of transition from state
1 to state 7 [27, 28]:

\ i P =] X(0) =)
J At—0+ At

®)

The diagonal elements ); in the transition rate matrix () reflect the total rate at which the segment
leaves state 7, and are defined such that each row of () sums to zero:

A=A (6)

J#i

Under the exponential distribution assumptions, the transition rates \;; are estimated from the
observed transitions in the inspection dataset. The estimate for each \;; is given by [27, 29]:
_ Tij
A= S o) ™
k=1Ti
where: Ti(k) is the observed sojourn time in state ¢ before transitioning, for the k-th transition. To
obtain the corresponding transition probability matrix P(t) for a desired time horizon ¢, we compute
the matrix exponential [23|]:

P(t) = e ®)

This equation allows us to derive discrete-time transition probability matrices, which can subse-
quently be used in advanced decision-making algorithmic frameworks for predictive maintenance
(Figure[T)), such as a Markov decision process or within (deep) reinforcement learning.

al a2 a3

sy 55 S5
Sl NN T
S1 S2 S3 Sn
a, a, as
Figure 1: Probabilistic graph of the DTMC where the state space S = {s1, sa,...,5,}. Arrows indicate degradation

transitions and P, is the maintenance transition model.
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Maintenance Effect Modelling

Maintenance effects are modelled separately for minor and major maintenance interventions. Tran-
sitions for which a maintenance action is recorded are considered in this process. Condition im-
provements without maintenance logs are excluded, as we lack sufficient data to interpret them reli-
ably. As maintenance records include planned interventions, without confirmation of execution, the
dataset may contain cases of failed, postponed, or unperformed maintenance. Additionally, some
maintenance-logged transitions result in deterioration of condition. These cases can be interpreted
as either: (1) failed maintenance, (2) maintenance unrelated to the observed damage mode, or (3)
rapid post-maintenance degradation. Each inspection record includes the condition of the segment
for multiple damage modes, dependent on road construction category. We assume all damage modes
are subject to the maintenance intervention, regardless of the resulting change in condition.

The effect of a maintenance action taken at time ¢,,, is modelled as an instantaneous transition prob-
ability matrix F,,, representing the maintenance effect between the time just before the maintenance
intervention, ¢, , and the time immediately after, ¢} . Using the estimated degradation transition rate
matrix (), from Eq@ and the state probability distributions at the start, p(tgar), and end, p(tenq), of
the observed transition, the predicted state vector just before maintenance is computed as:

p(t,) = p(taan) - €9t ©)
The predicted state just after maintenance is computed through a backward transition as:
p(th) = ptena) - e~ Qaltena—tm) (10)

For major maintenance, the exact intervention date ¢,, is unknown. We assume it occurs at the
midpoint of the time interval between inspections. Next, P, is estimated for £ observed maintenance
events so that:

p(t) " p(t)
P> (el )
pl(t)® p(t) "

We assume that P, in Eq[T1] has a known shape but unknown parameters. The shape is given by
a linear combination between a perfect repair and a no-repair action. These transition matrices are
denoted as P! and P?, respectively. P! represents a transition probability matrix where p(s’ = G |
s) = 1forall s € S. This indicates that, regardless of the current state s, the system deterministically
transitions to state G, effectively resetting the system to the best condition. P? is the identity matrix
I over the state space S, implying that no transition occurs and the system remains in its current state.
As such, the instantaneous transition for each damage mode assumes the following form:

Pon=w-[p(s =G|s)|+wy-[I], wi+wy=1 (12)

Subsequently, we optimize the weights w; and ws based on minimizing the cross-entropy loss be-
tween predicted and observed post-maintenance state distributions across all /V observed transitions:

N n
| | |
S _ () (4+ 50 4+
L= N;( ;pz (t),) log p (tm)> (13)

where pi?) (¢*) is the probability of sample j being in state 7 at time ¢, based on Eq and pi7 (¢:+)

7 7

is the predicted probability of sample j being in state 7 at time ¢ based on Eq
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3 RESULTS
3.1 Data Selection

The dataset comprises comprehensive inspection records, corresponding to eight unique damage
modes with up to six distinct damage types per road segment, in addition to feature data concern-
ing road construction materials and traffic pattern classifications. This level of detail facilitates the
specification of degradation and maintenance effects across various combinations of material and
traffic pattern attributes. However, the dataset does not provide sufficient coverage to enable robust
modelling of all such combinations.

With regard to construction materials, tiled pavements and asphalt pavements constitute the ma-
jority of the network. Specifically, 80.1% of roads in Amsterdam are classified as tiled pavements,
and 15.9% as asphalt pavements. All remaining material categories individually represent less than
3% of the road network. While further disaggregation of the transition model (e.g., by traffic pat-
tern classification) is possible, for the sake of brevity, aggregated results for tiled pavements across
all traffic pattern classifications and for damage modes ’transverse unevenness’, ’irregularities’ and
’joint width’ are presented here.

3.2 Degradation Modelling

Degradation processes are modelled by estimating transition probability matrices derived from
observed condition transitions. Figure [2] presents the 8-year transition probability matrices for the
three dominant damage modes observed in tiled pavements within the Amsterdam road network:
transverse unevenness, irregularities, and joint width. Each matrix displays the starting states along
the vertical axis and the corresponding ending states along the horizontal axis. States are coded
as follows: G (good/no damage), L1 — L3 (minor damage), M1 — M3 (moderate damage), and
E1 — E3 (serious damage), with numerical indices denoting the spatial extent of damage (1 = small,
2 = average, 3 = large).

Table [I| summarises the total number of recorded transitions for each damage mode, as well as the
proportion of observations in which no change in condition occurred (G — ). High proportions

Transition probability matrix for Transition probability matrix for Transition probability matrix for
Transverse Unevenness Irregularities Joint Width

&) 0.03 0.03 0.05 0.02 0.01 0.01 0.01 0.01 0.01 © -0.32 0.00 0.00 0.00 0.19 0.07 0.04 0.18 0.12 0.07 &) 0.02 0.00 0.00 0.03 0.00 0.00 0.04 0.01 0.01 - 1.0
= -0.00 0.13 0.12 0.26 0.12 0.07 0.08 0.09 0.05 0.07 = -0.00 0.06 0.00 0.00 0.26 0.10 0.04 0.27 0.18 0.10 = -0.00 0.14 0.01 0.00 0.21 0.03 0.01 0.37 0.15 0.08
-0.00 0.00 0.12 0.28 0.13 0.09 0.11 0.11 0.06 0.10 ©1-0.00 0.00 0.04 0.00 0.18 0.12 0.06 0.26 0.21 0.13 ©1-0.00 0.00 0.04 0.00 0.17 0.02 0.01 0.41 0.22 0.13 08
3 -0.00 0.00 0.00 0.32 0.10 0.09 0.15 0.12 0.08 0.14 3 -0.00 0.00 0.00 0.04 0.07 0.08 0.15 0.21 0.22 0.24 3 -0.00 0.00 0.00 0.04 0.17 0.02 0.00 0.20 0.11
S -0.00 0.00 0.00 0.00 0.19 0.11 0.12 0.24 0.12 021 S -0.00 0.00 0.00 0.00 0.24 0.10 0.04 030 0.21 0.11 S -0.00 0.00 0.00 0.00 0.18 0.03 0.00 0.21 0.13 06
£'-0.00 0.00 0.00 0.00 0.00 0.09 0.19 021 0.16 0.34 <-0.00 0.00 0.00 0.00 0.00 0.12 0.07 0.29 0.30 0.22 $1-0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.28 0.18
< -0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.12 0.15 0.42 < -0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.16 0.30 0.36 < -0.00 0.00 0.00 0.00 0.00 0.00 0.02 029 0.33 0.35 04
7 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.19 = -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.37 0.25 7 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.25 o
£1-0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 (N £1-0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 1 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 '
€3°-0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FHY 3 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 3 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FES 0.0
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Figure 2: Eight-year transition probability matrices for the three relevant damage modes in tiled pavements across the
Amsterdam road network: transverse unevenness, irregularities, and joint width. Condition states range from G (good/no
damage) to E3 (severe damage affecting a large area), with severity increasing from top to bottom and left to right.
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Table 1: Logged transitions and proportion of ’G’ — ’G’ transitions by damage mode

Damage Mode Number of logged transitions Number of °’G’ — ’G’ transitions
Transverse unevenness 73,249 67,087 (91.6%)
Irregularities 60,086 22,878 (38.1%)
Joint width 78,577 74,220 (94.5%)

of such stable states, particularly in joint width (94.5%) and transverse unevenness (91.6%), suggest
relatively slow deterioration processes for those damage types. In contrast, the proportion of un-
changed states is considerably lower for irregularities (38.1%), indicating more dynamic or variable
degradation behaviour.

Analysis of the dataset shows that some condition states, particularly those representing more
severe or extensive damage, are sparsely populated. As such, the reliability of transition probability
estimates from these states, specifically M3, 2, and E3, is limited. Notably, for irregularities, the
starting states L2 and L3 are also especially underrepresented. To isolate degradation processes,
transitions reflecting stable or worsening conditions are included in the estimation. The most severe
state (F3) is treated as an absorbing or terminal state in this model.

The values along the diagonal of each matrix indicate the probability that, over an eight-year pe-
riod, segments remain in their current condition state. These values are especially high for G — G
transitions for the damage modes ’transverse unevenness’ and ’joint width’. Diagonal values are also
higher for states indicating high damage severity (£1-E3), with an exception for £2 in transverse
unevenness. For transverse unevenness, however, state transitions 1.3 — L3 and M3 — M3 are also
relatively high. Non-zero values in the upper triangle suggest a gradual risk of deterioration. In par-
ticular, transitions from any state except G to M1 and E'1 appear relatively likely for ’irregularities’,
and ’joint width’ damage types. This trend is especially pronounced for joint width, suggesting that
once deterioration initiates, it escalates more rapidly in this damage mode. Zero entries in the upper
triangle of the matrix imply the absence of observed transitions to these states. However, although
certain states are rounded down to zero in the matrices presented in Figure 2] the associated transition
rates indicate existence of small probabilities. Finally, for transverse unevenness and irregularities,
some transitions that indicate an increase in damage severity, while damage extent decreases or vice
versa, such as M3 — E'1, are found to have slightly lower values compared to other transitions in the
same row.

3.3 Maintenance Effect Modelling

Maintenance effects were modelled through the estimation of instantaneous transition probability
matrices, derived from observed condition transitions that could be directly associated with either
minor or major maintenance interventions. The weights of these matrices, estimated using observed
transitions combined with a set of prototype matrices based on Eq. are represented in Table
These describe the prototype matrices with the lowest cross-entropy relative to the empirical transition
data, as outlined in the methodology section.

As dictated in Section[I2] w, indicates how often maintenance interventions result in perfect repair
(transition to state () and w- indicates no observable change in condition. Results are shown in Ta-
ble 3l Major maintenance consistently yields higher probabilities of perfect repair compared to minor
maintenance. When comparing across damage modes, joint width exhibits the highest likelihood of
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Table 2: Learned weights for maintenance impacts by damage mode and maintenance type.

Weight | Transverse Unevenness | Irregularities | Joint Width
Minor Major Minor Major | Minor Major
wy 0.597 0.701 0.284 0.442 | 0.585 0.766
Wy 0.403 0.299 0.716 0.558 | 0.415 0.234

perfect repair, followed closely by transverse unevenness, whereas irregularities show substantially
lower perfect repair rates. Additionally, for damage modes ’transverse unevenness’ and ’joint width’,
the probability for perfect repair is always higher than the probability for no change in condition, in-
dicating that maintenance interventions more commonly result in a perfect repair than no repair. For
irregularities, maintenance actions have a smaller effect.

3.4 Application

Figure [3] illustrates a section of the Amsterdam road infrastructure network, to which the previ-
ously developed degradation and maintenance effect models have been applied. These comparative
visualisations highlight the varying impact of maintenance strategies on the long-term condition of
the network. The initial state of the network is shown in Figure [3p. Figure [3p illustrates the condition
development over a eight-year period under natural degradation, without any intervention, indicating
the condition state as the highest probability in the distribution over states for transverse unevenness.
While some segments remain in their initial condition category, others exhibit progressive deterio-
ration, particularly those that began in more severe damage states. Segments initially in perfect or

(a) Initial Condition (b) Condition at t=8 years, degradation only
’ - )\ \ \=gp

e

(c) Condition at t=8 years,
with minor maintenance at t=1 year

Condition State

Figure 3: Visualisation of the condition evolution of a section of Amsterdam’s road network under different maintenance
scenarios, assuming tiled pavements for all segments: (a) Initial condition state; (b) Projected condition after eight years
of natural degradation without intervention; (c) Condition after eight years with minor maintenance applied uniformly
after one year; (d) Condition after eight years with major maintenance applied uniformly after one year. The comparison
illustrates the differential impact of maintenance strategies on long-term infrastructure condition.
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lightly deteriorated states generally show slower rates of degradation. Figure 3k shows the same sce-
nario with minor maintenance applied uniformly to all road segments after year one, while Figure [3d
reflects the scenario in which major maintenance is implemented at the same time point. In both cases,
a substantial number of segments are restored to the optimal condition state; however, a subset of road
segments shows no improvement following intervention. This proportion is notably higher under the
minor maintenance scenario than under major maintenance, indicating the limited effectiveness of
minor interventions in reversing deterioration in certain cases.

4 DISCUSSION

The data-driven model developed in this work enables degradation and maintenance effects tran-
sition modelling, which can serve as a foundation for predictive maintenance systems. The model
captures the stochastic nature of deterioration and is grounded in condition data and classification
schemes that align with those used by human maintenance planners. This makes it not only analyti-
cally robust but also potentially interpretable and actionable in operational contexts.

At the same time, several limitations exist with respect to the statistical analysis. First, the dataset
was not originally collected for predictive modelling. It only records the most prominent manifesta-
tion of each damage mode and lacks precision regarding the exact timing and nature of maintenance
interventions, as discussed in Section [2.1] This restricts our ability to draw strong conclusions about
causal links between specific maintenance actions and changes in condition for particular damage
types. As a result, observed condition improvements are associated with general maintenance cate-
gories (i.e., minor or major), as it is difficult to associate them with targeted treatments of, for example,
transverse unevenness or joint width,

Another key constraint is data sparsity, particularly in higher-severity condition states. Some tran-
sitions, especially from rarely observed states, such as £2 or £'3, are based on a few records, limiting
the statistical confidence of the corresponding transition probabilities. This restricts the model’s ap-
plicability in representing deterioration and maintenance effects across the full range of condition
states.

Expanding the dataset to better cover underrepresented road types or damage states would im-
prove the robustness and predictive power of the model, as well as increase its generalisability across
the network. Despite these limitations, the modelling approach presented in this work demonstrates
the potential of inspection records to support data-informed maintenance strategies. With improved
data infrastructure, such models can significantly contribute to planning and prioritising maintenance
interventions in urban road networks.

S CONCLUSION

A transition model for infrastructure degradation and maintenance effects is presented. The model
consists of transition probability matrices for a selection of road construction materials and traffic pat-
tern labels and is aimed at applications in predictive maintenance models. Historical inspection and
maintenance records from the municipality of Amsterdam were used, comprising data collected per
road segment in accordance with the CROW 146b protocol. The inspection records include condition
labels based on eight damage categories, together with additional features, such as road material, con-
struction year, and traffic pattern category. Records of both minor and major maintenance activities
are available at the same spatial resolution as the inspection data, enabling the modelling of condition
state transitions under natural degradation, minor maintenance, and major maintenance. Degradation
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was modelled as a continuous-time Markov chain. This approach accounted for the irregular in-
spection intervals by estimating stationary transition rates from observations, assuming exponentially
distributed transition times. Accordingly, transition probability matrices were derived through the ex-
ponential of the rate matrix. To address data uncertainties, including unexecuted or incorrectly logged
maintenance, transition matrices were introduced, as a linear combination of perfect repair and no (or
unsuccessful) repair. The maintenance effect matrix was estimated by comparing predicted and ob-
served post-maintenance states, selecting the matrix weights by the lowest cross-entropy loss. Results
were presented for tiled pavements and three damage modes: transverse unevenness; irregularities;
and joint width. The degradation analysis showed that for the lowest and highest condition states,
higher transition probabilities are generally found along the matrix diagonal. This suggests lim-
ited observed change in these states. Non-zero upper-triangular values, especially for transitions not
originating from state G, indicate a comparatively faster deterioration once initiated. However, data
sparsity in more severe condition states limits the reliability of certain estimates. Results also show
that both minor and major maintenance commonly lead to perfect repair for ’transverse unevenness’
and ’joint width’ damage modes. For irregularities, maintenance actions were found more likely to
not affect road condition. For all damage modes, major maintenance consistently delivers higher rates
of full restoration. Among the three damage types, joint width was most responsive to maintenance,
followed by transverse unevenness. Irregularities were less responsive. Overall, the results highlight
differences in degradation pace and maintenance effectiveness across damage types and emphasise
the need to account for these distinctions in infrastructure planning and maintenance strategies.
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