P elaui 28748
; g

THESES

belonging to the PhD thesis

"Flow Adaptive Schemes"

by Vedrana Kutija

1. For the responsible use of Hydroinformatics tools, users
with a sound knowledge of hydraulics are required. This
should be reflected in the education of engineers.

2. Computational Hydraulics has developed advanced
modelling systems that are successfully used in
engineering practice, but it has not provided a sufficient
record of their development.

3. Although mathematics always strive for general methods
in practical applications, the use of particular methods
corresponding to the physical characteristics of a system
is advantageous.

4. By paying more attention to the connectivity properties
of the discretised domains, significant improvements in
the performance of the numerical schemes used in
Computational Hydraulics can be achieved.

5. If we want our schemes to survive we should make them
adaptive.

10.

Informatics has transformed all of us into peasants in the
global village.

The e-mail is the life support system of the community of
academic expatriates.

Brain drain is in the first place a discriminatory concept.

It is too often forgotten that the capability of an
individual does not depend on origin, race, sex,
appearance or image.

It is said that one who knows does not talk and one who
talks does not know. But one that does not talk: does that

- one certainly know?

TR Aiss 205 S

STELLINGEN

behorende bij de PhD thesis

"Flow Adaptive Schemes"

door Vedrana Kutija

Voor een verantwoord gebruik van Hydroinformatica
hulpmiddelen zijn gebruikers met een grondige kennis
van hydraulica nodig. Dit moet worden weerspiegeld in
de opleiding van ingenieurs.

Computational Hydraulics heeft geavanceerde
modelleringssystemen ontwikkeld die op succesvolle
wijze in de ingenieurspraktijk worden toegepast, maar
heeft deze ontwikkelingen nooit voldoende vastgelegd.

Alhoewel de Mathematica altijd streeft naar algemene
methoden voor praktische toepassingen, heeft het
gebruik van specifiekere methoden voor bepaalde
fysische kenmerken grotere voordelen.

Door meer aandacht te geven aan de interne
verbindingen van discrete domeinen kunnen significante
verbeteringen bereikt worden in het functioneren van
numerieke schema's in Computational Hydraulics.

Om onze schema's te laten overleven moeten zij zichzelf
leren aanpassen.

10.

Informatica heeft ons getransformeerd tot boeren in 'the
global village'.

E-mail is het levensreddende systeem van de
gemeenschap van academische emigranten.

'Brain drain' is in de eerste plaats een discriminerend
concept.

Het wordt te vaak vergeten dat de bekwaamheid van een
individu niet afhangt van afkomst, ras, geslacht, uiterlijk
of uitstraling. :

Er wordt gezegd dat degene die het weet niet spreekt en
dat degene die spreekt het niet weet. Maar degene die
niet spreekt: weet die het werkelijk wel?

St
I
A P e

FLOW ADAPTIVE SCHEMES

TR diss
2874

Flow Adaptive Schemes

DISSERTATION
Submitted in fulfilment of the requirements of
the Board of Deans of Delft University of Technology
and the Academic Board of the International Institute for Infrastructural,
Hydraulic and Environmental Engineering for the Degree of DOCTOR
to be defended in public
on Friday, 20 December 1996 at 13:30 h

by

VEDRANA KUTIJA
Master of Science in Hydraulic Engineering, IHE Delft

This dissertation has been approved by the promoter:
Prof. dr M. B. Abbott, TUD/IHE Delft

Other committee members:
Chairman: Rector Magnificus, TU Delft
Co-chairman: Rector, IHE Delft

Prof. dr ir J.A. Battjes, Delft University of Technology, Delft

Prof. dr J.A. Cunge, Laboratoire d’Hydraulique de France, Echirolles

Prof. dr M.J. Hall, International Institute for Infrastructural,
Hydraulic and Environmental Engineering

Prof. dr E.E. Rosinger, University of Pretoria, Pretoria

Prof. dr ir G.S. Stelling, Delft University of Technology, Delft

Authorization to photocopy items for internal or personal use, or the internal or personal use of
specific clients, is granted by A.A. Balkema, Rotterdam, provided that the base fee of US$1.50 per
copy, plus US$0.10 per page is paid directly to Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, USA. For those organizations that have been granted a photocopy license by
CCC, a separate system of payment has been arranged. The fee code for users of the Transactional

Reporting Service is: 90 5410 405 8/96 US$1.50 + US$0.10.

Published by
A.A.Balkema, PO.Box 1675, 3000 BR Rotterdam, Netherlands

(Fax: +31.10.4135947)

A.A.Balkema Publishers, Old Post Road, Brookfield, VT 05036-9704, USA

(Fax: 802.276.3837)
ISBN 90 5410 405 8

© 1996 A.A.Balkema, Rotterdam
Printed in the Netherlands

Contents

ADSIract IX
Acknowledgements e XI

Chapter 1 Flow adaptive schemes

1.1 Motivationt e e 1
1.2 The deconstruction of the numerical scheme 2
1.3 Controlandadaptivity 11
1.4 Adaptive numerical methods, 16
1.5 Adaptivity in computational hydraulics 17

Chapter 2 A numerical model for the assessment of
additional resistance introduced by flexible vegetation

2.1 Introduction e 19
2.2 Adaptive structure of the algorithm 20
2.3 Descriptionofthemodel 21
2.4 Bendingofthereeds 27
2.5 Verificationexample L 29
2.6 Influence of different parameters 29
2.7 Conclusions and recommendationso 35

FLOW ADAPTIVE SCHEMES

Chapter 3

3.1
32
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Chapter 4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Chapter 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Chapter 6

VI

Numerical treatment of supercritical flow

Introductiono i e e e s 37
Adaptive structure of the algorithm 38
Description of the problemo 39
Reduction of the convective momentumterm 41
Whichtermistobereduced ? i e 45
Stability analysis 46
MoOAElS . . . o e e e e 47
ReESUIS . . o o ot e e e e e e e e e e e e 48
CoNCIUSIONS . . v o ottt et et et e e e e e 51

A generalised solution algorithm for flow in channel networks

IroduCtion\ i et e 53
Adaptive control Structureo 55
Descriptionof the problemo 56
Solutionmethods e 62
The generalised solution algorithm 65
RESUILS . & o v ot e e e e 73
ConclUSIONS . . .t vttt e e e e 76

ADI+ algorithm for the solution of two dimensional nearly horizontal flow

IntroduCtion @ittt e e e 77
Standard ADI algorithm 78
Why a new algorithm? i 79
The flow adaptive algorithm™- ADI+ 81
Feedback through the weighting function 84
The adaptive control structurettt 85
Some features of the ADI+ grid 86
Models and tESES ottt 89
Narrow channelot e e 92
ConClUSIONS . . . v v o vt e e e e e e e e e 94
General Conclusions, 97

CONTENTS

APPENDICES
| To Chapter 2
| 2.1 Algorithm for the determination of velocity profiles in flows with
additional resistance due to vegetation 99
2.2 Bending algorithm for reeds in steady flow 107
| To Chapter 3
! 3.1 Conservation equations for 1-D nearly horizontal flow 111
3.2 Finite difference approximations by the Abbott-Ionescu scheme 117
3.3 Finite difference approximations by the Preissmann scheme 123
3.4 The double sweepalgorithm 129
3.5 Stability and accuracy of the difference schemes 131
3.6 Stability of the algorithmic structure 137
To Chapter 4
4.1 Finite difference approximations of the de Saint Venant equations 143
4.2 Algorithms for the definition of the control sequence 149
4.3 Generalised solution algorithm 153
4.4 Algorithm for direct solution of systems of linear algebraic
equations characterised by nearly-banded matrices 163

To Chapter S

5.1 The standard ADI algorithm used in Chapter 5 175
5.2 ADI+ algorithm for the combination of the ADI and the new algorithm 181

References e, 191

VI

Abstract

The current rapid development of hydroinformatic systems demands further improvements in
numerical modelling, and thus in the computational hydraulics which underlies such modelling.
This work is a study in the development of flow adaptive numerical schemes in computational
hydraulics that are directed to enhancing modelling capabilities. The general domain of the
work is unsteady nearly horizontal flow in one and two space dimensions. It follows different
advances in computational hydraulics situated in different physical situations. Four particular
examples have been studied; additional flow resistance due to flexible vegetation, one
dimensional supercritical flow, flow in networks of channels and nearly horizontal two
dimensional flow. All of the schemes thereby developed show similar features, employing
~ intermediate results of computation in order to achieve a better performance. By adopting the
point of view of cybernetics, these numerical schemes are examined as control systems. This
provides a generalisation of features common to the notion of flow-adaptivity. For the purpose
of characterising flow adaptive schemes, a process of deconstruction was followed, starting
with the most simple example of an implicit numerical scheme.

IX

Acknowledgements

The financial support that made this work possible was provided by IHE. In particular I should
like to thank the IHE Rector Prof. Ir. W.A. Segeren and the head of the HH department Ir. J.
Luijendijk for this.

I should like to express my sincere gratitude to my promoter Prof. M.B. Abbott for his
support and direction throughout the duration of my study. I would also like to thank him for
the rare opportunity I have had to learn so much by working with him. My work has also
benefitted from inspiring discussions with Prof J.A. Cunge, Prof. E.E. Rosinger and Prof.
G.S. Stelling.

I am very thankful to the members of the Hydroinformatics section and the Computer group
of THE for the amiable and creative atmosphere in which this work was done. This gratitude
should also be extended to my other colleagues and friends within and outside IHE that have
always been beside me.

I should like to acknowledge my appreciation to current employer, the University of Newcastle
upon Tyne, especially the head of the Water Resources Engineering Group, Prof. P.E.
O’Connell, for the understanding that has been shown in enabling me to finish this work.

Finally, most of all I wish to acknowledge my dear husband Jaime Miguel for the constant and

magpanimous support he has given me during all these years. Without his endless patience this
work would certainly never have been accomplished.

XI

CHAPTER 1

Flow adaptive schemes

1.1 Motivation

Some thirty years ago, under the influence of the development of von Neuman-type digital
computers, computational hydraulics was born as a hydraulics reformulated to suit the
possibilities and requirements of the discrete, sequential and recursive processes that are the
hallmarks of such digital computation. The practice of computational hydraulics necessitated
a turning back to the theoretical bases of hydraulics, as represented by the conservation laws
of fluid flow in both continuous and discrete forms, and the use of a wide range of numerical
methods for their solution. From that time onwards, computational hydraulics has continued
to advance and in the late eighties it represented a core around which the subject area of
hydroinformatics could be advanced and structured.

During all these years, new developments in related fields, such as fluid dynamics and,
especially, numerical analysis, were infiltrating extensively into computational hydraulics. The
first developments started with explicit finite difference schemes, which however often
suffered from severe time step limitations due to numerical stability reasons. In the late sixties
these were largely replaced by implicit finite difference schemes which, although they required
a somewhat bigger computational effort per time step, did not have limitations on the time step
used, being unconditionally stable. These implicit schemes are nowadays widely accepted and
used in numerous commercial packages for the solution of most practical hydraulics problems.

However, following the trend of development of information technology generally, the
numerical schemes used in computational hydraulic ought also to become more powerful by
acquiring self-steering capabilities in order to fulfil the ever more demanding tasks confronting
them. Various developments in the field of numerical methods for the solution of partial
differential equations (e.g. Chakravarthy and Szema, 1989) are already being introduced in
computational hydraulics, at least at the research level. By way of illustration we might
mention: total variance diminishing schemes (TVD) (Garcia-Navarro ez al, 1994), essentially
non-oscillatory schemes (ENO) (Nuji¢, 1995) and adaptive grid methods e.g. (Rahman and
Chaudry, 1995).

FLOW ADAPTIVE SCHEMES

The present work can be regarded as a study, within this framework, of the possibilities of
developing flow adaptive schemes in computational hydraulics. The term adaptive is nowadays
widely used, and, still, it is not easy to define it. The definition adopted from numerical
analysis (Rheinboldt, 1983) may however serve to introduce the notion:

An algorithm is termed adaptive if it uses intermediate results to modify the
course of computation in such a way that results are in some sense optimal.

The adaptation of the course of a computation is usually done through the intervention of a
feedback function. A function which uses intermediate results as input which influences the
further computation is usually chosen as a feedback function. The above-given definition of an
adaptive algorithm is quite vague, and indeed it can at the same time almost serve to define a
control function. This observation leads to the notion that an algorithm with some kind of built-
in control structure can also be seen as an adaptive algorithm.

This approach, which up to now was never fully generalised, is opening up the field to a
conceptually new generation of flow-modelling systems. In as much as it can be so generalised
and uses intelligent adaptation, it aims at a fifth generation of modelling.

The term ‘flow adaptive’ itself derives from the observation that the usual result of a
computational-hydraulics simulation is a flow field and the adaptation of the scheme consequent
upon the intermediate results is then based on the resulting computed flow field.

In order to make the notion of flow adaptive schemes more clear, this Chapter will advance
gradually through their various aspects. For this purpose, a quite simple numerical scheme,
the ‘box’ scheme, will be applied to the pure advection equation. Control and adaptivity will
then be introduced in such a way as to give another point of view upon numerical schemes and
the numerical solutions of physical problems. It will as well provide a means to classify
adaptive algorithms on a more general, because more abstract, level.

The field of adaptive numerical methods will be briefly introduced in order to emphasise the
differences and possible similarities between these methods and those of the present work.
Finally in this chapter, the discussion of adaptivity in computational hydraulics may serve to
open the door onto this topic and to provide a short overview of what follows in this work. The
possibilities for the introduction of adaptivity or control in computational hydraulic algorithms
are very wide and have so far been but little exploited. In this work, four adaptive algorithms
in computational hydraulics are investigated; this by no means exhausts the possibilities
inherent in these methods, but indeed serves only to introduce them.

1.2 The deconstruction of the numerical scheme
The notion of deconstruction was reintroduced into French, as déconstruction, by Jacques

Derrida (e.g 1991, p.273) in the late 1960s and has since become one of the most widely
employed of all philosophical terms, having now been carried over into many languages,

FLOW ADAPTIVE SCHEMES

including English. It conveys the idea of a disassembling or disarranging the parts of a whole
that leads to a better understanding of that whole. It usually suggests a certain attention to
structures, whereby these structures are undone, decomposed or desedimented. What it
conveys is a process that exposes how an ensemble is constituted with the aim of reconstructing
this ensemble to some positive purpose.

The present work must open with a deconstruction of the numerical scheme because its subject
is a certain loss of rigidity of structure in numerical schemes such as allows a restructuring.
Through this process, these schemes become more flexible, more physically meaningful, more
efficient and altogether able to model nature more closely.

When we write a ‘meaningful’ numerical scheme we make a particular kind of statement about
our representation of the natural world. The ‘particularity’ of this statement means that a
meaningful scheme of computation is in harmony, or is consistent, with our ways of perceiving
and comprehending this natural world. For our present purposes of demonstrating the
principles it will suffice to consider initially only the most simple of numerical schemes. We
shall consider the pure advection equation:

ﬂ+u@:0
ot ox

This equation expresses non-diffusive transport of the function (matter) ¢ (x,#) with velocity
u. The existence of a solution asks for one upstream boundary condition such as ¢ (0,f) and
one initial condition such as ¢ (x,0).

We shall consider the box scheme that is consistent with this equation,

a(d)ntl_‘bn)j + (1-“)(¢n*l_¢n)j,1 ‘U ﬁ(d)jq_d)j)n + (l_ﬁ)((bj,]_d)j)’“l -0 (11)
At Ax

where, conventionally, 0 < @< 1,0 < f< 1, with @, fe R’

Now it is well known that the second-order consistent form of this equation is obtained when
« = 0.5 and § = 0.5 and that in this case it is unconditionally stable in the now classical, von
Neumann-Richtmyer, sense. It is equally well known (e.g. Abbott and Basco, 1989, pp. 151-
156) that this particular weighting of the scheme gives rise to basic problems in its algorithmic
structuring, closely corresponding to problems of ill-posedness of the equivalent continuum
problem.

In fact for the left-to-right sweep, being the proper algorithmic structure in the continuum sense
when the flow velocity is from left to right, equation (1.1) takes the form:

FLOW ADAPTIVE SCHEMES

((l'd)‘cr'ﬁ)d); + (-a+Cr(1-ﬁ))¢j’.’fll + (a+Cr'B)¢J'.'_, (1.2)
(I-a) + Cr(1-PB)

o -

with Cr = u At/Ax.

For the right-to-left sweep, being the proper algorithmic structure in the continuum sense
when the flow velocity is from right to left, equation (1.1) takes the form:

gt 2 (A CrB)d - (-a-Cr(1-B)) ¢y + (a-Cr-B)dj., (1.3)
J (1-a)-Cr(1-p) '

For example, when a sweep in the one direction is made while the velocity is in the other
direction, the scheme amplifies the determining boundary conditions in a completely unrealistic
way, and indeed, when the corresponding Courant number passes through a unit magnitude in
this case, the scheme experiences a division by zero at the first grid point that it encounters.
This is not, of course, an instability in the above, classical, sense since it does not occur in
time and the unboundedness of the operator is not associated with any process of proceeding
to a limit in space and time. In the borderline case that arises when the velocity is zero, on the
other hand, although no amplification occurs, a solution imposed on the boundary will still
send oscillations into the solution with a wave length of 24x, as exemplified for initial
conditions of ¢ = 0V x in Fig.1.1. This ‘solution’ is, of course, completely unrealistic.

Fig.1.1

These properties of the scheme are easily corrected, however, as soon as we allow its
parameters to be functions of the flow velocity u, so that the scheme becomes flow-adaptive.

FLOW ADAPTIVE SCHEMES

Let us define a function s(u) as:

1, u>0
s =30, u=0 (1.9
-1, u<90

With the help of this function, a flow adaptive scheme for the solution of the pure advection
equation can be defined as follows:

@@ 0 o T D@ Y B) B

0 a5
At : Ax (1.5
This then leads to a unique equation that accounts for the algorithmic structure:

wot_ ((1-0)-Cresw)B)¢] +(-a+Cr-su(1 B+ + Cros() B & L6

@ (1-c) +Crs(u)(1-8)

whereby, the algorithmic structure is then determined from the value of the function s(x) as:

s(w) = 1 = left-to-right sweep,
s(u) = -1 = right-to-left sweep.

For cases where the velocity is in the positive direction (# > 0), or opposite to that (¥ < 0),
the expression (1.6) provides the form corresponding to those obtained from the classical box
scheme with the appropriate algorithmic structure (equations (1.2) and (1.3)). In the case when
the velocity is equal to zero (u = 0), equation (1.6) provides a form which gives no place to
the earlier-described oscillations introduced by the sweep algorithm proceeding in the physical
space x of the solution - and indeed there is then no space step involved in the algorithm at all.

This simple flow adaptive scheme can be more fully developed again through the definition of
its coefficients « and S as functions of flow velocity (i.e. Courant number) so as to improve
its accuracy. In order to assess the accuracy of the scheme, a truncation error analysis can be
performed. Each of the terms of the equation (1.5) is then expanded into its Taylor series
expansion up to third degree about the centre of the scheme. (This analysis was performed with
Mathematica.) The truncation error so obtained has the form:

FLOW ADAPTIVE SCHEMES

= - + - 9_22+ 2 - + - +l-—23 _a?’_d) +
TE. = (Cr(B-0.5) + (¢-0.5)) ax2 Crp(1-p) +a(a-1) rg —=| = H.O.T.

As observed earlier, it is commonly assumed that the highest accuracy of the scheme, in
Taylor’s series terms, is obtained by the use of a completely-centred scheme (with « = 0.5 and
B = 0.5) as this then leads to a second order of consistency: the first term in the truncation
error vanishes. In order to achieve an even more accurate scheme in this sense, additional
terms are commonly introduced into the original equation in order to cancel-out the second
term in the above expression (see Abbott and Basco, 1989, p. 155). As already noted, however,
the second order consistent, or ‘accurate’, scheme can become exceeding unrealistic, not to
speak of inaccurate, under certain flow conditions.

The methods of flow adaptivity proceed in another direction, in that the coefficients o and f3
are seen as functions of the Courant number, albeit defined in such a way to minimize the
truncation error. In the first instance, the first two terms of the truncation error were set to be
equal to zero and the space of solutions of this system of two nonlinear equations with two
unknowns (& and f) is searched to provide

501ve[{Cr68-1/2)+(d—1/2)$=0,CrA2 B(1=P)+ a{a-1)+1/6~Cr 2/6==0}, {e,B}]

{}

As this output from Mathematica shows, there is no general solution to this system of
equations. However, if a particular solution is requested, Mathematica provides two of these:

O
Reduce [{Cr (B-1/2) + (0~1/2)==0,Cx"2 B (1-B)+ a(a-1)+1/6-Cr"2/6==0}, {o; B}]

g ==1-8 & Cr ==11}f a==1~8 && Cr == -1

These two particular solutions show us that for a Courant number equal to unity or minus
unity, by setting coefficients « and 10 0.5, an (at Jeast) third-order accurate scheme (now
in the polynomial sense) is obtained. For the other values of Courant number, however, this
approach does not seem to suffice, so that another approach, based more on physical insight
(such as is provided by the method of characteristics) is needed. This development passes
outside the scope of the present work and will, therefore, be omitted. In the subsequent

FLOW ADAPTIVE SCHEMES

analysis in this section only the simple flow adaptive scheme given by equation (1.4) will be
considered.

For the present purpose of expressing more of the structure of these schemes, we cast them
into a Reverse Polish Notation, or RPN, or prefix, representation. The equation (1.2) resulting
from the simple box scheme for the left - to - right sweep then appears as:

=¢j'-"1/+><¢j'-'—— 1a><Cr[3+><¢]'.1_*11+ ~aXCr-1Bx ¢ +a X CrB+-1lax Cr-1p

The structure of this scheme can then be exhibited as a directed graph, as shown in Fig.1.2.

The equation (1.3) resulting from the box scheme for the right to left sweep is then cast into
a somewhat different equation:

FLOW ADAPTIVE SCHEMES
=¢J'-"l/+xd)j'-'+—locxCrB+X¢j'-':ll——ocXCr—lBXd)}'*l-aXCrﬁ—— laxCr-1p

which leads to a different (but homomorphic) graph representation, as shown in Fig.1.3.

¢
|
-
ol D[] e L
-] DR esd KRR
CC]]I Gl
[« (e][]l]
ERE

Fig.1.3

As already pointed out, the application of the simple box scheme to the solution of the pure
advection equation leads to two different forms, represented by equations (1.2) and (1.3) or
their graphical presentations in Fig.1.2 and Fig.1.3, dependant on the algorithmic structure.
Moreover, in the case of no flow (zero flow velocity) neither of the two is applicable. In this
respect, therefore, a flow adaptive scheme, introduced earlier, offers a more complete solution.

1 It may now be seen, however, that equation (1.6), representing the flow adaptive scheme, can
| be cast into a unique graph that takes account of the algorithmic structure:

=¢;+1/+ X¢,'-" ~1a X X Crsu)p + X¢,'-'-+sl(u)+

r—o X X Crsu) - 1B X ¢ g+ X X Crs@)p +-la X x Crs(u)- 1§

FLOW ADAPTIVE SCHEMES

as represented by the directed graph given in Fig.1.4.

Fig.1.4

This scheme, on the other hand, contains another ‘hidden’ layer of calculations, consisting of
the determination of the value of s() according to the function s defined in equation (1.4) and
of the index j-s(u) which defines the direction of the calculation. These two calculations can
as well be presented separately by directed graphs, as shown in Fig.1.5 and Fig.1.6.

In order to build up the complete picture of the flow adaptive scheme defined by equation
(1.5), therefore, these two graphs should be superimposed on the graph presented in Fig.1.4.
In this way an additional layer is introduced. The flow adaptive scheme is thus a scheme with
another level of complexity which cannot be quit so easily represented by such directed graphs.
Indeed, the graph of Fig.1.4 still does not reveal all the calculations performed in such a
scheme. On the other hand, these graphs can be used to visualise the essential equivalence of
schemes, as a comparison of Figs 1.2 and 1.3 illustrates, and this recognition process can itself
be automated.

FLOW ADAPTIVS SCHEMES

Fig.1.5 Fig.1.6

If a convention for representation of if-then-else statements in the graph form is adopted the
flow adaptive scheme can, however, be represented by the directed graph of Fig.1.7

u>0

We shall not in fact make much use of such graph-theoretic methods in this connection in the
rest of this work; this is not so much because of the limitations of these methods, as such, but
because of the shear amount of space which their representations occupy, as exemplified, even
for the quite simple scheme considered here, in Fig.1.4 and Fig.1.7.

10

FLOW ADAPTIVE SCHEMES

We can still however conceive of a flow adaptive scheme as a superposition of one operator,
which controls the adaptation process, upon another operator, which is the scheme itself. In
this first example, the superimposed control operator is composed simply of two elementary
“if - then - else’ operators so that it is essentially a logical operator (see Fig.1.7). The ‘if’ part
is seen to refer to a message from the flow field which is matched against an already stored
reference, so that it in fact constitutes an extremely simple classifier. The ‘then’ part feeds
back to the scheme if a match is found and otherwise, through the ‘else’ part, it continues to
the next classifier. In this example, of course, these classifiers are trivially simple, being
composed of one element (or ‘bit’, or maybe ‘trit’!) from a trinary alphabet { 0, +1,-1},
but, just as clearly, this process could be extended indefinitely by allowing longer and longer
strings of ‘bit-like’ elements in the usual way of classifier systems. Thus, even though the
control operator is restricted to logical processes, it can still be extended to comprehend
situations of arbitrary complexity. Further to this, we recall that, just as classifier systems can
be evolved through the application of machine-learning algorithms, such as Q-learning, our
control operators can be learned through analogous means (Masood and Wilson, 1995; Wilson,
1996). Although these possibilities will not be much exploited in the present work, reference
will occasionally be made to them.

1.3 Control and adaptivity

The domain of the solution of a hydrodynamic problem is composed from physical space and
time. For one-dimensional hydrodynamic problems this is ‘the x-t plane’. However, the
domain of our numerical solution is just a set of discrete points in this space. The solution of
the numerical-hydrodynamic problem is then the set of values associated with these points.

We can however look at this from a different perspective. Let us first, and just for the moment,
strip away the time dimension. Then, for the one-dimensional case we have a domain
consisting of points distributed along the line while for the two-dimensional case we have a set
of points in the plane. At each of the points of our domain we can, however, have one or more
variable(s) for which we wish to solve. Now let us call the set of all these variables a physical
system representation (PSR). The values of the variables can then be called szates of the
variables and the set of all of them can be regarded as the state of the physical system
representation.

Let us now bring the time back into consideration. Under the action of the numerical scheme,
which provides an advance in time over one time step, the physical system representation takes
another state. This change of state is a transformation in which the numerical scheme acts as
an operator while the physical system representation corresponds to the operand. (In numerical
analysis it is very common to speak specifically of a numerical operator.)

A system which can be defined by a set of variables and a set of closed single-valued
transformations of these variables which are dependent on the input parameters is in
cybernetics called a machine with input, or a transducer (Ashby, 1973, pp.42-44). Thus a
physical system representation (PSR) is a transducer. We have defined our PSR as a set of

11

O

FLOW ADAPTIVE SCHEMES

solutions' of a numerical-hydrodynamic problem at any one instant of time. However, a PSR
can be any set of variables describing a physical effect at a certain time, given only that a set
of closed single valued transformations dependant on the input parameters is provided.

The numerical scheme can itself, as well, be seen as a transducer, with its coefficients being
the set of its variables that take different values depending on the input parameters. From the
point of view of cybernetics, these two transducers, being our PSR and the numerical scheme,
are equivalent under certain conditions. From the point of view of their representation in a
digital machines, this equivalence holds just as well. It is only for us that they can be
distinguished according to the meaning that we assign to them: the variables of a PSR have for
us a physical meaning while the variables of a numerical transducer are, even for us, ‘just
numbers’. Hence, in the rest of this work reference will be made either to the general
transducer - which can be of any of the above-mentioned types - or to some other such type,
or to a specific transducer called, indifferently, a PSR or a numerical operator (NO). To
distinguish further between entities from each of these types, either the physical meaning we
assign to the variables or the name of the numerical variables will be given.

Transducers can be coupled so that they can form new transducers. Through the coupling of
our present two transducers - the one being the physical system representation and the other
being the numerical operator - we have obtained a new transducer representing our dynamic
system (our numerical solution of the hydrodynamic problem). The kinematic graph of this
new dynamic system is given in Fig.1.8, where the one box stands for the one transducer and
the other box for the other. The idea behind using a kinematic graph is to show more clearly
the relations inside the more complex structures. Therefore, we shall use these devices (which
are specific kinds of ‘sign vehicles’ in the language of the theory of semiotics) extensively in
our descriptions of our adaptive schemes. It should be remembered, however, that the state of
the physical system representation is in our case the solution of the hydrodynamic problem at
a certain time, it being the set of values of the system variables at discrete points within the
solution domain.

PHYSICAL
NUMERICAL
N SYSTEM
OPERATOR REPRESENTATION

Fig.1.8

For a system of the type presented in Fig.1.8, we conventionally say that one part of it
dominates another, as there is only one direction of influence. However, this does not represent
the relations realistically in our case, for in nonlinear schemes, at least, the states of our
physical system representation modify the parameters in the numerical scheme as well. When
such a circularity of action exists in a dynamic system we say that there is feedback. A dynamic

12

FLOW ADAPTIVE SCHEMES

system with feedback is usually represented by a somewhat different kinematic graph, as
shown in Fig.1.9.

PHYSICAL
NUMERICAL

— SYSTEM
OPERATOR REPRESENTATION

Fig.1.9

The presence of feedback in our dynamic system leads us to yet another point of view: to
regard our dynamic system as a control system. The simplest structure of a control system
consists of the controlling and the controlled parts, as shown in Fig.1.10. The similarity
between the graphs shown in Fig.1.9 and Fig.1.10 then suggests that the numerical solution
of a hydrodynamic problem can be treated as a controlled system. However, it should be
pointed out that such a simple control system rarely exists in isolation: it usually interacts again
with the surrounding medium and with other systems, forming yet more complex systems
(Lerner, 1972, p.7). However, the definition of subsystems of larger systems is always
possible and equally justified. It then appears that this much grosser way of viewing a scheme
may provide another, and in some ways more convenient, means of following or allowing for
its deconstruction then the more detailed directed-graph representation.

CONTROLLING PART

! |

CONTROLLED PART

Fig.1.10

In order to avoid confining ourselves to too narrow a definition of control, let us take over the
following (from Lener, 1972, p.77):

Control represents selected actions on some object or objects

which, on the basis of the information obtained, ‘improve’ the
functioning or development of the given object.

13

FLOW ADAPTIVE SCHEMES

The construction of a numerical-hydrodynamic solution can surely be seen as a process that
is subject to such a control. The representation of our dynamic system in the classical form of
a control system is shown in Fig.1.11.

input PHYSICAL states of
inpu fficients
NUMERICAL | SoeTrelen physical
SYSTEM >
system
OPERATOR REPRESENTATION
repreaentation
Fig.1.11

It should be stressed that until now no specific numerical method has been introduced, which
means that this point of view can be maintained quite generally. Even the type of physical
problem need not necessary be hydrodynamic at this stage. These considerations can, in fact,
be applied to the numerical solutions of any physical phenomena which can be described by
hyperbolic or parabolic partial differential equations as a ‘marching’ problem.

Adaptive control systems are control systems which allow one more level of feedback which
then influences (by changing) some of the more essential parameters of the controller. The
distinction between classical feedback and this adaptive feedback is not always very clear,
however, even in the field of adaptive control theory. The distinction is commonly made
between two time scales, whereby classical feedback is fast changing and adaptive feedback
functions much more slowly (Astrom and Wittenmark, 1989, p.2). When applicable, this
distinction is one that will be followed throughout this work.

In fact, a numerical scheme can already be considered as an adaptive control system if this
scheme is defined in the most general terms and adaptation is introduced already in the
implementation phase for the tuning of the essential controller parameters. This can then be
applied later, if need be, to the periodic updating of the parameters, or indeed as a
‘continuous’ adaptive procedure (Isermann ef al, 1992, p.xvii).

A very simple type of adaptive control system, called closed-loop adaptation, is represented
by the scheme shown in Fig.1.12. The adaptation loop which is the difference between the
scheme of any dynamic system represented in Fig.1.11 and the scheme of an adaptive
numerical scheme represented in Fig.1.12 uses the states of the PSR in much the same way as
the original control loop. The only difference is that this adaptation loop does not need to act
upon each and every time step but only when states of the PSR trigger it. Therefore, this loop
is schematically represented in a somewhat different manner.

input

ADAPTATION

NUMERICAL

OPERATOR

coefficients

PHYSICAL
SYSTEM
REPRESENTATION

FLOW ADAPTIVE SCHEMES

states of
3hysical

’system

representation

Fig.1.12

It is also possible to have an adaptive control system based on a so-called open-loop adaptation
which does not adapt the controller on the basis of the states of the controlled system but on
the basis of some external information. The architecture of such a system is shown in Fig.1.13.

input

input
ADAPTATION e
states of
coefficients PHYSICAL .
NUMERICAL physical
SYSTEM >

system

OPERATOR REPRESENTATION
representation
Fig.1.13

15

FLOW ADAPTIVE SCHEMES

In the kinematic graphs representing the control systems of Fig.1.12 and Fig.1.13 there is 2
transducer named ‘adaptation’. It is a source of feedback, but the fact that it is a transducer and
not only a communication channel leaves a space for intermediate stages through which the
information might pass before being used to transform (or adapt) the numerical operator. This
transducer can of course be of any type; for example a PSR, an NO, a logical operator or a
transducer composed of any these types of any required level of complexity.

1.4 Adaptive numerical methods

Within the branch of numerical analysis which deals with partial differential equations,
adaptive schemes are well known. Their development was already established in the late
seventies (e.g. Stepelman and Winarsky, 1979) and became widely employed in the field of
boundary value problems in the form of adaptive mesh generation schemes for finite element
methods (Babuska ef al, 1983). The use of adaptive-grid methods for those initial-boundary
value problems that are characterised by hyperbolic equations developed more slowly due to
the problems of accuracy connected with finite difference approximations on nonuniform grids.
However, at the first workshop on adaptive computational methods for partial differential
equations, held in Philadelphia in 1983, there were already a few papers presented on the
application of adaptive methods to solutions of hyperbolic equations (e. g. Anderson, 1983;
Harten, 1983) and others again appeared in the following years (e. g. Oliger, 1984; Berger and
Oliger, 1984). Most of these adaptive methods are based on the adaptation of the size of the
discretisation grid. At each time step, a certain feedback function is used to update the
computational grid (Rheinboldt, 1983). Therefore, even at this stage, the development of
numerical grid generation was closely connected with the development of adaptive numerical

methods.

The adaptivity criteria are in general divided into two main groups: those based on the
assessment of error in the solution of the flow equations (so called a posteriori error estimates)
and the more physically based criteria that take account of a specific detectable feature of the
flow field, such as for example the presence of shock waves (Weatherill, 1990). From the point
of view of the actual grid adaptation, two main categories of methods can be distinguished: the
s0 called r-methods which reallocate a fixed number of grid points, and the so called h-
methods which involve an automatic refinement of the grid structure (Oden, 1989). Besides
all these adaptive methods concerned only with the grid size or grid distribution, the
introduction of an artificial viscosity in the form of a nonlinear diffusion operator for the
control of oscillations in the numerical solution can also be regarded in some ways as an
adaptive feature (Oden, 1989).

Most of these methods can be considered as constituting a closed loop adaptive control system,
as schematically represented by the kinematic graph of Fig.1.12. However, the adaptation
transducer would represent some other combination of more simple transducers for each of the
categories. The adaptation part of the methods based on a-posteriori error estimates would
allocate one part for the error estimate and another part for the actual grid adaptation, while
the other methods need just the latter one of these. The kinematic graph for the h-methods will

16

FLOW ADAPTIVE SCHEMES

usually be the more complicated, since the physical system representation, PSR, is itself being
adapted, and not the numerical operator alone.

1.5 Adaptivity in computational hydraulics

The approach adopted in this work for the development of flow adaptive schemes differs
considerably from those used in the classical adaptive numerical methods. It can still be
connected with the physically-based criterion for adaptivity (the flow field), but then not with
the object of adaptivity being the discretisation grid, or at least not the size of the discretisation
step. The examples of the introduction of dissipative interfaces or artificial viscosity are much
more in line with the kind of adaptivity studied in this work. In the case of dissipative
interfaces, the change is effected directly on the results themselves. It is these that are being
filtered, while the numerical scheme itself is staying unchanged. Still the effect of this
adaptivity is felt in further calculations, while input parameters for the numerical operator are
being changed and consequently the states of the NO are being changed as well.

As already mentioned, any numerical algorithm for the solution of hyperbolic or parabolic
partial differential equations can be regarded as a control system and represented by a
kinematic graph of the kind shown in Fig.1.11. If we now recall the difference between explicit
and implicit finite difference schemes (e.g. Abbott and Basco, 1989, p. 234) it is clear that on
the more detailed level these two classes of schemes should be represented by quite different
kinematic graphs in order to grasp all of the differences in interrelations between the various
parts of the control system. However, on the scale of the full time step, and with the whole
domain of the problem being considered as just one PSR, they can both be represented by the
scheme shown in Fig.1.12.

It will now be clear that the flow-adaptive scheme introduced earlier by equation (1.5) for the
solution of the pure advection equation can as well be treated as an adaptive control system
with an open-loop adaptation. Its adaptation transducer is triggered by an ‘external’ input,
namely the flow velocity, which in this particular case is not one of the state variables of the
physical system representation that is sought, as a solution, in space and time. The
corresponding kinematic graph is then that given in Fig.1.13.

In each of the following examples, a different adaptive feature or parameter will either be
employed in order to obtain solutions which are in some sense optimal or, in some cases, as
a means of obtaining any solution at all. The possibilities for the introduction of adaptivity or
control in computational hydraulic algorithms are very wide and have so far been but little
exploited. In this work four adaptive algorithms in computational hydraulics are investigated;
this by no means exhausts the possibilities inherent in these methods, but indeed serves only
to introduce them. Each of the investigated examples is situated in a different physical domain
and moreover, at least at first sight, each of them utilises a different form of adaptivity.

However, when considered as adaptive control systems and represented accordingly by their
kinematic graphs, a number of similarities between them will become clear. All four of them

17

FLOW ADAPTIVE SCHEMES

are, for.example, closed looped adaptive systems of the type schematised in Fig.1.12. The
major differences between them reside in the different types of transducers used for adaptation.
A short overview of the following chapters containing these examples and their form of
adaptivity follows.

Chapter 2 - A numerical model for the assessment of additional resistances introduced by
flexible; vegetation.
In this example, the intermediate velocity profiles are used to adapt the vegetation
geometry which in its turn influences the flexible resistance and consequently the
velocity profile itself.

Chapter 3 - Numerical treatment of supercritical flow
In this example the intermediate results expressed in terms of the Froude number of the
flow were used for guiding the adaptation of the governing equations in order to
provide an approximate but exceedingly convenient solution.

Chapter 4 - A generalised solution algorithm for flow in channel networks
In this example, it is the pre-processing of the network topology that provides the
control structure for the optimal management of the computational procedure.

Chapter 5 - ADI+ algorithm for the solution of two dimensional nearly horizontal flow
In this example, the intermediate flow field results are used to adapt the finite
difference scheme to provide more accurate results. Although still not entirely
satisfactory for practical computing, this example is introduced in order to show how
the possibilities inherent in this approach can be extended to two - and potentially also
three - dimensional flows.

CHAPTER 2

A numerical model for the assessment of additional
resistance introduced by flexible vegetation

2.1 Introduction

The current promotion of the natural development of wetlands and other restoration projects
which are directed toward more natural developments within river basins often favour the
growth of reeds and other similar vegetation. Such vegetation influences the resistance of the
water course and consequently the water velocities and depths. However, these influences of
vegetation, and particularly flexible vegetation, on the flow resistance are still not well
understood, even as a sound knowledge of these influences is necessary for effective real-time
river management and other hydroinformatics applications. Consequently, laboratory
experiments have been and are still being performed, while pilot river reaches with grown
vegetation are being established in several regions in order to investigate this influence
(Tsujimoto et al, 1993; Larsen et al, 1990; Klaassen and Urk, 1985). The numerical model
described here was developed to help in deepening the understanding of vegetation-induced
resistances and then, in particular, by following the effects of the various parameters involved.

This model is then used as a tool for investigating the influences of different parameters on the
total resistance. It can as well, subject to minor changes, be included as a module into a two-
dimensional nearly-horizontal flow model with averaged velocities for the calculation of
vertical velocity profiles with flexible vegetation. This transforms the original two-dimensional
model into a quasi three-dimensional model (Xian, 1993).

19

FLOW ADAPTIVE SCHEMES
2.2 Adaptive structure of the algorithm

In order to capture the complexity of the interrelations between the flexible vegetation and the
flow resistance, a flow adaptive approach was adopted. Based on the general adaptive control
system with a single loop, as described in Chapter 1 and schematised in Fig.1.12, an adaptive
algorithm was developed. This flow adaptive algorithm can best be represented by the scheme
of Fig.2.1.

The numerical operator (NO) of our model is a one-dimensional vertical mixing model which
is, however, coupled to the equation of conservation of momentum in the horizontal direction.
The variables of the model are flow velocities at different points along the vertical. Therefore
our physical system representation describes the flow field, its states being the flow velocities
at different points along the domain.

ADAPTATION

input N O PSR

\ 4

1D vertical

mixing model flow field

Fig.2.1

The model comprehends both rigid and flexible vegetation. For the rigid vegetation the
adaptation transducer can be simple, but that applied to the flexible vegetation has to
comprehend the behaviour of the rigid vegetation as well. Therefore, in the further text, only
the example with the adaptive transducer for flexible vegetation will be explained. The drag
force is estimated by a semi-empirical formula according to which this force is proportional
to the square of the water velocity and to the projection of the vegetation in the direction
perpendicular to the water flow (the effective height of vegetation). The bending of the flexible
vegetation under the load produced by the drag force is calculated according to standard
cantilever beam theory (e.g. Timoshenko, 1955). As a result of bending, the effective height
of vegetation is reduced. This in turn results in a smaller drag force and less bending. The
bending of the vegetation is accordingly conveniently calculated using an iterative procedure.

20

ADDITIONAL RESISTANCE INTRODUCED BY FLEXIBLE VEGETATION

ADAPTATION
PSR N O
< e load & [&
reed position beam deflection

Fig.2.2

The adaptation transducer consists of another PSR, this being the reed position, and of the
numerical transducer, this last being constituted by the procedure to calculate the load on the
reed induced by the flow and all the parameters needed to trigger the transformation of the reed
position according to the cantilever beam theory. These two transducers themselves form a
control system, schematised in Fig.2.2, which works through a process of iterative
convergence. Once a convergence limit is satisfied, the step out of the adaptation traducer is
made and the set of parameters (state of the PSR of reed position) is transferred to the
numerical operator and the calculation of the new time step can proceed.

However, it is not difficult to imagine that the PSR which describes the reed position is a part
of the adaptation transducer, while reed geometry really does adapt under the influence of the
flow field. If the schemes from Fig.2.1 and Fig.2.2 had been drawn together, it would become
clear that this adaptive algorithm is completely symmetric. Thus, the choice of which of its
parts we apportion to the adaptation and which to the original system is arbitrary. The choice
was made in the present way because we are more interested in the flow field than in the reed
position. It is important to point out that the same adaptive control system can be viewed from
the other perspective to produce results in the form of reed positions, while the flow field
would then be just a part of the adaptation transducer.

2.3 Description of the model
2.3.1 General
The numerical model for the assessment of the additional resistance of the flexible vegetation

is based on the equation of conservation of momentum in the horizontal direction, which for
the present purpose can be most conveniently written as a differential-difference equation:

21

FLOW ADAPTIVE SCHEMES

16P

% + u% + w% + — gi - _.1_ + =0
ot ox 0z pox p oz pAxAz
with: u - horizontal velocity i
w - vertica velocity T
P - pressure
P - density of water F,
g - gravity acceleration pAxAz

2.1)

- bottom slope

- shear stress

- additional horizontal
drag forces

Since this model is developed only in order to study the effects of flexible vegetation in steady
uniform flow, some of the terms from the equation (2.3) are neglected. However, the model
is an unsteady model used to determine steady state conditions from unknown initial
conditions. Therefore, the acceleration term is not being neglected. One of the neglected terms
is the pressure term. In the case that this model is used as a module within a two-dimensional
nearly-horizontal flow model with averaged velocities, this term cannot of course be neglected,
but it is then combined with the bottom slope term in order to provide a classical gravity term.
The convective momentum terms are for the time being also neglected. Besides this, the
vertical velocity w is also neglected. The reduced equation then has the form:

Ft
=0
pAxAz

Ou
ot

-gi— _a£+
0z

1
p

where u(z,1), 1(z,2) and F,(z,0).

z

Fig.2.3

22

2.2)

TSU rface
rk - kk

Y+
:‘tk+1 2

Y. — -l:k—‘112

L(- 0
.Ebed
Fig.2.4

ADDITIONAL RESISTANCE INTRODUCED BY FLEXIBLE VEGETATION

The numerical model for the solution of this equation is a one-dimensional model in the
vertical direction following the schematisation of the domain as presented in the Fig.2.3 and
the discretisation grid shown in Fig.2.4 with k% being the number of grid points. The model
is based on an implicit finite difference approximation for the unknown velocities in all the
discretisation points. The other two unknowns 7 and F, are expressed in terms of velocities,
rin terms of unknown velocities and F, in terms of velocities calculated in the previous time
step. The velocities are the variables of the PSR. The terms of equation (2.2) are then
represented as follows,

2.3.2 The acceleration term

Although the model is meant for the solution for steady state conditions, it is constructed as
an unsteady-state model. This feature makes possible the calculation of the unknown steady-
state condition starting from any initial conditions, even though these may be unrealistic, on
the basis that these initial influence will in this way be removed. This also makes it a ‘marching
problem’ such as promotes the analogy with the cybernetic system and the development of an
adaptive numerical scheme for its solution.

= 0.4
€N
E 0.3
2
802 'f
> dt=10s -
S 0.1 Pl
£
0
0 2 4 6
Thousands
time (s)
Fig.2.5

In all the examples presented in this chapter the initial velocities are equal to zero in all the grid
points. The steady-state velocity profile develops gradually through the simulation time. The
boundary conditions are kept constant so that with time, the steady state is approached. The
mean velocity calculated as a ratio of the velocity integral over the depth and the depth itself
is used to show how the steady state is approached. In Fig.2.5 the mean velocity is shown as
a function of time for one of the examples. The initial velocity in the whole vertical profile was
set equal to zero so that the mean velocity at t=0 was also equal to 0. It is obvious that the
steady state is reached well before 2000 prototype seconds, but for security all the simulated
examples were run for at least 6000 prototype seconds.

n+l n
du U T

The acceleration term is approximated as follows: > n
t !

23

FLOW ADAPTIVE SCHEMES
2.3.3 The shear stress term

The shear stress term is approximated within this model in two ways. In the layer of water
above the vegetation it is modelled as a turbulent shear stress approximated by a mixing length
theory.

ou |Ou
=p 2 2 |=
@) = p % |3 2.3
where is the mixing length at the level z determined by:
z 0.5
1= 1-2
Kz (W) 2.4)

with x being the von Karman coefficient and h being the water depth.

The water velocity within the vegetated layer is rather small (Tsujimoto and Kitamura, 1990),
so that a different shear stress approximation is needed in this layer. One possibility is to model
this in the same way as in the upper layer using the mixing length theory, but in that case the
expression for the mixing length has to be changed (Watanabe and Kondo, 1990). The other
possibility is to model it according to eddy-viscosity theory (Tsujimoto and Kitamura, 1990).
In the present model, the second option is implemented so that:

-
™) = € e (2.5)
where
€ =pasu

with & being an empirical coefficient and s being the distance between the reeds.

Comparing data from Tsujimoto with the results of the model, as will be presented later, it
became obvious that the eddy-viscosity approximation was not suitable for the whole vegetation

24

ADDITIONAL RESISTANCE INTRODUCED BY FLEXIBLE VEGETATION

layer. Near the tip of the reed, velocities are not so small as they are deeper in the layer, and
this phenomenon could not be captured with the eddy-viscosity approximation. Therefore, an
additional parameter p was introduced to determine how much of the height of the vegetation
layer is modelled by the eddy-viscosity approximation. The rest of the vegetation layer was
then modelled in the same manner as the layer above the vegetation, following the
schematisation of Fig.2.6. The influence of the parameter p on the distribution of the shear
stress within the vegetation layer is considerable, as can be seen in Fig.2.7.

4
— - p=100
3 - p=075
ixing-length
approximation SIRNE = p=000_
A I §
h _ o) e 3
eddy-viscosity g 1 -z
p.h approximation . .‘.-':;;!-"
ot
/
0
0 05 1 1.5 2
shear stress (NInR)
Fig.2.6 Fig.2.7

Although the parameter p was intended to function as a calibration parameter, through the
investigation of the influence of various parameters it became clear that it could not in fact be
treated as independent of other parameters. The density of the reeds (m), their diameter (d,)
and stiffness (ED) all in fact influence the parameter p considerably. Further investigations, not
described here, are being directed to establishing a functional relationship between these
parameters.

2.3.4 The additional force term

The additional force (F,) is the drag force due to the vegetation. In the layer above the
vegetation this force is equal to zero while in the layer with vegetation it is defined as:

F=m— 2.6)

25

FLOW ADAPTIVE SCHEMES

with: m - density of reeds per m’ CD - drag coefficient
u - flow velocity in x direction d - diameter of one reed
h, - effective hight of reed

The additional force term in equation (2.2) is then approximated as follows:

F:’l = m.—fl)'dk'hrk"'uk"'u,:”l 2.7

where d, is the diameter of the reed at the level k , A" is the portion of the reeds’ effective
height corresponding to the grid level £ at the time level n while " and u/*! are flow
velocities at the level k at the respective times, n and n+ /. The effective reeds’ heights are in
fact variables of the PSR describing the reed position. At the same time their values (states)

are input parameters for the numerical transducer.

In this formulation, however, the effects of interactions between the reed induced flows are
neglected.

2.3.5 The boundary conditions

For this model, two boundary conditions are required, one at the bed and the other at the water
surface. The positions of these two boundary conditions are marked on the grid shown in
Fig.2.4.

The shear stress at the bed is given through the averaged velocity and the Chezy coefficient.
Although this approach is clearly not entirely satisfactory when applied to vertically
nonuniform flows, it is used due to its simplicity and due to the fact that the influence of the
bottom shear stress is negligible in comparison with the additional resistance of the vegetation.
A potentially more accurate way would be to introduce a no-slip boundary condition, which
would in practice mean that the velocity «, at a distance z,(equivalent bottom roughness height)
from the bottom is equal to zero (Xian, 1993).

At the water surface the slip boundary condition with no shear stress is introduced. If the
combined influence of wind and the flexible vegetation is to be studied, the near-surface shear
stress may be set equal to an imposed wind-induced shear stress.

The system of equations obtained upon the introduction of these finite difference

approximations and the boundary conditions has as unknowns the set of horizontal velocities
u, , k = 0,..kk. The matrix of this system is tri-diagonal and it is solved with a double-sweep

26

ADDITIONAL RESISTANCE INTRODUCED BY FLEXIBLE VEGETATION

algorithm (Abbott and Basco, 1989). More detailed description of this part of the model is
given in Appendix 2.1.

2.4 Bending of the reeds

The effective height of any representative reed (#,) used in the evaluation of the drag force,
is influenced by the bending of the reed due to the flow of water (See Fig.2.1). This
interrelation is the main reason why the adaptive approach was adopted for development of this
model. The adaptation transducer in fact consists of two transducers, one being the PSR of the
reed position and the other being the NO. The bending of the reed is calculated in a separate
module after each time step. This module is the adaptation transducer. As input data, the
adaptation transducer uses the velocity-profile results from the previous time step. The NO
uses these velocities and the states of the PSR (being the effective reed heights per grid point)
to evaluate the load on the reed and to produce parameters which will trigger the
transformation of the PSR. However, if the new states of PSR do differ from those used for
estimation of the load for more than the prescribed limit this procedure has to be repeated.
Thus, the adaptation transducer is in itself a control system as well. Details about algorithms
used in this transducer are given in Appendix 2.2.

The deflection of the reed is calculated according to
cantilever beam theory (e.g. Timoshenko, 1955,
pp.137-165) under the load produced by the drag force.
The intensity of this load is a function of the vertical

position and it is by no means constant. However, in %

this discrete model it is approximated by segments of reed
constant load defined by the flow velocity over each ‘
segment as schematised in Fig.2.8. /

The diameter of the reed (d)) as well as its stiffness (E]) load
are also not constant along the reed height. The model
therefore allows the linear distribution of these values
along the reed, although in the model they are again
discretised in the same manner as the load.

The intensity of the drag load at any level & (between Fig.2.8
points (k-1/2)Az and (k+1/2) Az is given by:

CD-d,)
g, = —;"_ 2.8)

27

FLOW ADAPTIVE SCHEMES

The expression for the deflection of a point on the cantilever beam due to the partial load
differs according to the position of the point relative to the position of the load. In principle,
three positions can be distinguished: the point is between the fixed end of the beam and the
beginning of the load; the point is within the load; and the point is between the load and the
free end of the beam. Due to the discrete nature of the model, the second case was not needed.
The expressions for the other two cases are as follows:

mmm
I a b
Fig.2.9
x?.
for x<a 8, = —1‘—12-5(3b2—3a2—2x(b—a))
> 5 = 9 (4x(b3-a3)-(b*-a*
for x2b 2 24EI(x(b3-a’)-(b*-a%)

The total deflection of the beam is constructed by superposing the deflections caused by each
of the partial loads. For details see Appendix 2.2.

28

ADDITIONAL RESISTANCE INTRODUCED BY FLEXIBLE VEGETATION

Due to bending, the effective reed height is reduced, which means that the height over which
the load is acting is also reduced: this reduced load causes less bending than would result with
the full effective reed height. This resulting interaction is introduced using the iterative
procedure sketched in Fig.2.10. The procedure is stopped when a prescribed difference
between the load height and the effective reed height is reached. This iterative procedure is in
fact a form of internal control structure within the adaptation transducer. The states of the PSR
influence the values of the NO which then again influence the states of the PSR.

2.5 Verification Example

Some data from Tsujimoto (Tsujimoto and Kitamura, 10

1990) were used for the verification of the model with

fixed, inflexible, vegetation’; see Fig.2.11. E 8

The parameters which were calibrated in this example & ® S

were the parameter p for the definition of the layers g 4

modelled by the different turbulence models, CD, the ©

drag coefficient, and «, the empirical parameter in the g 2 o data

expression for the eddy-viscosity. The results presented = model

in Fig.2.11 were calculated with p=0.75, CD=1.1, and o LX

2=0.005. In the following chapter, more will be said 005 01 0145 02 0.25

about the influence of each of these parameters. velocity (m/s)
Fig.2.11

2.6 Influence of different parameters

In order to describe the influence of the different parameters on the flow resistance, a simple
example is used. Its data are given below. In general, these data follow the conditions present
in floods plains of the river Rhine in the Netherlands and the magnitudes of most parameters
were taken from a report of Kortleve (1994).

grid step dz =0.10m drag coefficient CD =1.1

time step dt =10 s numerical parameter p =075
bottom slope i = 0.0001 numerical parameter a =0.01
Chezy coeff. C =50 m™¥s reed diameter at the bot. dr, = 0.002 m
water depth & =30 m reed diameter at the top dr, = 0.002 m
reed length Ar =125m reed stiffness at the bot. Ei,=2 Nm’
reed density m = 100 reed stiffness at the top Ei, = 2 Nm?

"Unfortunately no data were available for the verification of the model with flexible
vegetation.

29

FLOW ADAPTIVE SCHEMES

It shouldibe observed that the usual way of reducing the search space of relations through the
introduction of dimensionless combinations of variables has not been essayed here. The aim
has been to leave all such possibilities open at this stage. The influence of each of the
parameters involved in the model is investigated by changing one parameter at a time from the
initial set of data and comparing the results with those obtained using the initial set of data.
However, not all of these parameters are independent of each other. That means that when only
one parameter is changed and all the others kept constant, a situation is obtained that is not
fully realistic, which might lead to premature and possibly incorrect conclusions. Therefore,
mutual dependence of parameters has also to be considered when the influence of a parameter
is being analysed. In the application of this model using real field data this danger should be
significantly reduced due to the necessary physical consistency of data.

In the following graphs, the velocity profile obtained from the original data and the velocity
profile for the case where one parameter from the initial set of data is changed are compared.
The result obtained with the initial set of data is always represented by the solid black line.

2.6.1 Computational parameters

As could be expected, the computational parameters df and dz do not play any significant role:
see Fig.2.12 and Fig.2.13. The same conclusion holds for the total simulation time. As pointed
out earlier, the simulation time for all presented results is 6000 prototype seconds in order to
assure that the convergence to the steady state is realised.

=dz=0.10m ~dt=10s E
3} --dz=005m 3} «.dt=20s B
|
£ £ /
i =
E E /
o]
i :
3 e 21
0 # 0 |
0 0.1 0.2 0.3 04 0 0.1 0.2 0.3 04
velocity (m's) velocity (ns)
Fig.2.12 Fig.2.13

30

ADDITIONAL RESISTANCE INTRODUCED BY FLEXIBLE VEGETATION

2.6.2 Hydraulic parameters

4 .
_C=50m05/s |

3 - 'C=60 mo'ys eneseane,
=4 4
5 /
g
21

0

0 0.1 0.2 0.3 0.4
velocity (m's)
Fig.2.14

The influence of the main hydraulic parameters
is presented in Fig.2.14 to Fig.2.16. The
Chezy coefficient, whose influence on the
velocity profile is presented in Fig.2.14, does
not much influence the total resistance; only in
the case of a low density of reeds (in this
example m=100), does it play any significant
role at all. The influence of water depth is
presented in Fig.2.15. It is seen to act upon the
water velocity in the same way as was
observed in the case without reeds.

The slope of the bottom influences the velocity
profile in much the same way with or without
the reeds (Fig.2.16). It is clear that it does not
impose any influence on the flow resistance in

water depth(m)

w ater depth(m)

~h=3m |

/.

’

0 01 02 03 04 05

[\

-

velocity (n's)
Fig.2.15

- i=0.0001..i=0.0005
A R ——
/ 4
r
/ Vs
re
Ry
¢
o
i LEd -
Vo
i
4
0 0.2 04 0.6 0.8
velocity (n's)
Fig.2.16

the case of rigid reeds. However, in the case of flexible reeds, higher velocities caused by the
steeper bottom slope may cause a greater bending of the reeds. This then results in the
reduction of the effective reed height and consequently in the reduction of the additional

resistance.

31

FLOW ADAPTIVE SCHEMES

2.6.3 Parameters connected with the turbulence model

4
-.p=1.00
3]=p=075 y
| i ;
_*5_2 _ ',.
o !fl/ (rJ
’ :
ﬁ
L~
0
0 01 02 03 04 05
velocity (m's)
Fig.2.17

w

w ater depth(m)
N

-

-a=0.100
=@=00100 i i i i
..a=0.001 /
7
y

0 0.1 0.2 0.3 0.4
velocity (n's)
Fig.2.18

The parameter p, and in a lesser degree the parameter o connected to the turbulence model,
are seen to have a significant influence on the flow resistance: see Fig.2.17 and 2.18.
Therefore they should both be calibrated according to the measured data. The significant range
for the parameter « appears to be between 0.001 and 0.1. It does not appear to influence the

results outside of this range.

The parameter p introduced in the numerical model plays an important role. As already
mentioned, it has a physical origin in the reed geometry and other characteristics. This
parameter is a clear example of a parameter which is not independent of other parameters.

Further study should be directed to establishing
a dimensionally homogeneous functional
interrelationship between the parameter p and the
reed properties.

2.6.4 Reed geometry and characteristics

As already pointed out, the parameter p is
obviously dependant on the reed characteristics.
Therefore a change of any parameter from this
group should as well influence the parameter p.
Thus the results obtained by the change of any
parameter from this group while the parameter p
is kept constant do not fully represent the
influence of the changed parameter. However,

32

water depth(m)

4

3

2

1

0 /

0 01 02 03 04 05
velocity (m's)
Fig.2.19

ADDITIONAL RESISTANCE INTRODUCED BY FLEXIBLE VEGETATION

the additional influence exercised through the change in parameter p goes usually in the same
direction as does the direct influence of the parameters.

4 , 4
=hr=125m..hr=200m " - CD=11
..CD=14
3 3 ;
E / / € r:, /
g £ P
% ” rjf ‘ / E_ 5 r(f J
5 / w W
"c'u' " / ,.a 1 "’
21 o 2 ; o
i
0 i 0 j
0 0.1 0.2 0.3 0.4 0] 0.1 0.2 0.3 04
velocity (r's) velocity (m's)
Fig.2.20 Fig.2.21

The density of the reeds is one of the most important parameters for assessing the additional
flow resistances. As can be seen in Fig.2.19, it influences the velocity profile strongly.
Another very influential parameter is the height of the reed: as can be seen in Fig.2.20, an
increase in reed height decreases the flow velocity quite drastically.

l 4
_dr=0.002m| - constant dr li
3 ..dr=0.005m|| ; 3 | -.variable dr
E e '4’ / ? j:f
4 S £ / /
2 / B :
8 ¢ 32 i
5 o 5 4
-g 1 ‘,’ . © / Fid
ami= 2 -FJ- ; 1
(")
0 L ol i%
0 01 02 03 04 0 01 02 03 04 05
velocity (ns) velocity (ms)
Fig.2.22 Fig.2.23

33

FLOW ADAPTIVE SCHEMES

In this example, the stiffness of the reed is high,
so that it is scarcely bending at all, and in such a
case the influence of the reed height is the most
strongly pronounced. Fig.2.21 shows the
influence of the drag coefficient as estimated
from the previous experiments for long rods.
Due to the different circumstances obtaining
here, this can also be used as a calibration
parameter.

The average diameter of the reed plays an
important role as well. As it can be seen from
Fig.2.22, the smaller diameter causes a lesser
resistance. Beside the average diameter, the
distribution of the diameter along the reed height

w

--E1=0.01Nm2
~E1=2.00Nm2

——
“am,

E f‘ »
2 ay
3 /7
§1 4 .-"II
-
0
0 01 02 03 04 05

elocity (m/s)

is also of importance.

Fig.2.24

In Fig.2.23, two examples are presented in

which the average diameter is the same. In one of them the diameter along the whole reed is
constant and equal to the average value. In the other example the diameter at the base of the
reed is three time greater than at the top of the reed (while the average diameter is maintained).
These results show that a variable diameter causes less resistance to the flow. This result is
expected due to the interconnection between flow velocity and the drag force in which the
value of the reed diameter is as well included.

In the examples presented in Fig.2.22 and Fig.2.23 the parameter p was kept constant. Taking
into account that the parameter p is not independent of the reed diameter, it can be concluded

1.5
| dh
g /
=g .
e
o
© 0.5
i =z flexible
: - fixed
0
0 0.5
deflection (m)
Fig.2.25

34

that the influence of the reed diameter on the additional
flow resistance is even greater.

The increase of the diameter should cause an increase in
p and this should decrease the flow velocity even more.

The stiffness of the reed (EI) obviously influences the
bending capability of the reed. In Fig.2.24 two velocity
profiles are presented, one corresponding to the rigid
reed and the other to the flexible one, showing, as may
be expected, that the flexible reed imposes the Jesser
additional resistance to the flow.

In Fig.2.25 the deflection of the reed as extracted from
the same example is presented. The effective reed
height in this example is reduced by the amount dh. It
is this reduction that largely accounts for the reduction
in the additional resistance due to the vegetation.

ADDITIONAL RESISTANCE INTRODUCED BY FLEXIBLE VEGETATION

As explained earlier, the stiffness of the reed is not
-.constant El B expected to be constant along the reed height.
_variable El ﬂ Hence the model allows for a linear distribution of
____ F 7 the stiffness along the reed. The effects of the

;" / stiffness distribution are shown in Fig.2.26 and

] Fig.2.27. The two examples presented in these
7S figures have the same average stiffness, while one
oy has a constant stiffness and the other a variable
one.

w

water depth(m)

-—
N,
L
"

f From Fig.2.26 it can be seen that reed with a

variable stiffness provides the smaller additional

0 01 02 03 04 05 06 resistance. From Fig.2.27, which presents the

velocity (n's) deflections of the reed in these two cases, it can be

. seen that the variable stiffness increases the

Fig.2.26 deflection, which in fact means that it reduces the
effective height of the reed.

1.2
The influence of reed stiffness on the additional flow 1 /’
resistance associated with the parameter p follows the A
same pattern as the reed diameter. In fact, the reed ,E\°~8 /
stiffness is related to the parameter p in such a way that pet
the smaller stiffness causes a reduction of the parameter p 206
and this in turn reduces the additional resistance even §

more than is immediately evident from these figures. 0.4
0.2 mconstant E|
wvariable E|
0
0 0.5 1
deflection (m)
2.7 Conclusions and recommendations Fig.2.27

The adaptive approach has been shown to be very efficient and transparent and it has provided
a basis for the development of this model for the analysis of the influences of flexible
vegetation. The adaptivity of the scheme was a ‘good match’ to the flexibility of the vegetation.
This is an example of how adaptive schemes can solve problems which appear complex in an
easy way.

In order to summarise the influences of the various parameters, two cases should first be
distinguished: the case of rigid vegetation and the case of flexible vegetation. In the case of

35

FLOW ADAPTIVE SCHEMES

rigid vegetation, the most significant parameters are the properties of the height, diameter and
density of the vegetation itself.

In the case of flexible vegetation, the role of reed height is taken over by the effective reed
height. A significant complexity is introduced by this replacement in the driving mechanism,
since the effective reed height is itself a consequence of more parameters. Some of these
parameters are again reed characteristics, such as the height, diameter and stiffness of the reed,
while others are hydraulic parameters, such as the water depth and the hydraulic gradient. It
is obvious that in the case of flexible vegetation the additional flow resistance is a result of
more complex interactions again. This model facilitates such further investigations in this field.

Moreover, there is the parameter p defining the portion of the vegetation layer in which the
turbulent structure is modelled by an eddy-viscosity approximation, and this appears to play
a very important role. While its physical background is still not established, it is suggested to
be used as one of the most important of the calibration parameters.

Over and above this, however, the whole model still needs to be verified using field
measurements taken in the presence of flexible vegetation. Special attention should then be
given to the distribution of the reed stiffness and diameter, as these seem to play an important
role in the calculation of the effective reed height. For verification purpose, it would be
preferable to measure the effective reed height as well.

This flow adaptive algorithm, once calibrated, can be added, as a module, into an existing two-
dimensional nearly-horizontal flow model and in that way form a quasi 3D adaptive model. It
would then use flow results obtained by the main program in one time step and return flow
resistances to be used in the calculation of flow conditions in the next time step by the main
program. However, the complexity of the adaptation transducer can as well be extended if

needed.

After calibration, the model can as well be used to produce ‘synthetic’ data which can be used
to produce an emulator or even a formula for the additional flow resistance, and this could
replace the model in the cases where its application is considered too time consuming or too
complex. Data produced in this way can then be treated by using standard empirical methods
with the help of dimensional analysis and by more modern methods, such as neural networks
or genetic algorithms (e.g. Minns and Babovic, 1996). The costs of the data produced in this
way is negligible in comparison with the costs of the full range of the otherwise necessary field
measurements or laboratory investigations. This model is thus a desirable tool for extending
the results of physical experiments and field studies to cover a wider variety in the data.

The model presented here provides, in particular, a reliable tool for investigating the additional
flow resistance induced by flexible vegetation. It can at the same time fill the gap caused by
the scarceness of experimental data in this case, data which are usually difficult to obtain and
correspondingly expensive, and so it may help to fill-out even further the ever growing data
requirements of modern algorithms as these are applied to water resources management.

36

CHAPTER 3

Numerical treatment of supercritical flow

3.1 Introduction

One-dimensional unsteady flow in open channels is satisfactorily described by the de Saint
Venant equations as long as the hydrostatic pressure distribution assumption holds. Although
in the case of discontinuous flows (such as those of hydraulic jumps, dam break fronts and
breaking waves) this is not the case in all the points of the domain, the theory of weak solutions
(Abbott, 1979, p. 220) shows us that in the integral formulation they can still be used. As these
equations cover both sub- and supercritical flow conditions they are also applicable to mixed
types of flow. However, there are certain difficulties connected with their solutions. For the
numerical modelling of the hydraulic jump, which is the most common case of mixed type flow
in open channel hydraulics, there are basically two approaches, namely, the “through” methods
based on the theory of weak solutions and usually employing finite difference schemes (i.e.
Garcia-Navarro and Saviron, 1992) and the shock fitting methods where shocks are isolated
and treated separately (i.e. Rahman and Chaudry, 1995). However, the last faces practical
difficulties connected with tracking the shocks in natural channels (Savic and Holly, 1993).

The through methods based on the method of finite difference can be further divided, following
the common division of finite difference methods, into explicit and implicit ones (Abbott and
Basco, 1989, pp.213 et seq). The explicit methods, which otherwise suffer severe limitations
on the time steps used due to stability conditions, are mainly used for the numerical solution
of hydraulic jumps (Chaudry, 1993, pp.203-231). Due to the limited domain on which this
physical phenomenon usually occurs, it is still practicle to use a very fine discretisation in the
grid, both in time and space. In such cases these explicit methods give satisfactory results.

Due to their stability constrains, however, explicit methods are no longer much used in
commercial packages for solution of free-surface flows. Implicit methods are more commonly
used in these cases (and then primarily the Preissmann scheme and the Abbott-Ionescu
scheme), but these can suffer from another kind of stability problem connected with the

37

FLOW ADAPTIVE SCHEMES

modelling of supercritical flows. This has to do with the stability of the algorithmic structure
(Abbott and Basco, 1989,pp.151 et seq) in that different algorithmic structures are applicable
to sub- and supercritical flows. This makes the solution of mixed type problems quite complex
in terms of the control over the code. There are in the recent literature reports of implicit
methods capable of solving this problem, such as, for example, the TVD methods (i.e. Garcia-
Navarro et al, 1994). Still, when compared with the commonly used methods, it is clear that
these methods require a considerably heavier computational effort. When applied to the
localised problems of hydraulic jump formations they are very efficient, but when applied to
the solution of flows in channel networks of considerable size they lead to an unnecessary load.

However, as already mentioned, the schemes of Preissmann and Abbott-lonescu type encounter
another type of problem when dealing with mixed types of flow, and this is connected with the
algorithmic structure. In applications, a great simplification is attained when the algorithmic
structure can be kept invariant during the whole course of the computation. This is commonly
attained by reducing the influence of the convective momentum term when the flow approaches
supercritical conditions, so as to maintain subcritical-like characteristic structures everywhere.
In this way a flow-adaptive scheme can be developed for the solution of mixed-type flows. In
this work, the consequence of using this flow adaptive scheme are investigated and a variant
of the momentum equation is identified which reduces the errors introduced through this
process to an acceptable minimum.

3.2 Adaptive structure of the algorithm

In order to facilitate the numerical solution of free-surface supercritical flow problems - and
indeed, in many cases, to make these practically useful - an adaptation algorithm is introduced
which gradually reduces the convective momentum term in the momentum equation as flow
conditions approach supercritical (Havne and Brorsen, 1985; Abbott and Basco, 1989, p.248).
This device allows a solution at supercritical flow conditions to be constructed using the same

ADAPTATION
reduction
coefficient
input N O PSR
numerical . -
scheme flow field
Fig.3.1

38

NUMERICAL TREATMENT OF SUPERCRITICAL FLOW

algorithm (and boundary conditions) as are used in the case of subcritical flow conditions. By
these means, the connectivity properties of any flow network can be kept invariant through a
complete computation of mixed subcritical and supercritical flows, thus realising a great
simplification at the control level of the code. The corresponding numerical scheme is then
a flow-adaptive scheme with quite a simple form of adaptation involved. It is, in its general
lines, based on the closed loop adaptive control system and its architecture is represented in
Fig.3.1.

The adaptation transducer is just a numerical operator assessing the value of the reduction
coefficient for all the points in the solution domain. Being such a simple transducer, and
moreover being used at each and every time step, it can be seen as a part of the normal control
and not of its adaptivity. However, the fact that it introduces an approximation which facilitates
the calculation of the solution but at the same time reduces the accuracy of this solution makes
it necessary to distinguish it from the other parameters passed from the PSR to the NO in the
control loop.

3.3 Description of the problem .

The consequences of excluding the convective momentum term from the momentum equation
have to be explored here, especially with reference to the effects of such an exclusion on the
boundary conditions. It must in the first place be shown through the study of the characteristic
structures how the elimination of the convective momentum term allows the use of boundary
condition types that are independent of the flow conditions, and indeed which are of the same
type as those required in the subcritical flow case when the full momentum equation is
employed.

One-dimensional, free-surface, nearly-horizontal flow is considered and then especially that
type of flow that is called supercritical, being that which is characterised by a Froude number
that exceeds unity. The Froude number is understood conventionally as a non-dimensional
number which describes the ratio between the inertial and the gravitational forces and it
accordingly plays an important role in most studies of open channel flow. The NO playing the
role of the adaptive transducer uses the Froude number at each discretisation point to assess
the values of the reduction coefficient.

Starting from the conservation laws for the mass and momentum and introducing the
simplifications of incompressibility of the fluid, a constant density, a hydrostatic pressure
distribution and the absence of resistance, we arrive at the de Saint Venant equations in the
form:

0

&

. 9 (uh)
t ox

=0 3.1

QL

2
0 (uh) . 0 (u°h) +ghﬂ
dt dx 0x

=0 3.2)

39

FLOW ADAPTIVE SCHEMES

where:
h - water depth g - gravity acceleration
uh - discharge per unit width x - space coordinate
u - average flow velocity t - time coordinate

The full form of these equations, including the gravity term due to the bottom slope and the
friction term, is given in Appendix 3.1.

From these equations is clear that the variables of the PSR are water depth and discharge per
unit width. Depending on the numerical scheme used, they are situated either in the same
points (non-staggered grid) or in the alternating points (staggered grid) along the domain. The
form of the NO is entirely dependant on the finite difference approximation used.

As the analytic integration of this set of equations is not generally possible, they are usually
solved numerically. The domain is discretised and, most commonly, partial derivatives are
approximated by finite differences. When an implicit method is used, we are then left with a
system of quasi-linear algebraic equations. In order to match the number of equations required
to the number of unknowns, two more equations have to be added, and these are provided by
the boundary conditions (Cunge et al, 1980, p.75). Although an implicit finite difference
method does not suffer from a time-step limitation for scheme-stability purposes, its
algorithmic stability is ensured only if a proper algorithmic structure is used (Abbot and Basco,
1989, p.153). As will shortly be illustrated, this last requirement translates into one of the use
of the proper boundary condition relative to the flow conditions and the consequent solution
of the system of equations by the corresponding variant of the Gauss elimination method.

The most immediate source of information about the requirements for the boundary conditions
to (3.1) and (3.2) is provided by the method of characteristics: the number of characteristics
entering the domain in the forward time direction at a point on the boundary gives the number
of boundary conditions required at that same point.

The slopes of the characteristic lines defined by equations (3.1) and (3.2) are given by the
formula (Abbott, 1966, p.12):

% = u t Vgh 3.3)

t

From this expression, it is clear that for subcritical flow, where Jgh exceeds u, the slopes
of the two characteristic lines (C*, C) have opposite signs and therefore enter the domain from
two different boundaries, one upstream and the other downstream. For supercritical flow
conditions, where the magnitude of u exceeds ygh , the slopes of both characteristic lines
have the same sign and therefore enter the domain from one side only.

In the case of subcritical flow, one equation is added at each end and thereby a banded matrix
of coefficients is formed. For the solution of the resulting equation system, the Gauss
elimination method is used in two steps to provide the double sweep algorithm (Godunov and
Ryabenki, 1964, pp.146-154; Liggett and Cunge, 1975; Abbott, 1979, pp.166-177; Volkov,

40

NUMERICAL TREATMENT OF SUPERCRITICAL FLOW

1986, pp.155-160; Abbott and Basco, 1989, pp.114-124, 234-248). For supercritical flow, as
both equations are added at the upstream end, the whole band in the matrix is situated on one
side of the main diagonal. Hence, only the substitution sweep is needed, so as to provide a
single sweep algorithm.

Problems then naturally arise in the use of implicit schemes when flow in any reach is mixed,
so that it changes from subcritical to supercritical or vice versa. Then, in principle at least, a
rather complicated adaptive control algorithm with switches should be built in order to allow
for the solution of both flow regimes by one, unique algorithm. Although the switching can
in its turn be built into the algorithmic structure, the resulting schemes do not appear to have
been seriously proposed or reported in the literature (M.B. Abbott, private communication).
It has long been observed, however, that supercritical flow conditions can be solved by using
the de Saint Venant equations without the convective momentum term with the same algorithm
(double sweep) as subcritical flow. Hence the problem has been overcome in practice by
introducing a gradual reduction of the convective momentum term as the flow approaches
supercritical flow conditions, so that when it arrives at critical flow the equations are employed
without any convective momentum term at all. In such a way a simple adaptive control system
is built. This control method is implemented and accepted in at least one of the fourth
generation modelling systems for one-dimensional, free-surface flow currently available (e.g.
Havne and Brorsen, 1985; Abbott et al, 1991).

However, if only because the errors so introduced have been observed to be mostly small and
local, little attention has been given to the real performance of the method. Moreover, the
question of determining just how the reduction and ultimate absence of the convective
momentum term influences the boundary condition requirements and consequently the stability
conditions has scarcely been discussed at all. In this chapter at least a part of the answer to this
question are to be provided.

3.4 Reduction of the convective momentum term

The method of characteristics is first used to explore the boundary condition requirement in
the case when the momentum equation (3.2) is used without the convective momentum term.
Here only the simplified form of momentum equation (3.2) is presented while the full form of

the de Saint Venant equations is discussed in Appendix 3.1.

In this case, the mass equation (3.1) remains unchanged while the simplified momentum
equation (3.2) takes the form:

duh) | L3k _
5, T eh (3.4)

In matrix form, the two equations, (3.1) and (3.4), can be written as:

41

FLOW ADAPTIVE SCHEMES

af af
3t 9x 3.5)
where:
h 01
f = , A =
[uh } [gh 0]
The eigenvalues of the matrix A give the slopes of the characteristic lines :
d
- 4 gh (3.6)

dt

From this expression, it is seen that slopes of the characteristic lines do not depend at all on
the Froude number. Moreover, the two characteristic lines always have opposite signs, which
corresponds to the use of a one-point boundary condition at each end. Thus, the double sweep
algorithm is the proper algorithmic structure for all flow conditions in this approximation:
models with a built-in gradual reduction of the convective momentum term and one point
boundary data at each boundary are here stable even in the case of supercritical flow.

If, instead of the conservation of momentum, the conservation of the momentum per unit
volume is considered, using equation (3.1) and equation (3.2) and assuming that all functions
are differentiable, we arrive at the Bernoulli equation:

ou du o]
9u ,0u 98 _
ar “ax % 3.7)

B

The full form of equation (3.7) given as well in Appendix 3.1. In combination with the mass
equation (3.1), the Eulerian matrix form can be written as:

[oF]
—,
+
S
Q
~,
I
[

(3.8

@
-~
(o3}
=

42

NUMERICAL TREATMENT OF SUPERCRITICAL FLOW

where:

u h
g u

When the full equations (3.8) are used, the slopes of the characteristic lines naturally have the
same slopes as in the case when the full momentum equation is exploited.

If, however, the convective term is eliminated from the Bernoulli equation component of the
matrix A in (3.8), we obtain:

uh
g0

It is important to observe that this matrix could not be obtained from the continuity equation
(3.1) and the momentum equation with reduced convective momentum term (3.4), so through
this transition a novel form is obtained.

The eigenvalues which define the slopes of characteristics are now given by:

dx u u
dt 27 4 *8h 3.9

(For details see Appendix 3.1). From this expression for the slopes of the characteristic lines,
it is apparent that these are not independent of the flow velocity. The slope of the C
characteristic remains negative no matter what the relation between u and gk ; but its
magnitude decreases with the increase of the Froude number. This is a property which can be
used to influence results in a felicitous direction. When flow is supercritical the downstream
boundary condition is, strictly speaking, physically unrealistic, and therefore completely
artificial, but this property has the consequence that the influence of this departure from reality
should not be spread very widely through the domain. By virtue of the very steepness of the
C characteristic (with flow taken in the positive direction), its influence is limited to a very
narrow region.

If the C* characteristic is considered (3.9) it is obvious that the relative error in its slope
compared with the slope of the C* characteristic of the full equations (3.3) decreases with the
increase in the Froude number.

43

FLOW ADAPTIVE SCHEMES

In Fig.3.2 the ‘relative slope’, defined as the ratio between the slope of the characteristic line
and that of /g%, is presented as a function of the Froude number for all cases considered here.
Let us first consider the case where the complete equations are used (presented by full lines).
For supercritical flow, when the Froude number exceeds unity, both characteristics are seen
to have a positive slope, which leads to the appropriateness of two-point boundary condition
data at the upstream end.

. o B i ameem .
6
cs | —
T T e
% 4 o ralt
-d
w C-
s 2
2 :
<
d | C=
>4
C-
-2
4] ; 2 | | |

FROUDE NUMBER

Fig.3.2 Relative slopes of the characteristic lines as a
function of the Froude number

B=Bernoulli equation without the term u %
X

2
M= momentum equation without the term ai["7]
X

The slopes of the C characteristics in both of the other cases considered, where the equations
without the convective terms are used, remain negative in the supercritical flow conditions,
which makes possible the use of one-point boundary condition data at both ends of the domain.
However, a distinction between these two C' characteristics is possible. The one arising from
the use of the momentum equation (dashed line) has a constant slope, while the other, derived
from the Bernoulli equation (dotted line), tend asymptotically towards zero with increasing
Froude number, what is to say that this slope gets increasingly steeper in the physical plane.
As already mentioned, the use of the steeper slope introduces smaller errors from the use of
the, strictly-physically-incorrect, downstream boundary condition.

The slopes of the C* characteristics for the cases without the convective term also demonstrate

large differences. In order to explore these differences in more detail, a ‘celerity coefficient’
is defined as the ratio between the celerity of the set of equations actually employed and the

44

NUMERICAL TREATMENT OF SUPERCRITICAL FLOW

celerity of the full equations. In Fig.3.3, the celerity coefficient is presented as a function of
the Froude number.

The celerity coefficient of the momentum equation without the convective term (dashed line)
shows a very rapid drop with the increase in Froude number, and this leads to the conclusion
that the celerity of the solution obtained by that method differs much too drastically from the
celerity of the solution obtained with the full equations. On the other hand, the celerity
coefficient of the Bernoulli equation without the convective term (solid line) reaches its
minimum of approximately 0.8 at a Froude number of around 1.6, and this is followed by a
gradual improvement in representative capability. Therefore, no very significant error in
celerity is to be expected in this case.

— Bernoulli 6q @ === momentum eq.
reduced reduced
= 100 T
g
o
Q o080 “‘
= |
w %
i \ :
8 0.60 “‘ ‘
> 040 e
e,

E 0.20 R vy
| ; ..._%
w
o 0.00

[} 2 4 6 8 10

FROUDE NUMBER

Fig.3.3 Celerity coefficient as a function of the Froude number

However, the celerity of the solution was not the only feature to be considered, as it will be
shown later. The celerity ratio was used here as an example of the schemes behaviour as it
demonstrates this particularly clearly.

3.5 Which term is to be reduced?

All the differences shown in the previous section between results obtained with the momentum
and Bernoulli equations, both without convective momentum terms, lead to the conclusion that
the reduction of the convective momentum term from the momentum equation is excessively
severe. A reduction of the convective term in the Bernoulli equation appears to suffice to allow
the use of the same algorithmic structure for the solution of the subcritical and the supercritical
flow. Moreover, it promises to provide a much closer solution to the solution of the full
equations. As the momentum equation is the more commonly used in the modelling of natural
rivers, the notion naturally arises of splitting up the convective momentum term and reducing
only a part of it. One possible expansion of the term is then:

45

FLOW ADAPTIVE SCHEMES

3 (u*h) _ ou 9 uh

0 x dx ox (3.10)

If only the first term of this expansion (which anyhow resembles the convective term from the
Bernoulli equation) is reduced, expression (3.5) takes the form:

Nt
.

b

l @
&h
[}
=)

(3.11)

@
-~
QL
=

where

el el

(For more details see Appendix 3.1.)

The eigenvalues of the matrix 4, which define the slopes of the characteristics, are then given
by:

2
dx _ u Ly (3.12)

which is the same expression as obtained in the case that the Bernoulli equation is used.
Accordingly, all the positive features of the Bernoulli equation formulation can be exploited
in this case as well.

3.6 Stability analysis
The stability analysis for a numerical solution obtained by any finite-difference method is
usually done by means of a linearised analysis in Fourier series expansions. In such an

analysis, the amplifications of the wave components of the unknowns within one time step are
examined. The analysis is highly localised and does not consider the application of the

46

NUMERICAL TREATMENT OF SUPERCRITICAL FLOW

boundary conditions. Thus, although stability proved in this way is essential for the
performance of any scheme, it is by no means sufficient, and this is especially so in the case
of implicit schemes. Usually it is accompanied by further stability conditions, commonly taking
account of the required boundary conditions, such as may be obtained from the method of
characteristics. In this case a distinction is sometimes made between the stability of the scheme
and the stability of any particular algorithm (or ordering of operations) used to solve the
scheme (see Abbott, 1979, pp.178-182; Abbott and Basco, 1989, pp.78-86, 251-259).
Examples of both of these kind of analyses are presented in Appendices 3.5 and 3.6. It should
further be observed that stability conditions will depend upon the form in which the
conservation laws are written: a proof of stability for a scheme based on (3.4) is no guarantee
of stability for ‘the same’ scheme based on (3.7), and vice versa.

3.7 Models

Numerical solutions of the de Saint Venant equations are most commonly obtained by using
finite difference methods. In practice, two difference schemes are mainly used for free-surface
flow simulations, namely, the Preissmann scheme and the Abbott-Ionescu scheme. For details
on finite difference approximations see Appendices 3.2 and 3.3 while the details of the solution
algorithms are given in Appendix 3.4. Models based on both of these schemes were developed
in order to test the influences of the different reductions of the convective momentum terms
on the results.

The model which uses the Preissmann scheme for the finite-difference approximations was
based on the Eulerian form of the equations. The non-staggered grid which it uses makes
possible the direct approximations of partial derivatives of both unknowns (water depth and
velocity or discharge) with respect to both arguments (time and space).

For the staggered grid of the Abbott-Ionescu scheme, the finite difference approximation of a
partial derivative with respect to space of only one unknown within one component of the
scheme is possible. Accordingly, equations of the form of (3.5) have been rewritten in their
algorithmic form:

4 1 [2;4 —1}

47

FLOW ADAPTIVE SCHEMES

The algorithmic forms are derived in a similar way for all the other cases of the reduced or
partially-reduced equations, as well as for the cases where the Bernoulli equation is used (see
Appendix 3.1). Moreover, two more terms were introduced, in both momentum and Bernoulli
equation, to cover the bottom slope and the friction effects of the channel.

For each of the above schemes, four models were developed for supercritical flow, denoted
as follows :

SS - based on the complete equations and consequently with a two-point boundary condition
at the upstream end.

B - based on the mass equation and the reduced Bernoulli equation and so with a one point
boundary condition at each end

M1 - based on the mass equation and the fully-reduced momentum equation and so with a
one point boundary condition at each end

M2 - based on the mass equation and partly-reduced momentum equation and consequently
again with a one point boundary condition at each end

The role of the models (SS) based on the full equations, and consequently solved using a
single-sweep algorithmic structure from two point boundary data at the upstream boundary,
provides reference results. The accuracy of these results is not treated in this work, this having
been discussed extensively elsewhere (see, for example, Abbott, 1979, pp.180, 185-188;
Abbott ef al, 1981; Cunge et al, 1980, p.89; Abbott and Basco, 1989, pp.257-259).

3.8 Results

In all the models based on the equations with a reduced convective momentum term and
consequently with one-point boundary data at each end (B, M1 and M2), oscillations were
observed. These started gradually, but in time built up to cause instabilities. The origin of this
noise was traced to the form of the friction term and accordingly the cases with higher Froude
numbers were influenced more. In order to avoid this effect, a dissipative interface was built
into each of the models through a simple averaging of the parameters (flow velocity, area of
the cross-section, etc.). This can as well be recognized as a form of an adaptive algorithm as
was already mentioned in Chapter 1. For models based on the Bernoulli equation, this proved
to be sufficient, while for the models based on the momentum equation a forward-in-time
centring of the schemes was also employed. This appears to be in agreement with current
practice (Abbott and Basco, 1989, p.248; DHI, 1987, p.C-2-6). All results presented from the

48

NUMERICAL TREATMENT OF SUPERCRITICAL FLOW

SS and B models were obtained using fully-centred schemes, while the M1 and M2 models
employed schemes centred completely forward in time, and so with 6=1.

The example for which the results are presented is an unsteady flow in a 200m long,
rectangular, 10m wide channel with a uniform bottom slope of 0.01 and a roughness defined
by a Chezy coefficient of 50m“s™. The initial condition is a uniform supercritical flow with
0.5m depth and a Froude number of 1.6. The upstream boundary condition is a water depth
that is set as a function of time, such that in 60s this depth increases linearly from an initial
0.5m to 1.0m, and then, within the next 60s returns to 0.5m, and after that stays constant. The
downstream boundary condition is a rating curve based on uniform flow conditions as defined
by the bottom slope and the Chezy coefficient. The computational parameters were 4¢=10s
and 4x=10m for the Abbott-Ionescu scheme and 4¢=10s and Ax=20m for the Preissmann
scheme, which give in both cases a Courant number of approximately 6.

g PN
I o "*.“\
£ 7N
o /// "\
lg 0.80 7 r’y/ \
2 /"/ \.
E l“'f‘"‘
i l"
3 o
0.40 -
[60 120 180

TIME (s)

Fig.3.4 Water depth as a function of time at point x=100m, Abbott - Ionescu scheme

As the results obtained by the two schemes used here do not differ substantially, the same
conclusions hold for both schemes.

In the results obtained by all the models employing the reduction of the convective momentum
term, the water depths are overestimated (Fig.3.4) if compared with the reference results of
the SS model. The results of the B model are the closest to the reference ones, specially if one
takes into account that by off-centring the scheme in space they can be brought even closer.
together. At the same time, it is clear that results for the water depths given by the M1 model
are the least accurate.

Results for discharges are presented in Fig.3.5. Again, those obtained using the B model are
the closest to the results of the SS model. The values obtained using models M1 and M2 are

49

FLOW ADAPTIVE SCHEMES

too low, mainly due to the numerical diffusion introduced by the forward-in-time centring of
the finite difference schemes. The phase error, which can be seen clearly in all three cases (B,
M1, M2), was expected, and especially in the case of M1 model, which shows the greatest
error of this kind. This error is not primarily a consequence of the numerical solution, but is
due to the different celerities (slopes of the characteristics) of the differential equations upon
which each of the models is based. As introduced above, it is caused by the partial or full
reduction of the convective term. For a Froude number between 1.6 and 2.0, as in this
example, the results of models B and M2 show the greatest phase error, which then decreases
with increasing ‘Froude number. However, the celerity error of the model M1 increases
monotonically with increasing Froude number.

-------- B. — 88 - M1 - M2
5
/7N
2, TN
N N\,
E // ,"/ \\\\
& 4
" /v N
g Ty R
8 2 / i 3
@ - S—
1
0 60 120 180
TIME (s)

Fig.3.5 Discharge as a function of time at point x=100m,
Preissmann scheme

The results for velocities, as shown in Fig.3.6, demonstrate how in the cases of models B and
M2 these are underestimated, so that there is again a phase error. On the other hand, the
results of the M1 model are quite highly unrealistic. In fact, the velocities in this case were
calculated as the ratio between the discharges and the areas of the cross-sections: as the
discharges demonstrated much larger phase errors than the water depths, their ratio has little
physical sense, while the velocities so calculated are completely out of the reasonable range.

The overall underestimation of velocities in the case of a partly or completely reduced
convective term has also a return effect on the reduction itself. The reduction coefficient is
defined as a function of the Froude number, which is obtained using the calculated velocities.
However, the final effect is positive, while underestimated velocities give smaller Froude

50

NUMERICAL TREATMENT OF SUPERCRITICAL FLOW

numbers, which then cause smaller reductions of the convective term and consequently more
accurate calculations of velocities.

a :

£

> \

E e
: i

] \\lP

> R oW

3
o 60 120 180

TIME (s)

Fig.3.6 Velocity as a function of time at point x=100m,
Abbott-Ionescu scheme

In the current practice of free-surface modelling, the most commonly used set of equations is that
composed of mass and momentum equations. The reduction of the convective momentum term
leads to model M1. If now, through Fig.3.4 - Fig.3.6, the results obtained in this case are
compared with the ones obtained from the SS model, taken as a reference, it can be seen that
these differ considerably. The results for water depths are the most overestimated, discharges are
the most reduced and delayed in time, while the velocities become correspondingly even more
unreliable.

3.9 Conclusions

In this chapter several simple flow adaptive algorithms were investigated. All these adaptive
algorithms were developed with the aim of modelling supercritical and mixed flow conditions.
They were based on different formulations of conservation laws and different finite difference
approximations; moreover, they have used different forms of adaptation. The main benefit from
their adaptivity is that they provide an approximate solution in the case where other algorithms
would fail or become excessively expensive in terms of machine time and code complexity. This
approximate solution is of course inferior to the numerical solution devoted entirely to the
problem of supercritical flow, but from the point of view of overall solution efficiency, the use
of such methods appears to be justified. However, if this should be required, once the adaptive
algorithm has identified the reaches where supercritical flow occurs, the more detailed models
can be applied on these limited sub-domains.

51

FLOW ADAPTIVE SCHEMES

When the convective momentum term is excluded from the momentum equation, the slopes of
the characteristic lines become independent of the flow conditions and depend only on the flow
depth so that they inevitably preserve the integrity of the subcritically-posed boundary conditions.
However, with an increase in Froude number, the differences between the slopes of these
characteristics and those of the full equations increase and this naturally has its consequences for
the celerity of the numerical solution.

Despite these obvious limitations, however this approach has proved itself to be stable, simple
and flexible. It has been shown that, even for supercritical flow conditions, the resulting use of
one-point boundary data at each boundary makes numerical schemes solvable using the same
algorithm as is used in subcritical flow (the double-sweep algorithm). The method is
unconditionally stable in the primitive form, and, so long as one remains aware of the range of
its accuracy, it can be very useful. In general, all results were shown to suffer from much the
same time delay, while water depths were too high and discharges and velocities were too low.
A numerical diffusion can be employed to improve the results for the water depths, but this
further reduces the reliability of results for discharges and velocities. An increase in steepness
of the channel bottom, however, did improve the accuracy of the models.

If, instead of the momentum equation, the Bernoulli equation is used, and its convective term
reduced, the expressions for the characteristics, that in turn govern the algorithmic structure,
continue to differ. Their direction is still independent of the flow conditions, but they match with
the original expressions more satisfactorily. Hence, the induced error in the celerity is much
smaller and it decreases monotonically with the increase in flow velocity. Moreover, the slope
of the characteristic proceeding in the opposite direction to the flow is much steeper, so that it
limits the influence over time of the artificially-posed downstream boundary condition to a
narrower region.

In general, when the momentum equation is used with the fully-reduced convective momentum
term (M1), the results are by far the worst in comparison with the other cases, as is in agreement
with the theory. Therefore, the full reduction of the convective momentum term should be
avoided. Since, however, changes resulting from excluding the convective term in the Bernoulli
equation suffice to ensure the stability and influence less the accuracy of the solution, in the
momentum equation, which is mainly used in practical applications, a reduction of only a part
of the convective term, which corresponds to the convective term of the Bernoulli equation, is
proposed. This appears to be sufficient for the purpose of maintaining stability while it influences
the solution accuracy to a minimal degree.

52

CHAPTER 4

A generalised solution algorithm
for flow in channel networks

4.1 Introduction

When implicit finite difference numerical schemes are applied to solve numerically one-
dimensional flow equations, three algorithmic structures can be identified as functions of the
flow characteristics: a single left-to-right sweep, a double sweep and a single right-to-left
sweep, corresponding to a left-to-right supercritical flow, a subcritical flow, and a right-to-left
supercritical flow (Abbott and Basco, 1989, pp.208-210). In practice however it has just been
shown that there are computational-organisational advantages in approximating the supercritical
flows by flows that necessitate the use of only one algorithmic structure, namely that which is
properly appropriate to subcritical flow (see also Kutija, 1993).

The application of these three different structures within the same model leads to a series of
complications as soon as networks of individual channels are considered. It is then customary
to divide such networks into two classes, the first being of the tree-like, branched or dendritic
kind and the second being of the looped or multiply-connected kind, as schematised in Fig.4.1.
In the first of these, a), the extension of the single-channel algorithm is effected relatively
simply by a suitable ordering of the initiating sweeps of the algorithm, as again schematised
in Fig.4.1 and as explicated elsewhere (Cunge ez al, 1980, pp.109-113).

In the second kind, as schematised in Fig.4.1b, however, no such simple solution is possible
and other approaches must be taken. The most widely used of those consists of eliminating the
influence of the points intermediate between the nodes of the looped network so as to reduce
the problem effectively to one of inverting a matrix the rank of which is simply the number of
nodes (Cunge et al, 1980, pp.113-121).

53

FLOW ADAPTIVE SCHEMES

N
EV

a) branched channel network b) looped channel network
Fig.4.1

This process is again simplified if double-sweep algorithms are used uniformly. Then, in view
of the availability of a number of ‘fast solvers’ for the linear equations of the resulting ‘well-
conditioned’ matrices, these standard tools can be conveniently used to solve for the nodes, and
thence for the points between these nodes. However, most of these ‘solvers’ use iterative
methods which are not only usually slower than direct, noniterative procedures for complete
networks, but the use of which also tends to weaken the user's insight into the links between
the algorithmic structures of the solutions and the physical information-transmitting properties
of the physical system. Moreover, the computational time used commonly increases more than
linearly with the number of nodes in the case of looped networks (e.g. Osiadacz, 1987, p.89).
This last feature can be a major handicap when solving for larger urban drainage systems for
real-time control purposes, since such a system typically consist some tens and occasionally
some hundreds of loops, and each control setting necessitates at least one computation for
every effective, physical control structure or other element (pump, syphon, weir, etc.) in the
system. Although essentially logical methods may be used to break up the system into a set of
more manageable sub-systems and a multi-processing capability may be employed to compute
each such sub-system and the influence of each physical control structure or pump in parallel,
a useful benefit still accrues from using faster direct methods.

The general network algorithm presented here provides a fully-automated instantiation and
control procedure for combined dendritic and looped networks that is physically transparent
and which provides solution speeds that are little influenced by the network complexity.
Although explicated here only for the case of flows approximated using double-sweep
algorithmic structures, it seems possible to extend these methods to other, including mixed,
algorithmic structures should that later be deemed necessary . In the same vein, it is supposed
for the moment that the topology of the network is made invariant by the usual procedure of
introducing Preissmann and Abbott slots (Abbott and Basco, 1989, p-248). The use of the
device of Preissmann slot also allows the methods described here to be applied directly to fully
pressurised flows and thus to water distribution and associated water hammer problems
(Vanecek et al, 1994).

54

A GENERALISED SOLUTION ALGORITHM FOR FLOW IN CHANNEL NETWORKS

4.2 Adaptive control structure

The control mechanism of the generalised network algorithm presented here is provided by a
graph-theoretical approach to the network topology. It introduces two novel aspects. The first
is the definition of a control sequence which takes into-account the physical information-
transferring properties of the network through a graph-theoretical formulation. The second is
the introduction of a global elimination algorithm for the solution of the looped network which
uses the predefined control sequence and employs automatised symbolic computation for the
solution of the large sparse system of linear equations that is produced.

The control mechanism applied in this algorithm plays a very important role while it provides
the order of calculation. Thus, the results provided by the adaptation transducer forms an
essential part of the numerical operator. Without the lists defining the sequence of calculations,
the numerical operator could not perform any useful calculation at all.

The control mechanism provides, firstly, the distinction between the two different types, and
corresponding parts of the network from the point of view of calculation so that the most
efficient algorithm can be applied on each of these parts, both dendritic and looped. Secondly,
it provides an order of calculation for each or these algorithms that corresponds to the topology
of the network. The details of this control mechanism are discussed later in this work.

ADAPTATION
L O PSR .
input
<] network
order :
topology :
N O
N O
input ':mt(: PSR
Y, > difference solution = | >
approx. algorithm flow field
Fig.4.2

55

FLOW ADAPTIVE SCHEMES

The adaptive nature of this control mechanism is of a type where the process of adaptation of
a generally given method is prepared at the beginning of the operation according to the specific
features of the problem. Thus, in effect, the definition of the control sequence is the adaptation
process. In this: way the control mechanism is defined on the basis of network topology before
the time dependant calculation. If however, the network topology changes during the
simulation (as a consequence of the drying-out of a channel or the opening or closing of a valve
or a gate) the corresponding adaptation of the control mechanism can be introduced. The
adaptation transducer is composed of a PSR-network topology analyser and a logical operator
(LO) which defines the order which is followed in the solution algorithm.

The scheme of this adaptive control system is represented in Fig.4.2. From the scheme it
becomes obvious that this adaptive control system can be characterised as one of partly open
loop adaptation. This is the case if the results of flow simulation (states of PSR hydrodynamics)
are not seen as having an influence on the network topology (that is the PSR network
topology). If however, the network topology depends on the flow results, then it becomes a
closed loop control system.

The numerical operator (NO) itself is considered as a transducer which is itself composed of
two essentially different transducers, the one being concerned with the numerical discretisation
and controlled by the results obtained at previous time step (that is states of the PSR
hydrodynamics) and the other being the solution algorithm controlled by the lists originating
from the adaptation transducer.

As the proposed algorithm follows the main line of thinking of computational hydraulics, in
that the order of computation and associated recursion is based on the physics of the channel
flow, and corresponding information flows, it is expected to be more efficient than the iterative
algorithms that are still the most commonly employed. Although algorithms providing direct-
solutions have been constructed and applied in some cases since the 1970s (e.g. DHI, 1992),
and most recently by Verwey (1994; see also Vanecek ef al, 1994), no general theory for such
procedures appears to have been previously elaborated.

4.3 Description of the problem

4.3.1 Elements of graph theory

Only the barest elements of graph theory are introduced here by way of background (Chen,
1990, pp.1-10). In general we shall understand by a graph G an ordered pair of disjoint sets
(V,E) such that E is a subset of the set of unordered pairs of V, where:

56

A GENERALISED SOLUTION ALGORITHM FOR FLOW IN CHANNEL NETWORKS

V is the set of vertices
V=1{1,2,3,4} /1// 2

E is the set of edges yd 4
E={{12},{1,4},{2,4},{23}} 24 3

G(V,E) is a graph 1&
G = {{1,2,34}, {{1,2},{1,4},{2,4},{2,3}}} b3

Fig.4.3

Any graph can as well be represented by a connected set of points, lines and numerals (see
Fig.4.3) but the usual way of presenting a graph is by its incidence matrix (Chen, 1990, p.53).
The incidence matrix of a graph is a matrix B = B(n xm), with n being the number of vertices
and m being the number of edges, defined as:

{ L if v; is a vertex of an edge ¢

B=BO ={b} b= 0 if v, is not a vertex of an edge ¢;

Thus the incidence matrix of the graph of Fig.4.3 is:

j1234
i

1 {1100
2 (1011
310001
410110

Each column in the incidence matrix represents an edge, so that, as each edge has two ends,
the sum of all the entries in any one column is equal to two. This property is usually used for
checking the input data. Each row represents a vertex and the sum of all the entries in one row
is called the degree of a vertex. The degree is the number of edges incident to that vertex. A
vertex with a degree equal to one, like vertex number 3 in this example, is an end vertex. A
graph which can be drawn in the plane in such a way that no two edges intersect is called a
planar graph (Chen, 1990, pp.29-36).

In the following expositions, channel networks will be treated as planar graphs. This
abstraction will not cause difficulties because any channel network resembles a graph by virtue
of its one-dimensionality. In hydraulics the vertices are commonly called ‘nodes’ or
‘junctions’, while the edges constitute the ‘links’, or ‘channels’, or ‘pipes’ or ‘conduits’,
depending upon the area of application concerned. For the sake of generality, we shall keep

57

FLOW ADAPTIVE SCHEMES

to the relatively neutral terms of ‘vertices’ and ‘edges’; these can then be easily transcribed into
the particular terms that are used in any particular hydraulic context. It remains sufficient that
the network topology can always be expressed in terms of the incidence matrix, as in this
manner all the connectivity relations between the elements of the graph are given in an unique
and recognisable way.

A NS
R R R N - - - R -
CcC o0 o0 CocoOC OO O~ o
©C 0 OO0 OO OO0 ~—~o o
Cococ o0 00C OO0 O~ —00 o0
C o oc OO0 00 ~0~0 00
C oo CcCCcC o0 OO O ~00 0 ~0 0
co o0 o000~ —000 00 o
e N = I N T R R R)
Co oo O~ o000 0 00O
CcCo 0o —~0o 00000000
co o ~0o0~O0000 000
C OO -0 0005000 00
co—~oc oo —~o0o0coocoo oo
o~ o cCcoc o0 OO0 O oo O
o~ o~ o0oCcCOo 00000 OO
-~ oo ococoCc o000 O OO
o~ o0oocococ o000 Oo 00 OO ~

Fig.4.4

In the same vein, the complexity of the graph can be measured with different parameters,
which however can be used uniformly in all areas of application in hydraulics. The first Betti
number (m-n+1) defines the number of loops in a graph (Abbott, 1979, p.216). Another
measure is the ratio between the number of edges and the number of vertices in a graph (m/n
or e/v). The vertex degree of connectivity of a graph is the minimal number of vertices which
need to be removed in order that the graph may become disconnected. A similar definition
holds for the edge degree of connectivity (Carré, 1979, pp.142-174).

In summary, then, any network can be represented as a graph with n vertices and m edges and
the corresponding graph is defined by an incidence matrix with dimensions nXm. In order to
illustrate the presented method, the example shown in Fig.4.4 will be used.

4.3.2 Elements of computational hydraulics

Flows in the open-channel networks treated in this text are supposed to be described by the de
Saint Venant equations for one-dimensional free-surface flow:

58

A GENERALISED SOLUTION ALGORITHM FOR FLOW IN CHANNEL NETWORKS

. 30 h
: —= +b— =0
Continuity pw + b, py “.1)
. Q@ 9 Q? oh g2l0| .
M tum: =+ | B= | +gd| = -1 | + : 4.2
omen a ax[BA J § (pX ”] C2AR @2

where: Q - discharge I, - bottom slope

h - water depth R - hydraulic radius

b, - storage width B - Boussinesq coefficient

A - cross-section area C - Chezy resistance coefficient

Solutions of the flow conditions are obtained in the case considered here by the finite-
difference method. Although all the concepts introduced are invariant with respect to the choice
of the finite-difference scheme between the two most commonly used schemes, namely those
of Preissmann and Abbott-Ionescu, in this chapter the applications to the Abbott-Ionescu
scheme are presented (Abbott and Basco, 1989, pp.259-264). For more details see Appendix
4.1. The same methods apply to simplified formulations, but the algorithms elaborated later,
although suitable for the parabolic wave approximation, will need to be modified for the
kinematic wave formulation. As the compatibility conditions that have to be applied at vertices
of the channel-network, equal water levels are considered due to the slightly easier treatment.
The approach presented here can be easily extended to the more accurate energy-level
equivalence at vertices, as well as to other implicit finite-difference schemes (Cunge et al,
1980, pp.111-112).

At each vertex of the graph there is an unknown denoted by ¥(i), i = 1 to n, representing the
water levels atthe vertices. Along each edge there is a set of unknowns denoted by X(k,j),
k=1tom, j = 1to the number of grid points along the k" edge (more usually denoted by
JD, representing alternatively discharges and water levels along the edge.

The equations to be solved can be divided into two types: first, the‘continuity equations at all
the vertices, which have the form:

4;
Y X(e(ee))=0 (4.3)
ee=1
where: i - number of the vertex;
d; - degree of the i vertex;

59

FLOW ADAPTIVE SCHEMES

ee - indices of all the edges incident to this vertex, ee=1 to d;

e(ee) - numbers of edges incident to the i* vertex;

a - 0 or jj+1 depending upon whether the edge is incoming or outgoing;
X(e(ee),a) - discharge at the beginning (or end) of the edge number e(ee)’

and, second, the system of equations along the edges which have the form:

[« o« =] Y(i)] £ |
* b* * X(e, 1) *
* x % X1 X(e2)|=|* “4.4)
* k% X(e,3) *
. tl
with: i - the number of the incident vertex
e - the number of the edge

It is seen that each of the equations from the above-presented system of equations has the
general form:

A(e,j) X(e,j-1) + B(e,j)X(e,j) + C(e,j) X(e,j+1) 4.5)

Beside the network topology, given by the graph in Fig.4.4, the characteristics of each channel
are to be given, together, of course, with the boundary conditions. The boundary conditions
introduced in this model are those of water level as a function of time and discharge as a
function of time. All the boundary conditions are situated at vertices. The discharge boundary
condition can be given at any vertex and if it exists it is included in the continuity equation
(4.3) for that vertex. The water level boundary conditions are allowed only in the end-vertices
(dendritic ends of the graph) and they are used to initialise the elimination sweep along the
incident edge. This kind of boundary condition in other vertices is avoided as it would
influence the definition of the control mechanism. However, if there is a need for such a
boundary condition it can always be introduced by a decomposition of the given vertex into the
set of end vertices (in a similar manner as explained on pages 4:16-4:17) with the same

! Due to the use of staggered grid in the Abbott-Ionescu scheme, the first discharge along the
edge is X(e,1) and it is placed at distance Ax from the vertex. In order to get the value of the
discharge placed at the very beginning of the edge (X(e,0)), an additional continuity equation
has been introduced. The same procedure has been used for the discharge at the very end of
each channel. :

60

A GENERALISED SOLUTION ALGORITHM FOR FLOW IN CHANNEL NETWORKS

boundary condition defined in each of them. The boundary conditions are discussed in more
detail in Appendix.4.1.

4.3.3 Systems of equations to be solved

The system of equations concerned is composed from various sources. Each channel of the
network contributes a system of linear equations (4.4) characterised by a banded matrix (tri-
or penta- diagonal, dependent on the finite difference scheme used). Beside these, at each and
every node of the network a continuity equation (4.3) and a compatibility condition are given.
Together with the system of boundary conditions, these form one system of linear equations.
This full system of equations can then be written in the form:

Ax = b

In an efficient computer code, the matrix of this system of equations (4) is never assembled.
In order to economise on memory, only the non-zero entries are kept, and these are maintained
in separate blocks. However, if such a matrix were to be assembled, it could always be reduced
to the following form:

All AlN
A2l 2N

4= A, Ay (4.6)
L ANl AN2 AN3 ANN

with 4;; being the block matrices. The submatrices
- A, .- AiN]

originate from the systems of equations connected with each of the channels (4.4) involved
while the submatrix

[ANI Ay, Ay * - ANN]

comes from the system of nodal continuity equations (4.3).

61

FLOW ADAPTIVE SCHEMES

This particular| form of matrix is usually called the doubly bounded block diagonal form
(DBBDF) in the field of sparse matrices. It is one of the forms that are desirable for the
efficient reduction of matrices (Tewarson, 1971) and it can, for example, be obtained by an
algorithm called one-way dissection (George, 1980) or by some other partitioning algorithm
(Duff et al, 1986, pp.239-261).

4.4 Solution methods
4.4.1 Block Gauss elimination
Once its matrix is reduced to this specific form, the system of equations can be solved by block

Gauss elimination (Duff et al, 1986, pp.161-163) which can be represented for this form by
the following algorithm:

D =4, i=12,..N-1

N-

-1
ANN - EANij AjN

—

Dy

-~

¢, =b, i=12,..N-1
N-1 "
cy = by - ' ANJDJ G
Jj=1
-1
xy =Dy cy

-1
X =D (¢ - Ay cy)

This method, although taking account of the advantages provided by the specific form of the
matrix, does not achieve the most efficient results in cases where the size of the block-matrices

62

A GENERALISED SOLUTION ALGORITHM FOR FLOW IN CHANNEL NETWORKS

is considerable. In the case of modelling channel networks this means that it becomes less
efficient when the number of discretisation points used along each channel and/or the number
of nodes in the network are considerable.

4.4.2 Nerwork algorithms

The branched networks (with no loops involved) are presented by dendritic graphs that are
commonly called trees. (See Fig.4.1a). The matrix of the system of equations belonging to any
branched network can be solved without any fill-in (Parter, 1961) by different methods
including the extension of the double-sweep algorithm (Cunge ez al, 1978, pp.109-113) usually
applied to branched channel networks. This method, usually referred to as a branched network
algorithm, uses network graph topology to establish the order in which channels have to be
tackled so that no additional fill-in is required.

The looped networks are characterised by graphs with loops, as represented, for example by
Fig.4.1b. The solution algorithm called the looped network algorithm is a classical way of
solving flow conditions in such networks. The method consists of two steps. The first step is
the so called local elimination, usually performed on the matrix of each sub-system of
equations corresponding to each channel represented by equation (4.4) and/or by each of the
blocks A; in equation (4.6). Through the local elimination, the matrix of the systems of
equations for each channel passes through the following transformation:

* k% * 1 *
* k% * 1 *
e goes over into | * 1 *

* k% * 1 *

* ok x| * 1 *

Upon local elimination, all the first and last equations from these systems of equations are used
in order to substitute values for the discharges in the nodal equations. The solution of these
systems of nodal equations constitutes a second part of the looped network algorithm. This
system of nodal equations has an order equal to the number of nodes and is expressed in terms
of unknowns related to the nodes. Its matrix, although banded, has a significant band-width
but it is at the same time very sparse. For the solution of this system of equations, different
direct and iterative methods can be employed and these are indeed often used in currently
available commercial software for the solution of flows in open channel networks.

63

FLOW ADAPTIVE SCHEMES
4.4.3 Other direct methods for sparse matrices

The iterative methods, although preferred by some authors, are not considered in any detail
here due to their lack of transparency and often strong dependence on the numerical values.
The field of sparse matrix technology is developing rapidly, however, with the development
of linear programming and numerical methods which produce huge systems of linear equations
characterised by very sparse matrices of the systems (Duff et al, 1986, p.14). Some of these
methods seem quite interesting for possible application in the field of channel networks.

Most of these algorithms are closely related to certain applications of graph theory. They may
be introduced through the definition of the elimination graph associated with the sparse
matrix: for any nxn (i.e. square) matrix the associated elimination graph is a graph with n
nodes with the property that if ; is a non-zero entry in a matrix then the nodes i and j of the
graph are connected. Symmetric matrices are usually represented by undirected graphs while
unsymmetric ones utilise di-graphs.

In our case, the structure of the matrix is sometimes symmetric (dependant on the finite
difference scheme used) but the values of the entries are surely not. However, due to its
structure, this matrix can still be considered as a ‘nearly-symmetric’ one.

For example, the minimal degree algorithm (Tinney, 1967) owes even its name to a property
of the corresponding elimination graphs. This algorithm is suitable for the solution of
symmetric matrices while its counterpart for unsymmetric matrices is provided by the so called
Markovitcz criteria (Duff et al, 1986, p.128). The minimal degree algorithm, as well as the
Markowicz criteria, are based on the criterion of minimal fill-in (Duff et al, 1986, p.129).
That is achieved, at least locally, if the pivot row has the smallest number of non-zero entries.
Translated into the world of graph representation, this means that the node with the minimal
degree is being eliminated first (as indeed the name of the method again indicates).

This method, when applied to the channel network, results in a solution algorithm which, at
least in the first part, coincides with the classical looped network algorithm (i.e. local
elimination); when applied for solution of nodal equations it seems to be very powerful until
the minimal degree in the elimination graph reaches a value of about four. If applied further,
so much additional fill -in’ is introduced that the purpose of using a sparse matrix algorithm
at all is undermined (Stelling,G.S., private communication).

The application of methods such as a one way dissection (George, 1980) or a nested dissection
(George, 1973) or node tearing (Duff et al, 1986, pp.254-261) results in a partitioning of the
matrix in DBBD form, and making possible the solution of the system by some specific
economical method (i.e. Block Gauss Elimination). The choice of the separator set does
influence the size of the block Ayy and consequently the computational effort involved in the
solution. The smaller separator set reduces drastically the computational effort (Duff ez al,
1986, p.258). Hence, the successful dissection or node tearing is the one which minimises the
separator set and still maintains the separation of the other vertices. When applied to the
hydrodynamic network problems, all of these methods result in a separator set being a set of

64

A GENERALISED SOLUTION ALGORITHM FOR FLOW IN CHANNEL NETWORKS

all nodes of the network graph and consequently it leads to the matrix being partitioned into
its DBBD form as given in equation (4.6).

The method of Wang (1981) for the solution of banded matrices on parallel processors has
some very interesting features in this connection. Wang partitions the matrix into p blocks of
size k and performs elimination and substitution separately for each block (Duff ez al, 1986,
pp.208-210). However, this introduces some fill-in at boundary columns of the blocks in order
to facilitate parallel computation, while the double-sweep algorithm, which is highly recursive,
is not suitable for parallel computation. Wang's partitioning is driven by the size of the
problem and for the purpose of solving it using parallel processing. If this partitioning is done
in such a way that each block is reduced to one channel, then we are back at the looped
network algorithm. However, if partitioning is done in some other ways, then it becomes
interesting for applications on network problems.

4.5 The generalised solution algorithm

The generalised network solution algorithm is an adaptive algorithm. It consists of two main
parts: the definition of the control mechanism (being the adaptation transducer) and the actual
calculation of the flow conditions. The control mechanism required to steer the calculation
procedure is obtained at the adaptation phase of the general algorithm which is performed
before the actual time-dependant calculation starts. In effect, the solution algorithm is being
tuned to best suit it to the problem that it is going to solve. The logical operator which defines
the control mechanism is based on the network topology and it utilises the graph-theoretical
approach introduced earlier in this Chapter. The sequence of edges to be followed in the
elimination sweep and some other values used for control of the solution procedure are defined
through a set of algorithms performed on the incidence matrix of the graph.

For a certain fixed network topology, this procedure does not need to be repeated during the
calculation, so that it can be performed as a ‘pre-conditioning’ process, or ‘pre-process’. In the
field of sparse matrix technology, a similar feature is usually associated with the so called
static data structure (Pisanetsky, 1984, pp.28-29) which consists of two parts: the symbolic
one performed only once, and the numeric one which is usually repeated. The full advantage
of introducing such systems is seen in solutions of initial value problems where a lot of
systems of linear equations with the same structure, but different values, have to be solved.

The calculation of the flow conditions itself consists of two parts, the one for flow conditions
in the dendritic part of the graph and the other for flow conditions in the cyclic part of the
graph. A considerable gain in performance is obtained by splitting such a network into
components which are either entirely branched or entirely looped. This makes possible the
application of the particularly simple branched algorithm to the branched components, with a
separate algorithm applied to the rest of the network. Therefore, in the definition of the control
mechanism (adaptation phase), the splitting algorithm splits the graph into its dendritic and
cyclic parts. On the dendritic part of the graph, the standard branched network algorithm is

65

FLOW ADAPRTIVE SCHEMES

applied, but with the only difference that the whole algorithm for the solution of the cyclic part
is placed between the elimination sweep and the substitution sweep.

The ordering of the generalised channel network solution algorithm can be schematised for
structured programming purposes as shown in the following table:

ADAPTATION PHASE:
- splitting up dendritic and cyclic parts of network
- definition of sequence for global elimination method
- orientation of the graph

S

CALCULATION OF A, B, C, AND D, COEFFICIENTS FOR ALL THE
EDGES OF THE NETWORK

FIRST PART OF THE BRANCHED ALGORITHM:
elimination sweep on all the dendritic parts of the network

GLOBAL ELIMINATION ALGORITHM ON THE CYCLIC PART OF
THE NETWORK:
- elimination sweep
- intermediate sweep
- substitution sweep

SECOND PART OF THE BRANCHED ALGORITHM:
substitution sweep on all the dendritic parts of the network

The flow conditions in the cyclic part of the graph are solved by a global elimination
algorithm, which is meant as a replacement for the commonly used looped-channel network
algorithm. The governing idea is to circumvent altogether the phase in the standard looped
algorithm where a system of n equations with » unknowns is formed (with » being the number
of vertices in the network).

The global elimination method is based on a combination of automatised symbolic calculation
and the use of the branched network algorithm. In the other words, it is based on the Gauss-
elimination that is performed in any case on each of the channels within the local elimination
(Volkov, 1986, pp.155-160). Hence, in some respect it follows the algorithmic structure
required for the direct solution of one-dimensional flow, a feature which seems to be very
difficult to implement when using iterative methods. The whole global elimination algorithm
is again in the form of a symbolic computation, in which mathematical operations are
performed on symbols as if they were numbers (e.g. Wolfram, 1988).

In order to apply the global elimination method, a set of symbols as well as the corresponding
sequences of edges have to be defined. This is done within the adaptation phase of the

66

A GENERALISED SOLUTION ALGORITHM FOR FLOW IN CHANNEL NETWORKS

generalised solution algorithm. This algorithm is called a decomposition algorithm and it is
performed on the incidence matrix of the cyclic part of the graph.

4.5.1 Adaptation phase - the definition of the control mechanism
4.5.1.1 The splitting algorithm

Although some standard elements of graph theory can be employed in order to develop an
algorithm for splitting the channel network into dendritic and cyclic components, the precise
problem which arises here is not treated in standard algorithmic graph theory so that it became
necessary to develop an algorithm especially for this purpose.

The principal innovation is to use the notion of vertex degree, defined as the number of edges
incident to a vertex. All the vertices at the ends (or beginnings, depending on the definition)
of the dendritic parts of the graph have a degree of unity. Using this criteria, they can easily
be detected from the incidence matrix of the graph, where the sum of all the elements in each
row represents the degree of the corresponding vertex.

The whole algorithm is performed on a sequence of matrices (each element of which is denoted
as a C-matrix) which is initiated by the incidence matrix and the final form of which contains
only the cyclic part of the graph. Four additional arrays are used for constructing the sequence;
the first are called a ‘DE-list’ and a ‘DV-list’ and contain respectively the numbers of the edges
and the numbers of vertices involved in the dendritic part of the graph, and the second pair are
called a ‘CE-list’ and a ‘CV-list’ and contain the numbers of the edges and vertices respectively
involved in the cyclic part of the graph.

The algorithm is initiated by a search procedure conducted through all the rows of the initial
C-matrix (the incidence matrix) for vertices with a degree of one. When such a vertex is
detected, its number is placed in the DV-list while the only edge incident to it is removed from
the original C-matrix and its number is placed in the DE-list. The procedure is repeated, in the
whole loop and through all the rows of the matrix, until no further vertex of degree unity is
detected. Finally, from the non-zero entries of the C-matrix, the CV-list and CE-list with
vertices and edges involved in the cyclic part are constructed while the final C-matrix is
reduced to its non-zero rows and columns only. At the same time, the DE-list then contains the
numbers of all the edges and the DV-list the numbers of all the vertices in the dendritic parts
of the graph.

As an illustration of the operation of this algorithm, the results of its application to the simple
example of the graph shown in Fig.4.3 are presented in Fig.4.4. As can be seen from Fig.4.4,
this algorithm has partitioned the graph used as an example in Fig.4.3 in a manner suited to
the separation of the network-solution algorithm. The complexity of the separation algorithm
has not been examined in detail. However, it seems that even in the worst case it does not
necessitate more than 7’ checking operations, with n being the number of vertices in a graph.
As it is applied only at the time of instantiation, this is considered entirely acceptable. The
details of this algorithm and its pseudo-code are given in Appendix 4.2.

67

FLOW ADAPTIVE SCHEMES

4.5.1.2 The decomposition algorithm

The decomposition algorithm defines the list of symbols and the corresponding sequence of
edges and vertices needed to operationalise the global elimination algorithm. The basic idea
is to chose a vertex such that the value of the water level at this vertex can be carried as a
symbol throughout the elimination algorithm. The elimination sweep can start from such a
vertex, in any direction, in a similar manner as is done in the branched algorithm from an end
vertex. Hence, a symbol-vertex can be viewed as being decomposed into as many vertices as
its degree. Therefore, the role-of the decomposition algorithm is to chose the symbol-vertices
and consequently define all the ‘dendritic’ paths® originating from the decomposed symbol-
vertex. The number of symbol-vertices to be decomposed depends on the complexity of the
graph interconnections.

C matrix DE list DV list CElist CV list

5 5 1 1
[6 2 2

101000000001
10 10 3 3

110000000000
11 11 7 7

011100010000
17 15 8 8

000110000000
4 4 9 9

000011000000
12 12

000001101000
13 13

000000110010
14 14

000000001100 s
000000000111
g 16

a)Cyclic part of the graph b) Dendritic part of the graph
Fig.4.5

2 A path is a sequence of alternating edges and vertices.

68

A GENERALISED SOLUTION ALGORITHM FOR FLOW IN CHANNEL NETWORKS

The presented decomposition algorithm is not unique. The criterion for its choice was to have
the smallest number of symbols which must be carried through the elimination procedure.
Accordingly the vertices with the highest degree are chosen to be decomposed first. Another
possibility would be to organise the elimination sweep according to the loops of the graph, but
for that purpose an algorithm for loop generation would be required (Osiadacz, 1987, pp.50-
68). In general, the best way to chose the decomposition criteria would be to pose an
optimisation problem with respect to the overall number of operations in the elimination
algorithm. In that respect it is important to notice that the number of sweeps to which each
edge is exposed increases with the number of symbols. Edges corresponding to the first symbol
have only three sweeps, while for each successive symbol the number of sweeps increases by
unity.

The decomposition algorithm is performed on a working matrix (WM) initiated as a copy of
the incidence matrix of the cyclic graph, which is the final C-matrix obtained from the splitting
algorithm. The results of the decomposition algorithm are: the number of symbols, NS, the
array S(NS) with the symbol-vertices' numbers, the array NP(NS) with numbers of ‘dendritic’
paths originated by the decomposition of the corresponding symbol-vertices, the array
LP(NS,NP(NS)) with the lengths of each of the ‘dendritic’ paths’, the array
E(NS,NP(NS),LP(NS,NP(NS))) with the edges' numbers of all the edges involved in each
‘dendritic’ path, and the array V(NS,NP(NS), LP(NS,NP(NS))-1) with the vertices' numbers
of all the vertices involved in each ‘dendritic’ path.

The decomposition algorithm first calculates the degrees of the vertices of the WM. The vertex
with the highest degree, or any one of them if there are more vertices with the same degree,
becomes the symbol-vertex, whereupon it is removed from the working matrix (WM) and
placed in the list of symbols (S), and the number of symbols (NS) is increased by one. Further,
the algorithm searches for a column of the working matrix with only one entry, it increases the
number of paths (NP) originating from the removed vertex by one, it places the edge number
corresponding to that column in the list of edges (E) and it sets the length of that path (LP) to
unity. After this, the algorithm searches for a dendritic path following that edge. For each
successive dendritic edge, the vertex number is placed in the list of vertices (V), the length of
the path (LP) is increased by one and the edge number is placed in the list of edges (E). The
algorithm then searches for another column with a single entry and repeats the whole
procedure. If no column contains a single entry and the WM-matrix is not completely zero,
then the procedure starts again from the point where the calculation of the degrees of all the
vertices is performed. The procedure is repeated until all the entries of the WM are equal to
Zero.

The array E(k,m,n) partitions the set of all the edges of a graph with respect to the index k. A
subset of the set of all the edges whose numbers are placed in the array E with the first index
equal to k will be called a k-subset. In the global elimination algorithm, for each of these
subsets a different number of symbols will be involved. The number of symbols for each subset
is equal to its index . For the first subset, the symbol will be the water level (Y) at the vertex

* The length of a path is measured by the number of edges traversed.

69

FLOW ADAPTIVE SCHEMES

whose number is the first element from the array S. For the second subset, the symbols will
be the water levels in vertices whose numbers are the first and the second element in the array
S. Thus the symibols corresponding to the k-subset are Y(S()), i = 1 to k. In the same manner,
the subsets corresponding to a symbol Y(S(i)) are the k-subsets, k = i to NS.

By way of an example, when applied to the graph exemplified in Fig.4.5a, the above
algorithms provide the results shown in
Fig.4.6. For details see Appendix 4.2. 14

-number of symbols NS =2,

-numbers of symbol-vertices
S = {3,9},

-number of paths corresponding to each symbol

NP ={4,1},
-length of each path LP={{2,2,3,1},{4}},
-list of vertices per each symbol and path

V={{{2}.{1},{7.8}.0} .{{12,14,13}},

-list of edges per each symbol and path
E={{{2,1},{3.18},{7.8,9}.{13}},{{12,16,15,14}}

4.5.1.3 The orientation algorithm

The last of the algorithms used in the definition of the control mechanism is the orientation
algorithm. In this algorithm the graph is transformed into an orientated graph (or digraph; see
Chen, 1990, pp.75-81). This transformation again starts out from the incidence matrix of the
graph. The physical basis of this procedure is that the ordering obtained at every stage in every
algorithm should correspond to the flow of information through the physical system as defined
by its characteristic structure (Abbott and Basco, 1989, p.210).

Within the solution procedure for a single channel, it is

assumed that the positive direction of information flow +Q

has already been related to the increase in the grid-point

numeration: see Fig.6. Each channel in the network is T2 3 .. 1
treated in this way. Accordingly, an orientation has to be Fie.4.7
assigned to each edge of the graph representing the 8.4
positive direction of information flow.

As the assumption of a positive direction of information flow in an edge corresponds to an
increase in the grid index, the notion arises of orientating all the edges in the direction in which
they will be transversed by the elimination sweep i.e. following the defined sequence of edges
and vertices. The discretisation of edges in this way simplifies the elimination algorithm, as

70

A GENERALISED SOLUTION ALGORITHM FOR FLOW IN CHANNEL NETWORKS

each edge is ‘attacked’, so to say, from its ‘beginning’. The whole calculation procedure will
henceforth be performed according to this diagraph. It is important to notice that each row of
the new incidence matrix provides the mass or energy continuity equation concerned directly
at the corresponding vertex.

Upon application of this algorithm to the graph exemplified in Fig.4.4, the resulting diagraph
can be presented in the incidence matrix and the diagraph presented in Fig.4.8. The difference
between the graphs presented in Fig.4.4 and Fig.4.8 is that the orientation of the edges
presented in the diagraph of Fig.4.8 accords with the defined control mechanism. For more
details see, Appendix 4.2.

The incidence matrix

{10100000000000000-1
11000000000 00DO0O0L0 00
¢ -1-1100-10600G60-1060200 0
000 -1110020000000GCO0 0
0 000-10000GO00GO0GOGO0O0OO0 0
00 00O0T-1000200GO0O00O0O0TO0 0
0 000O0O0T1-10000200G00O0O0 0
900000 1-1000000T0O0O0
000000 0GOTIT1I1-107120000
0 0000O0O0OO-10020G00TG 0200
0000 0O0OGO0DO0O0T-10002000 0
0 0000O0OOOOOTIL1T10O0-100
000 00O0DO0G OO OO OOO-11000
0000000 OODOOO0O0 -1 11
00 0D00D0OOO0O0O00 0000 -10

Fig.4.8

4.5.2 The solution algorithm
4.5.2.1 The dendritic part: the branched network algorithm

As the dendritic part of the network is solved by the classical branched network algorithm
(Cunge et al, 1980, pp.109-113), for the elimination sweep, within each edge, the usual
expressions for the recurrence relations are used. The sequence of edges in the elimination
sweep is controlled by the DE-list and the DV-list of dendritic edges and vertices respectively,
as defined by the splitting algorithm. Details of the solution algorithm are exposed in Appendix
4.3.

If the network graph is a tree, a graph with no loops, then upon completion of the elimination
sweep the continuity equation at the last vertex is performed followed by the substitution sweep
on all the dendritic edges. If there is a cyclic part in the graph, then upon completion of the
elimination sweep on the dendritic part the whole global elimination algorithm for the solution

71

FLOW ADAPTIVE SCHEMES

of the cyclic part of the network is performed. Only then does the substitution sweep on all the
dendritic edges: continue.

4.5.2.2 The cyclic part: the global elimination algorithm

The global elimination algorithm was developed as a method for the solution of the system of
equations arising from the concrete physical problem (flow in looped channel networks);
hence, help from the network topology was available and use was made of this.

The idea behind this method is to transform a looped network into a ‘quasi dendritic’ one by
decomposition of some nodes. Consequently a form of branched network algorithm (Cunge et
al, 1980, pp.109-113) can be applied. However, since any such network is only ‘quasi
dendritic’ its solution will produce some ‘fill-in’, unlike the solution of a real dendritic
network. Therefore the decomposition nodes (symbols) are to be chosen carefully in order to
minimise, at least approximately, the amount of ‘fill-in’. (It is not strictly minimised because
no optimisation problem is in fact solved.)

In some sense this can be seen as a combination of a node tearing technique and the method
proposed by Wang. Similarly to the process of node tearing, it chooses a minimal separator
set for partitioning of the matrix, but based on another criterion. This approach is elaborated
in Appendix 4.4. The similarity with the method of Wang is in the elimination procedure, but
the main difference is that the partitioned blocks correspond to parts of graph that become
‘quasi dendritic’ upon decomposition of one node. In such a way, the matrix is partitioned in
as many blocks as the number of nodes that are decomposed.

The global elimination method can as well be viewed as a form of symbolic computation. The
replacement of the value of the water level at a vertex with a symbol makes it possible to
regard that vertex as if it were an end-vertex for all the incident edges. This, of course, greatly
simplifies the graph interconnections. In the decomposition algorithm, as a preparation for the
global elimination algorithm, this is done with the least number of vertices, so that the graph
becomes quasi-dendritic. The flow conditions in the network are then solved with an algorithm
based on the branched-network algorithm. The main differences are confined to changed
expressions for the recurrence relations and the introduction of closure equations at the symbol-
vertices to make-up for their decomposition. For a more mathematically strict description, see
Appendix.4.4.

Through the development of general mathematical computational tools over the last few years
(such as Mathematica or Maple), it has become possible to perform symbolic computations
directly on a'computer. However, the possibilities for performing the complete global
elimination algorithm using mathematical tools, although very promising, still remain largely
to be explored.

At the symbol-vertices which are defined in the decomposition algorithm (array S), values of

the unknowns, Y(S(})), are assumed to be given. We start with the first of these values ¥(S(1))
and by means of symbolic calculation we perform the elimination sweep on all dendritic walks,

72

A GENERALISED SOLUTION ALGORITHM FOR FLOW IN CHANNEL NETWORKS

defined as a consequence of the decomposition of that vertex (E(Z,m,n)). This applies, as well,
to the first-subset. The same procedure is repeated with all the symbol- vertices (i.e. the array
S).

When this process is completed, an intermediate sweep is performed in the reverse order, first
on the k-subset, X = NS, and then on the other k-subsets, X = NS-1 to 1 in steps of -1. Upon
completion of an intermediate sweep on one k-subset, the closure equation for the symbol
Y(S(k)), being the continuity equation at the decomposed vertex, is used to obtain the value of
the symbol. After completing this process, a substitution sweep is performed on all the subsets
corresponding to that symbol. The intermediate sweep is repeated for each of the k-subsets in
the inverse order to the one used in the elimination sweep. The details of these process are set
out in the Appendix 4.3.

4.6 Results

A program was developed (named GEM) to test the feasibility of the method introduced here.
The usual static, steady and unsteady tests were successfully applied on multiple network
configurations. Some layouts of the networks that were tested are presented in Fig.4.9.

YV A XA
A A A AAY

Fig.4.9

Most of the graphs from Fig.4.9 have been chosen for testing the performance of the global
elimination method for the solution of the cyclic parts of networks because they are the most
complex planar graphs for a given number of vertices. These were tested for a variety of
inflow and outflow points to the initial network.

In order to examine the efficiency of the generalised network solution method, a few tests were
made concerning the computation time. First, the instantiation time of the pre-processor of the
GEM program, being largely determined by the definition of the control mechanism, was
tested. For this purpose a simplified program was developed for the benchmark solution of just
a single channel. It uses all the procedures needed by the GEM program but no definition of
the control mechanism.

73

FLOW ADAPTIVE SCHEMES

A single channel with 120 grid points was used as an example. Flow in this channel was
calculated by both programs for the same number of time steps. The duration of the run of the
simplified program defines the time unit while the duration of the run of the GEM program is
expressed in units of their run time normalised by this time. Representing the relative time
spend by the GEM program as a function of the number of time steps gives the result presented
in Fig.4.10 by the single channel line. From this graph it can be seen that the relative time
decreases with the increase in the number of time steps. This result was expected because the
definition of the control mechanism is constructed only once.

— 7 loops
200 7
\ N 4 loops
E 1 loop
¢ 150 3 :
=] i ol 2 S S e the star
o ; Tremee-q
o :
""" ~= the line
1.00 ===+ gingle
0 100 200 chamnel

number of time steps

Fig.4.10

The following tests were made in order to estimate the performance of the generalised network
solution method, and especially the global elimination method, on graphs with increasing
complexity.

Sl
Dol
‘the line' "the star’
loop =0 loop =0 loop =1 loop =4 loop =7
e/ =09 e/v = 0.9 elv =1 e/v = 1.3 ey =2
conec. = 1 conec.= 1 conec. = 2 conec.= 3 conec.= 4
symb. = symb. = 0 symb. =1 symb. = 2 symb. =

Fig.4.11

A set of graphs was chosen with an equal number of edges (12) and an equal number of grid
points along each edge (10). All these graphs then have the same number (120) of grid points
as the single channel used in the previous example, so that the time used by the simplified
program can again be used for normalisation. The chosen set of graphs has an invariant
number of edges and grid points but the complexity of the graphs increases successively. As

74

A GENERALISED SOLUTION ALGORITHM FOR FLOW IN CHANNEL NETWORKS

measures of graph complexity, several numbers were used: the number of loops in a graph,
the ratio between the number of edges and the number of vertices, the vertex degree of
connectivity and, finally, the number of symbols required for the global elimination method.
The layouts of these graphs together with their characteristic measures are presented in
Fig.4.11.

The relative time used by the GEM program for the solution of each of these networks, as a
function of the number of time steps, has been presented in Fig.4.10. As can be expected, the
relative elapsed time increased with the complexity of the graph. However, the increase
appears to be primarily concentrated in the instantiation procedure: this time does not depend
upon the choice of points at which inflow and outflow are applied to the network for a given
number of such points.

The results shown in Fig.4.10 can then also be presented as functions of the various measures
of graph complexity. In Fig.4.12, such results are presented for runs with 200 time steps.

200 200
: :
= = ~
]
g 150 7 02’ 1.50 /
2 » E R
5 / 5 S
o / o I
1.00 1.00
01 2 3 4 5 6 7 o) 1 2 3
number of loops edges / vertices
a b
200 T 2,00
2 P g e
¢ 1s0 ¢ 50— Pl
£ v, z i
¢ b4 v 4
1.00 k 1.00
o) 1 2 3 4 o) 1 2 3
degree of conectivity number of symbois
c d

Fig.4.12

From the functions presented in Fig.4.12 it is clear that, with an increase in any of the
measures of the graph complexity, the required relative time also increases. However, the

75

FLOW ADAPTIVE SCHEMES

trend of these functions again shows that the rate of change of the elapsed time with the
increase of graph complexity actually decreases. This result is a particularly positive one for
the method presented here.

At the same time, it should be observed that the time consumed by the global elimination
algorithm does not depend at all on the number of vertices. The graph with seven loops has the
smallest number of vertices, only six, but the highest relative time consumption. This appears
to be a most unusually positive feature for an algorithm for the solution of looped networks.

4.7 Conclusions

The proposed adaptive algorithm offers an efficient way to solve unsteady flow conditions in
any network. Due to the employment of an adaptive control mechanism, each of the parts of
the network is solved with the most suitable method. The fact that the control mechanism is
introduced entirely as a pre-conditioning process makes the increase in computational time
consequent upon the multiple connectedness of the network negligible, especially for the longer
simulations that are usually required. Thus, although the running time does increase with the
graph complexity, the actual rate of increase is itself reduced with increasing complexity.

Although the time consumption of the algorithm, unlike the classical looped network
algorithms, does not increase markedly with the increase in the number of vertices, it is of
course still influenced by the overall number of grid points in the same manner as a single
channel solution. Altogether it can be concluded that the global elimination algorithm based
on symbolic computation has proved to be feasible as a method for the practical solution of
flow conditions in looped networks. However, the global elimination method can as well be
used for solution of the nearly banded matrices originating from other fields provided that they
fulfil the same conditions.

It is interesting to point out that the solution of the dendritic part of the graph, being the well
known branched network algorithm based on the double-sweep algorithm, is just a trivial case
of the global elimination algorithm. If the number of symbols is equal to zero (i.e for dendritic
networks), and consequently the set of all symbols is void, the global elimination algorithm
reduces to the branched network algorithm.

Although, the method has demonstrated its applicability, there are still several points requiring
further investigation. One of these is the choice of the criterion for the decomposition
algorithm. The introduction of an optimisation problem for the minimisation of the number of
operations in the global elimination algorithm would almost certainly provide better criteria
then the one in current use. A further matter for investigation is the implementation of an edge
under supercritical flow conditions that are not modified to maintain two directions of
information flow, or a change in the network topology due to the drying-out of channels that
are not underslotted. Due to the fact that the global elimination algorithm follows the
algorithmic structure required for single channel solution, it is anticipated that these extensions
will be feasible.

76

CHAPTER 5

ADI+ algorithm for the solution of
two-dimensional nearly horizontal flow

5.1 Introduction

Two-dimensional nearly horizontal flow is an approximation of general three-dimensional flow
that is commonly used in physical situations characterised by free surfaces where the
assumption of hydrostatic pressure distribution over the vertical can be justified. In hydraulics,
the most commonly encountered cases of such flows are flows in open channels and tidal
flows. Due to the reduction of the physical space to just two dimensions, the flow is in these
cases described by its depth and horizontal velocity which is averaged in the vertical direction
and usually taken along two orthogonal components orientated in the directions of the main
coordinate directions.

The set of continuum equations describing two-dimensional nearly horizontal flow consists of
three elements (Abbott er al, 1973; Weiyan, 1992, p.38); in hydraulics these are most
commonly the equation of conservation of mass and the equations of conservation of
momentum usually taken in two orthogonal directions. In conservative form, these equations
can be written as:

g, % % .
o ox, Ox,
with:
n uh u,h
f={wh|, g = uthe g;z , g - uyu b 2
uph uuh u,zzh+§—;'—

77

FLOW ADAPTIVE SCHEMES

and with:

X,X, - space coordinates U, - velocity in x, direction

t - time coordinate u, - velocity in x, direction

h - water depth g - acceleration due to gravity
5.2 Standard ADI algorithm

A now rather standard algorithm for the solution of two-dimensional nearly horizontal flow by
the method of finite differences is the so called alternating direction algorithm (ADI) (Abbott
et al, 1973; Abbott et al, 1981; Stelling ez al, 1986; DHI, 1992). Its main characteristic is the
splitting of the calculation into two series of ‘one-dimensional’ calculations which are mutually
orthogonal. For this purpose, the time step is divided into two parts and the system of
governing equations is solved in steps. By this splitting of the two-dimensional problem into
a series of ‘one-dimensional’ ones, a considerable reduction in computational effort is obtained
in comparison with the methods treating such a problem in two dimensions simultaneously.

In the ADI algorithm the solution procedure is split in such a way that in one direction the
conservation of mass and the conservation of the direction-corresponding momentum are
solved, and, after that, in the other direction, the conservation of mass is again solved but now
with the conservation of momentum introduced in that direction. A part of the typical grid for
the ADI algorithm is presented in Fig.5.1.

o h - point
== yi - point

| u2-point

1

X2

x1

Fig.5.1

78

ADI+ ALGORITHM FOR SOLUTION OF TWO-DIMENSIONAL NEARLY HORIZONTAL FLOW

For the purpose of the development of a flow adaptive scheme, the simplest form of the
shallow water equations, without convective terms, was used:

~-| @ a
% + h _ul + _uz_ =0 (52)
ot ox, ox,
ou, oh
— — = O
ot T8 ax, 63
ou, oh :
—_ + —
ot d ox, G4

Details of the solutions of these equations using the ADI algorithm are given in Appendix 5.1:
a model based on that algorithm was used to provide reference results for the purposes of
comparison.

The introduction of the convective terms necessarily involves more points from other grid lines
than just the one considered at any one time. One possibility is that these terms are
approximated in an explicit manner, which brings in stability limitations on the time steps used.
In order to off-set this effect, the approximation of convective terms in an ‘implicit manner’
is introduced, usually using the technique called ‘side feeding’ (Abbott, 1979, pp.211). It
comprises the use of already-calculated values from the upper time level, first taken from the
one side of the operator and then from the other side, which makes the terms implicit . In order
to centre the effects of side feeding, the time step is then usually split into four instead of two
parts, so that within each time step two different directions of advancement of the double
sweeps are employed and this ‘centres’ the effects of ‘side feeding’ over the whole cycle of
the NO.

5.3 Why a new algorithm?

All this, and other developments besides, make the ADI algorithms efficient and accurate, and
hence very widely used. However, the ADI algorithm, although unconditionally stable (Abbott
et al, 1981; Abbott and Basco, 1989, pp.270-272), still introduces limitations on the Courant
numbers that are acceptable due to accuracy requirements (Weare, 1979). The use of
exaggerated time steps can cause considerable errors in the propagation velocity through
narrow channels and immediately behind islands (even if the grid is laid in the same direction
as the channel) due to the effect of superimposing calculations arising from different directions:
the information within one time step can advance only along one of the grid lines, or at most
make only one ‘turn’ into the other direction during a single time step.

79

FLOW ADAPTIVE SCHEMES

Even bigger problems arise when there is a ‘narrow’ channel laid down at an angle, and
specifically at 45° to one of the main directions (x; or x,: See Fig.5.2.) The ‘narrowness’ of
the channel is measured in the number of grid points in each direction. In such a case the
resulting velocities of the waves advancing through such a channel are highly reduced, a
situation-which does not of course occur in nature.

Fig.5.2

If the channel is very narrow (see, as an example, Fig.5.3), it can even happen that the
information does not advance through it at all. In order to avoid these problems, usually a finer
grid is used in the whole domain or the refinement of the grid is localised to the problematic
area only - or a local one-dimensional model may be used. However, there are other
possibilities for adaptivity which might improve the course of the computations in such cases.

Fig.5.3

80

ADI+ ALGORITHM FOR SOLUTION OF TWO-DIMENSIONAL NEARLY HORIZONTAL FLOW

It seems that the cause for this discrepancy is the specific feature of ADI algorithms, of
splitting the calculation into two perpendicular directions, which is in this case unfavourable.
We can, however, locate the origin of the whole problem at a deeper level, in our mental
model. We are representing the state of a two-dimensional isotropic physical continuum by a
set of variables situated in an orthogonal grid of the type presented in Fig.5.1 without much
thought being devoted to the effect of this. It is known that the physical laws of conservation
also hold in discretised form and that the differential form is just our way of making these laws
more accessible to our own mental processes, so that from this point of view there is no
problem with discretisation as such. However, this is true only so long as the connectivity is
not affected, and what we usually achieve with the two-dimensional discretisation is to change
the connectedness of the points in the domain. As its result, the points along the lines parallel
with the principle axes preserve a strong connectedness while the points in any other directions
maintain their connectedness only through the chains of other points which lie in the directions
of the main axes. As long as the domain is not limited, this need not influence the results
appreciably. However, the domains in which we are usually interested are not unlimited, and
the effects of their limitations are felt to a greater or lesser extent depending on the solution
methods employed, the characteristics of the modelled domain, the flow characteristics and the
discretisation parameters.

The ADI algorithm, due to the splitting of the calculation of the two-dimensional flow into two
series of one-dimensional problems, suffers from the consequences of reduced connectedness:
the use of more than one algorithm that solves the full two-dimensional flow-pattern in one
piece. On the other hand, all the beneficial features of the ADI algorithm make it still a
favourable tool for the solution of flows that are two-dimensional in plan. Thus an extension
of the ADI algorithm has been developed, named ADI+, which addresses this problem and
tries to improve the connectednness of the points of the discretised domain through introducing
an adaptive behaviour.

5.4. The flow adaptive algorithm - ADI+

The laws of conservation of momentum as written above are invariant with respect to the
choice of directions. This means that they are not strictly connected with the directions x, and
x, but they hold invariantly for any other pair of orthogonal directions. These directions can
as well be the directions x; and x, making angles of 45° and 135° with the direction x,. If we
now draw these directions on our original grid (see Fig.5.4) we see that these new lines
connect as well the h-points of our original grid. The points along diagonals which were not
directly connected in the original ADI grid schematised in Fig.5.1 now become connected.
This changes the whole connectivity pattern of the discretisation grid and enables the
construction of a much more robust finite difference schemes for the solution of two-
dimensional flows.

We should emphasise that this is only one possibility out of an apparently endless set of

possibilities for improving the connectivity of a calculation even in only two directions. We
thus consider the scheme associated with the grid of Fig.5.4 as just one example of an adaptive

81

FLOW ADAPTIVE SCHEMES
scheme within the context of two-dimensional nearly-horizontal flow. We by no means exclude

the possibility (and indeed consider it highly probable) that more efficient ways of achieving
the same objective may be found- or possibly already exist without our being aware of them!

o h - point
== ui -point / u3 - point

| u2-point \, u4- point

x2

Fig.5.4

Clearly, then, two dimensional flow can as well be described by the shallow water equations
in the new grid x;-x,:

_| @ a
i’l + h _lfi + __ui =0 5.5)
ot ox, ox,
ou, oh
—_ — =0
a + & o, (5.6)
du, oh
— — =0
Y + g ax, 5.7

with:
X;,X, - space coordinates
u, - velocity in x; direction
u, - velocity in x, direction

82

ADI+ ALGORITHM FOR SOLUTION OF TWO-DIMENSIONAL NEARLY HORIZONTAL FLOW

If the dominant flow direction coincides with the direction x; or x,, the solution based on the
discretisation of equations (5.5) to (5.7) would clearly be better than the one obtained from the
equations (5.2) to (5.4) in the original coordinate system defined by axes x; and x, .
Accordingly, an algorithm has been developed which can, on the basis of the flow direction,
alternate between these two descriptions of flow, the one in the x;-x, coordinate system and the
other in the x;-x, coordinate system. In order to make this alternation reasonably smooth, a
form of weighted combination of two (and, as will later in fact appear, three) solutions was
developed.

Based on these considerations, the flow adaptive algorithm ADI+ was developed as a
combination of two ADI algorithms. Each of these is performed in a different grid direction
and over different portions of the time step. The grids are unified through their h-points and
the time steps are weighted portions of the original time steps. Each ADI algorithm splits its
time step in two parts; thus, the ADI+ algorithm consists of four series (and indeed, in a sense
that we shall introduce shortly, six series) of ‘one-dimensional like’ problems.

In the flow adaptive ADI+ algorithm, the

description of the flow field is, then, divided

between two coordinate systems. In each of

these systems, it is further decomposed into

components parallel to the coordinate axis. The x2
total flow velocity is then seen as a vector sum x3

of these four components. (See Fig.5.5 for an %4 ad
illustration). In the case when the flow coincides R a3
with any of the four directions, there should be

a non-zero component only in that direction and

all the others should vanish. In order to achieve a2 % 1
this, the division between the two coordinate al

systems should itself be a function of the flow
direction. Therefore a weighting coefficient
which governs the division is defined as a
function of the flow direction. This weighting
coefficient will be more closely determined
shortly.

v

Fig.5.5

Let us first describe the algorithm. First the weighting coefficient (w) is calculated based on
the flow field from the previous time step or the initial data. Then the flow velocity (@) is
divided into two parts wir'and (I-w)i7 so that their sum is equal to the original velocity. Each
of these vectors corresponds to one of the two coordinate systems, x;-x, or x;x,. Each of these
two vectors is then decomposed into components in the directions of the corresponding
coordinate axes. The vector wir'is decomposed in the directions x; and x, into component # ; and
u, while the vector (I-w)i" is decomposed into components u; and 4, in directions x, and x,
respectively.

83

FLOW ADAPTIVE SCHEMES

Then the time step A4t is divided into two parts wAt and (I-w)At. The discretisation of the
equations (5.2) to (5.4) is done on the wdr part of the time step while the discretisation of the
equations (5.5) to (5.7) is done on the rest of the time step, (I-w)4t. The details of the finite
difference approximations are presented in appendix 5.2.

A schematised development of each variable throughout one time step is represented in
Fig.5.6. In each of the four directions, two sets of unknowns are solved, these being the
velocity in that direction and the water depth which is being accumulated. This feature is an
extension of the classical ADI algorithm where in each of the directions - there are then only
two - a flow velocity and a part of the water depth variation are determined. All the details
about the ADI+ algorithm from the discretisation of the governing equations to the pseudo-
code of the solution algorithm are described in appendix 5.2.

ul u2 u3 h uéd
5 r A r . n+1
h
h
h
. w At
l’ n
x1 x2 x3 x4
sweep sweep sweep sweep
Fig.5.6

5.5 Feedback through the weighting coefficient

The weighting coefficient should of course depend on the flow direction in such a way that
when the flow is in the x, or x, direction the full weight will be given to the solution obtained
in the x,=x, grid. On the other hand, when the flow entirely is in the x; or x, direction, the full
weight should be given to the solution in the x;-x, grid and no weight at all should be given to
the solution in the x,-x, grid. The weighting function then plays the role of a feed-back function
which influences directly the core of the computation. The flow field is the input data for the
weighting function. One possible weighting functions (albeit not computationally efficient!) is:

w = 0.25(2 +cos4 e -cos4p) ,
with:

84

ADI+ ALGORITHM FOR SOLUTION OF TWO-DIMENSIONAL NEARLY HORIZONTAL FLOW

o= arctan[ﬁ) , B = arctan(ﬂJ

U Uy

which is represented graphically in Fig.5.7 for the case when § = a - 45°.

1.2
N
Fosl-) 7Y 7
: \ oy /
g,“ \] \]
§,0.4 \ \
> 02y .,
0
0 30 60 0 120 150 180
dpha
Fig.5.7

Although aware of its inefficiency, we have used this feedback function in the models
developed for this study mainly due to its smoothness. As these models are just prototypes used
to develop the new algorithm this is not seen as a major disadvantage. Moreover, it seems that
the form of the weighting function has a considerable influence on the overall performance of
the ADI+ algorithm. Thus, if a serious model is to be build based on the ADI+ algorithm,
considerable attention should be paid to the development of an efficient and still smooth
feedback function and a thorough investigation should be made into its influence on the overall
algorithm.

5.6 The adaptive control structure

The adaptivity of this algorithm is based on the balance between solutions of the flow in the
two pairs of directions, x;-x, and x;-x,. The feedback function is evaluated on the base of the
flow field results obtained at the previous time step as explained earlier. Thus, the whole
system can be regarded as a closed loop system and represented by the schema shown in
Fig.5.8. The adaptation transducer is a numerical operator which provides a weighting
coefficient as the essential input to the numerical operator: this weighting coefficient is a
typical example of an algebraic feedback function. The adaptation is primarily linked to the
direction of flow, so that if there is no change in the flow direction, the NO will not be affected
by the result obtained from the adaptation transducer.

85

FLOW ADAPTIVE SCHEMES

N O

waeighting coefficient

, N O
nput
"ADI" “ADI" ‘i PSR -
x1=x2 [T} x3-x4 i
flow field

ADI+

Fig.5.8

The PSR of the system is the set of all flow variables, which in this case are the water levels
and velocities in the four different directions. The numerical transducer consists of two parts.
Each of these parts is itself a numerical transducer and the weighting coefficient supplied by
the adaptation transducer balances the application of these two numerical transducers. The way
in which the numerical operator is build-up was already discussed, while all computational
details are relegated to Appendix 5.2.

5.7 Some featpres of the ADI+ grid

Since the same h-points are involved in both grids (see Fig.5.4) and moreover these are
involved in all four directions, the value of the water depth in A-points is being built-up out of
four contributions within one time step. On the other hand, values of velocities in each of the
four directions are obtained just from the solutions in the corresponding directions. The type
of grid that is used here and which is schematised in Fig.5.4 is said to accumulate mass at
common points. This is a method that is commonly introduced to prevent the formation of
double solution structures (Abbott and Basco, 1989, p.268).

However, if only the grid in directions x;-x, is considered it becomes clear that this grid is not
of the same type as the original grid in the x,-x, directions. As schematised in Fig.5.9, it is
obvious that this grid is prone to generate double solutions, being in fact a composition of two
partially, or even completely disconnected, grids. The most severe effects arising from this will
in fact be experienced when the flow is entirely at 45°(or 135°) to the original grid, as in that
case the original grid, which otherwise provides some connection between the concerned h
points, is not used at all.

86

ADI+ ALGORITHM FOR SOLUTION OF TWO-DIMENSIONAL NEARLY HORIZONTAL FLOW

% N,

. \\-\. . ™.
S N
° ’ X ° =]

. o '*-.‘ i "-\
N hY
(:\ a \ a ")

\\\ ~ ‘ Mv\v

N N
° Y ° \‘o °
Fig.5.9

In order to avoid the development of this kind of double solution, another kind of weighted
average interface can be applied to the results of the calculation after each time step. In this
way all the initial oscillations which might develop into a double solution are ‘washed out’.
However, one must be aware that this averaging constitutes a sort of dissipative interface and
therefore the results obtained may demonstrate some dissipation as well.

The simplest form of averaging, and the one employed when following this approach in the
present study, can be represented by the formula:

a4, = (l—a)aj‘k +oa

AP T aa

g T &Gt g

k<1 2

O<as<1/4 5.8)

The other possibility for avoiding the formation of a double solution structure is the
introduction of additional % points at the intersections of the grid lines in the x, and x,
directions. A grid of this kind is schematised in Fig.5.10. The grid is then transformed into the
same form as the original grid and the danger of generating double solutions is diminished.

87

FLOW ADAPTIVE SCHEMES

This approach has disadvantages as well. The values of water depth in these additional h-points
are not being built up through all four directions of computation but only along two of these,
namely those of x; and x,. This may also lead to double solutions. Again a sort of averaging
can be applied in order to approximate the values of the water depth at these points at the
beginning of the' (I-w) At part of the time step. This time the value of the considered variable
at the end of the previous time step is corrected for the average of the change of variables in
the four neighbouring points within the wAt part of the time step. If there were no change of
these variables within this period, as for example in the steady state or in the case when the
weighting coefficient was equal to zero, then no correction would be applied.

The introduction of these additional grid points also allows for a much more precise positioning
of the boundary conditions in the case of boundaries laid down at 45° or 135 to the x; axis.
This is a feature that one would in fact expect from the ADI+ algorithm in any case, but the
fact that the x,-x, grid is not of the same type as the standard grid originally prevented any
improvement, and it even acted in the negative way.

In order to illustrate the nature of the improvement, the three schemes are presented in
Fig.5.11 to Fig.5.13. In each of these a closed boundary condition along the line laid at an
angle of 45° to the x, axis is sketched. This is done in Fig 5.11 for the standard ADI
algorithm, and this applies also to the x, and x, direction of any ADI+ algorithm. The position
of the boundary conditions in the x; and x,, directions of the ADI+ algorithm without additional
h points is schematised in Fig 5.12 while in Fig.5.13 the same is presented for the ADI+
algorithm with additional h points. The other boundary condition types can be positioned in
a similar way.

fA{i_‘,,. .._‘T,,,,,,._Jp_...—q}__ +
Fig.5.11

From the above figures it is clear that the use of additional h points improves considerably the
definition of the boundary conditions, which has long being recognised as one of the principle
sources of errors implicit in the use of the ADI algorithm (Weare, 1986).

Based on these considerations, four types of models were developed, each following one of
these different approaches.

88

ADI+ ALGORITHM FOR SOLUTION OF TWO-DIMENSIONAL NEARLY HORIZONTAL FLOW

5.8 Models and tests

Three different models were developed based on the ADI+ algorithm described above and
whose computational details are given in Appendix.5.2. Besides these, a model was also
developed based on the standard ADI algorithm. When used for comparison, it is simply called
ADI

The first model is one that is simply based on the ADI+ algorithm without any modifications
directed to reducing the oscillations caused by the grid type. This model is called ADI+1.

The second model includes an averaging interface introduced in order to avoid spurious
oscillations arising from the double solution structure in the x, and x, grids. In its first version
the averaging proceeding according to equation (5.8) was applied only to the % points. When
this appeared to be insufficient, the same form of averaging was applied also to the velocities
u; and y . It is the results of this later version, called ADI+ A, that are presented in this
chapter.

The third model, called ADI+H, has additional 4 points introduced at the intersections of the
grid lines in the x; and x, directions. As a consequence of the introduction of theses additional
h points, the boundaries laid at an angle of 45° to the main axis are defined according to the
sketch shown in Fig.5.13. In the other two models, this is introduced according to the sketch
of Fig.5.12.

boundary condition
Various steady and unsteady tests were performed with these e
models during the debugging and investigation phases. Here, only I
the results of two representative tests will be given although later | ; P
in this chapter, a series of tests with various narrow channels is r
presented. The tests given here are the two unsteady flow tests .
situated in the two different domains, both with zero-flow initial T e
conditions and with velocities given as a function of time as the

open boundary conditions. k Fig.5.14

velogity (m/s)

The velocities as functions of time are shown in Fig.5.14. The two representative domains are
the straight channel, laid down at 45° to the x, axis, as presented in Fig.5.15, and the L shaped
channel presented in Fig. 5.16.

test : GO test: L3

- open boundary . L e OpEN boundary
— closed boundary = — closed boundary

Fig.5.15 Fig.5.16

89

FLOW ADAPTIVE SCHEMES

The test GO was simulated for 500 seconds (50 time steps) with four different models and the
final flow fields of these simulations are presented in Fig.5.17 to Fig.5.20.

input file : GO time =500.00 ¢

Fig.5.17 Program ADI ,test GO

input file : GO time = 500.00s

Program AID+A

Fig.5.19 Program ADI+A, test GO

input file : GO time = 500.00s

sl e
VR A A AR A AV VN
VA A A A A A A R
A A A A A A A
A A A A
P A A
VAV AV AV A A i
A A R A A A
~~~~~ I A AP AR A
N A Ay
w S LSS
v S s
e £ 4
S

Program ADI+

Fig.5.18 Program ADI+, test GO

input file : GO time = 500.00s

Program ADI+H

Fig.5.20 Program ADI+H, test GO

In the Fig.5.17 the flow field obtained by the standard ADI algorithm is presented. As can be
seen, the flow field is symmetric but not completely uniform as a consequence of the
unfavourable direction of the boundary conditions and flow with respect to the directions of
the main axes. This result was, however, expected due to the problems associated with the
standard ADI algorithm. In the Fig.5.18, where the flow field obtained by the model ADI+is
shown, a clear double solution is observed. As discussed earlier, this is a consequence of the
existence of two disconnected grids in the x;-x, directions.

Fig.5.19 and Fig.5.20 representing results of simulations by the models ADI+A and ADI+H
show practically no difference. The only different feature is that the model ADI+H allows a
description of boundary conditions which is more suitable for this test. This resulted in the
reduction of oscillations originating from irregular boundaries but these were obvious only in

90

s
.
. P P
.. . ;.
' ..
N ;o
[, s
e
F AV VAV S
S
- RV A
S AL S SIS
APy A R
Bl A e
I A AV e
e S LSS TS
B s
Y v
. S S
o/



ADI+ ALGORITHM FOR SOLUTION QF TWQO-DIMENSIONAL NEARLY HORIZONTAL FLOW

the clear unsteady period of simulation (time steps O till 10) and by the 50™ time step they were
already washed out.

In Fig.5.21 to Fig.5.22 the flow field results of test L3 as obtained by the different models are
presented. All the results are given for the time of 400 seconds (40 time steps) because the
model ADI+, whose results are given in Fig.5.22, goes unstable if the simulation time is
extended. This instability is a consequence of the double solutions originating from the two
disconnected grids in the x;-x, directions. When the two grids are connected, as in models
ADI+A and ADI+H, the algorithm is stabilised.

input file : L3 time = 400.00s input file: L3 time = 400.00s
L TIITIIIII ' I DIV
LI I I N I R | 1 1
E T S T T e S L B
S TR S S T | ]
L X T T T T T N AT T BN N |
T e T e e
T e [ A L
L S T S T T T B
L T e e R L
L2 T T N A BN S|
L T T T e Z N L N R R R B
rogam AD program AGIF .
Fig.5.21 Program ADI, test L3 Fig.5.22 Program ADI+, test L3
input file : L3 time = 400.00s input file : L3 time = 400.00s
1
LTIt L sTTIII I
////// Foe e e e e e e PRV A2 2 SR
...... ' [ AN}
...... ] |
e [ R N |
‘l [ T B T T |
[ ] 1 L2 N S I |
1 ] 1 L] [ |
1 1 1 L} [ |
Ce A
Program ADHA . Program abHH
Fig.5.23 Program ADI+A, test L3 Fig.5.24 Program ADI+H, test L3

The results presented in Fig.5.21 and the those presented in Fig.5.23 and Fig.5.24 show some
differences mainly in the flow pattern in the vicinity of the inner corner. However, in order
to provide any definitive conclusions about predictive capability of those models and
consequently about the preferential choice between the models ADI+A and ADI+H, more
extensive testing will need to be performed.

91



FLOW ADAPTIVE SCHEMES

5.9 Narrow channels

The following example was set up in order to test the performance of the ADI+ algorithm in
the case of a narrow channel laid down at the angle of 45° to the x, axis. There are in fact four
different domains that were tested, each of them with a different width of the channel. The
range of widths was 2A4x, 44x, 6Ax and 84x in the x, direction. Two of them, with widths 24x
and 84, are represented in Fig.5.25 and Fig.5.26 respectively. The length of channel is in all
the examples equal to 20 grid points along the diagonal.

width =8 dx

~— closed boundary — closed boundary
open boundary open boundary
_~ ] - S
Fig.5.25 Fig.5.26
The initial conditions for all the tests were a zero boundary condition
velocity in all the directions and a constant water L Meter depth
depth of 2m all across the domain. The size of the g oo o _
space step is 10m. At the open boundary c A
conditions, water depth is given as a function of g, i
time. At the outgoing boundary it is a constant 5
water depth equal to the initial conditions, while 3 ‘ :
at the incoming boundary it is a variable according I e
to the graph shown in Fig.5.27. time (s)
Fig.5.27

Results

First the model based on the classical ADI algorithm was applied to these tests. Along the
channel with the width equal to two space steps ( Fig.5.25) there was no spreading of the
wave. The whole channel and the upper pool stayed at the initial water depth of 2 metres while
the lower pool filled up to the depth of 3 metres. The other three tests have not shown such
drastic features, but it was observed that the time needed for the wave to reach the last point
along the channel does vary with the size of the time step. In Fig.5.28 the relationships
between the time step and the time needed for the initial disturbance to reach the last point
along the channel are shown for different widths of the channel. If the same relationships are
expressed in terms of the number of time steps needed, as given in Fig.5.29, than it can be

92



ADI+ ALGORITHM FOR SOLUTION OF TWO-DIMENSIONAL NEARLY HORIZONTAL FLOW

observed that for each width of the channel there is a minimal number of time steps required
for the disturbance to travel. This means that if larger time steps are employed, the results are

less realistic.

Program ADI
traveling time along a narrow channel

500 < e i
400 +

800 - i ot

time(s}

200 -+ ¢

100

time step (s}

Fig.5.28

Program ADI

traveling time along a narrow channel

60 :
g so
3 o R T PO P
o 40 et
E [ (REREL .
c 304 & .- : w=6dx
-
e i : : i
5 20 ‘;' g e re o e w=BdX
- R N~ Sl O .
E 10 S
2 I =

ol

o 10 20 30 40

time step (8}

Fig.5.29

However, if a program based on the ADI+ algorithrn is applied to these tests (in this case it
was program ADI+A) the time needed for the initial disturbance to reach the other and of the
channel is approximately 100s for all four widths of the channel including the case with a
channel] width of only 24x. This result is independent of the size of the time step. This feature
of the ADI+ algorithm seems to allow the use of much larger time steps then does the classical

ADI algorithm.

In the following four figures (Fig.5.30 till Fig.5.33), longitudinal profiles along the axis of the
channel are shown. In each of the figures, results of the ADI program are compared with those
obtained by using the ADI+A program. All these tests were performed with equal time steps,
Ar=20s, and the results correspond to an elapsed time of 100s, which thus corresponds to five

time steps.
LONGITUDINAL PROFILE
w=2dx, dt=20s, time=100s
3.00 [ Ty
E 250 S R 7‘
< I — AD!
§ 200 s
M -—- ADI+
1 ‘
§ 150
1.00 Lot
10 1§ 20 25 0
grid point
Fig.5.30

water depth{m)

LONGITUDINAL PROFILE
w=4dx, dt=20s, time=100s

3.00 _\ -
A
2.50 = S
>, —— ADI
N 3=l
2.00
=== ADI+
1.50
1.00 -l - -
t0 15 20 25 30
grid point
Fig.5.31

93



FLOW ADAPTIVE SCHEMES

LONGITUDINAL PROFILE LONGITUDINAL PROFILE
w=6dx, dt=20s, time=100s w=8dx, dt=20s, time=100s
z : : £ r—t——
5 4:_\‘ bk m—— ADI = N Ot ‘l i =— ADI
§ 200 ——r == § 200 - \N - i
g === ADI+ Y ! i ! { === ADI+
§ 150 ] § 1s0 ; ; ; |
T { ] Lo ;
100 L - .00 Ll ] e
10 15 20 28 30 10 15 20 25 30
grid point grid point
Fig.5.32 Fig.5.33

From these figures it can clearly be observed how the standard ADI algorithm hampers the
spreading of the wave along the narrow channel. It can also be seen that this effect is
proportional to the narrowness of the channel, where in the limiting case ( Fig.5.30) of the
channel with width of 24x there is no flow in the channel at all. For the ADI+ algorithm, the
narrowness of the channel at this orientation does not represent any problem.

5.10 Conclusions

Although there are still many open questions in its area of applications, the models presented
in this work based on the ADI+ algorithm do open the door to the development of new forms
of adaptive algorithms for the solution of flows that are two dimensional in plan.

At present, the clear shortcomings of the algorithm are the form of the ‘rotated’ grid (the grid
in the x;x, directions) and the feedback function used in the adaptation feedback. The rotated
grid has a form which differs from the standard form of the ADI grid and if no special
treatment is included this leads to instabilities in unsteady flow simulations. A preferable way
to approach this problem would now appear to be, not to start from the standard ADI grid and
then introduce the rotated grid, but to start the building up of both grids simultaneously,
bearing in mind from the beginning the kind of algorithm for which the grid is going to be
used. The viability of introducing the feedback function (the weighting coefficient) depends
primarily on its complexity, but it might as well be questioned whether an algebraic function
is the best option, or whether a logical operator might serve better instead.

Although none of the solutions introduced here seems ideal, the one with additional h points
seems preferential. Firstly it requires less averaging for the stabilisation of the results, and
besides that it offers a great improvement in the treatment of the boundary conditions for
boundaries laid down at an angle of 45° to the main axes.

94



ADI+ ALGORITHM FOR SOLUTION OF TWO-DIMENSIONAL NEARLY HORIZONTAL FLOW

As the ADI+ algorithm requires a considerably heavier computational effort than does the
standard ADI algorithm, it should perform at least at the same level of accuracy with two times
larger time steps, which at this stage of its development still does not seem fully attainable.
However, in the tests with narrow channels, the ADI+ algorithm showed its very good
characteristics and in such cases it seems feasible to use significantly larger time steps with the
ADI + algorithm that with the ADI algorithm. Hence, the way forward might be to limit the
application of this adaptive algorithm to regions for which it is particularly suited, such as
narrow channels laid at 45° degrees, or to regions with exigent boundaries or regions with very
variable flow patterns.

A considerable gain in performance might be achieved if the feedback function were to be
chosen in such a way as to act more as a kind of switch between the calculations in the two
grids, namely the x,-x, grid and the x;-x, grid. This could be achieved with the weighting
coefficient being set to one or zero over most of the flow field, with intermediate values being
computed over short intervals in order to enhance the smoothness. This would result in the
reduction of the calculation effort since only in a limited number of cases would the calculation
in both grids be performed, and in the most of the cases only the calculation in the better-
suited grid would be sufficient.

In short, the flow adaptive algorithm ADI+, although still at a very early stage in its potential

development, shows promising capabilities for the introduction of adaptive algorithms into the
simulation of two-dimensional nearly-horizontal flows.

95






CHAPTER 6

General Conclusions

Computational hydraulics continues to pose its problem of describing what we observe in our
outer world of fluid flow in terms that our digital machine can best comprehend.
Hydroinformatics now however places this problem within the much wider context of how we
can best apply computational hydraulics, together with all our other technologies, to improving
the balance between the needs of our own, human economies and the needs of nature. By
positioning computational hydraulics in this way, hydroinformatics is able to place ever heavier
demands upon computational hydraulics simply because it provides the physical means to
develop even more refined and advanced methods for meeting these increasing demands.

Flow adaptive schemes can be viewed within the perspective of this ongoing development. The
increasing demands of hydroinformatics make the use of modelling systems, such as we see
them in current engineering practice, less and less acceptable. Eventually the fifth generation
of such systems, integrable in larger informatics structures, will emerge. Adaptive schemes are
one of first, but important steps, in this direction. The examples that have been used to open
up this field of investigation have all arisen from the expanding needs of practice, while the
added complication that flow adaptation introduces as it response to these needs is justified,
both in economic and in more general social terms, by the increased range of applications that
hydroinfomatics thereby provides.

Each of the four cases investigated in this work is itself a development in computational
hydraulics. These developments were motivated by real shortcomings of currently used
methods and they have all, albeit to different extent, provided some improvements. It is only
when removed from the immediate context of each of these problems, however, that one can
realise their common ground. In each of the cases a kind of numerical scheme is developed
which uses intermediate flow results, or at least the initial data, in order to adapt itself, and by
so doing achieve a more efficient performance. This property, here termed ‘flow adaptivity’,
seems to be a promising trend in future developments of computational hydraulics, as this work
indicates.

97



FLOW ADAPTIVE SCHEMES

In each of the cases studied the scheme becomes more flexible, more ‘parameterised’ with the
flow variables, so as to suit itself better to more complicated physical situations. It is in this
sense that the scheme becomes deconstructed, or ‘deconstructs itself’. The present study
provides a certain kind of exploration of the processes that occur during such a deconstruction
of numerical schemes for flow problems.

The main innovative conclusion of the presented work is to realise the principle of adaptivity,
to formulate it-and make clear that its application will in future become general and not any
more a special or particular approach. This is only a very partial exploration because of the
immense range of possible kinds of flow adaptive schemes that can arise in so many different
fields of applications. Indeed, when reviewing the immensity of this range, it must appear as
if the present work is really only ‘scratching the surface’ of the subject. This effort may
however still serve to indicate the possibilities inherent in flow-adaptive schemes and some of
the means that are available for realising them in practice.

98



APPENDIX 2.1

Algorithm for the determination of velocity profiles
in flows with additional resistance due to vegetation

The numerical model for the determination of the velocity profile in the flow with additional
resistance is based on the equation of conservation of momentum in the horizontal direction,
which for the present purpose can be most conveniently written as a differential-difference
equation:

ou ou ou 1 0P
+ U + W + —

at ax d pox &t p oz ' pAxAz 0 “2.1.1)
with: u - horizontal velocity i - bottom slope
w - vertical velocity T - shear stress
P - pressure F - additional horizontal
P - density of water x drag forces
g - gravity acceleration pAxAz

Since the model is developed in order to study the effects of additional resistance in steady
uniform flow, some of the terms from equation (A.2.1.1) are neglected. These are the pressure
term and the convective momentum term. The reduced equation then has the form:

g g1t -0 (A.2.1.2)
p

99



FLOW ADAPTIVE SCHEMES

The numerical scheme used for solving this equation is an implicit finite difference scheme.
This majntains the stability of the scheme regardlessly of the choice of such discretisation
parameters as the time and the space step. The model is one-dimensional in the vertical
direction following the discretisation grid shown in Fig.A.2.1.1 with kk being the number of
grid points. The unknown velocities () are placed in all the discretisation points.

- Tsmiacs

Fk-kk

k=0
<__‘cbed
Fig.A.2.1.1
the discretisation grid

Due to the two different descriptions of the shear stress which are used in the model and which
will be explained later it is important to maintain a discretisation point at the boundary between
these two regions. The height of the lower region is a linear function of the reed height (4,)
whose coefficient p is to be determined by calibration of the model. Therefore, the grid is
divided into two parts, the first one, from the bottom up to the height ph, and the second one
from that point up to the water surface. This division is schematised in Fig.A.2.1.2.

mixing-length
approximation

h
eddy-viscosity
p.h approximation
Fig.A.2.1.2

100



APPENDIX 2.1

In each of these parts separately the space step is constant, but these two space steps usually
differ. If k; and k, are the numbers of discretisation points in each of the parts, then the grid
steps are defined by :

ph h,-ph
= r and = ¥ r
A = 3505 4z k,+0.5

1

The acceleration term

Although the model is applied to constructing solutions for steady state conditions, it is in
principle an unsteady model. This feature makes possible the calculation of the unknown
steady-state condition starting from any initial conditions, even though these may be
unrealistic, on the basis that these initial influence will be ‘washed away’, so to say, in time.
We write simply:

n+1 n
ou U U

ot At

The shear stress term

In the layer of water above the point ph, a turbulent shear stress approximated by a mixing
length theory is employed, so that.

du

ou
=g 12 22
@) =p ™

0z

where [ is the mixing length at the level z determined by:

0.5
l1=xz[ 1-%
z( h)

with & being the von Karman coefficient and # being the water depth.

The shear stress in the lower layer is modelled according to eddy-viscosity theory as:

101



FLOW ADAPTIVE SCHEMES

u
™) =€ —
@ oz
where
€ = pasu

with « being an empirical coefficient and s being the distance between the reeds.

The shear stress term is then discretised in three different ways dependant on the relative
position of the discretisation point within these two regions.

0 < k < k, - inside the lower layer

n n _ n+l n+l n n n+1 n+l
1dt _ pas Upoy * Uy Uy ~Uy Uy Uy Uy ‘“k-]]
p oz pAz 2 Az 2 Az
k=k
+1 +1 +1 +1
10t _ 1 912 uk,:l_uk” “:q —ul:l - pas ukn+ul:1 wy -y
p oz pAz| k3| Az Az 2 Az
k, < k < kk - inside the upper level
+1 +1 N +1
1ot 1} p2 Mooy Uy | ey ~Ux _ol? -ty | g U
p oz pAz| k3| Az Az 3] Az Az

This feature clearly already introduces an element of adaptability into the model.

The additional force term

The additional force term in equation (A.2.1.2) is then approximated as follows:

102



APPENDIX 2.1

where: m - is the density of reeds per m*
CD - is the drag coefficient,
d, - is the diameter of the reed at the level k ,

hr - is the portion of the reeds’ effective height corresponding to the grid

level k at the time level n,

w", ut! - are flow velocities at the level & at the respective time levels,

nand n+1.

The boundary conditions

For this model, two boundary conditions are required, one at the bed and the other at the water
surface. The positions of these two boundary conditions are marked on the grid shown in
Fig.A.2.1.1.

The shear stress at the bed is given through the averaged velocity and the Chezy coefficient.

‘Cl.:gu_
3 C?

At the water surface the slip boundary condition with no shear stress is introduced.

Both boundary conditions are introduced directly into finite difference approximations of the
shear stress terms at the corresponding grid points i.e k=0 and k=kk.
The system of equations

These finite difference approximations are introduced in equation (A.2.1.2) at each
discretisation point so that the resulting linear algebraic equation can be written as:

Al + Bal™ + Cultl = D, (A2.13)

The expressions for coefficients 4 ;, ,B, , C, and D, now however differ according to the
position of the point k£ with respect to the boundaries and the regions supporting different
descriptions of the shear stress. Consequently, seven different sets of expressions are employed
in this model.

103



FLOW ADAPTIVE SCHEMES

For k=0 and kI =0:

At 2 n ¢ Az
4,-0 By =1+ —1lilu ~uy) + CDdghro m =t
0 Az} 5( ) 282,

A ) At u?
CO - —-———ll ul u() , D = un +i At - —'__IL
AZ23 2( ) 0 0 g gAZZ 2
At - no AL
4,=0 By =1+ —asu+ CDdyhrym———
0 Az} 24
At - Ar
CO = -2 wsu , D :un +i At - __t_u_
Azl2 0 0 8 gAZl C2
For 0< k <kl
ge Mo o1 ann Ay
A212 Az 2Az,
C - - At = n
- _A;?asu’ D, =u +ight

104



APPENDIX 2.1

For k=kl:
Ak: —Aasﬁ s
A212
At 2 n n t - n At n
B, =1 +==10" lu_,-u )+ asu + CDd hry m ——u
X 1\ %1 ~ Ui I3l %
Az "*5( | Az 8z, + Az,
At 2 n n
Co=—bU 1\~ ) D =u+ight
AZ23 k+3( ) % k 8
For kI < k < kk:
At 2 n n
A= —— U7\ ~ Uy},
AZ23 k_i( )
At 2 n n At 2 n n n At n
B =1+ —1I1" (u u, | + I“ \u, -u + CDd hry m—u
X 1\#t ~ Uy i\ T Uy Ly t
Az k’z( ) Az * 5( ) 24z,
At 2 n
Ceo= - 3lk+l(ukn*1_uk) ’ D, =u +ight
9, 2

For k=kk and Kkl <Kkk:

o At 2 n__n
Ay = Az_;lkk_%(ukk ukk-l) ;
At 2 n n n At n
By=1+ + =50 uh-ug )+ CDd hrgm Eu |
Az} ¥3 24z,

105



FLOW ADAPTIVE SCHEMES

Cy =0 Dy = ug +ight

Ay = - At o su B -1+ Aosus CDd, hrgm Zit Uy |

’
2
A212 AZl Zl

|

1
R
e
x

Cu

"
o

Dy = uy +ight

In effect, these seven sets of conditions superimpose an even more extended ‘if - then - else’
structure on the numerical schemes, so that it corresonds to a particularly extended control
operator.

The system of equations containing kk equations of the type (A.2.1 .3) has as unknowns the set
of horizontal velocities #, , k = 0,..kk. The matrix of this system is tri-diagonal and it is solved

with a double-sweep algorithm consisting of an elimination and a substitution sweep. The
recurrence relations for the elimination sweep are:

W't = Eoull + F, (A2.1.4)

The initial coefficients E, and F, are given by:

E = _E and F, = P_‘_
B, B
while the others are calculated recursively as:
E - G and F = Dy = APy
k k
A E + By A B *By

At the last point (k=Kkk ) the value E,, is equal to zero while F, is calculated according to the
above-given formula. After this, the substitution sweep is performed by the use of equation
(A.2.1.4) in the descending order of the index k.

106



APPENDIX 2.2

Bending algorithm for reeds in steady flow

The aim of this algorithm is to calculate the deflection of a representative reed and
consequently the distribution of its reduced height (effective height) over the discretisation
points. The portion of the effective reed height belonging to a grid point (hr,") is then used in
further calculations.

The deflection of the reed is calculated according to cantilever beam theory (e.g. Timoshenko,
1955, pp.137-165). The load on the reed is a drag force caused by the flow velocity. The
intensity of this load is a function of the vertical position and it is by no means constant. The
drag is given by an empirical formula where it is proportional to the square of the velocity. As
the flow velocity varies over the depth, the load does this also:

pCD-d-u?
2

In our discrete model, the load is presented by portions of constant load derived from the
representative velocity, as shown in Fig.A.2.2.1.

grid load
Yoz —> T 2 Qa2
Uy —™> T k+1 s
Y —> T k G
Ut —s 4 k=t Q.
Yz —s>  + k-2 Gz
Fig.A.2.2.1

107



FLOW ADAPTIVE SCHEMES

The portion of the grid between point k-1/2 and point k+1/2 is called the £* element. It has
its load g, and its net deflection is, 6", while the length of the reed within i is / and
consequently the height of the reed within it is Ar,. The load on the k” element is defined as:

g - "‘QD d-)

It should at this place be pointed out that in the first instance the top of the reed coincides with
a grid point but that after the first iteration for the effective reed these do not coincide any
more. Thus, there is usually an element near the tip of the reed where the load belonging to
that element is not spread over the whole height of the element but only along its part which
corresponds to the height of the reed within that element ( 7).

The deflection at any point along the reed is calculated by superimposing the deflections caused
by each of the partial loads. For that purpose, the expression for the deflection caused by a
constantiload on a limited part of the beam was derived.

Three essentially different parts can now be

: distinguished on such a beam:
a b - a part between the fixed end and point a

- a part between points a and b

Fig.A.2.2.2 - a part between point b and the free end

The deflection &, at the point x caused by the load g between points a and b is given by
different formulae according to the position of point x. In our model we do not need deflections
for the region between points @ and b; therefore, only the formulae for the other two parts are
given.

for x<a

[

2
ﬂ7(3c x)dc = lqz—J;H(sz—3a2—2x(b—a))

22
s \ -
N

for x> b

LY
" _ rqc _ q 3_43y(pt-q*
8 {—6E1(3x €)de = —Lo (4x(b3-a®)-(b*-a"h)

108



APPENDIX 2.2

The deflection is calculated for points half way between two discretisation points, at the
boundaries between two elements. Let us call these points i. The total deflection at point i is
then expressed as:

i

61'T = Zail,k *

k=1 k=

Mz

4
5i.k
+1

Where 6, represents the deflection at point i caused by the load from the k¥ element.

The net deflection of one element is

and the length of the reed within the k* element is

l

k=W

The overall length (or rather height) of the reed is then distributed over the partial lengths
belonging to each element. This distribution is done by advancing from the bottom with the
total length being reduced for the length of bent reed belonging to each element, (L = L - /,).
When the remaining part of the length is shorter than the length belonging to that element, the
procedure is stopped and the length of the reed belonging to this element is assigned as equal
to the remaining part of the length, (/, = L).

Once the effective reed height and its distribution over the discretisation grid is calculated, it
should be corrected, because the effective height influences the load and the load influences
the effective height. Thus, the new load is estimated, and consequently the new effective
height. This procedure is schematised in Fig.A.2.2.3. This iterative procedure is repeated until
a prescribed accuracy is achieved. The accuracy criterion is defined as the difference between
the load height, taken as the effective height obtained from the previous calculation, and the
calculated new effective height.

109



FLOW ADAPTIVE SCHEMES

Fig.A.2.2.3

110




APPENDIX 3.1

Conservation equations for 1-D nearly horizontal flow

| In Chapter 3 several different forms of conservation equations are used. In this appendix they
| will all be exposed in their full extend in order to avoid any confusion. Speaking of equations
| we in fact always consider a pair of equations of which one is almost invariably a mass

conservation equation. The other equation in the pair is either originating from the Bernoulli
| equation or from the momentum equation. Moreover, each pair of equations is presented in its
| Eulerian form as well as in that algorithmic form which leads directly to approximation of
| these equations on staggered grids.

The Eulerian form of any of these pairs has a form:

§I+Aﬂ+b=0

EY I (A3.1.1)
while their algorithmic form is:
419 L9 qp-0, |4l e 0 (A.3.1.2)

Jt dx

1. Equation of conservation of mass and Bernoulli equation
1.1 Full equations

1.1.1 Eulerian form

u h
g u

’ b= _gi + gu|u|
C*h

111




FLOW ADAFTIVE SCHEMES

_a_.’£+u‘_9_h.+h_a_u.=()
at ox ox

du du dh . u |u
ou ou g - el Lud B
ar “ax "Eax 8 T8y
1.1.2 Algorithmic form
-ghi +gM
1 1 -u h 1 C?
A== 2 A7b = 2 2
gh-u*l 8 U gh-u —gui—gu |ul
C?h
_8h du 2\0h . ulul _
uE ha—+(ghu)§; ghi +g 2-0
oh du u? |ul
= -u— +(gh-ut)=— - =0
85, ~ug, Tlenw)gl vgui g2

1.2 Equations without convective term

1.2.1 Eulerian form

-gi + g

ulu|




oh

oh

—_— __+h____:0

at ox ox

ﬂi— ﬂz_—gi+gu_|l‘_l.=0
ot ox C%h

APPENDIX 3.1

1.2.2 Algorithmic form

-ghi + gu|2|
110 & ) 1 C
A-l = _h * A lb = —E 2
gh g -u 8t | gui _guclul
du ah : (]
h— h— - gh =0
ar &'ax TEM T
g%—ug—u ghau+gui gu2|u1=
at at d C?
2. Equations of conservation of mass and momentum
2.1 Full equations
2.1.1 Eulerian form
h ) 0 1 0
= ’ = ’ = . uh |uh
! uh gh-u® 2u 'ghl‘“g——'Z—h]

113



FLOW ADAPTIVE SCHEMES

ah  duh _
a9t ox

Juh . duh dh
+
ot ox

2.1.2 Algorithmic form

oh Jduh 2\ 0h
-2u— +(gh - ut)j— -
r oy e b

ot

ok  duh _
at 9x

gh— Fy - ghi + g———

2.2 Complete reduction of the convective momentum term

2.2.1 Eulerian form

0 1
gh 0

114

uhuh| _ -0
c?
. uh|uh|
47 = —1_ R T
gh -u 0
ghi + guh[uh]
C?h
0
b = —ghi + guh|uh]
C’h



oh _ Ouh
+ =

— +— =0

ot dx

duh ah , uh |uh|
— h— -ghi+g———~ =0
at 8 dx & & C%h

2.2.2 Algorithmic form

01 ghi - g L1Lk]
A7) = 1 , Ap = 1 2
gh|gh O gh
0
duh doh . uh |uh|
— h— -ghi+g———— =0
57 &'y M T,
Qﬁ + M =0
ot dx
2.3 Partial reduction of the convective momentum term
2.3.1 Eulerian form
0
f h 4 01 b=
“lun “lgh u -ghi + gh

APPENDIX 3.1

uh juh|
C*h?

115



FLOW ADAPTIVE SCHEMES

dh Juh
— t — 0
ot ox
duh . uauh . ghgﬁ ~ ghi + ghuhluh‘
at dx ax 2p2
2.3.2 Algorithmic form
A-l__.l_—ul , A*:lghl
ghigh 0 gh
dh  duh ok . uh |uh|
~u— + = + gh— -ghi + g—— =0
at dt 8 ox § 8=
ah , ouh _
at ax

116




APPENDIX 3.2

Finite difference approximations by the Abbott-Ionescu scheme

The Abbott-Ionescu scheme utilises a staggered grid as shown in Fig.A.3.2.1. The finite
difference approximations of the different terms are made according to the general rules
which will now be presented.

n+ 1

=1 j J+1
Fig.A.3.2.1
The partial derivative with respect to x:

n+1 n+1 n

n
da _ eaj+1 %, (1-8) g1 " Gy
0x 2Ax 2Ax

The partial derivative with respect to £

117



FLOW ADAPTIVE SCHEMES

n+l n n+l _ n
da _ G ~ G 4 " G4

or & 2At 2A¢

which is dependant on the position of the variable a on the staggered grid.

The term of the type fa la | (primarily the friction term):

plala =B, |ajnl ajwl

with f. being averaged over space and time.

The term of the type
Kl ( a
ox\ P

(like the convective momentum term):

—a_ é - l_ aj,,:l a;.l.;l - a.l'_’l a]"i‘;l
dx\ B 2Ax

*

The introduction of these approximations in equations of conservation in their algorithmic
form, as presented in Appendix 3.1, results in a system of linear algebraic equations of the
form:

Aijnfll +B

J

n+l n+l _
B GQ = D,
and
AR+ BQ + G =D
ih-1 T 5 (R j

J

These two types of equations alternate throughout the system: the first one corresponds to the
equation of conservation of mass and the second one either to the Bernoulli equation or to
the equation of conservation of momentum. For different combination of equations, the
coefficients A4;, B;, C; and D; clearly lead to different expressions.

118



APPENDIX 3.2

1. Equation of conservation of mass and the Bernoulli equation

1.1 Equation of conservation of mass:

Atgu,
2h,C?

f“j-ll

At u,
A} = me(uf—gh*)_‘—z—‘

B =g
At 2 u, Atgu,
C,=-—896 x Ty j+
I 2Ax ( ) 2 2},(;2"1‘
u At
D; = -Atgu,i + gh' - —2—(u]+1 + ujfl) + 2Ax(uf—gh )(1 6)( Uy - ._1)
1.2 Bernoulli equation
1.2.1 Full equation
- u*
AJ—KG(M —gh)_—2—
B =h +gary]
s e
At u,
C.= -8 g(y2-gp -2
1= " 3ag 0w 8] 5
; U, n At
D; = Atgh,i + hu - E(hj':l + hj_l) v (u -gh, )(1 6)( bty )

119



FLOW ADAPTIVE SCHEMES

1.2.2 Equation without convective term

At

A = -—L 0gh

17 T oax 8
B -k +gar]
e )

At

C, =--9
T 2ax 8™

_ . n At a no_gn
D, = Atgh,i + b - ——=—gh(1 8)( A1 b

2. Equations of conservation of mass and momentum

2.1 Equation of conservation of mass:

4 = - P4t
s 2Ax
5 =1
c - 9ar
7 2Ax
B (1-0)A:
Dj = hjn - ToAr ((uh);+l - (uh);—l)

120

y



APPENDIX 3.2
2.2 Equation of conservation of momentum

2.2.1 Full equation

Aj=_2iAA_.;(ghx uf)-u,

B =1+ EEL )

CJ=—26—£J—£(gh* uf) - u,

D; = (kY - (gh. -u:) (12?\)“(’% Biy) + gh ibt s u, (bl + b))

2.2.2 Equation with partially reduced convective term

A = -— -u

j Ax * *
2g At

B =1+ =7 |(ueh)]|

6 Az
C.=—"—gh, -u
J Axg * *
1-9) At :
D, = (uh)} - gh, -(—Ax—)—(hﬁl B'y) v 2gh it +u (BB

121



FLOW ADAPTIVE SCHEMES

2.2.3 Equation without convective term

0 At
4 = - 241,
i T T A"

_ gAt n
-1 55 uny
0 At
C =
J 2Axg *
_ (1-0)At ;n _,n .
D; = (uh); - gh'—2—Ax— (R h'y) + ghiAt

122



APPENDIX 3.3

Finite difference approximations by the Preissmann scheme

The Preissmann scheme utilises a non-staggered grid as shown in Fig.A.3.3.1. The finite
difference approximations of the different terms are made according to the general rules
which follow.

n+ 1

yax  [(1-w) ax| (1-8) At

0 At

J j*+1
Fig.A.3.3.1

The partial derivative with respect to x:

a.n+1 - a.n+1 a” - a."
9a g% "% (1-9) Lt 7
ox Ax Ax
The partial derivative with respect to f:
P an*l _ an aml _ an
da G+l Il (1 - j
ot v At (1-¥) At



FLOW ADAPTIVE SCHEMES

The term of the type S a lal (primarily the friction term):

p 1 -1
Blala = -5:““;”] a;" + Iaj’:ll aj’:-l )

with £ being the parameter S averaged in space and time.

The term of the type
afa
ax\ B

(like the convective momentum term):

n _n+l n _n+l

(et 1 (g -4y ]
ox B. Ax

The introduction of these approximations in the equations of conservation in their algorithmic
form, as presented in Appendix 3.1, results in a system of linear algebraic equations of the
form:

n+l n+1 n+tl n+l _
4G B - GO < DAY < K
For the different equations, the coefficients 4;, B;, C; , D; and E; are again clearly different.

1. Equation of conservation of mass and the Bernoulli equation

1.1 Equation of conservation of mass:

A =-h0

124



APPENDIX 3.3

Ax
B.=—=(1- -u,®
R vi G O
Cj=h,e

Ax
D ==—"Z¢y +ubd
At‘l’ .

l>||>
bS]

(Ul + A-0R) - B 00wl -u") - w.(1-0)(k,-A)

1.2 Bernoulli equation

1.2.1 Full equation

_Ax o gAx | n
4; = 5 1-¥) ”*e+2h*cz’“i‘
B; = -gb6

_Ax gAx | n

E, %’—:(q: Wy o+ -wt) -, (1-0)(w ) - g(1-O)(h7 k") + giAx

125



FLOW ADAPTIVE SCHEMES

1.2.2 Equation without convective term

- Axg _8Ax 1 n
Sy

*

B . =-g6

Ax gAx | &
C_=___ 1—- -
a Y 2h,c“lu’|

E = SX (0wl + -0w) - u, (-0l -w’) - g(1-O) (Al -h') + giAx

2. Equations of conservation of mass and momentum

2.1 Equation of conservation of mass:

Aj=~0

Ax
B =—-—"(1-
= 50w
C. =8

126



APPENDIX 3.3

- |
1

By a2+ A-9K) - -0 @l -GS

2.2 Equation of conservation of momentum

2.2.1 Full equation

A =BT gy wh) . gAx
At h, 24,C?

|Guh)]|

B; = -gh,©

_Ax Wh).,,  gAx n
=¥ Th " 2h,C? [t
D; =gh®

B = 22 (wanf ~ A0 @hf) - gh (0K, -h') + gh.ibx

127



FLOW ADAPTIVE SCHEMES

2.2.2 Equation with partially reduced convective term

_Ax o gAx n
Ay = (170 - w8+ S (]

*

B, = -gh,0

_Ax (uh);ﬂ gAx n
YA Y (B
D, = gh,0

E, - %ﬁ:(q, @k + (1) kY] ) - gh, (1-0)(h-h") - u, (1-0)( @h).,~wh)] )+ gh,i.

2.2.3 Equation without convective term

_Ax . gAx n
4= 1=y - 2h,c2'(“"’f|

B, = -gh,8

_Ax gAx n
VAR ywlLE

D; =gh,8

E - %(w @h)y + (1-9) @h)] ) - gh, (1-0)(h)-h") + gh iAx

128



APPENDIX 3.4

The double sweep algorithm

The double sweep algorithm is the most economical purely-sequential method for the solution
of systems of linear equations characterised by banded matrices. However, depending on the
band-width, the algorithm differs slightly. The finite difference approximation by the Abbot-
Tonescu scheme results in a tri-diagonal matrix while the Preissmann scheme produces a penta-
diagonal matrix, even though this can, of course, always be reduced further to a tri-diagonal
form. For reasons of completeness and associated generality, both versions of the double-
sweep algorithm are exposed.

1. Tri-diagonal matrices

The recurrence relation in the form

is defined where aj"” stands for any unknown (u or )

In the elimination sweep, the coefficients E; and F; are calculated recursively as:

E - ____C!' and F = ___DJ'—AJ'F.!' -1
J J
4E, + B 4E ., + B

The elimination sweep is initiated by setting the values of the initial coefficients E; and £
according to one boundary condition. When the last recurrence relation is calculated, the other
boundary condition is employed in order to get the value of the unknown at that point. After

129



FLOW ADAPTIVE SCHEMES

this, the substitution sweep, in which previously calculated recurrence relations are used, is
performed.

2. Penta-diagonal matrices

The procedure of the double sweep is equivalent to that just explained above for tri-diagonal
matrices; only the recurrence relations and the expressions for the calculation of these
coefficients differ.

The recurrence relations now have the form

n+1 n+1 a+l
. U + f.°N. + .
W= Heul s LR v

]

n+1 n+1
. = /N + f
u Fen') + G,

In the elimination sweep the coefficients H,, I;, J, F; and G; are calculated recursively as:

H -Cl, [ -DI,

y E ———— j= —_—

1T ALF |+ BI, ALF,, + BI,

o EALG, p o \43F. +B3)L + D2
' ALF, + B ! (A3F +B2)H + &

A4z F, B)), 242G,

! (42,F; + sz)Hj + €2

where the coefficients A1, BI, C1, DI and EI denote coefficients from the equations of
conservation of mass and the coefficients 42, B2, C2, D2 and E2 those arising from either
Bernoulli equations or from equations of conservation of momentum.

130



APPENDIX 3.5

Stability and accuracy of the finite difference schemes

A linearised analysis by Fourier series expansions of the Preissmann scheme applied on the
momentum equation with partially and fully-reduced convective momentum term is first
presented.

The de Saint Venant equation for a rectangular, horizontal, frictionless channel with reduced
convective momentum term has the form:

_a_Q. + b@
ox at

=0

(A.3.5.1)
30 80 | 430 _

—_ + VY—

ot ox Ax

where v is a reduction coefficient which, by being zero, provides the full reduction of the
convective momentum term, and which, by taking a value of unity, introduces the partially
reduced convective momentum term described in the main text.

After approximation of the partial derivatives by finite differences according to the Preissmann
scheme and replacement of each variable by its Fourier series expansion, only the k”
component of the expansion is considered (See Abbott 1979, p.168). The amplification
coefficient ¢ is defined for any variable as:

_ 0
£ (@

»

where £ is the Fourier amplitude coefficient of the k” dimensionless wave number at time 4¢.
The following equations are then obtained:

131



FLOW ADAPTIVE SCHEMES

$-1 tetrt-Dicing!) 2% + 8@ Doz sgn
b {cosa/+2 - 1)isina’ ) E7(h) = 2ising BQ = 0

gA-G—(dli)——Ji 2isina’ Ei(h) +
Ax

+ g)_—_l /4 ~Disina’) + -—-—6(¢_1)+1 isine’ | £ =
A7 (cosa Qy I)tsmoc) viu ix 2isine’ | E(Q) = 0

where ¢’ = 7/N, with N, defined as the number of points per wave length.

Such a system of linear homogenous equations has a non-trivial set of solutions if and only if
the matrix of its coefficients is singular. Following this condition, but simplifying for
conveniénce to the fully centred scheme with 8=0.5 and y=0.5, we get:

- - ’
bi—lcosa’[ D1 s + vﬂiusina’) + MgA sine’ = 0
At At Ax Ax?

After rearranging, this becomes:

@-1)?* + viuéﬁtana’(¢—1)(¢+1) + gh-élita,nzoc’((bﬂ)2 =0 (A3.5.2)
Ax Ax?

The Courant number (Cr) and the Froude number (Fr) are substituted in the above expression
together with a new variable y as defined by:

) Cr = (u+ gh)ﬁ—;

= ¢-1 N Fr
$+1

SIE
=

X

Equation (A.3.5.2) then takes the form:

132




APPENDIX 3.5

/ CrFr . tan2 / Crz

x> + vitano
Fr+1 (Fr+1y7

/ Cr
Fr+1

xu:-ia[—i 4+1), with  a = tang

As, in both cases, the variable x takes a purely imaginary value, it follows from the definition
of ¢that |@| =1, i.e. there is no amplification of any wave-number component between two
consecutive time levels for the cases considered. The scheme thus appears to be
unconditionally stable for both cases.

The phase error is presented by the ‘relative celerity’ (RC) defined as the ratio between the
numerical and the continuum celerity. The numerical celerity is equal to the argument of the
amplification factor while the continuum celerity is defined by the slope of the C*
characteristic of the full de Saint Venant equation.

Hence, the expressions for the relative celerity in the two cases considered are (Abbott and
Basco, 1989, p.86):

—arctan—28
1-a

RC= — 17¢ for the fully-reduced convective momentum term.

Cr ==
Nx

These expressions have been used to construct the phase portraits presented in Fig.A.3.5.1.

133



FLOW ADAPTIVE SCHEMES

1.0 2 T 10

X 7 / o8

RELATIVE CELERITY
..S
1
3
RELATIVE CELERITY

Q 28 8o [}

NO. OF POINTS PER WAVE LENGTH NO. OF POINTS PER WAVE LENGTH

a)Fr=2 b)Fr=35

Fig.A.3.5.1 The phase portraits for the Preissmann scheme applied on the mass equation with the
fully (M1) and partially (M2) reduced convective term

-2ac
-arctan————
RC - 1-a%c for the partially-reduced convective momentum term
Cr _2_2
Nx
. 2
Wlth. Cc = Er.j: Er_ +1
2 4

The phase portraits presented in Fig.a.35.1 show clearly the difference between the performance
of the models based on the full (M1) or partial (M2) reduction of the convective momentum term.
Whereas the relative celerity of the case with partial reduction reaches approximately 0.8 for
more than 20 points per wave length (Courant number equal to one) in the other case it is far
below this value. Moreover, with an increase of the Froude number, the celerity ratio of the M2
model improves slightly while, on the other hand, the celerity ratio of the M1 model deteriorates
drastically.

These observations are fully in accordance with the results obtained earlier for the celerity
coefficient as presented in Fig.A.3.5.1 : they demonstrate, once more, the unsuitability of the M1
model, even though it does provide unconditionally stable ‘results’.

The phase portraits for the Abbott-lonescu scheme, presented in the Fig.A.3.5.2, are obtained as
a result of a similar stability analysis to that given for the Preissmann scheme. All the properties

134



APPENDIX 3.5

observed in the case of Fig.A.3.5.1 can, as well, be recognised here. Hence, it can be concluded
that the phase errors of both schemes, when applied to the supercritical flow simulation, have
similar characteristics.

—= Crmi e Cr=1 ===t Cr=§ - Cr=§ —— Cr=f Cr=1 === Cr=§ == Cr=§
M1 M2 M1 M2 M1 M2 M1 M2
1.0
: :
o [
w w
a i
[¢] (4] o8
S g
F P
bt <
] W
@ @x
6.0
) 28 8o
NO. OF POINTS PER WAVE LENGTH NO. OF POINTS PER WAVE LENGTH
a)Fr=2 b)Fr=35

Fig.A.3.5.2 The phase portraits for the Abbott-Ionescu scheme applied on the mass equation with
fully (M1) and partially (M2) reduced convective momentum term

135






APPENDIX 3.6

Stability of the algorithmic structure

This stability analysis is directed towards the algorithmic structure used in the actual
computation. The idea is to analyse the performance of the double-sweep algorithm used as a
solution method for the system of equations obtained after translation from the continuum
equation to the finite difference schemes for both the subcritical and supercritical flow
conditions. This is not, of course, an analysis of stability in the Richtmyer-von Neuman sense.

The double-sweep method is a solution algorithm for bounded matrices based on the Gauss
elimination method. In a strict algebraic sense (Volkov, 1986, pp.155-160), a sufficient
condition for the existence of a unique solution is that the principle diagonal is dominant. This
to say that if, for example, we can write the j* row of a tri-diagonal matrix as

Axi, + By, + Cxpyy =Dy, j=1,...jf (A.3.6.1)

where x is a generalised unknown, which may conventionally be any of % or u or A or any
other such dependent variable, and

IB| > |4,] + (G| 2[4 >0

then the matrix has a dominating principal diagonal and the double sweep algorithm will be
well-conditioned and so stable.

Unfortunately, as observed earlier, the matrices of coefficients that arise here do not fulfil this
condition: even in the case of subcritical flow, where we do not doubt the stability of the
double-sweep algorithm, we do not necessarily obtain a matrix with a dominant principal
diagonal. It is then clear that the above condition, although sufficient, may not always be
necessary. Hence, it is not entirely relevant in this context and a weaker condition has to be
found.

In the case of the Abbott-Ionescu scheme, we deal with a tri-diagonal matrix, while for the

137



FLOW ADAPTIVE SCHEMES

Preissmann scheme we have, at least initially, a penta-diagonal matrix even though this can
easily be reduced to a tri-diagonal form (Abbott and Basco, 1989, pp.242-244). Here, for
simplicity of exposition, only the tri-diagonal case will be examined.

Within the double sweep algorithm, the solution at any space point j is obtained from the
solution in a point j+ I following the linear expression:

% = Exjup + F

where E;, and F; can be obtained from the coefficients A ;, B ;, C;, and D; by substitution in
(A.3.6.1).

When for x;,, a similar relation is substituted and the same procedure is repeated m times, we
arrive at the expression:

From this expression, it can be concluded that if | E; | > 1 then we can always take m as
large as we wish to obtain:

ME,, >M (A3.6.2)

.
k=0

for any M, so that the solution for x; is not uniformly bounded. It is thus unstable: the results
will amplify along the space variable. Accordingly, in order to demonstrate the absence of
spatial amplification within the double-sweep algorithm, the condition:

|E|<1 , Vj.

should be fulfilled. However, this condition is really nothing more than a rewriting of
dominant-principal-diagonal condition, which, as already seen, need not necessarily be
fulfilled.

As mass and momentum equations are always alternated in the tri-diagonal form of the Abbott-
Tonescu scheme, the idea arises to couple them by observing that the product:

138



APPENDIX 3.6

. m
E. can be rewritten as I (E,, xE,.,)

From the above expression it is clear that if | EE,, | > 1, an m can be found such that
condition (A.3.6.2) is fulfilled for any M (i.e. the solution is not uniformly bounded, i.e. it
is unstable). Accordingly, the condition

|EE, <1, Vj (A.3.6.3)

ensures that there is no spatial amplification: the solution is then uniformly bounded.

The coefficient E; is defined by recursion, however, as:

_C.
E = j
J
AE; + B,

After it is substituted in condition (A.3.6.3), we obtain:

—C}E’" <1
AJ'E/'-I +B]

or

“GE.|s |45, B|s|4E,||5]
This provides

“GEL| -4 E]<]5]
or

139



FLOW ADAPTIVE SCHEMES
In the case where

|C.| < |A<| = |c,| - |A.| < 0

J J J J

this would be sufficient for fulfilling the condition (A.3.6.3) because the right hand side of the
condition (A.3.6.4) is, by the definition of the absolute value, greater than or equal to zero.

When the mass equation and the full Bernoulli equation are used, coefficients 4; and C; from
each of the equations have the same formal expressions:

For subcritical flow conditions, u2- gh < 0, and from the above-given formulae it follows
that:

|G| < |4 ad |G| - |4] <0 ,

which is to say that the condition (A.3.6.3) is fulfilled for every j and the solution is stable.

For supercritical flow conditions, #?- gh > 0, so that from the expressions for 4; and C; it
is evident that

Gl > 4] md |G - [4] >0

Unfortunately, from these conditions, nothing can be concluded about the satisfying of the
condition (A.3.6.3). On the other hand, when the Bernoulli equation without the convective
momentum term is used, the expressions for 4; and C; differ between the mass and the
Bernoulli equations as follows:

140




APPENDIX 3.6

mass equation:

A A
4 =-u-g 2Atx ’ Cjz_u+gh2Ath
giving
Gl < |4] md |G| - 4] <0 |
Bernoulli equation:
_ At _ At
4; = gthx ’ G thAx
giving
|G| =4 and |G| - |4] =0

J

For both equations it is obvious that condition (A.3.6.3) is fulfilled independently of the flow
conditions. Thus, it can be concluded that in the case of Bernoulli equation without the
convective term the solution of the double-sweep algorithm is unconditionally stable.

In the case of the Preissmann scheme, the original matrix of the equation system is penta-

diagonal and recurrence relations for its solution by the double-sweep algorithm are given by
(Abbott and Basco, 1989, pp.242-244):

When similar relations are substituted for #;,, and 4, , and the same procedure is repeated m
times, the expression obtained is:

141



FLOW ADARTIVE SCHEMES

m-1

= O (HyFpog * L ) Uyom * e

k=0

From this expression it can be concluded that if | FH + [ | > 1, m can be chosen as large
as we wish to obtain:

> M

m-1
,IIO | Frodljon * Lo

for any M, so that the solution for ; is not uniformly bounded, and is thus again unstable.

Accordingly, in order to ensure stability of the double-sweep algorithm for the Preissmann
scheme, the condition:

|FH +Ljs1 V] (A.3.6.5)
should be fulfilled. We observe that in the condition (A.3.6.5), pairs of equations are included;
these are equations of conservation of mass and conservation of momentum applied on the

same ‘box’. In the case of Abbott-Ionescu scheme, the same two equations, but applied to two
neighbouring points, were used to obtain condition (A.3.6.3).

142




APPENDIX 4.1

Finite difference approximations of the de Saint Venant equations

Flows in the open-channel networks are described by the de Saint Venant equations for one-
dimensional free-surface flow:

. o0 oh
Cont : = +b— =0
ontinuity o + 5 (A4.1.1)
. Q. 0 0’ oh 09| .
M tum: =+ — | B=-| +gA| — -L | + g4 =0 4.1,
omentum 5 ( B y ] g ( pw ,,) g 02 (A4.1.2)
where: - discharge - gravity acceleration

Q g

h - water depth B - Boussinesq coefficient

b, - storage width K - Conveyance (K=CAvR)

A - cross-section area o - Chezy resistance coefficient
I, - bottom slope R - hydraulic radius

In order to approximate these equations on staggered grid following the Abbott-Ionescu finite
difference scheme, the convective term has to be changed. We have:

143



FLOW ADAPTIVE SCHEMES

From the continuity equation (A.4.1.1)

0 _ _, o

ox ot

while if we assume that the cross-section area is a function of the water depth A=£(h)

34 _dAdh _, oh
3x dhox Tox

Thus the convective momentum term can be replaced by

3 [pQ?| . 20800n PObron
ax A A dt Ar Ox
Finally, the equations to be approximated are:

a0 oh
L LpP-y
ox " T ot

a0 2850 4n +[gA_ BQZbT] ah

X g4
a A or 2 Jox 4T
Finite difference approximations:
Continuity equdtion
d Q 0 n+t n+t (1 - 6) n n
- amlen - on) - Saplel - o)

144



APPENDIX 4.1

Upon substitution of these two approximations into the continuity equation, it can be rewritten
in the form of a linear algebraic equation as:

40, Bl GG, =D

with coefficients:

Momentum equation

ég ) Qjm! _ an
ot At

n+1/2 on+112 1 +1
ZﬁbSQ _aﬁ: Bbxj QJ ( hj’il —hj’:l . hj,j] _hj’il]

A ot Ajmm At At

+1/2 n+1f2
PO e O (i -n)- O pe o)
FER I (Aj"*1’2)2 28x VT T Ay Vi

gAi~ gA""i

145



FLOW ADAPTIVE SCHEMES

n+l n
a9 19

K? = 84 (Kf'+1/2)2
j

Upon substitution of these approximations into the momentum equation, it can be rewritten in
the form of a linear algebraic equation as:

Ak, + B G+ Ghyy = D,

f)

with coefficients:

. Bann/z bS;q/z Amm B(Qj’“ln bT;q/z

a Aralr"? 84 @nn/z)z 2Ax
J J

B. = _1_. + gA.m”2 Qj’l

n+1/2 3 p+1/2 n+1/2 n+12
_ Bg ij n+112 B(QJ ij 0
G=- ma T84T 12 24
+ n+
A4, (arf x
n+1/2 3 pe1f2
b G PET L
I A ArA” 2 AT
J

hY - h”

J
gA j+1 “i-1

J quml/Z)'l 2Ax

e B(Qjmm bT'f+l/2 1 _9( ) . gAj,m/zi

For the rectangular cross-section used in the test version of the generalised solution method,
these coefficients are reduced to:

146



APPENDIX 4.1

+1/2 +1/2
A = - Ban _ A-’HHZ _ B(an 0
J At hjn+l/2 7 Ajn+1/2 hjn+l/2 2 Ax
5 1 an (b + 2hjn+ll2)
L= —— b g0
J At n12

(caref

172 +1/2
c- P9 . ga™ 1 plor :
i

Ar B2 J 4712 hjmllZ 2Ax
J i

n n+1/2
:Q_J —...—ﬁQj (h:-f-h’j)_
J At Athnﬂn in -1
il

ki - B"

jrl j-1

J

n+1/2 ; n+1/2 2A
A7k B

)+ gAjml/Zi

Boundary and internal conditions

At each end-vertex a boundary condition is expected. It can be either the water depth or the
discharge expressed as a function of time. The detailed treatment of the boundary conditions
is explained in Appendix 4.3. Moreover, at each vertex an external discharge can be specified
which enters into the continuity equation at that particular vertex.

The continuity equations at all the vertices have the form:

di
Y0, +q=0

147



FLOW ADAPTIVE SCHEMES

where: i - number of the vertex;
d, - degree of the i vertex;
e - indices of all the edges incident to this vertex;
Qe - discharge in edges incident to the i vertex;
q - external discharge;

Beside these continuity equations, other compatibility conditions obtained at vertices of the
network may be expressed to some approximation as equal water levels. At each vertex of the
network graph there is an unknown denoted by ¥;, i = 1 to n, representing the water levels
at the vertices. This water level is common for all incident edges. The set of unknowns along
each edge,( which are discharges and water levels alternately) is denoted by X;, j=1to the
number of grid points along the ¥* edge (more usually denoted by j). In this manner the
system of equations along each edge can be seen to have the form:

* kK Yl [ %
* % X Xl *
* ok ok ><X2=*
¥k ok *

X3

In following Appendices 4.2 untill 4.4, a solution method for the set of all these equations is
elaborated.

148




APPENDIX 4.2

Algorithms for the definition of the control sequence

The algorithms for the definition of the control sequence are part of the generalised solution
method for flow conditions in channel networks. They are based on graph theoretical
presentation of channel networks such as is extremely well suited for storage in computer
memory.

Any network is defined by its incidence matrix as an undirected graph. Basically, three
different algorithms are applied in sequence on an incidence matrix of a network graph. The
final result of these algorithms is an incidence matrix of a di-graph and a set of lists defining
the order of edges and vertices to be treated by the generalised solution method. The
orientation of the graph edges corresponds to a numbering of the discretisation points within
each edge in order to comply with the same set of equations for elimination.

These three algorithms are:

- splitting algorithm, which splits the graph into its dendritic and cyclic part

- decomposition algorithm ~ which transforms the cyclic part of the graph into a
‘quasi dendritic’ one

- orientation algorithm which directs all the edges according to the results of the
previous two algorithms

Each of these algorithm is presented by its pseudo-code and the list of its inputs and outputs.

149



FLOW ADAPTIVE SCHEMES
1. Splitting algorithm
INPUT - incidence matrix in the form of a two-dimensional array

OUTPUT-  C-matrix - incidence matrix of the cyclic part
CV, CE - lists of vertices and edges respectively from the cyclic part
DV, DE - lists of vertices and edges respectively from the dendritic part

PSEUDO-CODE

iniialise: o-malrix-as a copy of incidenoe-matrix
rgmfuﬁtitrrnamﬁar‘ of fwndwfeﬁiees =6

found verex = L
fori =ﬁ1f~ to number ewmmzes
if vertex degrﬁ& =1 then
begin
increase found vezte%
piaee vertex mamﬁef mte DV
aber:of incident.edge into DE
move th( > edgecfmm Cimatrix
end
end
fer i Mﬂﬂﬂmbér afveshﬁes
iEvertex degree <> Othen
begin ,
place i in C\V list
else
remove this row: from C-matrix
end

fori=1to number ofedges
if sum-of alf entries in this: vemcal <> Oithen
begin
place iin CE list
else
remove this row from:-C-matrix

end

150




APPENDIX 4.2

2. Decompeosition algorithm

INPUT -

C-matrix, the incidence matrix of the cyclic part of the graph in the form of a
two-dimensional array

OUTPUT-  NS-number of symbols

S - list of symbol vertices (array)

NP - list with numbers of dendritic paths corresponding to each symbol (array)
LP - length of each dendritic path (2-dim. array)

V - list of vertices per each symbol and path (3-dim array)

E - list of edges per each symbol and path (3-dim array)

PSEUDO-CODE

initialise WM as-a.copy of C-matrix '

for i:=1 to-number-of rows do

calculate degree of each vertex

for-i:=1 to.number:of rows.do

begin

end

if: degree = highest:degree then:
begin
remove:this vertex from WM
NS = N8 #+1
vertex number placein§
end .
for j:=1to-number of edges
begin
ifedge degree:=1 then
begin [ '
&) mber of paths for ihls ‘symbol
) snumberinE :
increase LP“belongmg tothis symbol:and path
if incoming vertex has degree = 1 then
begin
vertex number removed from WM to V
increase LP
incident edge removed from WMo E
end. -
end
end

151



FLOW ADAPTIVE SCHEMES

3. Orientation algorithm

INPUT - incidence matrix, DV, DE, V, E

OUTPUT- MM-matrix - oriented incidence matrix

PSEUDO-CODE

MMI[S[i], B[] 110=1

iftength of the:path.> 1 then
for k = 2 to length of the: path

152




APPENDIX 4.3

Generalised solution algorithm

If unknowns (Q and h) are just named X; irrespectively of their type but only connected with
their position in the staggered grid, both equations, of continuity and of momentum, can be
written in the same form:

4%, +BX + GX,, = D,

The only exceptions arise when the values of the water depth are given at nodes which are
denoted by Y. Thus, the first and the last equation of any edge has a somewhat different form:

A Y, + BX, + C,X, =D,

1%el

Aij_U"-l + Bij/j +CY,=D

The generalised solution algorithm splits the solution of any network into two parts, namely
the solution of the dendritic part and the solution of the looped part. Correspondingly, the
explanation of the solution algorithm will be given in two stages.

Dendritic part - branched network algorithm

The dendritic part of a network is solved by the double-sweep algorithm whose recurrence
relations for the elimination sweep are

x*!' - E-Xx"'+F

J J i1 J
with the expressions for the coefficients being:

153



FLOW ADAPTIVE SCHEMES

E = 4 and F = D4 F
J
AE., + B TOAE, B

The elimination sweep along each edge starts either from an end-vertex, where a boundary
condition is defined and initial values for coefficients E, and F, can be determined from the
boundary condition, or from an internal vertex, where internal compatibility conditions are
used to define initial values of E, and F, .

End-vertices with defined boundary condition

If a water depth boundary condition is given, then initialisation of the recurrence relation is
simple and straightforward:

However, if a discharge boundary condition is given, an additional continuity equation is
employed to relate the discharge at this vertex to the discharge at the first discretisation point
along the edge:

n+1 n
Y, vertex - ¥, vertex )

Xl B Qgiven ¥ b ( =0

Ax

From this equation, the expressions for the coefficients follow as:

At AtQ,
E = 9ix and  F, - > A‘:’" + Vigrex

Internal vertices

At internal vertices the continuity equations are used as the internal conditions. The
equivalences of the water levels are also internal conditions but these were already used when
unknowns were assigned to the points, while the water level at the vertex (¥, ) belongs to
all incident edges.

154



APPENDIX 4.3

The continuity equation at a vertex has the form:
30 +q=0

with Q, being the discharge at the very beginning of an edge (not at the first discretisation point
along the edge), with e and g being the external discharges.

In order to get these values of discharges at the beginnings of the edges, continuity equations
were employed in the same way as in the case of an end vertex. All the incident edges are
divided into incoming ones and only one outgoing one (form the point of view of elimination,
and not of flow). The additional continuity equation for each of the incoming edges gives:

+1
Qin_Xl';l +_b_(

Y™ - ¥") =0
Ax At

while the last recurrence relation along that edge gives:

n+l .yn+l
X - Byt <

After combining these two expressions we get:

0, =(E1-]- —%]Y’”l +F, + Z=2 YY"

The continuity equation for the considered vertex (taking into account the conventions for
signs) gives:

Qow:ZQin+q:0
The additional continuity equation for the outgoing edge is:

155



FLOW ADAPTIVE SCHEMES

n+l
X Qo + i(yﬂ*l -Y") =0
| Ax At

| When for unknown Q,,, and Q,, the expressions from the last two equations are substituted and
the whole equation is rewritten to obtain the form:

| + +1
‘ y™! = E; X! + F,

| we get expressions for initial coefficients E, and F,

Ey=-—1 i pAx
_ Eﬁ + E—T
and
d-1 d
bAx
By + E"—TY" *q
O L pAx
DI oL
End vertex

At the end vertex of a dendritic graph, two different boundary conditions are possible. The
boundary condition water level, given as a function of time, is directly substituted in the last
recurrence relation as ¥"*7 and the substitution sweep is initiated.

In the case of a discharge boundary condition, an additional continuity equation is again
employed:

+1
- Qgiven - Ej} Yn - F.” . —b_(erl _ Yn) = 0
Ax At




APPENDIX 4.3

which after rearranging gives:

bAx
bAx
At v

After this, the substitution sweep is made following the reverse order to that of the elimination
sweep.

No end vertex

If there is no end vertex there is a whole cyclic part of the network which has to be solved by
a different algorithm. Once that is solved, the values of water levels in the vertices which are
positioned at the connections to the dendritic part (or parts) of the graph are directly substituted

into the last recurrence relations of the corresponding edges and the substitution sweep starts
from there.

Looped part - global elimination algorithm

The elimination sweep

In the elimination sweep, the recurrence relations along the edges have the form:

with: j - index along the edge
i - index through the S-array with the symbol-vertices’ numbers of the symbol-
vertices corresponding to this k-subset
k - index number of the subset and at the same time the part of the index number

of the corresponding symbols

The expressions for the coefficients are:

157



Fl,OWADAP’I'IVESCi-IEMES
| E = - G , _ D - 4F,
! A: Ei-l * BI ! Aj'E}-l * Bj
G = - 4G
1) .
AE, + B

The initial values of the coefficients for the first edge in a path are:

it
[N

E(e,0) =0 , F(e,0) =0 and G(i,e,0)

l while for the other edges in the same path they are:

i

E(e,0) = VE(v) , F(e,0) = VF(v) and G(i,e,0) = VG(i,v)

with v being the number of the preceding vertex (from the V-array) and VE, VF and VG being
the coefficients of the continuity equation at that vertex rewritten in the form of the recurrence
relations along the edges.

The continuity equations at vertices are rewritten in the following form:

\Y - index number of the vertex

e - index number of the following edge (element from the E-array)

i - index through the S-array with the symbol-vertices’ numbers

k - index number of the subset and at the same time number of the
corresponding symbols

If a simplified version is taken, the discharges situated in the first discretisation point along
each edge are taken to be equal to the actual discharges at vertices (no additional continuity
equations being employed) and the expressions for the coefficients are:

158




APPENDIX 4.3

d;-1
F,.
VE, = - 1 , VF = “’E” o s
d;i-1 v di-1
E E
ee=1 U eeE=1 e
d;-1
E ee; i
=1 /]
VG, = - S
E,.
with: g - degree of the vertex v
ee - index through the edges incident to the vertex v

(except the following edge from the E-array), ee=1 fo d-1

If however, the additional continuity equations are employed, the expressions for coefficients
VE, VF and VG are different, resembling more those described above for the dendritic part of

the network.

The intermediate sweep:

The recurrence relations along the edges in the intermediate sweep have the form:
k
X =P + E R Y, (A.4.3.1)

- index number of the edge (element from the E-array)

- index along the edge

- index through the S-array with numbers of decomposed vertices

- index number of the subset and at the same time the number of the

corresponding symbol

with:

oo~y

The expressions for the coefficients are:

Pj = EJP + F, R,',j = Ej'Rin * Gi,j

Jj+1 J

159



FLOW ADAPTIVE SCHEMES

The last edge in a path is incident either to a vertex belonging to one of the following k-subsets
or to a vertex in which a symbol is defined. Concerning the initial values of the coefficients,
they can'in both cases be expressed through the following formulae:

P, =E;VP, + F; , R, -E VR, +G,

In the case that the final vertex of a path is an element of another -subset, the coefficients
1 VP(v) and VR(,v) are as defined previously. In the other case they are:

VP, =0, W _ =0 ,i=1,..,k-1 and VR, , =1
For other edges in the same path, they are:
P =E-VP, +F, R,=EWR,+G,

with v being the number of the following vertex (from the V-array) and VP and VR being the
coefficients of the continuity equation at that vertex rewritten in the form of the recurrence
relations along the edges in the intermediate sweep.

The continuity equations at the vertices are rewritten in the following form:

The expressions for the coefficients are:

VP, = VE, P, + VF, VR, , = VE,-R

160



APPENDIX 4.3

with: v - index number of the vertex
e - index number of the following edge (element from the E-array)
i - index through the S-array with numbers of decomposed vertices
k - index number of the subset and at the same time the number of corresponding
symbols

The closing equations

Upon completion of the intermediate sweep for one k-subset, a closing equation for the k*
symbol is needed. The continuity equation at the decomposed vertex, where the &* symbol is
defined, is used. As all the incident edges have already been traversed by the intermediate -
sweep, all the discharges involved in the continuity equation are expressed as functions only
of k symbols. Hence, the k" symbol can easily be expressed as a function of the remaining k-1
symbols.

k-
Y, =VP, + Y R, ,'¥, (A4.3.2)
k k &k i

1
-1

with: v(k) - index number of the symbol-vertex where the k” symbol is defined

i - index through the S-array with numbers of decomposed vertices where the
symbols corresponding to this k-subset are defined

k - index number of the subset and the symbol for which this is the closing
equation

The expressions for the coefficients are:

__ ee ‘=_ee=1
VP, = - £, VR =

Vi d,

4, d;
E=1 Peel E Reei'l

i i
eez;l Reek'l ee2=:1 Reek'l

with: d, - degree of the k™ symbol-vertex (v(k))
ee - index through the edges incident to the k" symbol-vertex (v(k))

The closing equation for the first symbol, Y(S(1)), will have only one term so that this will

itself be the solution for the first symbol. The substitution sweep which will then follow will
include all the edges and vertices and give solutions for all the unknowns.

161



FLOW ADAPTIVE SCHEMES
The substitution sweeps

After a closing equation for a symbol, a substitution sweep through all k-subsets corresponding
to this vertex is performed. During this sweep, recurrence relations for all the unknowns
maintain the same form as before. The only differences are in the correction of the coefficients
and the reduction of the summation index k by one. For the water levels at the vertices, the
coefficients of equation (A.4.3.2) are corrected in the following way:

VP, = VP, + R, VP, , VR,, = VR,, + VR ,'VR

Vil

In a similar manner, the coefficients of equation (A.4.3.1) for unknowns along the edges are
corrected as:

P =P + Rj,k'Vka ’ R =R ;+ Rj,k'VRi,vk

Upon completion of the substitution sweep corresponding to the K" symbol, the procedure
continues with the intermediate sweep corresponding to the k-1 symbol.

162



APPENDIX 4.4

Algorithm for direct solution of systems of linear
algebraic equations characterised by nearly-banded matrices

Introduction

Let us consider the system of linear equations

Ax =b (A44.1)
with 4 being a square matrix of order nXn and x and b being column vectors of order n.

Let us then characterise a ‘nearly-banded’ matrix for a square matrix of order #»Xn as a matrix
that is banded except for m of its rows, such that m « n, and even these m rows are not very
full.

The necessary conditions for a nearly-banded matrix A4 to be solvable by this method are as
follows:

- that the matrix A is reducible to a doubly bounded block diagonal form (DBBDF).
This form of matrix can be represented in block form as:

All AIN

Ayv Avaw
A

v vz A T v ANN_

163



FLOW ADAPTIVE SCHEMES

where non-zero entries appear only in these blocks and the rest of the matrix is filled
with zeros.

- that all the diagonal blocks 4;;, {=1..N-1, are themselves banded

- that the block A, is a diagonal matrix or it is equal to zero

- that all blocks A,; have only two non-zero entries, one in the first column and the
other in the last column, and these two entries are not in the same row

- that all blocks A4, , are transposes of Ay;, 4;y = Ay/".

If matrix A fulfils all these conditions than a matrix C can be formed from a set of column
vectors with each of these being formed from a block A4, ; by adding up all the entries in each
row. Each element of the matrix C is then

f: (A.4.4.2)

with n" being the number of columns of the block Ay; and g, , being the element in the i row
and £” column of the block 4y ;. The matrix C formed in such a way is considered as an
incidence matrix of a graph. In the rest of this work, this graph will be called a network graph.
The solution algorithm relies extensively on this graph. Each group of blocks [..4; ;....4; ]
corresponds to an edge of this graph, while the set of blocks [4;y A4,y ... Ayl corresponds
to the vertices of the graph.

Such systems of equations are usually associated with finite difference solutions of flow in
hydrodynamic networks where each channel (or pipe) of the network is discretised into a
considerable number of points. However, although this algorithm was developed for such
network problems, it may be applied to the solution of other systems of linear equations
provided that these fulfil the above requirements.

If the origin of the system of equations is a network problem then this graph coincides with the
original network graph. Then groups of blocks [..4;;....4; ] originate from the approximation
of the conservation equations along the channels or pipes of the network while the set of
blocks [A;y A,y -.- Ayl corresponds to the continuity equations in the nodes of the network.
In fact, in the numerical algorithms for solutions of network problems, the whole matrix A is
never assembled. The blocks [..4; ;....4,; 4] are, together with the right hand side, efficiently
stored in the so called diagonal storage form (Pissanetsky, 1984, p.13) that is particularly
suitable: for banded matrices. The blocks [4;y A,y ... Ayy] are stored in the condensed form
of the incidence matrix of the network graph ( which is equivalent to matrix C).

Let us consider a network represented by its network graph in Fig.A.4.4.1 as an example
suited to an explanation of the global elimination method.

A common practice in the field of direct methods for matrix solution is to represent matrices
by graphs with the number of vertices being equal to the order of the matrix and the number

164



APPENDIX 4.4

of edges of the graph corresponding to the non-zero entries of the matrix. A graph of this type
will henceforth be called a matrix graph in order to distinguish it from a network graph.

If each edge of the network from
Fig.A.4.4.1 is discretised in only four
points, the matrix graph takes the form
schematised in Fig.A.4.4.2. Note that
the usual number of discretisation
points along edges is much higher, but
for the sake of this example four points
will suffice.

By the application of a one way
dissection (George, 1980) or a nested
dissection (George, 1973) or by node
tearing (Duff et al, 1986, pp.254-261)
such matrix graphs can then be split
into sets of disjoint vertices by a
separator set. This splitting results in
a partitioning of the matrix in DBBD
form and facilitates the solution of the

/‘ 5 3

§
Fig.A.4.4.1

system by any suitable economical method (i.e. Block Gauss Elimination, as described by Duff
et al, 1986, pp.161-163). The choice of the separator set does influence the size of the block
Ay and consequently it does change the computational effort involved in the solution. The
smaller separator set reduces drastically the computational effort (Duff et al, 1986, p.258).
Hence, a successful dissection or node tearing is one which minimises the separator set and still
maintains the separation of the other vertices.

-

Fig.A.4.4.2

When the whole matrix A is represented by its matrix
graph ( as shown in Fig.A.4.4.2) then two types of
vertices can be distinguished. There are those
corresponding to the discretisation points along the
channels and those corresponding to the actual
vertices of the network graph. The most natural
separator set for the dissection of such a graph is then
the set of original vertices of the network graph. Only
after being partitioned by the nested dissection does
the matrix 4 obtain the DBBD form which was
analysed earlier.

For the example network from Fig.A.4.4.1 (with only
three discretisation points per edge) the DBBD form
of the system matrix is given in equation (A.4.4.3).

The rows of the matrix are numbered in order to make it easier to follow later transformations

165



FLOW ADAPTIVE SCHEMES

of the matrix. The equations 1, 2 and 3 belong to the discretisation points situated along the
edge 1, equations 4, 5 and 6 to those situated along the edge 2 and so on till arriving at
equation 21, The equations 22 till 26 belong to the vertices of the network graph from 1 to 5
in the same order.

RN Y L

G R -8B w

(A.4.4.3)

I B B e e e e e e
DRYUYURNEBEEIaG R

)
*

The classical methods for the solution of flows in looped channel networks uses this form of
matrix A. Due to the significant number of nodes involved in some networks, the size of the
separator set is also significant and consequently the size of the block A4y is usually the bottle-
neck in this type of algorithms. However, in the example presented here the number of vertices
is small, which makes the size of the block A4y rather insignificant. What is important is to
notice that this number depends only on the number of vertices and not at all on the complexity
of the network in terms of its degree of connectivity. Therefore, a tree-like network with n
vertices, solved by the classical looped network algorithm, would also, completely
unnecessarily, have a block 4y of degree n.

The global elimination algorithm was developed with the aim of reducing the computational
effort in such cases. The idea behind this method is to use the Gauss elimination, which is
more precisely in its form for the solution of banded matrices called the double-sweep
algorithm (Abbott, 1979, pp.166-177; Volkov, 1986, pp.155-160), and at the same time to try
to minimise the fill-in originating from this elimination. The other methods such as those of
the minimal degree algorithm (Tinney, 1969) are based on the same idea, but they apply it
locally; e.g. the next pivot is chosen from the active sub-matrix on the basis of the minimal

166



APPENDIX 4.4

degree of the corresponding vertex in the graph. The classical algorithm for the solution of
flow in looped channel networks follows a similar criterion. The equations originating from
the discretisation points along the edges are eliminated first as they always have a minimal
degree in comparison with the vertices of the network graph. However, once the problem is
reduced to the solution of the block A4y , different direct and indirect methods are normally
applied.

The idea of the global elimination method is to use the topology of the network graph (which,
we repeat, is not the same as that of the matrix graph) to define the ‘strategy’ of the elimination
procedure. It is very well known that Gauss elimination applied to the matrix whose graph is
a tree (dendritic graph) does not introduce any fill-in (Parter, 1961). Thus, in order to apply
Gauss elimination with no fill-in, it is not necessary to have a completely separated graph, but
it is sufficient that the graph is a tree. Following this reasoning, a method is developed which
limits the number of elements in the separator set just to the number of vertices necessary to
render the remaining parts of the graph tree-like. This means that as many nodes are being torn
as are necessary to make the rest of the network graph ‘quasi dendritic’.

As applied to our example graph from
Fig.A.4.4.1, this node tearing or decomposition
would provide the situation schematised in
Fig.A.4.4.3. In this example it was necessary to
decompose two vertices (number 1 and number
2) and then the rest of the graph became a tree.
This means that the separator set has only these
two vertices and not, as earlier, all five of them.

The fill-in that is generated in the global
elimination method is limited at the columns
corresponding to the torn vertices (that is, the
vertices obtained from the separator set). The
unknowns associated with these vertices are in
the global elimination method simply called
symbols. This name comes from the other form
of writing the system of equations where the
unknown associated with the diagonal element is
expressed as a linear combination of other Fig.A.4.4.3
unknowns. In these equations, values of the R
unknowns at torn vertices then necessarily appear

in symbolic form.

The global elimination algorithm can also be related to a method proposed by Wang (1981) for
the solution of banded matrices using parallel processors. The difference in the present case
is that the global elimination algorithm is applied to the solution of only nearly-banded
matrices, and therefore the choice of the tearing nodes is governed by the topography of the
network and not by the number of the intermediate vertices as the case in the work by Wang.

167



FLOW ADAPTIVE SCHEMES

The reduced number of vertices in the separator set reduces the size of all the blocks 4y,
including the block Ay y, which reduces the required computational effort. However, the
equations corresponding to the vertices of the network graph, which are now no longer
elements of the separator set, are placed between the blocks A, which they were separating in
the previous partitioning. As a consequence, the new partitioned matrix no longer has a perfect
DBBD form. In the following equation (A.4.4.4) the form of the matrix from our example is
presented.

L N S A

B e =
s 0 - o

(A.4.4.9)

WM D e B e e o N e o e
m -~ S 0 & ® It LR W

2
L)

Due to the proper ordering of elimination, all the ‘new’ entries arising from out of the DBBD
structure are easily eliminated and do not cause any additional fill-in. Thus, all the fill in will
still be confined to the blocks 4, ;. However, before the actual global elimination algorithm
is explained, the definition of the sequence, which is the backbone of the global elimination
algorithm, should be described.

Definition of the elimination sequence

A search procedure is performed on the incidence matrix to define the type of algorithm that
will be applied and the order in which it will be executed. The search procedure consists of two
parts, with the first searching for the dendritic (tree-like) part(s) of the graph and defining the
order of elimination within these, and the second part defining the order of elimination among
the edges belonging to the cyclic (looped) part of the graph. Formally:

168



APPENDIX 4.4
First part of the search procedure

- search for the vertex with degree equal to one

- when found, place its number into the corresponding list and do the same with the
only incident edge

- remove corresponding entries from the incidence matrix

- repeat this procedure until no such vertex is found in the pass through the whole
incidence matrix.

Second part of the search procedure

- search for the vertex with maximum degree

- place its number in the list of symbols and remove all entries corresponding to it from
the incidence matrix

- search for an edge which is incident to this vertex ( a column with a single entry)

- when such an edge is found, place it into the list and remove it from the incidence
matrix

- check the degree of the vertex incident to this edge; if equal to one, remove the vertex
and the incident edge from the incidence matrix and place them into their corresponding
lists

-repeat the last step as long as only vertices with a degree equal to one are encountered
-search for another edge incident to the originally removed vertex ( a column with a
single entry) and, when found, repeat the last three steps

- if no edges of that type are encountered and the incidence matrix is not empty, chose
another vertex with the highest degree and place it into the list of symbols and repeat
the last seven steps

-repeat this procedure until the incidence matrix is empty.

Upon application of this algorithm on the network from Fig.A.4.4.1. the obtained lists are:

dendritic edges DE = {7}

dendritic vertices DV = {5}

number of symbols NS = 2

list of symbol vertices ) {1,2}

number of dendritic paths per each symbol NP = {3,1}

length of each dendritic path LPp = {{1,1,1},{3}}

edges involved in each dendritic path E = {{1},{2}.{3}.{4,5.6}}
vertices involved in each dendritic path ~ V = {e,0,2,{3,4}}

The Algorithm

The algorithm consists of two sub-algorithms, corresponding to the solution of the dendritic
part and the solution of the cyclic part. The explanation of each of the steps of the algorithm
will be followed by the form that the transformations of matrix 4 would undergo after this step
was applied.

169



FLOW ADAPTIVE SCHEMES
Dendritic part

The dendritic part of the graph is defined by the lists of dendritic edges and vertices produced
in the first part of the search procedure. To each edge from this list there corresponds a system
of equations of the form

[...4;....A5]1x=b
If reduced to only non-zero entries, this can be written as
[4;; Aixlx = b

where x; is a part of the unknown vector with only the unknowns from this edge.

The solution is obtained in two steps, just as in the classical double-sweep algorithm, these
being again an elimination sweep and a substitution sweep. The elimination is performed
according to the list of dendritic edges and the substitution sweep in the reverse order of the
same list. In our example there is one dendritic edge (number 7) so the elimination sweep along
it, starting from the end vertex (number 5), is performed first. The second part of the
algorithm, being the substitution sweep, is performed only upon completion of the algorithm
for the solution of the cyclic part of the graph.

Cyclic part

The elimination procedure on the cyclic part of the graph does introduce some fill-in.
However, its extent is limited and well controllable. All the equations belonging to an edge
listed after a definition of a symbol will have fill-in at the place of that symbol and at all the
places corresponding to the already defined symbols there will be no fill-in at the columns
corresponding to the symbols defined later in the search procedure.

All the additional fill-in is located in the block 4, . The elimination within one edge is done
according to the elimination procedure from the double-sweep corrected for the fill-in at
defined symbols. The order of edges to be passed by the elimination sweep is defined by the
list of cyclic edges defined in the second part of the search procedure. The elimination sweep
is finished when all the edges from this list are exhausted. The form of the matrix A at the
moment of initiation of the elimination sweep is shown in equation (A.4.4.5).

The intermediate sweep is performed according to the list of cyclic edges in the reverse order.
It is similar to the substitution sweep in the classical double-sweep algorithm, except for the

170



APPENDIX 4.4

fill-in introduced in the elimination sweep. The intermediate sweep does not introduce any new
fill-in.

VB U e W -

 ox ok X % R x

2 (A.4.4.5)

R
Y

When the intermediate sweep along all the edges ‘belonging’ to the second symbol (edges 4,
5 and 6) is finished, the matrix A has the form shown in equation (A.4.4.6).

D )
-

(- I PRI N Y A N

i3 (A44.6)

R
=

L

171



FLOW ADAPTIVE SCHEMES

When the intermediate sweep for all the edges defined upon one symbol is finished, the
corresponding equation from the matrix [Ay......Ay;.-...- Ayy] is employed in order to express
the value of that symbol as a function of all the previous symbols only. Substitution of this
expression in all the equations having a fill-in at the place of that symbol reduces the amount
of fill-in in these equations by one.

In our example, equation-23 (in the last row of the matrix) is the closing equation for the
second symbol. All the non-zero entries of this equation, except these in the block Ayy, can
be eliminated by equation-3, equation-10 and equation-18, and the second symbol can be
expressed as a function of only the first symbol. The form of the matrix 4 upon the substitution
sweep is given in equation(A.4.4.7).

® N AW N -

N o= = =
PR IR=a -

(A.44.7)

R = —_— —_ = =
NN RESISRGEREG

~
[N

~
[~

The procedure continues with the intermediate sweep for all the edges of the other symbol (that
is, the one defined just before that which was just eliminated). The procedure is repeated until
the value of symbol number one becomes known.

The form of the matrix 4 obtained after the intermediate sweep is performed on the edges
belonging to the first symbol (edges 1,2 and 3) is given in equation(A.4.4.8). Then equation-22
is used as a closing equation for symbol one and this provides the value of this symbol.

After this, the substitution sweep throughout all the edges of the cyclic part of the graph is

performed. With this the cyclic part of the graph is solved and the substitution sweep on the
dendritic part of the graph can now be performed.

172



APPENDIX 4.4

L - N T

© = - =
A8~ ocw

(A.44.8)

*
NN R i B e e e R e e
NS SDba®ao t&i RO

=~
o

Comment

It is interesting to observe that the solution of the dendritic part of the graph, being the double
sweep algorithm guided by the list of edges and vertices to be followed, can be seen as
equivalent to the algorithm for the cyclic part of the graph. It only needs to have the number
of the symbols being equal to zero and consequently the set of all symbols to be an empty set
in the case of a branched network (that is, a tree-like graph) the global elimination algorithm
reduces to the double-sweep algorithm.

In that respect, the global elimination algorithm can be viewed as a general method for the
solution of banded and nearly banded matrices, where the algorithm for the solution of
dendritic networks ( branched algorithm) is just a trivial case of it with an empty set of
symbols.

173






APPENDIX 5.1

The standard ADI algorithm used in Chapter 5

The alternated direction implicit (ADI) algorithm was applied to solve the shallow water
equations:

of , 98 9%
o s 2L o
ar | ax, + 2, (A5.1.])
with:
h uh u,h
h? 0
f = ul h 4 gl = gz_ ’ g2 = ,
uh gh’
0 2
where:
h - water depth
u - velocity in x direction
v - velocity in y direction
g - acceleration due to gravity

The same set of equations can be rewritten in another form as:

EL . duh . o uh
ot 0x, ox,

=0

ou, h
LI gh—a—}l =0
at ax,

175



FLOW ADAPTIVE SCHEMES

ou, h
1_12 + ghﬂ =0
at ox,

or

%’;’. . 7,{ o, __] =0 (A.5.1.2)

du, oh
e} °n -9
Y, + gax1 (A.5.1.3)

du, dh
£ Bl
5 * 8 5%, (A.5.1.4)

The ADI algorithm splits the calculation of one time step into two parts. Each of these parts
is associated with one of the main coordinate directions (x; and x,). In each direction the
equation of conservation of mass is solved together with the equation of conservation of
momentum in that direction.

The domain is discretised according to the grid presented in Fig.A.5.1.1.
o h - point

== y1 - point

I u2 - point

x2

x1

Fig.A.5.1.1

176



APPENDIX 5.1

The equation of conservation of mass which is being solved in both directions ensures that a
unique solution is obtained. Therefore, two continuity equations applied at the same point share
the time step between them,; the term d4/9¢ is in each of these equations approximated on a
half time step: in the x, -direction, between the time step # and n+1/2 and in the direction x,
between the time step n+1/2 and the time step n+1.

Each part of an ADI algorithm consists of a repetition of algorithms for the solution of
unknowns along one line which are placed along all grid lines in that particular direction.
Along one grid line only the water depths and their corresponding velocities are discretised
implicitly, which necessitates that they be solved simultaneously. Thus, the algorithm for the
solution of one line produces a system of linear equations characterised by a tri-diagonal
matrix. For the solution of this system of linear equations, the double-sweep algorithm is used.

The boundary conditions supported by this model are the velocity and the water depth as
functions of time. (A closed end is considered to have a velocity equal to zero.) If a water
depth boundary condition is given, then the boundary of the domain is at an h point . If a
velocity is given then the boundary of the domain is placed at a velocity point. This approach
makes the introduction of the boundary conditions much simpler (Verboom ez al, 1992).
The algorithm is presented in two parts, the first defining the finite difference approximation
and the second the solution algorithm.

Finite difference approximations

Upon the introduction of finite difference approximations instead of partial derivatives in
equations (A.5.1.2) up to (A.5.1.4), each equation can be written in the following form:

n+l +1 n+l
Az'y + Bz + Czly =D,

where details about coefficients and dependant variables depend on the original equation.

Sweeps along the lines parallel with the x, direction

Equation of conservation of mass:

n+l n+1/2 n+l
+ . . + . = .
At Bl Gt = D

177



FLOW ADAPTIVE SCHEMES

with coefficients:

hAt _
Aj,k = -4Ax » Bj,k = 1 s
h At
c = 227
k4 Ax
_n o 71At 7 _on _ 'h-At n  _n
Dix = Py 4Ax(u'f+l,k u‘f—l.k) 2Ax(u2ﬂc+1 2 x-1

Equation of conservation of momentum:
k-

n+1/2 n+l n+ 12 _
Ahx * Bj,kul,;k * Culyax = Dy

with coefficients:

_ _8At _
Ajk = -E s Bj,k —-l ]

. 8At I
C}’k - E ’ Djk u’j;k

Sweeps along the lines parallel with the x, direction

Equation of conservation of mass:

178



APPENDIX 5.1

n+l a+l _
A]ﬂuzj’k-l Bjkhj jku2 TR Dj,k

with coefficients:

4 - - hAt , B.=1,
Tk 2Ax o
c, - hAt
5 2Ax
_ iz _ hAL ul R+l B _n
Dy = by 4Ax Ui Mo T M Yy

Equation of conservation of momentum:
n*l n+l n+l
A hy B/ku2 C,khjm = /k

ok gk

with coefficients:

_ &A1 -
Aj,k - 2 Ax ’ B./’Jf =1

- gAt _ o gAt n_ gn
G 2Ax Dy, = e Z—Ax(kf""‘ hf:"")

179



FLOW ADAPTIVE SCHEMES
Solution: algorithm

The solution algorithm is given in the form of the following pseudo-code:

loop on-all time steps
begin

foop on alf x1-lines
begin

calculate-coefficients

values of the boundaries

solution-of this line by the-double-sweep
end
lgoponall x2-lines
begin

calculate coefficients

values of the boundaries

solution of this fine by the double-sweep
end

end

180



APPENDIX 5.2

ADI+ algorithm - the combination of the ADI and the new algorithm

equations describing two-dimensional nearly-horizontal flow. It in fact consists of two ADI
algorithms applied within one time step. Each of these algorithms is applied on a different
discretisation grid. However, the # points of these two grids correspond while the main
coordinate directions are rotated through 45° as schematised in Fig.A.5.2.1.

\
’ The ADI+ algorithm is an extension of the ADI algorithm for the solution of the shallow water
0 h - point
== ul -point  u3- point

| u2 - point \ ué - point

X2

Fig.A.5.2.1

181



FLOW ADARTIVE SCHEMES

Although these two grids, x,-x, and x;-x,, seem at the first sight similar, albeit with different
discretisation steps, if observed separately it becomes clear that they differ in one special
respect . In fact, the x;x, grid itself consists of two superimposed grids of the same type as the
grid x-x, . This fact might lead to spurious oscillations of solutions, and accordingly a special
attention is paid to it.

The shallow water equations can be written in the x;-x, coordinate system as:

.8 %

=0
o o (A5.2.1)
with:
A uh u,h
2 h2 uh
f=lwh], g - u"”% &7 - 1hz
h \ 2p .+ 81
% u, uyh wh+ )
where:
X,X%;, - space coordinates u, - velocity in x, direction
t - time coordinate U, - velocity in x, direction
h - water depth g - acceleration due to gravity

Clearly, they can as well be written in the other grid x;-x, as:

o, %8, %8 _
ot ox, ox,

with:
A ush u,h
2, gh? uuh
f= u3h , 83 = u3h+g2 , 8 = 4+ )
uh 2,  gh
4 uyu,h Ugh+ 2
and:
X%, - space coordinates
R - velocity in x; direction
U, - velocity in x, direction

182



APPENDIX 5.2

For the purpose of the development of this new algorithm, only the simplest form of the
shallow water equations is used, namely the form without the convective terms. In that form,
the six equations (three for each coordinate system) are as follows:

in the x,-x, coordinate system:

oh | ou  Ou,

a [8x1+8x2 (A.5.22)
Oty oh

t L

7 8 ar, (A.5.2.3)
ou, ok

—— —_— = 0

5 8 o, (A5.2.9

in the x; - x, coordinate system:

-1 ou ou
o 5l M, M| (A.5.2.5)
ot ox, ox,
au3 ok
— —— =0
=8 =, (A.5.2.6)
ou, oh
4 -0
8 , (A52.7)

183



FLOW ADAPTIVE SCHEMES
Solution algorithm

The ADI+ algorithm splits the calculation of one time step into four parts. The time step is
basically divided into two parts, namely wAt and (I-w)4r, and each of these parts is associated
with one of the coordinate systems (x,-x, and x;-x, respectively). In each of these parts a
‘standard’ ADI algorithm is applied. This splits each of these parts of the time step further into
two parts corresponding to the coordinate directions. In each of the directions the equation of
conservation of mass is solved together with the equation of conservation of momentum in that
direction.

The solution algorithm is presented in the form of the following pseudo-code:

e

loop on all time steps
begin
calculation-of weighting: cosfficient

loop on all x1-lines

begin
solution of unknowns u1 at n+1 time level
and h at n+w/2 time level

end

loop on:all x2-lines

begin
solution of unknowns u2 at n+1 time-leve!
and h at n+w time level

end

loop on all x3-lines

begin
solution of unknowns u3 at n+1 time level
and h at n+w+(1-w)/2 time level

end

loop on all x4-lines
begin
solution of unknowns u4 at n+1 time level
and h at n+1 time level
end
end

PEERREEE e e

The solution along each line consists of calculations of the corresponding coefficients 4, B, C
and D following the finite difference approximations and the solution of the resulting system
of linear simultaneous equations is provided by the double-sweep algorithm. For details of the
solution algorithm, see Appendix 5.1, while the formulae for coefficients for all the directions
follow shortly.

184




APPENDIX 5.2
Finite difference approximations

The discretisation indices are j, , / and m in directions x,, x,, x; and x, respectively. The space
step in directions x; and x, is equal to Ax while in the directions x, and x, it is equal to As. The
time discretisation step is 4Ar while the weighting coefficient w is calculated at each point of the
domain from the results obtained at the previous time step. The weighting coefficient can only
take values between 0 and 1. Upon the introduction of finite difference approximations instead
of partial derivatives in equations (A.5.2.2) to (A.5.2.7), each equation can be written in the
following form:

n+l n+l n+l1
45+ B+ Gy = D,

where the details of the coefficients and dependant variables depend on the direction along
which the equation is taken.

Sweeps along the lines parallel with the x, direction:

Equation of conservation of mass (A.5.2.2):

n+w n+wf2 new
. + . . + . = .
Af’kulj-l,k B],kh},k q-ku1j+l,k Dj,k

with coefficients:

_ whA: -

T g A ’ Bl
_ whAt i

Ik 4Ax

_ . what( . yn )_wﬁAtu,,
ieTIE T T Ax e Yk

185



FLOW ADAPTIVE SCHEMES
Equation of conservation of momentum in x, direction (A.5.2.3):

. n+wi2 n+w n+wi2 _
’ Aj,khj'ltk * Bj.kulj + q,khj+l,k - Dj,k

‘ with coefficients:
|
| . _wght .
A = 4Ax ’ Bu=1
|
| _ wgAt =qyh
G = Gay D = uyy
Sweeps along the lines parallel with the x, direction:
Equation of conservation of mass (A.5.2.2):
+ n+w + -
Aj,ku2jn‘k‘f1 M Bj,khj,k * C},ku%"l'k‘fl - Dj,k
with coefficients:
whAt _
4k = " ax ’ Bam b o
hAt
c, =Y ,
k2 Ax
_ n+wi2 _ WﬁAt n _ n n+w _ n+w
Dy = By 4 Ax (uqu,k TR g

186



APPENDIX 5.2

Equation of conservation of momentum in x, direction (A.5.2.4):

n+w new new  _
A e + Bj,kuzjk * Gl = Dy

with coefficients:
4, - -2 B,=1
el
D, = "21-',',‘ - %‘t("j’tkﬂ - ey )

Sweeps along the lines parallel with the x; direction:

Equation of conservation of mass (A.5.2.5):

A url . hn+W+(1—W)/2+C url =

D,
Ly g, Lm'“Lm ™l g, Lm

with coefficients:

_ _(-whas

A
Lm 4 Ax Lm

187



FLOW ADAPTIVE SCHEMES

1-w)h At
c - (dwhat
Lm 4Ax
on (A-WRAt . .\ _ (A-WhAr ,
D = i 4Ax (u3"1-m u3’-1-m} 2Ax (u“l-wl
Equation of conservation of momentum in x; direction (A.5.2.6):
sw+(1-w)/2 + +w(1-w)2
Al,mhl'ilv,‘;n( " Bl.mu37,m1 * Cl,mhlril‘;n e D Lm
with coefficients:
. _Q-wgAt -
Al,m = ‘T H Bj,k - l ’
. (-wygAt -
Cl.m T T As ’ Dl.m - u3:m

Sweeps along the lines parallel with the x, direction:

Equation of conservation of mass (A.5.2.5):

+1 1
A u™' +B h' +C u"' =D
Lm 4y Lm"lLm Lm™4) Im

with coefficients:

188

n
4m-1

)



(1-w)yh At -
A = Rt ——— s B - 1 ’
Lo 2 As Lm
A-w)h At
c =2"Yres
tm 2AS

(1 “W)}—lAt n +u n+sl  _ ,, 0+l

_ hmw*(l-w)/2 _ _an
Lm 4Ax Setn i-lm eim 3-1m-t

Equation of conservation of momentum in x, direction (A.5.2.7):

n+l n+l n+l
Aptim * Bty t Cplima = Dy

with coefficients:

. _(A-wghr -
4, = Y ves ) B,=1
(1-w) g At
C = —_—
b 2As
_ (1-w) g At (, new+(1-wy2 swe(l-w)2
Dy =t = S (M )

APPENDIX 5.2

189






References

Abbott, M.B. (1966). An Introduction to the Method of Characteristics, Thames & Hudson,
London, and American Elsevier, New York

Abbot, M.B., Damsgard, A. and Rodenhuis, G.S. (1973). System 21 “Jupiter” - A design
system for two-dimensional nearly-horizontal flows, Journal of Hydraulic Research, Vol. 11,
No.1, pp. 1-28

Abbott, M.B. (1976). Computational Hydraulics: A Short Pathology, Journal of Hydraulic
Research, Vol. 14, No. 3, pp. 271-285

Abbott, M.B. (1979). Computational Hydraulics: Elements of the Theory of Free Surface
Flows, Pitman Publishing Limited, London

Abbott, M.B., McCowan, A.D. and Warren, L.R. (1981). Numerical modelling of free-surface

flows that are two-dimensional in plane, in Fischer, H.B. (editor), Transport Models for Inland
and Coastal Waters, Symposium on Predictive Ability, Academic, New York

Abbott, M.B. and Basco, D.R. (1989). Computational Fluid Dynamics : An Introduction for
Engineers, Longman, London.

Abbott, M.B., Havne, K. and Lindberg, S. (1991). The fourth generation of numerical
modelling in hydraulics, Journal of Hydraulic Research. Vol. 29, No. 5, pp. 581-600

Anderson, D.A. (1983) Application of Adaptive Grids to transient Problems, in BabuSka, 1.,
Chandra, J. and Flaherty, J.E. (Editors), 1. Workshop on adaptive computational methods for
partial differential equations, pp. 208-223, SIAM, Philadelphia

Ashby, W.R. (1973). An Introduction to Cybernetics, Chapman&Hall Ltd, London

191



FLOW ADAPTIVE SCHEMES

Astrém, K.J. and Wittenmark, B. (1989). Adaptive Control, Addison Wesley Publishing
Company, USA

Atlas, 1. and Stephenson, J.W. (1991). 4 Two-Dimensional Adaptive Mesh Generation Method,
Journal of Computational Physics 94, pp. 201-224

Babugka; 1., Chandra, J. and Flaherty, J.E. (Editors), (1983). 1. Workshop on adaptive
computational methods for partial differential equations, SIAM, Philadelphia

Babuska, 1.(1989). Adaptive Mathematical Modeling, pp. 1-14, in Flaherty, J.E., Paslow, P.J.,
Shephard,M.S. and Vasilakis, J.D. (Editors), Adaptive Methods for Partial Differential
Equations, SIAM, Philadelphia

Berger M.J. and Oliger, J. (1984). Adaptive Mesh Refinement for hyperbolic Partial
Differential Equations, Journal of Computational Physics 53, pp. 484-512

Carré, B. (1979). Graphs and Networks, Clarendon, Oxford

Chakravarthy, S.R. and Szema, K.-Y. (1989). Advances in finite difference techniques for
computational fluid dynamics, in Noor, A K. and Oden J.T. (Editors), State-of-the-art surveys
on computational mechanics, American Society of Mechanical Engineers, New York
Chaudry, M.H. (1993). Open-Channel Flow, Prentice-Hall, Inc., New Jersey

Chen, W. K. (1990). Theory of Nets : Flow in Networks, Wiley, New York

Cunge, J.A., Holly, F.M. and Verwey, A. (1980). Practical Aspects of Computational River
Hydraulics, Pitman, London

Derrida, J. (1991). Letter to a Japanese Friend, in Kamuff, P. A Derrida reader : Between the:
blinds, Columbia University Press, USA

DHI, (1987-1992). MIKE11 - Scientific documentation, Danish Hydraulic Institute, Horsholm
DHI, (1992). MIKE2] - Scientific Background, Danish Hydraulic Institute, Hersholm

Duff, 1.S., Erisman, A.M. and Reid, J.K. (1986). Direct Methods for Sparse Matrices,
Claredon Press, Oxford

Garcia-Navarro, P. and Saviron, J.M. (1992). McCormack’s method for the numerical
simulation of one dimensional discontinuous unsteady open channel flow, Journal of Hydraulic
Research, Vol. 30, No. 1, pp. 95-106

Garcia-Navarro, P. and Saviron, J.M. (1992). Numerical simulation of unsteady flow at open
channel junctions, Journal of Hydraulic Research, Vol. 30, No. 5, pp. 595-610

192




REFERENCES

Garcia-Navarro, P., Priestley A. and Alcrudo, F. (1994). An implicit method for water flow
modelling in channels and pipes, Journal of Hydraulic Research, Vol. 32, No. 5, pp. 721-742

George, A. (1973). Nested dissection of a regular finite-element mesh, SIAM J. Numer. Anal.
10, pp. 345-363

George, A. (1980). An automatic one-way dissection algorithm for irregular finite element
problems, SIAM J. Numer. Anal. 17, pp. 740-751

George, A. and Liu, J.W.H. (1989). The evolution of the minimum degree ordering algorithm,
SIAM Review, Vol. 31. No. 1, pp. 1-19

Godunov, S.K. and Ryabenki, V.S. (1964). Theory of Difference Schemes, Nord Holland
Publishing Company, Amsterdam

Harten, A. (1983). Adaptive Numerical Methods for Hyperbolic Conservation Laws, in
Babuska, 1., Chandra, J. and Flaherty, J.E. (Editors), 1. Workshop on adaptive computational
methods for partial differential equations, pp. 224-236, SIAM, Philadelphia

Havng, K. and Brorsen, M. (1985). Generalised mathematical modelling system for flood
analysis and flood control design, Papers 2. International Conference on Hydraulics of Floods
and Flood Control, Cambridge, UK, BHRA, Stevenage

Isermann, R., Lachmann, K.-H. and Matko, D. (1992). Adaptive Control Systems, Prentice
Hall International Ltd, UK

Klaassen, G.J. and Urk, A.van (1985). Resistance to Flow of Flood Plains with Grasses and
Hedges, 2I* Congress, 1985, Melbourne, Australia.

Kortteve, W, (1994).. Wave Attenuation by Using Reed for Bank Protection, Delft Univ. of
Technology, Report.

Kutija, V. (1993). On the numerical modelling of supercritical flow, Journal of Hydraulic
Research, Vol. 31, No. 6, pp. 841-858

Kutija, V. (1995). A generalised method for the solution of flows in networks, Journal of
Hydraulic Research, Vol. 33, No. 4, pp. 535-554

Kutija, V. and Hong, H.T.M. (1996). A numerical model for assessing the additional
resistance to flow introduced by flexible vegetation, Journal of Hydraulic Research, Vol. 34,
No. 1, pp. 99-114

Larsen, T., Frier, J.O. and Vestergraard, K. (1990). Discharge/Stage Relation in Vegetated
Danish Stream, International Conference on River Flood Hydraulics, 1990

193



FLOW ADAPTIVE SCHEMES
Lerner, A.Ya. (1972). Fundamentals of Cybernetics, Chapmann & Hall Ltd,London

Liggett, J.A. and Cunge, J.A. (1975). Numerical methods of solution of the unsteady flow
equation, in Unsteady Flow in Open Channels, 1, Edited by Mahmood,K. and Yevjevich,V.,
Water Resources Publ., Fort Collins, Colorado

Masood Ul-Hassan, K. and Wilson, G. (1995). Hydroinformatic Applications in Real Time
Control Strategy Selection, in HYDRA 2000 (Vol. 5) Thomas Telford, London

Minns, A.W. and Babovi¢, V. (1996). Hydrological modelling in a hydroinformatics context,
in Abbott, M.B., and Refsgaard, J.C., (Editors), Distributed Hydrological Modelling, Chapter
14, Kluwer Academic Publishers, Dordrecht, The Netherlands

Nujié, M. (1995). Efficient implementation of non-oscillatory schemes for the computation of
free-surface flows, Journal of Hydraulic Research, Vol. 33, No. 1, pp. 101-111

Oden, J.T. (1989). Progress in Adaptive Methods in Computational Fluid Dynamics, pp.206-
252, in Flaherty, J.E., Paslow, P.J., Shephard,M.S. and Vasilakis, J.D. (Editors), Adaptive
Methods for Partial Differential Equations, SIAM, Philadelphia

Oliger, (1984). Adaptive Grid Methods for Hyperbolic Partial Differential Equations, pp.320-
331, in Santosa, F. Symes, W.W. and Holland, C. (Editors), Inverse Problems of Acoustic and
Elastic Waves, SIAM, Philadelphia

Osiadacz, A.J. (1987). Simulation and Analysis of Gas Networks, Spon, London

Parter, S.V. (1961). The use of linear graphs in Gaussian elimination, SIAM Review 3, pp.
119-130

Pissanetsky, S. (1984). Sparse Matrix Technology, Academic Press Inc.,London

Rahman, M. and Chaudry, M.H. (1995). Simulation of hydraulic jump with grid adaptation,
Journal of Hydraulic Research, Vol. 33, No. 4, pp. 555-567

Rheinboldt, W.C. (1983). Feedback Systems and adaptivity for Numerical Computations, in
Babugka, I., Chandra, J. and Flaherty, J.E. (Editors), 1. Workshop on adaptive computational
methods for partial differential equations, pp. 3-19, SIAM, Philadelphia

Savic, LJ. and Holly, F.M. (1993). Dambreak flood waves computed by Godunov method,
Journal of Hydraulic Research, Vol. 31, No. 2, pp. 187-204

Stepelman, R.S. and Winarsky, N.D. (1979). Adaptive Numerical Differentiation, Mathematics
of Computation, Vol. 33, No. 148, pp. 1257-1264

194




REFERENCES

Stelling, G.S., Wiersma, A.K. and Willemse, J.B.T.M. (1986). Practical Aspects of Accurate
Tidal Computations, Journal of Hydraulic Engineering, Vol. 112, No. 9, pp. 802-817

Tewarson, R.P. (1971). Sorting and ordering sparse linear systems, in Reid, J K. (Editor)
Large Sparse Sets of Linear Equations, Academic Press, London

Timoshenko, S. (1955). Strength of Materials; Part I: Elementary Theory and Problems, D.
Van. Nostrand Company, Inc., pp. 137-165

Tinney, W.F. and Walker, J.W. (1967). Direct solutions of sparse network equations by
optimally ordered triangular factorisation, Proc. IEEE 55, pp. 1801-1809

Tsujimoto, T. and Kitamura, T. (1990). Velocity profile of flow in vegetated-bed channels,
KHL Progressive report, 1990, Hydraulic Laboratory, Kanazawa University

Tsujimoto, T., Okada, T. and Omata, A. (1993). Field Measurement of Turbulent Flow over
Vegetation on Flood Plain of River Kakehashi, KHL Progressive report, 1993, Hydraulic
Laboratory, Kanazawa University

Vanecek, S., Verwey, A. and Abbott M.B. (1994). HYPRESS: an exercise in object
orientation for water hammer and water distribution simulation in pipe networks, Proc. First
Int. Conf. Hydroinformatics, Balkema, Rotterdam

Verboom, G.K., Stelling, G.S. and Officier, M.J. (1992). Boundary conditions for the shallow
water equations, in Abbott, M.B. and Cunge, J.A. (Editors). Engineering Applications of
Computational Hydraulics, pp. 230-262, Pitman, London

Verwey, A. (1994). Linkage of physical and numerical aspects of models applied in
environmental studies, Proc. Watercomp '94, Inst.Eng. Australia

Volkov, E.A. (1986). Numerical Methods, MIR Publishers, Moscow

Wang, H.H. (1981). A parallel method for tridiagonal equations, ACM Trans. Math. Softw.
No. 7, pp. 170-183

Watanabe, T. and Kondo, J. (1990). The influence of Canopy Structure and Density upon the
Mixing Length within and above Vegetation, J Met. Soc.Japan, Vol. 68, No. 2, pp. 227-235

Weare, T.J. (1979). Errors arising from irregular boundaries in ADI solutions of shallow-
water equations, International Journal for Numerical Methods in Engineering, Vol. 14, pp.
921-931

Weatherill, N.P. (1990). Numerical Grid Generation, Lecture Series 1990-06, von Karman
Institute for Fluid Dynamics, Belgium

195



FLOW ADAPRTIVE SCHEMES
Weiyan, T. (1992). Shaliow water hydrodynamics, Elsevier, Amsterdam

Wilders, P., Stijn, Th.L. van, Stelling, G.S. and Fokkema, G.A. (1988). A fully implicit
splitting method for accurate tidal computations, International Journal for Numerical Methods
in Engineering, Vol. 26, pp. 2707-2721

Wilson,G. (1996). Reinforcement Learning: A New Technique for the Real Time Control of
Hydraulic Networks To appear in Hydroinformatics 96, Zurich

Wolfram, S. (1988). Mathematica: a system for doing mathematics by computer, Addison-
Wesley, Redwood City

Xian, Y.J. (1993). Quasi-Three-Dimensional Numerical Modelling of Flow and Dispersion in

Shallow Water in Communications on Hydraulic and Geotechnical Engineering, Faculty of
Civil Engineering, Delft Univ. of Technology, report nr. 93-3

196




ITHER

DELFT

The aim of the International Institute for Infrastruc-
tural, Hydraulic and Environmental Engineering,
IHE Delft, is the development and transfer of
scientific knowledge and technological know-how
in the fields of transport, water and the environment.

Therefore, IHE organizes regular 12 and 18 month
postgraduate courses which lead to a Masters Degree.
IHE also has a PhD-programme based on research,
which can be executed partly in the home country.
Moreover, IHE organizes short tailor-made and
regular non-degree courses in The Netherlands as
well as abroad, and takes part in projects in various
countries to develop local educational training and
research facilities.

International Institute for
Infrastructural, Hydraulic and
Environmental Engineering

P.O. Box 3015
2601 DA Delft
The Netherlands

Tel.:  +31152151715
Fax: +31 15 2122921
E-mail: ihe @ihe.nl
Internet: http://www.ihe.nl



