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Abstract—The problem of blind and semiblind channel estima- decorrelating
tion and symbol detection is considered for long-code wideband matched filter to user 1
code division multiple access (CDMA) systems, including systems
with multirate and multicode transmissions. A decorrelating user i
matched filter, implemented efficiently in state-space, eliminates j optimal )
multiaccess interference and produces a bank of vector processes. combining [ "
Each vector process spans a one-dimensional (1-D) subspace y[] ——
from which channel parameters and data symbols of one user are h;
estimated jointly by least squares. A new identifiability condition :22’:;2“

is established, which suggests that channels unidentifiable in
short-code CDMA systems are almost surely identifiable when

aperiodic spreading codes are used. The decorrelating matched to user K

filter is implemented efficiently based on time-varying state-space

realizations that exploit the structure of sparsity of the code ma- Fig.1. Receiver structure. The decorrelating matched filter is implemented by
trix. The mean square error of the estimated channel is compared an efficient state-space realization.

to the Cramér—Rao bound, and a bit error rate (BER) expression
for the proposed algorithm is presented.

delays longer than the symbol period. Multiple antennas may
Index Terms—Aperiodic spreading sequences/codes, blind and pa |;5ed.

semiblind multiuser detection, channel estimation, decorrelating . . . .
matched filter/RAKE receiver, fast algorithms, identifiability con- RAKE receivers are widely used in both uplink and down-

ditions, long-code wideband CDMA. link CDMA systems. If the spreading codes have good cross-
and auto-correlation properties, the matched filter front-end

suppresses multiaccess interference, and the RAKE receiver

|. INTRODUCTION captures multipath diversity through its diversity branches (or
A. Problem and the Approach the RAKE fingers). For high-rate CDMA under frequency

E CONSIDER the problem of joint channel estirnatio|§elective fading, however, code orthogonality can not be

and symbol detection in a long-code wideband COﬁeuaranteed, and the conventional RAKE receiver that uses a
division multiple access (CDMA) system that has featur sa?]k of m?:Chr?d f||t§rs may f;?erzorm psotrrl]y. :]'he Ioiss Otf co?e
of third-generation wireless. The scrambling sequences glrédogonabllydats a;. versede tics onf oth ¢ andne ecsj n:a lon
aperiodic, data and control information may be modulat€g'® SYMPO! detection, an € periormance cegradation 13

separately onto the in-phase and quadrature parts of the si aHemally pronounced when the network is heavily loaded and

using different channelization codes with different spreadi Iwetrht_:ontrol imperfect. oint ch | and bol esi
gains, pilots are often part of the control symbols, users md? N tiS paper, we Propose a Joint cnannet and symbot esti-

have different spreading gains, or multiple channelization co tion lsctheme f?thﬁli.E rece|\_/erts. 'tAhs |Ilustr.ate;jd 'ﬂ. F'g'tl' a
may be assigned to the same user. For uplink applicatio gcorrelaling matched hiter projects the received chip-rate se-

users are asynchronous, and their multipath channels may h \ neey[n] into the signal space of egc_h user Whose channel
and data sequence can be estimated jointly and independent of

other users by least squares via a rank-one decomposition. The
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decorrelating matched filter for short-code CDMA is known [1]and an iterative likelihood maximization. Their assumptions
but applying it to long-code CDMA presents a daunting tasknply that their algorithm is not applicable to systems with
in terms of both computational complexity and storage requirasynchronous users and long multipath delays. Other related
ments. A direct implementation for a ten user system—each lesproaches include the use of chip-level equalization. See, for
three multipath fingers with a 100-symbol slot and a spreadirgample, [13], [14], and references therein.

gain of 64—amounts to inverting a code matrix of size around )

6400x 3000. The code matrix, fortunately, is highly structure- Notation

and sparse; only 1% of its entries are nonzero. The inverse ofie will use the notion of zero-dimensional vectors and ma-
the code matrix, however, will in general lose the structure amgces. In particular, a matrix or a vector with zero dimension is
the sparsity. In this paper, we use the extensive theory and algenoted by i.” Normal multiplication and addition rules apply
rithms developed by Dewilde and Van der Veen [2], who consitb zero dimensional matrices. Specifically,af =. has size
ered the inversion of infinite size structured matrices. The idea x 0 andb =. has sizé) x n, thenab is a matrix of size

is to replace the code matrix by a time-varying state-space reg)-x » with all entries equal to 0 (since its rank has to be 0).
ization and implement the inversion locally in state-space. ForOther notations are standard. Vectors and matrices are written
cases where precomputation of the code matrix is possible, guboldface with matrices in capitals. We reselygfor the iden-
approach has the same level of online computations and storgéigematrix of sizem (the subscript is included only when nec-
requirements as that of the conventional matched filter. If th&sary) and,,,»,, for the m x n zero matrix. For a random
inversion of code matrix must be performed online, we are ablectorx, E(x) is the statistical expectation af The notation

to reduce the computational complexity to the same level as thkate A/(u, ) means thak is (complex) Gaussian with mean

required in the short-code case. u and covariancé. Operationg-)T and(-)# indicate trans-
pose and Hermitian transpose, respectively. Given a m&trix
B. Related Work R{X} is the range space of matrX, X the Moore—Penrose

A blind two-dimensional (2-D) RAKE receiver for long-codepseudo inverse, anil @ Y the Kronecker product &X andY'.
CDMA was first proposed by Zoltowskit al.in [3] and further For a matrix (vectorX, we use|X|| for the Frobenius norm
developed in [4] and [5]. Their approach is perhaps the earli@std|| X|| for the 2-norm.
blind multiuser detector applicable to long-code CDMA. There
are similarities between their approach and the one presented in Il. MATRIX MODEL

this paper; both use the RAKE concept. The differences, how-p1atrix models for long-code CDMA have been derived in

ever, are substantial. Zoltowski's two-dimensional (2-D) RAKE g\ eral papers, e.g., in [12] and [15]; hence, we will make only
uses a conventional matched filter as the first stage, followgd, ief derivatiort.
by post prgcessing to m?tigate multiuser interference. We uUse aye assume thak asynchronous users transmit linearly
decorrelating matched filter to separate users up front and pgf5qulated symbols. The transmission is slotted, and user
form single-user optimal RAKE combining as the second step,amits /. symbols{s;, n = 1,..., M;} in each slot.
The channel is estim.at'ed via a matrix' pencil technique .bas?He symbol sequence frOm USEIS repre/sented by the vector
on second-order statistics by Zoltowskial. We use determin- = A (i1, .-, si.a,]7. At the transmitter, each symbel,
istic least squares, which has the advantage of requiring a small S . X

. : .~ Js spread by an aperiodic code vectos, with spreading
number of samples. The implementation of our approach is afso

considerably simpler because of the state-space technique S (length);, followed by a chip pulse-shaping filter. The

) ; . propagation channel of usécan be modeled by an equivalent
exploits the special structure of the code matrix. chip-rate finite impulse response;, j = 0, ..., L; — 1, where

Blind channel estimation and multiuser detection fo . . o -
long-code CDMA has been considered by a number éfj can be viewed as the gain of thth finger of the user's

: . L Wultipath channel.
other authors. Iterative techniques based on maximizing t €3ecause the channel is linear. we can first focus on svmbol
likelihood function [6], [7] and least squares [8] have been X Y

. . ., from useri transmitted in thexth symbol interval and set all
proposed. These are high-performance techniques but al ' y

have well-known drawbacks such as ill converaence and hioﬁg’er symbols and noise to zero. Let the received signal corre-
9 gponding to symbal;,, be passed through a chip-matched filter

complexity. They are best complemented by inititallizatio(r,j]Ind sampled atthe chip ratéll samples are putin a vecter
techniques such as the algorithm developed in this PAPRL <hown in Fia. 2v.. is a linear combination of shifted?ae—
In addition, in the literature, we have second-order momelnfa' 9 &¥in

techniques based on the uncorrelated or i.i.d. assumption z%ed) code vectors;,, wherec, is the segment f; chips of
d e pion Eoris spreading code corresponding to tkite symbol. Each

the spreadmg code or the symbols [3].' [4], [91-[11]. Thesehifted code vector is multiplied by thgh fading coefficient
technigues rely on the convergence of time averages to staﬁs_— and the channel responsestg is given by

tical averages, which often requires hundreds to thousands 6f
symbols. The work of Weiss and Friedlander [12] is perhaps
the closest to our approach, although they focus on down link

applications. They assume that multipath delays are limited tdAn algebraic derivation of the model based on Nyquist sampling is given in

a small fraction of a symbol interval. By dropping samples th
y y ppINng P 2In general, sufficient statistics can be obtained by Nyquist sampling. The

contain imersymb_OI interference, th_ey propose to invert thef (Fsiivation here will correspond to the even (or odd) subsequence of an observa-
duced) code matrix followed by a different subspace algorithtmn sampled at twice the chip rate.

Yin = Tinhysin, h; 2 [hios - -, hi,L7—1]T
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We will impose the following assumptions.

Al) The code matrixXT is known.

A2) The code matrix’ has full column rank.

A3) The noise vector is complex Gaussian~ N (0, o)
with possibly unknowr2.

Assumption Al) implies that the receiver knows the codes, the
delay offsetsD;, and the number of channel coefficierts of

all users. IfD; is unknown, we may set it to 0 and model all
paths.L; is a model parameter, and its choice is often left to
algorithm designers. Since any channel coefficient is allowed to
be zero, one can overparameterize the channel to accommodate
channel length and delay uncertainties and pay a price for the
lack of modeling details. If we know that the channel is sparse,
it is more efficient to model the channel as separate clusters of
fingers. In that case, we assume that the approximate locations
of these clusters are known.

Assumption A2) is sufficient but not necessary for the
channel to be identifiable and for the proposed algorithm to
produce good estimates. When A2) fails, the channel may
still be identifiable, as shown in Theorem 1 in Section IV. In
; practice, one may only include a limited number of dominant
interferers and significant fingers in the data model. In Sec-
tion IlI-D, we consider modifications of the proposed algorithm
applicable when the code matrix is singular.

(n=1)Gi+D; ]:

Cin §

Yin=

Fig. 2. (Top) Structure dT';,,. (Bottom) Structure of the code matri.

Here,T,,, is the code matrix of usérand symboh [see the top
part of Fig. 2], anch; |§ the multlpa_th fading chann_el for_user IIl. BLIND AND SEMIBLIND DECORRELATING RAKE
1. We assume that useétas a relative delay ab, chips with o . ] )
respect to the reference at the receiver. One can view that each/e present in this section a decorrelating RAKE receiver
column of T;,, corresponds to a discrete multipath componerifat jointly estimates the channiel and datas; of every user
For example, the first column &, is made of n — 1)G; + D; 1 independently. As illustrated in Fig. 1, we use a decorrelating
zeros that model the relative delay of the first path with respe@@tched filterI'" as a front-end to remove multiaccess interfer-
to the reference followed by the code veatgr and additional €nce- Other types of matched filters can also be used, of course,
zeros that make the size ¢f,, the total number of chips of and are briefly discussed in Section I1I-D. We will present the
the entire slot. The second column®f,, models the second details of an efficient time-varying state-space implementation
multipath component similarly. Note that for sparse channef, the decorrelating matched filter in Section V. We note here
the shifting of the code vectors does not have to be consecuti@Bly that the complexity of the decorrelating RAKE is compa-
For useri, the total received noiseless signal is given by ~ rable with that of the conventional one.

M, A. Blind Channel Estimation via Least Squares
Yi= nz::l Tinhisin = Ti (Inr, @ i) s; The output of the decorrelating matched filter is given by
Tié[Ti17-~~7Ti7]\[,]~ u:TTy:dia(‘:(I@hl./...,I®hK)s—|—n (2)

Matrix T; is the code matrix of user and it does not dependwheren = T'w is the (colored) noise vector. Partitieninto
on the gains and phases of the multipath channel. Now includisggments of lengtlh; with u;,, as the(zz;l1 M;) + nth sub-
all users and the noise, we have vector. The structure af in (2) implies thatu;,, corresponds to
symboln of useri and satisfies
y=THs+w
A Win = 084, + Ny, n=1,..., M;. 3
T=[Ty, ..., Tk]
AL Collecting all data for user gives
H =diag(Is;, ® hy, ..., Ins @ hg) (1) g g
C— s 1= h.sT )
where matrixH is block diagonal witH,;, ® h; as theith block, Ui = [uir, -, wiag] = hisy + N (4)
vectors is a stacking of all symbol vectors, and is a vector
representing the additive Gaussian noise. The structure of
code matrixT is illustrated in the bottom part of Fig. 2. Note
that by allowingT; to have different sizes for different users,

we include cases where variable spreading gains are used.

e

'lhreatinghi ands; as deterministic parameters, we can define
E € least squares problem

{h;, s;} = ar%min |U; — hs™||%
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and estimates di; ands; (with an unknown scaling factor) are The channel estimator given in (6) is also affected by the
found from a rank-one approximation &f;. In other words, colored noise. However, this coloring is known and can be

denoting whitened. Specifically, recall (4) and (5). We have
v Isil? NEERS

N A 1 H E(R;) = : thH + O'2A,L'. A, = — Yin
R, = M, nz::l Wip W, (5) (Ri) M; i ’ M; &

whereA; is a known matrix. The channel can then be estimated

we obtain the least squares estimates from the following modification which whitens the noise Ry:

h; = argmax gHRi& Sin = flflum (6) g, = argmaxg’’ (A;l/zf{iA;Hﬂ) g
llgll=1 llgll=1
N . . A f] — Al/2
The solutiorh; is given as the dominant eigenvecto®f. The i B

scaling ambiguity in the above estimates must be removed by
either incorporating prior knowledge of the symbol, using pilgh. Other Front-Ends

symbols, or employing differential encoding of.. The decorrelating matched filté&' leads to exact channel

identification in the absence of noise. However, it has the draw-
back of noise enhancement whetis ill-conditioned. A remedy

If arbitrarily placed pilot symbols exist is;, the above least is to use a regularized decorrelating matched filter given by
squares problem can be amended.d;dte partitioned into two

B. Semiblind Channel Estimation

-1

subvectorss;  containing the pilot ans;, the data. We partition F=(T/T+0I) T 9)

U; accordingly inU; andU;,. The least squares estimator of - . .

h; is given by Such a front end does not eliminate multiaccess interference,

and the derivation of the channel estimator is now an approx-
imation. It does improve the performance at low SNR in our
simulations.

A simple matched filteF = TH can also be used with the
The above optimization does not have a closed-form soluticadgorithm. This introduces a bias to the estimator, and our sim-
Simple iterative schemes can be applied. We note that for a fixeldtion shows indeed a performance floor as the SNR increases.
h;, the optimal choice of;, is s8], = h{'U;, /||h;||>. This leads
to the following iteration given the estimate[k] at the kth

h; = argmin||U;, — hs] |3 + ||U;, —hs" [}, (7)
h,s

E. Multirate, Multicode, and Multiple Antennas

iteration: To facilitate multimedia applications, third-generation wire-
less systems may employ multirate and multicode CDMA. A
§LTi (k] = ﬁf{ [k']Uid/Hfli [k]||2 multicode system assigns multiple codes to the same user. This

. is equivalent to the unicode case with multiple users having the
h[k + 1] = argmin ||U;, — hs] || +[[Us, —hs{[k]lI}  same multipath channel. Suppose that a set of codgs i &

" I} is allocated to a particular user with chanhelAfter decor-
which is equivalent to treating , [k] as known data. One can, offelation, the channel and symbol estimation problem reduces to
course, make hard decisions &n[k] for further enhancement.

Other iterative techniques can also be applied [17]. h = arg maxg? (Z RL.) g.
llgll=1 il

C. Whitened Estimator This effectively increases the number of samples available for
The symbol estimator given in (6) is the standard maximutie estimation of the channel. (The same situation occurs for
ratio combining of signals from different RAKE fingers. It isestimating downlink channels if the mobile user has the knowl-
not optimal even ifh; is perfect because it does not take intedge of multiple spreading codes.) In WCDMA, for example,
account that the vector noise process is colored both i in-phase and quadrature components are transmitted with dif-
and in its components. If we ignore the coloringrinthen a  ferent channelization codes followed by aperiodic spreading. It
simple whitening approach can be applied. We know, from (3% without loss of generality to treat the in-phase and quadra-
that ture components as signals from two different users with dif-
ferent spreading codes but with the same propagation channel.
n;, ~N(0, 0*%;,) The spreading codes for the in-phase and quadrature part are
known and, therefore, can be used in the channel estimation.
where X;,, is the L; x L; submatrix obtained from the Multirate transmission can be accomplished in several ways
(X921 M;) + nth diagonal block off"(T*)#. The whitened by using multiple spreading gains or variable chip rates. In both
RAKE receiver is given by cases, only the decorrelating matched filter needs to be modi-
fied, and the channel estimation and symbol detection algorithm
$in = WISy, (8) applies directly.
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Only minor changes are necessary when the proposed algazhannel is not identifiable can be made arbitrarily small by
rithm is applied to multiple receiving antenna systems. The rigcreasing the size of the data block.

ception at thenth antenna is given by Among the few identifiability results for long-code CDMA,
Xu and Tsatsanis [10] presented a rank condition of a certain
y" =TH"s +w™. matrix constructed from the spreading codes. The identifiability

condition, however, is shown using an asymptotic argument and
The same decorrelating matched filter is applied at each anteimnaot applicable to finite sample cases. The approach by Weiss
element. The channels can then be estimated either separaely Friedlander [12] requires the invertibility of the code ma-
per antenna element or jointly by exploiting the fact that all havéx after chips containing intersymbol interferences have been
the same symbol sequence. The same rank-one decompositiamoved. If this condition holds, the one presented in Theorem

is used in both cases. 1 is automatically satisfied but not in the reverse direction.
IV. IDENTIFIABILITY V. EFFICIENT IMPLEMENTATIONS
We have so far assumed that the code mafishas full ~ The code matrixT can be large; aK-user synchronous

column rank and is therefore invertible from the left. Thisystem with spreading gain o and L multipath fingers
assumption is usually valid for systems with large spreadifigr each user and/ symbols in each slot will have a code
gains. Under this assumption, it is clear that each user’s chanfeitrix of size approximatelg# A/ x M K L. The complexity of
is identifiable up to a scaling factor. A single pilot symbofirectly invertingT is of orderGM?® K> L?, and the complexity
will be sufficient to remove the scalar ambiguity. Singularit@f applying the inversél'" to a vector is of ordetzM?K L.
does occur when the spreading gain is small and the syst#hcontrast, the standard matched-filter front-€Bd has a
is heavily loaded. Even if the case of having singularis complexity of GM KL because only a fraction/M of all
rare, it remains of theoretical interest to investigate whethentries of T are nonzero.
the channel is still identifiable, and if not, how many known Our goal in this section is to obtain orders of magnitude
symbols are necessary and how to place these known symbégsiuction in computation and storage requirements. This is
We now present an identifiability result that is more generaiccomplished by performing the inversion using time-varying
than existing conditions. The condition is independent of ttgate-space techniques.
channel parameters and can be checked easily offline, and agh summary, for the synchronous case, our method will have
propriate measures can be taken if it is not satisfied. More sgcomputational complexity of the ordé&tM K2 L?, which is
nificant, perhaps, is that it decouples the identifiability of a palinear in terms of the number of symbols in the slot and is at
ticular user from that of others; one user’s channel may be idéhe same level of complexity as required for a decorrelating re-
tifiable even when those of others are not. The proof of the fateiver in the short-code case. The reduction of applying the in-
lowing theorem gives the algorithm that identifies the channegrse is also substantial. B' has already been obtained, then
when the identifiability condition holds. the amount of computation required to apfily is of the order
Theorem 1: Let T;,, be the code matrix of useéfor symbol GM K L. The computational complexity can be reduced further
n andT;, the submatrix off' after removindT;,,. The channel by exploiting the Toeplitz structure of the blocksBf

h; of useri is identifiable if there exists an such that The complete theory behind the approach taken here is avail-
able in [2], and presentation here is focused on the basic con-
R{Ti} ﬂ R{T:n} = {0}. (10) cepts applied to the specialized model.

Proof: If (10) holds for some, then the range space ofA. State-Space Representation of a Matrix
T can be decomposed into the sum of two subspaces, i.e., ther€onsider an input signal and output signay = Tu, with
exists a matrixV- with rank('T) — rank(T;,,) linearly indepen- arbitrary block-partitioning
dent columns such that r r
u:[ulT,...,u%] , y:[le,...,yﬁ] .

R{[Tw V]}=R{T}. L . . .
{l I} {1} The partitioning introduces the notion of “time” or a stage in a

computational procedure. The blocks do not need to be of equal
size, and some can even be empty dimensional, which represents
the absence of the corresponding input or output at that point in
time. A matrix or vector with a zero dimension is denoted by

LetT 2 [T;., V].Ify satisfies (1), and there is no noise

Ty = | hisin “.” (see Section I-C).
* A time-varying state-space realization pf= Tu has the
form
which implies thath,; is identifiable up to a scaling factor from
'j:‘Ty m { Xp4+1 = Aan + Bnun
Because (10) only needs to hold for somehe use of long Yn =C,x, +Dnu,

COd_eS in CDMA makes the identifiability condition .e_aSier 1O sNote that the partitioning here is not necessarily the same as the one used
satisfy. For randomly generated codes, the probability of that(3).
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Xn

&
U, D, Yn
B, A,

Xn+1

Fig. 3. Time-varying state-space representation at time instant

or equivalently

Xn n / An Bn
et ol Bl P
Yn u, C, D,

wherex,, is a state vector that carries information from one stage
of the computation to the next. A graphical representation of
this is shown in Fig. 3. The state-space realization specifies a
mapping ofu to y, which is necessarily causat,, does not
depend o, 4. Itis assumed that the realization starts at time
1 with x; =. (or no state) and ends at tindé again with state
XN41 = Hence A; =., Ay =.,C; =, andBN =,

Consider first an arbitrary x L matrix T, with rowstZ. A
(trivial) realization that modelg = Tu is obtained by setting

u; = u,up = --- = uy =. (i.e., the complete input vector is
entered at time 1), and
[Al Bl} {. I] [AN BN} { . .]
Cl Dl B . t{l ’ CN D]V B t% .

A, B, I .

[ }:[ ] n=2 ... N-1

C. D, th o,

The structure of the realization is shown in Fig. 4.

As a second example, 1&F = [T T®)] be an ar-
bitrary block-partitioned matrix, wherél') has realiza-
tion {AYY, B, ¢, D}, and T® has realization
(A, BY, ¢, D},

Then, T has realization

ALY o0 B 0
2 2
T, = | 0 AP ‘ o BY

Cg) ng) ’ Dg) Dg)
The structure of the realization is shown in Fig. 5
The code matrif’ in our case has a block structure as sho

I L Tt —
in Fig. 2. By combining the two examples, we can represefciors'T' = R™ ! :
tion can be done in state-space by the following recursion.

For givenY,, 1, consider the (economy-size) QR factoriza-

any code matrixT’, irrespective of the processing gaifs, off-
setsD;, channel length4.;, and number of symbol&/; (these
can be different for each user). The number of state-space ti
points N is equal to the number of rows &f. For users with
equal parametersy = GM + L — 1. Each state-space stage
has one (scalar) output. The input vector is partitioned in blocks
of L, entries that enter the system at appropriate time points
and are determined by the starting points of the individual code
blocks. The state dimension at each time point is (usually) the

1647

tf

u < Y1

tH o
— - = »2

4
] —>> 3

a
. — = y4

Fig. 4. Computational network fgr = Tu.

ys

—> Y6

Fig. 5. Computational network féF = [T(1) T®)].

B. QR Factorization in State-Space

Consider a matrixT with realization {A,,, B,,,C,,
D,,}Y_,. Assume thafl is “tall” and full column rank T2 T
is full rank). To compute the left inversE', our aim is to first
compute a QR factorizatiof = QR, whereQ”Q = I and

wh is square and lower triangular, and then to invert each of the

R~'Q". The computation of the QR factoriza-

Yoi1An Yn+1Bn} 5L,
C, D,
AQ B?1 [Y. O
* los ool lei or)
(11)

number of nonzero entries in the corresponding ro@ ¢fewer whereQ,, is “tall” and isometric Q” Q,, = I), andL,, is lower

if the row contains the start or end of a block).

4with abuse of notation, we redefine the meanindIbf in this section as

triangular and full row rank (hence “wide” and possibly in stair-
case form). Subsequently, partitidn, as indicated, such that

R
compared with (1). In this sectiom, denotes the chip index of the sample ¥ » &nd A, have the same number of columds,” andD,,

vector y.

have the same number of columns, dDff has full row rank.
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T=Qy--QRy-Ry T = §y--§,Q7--Qlf
R S
uy 1 Q: Vi y1 7 1 w
i
R S
u, 2 Q V2 v, = 2 o
2
R S:
uj3 2 2 Y3 Y3 Y 2t u3
3
S,
w R4 Qs Va Va & 4 w
4
R S
us 5 Qs vs vs < s us
S
(a) ()

Fig. 6. Inversion. (a) Structure of the QR factorization. (b) Structure of the inverse. Note that the inverse is not causal.

Q.. is partitioned accordingly. Note that it may happen fifat Proof: Note thatRu = y < Sy = u; hence,S mapsy
orDZ is zero dimensional. As a consequence, the indicated “® u. SinceS is lower triangular (causal)
entry aboveDZ may vanish as well. AR R

The recursion is started bY .1 =. and is computed for {X”“ = Anxn + Byun
n=N,N—1,...,1inturn. yn  =Clx,+Dlu,

Theorem 2: Consider a matrixC of full column rank, and <
carry out the recursion (11). Thel, = QR, whereQ is spec- Xni1 = APx, + Brlj(_[)f}" CEx, + DR Yn)
ified by the realizatiof A%, B, C%¢, D%} andR by the re- R R R
alization{A,,, B,,, CE, D}, U =-Dy Cxn 4+ Dy oy

All D! are square, lower triangular, and invertib@gis iso-  Invertibility of R guarantees that alDf are square and
metric Q7 Q = I), andR is lower triangular and invertible. invertible. [ |

Proof: See the Appendix. Theorem 4: Suppose tha) is an isometryQ” Q = I) with

The structure of the corresponding factorization is shown iralization

Fig. 6(a). In the recursion, the occurrence @#, which is not AQ B¢

square, indicates thdtis not of full column rank. The recursion Q. = [CQ DQ} ) n=1,..., N

can still be continued (and we obtdih = QR), butR is not " "

square and invertible but wide. where allQ,, are isometric. TherQ has a left invers@ with

Note that in our applicationA,, andB,, are trivial: embed- ananticausalstate-space realization

dings of identity matrices of appropriate sizes. Hence, the mul- AQT Q"
tiplication byY,, 41 is trivial, and the only actual work in (11) is Q7 = " " n=1,...,N. (12)
the QR factorization. Sinc¥,, 41 is triangularandC,, D,,] isa B? D@

single row, the QR factorization can be efficiently implementeghg aniicausal realization in (12) corresponds to the equations

as aQR update18]. (backward recursion)
C. Matrix Inversion via State-Space x, =A%, +C"u, NN ,
n=N,N—-1,...,1.
Theorem 3: Suppose thaR is a square invertible lower tri- |y, =B%2"x,,; + D2 u,

angular matrix. Then, its inverse is also lower triangulaRIf
has state-space realization

AR BE
CE DR}’ "

The state-space realizationsandQ¥ are obtainedbcally
for every state matriR,,, andQ,, independently.

The preceding theorems can be used to invert more general
matrices, in particular, the code matfix After deriving a state-
space realizatioA,,, B,,, C,,, D, } of T, compute the QR
thenS 2 R-! has state-space realization factorizationT = QR in state-space, and invert each of the

factors in state-space. This provides an implementati@{ of
N SQinfactored form, althougf'?, R, andQ are never explic-
itly evaluated. The first factor is causd (s lower triangular)

R, - | 1N

AR _ BRDR” CR BRDR”
S,n — n ’n._l n n n 17,1 . /]’L
-pficl Df
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and the second anticaus&{ is upper triangular). The struc- T. T”
ture of the computational network is shown in Fig. 6(b). As is H .
seen from this structure, the “complexity” @ and T is the
same, even i is a full matrix (i.e., with mixed causality). S ]

_ T e
D. Complexity

For our application to code matrix inversion, we study the xn
complexity of this solution in more detail. Consider a code ma- ~<r S,
trix T (refer to Fig. 2). The complexity of directly computing R AL T ¥
Tu is on the order of the number of nonzero entrie§ofThe -
complexity of computinglu in state-space is precisely the same T
if we do not count the multiplications bi,,, B, (since these N H
are embeddings of identity matrices). The storage requirement 0 G ol
is also equal to the number of nonzero entries (not counting the - L
identity matrices). For users with equal parameters, this number
is on the order oM KL.  —eeepees i
We now look at the complexity of the factors®f= QR (in NS Pt

state-space). Each factBr,, has the same or less nonzero en- 0 A P
tries as the correspondifi,,. The(AZ, BE) pair is the same =
as forT,, (identity matrices) and does not count for the com- S A .
plexity. Storage folR requires at most the same number of en- : Nz :

tries as storage fdr'.

In contrast, each factd,, has full state-space descriptions
but can be specified by a small number ofX22) Givens ro- ) - .
tations: on the order of the number of nonzero entriegpf E- Computation ot *T and TT
if the QR factorization (11) is implemented as a QR update In the computation of the noise covariance, expressions for
[18]. Hence, we recommend storage@fin implicit (factor- THT andTT# are needed.
ized) form by storing the Givens rotations. The storage require-Theorem 5:Let T be a block-lower triangular matrix
ment is then on the order of nonzero entriedlofThe number with state-space realizatiogA,,, B,,, C,,, D,,}. Consider
of nonzero entries of each, is on the order o L, and there M = THT. A realization for the lower triangular part &
are N = G M stages, so that the complexity of computing this given by
QR factorization is on the order ¢t M (K L)?.

Multiplication by Q,, or Q can be carried out by applying M,, =
the corresponding Givens rotations. The complexity of applying BA,A, +DJC, B[JA,B,+D]D,
Q or Q* to a vector is, hence, the same as the complexity whereA,, is specified by the backward recursion
applyingT: on the order o7 M K L operations. Itisin our case " "
not needed to stol®; we can apply the Givens rotations directly An-1=ApAnAn + G C, n=N,N-1,...,1
to the observation vectgrwhile they are being computed in theinitialized by A y = .. Similarly, a realization for the lower tri-

Fig. 7. Computation ofT T

A, B,

backward QR iteration. angular part oN = TTH is given by

ForS = R, we also do not recommend the explicit forma- I I
. . . A, A, A, CY+B,D
tion and storage &,, since these have full state-space matrices. N, = n n
Rather,S,, can be applied implicitly by back-substitution from C. C.A.C] +D,DJ
R, forn =1, ..., N.The complexity and storage f8ris, in  whereA,, is now specified by the forward recursion
this case, the same as fAr. . .

In summary, the complexity of computing the state-space rep- An+1 = AnAnA7 + BB, n=12 ... N

resentation ofT'" is on the order ofGM (K L)? operations, initialized by A; = ..
which is linear in the number of symbols per udérand com- Proof: By inspection of Fig. 7, consider the mapping of

parable with the complexity of a decorrelating receiver in the, inputu,, and a statex,, to the corresponding outpyt, and
short-code case. The storage requiremerif'bin state-space new stateé o '

factored form is about two times the number of nonzero entries

in T, or orderGM K L. The complexity of applyindr'' to the Xnt1 = AnXn + Bty
observation vector is also ordét\ K L. This is the same as the Vn =(BIA,A, +DFC,)x,
complexity of applying the matched filtdf . In contrast, note n (BfAan n DfDn) u,

thatTT is a full matrix, withGM2K L entries. Computindf . o
directly requires orde€ M3 K?2L? operations, and applying it whereA,, is the transfer ok, 1 to x;,, ;. It satisfies
to a vector require§/ M2 K L operations. The benefit in com- H H

. . . . A, =A7 A, 1A, C ,Chi1.
plexity of using state-space representations is thus on the order 1 Ant 1 Angr + Cngr Cn
of M? and M, respectively. (A formal proof appears in [2, p. 366].) [ |
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The preceding recursions are useful in the computation of the VI. PERFORMANCEANALYSIS
noise covariance after the decorrelating matched filtew. i a
white noise vector with power normalizeddd = 1, andn =
T'w = (THT) 'THw, then the covariance af is given by

We present here a brief analysis of the proposed algorithm, fo-
cusing primarily on the bit error rate (BER) performance of the
whitened RAKE receiver. The analysis of the mean square error

E (nnH) _ (THT)—l _gsH (MSE) of the channel estimate can also be done using pertur-
bation techniques applied to the dominant eigenvector. Such an
whereT = QR, andS = R~'. A state-space realizationapproach, however, does not lend itself to insights, and hence,
{AS, BS, CS, D3} for S was derived before. Thus, Theorenwe defer the MSE evaluation to Section VII, where we com-
5 (applied toS) gives a recursion to compute a realization fopare the proposed channel estimator to the Cramér—Rao bound
the lower part o8S# . The upper part is simply the transpose (CRB) via simulations.

In the identification algorithm in Section 1lI-C, we are only There are no existing techniques for the BER analysis for
interested in the main (block)-diagonal Bfnn*) (the auto- blind multiuser detection of long-code CDMA due to two major
covariances of sizé&; x L;). In this case, it suffices to computeobstacles. First, blind detectors are functions of transmitted

. . symbols and noise realizations. The coupling between channel
E (nnnfl{) = C;A.C; +D;D; estimate and bit error makes the analysis intractable. Second,
existing blind multiuser detectors [7]-[12] usually have com-
plicated operations involving all users and their channels.

Apy1 = A,SlAnA;fH + BngH7 n=1,2 ..., N. The decorrelating matched filter algorithm separates users in

a deterministic and channel independent way, which makes the
bit error analysis local to each user. Yet, we still need to de-
F. Computation of the Regularized Front End in State-Spacecouple the transmitted symbols and the noise realization from

The approach presented in previous sections can also be U§&dblind detector. A reasonable approach is to analyze future
to implement the regularized decorrelating matched filter froffrors by first conditioning the analysis on a realization of the

where

endF in (9). In particular, letx = Fy. Then chz_:mnel (.astimaﬁon and evalgate_the BER.of incoming symbqls.
. This obviously is an approximation that, in our simulation, is
u= (TAT+0I) Ty shown to be accurate.
= (77T + O_QI)_l [TH ol [ﬂ A. BER of the Blind Decorrelating Rake Receiver

The BER is, in general, time varying in long-code CDMA.

T T Here, we calculate the bit error probability for binary phase
= { } y} . (13) shift keying (BPSK) signaling and average the error rate over
ol] [0 time. For useri, conditioned on the estimated chanie| a
Thus, if whitened RAKE receiver is applied io;,,, which is the output
of the decorrelating matched filter corresponding to us&he
[ T A \[2 QMRM whitened RAKE detector produces a detected symbol, from (8)
ol

. . L o Sin = sign{real{ﬁfz;}um}}
is an economy-size QR factorization fdd (where R* is

square triangular an@?! is tall and isometric), then _ . _
where %;,, is the L; x L; submatrix obtained from the
= (RM)—l (QM)H [y} . (Z;;ll M;) + nth diagonal block of T(TT)H. For a system
0 using BPSK with noise power spectral density? and bit

The QR factorization and factor inversion can be done in StﬁgergyEi for theith user, the conditional bit error probability

space, as before. Thusjs the output of a computational struc- OF the nth symbol is given by

ture similar to the one in Fig. 6(b). The only new aspect is the

derivation of a realization foM. This is simply obtained from -\ 2E;
Pr Sin 7& 5in|hi — Q Yin

the realization ofl"’ by extending theD-matrix by oT: o?
A, B,
whereQ(-) is the tail function of the Gaussian distributiband
M.=|c, D, |- n=1, ..., N. 7in IS the loss with respect to the ideal BPSK system
0 ol

As an aside, note that after channel estimation, in addition real{ﬁﬁz;lhi}
MMSE-type receiver¥ = (Hf THTH + ¢*I) " 'HY T can Tin \/m :
be constructed in this way, T is replaced byT'H. SinceH i Tin T
is block-diagonal, a state-space realization T is simply 5A standard notation in digital communication/ .
derived from that ofC'. We omit the details. 6Q(a) = (1/v2m) [ e=="/2 du.

12
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For perfect orthogonal codes, this reduces to the standard VII. SIMULATION RESULTS
single-user BPSK performance. The average BER for a block

o In this section, we present some simulation results. For
of M; symbols is given by

channel estimation, the MSE is used as the performance indi-

M, cator, and our estimator is compared with the CRB using Monte

1 Z ELQ | yin: [2E; (14) Carlo runs. For symbol detection, the BER is estimated using

M; Pt "V o2 Monte Carlo runs and compared with the analytical results.

We consider the following receiver algorithms.

TRR training-based RAKE receiver that uses a matched
filter front-end F = T¥) along with a training-

B. BER for the Matched Filter Detector based channel estimator;

blind RAKE receiver that uses the proposed blind

channel estimator with the matched filter front-end

(F = TH),

DRR decorrelating RAKE receiver that uses the decorre-
lating matched filter front-endK = TT) and the
proposed blind channel estimator;

RDRR regularized decorrelating RAKE receiver that uses

] ] ) ) the regularized decorrelating matched fil&r =
Next, the output of the matched filter is combined using the (THT + 021) ' TH.

estimatedﬁi to form the detection statistic

P, =

where the expectation is taken overhll

. .. BRR
We contrast the performance with the standard matched filter
approach that assumes perfectly orthogonal codes. Specifically,
givenh; then, to detect bi;,,, a matched filter with; fingers
is first applied to the received signgl
rim =THy = THTHs + TEw.

mn

A. Setup

Because our model is deterministic, the simulations use a
fixed channel and fixed spreading codes. Where we evaluate the
where MSE of the channel estimator, the transmitted symbols are also

. fixed. In evaluating the BER, channels and spreading codes are
Qi = real{hiH TgTinhi} fixed, and the transmitted bits are generated randomly in each
Monte Carlo run. The performance would vary with different
channel and spreading parameters, but the qualitative behavior
remains the same in various trials. Specific parameters used in
the simulations can be found in [16]. All plots shown in this sec-
. tion are based on 1000 Monte Carlo runs.
Nin = real{hﬁTgw} . We consider cases of two and five asynchronous BPSK users
with equal power. The spreading codes are generated according

bin(s, h;, h) contains the intersymbol and multiaccess interfefo the WCDMA standard with spreading gath= 32, and the

Zin = fea|{flf{rin} = QinSin + bin(s, 1y, h) + 7iy,

bin(57 fli? h) =real Z ljltHT{ikathmk
n#k or m#i

ence, andy;,, contains the noise distributed as code index was selected randomly for each user. The channel
for each user hag = 3 fingers. The relative delay offsets for
Nin ~ N(0, 62)) 52 A1 2{HpHm . the two user and five user case dpe= [0, 23] chips andD =
m s Yain /s n 2 7 in +~intli-

[0, 17, 3, 8, 23] chips, respectively. The slot sizedld = 50

If the detector assumes that the codes are orthogonal andthaf%nébms’ and one pilot symbol is included at the beginning of

channel estimate is perfect, then the detected symbol is given %()lelot of each user. The pilot symbol is used to remove the

R " B ing ambiguity of the blind estimator. The signal-to-noise
$:n = sign{z;, }, and the error probability, conditioned on otheP % . :
symbols g{nd t%we estimated channel, is given by ratio (SNR) was defined by, /o2, where the bit energy, =

’ G||h||*E., E. the transmitting chip energy, ard is the chip

A ~ . ) noise variance (or the noise power spectral density).
P‘n|1:11-,s =Pr (Sin # szn|hz Smk, T # Z k 7é TL)

. B. MSE and Cramér—Rao Bound
1, (oz,-m/Ei/GJr |bin(s, b, h)|>
T2

Oin

Figs. 8 and 9 show the MSE performance for two and five
asynchronous users, respectively. The MSE performance has

. 1 0 (am\/m — |bin(s, i, h)|> the same trend for both cases. We observe that the methods
5 p

based on the conventional matched filter front-end (TRR and
BRR) have a performance floor caused by multiaccess inter-
} ference. The decorrelating RAKE receiver (DRR), on the other

Oin

(15) hand, tracks the CRB. However, the gap of DRR to the CRB
increases with the number of users. For the five-user case, the
conventional matched filter with the proposed blind channel

where the expectation is taken oweandh,;. estimator (BRR) shows a better performance than that of DRR

n

B é {Z Pin|lai,s



1652

10
SNR[dB]

Fig. 8. Channel estimation error (MSE) versus SNR: Two users.

MSE
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Fig. 9. Channel estimation error (MSE) versus SNR: Five users.
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Fig. 10. BER versus SNR: Two users.
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- BRA
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—— RDRR with known channel
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SNR[dB]

Fig. 11. BER versus SNR: Five users.

performance of DRR is close to that of RDRR because the
code matrix in this case is well conditioned. BRR shows a
comparable performance at low and medium SNR since it
has a reasonably accurate channel estimate, and the corre-
lation with the spreading codes( = 32) averages out the
other users interference effectively in less-severe multiaccess
interference environments. We also observe that the theoretical
BER calculations (14) and (15) are close to the performance
obtained via Monte Carlo runs, indicating that the assump-
tions made in Section VI-A are accurate. As benchmarks, we
show the performance of receivers with knowledge of the true
channel.

Fig. 11 shows the average BER performance for five users.
The performance floors of TRR and BRR are expected and
caused by multiaccess interference. We observe that RDRR has
an appreciable gain over DRR. As in the MSE simulation, BRR
performs better than DRR at low SNR due to the noise enhance-
ment effect of DRR. As the SNR increases, however, DRR out-
performs the matched filter RAKE.

VIIl. CONCLUSION

In this paper, we considered the problem of channel
estimation and symbol detection for long-code CDMA. There
are two main contributions. One is a new blind channel
estimation and symbol detection algorithm. The technique can
be easily amended for semiblind estimation, and it requires a
small number of samples. This makes the technique suitable
for rapidly fading environments. The proposed approach uses
the RAKE structure, which makes it possible to apply our

at low SNR. The reason is that as the system becomes heayilyorithm to a subset of users in a group estimation setting.
loaded, the condition number of the code matrix increases, andrhe second contribution is an efficient implementation of
the decorrelating matched filter enhances the noise. The ysg decorrelating receiver using time-varying state-space tech-
of regularized least squares front-end ameliorates this effegyues. This part is critical if the decorrelating RAKE is to be
as shown in Figs. 8 and 9. We note that the regularized legsk( in practice.

squares front-end introduces 'bias to the estimator, which ex-e algorithms do not rely on statistical ergodicity nor on
plains that the MSE of the estimator is lower than the CRB &f,chronization among the users but do assume that the codes

low SNR.

C. BER Comparison

of all users are known, as well as their delay offsets. This is
often the case in the uplink of a mobile communication system,
where there is a separate “finger searcher” that identifies dom-

Fig. 10 shows the average BER performance for the two-useant multipaths. It should thus be straightforward to apply the
case. The TRR performs worst, especially at high SNR. Tipeoposed techniques in practical systems.
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APPENDIX YniiAy ‘ Yni1By
PROOF OFTHEOREM 2 . Ty g T
Lemma 1:Let be given a time-varying realizatidl,, =
{A,, B, C,, D} of T. Then, T = Ty ---T,T;, where Cy Dy
T, is an embedding dT’,, Yy 0
A, B, I
I =
I
= A
T, = I
Cn D, -CN Dy
I [AN-1 By-1 ]
L I] . .
Ty_o---T
(There aren — 1 and N — n identity matrices in the diagonal
sequences, respectively.) Moreover, matriis block-lower tri- Cn_1 Dy_;
angular and has the form I
Dl -YNAN—I YNBN—I
CyB, D, I
T =
CnAn_1---AyB; CnyBy_1 Dn (16) Cnyn_1 Dy_1
| CEAN_, CkBy_; D%
Conversely, if a matrisT has this form, then it has a state-space . .
realizationT,, = {A,, B,, C,, D, }. -Ty-2--- Ty
Proof: The proof is by direct verification by applying the
given factorization to the vectar = [sju7.w7. . wz]" (Where i
. representsc;) and computingy = [o7.v7..,7]" (where, e subsequently obtain
represents1). To verify (16), multiply the factors, and use
Al =., Ay =.,C :.,andBN .. . - QH QHT
_ Proof of Theorem 2:Recall the factorizationT = N-1'%N
TyTxn_1---T1, and consider the first factol'y. Since Yn_1 0 7
Ay =.By =., andYN+1 =
1
T |:AN BN:| [YN+1AN YN+1BN =
N = = .
Ci DY
R R R
The first step in the recursion is the QR factorization LCNAN-1 CyBy-1 Dyl
TAn_2 By_» T
H
o, [A% B¢ [YNHAN YN+1BN} 1
N — Q Q . B ~ ~
CY% D% Cn Dy Cn oo Dnr_s “Tn_z-- Ty
. |:YN 0 :| I
ci DE L 1l
. — Yn_1An-2 Yn_1Byn_2
PremultiplyingT by QX gives
_ I
AQ BY1H Cn_2 Dny_>
~ N N C§—1AN—2 C%—IBN—2 D%—l
QNT = | CRAN_1AN_»| CRAN_By_, CEBy_; D%

-Ty_3---Ty.
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Following the recursion this way, we finally obtain [11] C.Escudero, U. Mitra, and D. Slock, “A Toeplitz displacement method

Q-

Note thatA; =. so that the first column has zero width.

for blind multipath estimation for long-code DS/CDMA signaltfEE
Trans. Signal Processingol. 48, pp. 654—665, Mar. 2001.
. Q%T [12] A.Weiss and B. Friedlander, “Channel estimation for DS-CDMA down-
link with aperiodic spreading codesEEE Trans. Commurnvol. 47, pp.
r Y, 7 1561-1569, Oct. 1999.
[13] T. P. Krauss, W. J. Hillery, and M. D. Zoltowski, “Downlink specific
CR DR linear equalization for frequency selective CDMA cellular systerds,”
1 1 VLSI Signal Processvol. 30, pp. 143-161, 2002.
CRAl CRB1 DE . [14] C.D. Frank, E. Visotsky, and U. Madhow, “Adaptive interference sup-
2 2 pression for the downlink of a direct sequence CDMA system with long
spreading sequences]” VLSI Signal Processvol. 30, pp. 273-291,
2002.

R R R [15] S. Buzzi and H. Poor, “Channel estimation and multiuser detection in
LCNAN-1- AL ICNAN_1---A2By - - Dy long-code DS/CDMA systemsJEEE J. Select. Areas Communol.
19, pp. 1476-1487, Aug. 2001.
[16] L.Tong, A.van der Veen, P. Dewilde, and Y. Sung, “Blind decorrelating
rake receiver for long-code WCDMA,” Cornell Univ., Ithaca, NY, Tech.

Hence,Y; =. (since theY, are wide), and in addition, the Rep. ACSP-02-01, Feb. 2002.
first row has empty dimensions. It follows that [17] E.de Carvalhoand D. Slock, “Semi-blind methods for FIR multichannel

estimation,” in Signal Processing Advances in Wireless and Mobile
Communications: Trends in Channel Estimation and Equalizai®n

~NH ~NH Giannakis, Y. Hua, P. Stoica, and L. Tong, Eds. Englewood Cliffs,
Q' ---QNT g [¢]

This

Lemma 1 shows thaR = Ry ---R; so thatR has the ad-
vertised state-space realization. Sifites full column rank, all
DZ are square and invertible so tfatis square and invertible.

Qis

(1]
(2]
(3]

(4

(5]

(6]

(7]
(8]

El

[10]

NJ: Prentice-Hall, 2001.
D{% [18] G.GolubandC. V. LoariMatrix Computations Baltimore, MD: Johns
R R Hopkins Univ. Press, 1990.
CEB, D&

CﬁAJ\u1-~-AQB1 Dﬁ

; Hp _ i i .
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