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Abstract—The problem of blind and semiblind channel estima-
tion and symbol detection is considered for long-code wideband
code division multiple access (CDMA) systems, including systems
with multirate and multicode transmissions. A decorrelating
matched filter, implemented efficiently in state-space, eliminates
multiaccess interference and produces a bank of vector processes.
Each vector process spans a one-dimensional (1-D) subspace
from which channel parameters and data symbols of one user are
estimated jointly by least squares. A new identifiability condition
is established, which suggests that channels unidentifiable in
short-code CDMA systems are almost surely identifiable when
aperiodic spreading codes are used. The decorrelating matched
filter is implemented efficiently based on time-varying state-space
realizations that exploit the structure of sparsity of the code ma-
trix. The mean square error of the estimated channel is compared
to the Cramér–Rao bound, and a bit error rate (BER) expression
for the proposed algorithm is presented.

Index Terms—Aperiodic spreading sequences/codes, blind and
semiblind multiuser detection, channel estimation, decorrelating
matched filter/RAKE receiver, fast algorithms, identifiability con-
ditions, long-code wideband CDMA.

I. INTRODUCTION

A. Problem and the Approach

WE CONSIDER the problem of joint channel estimation
and symbol detection in a long-code wideband code

division multiple access (CDMA) system that has features
of third-generation wireless. The scrambling sequences are
aperiodic, data and control information may be modulated
separately onto the in-phase and quadrature parts of the signal
using different channelization codes with different spreading
gains, pilots are often part of the control symbols, users may
have different spreading gains, or multiple channelization codes
may be assigned to the same user. For uplink applications,
users are asynchronous, and their multipath channels may have
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Fig. 1. Receiver structure. The decorrelating matched filter is implemented by
an efficient state-space realization.

delays longer than the symbol period. Multiple antennas may
be used.

RAKE receivers are widely used in both uplink and down-
link CDMA systems. If the spreading codes have good cross-
and auto-correlation properties, the matched filter front-end
suppresses multiaccess interference, and the RAKE receiver
captures multipath diversity through its diversity branches (or
the RAKE fingers). For high-rate CDMA under frequency
selective fading, however, code orthogonality can not be
guaranteed, and the conventional RAKE receiver that uses a
bank of matched filters may perform poorly. The loss of code
orthogonality has adverse effects on both channel estimation
and symbol detection, and the performance degradation is
especially pronounced when the network is heavily loaded and
power control imperfect.

In this paper, we propose a joint channel and symbol esti-
mation scheme for RAKE receivers. As illustrated in Fig. 1, a
decorrelating matched filter projects the received chip-rate se-
quence into the signal space of each user whose channel
and data sequence can be estimated jointly and independent of
other users by least squares via a rank-one decomposition. The
decorrelating matched filter does not depend on channel coef-
ficients and may be precomputed for certain applications. The
proposed scheme imposes no conditions on channel parameters
and is capable of dealing with rapid multipath fading. We also
establish a new identifiability condition that depends only on the
spreading codes used in the system but not on channel param-
eters. Implied by this identifiability condition is that aperiodic
spreading codes enhance channel identifiability; channels not
identifiable in short-code CDMA are almost surely identifiable
in a long-code system.

A key contribution of this work is an efficient implementa-
tion of the decorrelating matched filter. The idea of using the
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decorrelating matched filter for short-code CDMA is known [1],
but applying it to long-code CDMA presents a daunting task
in terms of both computational complexity and storage require-
ments. A direct implementation for a ten user system—each has
three multipath fingers with a 100-symbol slot and a spreading
gain of 64—amounts to inverting a code matrix of size around
6400 3000. The code matrix, fortunately, is highly structured
and sparse; only 1% of its entries are nonzero. The inverse of
the code matrix, however, will in general lose the structure and
the sparsity. In this paper, we use the extensive theory and algo-
rithms developed by Dewilde and Van der Veen [2], who consid-
ered the inversion of infinite size structured matrices. The idea
is to replace the code matrix by a time-varying state-space real-
ization and implement the inversion locally in state-space. For
cases where precomputation of the code matrix is possible, our
approach has the same level of online computations and storage
requirements as that of the conventional matched filter. If the
inversion of code matrix must be performed online, we are able
to reduce the computational complexity to the same level as that
required in the short-code case.

B. Related Work

A blind two-dimensional (2-D) RAKE receiver for long-code
CDMA was first proposed by Zoltowskiet al. in [3] and further
developed in [4] and [5]. Their approach is perhaps the earliest
blind multiuser detector applicable to long-code CDMA. There
are similarities between their approach and the one presented in
this paper; both use the RAKE concept. The differences, how-
ever, are substantial. Zoltowski’s two-dimensional (2-D) RAKE
uses a conventional matched filter as the first stage, followed
by post processing to mitigate multiuser interference. We use a
decorrelating matched filter to separate users up front and per-
form single-user optimal RAKE combining as the second step.
The channel is estimated via a matrix pencil technique based
on second-order statistics by Zoltowskiet al.We use determin-
istic least squares, which has the advantage of requiring a small
number of samples. The implementation of our approach is also
considerably simpler because of the state-space technique that
exploits the special structure of the code matrix.

Blind channel estimation and multiuser detection for
long-code CDMA has been considered by a number of
other authors. Iterative techniques based on maximizing the
likelihood function [6], [7] and least squares [8] have been
proposed. These are high-performance techniques but also
have well-known drawbacks such as ill convergence and high
complexity. They are best complemented by initialization
techniques such as the algorithm developed in this paper.
In addition, in the literature, we have second-order moment
techniques based on the uncorrelated or i.i.d. assumption of
the spreading code or the symbols [3], [4], [9]–[11]. These
techniques rely on the convergence of time averages to statis-
tical averages, which often requires hundreds to thousands of
symbols. The work of Weiss and Friedlander [12] is perhaps
the closest to our approach, although they focus on down link
applications. They assume that multipath delays are limited to
a small fraction of a symbol interval. By dropping samples that
contain intersymbol interference, they propose to invert the (re-
duced) code matrix followed by a different subspace algorithm

and an iterative likelihood maximization. Their assumptions
imply that their algorithm is not applicable to systems with
asynchronous users and long multipath delays. Other related
approaches include the use of chip-level equalization. See, for
example, [13], [14], and references therein.

C. Notation

We will use the notion of zero-dimensional vectors and ma-
trices. In particular, a matrix or a vector with zero dimension is
denoted by “.” Normal multiplication and addition rules apply
to zero dimensional matrices. Specifically, if has size

and has size , then is a matrix of size
with all entries equal to 0 (since its rank has to be 0).

Other notations are standard. Vectors and matrices are written
in boldface with matrices in capitals. We reservefor the iden-
tity matrix of size (the subscript is included only when nec-
essary) and for the zero matrix. For a random
vector , is the statistical expectation of. The notation

means that is (complex) Gaussian with mean
and covariance . Operations and indicate trans-

pose and Hermitian transpose, respectively. Given a matrix,
is the range space of matrix, the Moore–Penrose

pseudo inverse, and the Kronecker product of and .
For a matrix (vector) , we use for the Frobenius norm
and for the 2-norm.

II. M ATRIX MODEL

Matrix models for long-code CDMA have been derived in
several papers, e.g., in [12] and [15]; hence, we will make only
a brief derivation.1

We assume that asynchronous users transmit linearly
modulated symbols. The transmission is slotted, and user
transmits symbols in each slot.
The symbol sequence from useris represented by the vector

. At the transmitter, each symbol
is spread by an aperiodic code vector with spreading
gain (length) , followed by a chip pulse-shaping filter. The
propagation channel of usercan be modeled by an equivalent
chip-rate finite impulse response , , where

can be viewed as the gain of theth finger of the user’s
multipath channel.

Because the channel is linear, we can first focus on symbol
from user transmitted in the th symbol interval and set all

other symbols and noise to zero. Let the received signal corre-
sponding to symbol be passed through a chip-matched filter
and sampled at the chip rate.2 All samples are put in a vector .
As shown in Fig. 2, is a linear combination of shifted (de-
layed) code vectors , where is the segment of chips of
user ’s spreading code corresponding to theth symbol. Each
shifted code vector is multiplied by theth fading coefficient

, and the channel response to is given by

1An algebraic derivation of the model based on Nyquist sampling is given in
[16].

2In general, sufficient statistics can be obtained by Nyquist sampling. The
derivation here will correspond to the even (or odd) subsequence of an observa-
tion sampled at twice the chip rate.
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Fig. 2. (Top) Structure ofT . (Bottom) Structure of the code matrixT.

Here, is the code matrix of userand symbol [see the top
part of Fig. 2], and is the multipath fading channel for user
. We assume that userhas a relative delay of chips with

respect to the reference at the receiver. One can view that each
column of corresponds to a discrete multipath component.
For example, the first column of is made of
zeros that model the relative delay of the first path with respect
to the reference followed by the code vector and additional
zeros that make the size of the total number of chips of
the entire slot. The second column of models the second
multipath component similarly. Note that for sparse channels,
the shifting of the code vectors does not have to be consecutive.

For user , the total received noiseless signal is given by

Matrix is the code matrix of user, and it does not depend
on the gains and phases of the multipath channel. Now including
all users and the noise, we have

diag (1)

where matrix is block diagonal with as the th block,
vector is a stacking of all symbol vectors, and is a vector
representing the additive Gaussian noise. The structure of the
code matrix is illustrated in the bottom part of Fig. 2. Note
that by allowing to have different sizes for different users,
we include cases where variable spreading gains are used.

We will impose the following assumptions.

A1) The code matrix is known.
A2) The code matrix has full column rank.
A3) The noise vector is complex Gaussian

with possibly unknown .
Assumption A1) implies that the receiver knows the codes, the
delay offsets , and the number of channel coefficientsof
all users. If is unknown, we may set it to 0 and model all
paths. is a model parameter, and its choice is often left to
algorithm designers. Since any channel coefficient is allowed to
be zero, one can overparameterize the channel to accommodate
channel length and delay uncertainties and pay a price for the
lack of modeling details. If we know that the channel is sparse,
it is more efficient to model the channel as separate clusters of
fingers. In that case, we assume that the approximate locations
of these clusters are known.

Assumption A2) is sufficient but not necessary for the
channel to be identifiable and for the proposed algorithm to
produce good estimates. When A2) fails, the channel may
still be identifiable, as shown in Theorem 1 in Section IV. In
practice, one may only include a limited number of dominant
interferers and significant fingers in the data model. In Sec-
tion III-D, we consider modifications of the proposed algorithm
applicable when the code matrix is singular.

III. B LIND AND SEMIBLIND DECORRELATINGRAKE

We present in this section a decorrelating RAKE receiver
that jointly estimates the channel and data of every user

independently. As illustrated in Fig. 1, we use a decorrelating
matched filter as a front-end to remove multiaccess interfer-
ence. Other types of matched filters can also be used, of course,
and are briefly discussed in Section III-D. We will present the
details of an efficient time-varying state-space implementation
of the decorrelating matched filter in Section V. We note here
only that the complexity of the decorrelating RAKE is compa-
rable with that of the conventional one.

A. Blind Channel Estimation via Least Squares

The output of the decorrelating matched filter is given by

diag (2)

where is the (colored) noise vector. Partitioninto
segments of length with as the th sub-
vector. The structure of in (2) implies that corresponds to
symbol of user and satisfies

(3)

Collecting all data for usergives

(4)

Treating and as deterministic parameters, we can define
the least squares problem
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and estimates of and (with an unknown scaling factor) are
found from a rank-one approximation of . In other words,
denoting

(5)

we obtain the least squares estimates

(6)

The solution is given as the dominant eigenvector of. The
scaling ambiguity in the above estimates must be removed by
either incorporating prior knowledge of the symbol, using pilot
symbols, or employing differential encoding of .

B. Semiblind Channel Estimation

If arbitrarily placed pilot symbols exist in , the above least
squares problem can be amended. Letbe partitioned into two
subvectors: containing the pilot and the data. We partition

accordingly in and . The least squares estimator of
is given by

(7)

The above optimization does not have a closed-form solution.
Simple iterative schemes can be applied. We note that for a fixed

, the optimal choice of is . This leads
to the following iteration given the estimate at the th
iteration:

which is equivalent to treating as known data. One can, of
course, make hard decisions on for further enhancement.
Other iterative techniques can also be applied [17].

C. Whitened Estimator

The symbol estimator given in (6) is the standard maximum
ratio combining of signals from different RAKE fingers. It is
not optimal even if is perfect because it does not take into
account that the vector noise process is colored both in
and in its components. If we ignore the coloring in, then a
simple whitening approach can be applied. We know, from (3),
that

where is the submatrix obtained from the
th diagonal block of . The whitened

RAKE receiver is given by

(8)

The channel estimator given in (6) is also affected by the
colored noise. However, this coloring is known and can be
whitened. Specifically, recall (4) and (5). We have

where is a known matrix. The channel can then be estimated
from the following modification which whitens the noise on:

D. Other Front-Ends

The decorrelating matched filter leads to exact channel
identification in the absence of noise. However, it has the draw-
back of noise enhancement whenis ill-conditioned. A remedy
is to use a regularized decorrelating matched filter given by

(9)

Such a front end does not eliminate multiaccess interference,
and the derivation of the channel estimator is now an approx-
imation. It does improve the performance at low SNR in our
simulations.

A simple matched filter can also be used with the
algorithm. This introduces a bias to the estimator, and our sim-
ulation shows indeed a performance floor as the SNR increases.

E. Multirate, Multicode, and Multiple Antennas

To facilitate multimedia applications, third-generation wire-
less systems may employ multirate and multicode CDMA. A
multicode system assigns multiple codes to the same user. This
is equivalent to the unicode case with multiple users having the
same multipath channel. Suppose that a set of codes

is allocated to a particular user with channel. After decor-
relation, the channel and symbol estimation problem reduces to

This effectively increases the number of samples available for
the estimation of the channel. (The same situation occurs for
estimating downlink channels if the mobile user has the knowl-
edge of multiple spreading codes.) In WCDMA, for example,
in-phase and quadrature components are transmitted with dif-
ferent channelization codes followed by aperiodic spreading. It
is without loss of generality to treat the in-phase and quadra-
ture components as signals from two different users with dif-
ferent spreading codes but with the same propagation channel.
The spreading codes for the in-phase and quadrature part are
known and, therefore, can be used in the channel estimation.

Multirate transmission can be accomplished in several ways
by using multiple spreading gains or variable chip rates. In both
cases, only the decorrelating matched filter needs to be modi-
fied, and the channel estimation and symbol detection algorithm
applies directly.
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Only minor changes are necessary when the proposed algo-
rithm is applied to multiple receiving antenna systems. The re-
ception at the th antenna is given by

The same decorrelating matched filter is applied at each antenna
element. The channels can then be estimated either separately
per antenna element or jointly by exploiting the fact that all have
the same symbol sequence. The same rank-one decomposition
is used in both cases.

IV. I DENTIFIABILITY

We have so far assumed that the code matrixhas full
column rank and is therefore invertible from the left. This
assumption is usually valid for systems with large spreading
gains. Under this assumption, it is clear that each user’s channel
is identifiable up to a scaling factor. A single pilot symbol
will be sufficient to remove the scalar ambiguity. Singularity
does occur when the spreading gain is small and the system
is heavily loaded. Even if the case of having singularis
rare, it remains of theoretical interest to investigate whether
the channel is still identifiable, and if not, how many known
symbols are necessary and how to place these known symbols.

We now present an identifiability result that is more general
than existing conditions. The condition is independent of the
channel parameters and can be checked easily offline, and ap-
propriate measures can be taken if it is not satisfied. More sig-
nificant, perhaps, is that it decouples the identifiability of a par-
ticular user from that of others; one user’s channel may be iden-
tifiable even when those of others are not. The proof of the fol-
lowing theorem gives the algorithm that identifies the channel
when the identifiability condition holds.

Theorem 1: Let be the code matrix of userfor symbol
and the submatrix of after removing . The channel
of user is identifiable if there exists an such that

(10)

Proof: If (10) holds for some , then the range space of
can be decomposed into the sum of two subspaces, i.e., there

exists a matrix with rank rank linearly indepen-
dent columns such that

Let . If satisfies (1), and there is no noise

which implies that is identifiable up to a scaling factor from
.

Because (10) only needs to hold for some, the use of long
codes in CDMA makes the identifiability condition easier to
satisfy. For randomly generated codes, the probability of that

a channel is not identifiable can be made arbitrarily small by
increasing the size of the data block.

Among the few identifiability results for long-code CDMA,
Xu and Tsatsanis [10] presented a rank condition of a certain
matrix constructed from the spreading codes. The identifiability
condition, however, is shown using an asymptotic argument and
is not applicable to finite sample cases. The approach by Weiss
and Friedlander [12] requires the invertibility of the code ma-
trix after chips containing intersymbol interferences have been
removed. If this condition holds, the one presented in Theorem
1 is automatically satisfied but not in the reverse direction.

V. EFFICIENT IMPLEMENTATIONS

The code matrix can be large; a -user synchronous
system with spreading gain of and multipath fingers
for each user and symbols in each slot will have a code
matrix of size approximately . The complexity of
directly inverting is of order , and the complexity
of applying the inverse to a vector is of order .
In contrast, the standard matched-filter front-end has a
complexity of because only a fraction of all
entries of are nonzero.

Our goal in this section is to obtain orders of magnitude
reduction in computation and storage requirements. This is
accomplished by performing the inversion using time-varying
state-space techniques.

In summary, for the synchronous case, our method will have
a computational complexity of the order , which is
linear in terms of the number of symbols in the slot and is at
the same level of complexity as required for a decorrelating re-
ceiver in the short-code case. The reduction of applying the in-
verse is also substantial. If has already been obtained, then
the amount of computation required to apply is of the order

. The computational complexity can be reduced further
by exploiting the Toeplitz structure of the blocks of.

The complete theory behind the approach taken here is avail-
able in [2], and presentation here is focused on the basic con-
cepts applied to the specialized model.

A. State-Space Representation of a Matrix

Consider an input signal and output signal , with
arbitrary block-partitioning3

The partitioning introduces the notion of “time” or a stage in a
computational procedure. The blocks do not need to be of equal
size, and some can even be empty dimensional, which represents
the absence of the corresponding input or output at that point in
time. A matrix or vector with a zero dimension is denoted by
“ ” (see Section I-C).

A time-varying state-space realization of has the
form

=

=
3Note that the partitioning here is not necessarily the same as the one used

in (3).
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Fig. 3. Time-varying state-space representation at time instantn.

or equivalently4

where is a state vector that carries information from one stage
of the computation to the next. A graphical representation of
this is shown in Fig. 3. The state-space realization specifies a
mapping of to , which is necessarily causal: does not
depend on . It is assumed that the realization starts at time
1 with (or no state) and ends at time again with state

. Hence, , , , and .
Consider first an arbitrary matrix , with rows . A

(trivial) realization that models is obtained by setting
, (i.e., the complete input vector is

entered at time 1), and

The structure of the realization is shown in Fig. 4.
As a second example, let be an ar-

bitrary block-partitioned matrix, where has realiza-
tion , and has realization

.
Then, has realization

The structure of the realization is shown in Fig. 5
The code matrix in our case has a block structure as shown

in Fig. 2. By combining the two examples, we can represent
any code matrix , irrespective of the processing gains, off-
sets , channel lengths , and number of symbols (these
can be different for each user). The number of state-space time
points is equal to the number of rows of. For users with
equal parameters, . Each state-space stage
has one (scalar) output. The input vector is partitioned in blocks
of entries that enter the system at appropriate time points
and are determined by the starting points of the individual code
blocks. The state dimension at each time point is (usually) the
number of nonzero entries in the corresponding row of(fewer
if the row contains the start or end of a block).

4With abuse of notation, we redefine the meaning ofT in this section as
compared with (1). In this section,n denotes the chip index of the sample
vector y.

Fig. 4. Computational network fory = Tu.

Fig. 5. Computational network forT = [T T ].

B. QR Factorization in State-Space

Consider a matrix with realization
. Assume that is “tall” and full column rank (

is full rank). To compute the left inverse , our aim is to first
compute a QR factorization , where and

is square and lower triangular, and then to invert each of the
factors: . The computation of the QR factoriza-
tion can be done in state-space by the following recursion.

For given , consider the (economy-size) QR factoriza-
tion

(11)

where is “tall” and isometric ( ), and is lower
triangular and full row rank (hence “wide” and possibly in stair-
case form). Subsequently, partition as indicated, such that

and have the same number of columns, and
have the same number of columns, and has full row rank.
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Fig. 6. Inversion. (a) Structure of the QR factorization. (b) Structure of the inverse. Note that the inverse is not causal.

is partitioned accordingly. Note that it may happen that
or is zero dimensional. As a consequence, the indicated “0”
entry above may vanish as well.

The recursion is started by and is computed for
in turn.

Theorem 2: Consider a matrix of full column rank, and
carry out the recursion (11). Then, , where is spec-
ified by the realization and by the re-
alization .

All are square, lower triangular, and invertible.is iso-
metric ( ), and is lower triangular and invertible.

Proof: See the Appendix.
The structure of the corresponding factorization is shown in

Fig. 6(a). In the recursion, the occurrence of a, which is not
square, indicates that is not of full column rank. The recursion
can still be continued (and we obtain ), but is not
square and invertible but wide.

Note that in our application, and are trivial: embed-
dings of identity matrices of appropriate sizes. Hence, the mul-
tiplication by is trivial, and the only actual work in (11) is
the QR factorization. Since is triangular and is a
single row, the QR factorization can be efficiently implemented
as aQR update[18].

C. Matrix Inversion via State-Space

Theorem 3: Suppose that is a square invertible lower tri-
angular matrix. Then, its inverse is also lower triangular. If
has state-space realization

then has state-space realization

Proof: Note that ; hence, maps
to . Since is lower triangular (causal)

=

=

=

=

Invertibility of guarantees that all are square and
invertible.

Theorem 4: Suppose that is an isometry ( ) with
realization

where all are isometric. Then, has a left inverse with
ananticausalstate-space realization

(12)

The anticausal realization in (12) corresponds to the equations
(backward recursion)

=

=

The state-space realizations ofand are obtainedlocally
for every state matrix and independently.

The preceding theorems can be used to invert more general
matrices, in particular, the code matrix. After deriving a state-
space realization of , compute the QR
factorization in state-space, and invert each of the
factors in state-space. This provides an implementation of

in factored form, although , , and are never explic-
itly evaluated. The first factor is causal (is lower triangular)
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and the second anticausal ( is upper triangular). The struc-
ture of the computational network is shown in Fig. 6(b). As is
seen from this structure, the “complexity” of and is the
same, even if is a full matrix (i.e., with mixed causality).

D. Complexity

For our application to code matrix inversion, we study the
complexity of this solution in more detail. Consider a code ma-
trix (refer to Fig. 2). The complexity of directly computing

is on the order of the number of nonzero entries of. The
complexity of computing in state-space is precisely the same
if we do not count the multiplications by , (since these
are embeddings of identity matrices). The storage requirement
is also equal to the number of nonzero entries (not counting the
identity matrices). For users with equal parameters, this number
is on the order of .

We now look at the complexity of the factors of (in
state-space). Each factor has the same or less nonzero en-
tries as the corresponding . The pair is the same
as for (identity matrices) and does not count for the com-
plexity. Storage for requires at most the same number of en-
tries as storage for .

In contrast, each factor has full state-space descriptions
but can be specified by a small number of (22) Givens ro-
tations: on the order of the number of nonzero entries of
if the QR factorization (11) is implemented as a QR update
[18]. Hence, we recommend storage ofin implicit (factor-
ized) form by storing the Givens rotations. The storage require-
ment is then on the order of nonzero entries of. The number
of nonzero entries of each is on the order of , and there
are stages, so that the complexity of computing the
QR factorization is on the order of .

Multiplication by or can be carried out by applying
the corresponding Givens rotations. The complexity of applying

or to a vector is, hence, the same as the complexity of
applying : on the order of operations. It is in our case
not needed to store; we can apply the Givens rotations directly
to the observation vectorwhile they are being computed in the
backward QR iteration.

For , we also do not recommend the explicit forma-
tion and storage of since these have full state-space matrices.
Rather, can be applied implicitly by back-substitution from

, for . The complexity and storage foris, in
this case, the same as for.

In summary, the complexity of computing the state-space rep-
resentation of is on the order of operations,
which is linear in the number of symbols per userand com-
parable with the complexity of a decorrelating receiver in the
short-code case. The storage requirement ofin state-space
factored form is about two times the number of nonzero entries
in , or order . The complexity of applying to the
observation vector is also order . This is the same as the
complexity of applying the matched filter . In contrast, note
that is a full matrix, with entries. Computing
directly requires order operations, and applying it
to a vector requires operations. The benefit in com-
plexity of using state-space representations is thus on the order
of and , respectively.

Fig. 7. Computation ofT T.

E. Computation of and

In the computation of the noise covariance, expressions for
and are needed.

Theorem 5: Let be a block-lower triangular matrix
with state-space realization . Consider

. A realization for the lower triangular part of
is given by

where is specified by the backward recursion

initialized by . Similarly, a realization for the lower tri-
angular part of is given by

where is now specified by the forward recursion

initialized by .
Proof: By inspection of Fig. 7, consider the mapping of

an input and a state to the corresponding output and
new state ,

=

=

where is the transfer of to . It satisfies

(A formal proof appears in [2, p. 366].)
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The preceding recursions are useful in the computation of the
noise covariance after the decorrelating matched filter. Ifis a
white noise vector with power normalized to , and

, then the covariance of is given by

where , and . A state-space realization
for was derived before. Thus, Theorem

5 (applied to ) gives a recursion to compute a realization for
the lower part of . The upper part is simply the transpose.

In the identification algorithm in Section III-C, we are only
interested in the main (block)-diagonal of (the auto-
covariances of size ). In this case, it suffices to compute

where

F. Computation of the Regularized Front End in State-Space

The approach presented in previous sections can also be used
to implement the regularized decorrelating matched filter front
end in (9). In particular, let . Then

(13)

Thus, if

is an economy-size QR factorization for (where is
square triangular and is tall and isometric), then

The QR factorization and factor inversion can be done in state
space, as before. Thus,is the output of a computational struc-
ture similar to the one in Fig. 6(b). The only new aspect is the
derivation of a realization for . This is simply obtained from
the realization of by extending the -matrix by :

As an aside, note that after channel estimation, in addition,
MMSE-type receivers can
be constructed in this way, if is replaced by . Since
is block-diagonal, a state-space realization for is simply
derived from that of . We omit the details.

VI. PERFORMANCEANALYSIS

We present here a brief analysis of the proposed algorithm, fo-
cusing primarily on the bit error rate (BER) performance of the
whitened RAKE receiver. The analysis of the mean square error
(MSE) of the channel estimate can also be done using pertur-
bation techniques applied to the dominant eigenvector. Such an
approach, however, does not lend itself to insights, and hence,
we defer the MSE evaluation to Section VII, where we com-
pare the proposed channel estimator to the Cramér–Rao bound
(CRB) via simulations.

There are no existing techniques for the BER analysis for
blind multiuser detection of long-code CDMA due to two major
obstacles. First, blind detectors are functions of transmitted
symbols and noise realizations. The coupling between channel
estimate and bit error makes the analysis intractable. Second,
existing blind multiuser detectors [7]–[12] usually have com-
plicated operations involving all users and their channels.

The decorrelating matched filter algorithm separates users in
a deterministic and channel independent way, which makes the
bit error analysis local to each user. Yet, we still need to de-
couple the transmitted symbols and the noise realization from
the blind detector. A reasonable approach is to analyze future
errors by first conditioning the analysis on a realization of the
channel estimation and evaluate the BER of incoming symbols.
This obviously is an approximation that, in our simulation, is
shown to be accurate.

A. BER of the Blind Decorrelating Rake Receiver

The BER is, in general, time varying in long-code CDMA.
Here, we calculate the bit error probability for binary phase
shift keying (BPSK) signaling and average the error rate over
time. For user , conditioned on the estimated channel, a
whitened RAKE receiver is applied to , which is the output
of the decorrelating matched filter corresponding to user. The
whitened RAKE detector produces a detected symbol, from (8)

sign real

where is the submatrix obtained from the
th diagonal block of . For a system

using BPSK with noise power spectral density5 and bit
energy for the th user, the conditional bit error probability
for the th symbol is given by

where is the tail function of the Gaussian distribution,6 and
is the loss with respect to the ideal BPSK system

real

5A standard notation in digital communication isN .
6Q(�) = (1=

p
2�) e dx.
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For perfect orthogonal codes, this reduces to the standard
single-user BPSK performance. The average BER for a block
of symbols is given by

(14)

where the expectation is taken over all.

B. BER for the Matched Filter Detector

We contrast the performance with the standard matched filter
approach that assumes perfectly orthogonal codes. Specifically,
given then, to detect bit , a matched filter with fingers
is first applied to the received signal

Next, the output of the matched filter is combined using the
estimated to form the detection statistic

real

where

real

real

real

contains the intersymbol and multiaccess interfer-
ence, and contains the noise distributed as

If the detector assumes that the codes are orthogonal and that the
channel estimate is perfect, then the detected symbol is given by

sign , and the error probability, conditioned on other
symbols and the estimated channel, is given by

(15)

where the expectation is taken overand .

VII. SIMULATION RESULTS

In this section, we present some simulation results. For
channel estimation, the MSE is used as the performance indi-
cator, and our estimator is compared with the CRB using Monte
Carlo runs. For symbol detection, the BER is estimated using
Monte Carlo runs and compared with the analytical results.

We consider the following receiver algorithms.
TRR training-based RAKE receiver that uses a matched

filter front-end ( ) along with a training-
based channel estimator;

BRR blind RAKE receiver that uses the proposed blind
channel estimator with the matched filter front-end
( );

DRR decorrelating RAKE receiver that uses the decorre-
lating matched filter front-end ( ) and the
proposed blind channel estimator;

RDRR regularized decorrelating RAKE receiver that uses
the regularized decorrelating matched filter

.

A. Setup

Because our model is deterministic, the simulations use a
fixed channel and fixed spreading codes. Where we evaluate the
MSE of the channel estimator, the transmitted symbols are also
fixed. In evaluating the BER, channels and spreading codes are
fixed, and the transmitted bits are generated randomly in each
Monte Carlo run. The performance would vary with different
channel and spreading parameters, but the qualitative behavior
remains the same in various trials. Specific parameters used in
the simulations can be found in [16]. All plots shown in this sec-
tion are based on 1000 Monte Carlo runs.

We consider cases of two and five asynchronous BPSK users
with equal power. The spreading codes are generated according
to the WCDMA standard with spreading gain , and the
code index was selected randomly for each user. The channel
for each user has fingers. The relative delay offsets for
the two user and five user case are chips and

chips, respectively. The slot size is
symbols, and one pilot symbol is included at the beginning of
the slot of each user. The pilot symbol is used to remove the
scaling ambiguity of the blind estimator. The signal-to-noise
ratio (SNR) was defined by , where the bit energy

, the transmitting chip energy, and is the chip
noise variance (or the noise power spectral density).

B. MSE and Cramér–Rao Bound

Figs. 8 and 9 show the MSE performance for two and five
asynchronous users, respectively. The MSE performance has
the same trend for both cases. We observe that the methods
based on the conventional matched filter front-end (TRR and
BRR) have a performance floor caused by multiaccess inter-
ference. The decorrelating RAKE receiver (DRR), on the other
hand, tracks the CRB. However, the gap of DRR to the CRB
increases with the number of users. For the five-user case, the
conventional matched filter with the proposed blind channel
estimator (BRR) shows a better performance than that of DRR
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Fig. 8. Channel estimation error (MSE) versus SNR: Two users.

Fig. 9. Channel estimation error (MSE) versus SNR: Five users.

Fig. 10. BER versus SNR: Two users.

at low SNR. The reason is that as the system becomes heavily
loaded, the condition number of the code matrix increases, and
the decorrelating matched filter enhances the noise. The use
of regularized least squares front-end ameliorates this effect,
as shown in Figs. 8 and 9. We note that the regularized least
squares front-end introduces bias to the estimator, which ex-
plains that the MSE of the estimator is lower than the CRB at
low SNR.

C. BER Comparison

Fig. 10 shows the average BER performance for the two-user
case. The TRR performs worst, especially at high SNR. The

Fig. 11. BER versus SNR: Five users.

performance of DRR is close to that of RDRR because the
code matrix in this case is well conditioned. BRR shows a
comparable performance at low and medium SNR since it
has a reasonably accurate channel estimate, and the corre-
lation with the spreading code ( ) averages out the
other users interference effectively in less-severe multiaccess
interference environments. We also observe that the theoretical
BER calculations (14) and (15) are close to the performance
obtained via Monte Carlo runs, indicating that the assump-
tions made in Section VI-A are accurate. As benchmarks, we
show the performance of receivers with knowledge of the true
channel.

Fig. 11 shows the average BER performance for five users.
The performance floors of TRR and BRR are expected and
caused by multiaccess interference. We observe that RDRR has
an appreciable gain over DRR. As in the MSE simulation, BRR
performs better than DRR at low SNR due to the noise enhance-
ment effect of DRR. As the SNR increases, however, DRR out-
performs the matched filter RAKE.

VIII. C ONCLUSION

In this paper, we considered the problem of channel
estimation and symbol detection for long-code CDMA. There
are two main contributions. One is a new blind channel
estimation and symbol detection algorithm. The technique can
be easily amended for semiblind estimation, and it requires a
small number of samples. This makes the technique suitable
for rapidly fading environments. The proposed approach uses
the RAKE structure, which makes it possible to apply our
algorithm to a subset of users in a group estimation setting.

The second contribution is an efficient implementation of
the decorrelating receiver using time-varying state-space tech-
niques. This part is critical if the decorrelating RAKE is to be
used in practice.

The algorithms do not rely on statistical ergodicity nor on
synchronization among the users but do assume that the codes
of all users are known, as well as their delay offsets. This is
often the case in the uplink of a mobile communication system,
where there is a separate “finger searcher” that identifies dom-
inant multipaths. It should thus be straightforward to apply the
proposed techniques in practical systems.
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APPENDIX

PROOF OFTHEOREM 2

Lemma 1: Let be given a time-varying realization
of . Then, , where

is an embedding of

...

...

(There are and identity matrices in the diagonal
sequences, respectively.) Moreover, matrixis block-lower tri-
angular and has the form

...
...

.. .

(16)

Conversely, if a matrix has this form, then it has a state-space
realization .

Proof: The proof is by direct verification by applying the
given factorization to the vector (where

represents ) and computing (where
represents ). To verify (16), multiply the factors, and use

, , , and .
Proof of Theorem 2:Recall the factorization

, and consider the first factor . Since
, , and

The first step in the recursion is the QR factorization

Premultiplying by gives

...

...

.. .

We subsequently obtain

...
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Following the recursion this way, we finally obtain

...
...

.. .
. . .

Note that so that the first column has zero width.
Hence, (since the are wide), and in addition, the
first row has empty dimensions. It follows that

...
...

.. .

This is equal to , where is lower triangular.
Lemma 1 shows that so that has the ad-
vertised state-space realization. Sinceis full column rank, all

are square and invertible so thatis square and invertible.
is isometric since each of its factors is isometric.
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