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Alhoewel model-gebaseerd regelen tot de regelmethoden met terugkoppeling wordt gerekend, kan deze
methode worden toegepast op niet-lineaire (fuzzy) modellen die op een niet-lineaire manier afhangen van
het huidige regelsignaal (dit proefschrift, Hoofdstuk 2 en Hoofdstuk 4).

Although model predictive control belongs to the feedback control methods, it can be applied to nonlinear
(fuzzy) models that depend in a nonlinear way on the current control signal (this thesis, Chapter 2 and
Chapter 4).

Het conservatisme van de robuuste stabiliteitsbeperkingen is evenredig met het aantal Markov parameters
van het convolutiemodel dat wordt gebruikt om het proces weer te geven (dit proefschrift, Hoofdstuk 5).

The conservatism of the robust stability constraints is proportional to the number of Markov parameters
of the convolution model used to represent the process (this thesis, Chapter 5).

Terwijl De Vries en Van den Boom (1997) de parameter p die wordt gebruikt in (5.30) en (5.31) hebben
geintroduceerd als een filterversterkingsfactor, bepaald deze parameter in essentie een compromis tussen
de amplitude en de snelheid van de reactie van de beperkingen (dit proefschrift, Hoofdstuk 5).

While de Vries and van den Boom (1997) introduced the parameter p used in (5.30) and (5.31) as a
filter gain, essentially it provides a compromise between the amplitude and the speed of the constraints’
reaction (this thesis, Chapter 5).

de Vries, R. A. J. and van den Boom, T. J. J. (1997), Robust Stability Constraints for Predictive Control, In
Proceedings of European Control Conference, 1997, Brussels, Belgium, volume 6, (FR A B2).

Terugkoppeling, het grondprincipe van automatische regeling, komt men gewoonlijk in intelligente biolo-
gische systemen. Toch vertonen de tot nu ontwikkelde regelmethoden geen intelligentie in welke vorm dan
ook.

Feedback, the underlying principle of automatic control, is commonly encountered in intelligent biological
systems. Yet the state-of-the-art control methods do not exhibit any form of intelligence.

Het is niet waarschijnlijk dat men door het bestuderen van de voornaamste literatuur over de regeltheorie
besef krijgt van de problemen die zich voordoen bij een praktische implementatie. Alhoewel men door
MATLAB! wordt gewezen op de details die essentieel zijn voor een toepassing, kan men pas echt inzicht
krijgen door praktijkervaring.

By studying the mainstream control theory, one is not likely to become aware of important implementation
issues. While MATLAB? helps in understanding details that are essential for an application, real insight
can only be gained through practical experience.

Een promotie-onderzoek duurt net lang genoeg om het gebruik van Latex te gaan waarderen. De overgang
naar het bedrijfsleven impliceert echter het gebruik van Microsoft Word?, want woorden verkopen beter
dan formules.

A Ph.D. project lasts just long enough to start enjoying Latex. The move to the industry, however,
inevitably implies the use of Microsoft Word?. This is because words sell better than formulas.

De huidige trend in het Nederlandse bedrijfsleven is om technische activiteiten tot de lagere niveaus van
de hierarchie te laten behoren, terwijl de beslissingen er over op hogere niveaus worden genomen, vaak
op basis van niet-technische overwegingen, hetgeen de mensen die deze beslissingen uitvoeren frustreert.

The current tendency in the Dutch industry is to keep technical activities in the lower levels of the
hierarchy, while the decisions about these are made on the higher levels and are mainly based on non-
technical issues, frustrating the people who carry out these decisions.
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aanschaf van een Mercedes, hoewel men aanzienlijke minder betaalt. Bij de aanschaf van een Skoda krijgt
men bijna dezelfde kwaliteit maar minder prestige dan bij die van een Volkswagen, hoewel men minder
geld kwijt is. Prestige mag dus méér kosten dan kwaliteit in de hedendaagse levensstijl.

By buying a Volkswagen, one gets almost the same quality and less prestige than with a Mercedes, but
for a considerably lower price. By buying a Skoda, one gets almost the same quality and less prestige
than with a Volkswagen, but for a lower price. In today’s lifestyle, prestige may cost more than quality.

Tijdens de overgang van een centraal-geregelde naar een markteconomie hebben alle post-communistische
landen te maken gekregen met een niet-minimum fase gedrag. Bij sommige lijkt dit gedrag echter te
leiden tot instabiliteit.

In the transition from a regulated to a market economy, nonminimum-phase behavior has been experienced
in all post-communist countries. In some of them, however, this nonminimum-phase behavior seems to
be turning into instability.

De keuze van de laatste koning als minister-president en van een communist als president laat overduidelijk
zien dat de politiek in Bulgarije niet gebaseerd is op programma’s maar op geschikte gelegenheiden die
zich voordoen.

The election of the last king for Prime Minister and of a communist for president clearly shows that
politics in Bulgaria are not driven by programs but by opportunities.

Een veel voorkomende misleidende veronderstelling is dat degene die de macht heeft overal bekwaam in
moet zijn, terwijl het voor hem voldoende is om de juiste mensen in te zetten op het juiste moment.

A common misleading assumption is that the one who rules has to be competent in each and every subject,
while it is enough for him or her to activate the right people at the right moment.

Oorlog wordt gewoonlijk beschouwd als een berekend risico. Wanneer het de eigen familie hetreft, rolt er
echter een andere uitkomst uit de berekening.

War is commonly considered as a calculated risk. However, when it comes to one’s own family, the
outcome of the calculation is different.

Terwijl het vermogen om te leren een gave is, is de bereidheid om te leren een keus. Het is de kunst om
deze keuze vol te houden.

‘While the ability to learn is a gift, the willingness to learn is a choice. The art is to keep the spirit alive.

1. MATLAB is a registered trade mark of The Mathworks Inc., Natick, MA.
2. Mi ft Word is & regi d trade mark of Microsoft Corp. Inc.
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1 INTRODUCTION

Industrial processes are complex multivariable systems that often have nonlinear and
time-varying dynamics. Because more and more aspects must be included in the con-
trol design such as stringent requirements for quality control, adaptation to variations
in the raw material, changing production aims, energy reduction and environmental
constraints, the control design itself is getting more and more complicated. Therefore,
the modeling and control of such multiple-input, multiple-output (MIMO) processes
have long been research topics in academics and important issues in the industrial
control practice.

Classical control methods have proven their applicability to many multivariable
control problems in industry, however, nowadays there are situations where these
methods cannot provide the required performance. Advanced control techniques have
only been partially able to satisfy the imposed demands. Yet, there is a problem of
different origin that influences the acceptance of any new technology by the practicing
engineering community: factors such as *“easy-to-understand” and “easy-to-support”
are of dominant importance. These considerations motivate the development of unam-
biguous and simple-to-understand methods for control design to be applied for non-
linear multivariable systems.

This thesis addresses control issues in complex, nonlinear, or partially unknown
MIMO processes by means of techniques that are based on fuzzy set theory and fuzzy
logic. Methods for the design of control systems are proposed that are based on fuzzy
models. The fuzzy model can be part of the control algorithm, can serve for analysis
of the process, can give better insight, and can be used to improve the operation, moni-

1




2 FUZZY CONTROL OF MIMO PROCESSES

toring and (fault) diagnosis. This approach, termed MIMO fuzzy control, should cope
with processes that pose problems to conventional techniques due to nonlinearities,
lack of precise knowledge, or undesired interactions between the inputs and outputs.
Shortly, the MIMO fuzzy control approach should present a user-friendly way of de-
signing nonlinear controllers for MIMO processes.

1.1 MIMO aspects in process control

Although the need for control can have different origins, its major aim is to change the
dynamics of the controlled system to match some desired behaviour within a domain
of interest. Control is achieved through manipulation of one or more of the process
inputs. When a single controlled variable (output) is operated by a single manipulated
variable (control input), it is considered a single-loop process, regardless of the number
of disturbing and uncontrolled variables present However, even the simplest processes
require the control of at least fwo variables. If the goal is to control the torque produced
by an engine, for example, one should control the amount of air and fuel, but also the
moment when the spark is flashed (Chapter 6).

The multivariable control design should result either in 72 independent SISO con-
trollers with proper decoupling or in a single multivariable controller that connects all
available output variables with all available manipulated variables. Depending on the
goals, different control configurations are possible. They can be classified in two broad
groups: centralized and decentralized configurations. One important reason for de-
composing the control system into a specific control configuration is that it may allow
for simple tuning of the subcontrollers without the need for a detailed process model
describing the complete dynamics and interactions. Multivariable controllers usually
outperform decomposed (detached) controllers, but this gain in performance must be
traded off against the cost of obtaining and maintaining a sufficiently detailed model.
Below are briefly introduced a method of the decentralized group and a method of the
centralized group which are further investigated in the following chapters: (i) decen-
tralized control with decoupling design, and (iz) Model Predictive Control (MPC).

Decentralized control with decoupling design. Decentralized multivariable control
is a desirable control structure because of its corresponding hardware and design sim-
plicity (Morari and Zafiriou, 1989). An illustration of a fully decentralized structure
for a linear two-by-two system is given in Fig. 1.1. In a decentralized control scheme,
each input-output pairing is controlled by individual controllers

C(Z) =d1ag (01(2)762(2)7"'7cm(z))7

designed on the basis of a system f’(z) consisting of the diagonal elements of a full
multivariable model P(z)

P(z) = diag (p1(2),2(2).- -, P (2))-

Different methods can be used to design the controllers for the separate channels of
the decentralized control system. While PID controllers have mainly been used within
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Figure 1.1.  Fully decentralized multivariable control structure.

a decentralized control structure (Rivera et al., 1986; Shinskey, 1996), others, such as
output feedback controllers, can be also applied (Morari and Zafiriou, 1989).

A fully decentralized control system ignores the effects of interactions in the pro-
cess. However, this can severely influence the control system performance. A major
challenge in the design of control systems for industrial processes is developing a
structure that minimizes these interactions, because:

1. In most processes it is not possible to connect pairs of manipulated and controlled
variables into (detached) loops that will not interact at all. Nevertheless, usually
there is a “best” pairing depending on how well the loops can be paired and at
which working points. Determining this pairing is essential for achieving the de-
sired performance.

2. Interaction tends to be so prevalent that even the “best” pairing and “best” con-
figuration of detached loops is a compromise which may fail to give acceptable
dynamic performance. In such cases, substantial improvement can be gained by
coordinating the variables, where the natural interactions in the process must be
taken into account.

The performance of a decentralized control system can often be significantly im-
proved by adding between the controller and the process a decoupler that compensates
for the undesirable effects of interactions in the process (Hui, 1983). An illustration of
a decentralized structure with a decoupler is shown in Fig. 1.2. The nominal closed-
loop transfer function for a control scheme with a decoupler (with transfer matrix
D(z))is

¥(z) = (I+P(2)D(2)C(z)) ' (P(2)D(2)C(2)r).
An ideal decoupler D(z) is
D(z) =P~ (2)P(2), (1.1)

where P(z) = diag (P(2)) results in a diagonal loop transfer matrix P(z)D(z)C(z);
each process input-output combination can be handled by an independent design.

While it is sometimes difficult or impossible to accomplish perfect dynamic com-
pensation of the form (1.1) because such a decoupler may not be physically realizable,
e.g., it may have improper transfer functions, one can always carry out steady-state
decoupling that eliminates the steady-state interactions. The steady-state decoupler is
given by

D(1) = lim ['ﬁ(z)-'ﬁ(z)} =P(1)~" diag (P(1)).

o |
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Figure 1.2.  Decentralized multivariable control structure with decoupler.

Such a steady-state decoupler is capable of reducing dynamic interactions up to a
certain bandwidth. Even so, there are still dynamic interactions which could cause
single-loop controllers to counteract if tuned too tightly (as shown in Section 3.4).

To design a decoupler when the process P is a nonlinear multivariable process, one
can either use tools from the differential geometry theory! to obtain a global nonlinear
decoupler, or design local linear decouplers for the different operating regions. Both
alternatives are explored in Chapter 3.

Model predictive control. Model Predictive Control (MPC) is a control method in
which the control action is obtained by solving on-line, at each sampling instant, a
finite (or infinite) horizon open-loop optimal control problem, using the current states
as a starting point?>. The optimization yields an optimal control sequence and the
first component in this sequence is applied to the plant. MPC is one of the few ad-
vanced control design technologies that has a significant impact on industrial control
problems; a major reason for its success is its ability to simply and effectively handle
constraints on control and state signals (Mayne, 2001).

MPC is not a new control design method; it essentially solves standard optimal
control problems. The main difference from other controllers is that MPC solves the
optimal control problem on-line for the current status of the process, which is a math-
ematical programming problem, rather than using a pre-computed feedback control
law. Determining a feedback law requires a solution of the Hamilton-Jacobi-Bellman
(Dynamic Programming) differential or difference equation (Bryson and Ho, 1981;
Lewis, 1995), an incomparably more difficult task (except in cases as H, or H lin-
ear optimal control, where the cost function can be finitely parameterized (Zhou et al.,
1995)). In this sense, MPC differs from other control methods merely in the imple-
mentation. The requirement that the open-loop optimal control problem is solvable
in a reasonable time (related to process dynamics) necessitates, however, the use of a
finite horizon and this raises interesting problems.

'The reader interested in a detailed treatment of the differential geometry theory and its application to the
nonlinear control design should refer to the trendsetting books by Isidori (1995), Nijmeijer and van der
Schaft (1990) and Marino and Tomei (1995), and in the references therein.

2We are not interested in the trivial case of a Linear Time-Invariant (LTI) model, quadratic cost function
and no constraints for which the control law can be computed off-line.
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Suppose that the process being controlled has input u(k), state x(k) and output
y(k). and has a nonlinear behaviour governed by the vector difference equations

x(k+1) =f(x(k), u(k))
y(k) = h(x(k)).

The control action is based on optimization of a given cost function

k+H,

min.J = Zk H(§(0),x (), 6(0), ) + F (§(k + Hy)),

where {(§(i),r(i),4(¢),4) is a non-negative definite function of the model prediction
$(i), desired output r(i) and the predicted control input @(¢), defined over a pre-
diction horizon H, (often also referred to as a receding horizon). The second term
F (y(k + H,)) is a non-negative definite function of the final predicted value, known
as a terminal cost function. The process state, output and the control input are con-
strained within some spaces x € X,y € Y and u € U, respectively.

This is a very general formulation, which can represent virtually any problem by
using suitable functions f, £, h and [. With the aid of the cost functions [ and F and the
constraining spaces X, Y and U, we can impose properties such as stability, robust-
ness and (sub)optimality on the resulting control system (Mayne et al., 2000; Mayne,
2001). Stability is usually guaranteed when the terminal cost function F is used, ter-
minal equality constraints (or constraint set) are imposed on the final predicted value
§(k+ Hp) or a combination of the two. Robustness with respect to the uncertainty
in the process description and model-plant mismatch can be achieved by selecting the
suitable prediction horizon and constraining the control signal, or by considering all
possible realizations of the uncertainty (min-max optimal control problem). When
the process is linear, the cost function quadratic and the constraints linear, the opti-
mal control problem reduces to a Quadratic Programme (QP) which can be efficiently
solved and which yields a global solution to the optimal control problem. However,
when the process is nonlinear, the optimal control problem is non-convex and conven-
tional nonlinear programming algorithms will generally yield local (rather than global)
solutions, requiring excessive computational time.

The question is then what happens to the properties of MPC if the global solution
to the optimal control problem is not available. It was shown by Michalska and Mayne
(1993) and Scokaert et al. (1999) that optimality is not predominantly required and, for
example, that feasibility rather than optimality suffices for guaranteeing stability. This
result allows satisfactory control when optimality is impractical to obtain. Possible
strategies are to attempt to find an optimal solution to the optimal control problem and
to cease when the time limit is reached, or to solve a simpler version of the optimal
control problem. In the Chapter 4, the latter approach is used to obtain a “close-to-the-
optimal” solution in a reasonable amount of time. Moreover, the “simplified” control
problem can easily be extended to guarantee robustness of the control system with
respect to model-plant mismatch, as shown in Chapter 5.

]
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1.2 Fuzzy logic in control

During the past three decades, Fuzzy Logic Control (FLC) has emerged as one of
the most active areas in the application of fuzzy set theory and fuzzy logic. The pi-
oneering research of Mamdani on fuzzy control (Mamdani, 1974, 1977, Mamdani
and Assilian, 1975) was motivated by Zadeh’s seminal papers on the linguistic ap-
proach and system analysis based on the theory of fuzzy sets (Zadeh, 1965, 1968,
1973, 1975). Successful applications of fuzzy control in water quality control, auto-
matic train operation systems (Palm and Storjohann, 1997), container crane operation
systems, elevator control, automobile transmission control (Titli and Boverie, 1997),
and nuclear reactor control (Na, 1998) have shown the potentiality of fuzzy logic to
control ill-defined and/or time-varying multivariable processes.

Originally, the objective of fuzzy logic control was to control complex processes
using knowledge-based control strategies emulating human reasoning. This type of
control is applied when an adequate model of the process is not available, is not pos-
sible to obtain, or is too complicated to be used for control purposes. Nevertheless,
humans are able to control complex systems, e.g., driving a car, without any formal
model. Thus, the design of FLC can be based on empirical knowledge, rather than on
a strictly analytic description.

Fuzzy control systems have been recognized as an appealing alternative to classical
control schemes when partially known, nonlinear processes are addressed. Still, it
was admitted in the fuzzy control literature that this (heuristic-based) approach to the
design of fuzzy controllers is difficult to apply to multivariable control problems which
represent the largest part of challenging industrial control applications (Palm et al.,
1997). On the one hand, it lacks systematic and formally verifiable tuning techniques,
while on the other hand stability, performance and robustness issues of the closed-loop
control system can only be verified via extensive simulations.

In this thesis, an alternative approach for FLC design is used that follows closely
the traditional design of a model-based control system. As in the non-fuzzy case,
we start with a (fuzzy) model of the process to control, take into account the design
specifications by means of performance criteria, and finally design the controller. To
refer to this approach, the term fuzzy model-based control is used with the following
meaning:

Given the model of the process under control and specifications of its desired
behaviour, design a feedback control law, such that the closed loop system
behaves in the desired way. In this setting, the process model is of a fuzzy
type, while the design specifications and the developed controller are classical
(non-fuzzy).

Note that so defined, this approach does not belong to the trial-and-error framework,
which makes the design of the fuzzy model-based controller more systematic and, in
general, better suited for multivariable control applications.

Different methods have been proposed to design control systems based on fuzzy
models. By exploiting the mathematical properties of particular fuzzy model struc-
tures, such as local linearity, fuzzy controllers were developed which are closely re-
lated to traditional gain scheduling approaches in feedback control and to multiple




INTRODUCTION 7

model adaptive control. Johansen (1994b) presented a feedback linearizing controller
based on a fuzzy model. The same author addressed stability, robustness and per-
formance issues in fuzzy decoupled control (Johansen, 1994a). Considerable effort
has been devoted to the study of techniques for designing state feedback and output
feedback fuzzy controllers, based on an semidefinite programming tools such as lin-
ear matrix inequalities (Sugeno and Tanaka, 1991, 1992; Zhao, 1995; Tanaka et al.,
1997; Zhao et al., 1997). Many successful applications of MPC using fuzzy prediction
models have been reported, see (Saez and Cipriano, 1997; Kavsek et al., 1997; Fischer
et al., 1998a; Fischer et al., 1998b; Hu and Rose, 1999; Nounou and Passino, 1999;
Abonyi et al., 2001) for a nonexhaustive survey.

1.3 Research topics investigated in this thesis

The research presented in this thesis focuses on three important issues related to the
design of fuzzy controllers for MIMO processes: (i) the analysis of interactions and
input-output decoupling control in TS fuzzy models, (i) the control of constrained
multivariable processes for which accurate mathematical models are either not avail-
able or for which these cannot be used for control purposes, and (é¢7) the stability and
robustness of the resulting control system.

1.3.1 Analysis of interactions and input-output decoupling in
Takagi—Sugeno fuzzy models

To achieve a desired performance in multivariable process control, one must properly
pair the manipulated variables with the corresponding controlled outputs and other
measured signals. Undesired interactions are often present between the different con-
trol loops, which makes the control design complicated because a change in one input
affects several different outputs. This problem is even more pronounced when the
process is nonlinear. Then it may appear, for example, that within a certain operating
range no interaction is present, while in another one the interaction is strong. In the
first case, detached SISO controllers may suffice, while in the second case a decoupler
or a MIMO controller must be used.

The Relative Gain Array (RGA) concept has been widely used for linear multi-
variable processes as a measure of interactions, in order to provide the best possible
input-output pairing (Bristol, 1966; Grossdidier et al., 1985; Hovd and Skogestad,
1992). The RGA gives a measure of the influence that a certain input has on a particu-
lar output, relative to other inputs acting on the process. When the model is nonlinear,
however, it is only possible to compute the RGA locally, after linearizing the model
around an operating point. The approach followed in Chapter 3 makes use of the
structure of the TS fuzzy model to obtain a number of RGAs which can indicate the
interactions in the model sufficiently well. Depending on the model structure, it is
possible to analyze the interactions locally, computing a separate RGA for each rule.
However, since the RGA for a point in between two (or more) rules is not a weighted
sum of the rule’s RGAs, the interactions have to be analyzed point-wise, combining
the degrees of fulfillment for that point with the rule consequents.

]
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The output sensitivity function indicates the dependence of a process output on
variations in one or more of its inputs or states and can provide additional insight in
the interaction. The sensitivity function is computed as the partial derivative of the
output with respect to a given input, while the remaining inputs are kept constant.

Many applications of decoupled MIMO control have been described, where a sep-
arate fuzzy model is used as a decoupler (Yaochu et al., 1995; Reay et al., 1995; Kang
and Lei, 1996). Instead, the techniques proposed in Section 3.3.2 decouple the fuzzy
model of the process. The rule-base structure of the TS fuzzy models is explored to
facilitate the decoupling design. Since at each sampling instant a linear model can be
obtained from the fuzzy model, an analytic time-varying decoupler can be designed
that corresponds to this linear model. As an alternative to the analytic solution, a
decoupling law based on a numerical nonlinear optimization is presented as well.

1.3.2 Fuzzy model predictive control

Many successful applications of MPC using fuzzy prediction models have been re-
ported (Saez and Cipriano, 1997; Kavsek et al., 1997; Fischer et al., 1998a; Fischer
et al., 1998b; Hu and Rose, 1999; Abonyi et al., 2001), and recently several papers
appeared in which different fuzzy MPC algorithms are analyzed and compared (Es-
pinosa et al., 1999; Nounou and Passino, 1999; de Oliveira and Lemos, 2000). The
methods discussed in these references can generally be classified into two groups: (1)
methods utilizing directly the fuzzy model in the optimization procedure (Kacprzyk,
1997; Fischer et al., 1998a; Sousa, 1998; Nounou and Passino, 1999; Hu and Rose,
1999; de Oliveira and Lemos, 2000) and (i7) methods using a linearized model instead
of the fuzzy one (Saez and Cipriano, 1997; Kavsek et al., 1997; Nounou and Passino,
1999; Roubos et al., 1999; Abonyi et al., 2001). For example, Kavsek et al. (1997)
extract a step-response model from the fuzzy model, whereas Abonyi et al. (2001)
apply Jacobian linearization. Other possibilities are to compute the control signals for
the different fuzzy submodels separately and to weigh them (Huang et al., 2000), or to
use only the submodel with the highest membership degree (Saez and Cipriano, 1997,
Nounou and Passino, 1999).

The methods presented in these references, however, make a compromise between
the accuracy of the model prediction (the second group), and the computational load
(and hence the time) required to solve on-line the underlying optimization problem
(the first group). The main problem of fuzzy model predictive control using a nonlin-
ear fuzzy model in the optimization routine is that the convexity of the optimization
problem is lost, hence time-consuming optimization is necessary, with no guarantee
of finding an optimal solution in a real-time application. How long each optimiza-
tion step will take, whether the optimization procedure will ever terminate and if so,
on a local or global minimum, etc. is not clear. This hampers the application to fast
processes, where iterative optimization techniques cannot be properly used for short
sampling periods.

The methods presented in Chapter 4 offer an effective way for formulating the opti-
mization problem by employing a single state-space local linear model or a set of such
models that approximate the fuzzy model. The structure of the underlying optimiza-
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tion problem is explored in order to arrive at a suboptimal solution, which is as close
as possible to the optimum in a limited amount of time, and this also makes nonlinear
MPC suitable for fast processes. Our approach is based on linear time-varying (LTV)
prediction models derived by freezing the parameters of the fuzzy model ata given op-
erating point or along a predicted with the fuzzy model trajectory. The control signal
is obtained by solving a constrained quadratic programme (QP). To account for errors
introduced by the linearization, an iterative optimization scheme is proposed. In such a
setting, the QP solution provides a search direction toward the global minimum of the
optimization problem. Convergence is guaranteed through a line search mechanism
that considers reduction both in the cost function and in the constraint violation. The
method belongs to the class of Sequential Quadratic Programming methods (Powell,
1978; Pshenichnyj, 1994), and is formulated with regard to the specific structure of the
optimization problem in linear model predictive control. The advantage is its generic
form, which does not depend on the structure of the fuzzy model currently used.

1.3.3 Robust stability constraints for fuzzy model predictive control

Although the TS model usually yields a reasonably accurate approximation of the
process, one must keep in mind that a certain model-plant mismatch will always be
present. The mismatch can be due to unmodeled dynamics, time-varying and/or aging
phenomena, etc., and it will not only deteriorate the control performance but may
even destabilize the closed-loop system. The availability of tools for the design of
a robustly stable predictive controller is therefore of critical importance. So far, this
aspect of MPC has only been addressed for LTI process models, typically by using
techniques based on infinite prediction horizon (Rawlings and Muske, 1993; Scokaert,
1997), end-point or terminal set constraints (Keerthi and Gilbert, 1988; Clarke and
Scattolini, 1991; Mosca and Zhang, 1992; Michalska and Mayne, 1993), or min-max
optimization (Campo and Morari, 1987; Bemporad et al., 2001). In the linear case, if
no constraints are specified, the MPC controller can be expressed as an LTI controller
the robustness of which can easily be analyzed. When constraints are present, robust
stability can be guaranteed either by including an explicit contraction constraint (Zeng
and Morari, 1995) or by assuring that the criterion function is a contraction through the
optimization of the maximum of the criterion function over all possible models (Zeng
and Morari, 1993, 1994). The advantage of the latter method is that not only robust
stability, but also robust performance is obtained. The disadvantages are the need of
using polytopic uncertainty descriptions and the difficult min-max optimization that
results. Recently Kothare et al. (1996) derived a method based on the same principle
which circumvents all of these disadvantages, but it may become quite conservative.
Unfortunately, all of these methods are only valid for linear models and no general
framework for predictive control based on a nonlinear model is available.

In Chapter 5 we propose an extension of the method proposed by de Vries and
van den Boom (1997), where conditions are given that guarantee robust asymptotic
stability for open-loop stable linear systems with an additive oc-norm bounded model
uncertainty. Here similar conditions are derived for open-loop stable non-linear sys-
tems (possibly non-fuzzy) with an additive co-norm bounded model uncertainty. Based
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on the uncertainty description, we derive level and rate constraints for the control
signal that guarantee bounded-input bounded-output (BIBO) stability for any model-
plant mismatch within given bounds. When the nonlinear model is a fuzzy model of
the Takagi—Sugeno type, an estimate of the uncertainty bounds can be found. We use
the fact that at each sampling instant, new measurements become available and con-
sider the fuzzy model as linear time varying, rather than as nonlinear time invariant.
The resulting constraints are similar to (small-gain-based) {,-control theory, but they
are much less conservative as they are based on the uncertainty that currently occurs
in the system, instead of on the “allowed worst-case model uncertainty”.

1.4 Outline of the thesis

First, a few words on the style used in this thesis. The thesis is based on a number
of manuscripts that have been separately published or submitted for publication. We
have tried to reduce the redundancy as much as possible, and more or less rewritten
each chapter based on one or several publications. The notation within each chapter
will be consistent, but there may be some minor inconsistencies in the notation used in
the various chapters. However, the notation will be clearly indicated. The mathemat-
ical precision varies somewhat throughout the thesis. In particular, we do not always
distinguish between a function and its values, or interchangeably use terms like furnc-
tion and mapping, or multiple-input multiple-output and multivariable (processes).
Throughout the thesis we use representations and models expressed in discrete time,
unless stated explicitly otherwise.

Second, this thesis only focuses on certain specific ideas and concepts and develops
them into techniques that can be applied to industrial-scale multiple-input multiple-
output processes. Readers interested in a detailed and fundamental treatment of fuzzy
sets and fuzzy logic can consult research monographs by Pedrycz (1993), Driankov
et al. (1993) or Yager and Filev (1994). A comprehensive exposition of the problems
faced in MIMO process control systems and existing MIMO control techniques can be
found in (Maciejowski, 1989; Zhou et al., 1995; Skogestad and Postlethwaite, 1996,
Shinskey, 1996), and recently in the textbook by Goodwin et al. (2001).

Chapter 2 of this thesis contains the background material needed for understanding
the sequel chapters. We introduce the Takagi—Sugeno (TS) type of fuzzy models (Tak-
agi and Sugeno, 1985) which is used in the analysis and control methods developed in
the thesis. TS fuzzy models can be derived either by using input-output process data,
or through linearization of a nonlinear model at one or more operating regions. These
models offer a convenient basis for state feedback and output feedback control design:
local controllers can be separately developed for each of the local models, and then
combined into a global one using again the fuzzy blending.

Thereafter, the chapter offers a short overview of the state feedback and output
feedback designs which can be posed in terms of matrix inequalities (LMI). Although
this approach has shown a strong potential, there are issues of different character that
limit its applications, both in conceptual and implementation aspects. In this thesis, a
different paradigm was followed in the development of the methods for fuzzy control
design for MIMO processes.
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Chapter 3 focuses on the analysis of the input-output interactions and decoupling
in TS fuzzy models. Two new methods are proposed that exploit the specific model
structure to indicate sufficiently well the interactions based on the Relative Gain Array
and output sensitivity, respectively. Next, a decoupling strategy is discussed. Depend-
ing on the affineness of the model, an analytic or numeric decoupling law is provided
on-line, at each sampling instant. A simulation example and a real-time example are
presented.

Chapter 4 addresses the optimization problem in fuzzy model predictive control
by using locally linear models obtained through linearization of the fuzzy model at
the current operating point at each sampling instant. For predictive control with a long
prediction horizon, the fuzzy model is successively linearized along the predicted input
and output trajectories in order to obtain a more accurate process description. A SISO
simulation example and a real-time MIMO example are presented.

Chapter 5 focuses on the robust stability properties of the fuzzy model predictive
controller discussed in Chapter 4. Based on the small-gain theorem from the [, -control
theory, constraints on the control signal and its increment are derived that guarantee
closed-loop robust asymptotic stability for open-loop BIBO stable processes with an
additive {,-norm bounded model uncertainty. An algorithm is presented that estimates
the bounds on the model uncertainty when the process model is a TS fuzzy model. A
SISO simulation example and a real-time MIMO example are given.

Chapter 6 presents a real-world application of the design method for fuzzy predic-
tive control. The process under consideration is a simulation model of a vehicle using
a gasoline direct injection (GDI) engine, which is a new concept that provides a so-
lution for the reduction of fuel consumption and pollutant emissions. The complexity
of this system exceeds most of the previously reported applications of MPC, mainly
because of the switching of combustion modes and the related adaptation of the cost
function and constraints. The implemented controller comprises a model predictive
control optimizer and a switching logic used to provide smooth switching between
the combustion modes. The prediction models are TS fuzzy models identified from
input—output data. The control system performance is compared with the performance
achieved by two other control strategies.

Chapter 7 demonstrates the advantages of using fuzzy modeling and control design
techniques on a simulation model of a distillation column. The column operates in a
specific (“LV”") configuration, for which there are two manipulated variables and two
controlled variables. A closed-loop identification experiment is presented that allows
for identification of properties that are important for control and difficult to obtain
through an open-loop identification setup. Data from the closed-loop experiment is
used for identification of a TS fuzzy model. After identification this model is used
for analysis of the existing input-output interactions and for decoupling design. Next
the fuzzy model is utilized in a fuzzy MPC algorithm in which linear models are de-
rived from the fuzzy model at the current point and used to construct the optimization
problem. To illustrate the influence of the model prediction on the achieved perfor-
mance, we use a different fuzzy model that has as input a disturbance signal in the
optimization algorithm. Finally, the robustifying effect of the stability constraints is
shown.
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In the last chapter, Chapter 8, the main conclusions are drawn, and some critical
remarks are made with respect to the approaches developed. Suggestions for future
research are given.

Appendix A presents data-driven methods used to derive input-output TS fuzzy
models, which are used throughout the thesis. Appendix B introduces the concept
of right invertibility, used in Chapter 3 for the decoupling design. In Appendix C,
a Sequential Quadratic Programming (SQP) algorithm is presented as it is the clos-
est to the optimization methods introduced in Chapter 4. A method for fuzzy model
linearization with application in model predictive control is outlined in Appendix D.
Appendix E summarizes some of £-control theory concepts used in Chapter 5. Ap-
pendix F gives a short introduction to the basic principles of operation of the distilla-
tion columns. Appendix G contains a list of mathematical symbols and abbreviations.

The main contributions of this thesis to the field of fuzzy MIMO control design are
presented in Chapter 3 through Chapter 5. The analysis of input-output coupling, and
the consequent decoupling design are presented in Chapter 3. Chapter 4 focuses on
the optimization problem in fuzzy model predictive control. Chapter 5 derives con-
straints on the control input that guarantee closed-loop robust asymptotic stability for
open-loop BIBO stable processes with an additive [;-norm bounded model uncertainty.
Chapters 6 and 7 give comprehensive descriptions and solutions to two industrial ap-
plications.




2 TAKAGI-SUGENO FUZZY MODELS
AND FEEDBACK CONTROL DESIGN

This chapter introduces the TS fuzzy model which is used for analysis and control
design throughout the thesis. Local controllers and observers can be developed for
each of the TS rules and then combined to obtain a global control strategy. Recently
much research has been focused on state feedback and output feedback control design
by means of optimization problems formulated in terms of linear matrix inequalities
(LMIs). We briefly review the main features of this approach and show some of its
shortcomings. The methods proposed in the subsequent chapters follow a different
paradigm.

13
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2.1 Motivation

Industrial processes are complicated multivariable systems with a complex behaviour
which can be described by using either a single, usually complicated globally valid
model, or a collection of locally valid, usually simpler models. We can fulfill the re-
quirements imposed on the model for model accuracy, robustness and performance by
using either of these approaches. However, while global models have desired proper-
ties such as limited storage demands and fast execution times even for MIMO cases,
modeling complex MIMO systems with many interactions often requires the adapta-
tion of global nonlinear models, demanding identification procedures which are typi-
cally slow and analytically intractable. Additional problems are that it is hard to select
the best model structure in a nonlinear MIMO case and to develop validation methods
that assess a global model when one only has a finite amount of noisy measurements
as a basis.

The above considerations suggest that in many situations a set of local models may
be preferable to a single global model. During the past two decades, alternatives to
the global modeling techniques have emerged that divide the total operating range of
the process into operation regions for which linear models can be derived using simple
estimating techniques, see (Johansen, 1994b) for an extensive discussion. Addition-
ally, the controller based on a set of local linear models usually has a structure that is
easy to understand and interpret and a reduced computational complexity compared to
controllers using a global nonlinear model.

In this thesis, fuzzy models of the Takagi and Sugeno (1985) (TS) type are used to
represent the process under consideration as they are well suited for complex multi-
variable systems. The TS fuzzy models have more in common with the traditional non-
fuzzy models used in model-based control than the relational and the linguistic fuzzy
models. With TS fuzzy models, the operating regime of the process is represented by
overlapping fuzzy sets wherein the process can be represented with sufficient accu-
racy by a number of linear models with a bias term. Next, an inference mechanism is
applied to combine the local linear models in order to construct a nonlinear model of
the process.

If a process model is available in the form of a rule-based fuzzy model, it can be
used in the control design. We can design a linear control law for each of the local
linear models that correspond to the individual TS rules. In such a setup, the control
policy is expressed by a set of control rules and the controller operates in a “region by
region” manner. Each control rule can be viewed as a local controller, that is valid in
a certain operating region.

When the individual rules represent linear systems, one can design the correspond-
ing controllers and observers by using tools of linear feedback control theory. Because
linear TS models (i.e., with a zero offset term) can be embedded in the general class
of discrete polytopic linear differential inclusions, fuzzy controller synthesis can be
expressed in terms of linear matrix inequalities (LMI). For a thorough discussion on
the use of LMI in the control theory, see Boyd et al. (1994). By using state feedback
and output feedback design we obtain fuzzy controllers that meet the design specifi-
cations (Kothare et al., 1996; Zhao et al., 1997; Tanaka et al., 1998; Bergsten, 2001).
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Robustness of the control system with respect to uncertainties in the model parameters
can be guaranteed, as shown by Zhao et al. (1997). The synthesis of a fuzzy observer
is posed as a problem dual to the control design.

The idea of controlling complex systems by means of local controllers is not new.
Initially it was investigated within the gain-scheduling framework (Stein, 1980; Sain
and Yurkovich, 1982). Gain scheduling is “a nonlinear feedback approach of a special
type; it has a linear regulator whose parameters are changed as a function of operating
conditions in a preprogrammed manner” (Astrom and Wittenmark, 1989a). In other
words, it is a linear parameter-varying feedback controller whose parameters are mod-
ified as a function of operation conditions. Traditionally, gain scheduling has been
the most common systematic approach to the control of strongly nonlinear systems
in practice (Whatley and Pott, 1984; Astrom and Wittenmark, 1989a; Shamma and
Athans, 1990, 1991; Rugh, 1991; Reichert, 1992; Nichols et al., 1993).

A gain-scheduling control system consists of two major components: (%) a family
of controllers and (i) a scheduler that at each sampling instant engages a controller
(or a combination of controllers) to be applied to the process. Gain scheduling is a
quite general class of control structures characterized by multiple local controllers,
including as a subclass the state feedback and output feedback controllers based on
TS fuzzy models.

2.2 Takagi-Sugeno fuzzy models

The structure of the Takagi—Sugeno (TS) fuzzy model and the related inference mech-
anism are shortly presented in this section.

TS fuzzy models are a particular type of rule-based fuzzy models that use If-
then rules and logical connectives to represent the relationships between variables

If antecedent proposition then consequent proposition.

The antecedent proposition is in the form “X is A” where X is a linguistic variable
and A is a linguistic label (also called linguistic value or linguistic term), defined by a
fuzzy set on the universe of discourse of the linguistic variable (Klir and Folger, 1988;
Zimmermann, 1991). The consequent proposition is a mathematical function of the
model inputs rather than a fuzzy statement.

These models are suitable for modeling a large class of nonlinear multivariable
systems. Consider a MIMO system with m inputsu € U C R™ and poutputsy € Y C
RP. Depending on the available prior knowledge, this system can be approximated by
a collection of MIMO state-space fuzzy models, or by a collection of coupled input-
output multiple-input, single-output (MISO) fuzzy models.

2.2.1 State-space TS models

If the process nonlinearity is such that in a given region all outputs depend uniformly
on a certain combination of the antecedent variables, then the TS model can be stated
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in the following MIMO state-space form

R;: Ifz(k)is A;, and ... and 2, (k) is A; , then 2.1)
x(k+1) = Aix(k)+Bu(k)+a;
y(k) = Cx(k)+¢;
i=1,2,.... K

where K is the number of rules, M (i) = {A;,B;,C;,a;,¢;}, i = 1,..., K is the ith
local affine model, x(k) € R” is the state and u(k) € R™ and y(k) € RP are the in-
put and output vectors respectively, and A; ;, j = 1,...,n are (one-dimensional) an-
tecedent fuzzy sets defined on some scheduled variables z(k) € R™, respectively. Note
that z(k) can contain model states and inputs.

Since all the locally linear time-invariant (LTI) models in the consequent part of
the fuzzy model have an identical structure, the fuzzy model can be regarded as a
(quasi)linear time-varying dynamic system, with LTI models valid only in the working
range specified in the antecedent part of the fuzzy rules. In this framework, the fuzzy
rules and the membership functions for the antecedent variables often have a relevant
physical interpretation.

2.2.2 Input-output TS models

An input-output TS model comprises a collection of coupled MISO models of the
input-output NARX type

vi(k+1) =Ry (xi(k),u(k)), I=12,...p. 2.2)
The vector u(k) € R™ contains the current inputs and the vector x;(k) € R” contains
the current and delayed outputs and delayed inputs

T
xi(k) = [y] (k),....y5 (k),u] (k—1),...,up (k—1)] .

where

yilk) = [yi(k), (k= 1),y —ny )], i=1,...,p
wi(k—1)=[u(k=1),...,u5(k—ny ;)]s j=1,....m.
The indices n,,; and 7, ; specify the number of lagged values for the ith output and
the jth input, respectively. Sometimes it is more convenient to combine u(k) and
x;(k): .
xi(k) = [xF (k),u" (k)] , X eR%,9=p+m. (2.3)
The functions R; in (2.2) can be parameterized in the following rule-base form (Takagi
and Sugeno, 1985)
Rli : If T (k) is Ali,l and ... and .’L‘lp(k) is .Ah',p and (2.4)
wy(k) is Ap; p+1 and ... and un, (k) is Ay prm
then y;;(k + 1) = {y;x(k) + mym(k) + O
i=12,...,K

I
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where A;; 5, are antecedent membership functions of the ith rule
Ay, (Xn): R —=1{0,1], h=1,....9, 2.5

and ¢;; and n;; are vectors containing the consequent parameters, and 8;; contains the
offsets, respectively. K is the number of rules for the /th output. The model output is
computed as the weighted average of the individual rules’ consequents

5 B (Xu(R)) (Cxa(k) +myu(k) + 6)

(2.6)
5 Bu (xa(k))

u(k+1) =

The degree of fulfillment of the ith rule 8;;(X;(k)) is obtained as the product of the
membership degrees of the antecedent variables in that rule (recall (2.4))

4
B (Xa(k)) = [T 1. (Xan)- 2.7

h=1

Here the product operator is used, as it ensures a smooth degree of fulfillment.

The TS models in the state-space form are useful when the process nonlinearity is
such that in a given region all outputs depend uniformly on a certain combination of
the antecedent variables. If this is not the case, then it is not possible to aggregate the
outputs in the form (2.1). In such situations, input-output TS fuzzy models are more
suitable. It can be stated that the state-space form is better suited to accommodate
linear models obtained through linearization of a nonlinear process model already
obtained, while the input-output form is preferable for modeling of a process solely
based on process data. In this thesis, the input-output form of the TS model is used
and for the sake of simplicity the term “input-output” is dropped henceforth, unless
stated explicitly otherwise.

2.2.3 Inference mechanism

The inference in the TS model is reduced to the algebraic expression (2.6). By denot-
ing the normalized degree of fulfillment

B (Xu(k))

wii (Xa(k)) = m

; 2.8)

the TS model can be expressed as a linear time-varying (LTV) model:

K

K, i K
= (Z wy; (Xl(k))CzT¢> xi (k) + (Z wy (Xz(k))n£>u(k) + > wi (X (k)b

i=1 =1

= ¢ (xu(R))xu(k)+nf (Xu(k))u(k)+6,(X:(k)), 1=1,....p 2.9)
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where the parameters ; (X;(k)), 7, (X;(k)) and 6; (X, (k)) are linear combinations of
the consequent parameters ;, 17;; and 0;:

K

¢ (X (k) = Z, wii (X (k) s (2.10)
K;

m(Xi(k)) = ; wi; (X (k)) s

0, (Xg(k‘)) = l wy; (X;(k‘))@li.

K
=1

In other words, ¢;(X;(k)), n;(X:(k)), 81 (X, (k)) are bounded to lie within the convex
hulls with vertices {;;, 71,61, respectively. This property makes possible the use of
the framework of polytopic systems (Boyd et al., 1994) for the control design. For TS
models given in the state-space form, methods have been developed to design con-
trollers with desired closed-loop characteristics and to analyze their stability. These

methods are briefly summarized in the remaining sections of this chapter, as no addi-
tional research in this direction had yet been carried out.

2.2.4 Constructing TS fuzzy models

The TS fuzzy models are viewed as a class of integrated local linear models, used to
represent the process under consideration by decomposing it into a number of simpler
subsystems. The fuzzy sets and fuzzy logic theory offers an excellent tool for rep-
resenting the overlap associated with the decomposition task, for providing smooth
transitions between the individual local models, and for incorporating various types of
knowledge in one common medium.

There are two common ways to derive TS fuzzy models. The first way uses a
local linearization of an available nonlinear model, usually resulting in a state-space
TS model. The second way is based on experimental input-output process data and
is more suitable for constructing input-output TS models (Babuska, 1998). A class of
fuzzy clustering algorithms for automated generation of input-output TS fuzzy models
is outlined in Appendix A. No additional research concerning the subject of fuzzy
modeling and identification has been carried out in this thesis.

2.3 Stability of fuzzy systems

Various methods have been proposed to analyse the stability of fuzzy control systems,
e.g., the bifurcation method, methods based on the hyperstability theory, the Lyapunov
stability theory and the input-output stability theory (Piegat, 2001). In this thesis, we
elaborate on the input-output stability theory (Chapter 5), which is used to guarantee
the local bounded-input bounded-output (BIBO) stability of the fuzzy predictive con-
troller designed in Chapter 4. Cuesta et al. (1999) showed that input-output stability
techniques, such as the conicity criterion and the harmonic balance method, in combi-
nation with frequency-domain methods can be applied to multivariable systems, and
that in some cases they are superior to the Lyapunov method. The Lyapunov method,
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however, is favorable for carrying out a global stability analysis of the fuzzy state and
output feedback controllers. In the following we briefly review it. For the unforced
part of (2.1), i.e., without inputs and offset terms,

x(k+1)= ZkaDAx) 2.11)

a sufficient condition for stability is stated as follows (Tanaka and Sugeno, 1992). The
equilibrium at zero of (2.11) is globally asymptotically stable if there exists a positive
definite matrix P = P such that

ATPA,-P<0, i=1,... K, (2.12)

i.e., a common P has to exist for all subsystems. For K = 1, this condition reduces to
the Lyapunov stability theorem for LTI systems.
If there exists P > 0 for which (2.12) holds, the system (2.11) is called quadratically
stable and
V(x) =x"Px (2.13)

is the corresponding quadratic Lyapunov function.

Note that, in general, the system (2.11) is not stable even if all its subsystems (i.e.,
all A;s) are stable. An illustrative example can be found, among others in Wang et al.
(1996). In the following, control design methods are reviewed that provide feedback
controllers and observers that render the closed-loop system stable. Note also that the
presented stability conditions rely on a single quadratic Lyapunov function that may
be conservative and for certain systems may lead to infeasible stability conditions.
Recently, extensions to the stability analysis and synthesis have been proposed that
are based on piecewise quadratic Lyapunov functions, see among others (Rantzer and
Johansson, 1997; Johansson et al., 1999).

2.4 Fuzzy state feedback controllers

For simplicity, let us begin with a fuzzy TS model with linear rather that affine local
subsystems, i.e., in (2.1) a;, =0and ¢; =0 for i = 1,..., K. The control design is
carried out based on the fuzzy model as follows. First, for each local linear model, a
linear feedback controller is designed (Fig. 2.1). Then the overall nonlinear controller
is obtained as a fuzzy blending of the individual linear controllers

Ri: Wz (k)is A; and ... and 2, (k) is A; » then u(k) = —F;x(k) (2.14)
i=12,....K.

Note that here the antecedent variables z;(k), ¢ = 1,...,n do not contain the current

input u(k) as it is computed by the feedback law in the rule consequent. Since the

fuzzy controller has the same antecedents as the fuzzy model (2.1), this implies that

also in the fuzzy model the antecedent variables cannot comprise the current input.
The controller output is a weighted average of the individual rules’ contributions

— 35, 8i(z(k))Fix(k) _K
TE Bi(ek) 2

u(k) = (z(k))F;x(k) = —F(z(k))x(k). (2.15)
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This is the so-called parallel distributed compensation scheme, proposed by Tanaka
and Sano (1994).

Fuzzy model Fuzzy controller

7

| Linear control design ‘

rule K / rule K
rule 2 / | rule2

rule 1 rule 1

Figure 2.1.  Fuzzy state feedback control design.

Substituting (2.15) into (2.1), the closed-loop system is given by

x(k+1) zg i (2(k))w; (z(k)) (A; —B;F;)x(k)

i=1j

M

= W; (X(k‘))wl (z(k))Gux(k)

i=1

+2 Y wi(z(k))w, (z(k)) (9”—;(;]—) x(k), (2.16)

4,7,8<j

where
Gij = Ai - BZ‘FJx

A generalization of the stability condition (2.12) is that the equilibrium of the
closed-loop system (2.16) is globally asymptotically stable if there exists a common
positive definite matrix P such that

G/ PG;; —P <0, (2.17)

fori,j=1,...,K except for the pairs (i, ), for which w; (z(k)) =0, Vk.

The above inequalities take into account the influence of all the controllers on a
single rule of the model. By considering the closed-loop system that contains model
rule ¢ and controllerrule 7,2 =1,..., K separately from closed-loop systems based on
model rule 7 and controller rule j, ¢ # j, we obtain the sufficient stability condition

GIPG;-P<0, i=1,. K, (2.18)

T T
(G”“ZLG“) P(G”JZFG“) -P<0, j=1,...,K,i=1,...,5—1.
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Depending on the parameters of the individual rules, it might be difficult to find
a common P satisfying the above conditions. Reducing the number of rules results
in less conservative stability conditions. Assuming that the number of active rules, s,
is always less that K, 1 < s < K, Tanaka et al. (1998) stated that the equilibrium of
(2.16) is asymptotically stable if there exists a positive definite matrix P and a positive
semidefinite matrix Q such that

GIPG;;—P+(s— 1)Q<0, (2.19)
T T
(@) P(-Gll;—Gﬂ) -P-Q<0, j=1,. K i=1,..,j-1

fori,j =1,..., K, excluding the pairs (i, j) for which w; (z(k)) =0,Vkand s > 1.

Performance specifications. The control design problem is to determine local con-
trollers F; that satisfy the above stability conditions. Additional specifications can be
imposed such as the speed of convergence, desired poles locations, or constraints on
the control input and process output, etc. Here only the convergence rate is discussed,
for some of the other issues see (Zhao, 1995; Tanaka et al., 1998; Bergsten, 2001).
The speed of a system response is related to the convergence rate (also called decay
rate), i.e., the largest Lyapunov exponent. The system (2.1) is said to be globally
exponentially stable if there exist positive constants a with 0 < o < I and & such that

[x(k)|| < Ke®[x(0)]] (2.20)

for any initial state x(0). The parameter « characterizes the rate of convergence of the
system state to the equilibrium, as smaller o implies faster convergence. Expressed
in terms of the quadratic function (2.13), it can be shown' that the above inequality
amounts to (Khalil, 1992)

AV (x(k)) < (o® = D)V (x(k)). (2.21)
Taking this inequality into account, (2.19) is equivalent to
GIPG; — P+ (s—1)Q <0, (2.22)
T T
(G”;Gﬁ) P (G” ’;Gj") —a’P-Q<0.

While controllers for TS systems with linear consequents have been thoroughly
treated in the literature (Tanaka and Sano, 1994, 1998; Farinwata et al., 2000; Korba,
2000), the control design for TS systems with affine consequents is more difficult.
In addition, the majority of publications on feedback fuzzy control has dealt with
the regulation problem, i.e., stabilization rather than reference tracking. Only recently

'Equation (2.20) implies x7 (k + 1)PxT (k+ 1) < o®xT (k)PxT (k). Using the this inequality in (2.13),
AV (x(k)) < o?xT (k)Px” (k) — xT (k)PxT (k), or equivalently AV (x(k)) < (o — 1)V (x(k)). Besides,
it can be shown that « in (2.20) is equal to the ratio of the maximum and minimum eigenvalues of matrix P.
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Bergsten (2001) presented a procedure for the analysis and design of a nonlinear fuzzy
controller that is able to drive the state X in (2.1) to any desired state Xges from an
arbitrary initial condition Xo. Moreover, the method can not only handle TS models
with linear rule consequents, but also these with affine rule consequents.

In tracking problems, for a given desired state Xqes, there is a corresponding desired
input uges. Using the fuzzy model (2.1), we can provide ug.; by means of a scheduled
trajectory generator:

Xdes(k+1) = A(z(k))xdes(k) + B(Z(k))udes(k) +a(z(k))

that on-line computes the desired input such that the system can be driven to the de-
sired state for any current state.
Consider the control law based on error-state feedback

u(k) = uges (k) — F(z(k)) (x(k) — Xaes(k) ) » (2.23)

where F(z(k)) is given in (2.15) and the desired input uges(k) is computed using a
trajectory generator. If we define the error between the current and the desired state as
e(k) = x(k) — Xges(k), the closed-loop error dynamics are

e(k+1) = A(z(k))x(k) + B(z(k)) (uges (k) — F(z(k)) e(k)) +a(z(k)) — Xaes(k + 1)
K
3 wi (2(k))w; (2(k)) (A — B;F;)e(k) — Xaes(k +1)

1j=

+A (2(k))Xqes (k) + B(2(k)) uges (k) + a(z(k))l : (2.24)

I
Mw

.
Il

r(z(k),xdes(k),“dw(k))

Assume that Xges(k) is constant for a sufficiently long time. Then the error dynam-
ics (2.24) are asymptotically stable if the following two conditions are fulfilled. The
first condition is that

r(z(k‘%xdes(k)’udes(k)) hd Xdes(k + 1),

which holds if the scheduled trajectory generator is used.
Note that if an open-loop trajectory generator

Xes(k+1) = A(Zdes (k) )Xaes (k) + B(2Zdes (k) ) udes (k) + a(2Zdes(K))

is used instead, we cannot guarantee the second condition, since in general z(k) #
z(k)des (k ) .
Then the error dynamics (2.24) are asymptotically stable if the system

e(k+1) ZIZwl( z(k))w; (z(k)) (Ai —B;F;)e(k)

is exponentially stable, i.e., e(k+ 1) — 0, which implies x(k + 1) — X(k + 1)ges (k). If
this system is exponentially stable, then there always exists a constant § > 0 such that
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lle(k)|] — 0if ||e(0)|| < 4. Sufficient stability conditions have been presented for the
design of F(z(k)) that maximizes 4, see (Tanaka and Sano, 1994, 1998) and recently
(Bergsten, 2001).

Another approach for reference tracking using a state feedback controller was pro-
posed in (Korba, 2000), where the tracking is accomplished by means of an integral
action.

To summarize, in this section the state feedback design for state-space TS models
was reviewed. It was shown that for TS models, state feedback controllers can be
obtained for which the resulting control system is stable. To this end, a couple of
assumptions had to be made. First, the consequents in the model rules should be linear
rather than affine, i.e., no offset terms a; and ¢; should be present. This assumption
was needed so we could state the controller synthesis problem in terms of inequalities
which are affine in the controller gains. Second, and a more severe assumption is that
the antecedent (scheduling) variables in the TS rules do not include current control
inputs, while in most cases the system operation is determined by the control signal.
A method was presented that can deal with the offset terms in the rule consequents,
however, it relies on different assumptions, e.g., a constant reference signal.

2.5 Fuzzy observers

In the previous section, a multiple-model design for fuzzy regulators was reviewed
under the assumption that all the states of the system are available. In real control
problems, however, this assumption does not always hold. Here a fuzzy observer is
given that estimates the states of the TS fuzzy model.

Consider the following observer for the TS model (2.1), called the fuzzy TS ob-
server

Ri: Ifz(k)is A;; and ... and z,(k) is A; , then (2.25)

y(k) = Ck(k)+c
i=1,2,....K,

where K; are the observer gains for the linear subsystems.

For the analysis of convergence properties of (2.25), two cases can be distinguished
(Tanaka et al., 1998): (¢) the vector of antecedent variables z(k) does not depend on the
estimated (unmeasurable) states, and (i7) z(k) depends on the estimated states, which
is the more difficult case (Tanaka et al., 1998; Bergsten, 2001). In the following, these
cases are treated separately.

Case 1. Here the antecedent variables do not depend on the unmeasurable states.
This means that the difference between the real and the estimated state depends only
on the initial condition and the mismatch between the active rules and the real system.
By defining the error between the real state and the state estimated through (2.25) as
e(k) = x(k) — %(k), we obtain the following error dynamics:

- I
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e(k+1)= sz( x(k) +Bu(k) +a;) (2.26)

i( <k>)( R(k) + Bau(k) +a; + K (v(k) - $(k)) )

|
EMw
§

w; (z(k)) Ase( k)—szl( (k))K 2 5 (2(k))C elk)

™M= TlMx

@
i
<.
I

[\_/]w

wi (2(k))w; (2(k)) (A; — KiCj)e(k).

The observer should satisfy e(k) — 0 when k — oc. This, in turn, requires stability of
(2.26). For this reason, the design of an observer for which the error dynamics (2.26)
are globally asymptotically stable is a problem dual to the controller design problem
(2.18).

Case 2. This is the more difficult case where part or all of the antecedent variables
depend on the unmeasurable states, i.e., (k) = Z(k). The problem here is that the
fuzzy observer relies on a correct combination of linear subsystems to match the non-
linearities in the nonlinear system. Therefore, if the antecedent variables are not fully
known, there is a time-varying mismatch between the observer system and the real
system. This mismatch will go to zero if the state estimation error goes to zero. For
simplicity, let us start with constant measurement matrices C; = C, =... = Cg =C.
In this case, the error dynamics are

e(k+1) Zwl( )) (Aix(k) +Bu(k) +a,) (2.27)
—;wi(zac))(Aif((k)+Biu<k>+ai+Ki(y<k>—y<k>))

K
=Y w;(2(k))(A; — K;C)e(k)

i=1

where

>
~
=

Il
M=

.
I
-

>
—~
N
—
kﬂ
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~~~
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§

(2(k)) - w; (i(k))) (Aix(k) +Bix(k) +a;).

I~
I
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The term A(z(k),2(k),x(k),u(k)) = 0 if the weights do not depend on the estimated
state (w;(2(k)) = w;(z(k))). More generally, the error dynamics (2.27) describe a
polytopic system subjected to a vanishing nonlinear disturbance, which follows from
the fact that A(z(k),2(k),x(k),u(k)) — 0 when e(k) — 0.

Based on the results presented by Bergsten and Palm (2000b) and Yoneyama and
Nishikawa (2001), it can be shown that the error dynamics (2.27) are asymptotically
stable if there exist symmetric positive definite matrices P, Q and a scalar x > 0 such
that

(A; - K,C)TP(A; —K,C) <Q

EE

1A(2(k), 2(k), x(k),u(k)) | < x[le(k)]|

fori=1,....K.
In case of a varying measurement equation, the error dynamics become

elk+1)= iwi (z(k)) (Aix(k) + B;u(k) +a;) (2.28)

— 3 wi(2(5)) (Ak(k) + Biu(k) +a; + Ki(y(k) — 5(k) )

+
Nl
—~
g
N
=
=
|

ws (i(k))) (Aix(k) + Bix(k) +a;)

K
=A,(a(k))e(k) - Z w; (2)K;A (z(k),2(k),x(k)) (2.29)

where
. K K
A (2(k)) = ;wz (2(k)) Z‘le (2(k))(A; — KiC;)
p J
A (200).20k),%(K)) = 3 (1w (2(k)) —w; (2(k) ) (Cyx + ;)

.
I

I

M=

TN
g

Ao (2(k), 2(k), x(k), u(k)) (2(k)) — wi(i(k))) (Asx(k) + Bix(k) +a,).

~
I
_

The error dynamics (2.28) describe a system perturbed by two vanishing disturbances
Ay (z(k).2(k),x(k)) — O when e(k) — 0 and A;(z(k),2(k),x(k),u(k)) — 0 when
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e(k) — 0. The problem here is that disturbance A; is weighted by the observer gains
K;, thus gains with large norms will make the disturbance bigger due to the state
estimation error. One can avoid this complication; use a fuzzy sliding mode observer
to circumvent the varying measurement equation, as shown in (Bergsten and Palm,
2000a).

To summarize, this section briefly presented the observer design for the state-space
TS model. A problem arises when the antecedent variables depend on the unmea-
surable states. Because, in order to match the system nonlinearity the fuzzy observer
relies on a correct combination of linear subsystems, there is a mismatch between
the observer system and the real system when the antecedent variables are not (fully)
known. This mismatch will diminish only if the estimation error goes to zero, however,
that in turn depends on the particular combination of linear subsystems.

2.6 Fuzzy output feedback design

This section uses the above results to design a control system comprising a fuzzy
controller and a fuzzy observer (Fig. 2.2). Essentially, it is multiple-model output
feedback control design, where the controller and the observer must satisfy x(k) — 0
and x(k) — %(k) — 0 when k — oc, respectively.

% u y
-F Process -—

K

Figure 2.2. Block diagram of a fuzzy state feedback controller and a fuzzy observer.

As in the previous section, there are two cases with respect to the premise variables:
in case A the vector of antecedent variables z(k) does not depend on the estimated
(unmeasurable) states, and in case B, z(k) depends on the estimated states. In the
following, they are treated separately.

In case A, the feedback control law is

K
u(k) = — Y w;(z(k))Fx(k). (2.30)
i=1

Then the augmented system including the state estimation is represented as follows:
K K

Xo(k+1) = ; ‘_[wi (z(k))w; (z(k))GijXa (k)
K
= ; w; (z(k))wi (Z(k))Giixa(k)
1= K K
+23 3 wi(z(k))w; (2(k))

i=17<]

CutSrixat), @31
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where

xak) = (X)) k) =x(h)-x(0)

G”:( 0 A - KC;

Then the equilibrium of (2.31) is asymptotically stable if there exists a symmetric
positive definite matrix P such that

GIPG,; —-P<0 (2.32)

for all 7 and j except for the pairs (4,7) s.t. w;(z(k)w;(z(k) =0, Vk.

Note that since the matrices G;; are decoupled, we can separately design the con-
trollers F; and observers K; rather than using (2.32). This is the so-called separation
principle.

In Case B the premise variables z(k) are unknown since they depend on the state
variable estimated by the fuzzy observer (2.25). Therefore w; (Z(k) rather than w; (z(k)
is used in the fuzzy controller (in general z(k) # 2(k), thus w;(z(k) # w;(2(k)).

In this case, the controller output is given by the equation below (compare it to
(2.30))

K
u(k) = — > w;(X(k))F:X(k). (2.33)
i=1
The augmented (controller & observer) closed-loop system is described through
K K K
Xalk+1) =3 3w, (x(k))w; (%(k))ws (%(K)) GijaXa(k)
i=Ij=1s=Il
K K
= z z w; (X(k))'wj (ﬁ(k))ws (f{(k))Gijsxa (k)
i=1j=1
5 Gz El Gis ]
1233w, (x(k))w; (%(k))w, (R(K) —%ixa(k), (2.34)
i=lj<s

where

A;,—B;F;, BF,
Gijs = ( S! Slz 0 )

ijs ijs

Sijs = (Ai—A;) - (B; —B;)F, +K;(C, - C))
Szzjs =A;— chs + (Bi - BJ’)FS .

Regarding the closed-loop system (2.34), a sufficient condition for the equilibrium

to be globally asymptotically stable is the existence of a common positive definite

matrix P such that
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GTAPGZ'@'Z'—P<0, i=1,...,K

223

T T
(G”s’LGW) P(GijSJrGiSj) ~P<0 is=1..K j=1..5-1.

2 2

Here the matrices G;;, are coupled, so it is not possible to separately design the
controllers F; and observers.

2.7 Robustness issues

Robust stability of systems subject to (vanishing) disturbances has been considered
by incorporation of the disturbances into the system description, see (Chen and Han,
1994; Kim, 1995) for a general, i.e., non-fuzzy treatment and recently (Bergsten,
2001) for a fuzzy-oriented approach to the problem.

The stability results presented so far are based on a single quadratic Lyapunov
function, also called quadratic stability. While for LTI systems quadratic stability is
necessary and sufficient, for polytopic systems (and thus also TS models) quadratic
stability is only sufficient and may become quite conservative. In such cases, piece-
wise quadratic Lyapunov functions (Bogatyrev and Pyatnitskii, 1987) or parameter-
dependent Lyapunov functions (Johansson et al., 1999; Bergsten, 2001) can be used
to reduce the conservatism.

Yet another approach was proposed by Zhao et al. (1997). The authors consider the
uncertainties in the fuzzy model in terms of premise uncertainties, i.e., derived from
the membership functions specifying the local regions, and consequent uncertainties
which are in the system matrices A; and B;.

The premise uncertainties stem from the uncertainties in the shape of member-
ship functions, and result in uncertainties on the corresponding degree of fulfillment
(DOF). If the nominal DOF for the ith rule is 3; (recall (2.1)), then the corresponding
uncertainty is denoted by Ag; (k) for which

0< B +AB(k) < 1 (2.35)

K

Y Bi+ABi(k)=1, Vk.

=1

In practice, it is more reasonable to study a particular case of (2.35), where AG; (k)
is restricted to be within

—yPeB3; < ABi(k) <APe(1 - 5;). (2.36)

The parameter 0 < 4P < 1 specifies the range of the uncertainty. For example, assum-
ing a trapezoidal shape of the degree of fulfillment 3; and a given 4P, an admissible
region for Ag3; (k) is shown in Fig. 2.3.

Since any unknown uncertainty AJ;(k) can be described as a convex combination
of the left- and right-hand sides of (2.36)

AGi(k) =7 (as(k) (1= Bi(k)) + (1= (k) (= Bi(k)) )
=" (ai(k) = Bi())
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(k
Ai(k) admissible
1y region
hpre
(k)

Figure 2.3. Admissible region of the uncertainty on the degree of fulfillment.

with 0 < a;(k) < 1, the antecedent uncertainties can be reduced to matrix terms in the
model description (2.1)

K
x(k+1)=Y <w (2(k)) + Aw, (z(k))) (Aix(k) +Bu(k))
i=1
K
=3 wi(2(k)) ((Ai + AAP(k))x (k) + (B +ABf’e(k))u(k)) . @37
izl
Assuming a common P for all rules, the unknown matrices AA" (k) and ABY™ (k)
are bounded in a polytope
[AAP(k), ABY (k)] € +P°C{ [AAT], ABPF], .., [AATR, ABTZ ]}
with vertices
AAPF = ~A;+A;, AB°=-B;+B;, [=1,. K.

The consequent uncertainties stem from the modeling errors within the local sub-
systems. A model with consequent uncertainties can be written as

x(k+1) = Zw( (1)) ( (A + AAT(R)x(k) + (B + AB"(k)u(k)),  (2.38)

where AAS" (k) and ABS®" (k) are the uncertainties on the consequent of the ith rule,
bounded within a polytope with vertices [7"°“AA§£°“, 'y“’”ABf.;’“], l=1,...,K and
~°" > 0. Hence, the consequent uncertainties can be expressed as

[AAS™ (1), ABS (k)] € 7nC{[AASE". ABS),..., [AASR, ABSE] },

or correspondingly

=

[AAS (k), AB™ (k)] ewmz (2(k)) [AAS", ABE"].

Comparing (2.37) and (2.38) with the nominal model (2.1), the robust output feed-
back design amounts to providing a controller and an observer based on the nominal
model such that the resulting fuzzy control system has a maximum stability margin
for uncertainties in either the antecedent or consequent part.
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2.8 Summary and concluding remarks

This chapter introduced the Takagi—Sugeno fuzzy model that is used in methods de-
veloped in the following chapters. When developing a process model to be used for
control design, one must make sure the process model represents the process with suf-
ficient accuracy in the regions where it is expected to operate. TS fuzzy models offer
a convenient way for process modeling as they are built on local linear submodels, by
using a fuzzy inference mechanism to interpolate between the submodels. Depending
on the knowledge and information available, we can derive state-space or input-output
TS fuzzy models.

When a state-space TS model is available, the fuzzy controller can be designed by
means of state feedback. The control design then reflects the structure of the TS fuzzy
model: linear controllers are developed for the separate rules in the model, and then
the overall controller is a fuzzy blending of the individual linear controllers. The same
idea is used to obtain fuzzy observers. When the LMI framework is applied, the con-
troller synthesis reduces to an LMI problem which can be solved numerically. In this
way performance and robustness specifications can be imposed on the resulting con-
trol system. Still, there are issues of a different character that limit the application of
the described methods, both where it concerns conceptual and implementation aspects.
First, the method cannot deal with TS models including current control inputs in the
antecedent part. Second, the method cannot be directly applied in the presence of an
offset term in the rule consequents. Third, fuzzy state observers are difficult to design
if the antecedent part includes estimated states: the fuzzy observer relies on a correct
combination of linear subsystems to account for the nonlinearities in the nonlinear
system, thus if the antecedent variables are not fully known, there is a time-varying
mismatch between the observer system and the real system, which only disappears if
the state estimation error goes to zero. Additionally, the number of local controllers
and observers that are needed for accurate control may increase rapidly as the com-
plexity of the system increases. Moreover, when the robustness issue is addressed,
the underlying optimization problem becomes extensive even for a limited number of
rules. In the consequent chapters, different paradigms were used for the development
of methods for fuzzy control design, as shown in Chapter 3 (input-output decoupling),
Chapter 4 (fuzzy model predictive control) and Chapter 5 (robust stability issues in
fuzzy model predictive control).




3 ANALYSIS OF INTERACTIONS IN
TS MODELS AND INPUT-OUTPUT
DECOUPLING

Input-output interactions in the inherently nonlinear TS fuzzy models cannot be an-
alyzed with standard methods such as the Relative Gain Array that have been devel-
oped for linear systems. In this chapter, two new methods are proposed that exploit the
specific model structure of the TS models to indicate interactions. The first method is
based on a set of RGAs derived at different operating regions (Section 3.2.1). The sec-
ond method is based on the output sensitivity function, computed as a partial derivative
of the output with respect to the considered input (Section 3.2.2).

Next, in Section 3.3, a decoupling strategy for TS fuzzy models is proposed. The
idea is to invert the fuzzy model and to use the inverted model to compensate for
the coupling. When the model is an affine one, it is possible to obtain an analytic
decoupling law by applying tools from the differential geometry theory. In most cases,
however, the TS model is non-affine. In such a situation, we can either compute the
input-output gains at each sampling instant and invert them, or numerically invert the
model by solving a nonlinear optimization problem.

Both methods for the analysis of interactions are applied to a laboratory-scale
cascaded-tanks setup (Section 3.4). Input-output decouplers for this system are de-
signed based on affine and non-affine fuzzy models.

31
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3.1 Introduction

A multivariable process contains several controlled variables that can be influenced by
various manipulated variables. When a single controlled variable (output) is controiled
by a single manipulated variable (control input), this part of the process is considered
as a single-loop process, regardless of the number of disturbing and uncontrolied vari-
ables present. When the action of a loop influences another loop, then the loops are
interacting, or coupled. In practice, in a multivariable process nearly each output is
influenced by each input, and if we want to achieve non-interacting (i.e., decoupled)
control, where each input influences only one output and vice versa, then we should
use a multivariable controller based either on detached SISO controllers in combina-
tion with a decoupler or on a multivariable process model that takes into account the
interactions when forming the control signal. In this chapter, we achieve decoupled
control based on detached SISO controllers and a decoupler.

For each input there is a path through which this input dominantly influences a cer-
tain output. These paths together present the input-output pairing. The determination
of such a pairing between the process inputs and outputs is an important element in the
control design because of the influence it has on the performance achieved by the con-
trol system. It is essential to choose the controller type and structure properly because
in many cases interactions result in undesirable effects, e.g., the loops upset each other
and can even destabilize the entire system. One or more of the controllers can usually
be detuned to retain stability, but with a certain loss of performance. In some pro-
cesses, interactions are so severe that satisfactory control system performance cannot
be obtained even with the best loop pairing and optimal tuning, or even worse, stability
is may not be attainable without decoupling. In such situations, a decoupling design is
needed to eliminate the effects caused by the interacting paths (Hui, 1983; Shinskey,
1996). The decoupling problem becomes even more complicated when the process is
nonlinear. Then, within a certain operation region, input-output coupling could appear
to be absent, while in another coupling would be significant. For the first region SISO
controllers might suffice, while the second would require full or partial decoupling
(Isidori, 1995; Kotta, 1995).

3.2 Analysis of interactions in TS fuzzy models

Nonlinear models exhibit operating-regime-dependent input-output coupling. There-
fore, tools are needed that take into account the model’s nonlinear characteristics when
analyzing the input-output interactions. In this section, two methods are presented that
exploit the specific structure of the TS model in the analysis of interactions. The first
method is based on a number of Relative Gain Arrays computed for the individual
fuzzy rules. The second method is based on an output sensitivity analysis (Mollov,
Babuska and Verbruggen, 2001b).

3.2.1 RGA approach

The Relative Gain Array (RGA) concept has been widely used in linear multivariable
processes as a measure of the interaction between the control loops (Bristol, 1966;
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Grossdidier et al., 1985; Hovd and Skogestad, 1992). The RGA indicates the influence
of a particular input on the output under consideration, relative to that of other inputs
acting on the process. Consider the 2 X 2 system G(z) shown in Fig. 3.1. In Fig. 3.1a,
a change in input u,; is introduced, while input u, is kept constant. The result is
changes in both outputs, Ay, and Ay,. Because u; is kept constant, we say that the
loop between y, and w; is open, i.e., no controller is placed between y» and u,. In
Fig. 3.1b, the same change in u, is introduced, however, this time a controller C is
used to keep y, constant, i.e., the loop between y» and u; is closed. The element Ay
in the Relative Gain Array is defined as the ratio of the effect of input u; on output ¥,
with the other loop (> to u7) open to the effect observed with the other loop closed.
For a p x m system, the elements ), ; in the Relative Gain Array are defined as the
ratio of the effect a particular input u; has on a particular output y; with all loops open
to the effect that would be observed if all other loops were closed (Bristol, 1966)

L= (Ay1/AU;) Aus=0, k)
T Ay /Ay aye=0, k4

3.1

For a non-singular square (p = m) transfer matrix G(z) € CP*™, the relative gain
array is a matrix A(z) € CP*™

Az) = G(2).% (G(2)™") 7, (3.2)

where .x denotes element-by-element multiplication (Hadamard or Schur product)
(Grossdidier et al., 1985). In general G(z), hence also A(z) are frequency depen-
dent, but for the sake of simplicity we assume z = 1. Thus, here we restrict ourselves
to the analysis of static interactions.

Au1 Ayl
Au2= 0 G(Z) Ayz

(a) Open-loop operation.

Auy Ayl
Auz G(Z) Ayz =0
C@)

(b) Closed-loop operation.

Figure 3.1.  Relative Gain Array definition.

However, the input-output interactions of fuzzy models of the TS type cannot be
analyzed through a single Relative Gain Array. The behaviour of the nonlinear TS
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model, so also the input-output coupling, depends on the operating point. A possi-
ble way to explore the interactions is to linearize the fuzzy model around the point
of interest, and to compute RGA for the linearized model. This is, however, quite a
laborious approach. It is more appealing to make use of the model structure — a com-
bination of local linear models. If the structure of the rule antecedents is identical for
all outputs, i.e., if (7) all outputs have the same antecedent variables, and (¢4) these
variables have the same linguistic terms (‘Low’, ‘Medium’, etc.), the rules with the
same antecedent for the individual outputs can be combined into one rule. In this way,
a set of multivariable rules is obtained. Then for each rule, one RGA can be computed
based on the consequent parameters

Al Az o Am
DTV SRR,V

A=Gix(GH) =] T 7 T T =1 K (33)
Ap] /\p2 >\pm

where G; is the matrix of transfer functions for rule ¢

gn  g12 --- Gim
g1 g2 .- Jom

G, =| . . . 3.4
gpr Gp2 .- 9pm

Remark 3.1 The nature of the interaction can be shown through the RGA elements
(Shinskey, 1996). Zero \y; implies that output l is not influenced by input j. Negative
As mean that the interaction has a destabilizing effect. Positive As in [0,1] indicate
oscillations and an extra phase lag. When X is above one, the static response is dete-
riorated (Fig. 3.2).

destabilizing oscillations & static response
effect extra phase lag deteriorated

[
0 1 Atj

Figure 3.2.  Interpretation of the RGA elements.

The elements g;; are the d.c. gains from input j to output

AL ‘
glj:—lTnzdmh— I=1,....,p, j=1,....m (3.5)

Here, n4 denotes the position at which the first element of the respective input is placed
in the input regression vector u(k), and ¢;; , and 7, 5, are the coefficients in front of
the state and input vectors x(k) and u(k) in (2.6), respectively. Note that in order to
keep (3.5) simple, we assume that the delayed input values are in the input vector u(k)
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rather than in the model state x(k) as in (2.2). The offset term is omitted since it can
be considered as a constant external input, and we are interested in the output variation
as a result of a input change; not in its absolute value (recall (3.1)). In the sequel, the
RGA that is computed by using formulas (3.3) through (3.5) will be referred to as the
“individual RGA.” Note that since the interactions indicated in this way are static, to
have a meaningful interpretation one needs local linear models that are stable.

The following Example 3.1 is used to illustrate the computation of the RGAs for the
separate rules and the influence of the model parameters on the indicated interactions.

Example 3.1 Consider an artificial fuzzy model with two inputs and two outpuls.
Four regions are defined by splitting the outputs’ domains in two parts (“Small” and
“Large”). For each of these regions, a stable linear model has been obtained. The
fuzzy rules are given below.

Output 1

1. If y, (k) is Small and y, (k) is Small then

yi(k+1) = CGuyi (k) +mnw (k) +mrouza(k) + 01
2. If y; (k) is Small and y, (k) is Large then

yi(k+1) = Gayi (k) + mawi (k) + manua(k) + 612
3. If y; (k) is Large and y, (k) is Small then

y1(k+1) = Gaiy (k) + maiwi (k) +maua(k) + 6013
4. If y, (k) is Large and y, (k) is Large then

y1(k+1) = Gayi (k) + marui (k) +maaua(k) + 014

(3.6a)

Output 2 1. If 3 (k) is Small and y, (k) is Small then
vk +1) = Guya(k) + mnw (k) + miaua(k) + 02
2. If 31 (k) is Small and y, (k) is Large then
(k4 1) = Gayalk) + maui (k) + moua(k) + 622
3.If y, (k) is Large and y, (k) is Small then
w(k+1) = Gy (k) + marui (k) + maaua (k) + 623
4. 1f y, (k) is Large and y, (k) is Large then
vk +1) = Garya (k) + mparui (k) + mpa2uz (k) + 024

(3.6b)

The membership functions for the linguistic terms Small and Large defined on the
domains of the outputs y, and vy, respectively, are depicted in Fig. 3.3.
The steady-state gain matrices for the separate rules are

r 221(11 221412 7 r 71 122 7
— | =Cu =G _ | 1=Gar =G
G = mit 12 Gy = 221 1222
L 1-Gn -G L 1-Car -Gt
r 21151 221C32 7 r leéu 142
_ | 1=C131 1=C131 _{ 1=Car 1=-Cia
G3 = R3] 7232 Gy = 1241 242
L 1-Car 1-Ca31 L =G4 1-Coar
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Small
=05+ -
|
. |
1 T T
Small
30.5r |
0 L L :

y,k=1)

Figure 3.3. Membership functions.

To obtain A, = G.* (GT")7T, we first compute the transposed inverse of Gy

-n\T _ 1 (I=Cimiz —(1—Cu)mn
(Gr) =
mumiz—menn | (0 =Ci)miez (1= CGu)mn
and then
A= 1 { Mz —Mmenu ] 3.7)
M2z — M L —umn T212M111

From the above example one can see that any row or column sums to one in this
simplest case of a 2 x 2 model (Bristol, 1966; Grossdidier et al., 1985). This property,
however, reflects on the indicated interactions in a special way. Let 7112, =0, i.e., u2
does not influence y; in the first rule in (3.6a). In this case, Aj> = 0 as one should
expect. Additionally, however, we have Ay; = 0 as well, which indicates that y; is
not affected by u;, regardless of the 77, value. A similar “symmetry” is to be seen
whenever there is an 7 zero. This situation can be considered as the extreme case of
the symmetry in the indicated interactions: for a 2 x 2 model, A is always symmetrical.

The question that naturally arises is whether it is possible to analyze the interac-
tions in between the rules using the RGAs computed for the individual rules, e.g.,
whether the coupling that the TS model can display between the rules is restricted by
the pre-computed RGAs for the separate rules. Unfortunately the answer is, in gen-
eral, negative. This originates from formula (3.2) and more precisely because of the
nonlinearity of the RGA computed in this way with respect to the degree of fulfill-
ment, which is due to the matrix inversion. To illustrate the problem, consider the
way the upper-left element of the RGA (A;;) varies during a change in the active rule,
e.g., from rule one to rule two. The transfer function matrix is a linear function of the
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degree of fulfillment 3:
_hn 112 _Thor 152
1 1— 1— 1—
Gs; = (1_’3).[ 2Cllln ZCIIQH }4,5[ 2Czllzl i1 }

1- G 1= Qi 1-C21 1-Co2y

(1=3)mu 4 Bma (1—.5)77112+ Bz

- 1~%111 1—Ci21 l—gm =Gzt | (3.8)
(1= 8)mn n B 0-8)mp12 n By

1-Qa11 1- (21 1= Qa1 1-Ca21

Applying formula (3.4) to G5, we obtain Az with elements );; that are rational func-
tions of 3 and the model parameters. For example,

5%¢,
Mig(Cm) = 25@2—5‘:’7; (3.9)

i.e., the shape of A 3 depends on the model parameters, hence we cannot draw con-
clusions regarding the monotonicity of A;; g nor about the interval in which it is re-
stricted. A more specific example where ¢ and 1 have numerical values is presented
in Chapter 7.

Below two other methods are proposed that allow for the analysis of interactions
when two or more rules are active. The first method is an extension of the individual
RGA method in which the separate RGAs are multiplied by the degree of fulfillment
(DOF) for the point under consideration.

The second method is based on a modification of (3.5) that computes the RGA
for a point between the rules, i.e., when more than one rule is active, or when the
rule antecedent structure differs per output. The DOF for that point is combined with
the rule consequents: 3;;(X;(k)) are calculated according to (2.7) and ¢;(X;(k)) and
n;(X:(k)) — according to (2.10). The elements g;; in the matrix G (3.4) are

l=1,...,p, j=1,....m (3.10)

S (k)
gij )

1 _Zﬁzl Cl,h (Xl(k )

and at that point (Xl (k)) the RGA is calculated via (3.2). In the sequel, the RGA com-
puted by using formulas (3.2) and (3.10) will be referred to as the “combined RGA.”
Note that since the interactions indicated in this way are static, to have a meaningful
interpretation one needs to end up with a resulting linear model that is stable.

The following Example 3.2 illustrates how the RGAs are to be computed when the
antecedent structure of the TS model is different for the different MISO submodels.

Example 3.2 Consider again the fuzzy model used in Example 3.1, but now divide
the domain of y\ (see (3.6a)) into three parts (“Small”, “Medium” and “Large”), as
shown in Fig. 3.4. As before, the y,(k) domain is split into two regions. The MISO
model for y, remains the same as that in Example 3.1.

The corresponding fuzzy rules are

]
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Output 1

Small L7 . Medium N I /Large

Small

30.5¢

Large

¥,k-1)

Figure 3.4. Membership functions for output y,.

1. if y; (k) is Small and y,(k) is Small then

n(k+1) =Gy (k) + muu (k) +minuz(k) + 00
2. If y, (k) is Small and y, (k) is Large then

yi(k+1) = Gy (k) + marwi (k) +mauz(k) + 612
3. If y; (k) is Medium and (k) is Small then

yi(k+1) = Gnyi (k) + mavi (k) + mzua(k) + 613
4. If y; (k) is Medium and y, (k) is Large then

yi(k+1) = Gayi (k) +marwa (k) + maua(k) + 614
5. If y (k) is Large and y, (k) is Small then

y(k+1) = Gsiyi (k) + msiwr (k) + msaua(k) + 015
6. If y, (k) is Large and y, (k) is Large then

yi(k+1) = Geryi (k) + msrur (k) +mexuz(k) + 16

(3.11)

Now it is not possible to match rules for y, and y», because the degrees of fulfillment
for a given combination (y1 (k), yz(k)) are not the same in the MISO models (3.6a)
and (3.11) due to the extra linguistic term for y; (k).

For a given operating point X(k) = (y10(k), ya0(k)) we have the DOF for y, and
2 By (X(K)) = [B11, B12, 313, B1a» Bis, us) and B (X(k)) = [Ba1. B2z, 623, Baal, respec-
tively. Combining 8,(X(k)) and B,(X(k)) with the rule consequents, we obtain the
local linear models (recall (2.9))

y1(k+1) = G (X (k) 1 (k) +mi (X (k) wi (k) +mz (X (k) ua (k) + 61 (X(k))
ya(k+1) = G (X(k)) ya (k) 4+ m21 (X (k) wr (k) + 22 (X(k)) u2 (k) + 62 (X(k))
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The corresponding transfer matrix G (X(k)) is

coxry = | ) )
-G (X(k) -G (X(k))

and A (X(k)) is calculated analogously to (3.7).

There is another interesting question with regard to the input and output dimen-
sions: is the formula (3.2) still valid when m # p, i.e., when G is not square. This
problem is essentially related to the computation of the matrix inverse in (3.2). When
G is not square, G' is the pseudoinverse rather than the inverse matrix (A pseudoin-
verse of G is a matrix X of the same dimensions as G7 so that GXG = G, XGX =X,
and GX and XG are Hermitian' (Golub and van Loan, 1996)). Then (3.2) can be
generalized by

A=G.xG. (3.12)

Note, however, that because G is not square, it is no longer true that any row or column
sums to one. Instead, if m > p we have that GG' = I, hence the elements in each row
of the RGA sum to one, 2;":1 Aij = 1. If m < p then G'G =1 and thus the elements
in each column sum to one, ¥7_, A;; = 1.

In the sequel we do not distinguish between G and G~! to denote the (pseudo-)
inverse of G and use the latter as a generally accepted notation.

3.2.2 Output sensitivity analysis

The RGA methods discussed in the previous section have two common weak points:
() only the static interactions can be analysed, and (¢7) for 2 x 2 processes, the indi-
cated interactions are always symmetrical, regardless of the actual interactions. These
weaknesses can be avoided by using the output sensitivity analysis. A similar method
was proposed for the analysis of interaction in linguistic fuzzy models (Gegov et al.,
1999), however, no such techniques were available for the TS model.

The output sensitivity analysis quantifies (relatively) the sensitivity of the output
under consideration to a certain input. The output sensitivity is given through the func-
tion sZ;((IZ*)L'), which is the partial derivative of the output with respect to the specified
input, while the remaining inputs are kept constant (Mollov, Babuska and Verbruggen,
2001b). It is a measure of sensitivity of the /th process output, { = 1,...,p at time
instant £ + 1, to jth input variation, j = 1,...,m at time instant k

wkil) 8(lnyl(k+1)) _ 8(lnyl(k+1)) . Ou;(k)

Sus (k)= d(lnui(k)) — Ouy(k) d(nuy(k)) (3.13)

A matrix G € CP*P is called a Hermitian matrix if G¥ = G, where G¥ denotes the transposed skew-
symmetric matrix of G.




40 FUZZY CONTROL OF MIMO PROCESSES

Notice that
o(1
___—( ny(k+1) = Lo and
Ou;(k) Y Ou,
8(11’1’11,](]6)) _ |
an N Uj

Let u; 0 denote the value at which the sensitivity is computed. Then (3.13) can be
rewritten as

O/yr _ Oy u; (k)
Gy(k+1) _ _ L (3.14)
) —— : . .
uj w; () = ;0 Quj/ujo  Ouy w0 wlk+1)
For small changes Au; from u; o such that u;(k) = uj(k — 1) + Au;,
Oy, . Aylk) _ e+ 1) —u(k)
an Uj0 Auj (k —1 ) uj0 AUj
and the sensitivity function can be rewritten as
; Ay (k) u; (k)
gut(k+1) ~ p— . (3.15)
u; (k) Al — :
i uy (k) = us0 Auj(k—1) U0 y(k+1)

The sensitivity function is based on the aggregated output of the fuzzy model rather
than on the outputs of its local submodels. Therefore the fuzzy model has to be sim-
ulated explicitly to obtain the predicted model outputs. Using the above expression,

we can obtain static as well as dynamic coupling between output y; and input u;. The

step response of the fuzzy model is obtained for a step Au;, and szlj(ﬁgﬂ are calcu-

lated, where 7 = 1,2,...,n are the points in the step response. The quantity ngj (@tn)

indicates the static coupling, while the dynamic coupling is given through the series
gvilkrl) o gulktn)
u;(k) 7T Tuy(k)

The second fraction in (3.15) plays a scaling role, making sfllj((’gl) not an absolute
but a relative quantity. If only the first term in (3.15) is used, then the contribution of
the remaining inputs and delayed inputs to y;(k + 1) is neglected. Since (3.15) deals
with one output at a time, all outputs can be analysed consecutively with respect to
all inputs. Note that here the indicated coupling for 2 x 2 processes is not necessarily
symmetric, as for RGA.

For linear processes the degree of coupling is invariant with respect to both the
operating point and the amplitude of the input change. This does not hold for the
nonlinear case, however. The sensitivity of the fuzzy model is thus analysed separately
at each point in the variable domain, providing different input variations. This is
done by varying a single input with a particular amplitude at a time while keeping the
other inputs constant and interpolating between the amplitude values. One can further
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extend this interpolation by slightly changing yet another input. This way the output
sensitivity to a given input can be viewed as a function of another input.

The information obtained through the sensitivity function has a slightly different
interpretation than that of the RGAs. Large si (positive or negative) shows strong
coupling between input u; and output y;. Positive s, means that y; and u; change in
the same direction, negative si', indicates that they change in the opposite direction.
Values close to zero show that y; is weakly influenced by v; or not at all.

The following Example 3.3 illustrates how we compute the sensitivity functions for
the fuzzy model used in Example 3.1. Note, however, that there is no difference in the
computational procedure if the modified fuzzy model (Example 3.2) is used instead.

Example 3.3 Assume that the fuzzy model is in a steady-state operation at (y0, Y2o) =
(y1(k), y2(k)) and (w0, uz) = (u1(k — 1), ua(k — 1)). Let a variation in input u, (k),
ui(k) = w10+ Auy be introduced while u, is kept constant. The output reaction at the
time instant k + 1 is given by

4
yi(k+1) =Y wii(Xo) (Cliryro + M (w0 + Aur) + Muigtao + 61:)

i=1

4
vak+1) = Y wi(Xo) (Ci1920 + mair (w0 + Auy) + Maigtiao + 02, (3.16)

i=1
where Xo = (Y10, ya20). The sensitivity of y, with respect to Au, is then

gty _ kD) —um(k) _wi(k)
e Auy (k) yi(k+1)

The sensitivity of y, with respect to Auy can be computed analogously. Below a matrix
is shown that has as elements the sensitivity functions of the two outputs (column-wise)
with respect to both inputs (row-wise)

yik+D)—y(k) w(k) ylk+D)—u(k) _ua(k)

GHk+1) Au, (k) C L (k+1) Au (k) yi(k+1)
u(k) b+ —y(k)  _uilk)  pk+l)—p(k)  _uy(k)
Au, (k) y2(k+1) Auy (k) y2(k+1)

The sensitivity analysis thus gives additional insight in the control design. Con-
trary to the RGAs, the sensitivity functions can indicate non-symmetrical coupling
occurring between the control loops. Further, not only the static but also the dynamic
coupling between outputs and inputs can be represented that characterizes the inter-
mediate effects of an input change on the considered output.

3.3 Decoupling control design

We can use the input-output analysis (carried out on the process model) to decide
whether the interactions between the process outputs can remain unchanged or should
be compensated for. In the latter case, one may either try to cut off the coupling
paths or to add a compensation path in parallel to the coupling path which has the

ﬁ
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same dynamics but with an opposite sign to eliminate the interactions. However, both
methods can only be applied in block diagrams. Therefore, for a coupled multivariable
process, the decoupling elements are usually incorporated into the control system.

The purpose of decoupling is to reduce undesirable effects of interactions in the
process. Most frequently it is accomplished by inverting the model and using the in-
verted model to compensate for the coupling (Isidori, 1995). The decoupling elements
have essentially coupling effects that compensate for the original coupling problem
(Fig. 3.5). Moreover, in nonlinear multivariable systems, the decoupling also com-
pensates for the nonlinearities, making the system linear with regard to the reference
signal. This technique is also known as input-output linearization.

Reference | '®) _ €®) | Detached | Y% u(k) y(k+1)
generator [+ [ controllers Decoupler Process

Figure 3.5.  Input-output decoupling scheme.

Different applications of decoupled MIMO control have been reported, based on
fuzzy decouplers see, e.g., (Reay et al., 1995; Kang and Lei, 1996). Reay et al. (1995)
used a linguistic fuzzy system for inverse-based control of a four-phase switched re-
luctance motor that removes the coupling effects between the phase current, the rotor
position and overlap angle between the rotor and stator poles. Kang and Lei (1996)
presented an application of fuzzy control for temperature control of the heating system
for the barrel of an injection moulding machine. However, the majority of the reported
applications of decoupled fuzzy control (including the ones mentioned above) use the
heuristic approach for the decoupler design. The decoupling methods proposed here
on the other hand are based on the fuzzy model, which makes the design more sys-
tematic and less application dependent.

Due to the nonlinearities in the TS models, there are no guarantees that an analytic
decoupling law can be obtained in the general case. Such an analytic decoupling law
can be derived for an affine fuzzy model, i.e., the model is linear with respect to the
input signal. To deal with non-affine fuzzy models, we suggest two other methods.
One exploits the structure of the fuzzy model to provide the decoupling law, while the
other uses numerical optimization to invert the model.

3.3.1 Decoupling of affine TS fuzzy models

Currently for continuous-time affine systems there is a commonly used theory for
input-output decoupling (Nijmeijer and van der Schaft, 1990; Isidori, 1995), but un-
fortunately, it cannot be applied to discrete-time systems. In the discrete-time case,
the system dynamics are represented by differences rather that derivatives. As a result,
the affineness of a discrete-time system does not provide extra tools to solve nonlinear
control problems — the chain rule for the calculation of derivatives cannot be applied
to differences. Therefore, the “algebraic approach” of the differential geometry theory
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(Fliess et al., 1983; Monaco and Normand-Cyrot, 1995; Kotta, 1995) is used to solve
the discrete-time decoupling problem (Mollov, Babuska and Verbruggen, 2000a). The
basic idea of the algebraic approach is the same as in the continuous-time case: ob-
tain a second discrete-time nonlinear system such that when it is placed in front of the
original system, the outputs of the original system are equal to the inputs of the second
system. The underlying theory is summarized in Appendix B.

An analytical solution to the decoupling problem for a general (non-affine) TS
fuzzy model is difficult to obtain, as shown in Example 3.4.

Example 3.4 Consider a 2 x 2 non-affine MIMO fuzzy model with K| and K> rules
for the first and the second output, respectively

yk+1)= 5K 3 Zﬂn Miaryi (k) + Giaya (k) +marui (B)miaua (k) + 615
17, i=
pk+1)= ZKZ B 2521 Ny (k) + Girya (k) + maiwn (k) mpaua (k) + 62
i=1 21 i:
where

Bri(k) = par (y1 (k) iz (2 (k) prar (w1 (k) paz (w2 (k).

Because the membership functions nonlinearly depend on the inputs (recall (2.7)), a
system of nonlinear algebraic equations results that has to be explicitly solved for u(k)
substituting y(k + 1) = Yeeg(k+ 1). Even for K; =2, | = 1,2, the analytic solution is
cumbersome (if one exists at all).

Therefore as a first step we consider affine fuzzy models with the input-output
representation
y(k+1)=F(x(k)) + G (x(k))u(k). (3.17)
Here, the regression vector in the premise part of the fuzzy rule (2.4), X; does not
contain the current input u{k), i.e. the DOFs are a function of the state vector x(k)
(recall (2.7))

P
B (xi(k)) = H PAs, ().
From (2.6) and (3.17)

K

5 Bua (xu(k)) My
TR Bu(xi(k)
I=1,...,p, j=1,....m

Then the necessary and sufficient condition for the existence of an input-output decou-
pling law amounts to rank G = p, provided that p < m, see Theorem B.1. As a result,

Gi; (x(k)) (3.19)
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a necessary (but not sufficient) condition for decoupling of an affine TS model is that
at least a single rule has to be active at one moment in time. This implies that in every
row of G there will be at least a single non-zero element.

Provided that the necessary and sufficient condition is satisfied, the input-output
decoupling is given through

et (k) = G (x(k)) (Yret (k) — F(x(k))), (3.20)

where yrf(k) is some desired reference signal to be followed.

3.3.2 Decoupling of general (non-affine) TS fuzzy models

When the TS model is a non-affine one, we can on-line at each sampling instant find
an analytic decoupler that corresponds to the linear time-varying model (2.9) currently
in use. Another possibility is to seek a numerical solution by solving a nonlinear
optimization problem, which is a particular case of the one utilized in model predictive
control.

Analytic decoupling. Regarding the first approach, the problem is that the control
input non-linearly enters the TS model (see Example 3.4), so that the model cannot
be straightforwardly inverted. To design a decoupler, we consider the fuzzy model
to be linear time varying, rather than a nonlinear time-invariant one. In such a setup,
the decoupler is redesigned at each sampling instant using the current linear model
(Fig. 3.5). The decoupling algorithm is summarized in Algorithm 3.1.

Numeric decoupling. The numeric decoupling law is obtained by solving a non-
linear optimization problem. The cost function used is a particular case of the cost
function utilized in Model Predictive Control (MPC) in Chapter 4

N
ngnJ=;||v(k+¢)—y(k+i)||f,, (3.22)

where y(k + ) is the output of the fuzzy model, v(k + ¢) is the output reference (of
length V) to be followed. If a suitably designed reference is applied, the only devia-
tions of y(k + ¢) from v(k +4) are due to loop interactions. In this way, the optimal
sequence u = argmin.J will eliminate the coupling as much as possible. The rela-
tive importance of the outputs is determined by the weighting matrix P. For N =1
a static decoupler results, while N > 1 leads to a dynamic one (Isidori, 1995). The
term dynamic decoupler is used here in the sense that for N > 1 the control signal
u = argminJ depends on the model prediction, where the model states are initialized
with previous and current outputs and previous inputs.

An additional computational problem arises when constraints on the process inputs
are present. In such a case the constraints first have to be propagated back through
the fuzzy model to the primary controller that generates v. Different approaches have
been proposed to address the problem in this situation, see (Nevisti¢ and Morari, 1995;
de Oliveira et al., 1995; Botto et al., 1999):
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Algorithm 3.1 (Time-varying input-output decoupling)

Step 1: Compute the degree of fulfillment 3;; (Xl(k)) according to (2.7).
Note that X; (k) = [x] (k),u” (k— I)JT, since u(k) is not available yet.

Step 2: Compute the current linear model’s parameters ¢;(X;(k)) and
n,(X.(k)) according to (2.10).

Step 3: Set up the transfer function matrix G(k) (recall (3.4))

gu g2 .- Gim
g1 g2 .- Gom
Gky=1| . . . o, (3.21)
gpl Gp2 -+ Gpm
where
n; (Xi(k))u;(k—1) .
91]: l'J( ) 1 =1,..., D _]:17 ,m

L= (Xu(k))Xa (k)
Step 4: The decoupling law is
u(k) =G~ (k)v(k),

where v(k) is some desired signal, e.g., desired reference trajectory, or
controller output as in Fig. 3.5.

= Constraints on the first move only. This is the simplest approximation which leads
to suboptimal control moves. The future control moves may violate the constraints
but they are not applied.

m Identical constraints on the first and future moves. Its disadvantage is that unnec-
essarily conservative control moves may result.

m  Use first- or second-order approximations of the nonlinear map between u and yer
over the complete prediction horizon. To do this, compute the complete expansion
of the nonlinear constraint relation over the prediction horizon and then perform
linearization around the different points. In this way, feasible control moves are
guaranteed without the conservatism of the identical constraints.

By comparison, the input-output decoupling is an inherent characteristic of the

MPC controller (Chapter 4), which depends on (7) the model dynamics and (i) con-
strains on the change rates of the control inputs.
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3.4 An example with simulated and real-time liquid level control in a
MIMO cascaded-tanks setup

The laboratory-scale cascaded-tanks setup shown in Fig. 3.6 is used as an example
to illustrate the discussed methods and demonstrate their real-time performance. The
control objective is to follow set-point changes for the liquid levels h = [hy, h2]” in
the lower two tanks by adjusting the flow rates q = [g;, qz]T of the liquid entering the
upper tanks. Coupling is introduced by a non-symmetric cross-connection between
the upper and lower tanks: the cross-sectional area of the pipe connecting tank three
with tank two is 10% larger than the one between tank four and tank one, respectively
15.21mm? and 12.57mm?. The cross-sectional areas of the pipes connecting tank
three with tank one and tank four with tank two are 36.32mm?. All tanks have a length
of 0.5m and the total height of the setup is 1.5 meters. The liquid pumps are located at
the ground level of the setup and the liquid is pushed up to the top of the upper tanks
via plastic pipes. As a result, the pumps have to overcome the weight of the liquid in
the pipes. This introduces directionality to the step response of the process.

9

Figure 3.6.  Four cascaded-tanks setup.

3.4.1 Fuzzy modeling

A TS model is obtained by using experimental input-output data, sampled with pe-
riod T; = 5s. The structure of the model is defined using the physical structure of
the system: second-order models for both outputs with one sampling-time delay in
the inputs during which the water flows down through the tanks. The fuzzy rules de-
rived by using the clustering algorithm presented in Appendix A are given in (3.23).
The antecedent membership functions A;; », are Gaussian, with membership functions
centers shown in Tab. 3.1. The performance of the model on a validation data set can
be seen in Fig. 3.7.
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Output 1
1. Ifh[(k') I .A11,| and hl(k——- 1) is .A1|,2 and ql(k) is .,411’3 and
q1(k—1)is Ay 4 and g2(k) is A, 5 then
hi(k+1)=0.919h (k) — 0.156h(k — 1) +0.024¢,(k) + 0.075¢, (k — 1)+
0.015¢,(k) +0.007
2. If hl(k) is -Alz,l and h[(k — 1) is ./412,2 and q1 (k) is ./412,3 and
q1(k—1)is A4 and g;(k) is Aj2 5 then
hi(k+1)=1.13h;(k) — 0.314h,(k — 1) +0.032q,(k) + 0.17 1 g (k — 1)+
0.048¢,(k) —0.0512
3.If h] (k) is A|3,] and h](k‘ — 1) is A13,2 and Q|(k2) is .A1373 and
qi (k‘ — 1) is A13‘4 and (D(k) is AIB,S then
hi(k+1) = 1.85h; (k) — 0.804hy (k— 1) +0.01¢ (k) — 0.041¢, (k — 1)—
0.003¢g2(k) — 0.008
(3.23a)
Output 2
1. If hy(k) is Azp,; and ha(k — 1) is Az > and ¢, (k) is A1 3 and
(k) is Azi 4 and g2 (k — 1) is Az 5 then
ha(k -+ 1) = 1.02hy (k) — 0.251ha(k — 1) +0.012¢, (k) — 0.0025(k)+
0.054¢2(k — 1)+ 0.0082
2.If hy(k) is Az and ha(k—1) is A2 and ¢ (k) is Az 3 and
Q2(]€) is .«422,4 and qz(k — 1) is .A22,5 then (3.23b)
ha(k+1) = 1.35hy(k) —0.498hy(k — 1) +0.023¢, (k) + 0.005¢, (k) + '
0.059¢2(k — 1) — 0.0104
3.1f hao(k) is Azz, and ha(k — 1) is Az and g (k) is Az 3 and
q2(k) is Azz e and g2 (k — 1) is Az s then
ho(k+1) = 1.86Ry (k) — 0.929h,(k — 1) — 0.0054, (k) — 0.006¢2(k)-+
0.015g2(k — 1) +0.0302

Table 3.1. Four cascaded-tanks setup. Centers of the fuzzy membership functions.

output,rule Ay A2 Az Aya Ay
(1,9)

7
L]

0.103 0.103 0.164 0.160 0.304
0.200 0.200 0.379 0.379 0.293
0.256 0.255 0429 0.432 0.338

0.089 0.088 0.305 0.159 0.151
0.173 0175 0313 0363 0.365
0.267 0.267 0371 0.454 0461

—_ =
W o -

k)

O U
W R =

To give a quantitative measure of the model accuracy, two performance indices are
used: Root Mean Square (RMS) error and Variance Accounted For (VAF) in %, which
values are RMS = [0.0129, 0.0217]% and VAF = [99.0191, 97.6697]7, respectively.
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Figure 3.7. Four cascaded-tanks setup. Validation of the fuzzy model. Top: level
hy, bottom: level hy. Solid line: process output, dashed line: model prediction. The
performance indices are RMS = [0.0129, 0.0217)7 and VAF = [99.0191, 97.6697]%.

3.4.2 Analysis of interactions

RGA analysis. Since the antecedent structure of the fuzzy model (3.23) differs for
the two outputs, it is not possible to match the corresponding rules. Therefore it is
necessary to provide the points for which the RGA has be computed. Three such
points are given in Tab. 3.2. The output values are used later as a desired reference to
be followed by the control system, which is used to test the methods developed in the
current and subsequent chapters.

To illustrate the RGA computation, consider the operating point that corresponds
to the first fuzzy rules for both outputs. The degrees of fulfillment for the outputs are
By = [0.3333,0.9925,0.3006] and 3, = [0.0093, 0.9945, 0.1068]. The local model is
(recall (2.9))

Table 3.2. Input and output values for three operating points. The control signal is
given in electrical units in the interval [0, 1], and the liquid level is given in meters.

Operating point 1 2 3

h 0.15 025 035
ha 0.12 0.15 0.18
@ 0.36 038 0.40

¢ 0.27 036 040
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hi(k+1) = 1.2189h, (k) — 0.3719h, (k — 1) 4+ 0.0264q, (k) +0.1122q; (k — 1)
+0.0319¢2(k) —0.0314

ho(k+ 1) = 0.9549h; (k) — 0.3667hy(k — 1) +0.0140g, (k) +0.0028 g2 (k)
+0.0377g,(k — 1) — 0.0044

Both MISO submodels are stable, with poles z;, = 0.6095 £:0.0217 and 234 =
0.6095 £10.0217, respectively. The steady-state transfer matrix G is

G (11047 0.3801
~ 102270 05717

and the resulting Relative Gain Array

_I\T 1.1583 —0.1583
A=Gx(GT)" = < —0.1583  1.1583 > '
The RGAs for the different operating points are shown in Tab. 3.3. Looking at the
As, deviations are encountered that show varying coupling at different levels. Never-
theless, all RGAs are diagonal dominant, indicating pairing between the left pump and
the left tank, and between right pump and right tank. The presence of negative As at the
first two operating points indicates that the two control loops are mutually destabiliz-
ing. For the third point, the interaction leads to extra oscillations, see Fig. 3.10a where
the system performance achieved through decentralized PI controllers is shown. At the
second point, the coupling (—0.0962) can be neglected, i.e., no decoupler is necessary

here. For the two other points, however, such a decoupler should be designed.

Table 3.3. RGA for the operating points of Tab. 3.2.

rule A

1.1583 -0.1583
-0.1583  1.1583

1.0962 -0.0962
-0.0962  1.0962

0.8947  0.1053
0.1053  0.8947

1

Sensitivity analysis. Figure 3.8 shows the static input-output interactions for a 50
steps-ahead simulation after a change in either input with an amplitude of 0.0345. At
the moment of the input variation, the process is in a steady-state operation for the cor-
responding combination of ¢, and ¢,. The following can be observed from the figure:
(#) the influence of ¢, on h; is significantly less than the influence of ¢; (Fig. 3.8a),
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and the influence of ¢; on h; is significantly less than the one of ¢, (Fig. 3.8b); (i%)
there are some differences between the influence of the g; on h; and that of ¢; on h,,
which result from the non-symmetric coupling. Tab. 3.4 gives the summarized values
for the sensitivity analysis presented in Fig. 3.8.

Note that in all the four figures shown, there is a relative sensitivity peak at the low
levels. This can be explained through the observation that at the low levels, a change
in one of the outputs requires (relatively) big input changes that influence the other
output, compare with Tab. 3.2. There are also a couple of peaks visible in the figures.
In Fig. 3.8a top, a mound in 521‘((:; 50 s present that shows higher sensitivity of h; to
combinations of ¢; and ¢;. The phenomenon is due to the flow of the liquid in the
tanks: at certain levels in the upper tanks, vortices appear that swiftly suck the liquid
in the lower tanks. Note that the strength of this phenomenon varies in the different
tanks.

Table 3.4. Aggregated values for the steady-state sensitivity analysis of the cascaded-
tanks setup.

32; Mean Max Min

st 1.1 3.23 0.17

q1

st 052 276 —0.57

aqi

sh 0.46 456 —0.62

q2

sh 1.12 438 -0.59

@

To give an impression of the dynamic coupling, Fig. 3.9 shows the series gD

9;(k) >
._"Sg;gz])rso) foré,j = 1,2 at level h = [0.209, 0.187]7m (which corresponds to q =

[0.5,0.5]7) for variations in the inputs with amplitude of 0.0345. The non-symmetric
steady coupling is clearly visible, as the influence of ¢; on ki, (sf;f) is greater than the
influence of g, on h; (s%!). The relative type of the sensitivity measure used makes
the quantities independent from the absolute values at which it is computed.

3.4.3 Decoupling control

Decoupling control with a non-affine fuzzy model. Despite being only a 2 x 2 sys-
tem, the cascaded-tanks setup is difficult to control by means of a decentralized control
structure. Figure 3.10 shows the performance achieved by using two detached digital
PI controllers (with parameters? given in Tab. 3.5)

u(k) = (Kp+ Zf{l) e(k),

2The controller parameters are initially tuned with no coupling present, i.e., without the cross connection
between the channels. Then, with the cross connection, they are fine-tuned to avoid an agitated response.
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Figure 3.8. Four cascaded-tanks setup. Static coupling for 50-step ahead simulation
of the TS model: (a) Lower left tank, (b) Lower right tank.
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Figure 3.9. Fourcascaded-tanks setup. Dynamic coupling for inputs changes with am-
plitude 0.0345 at steady level h = [0.209, 0.187]"m, corresponding to ¢ = [0.5, 0.5]7.

where K, and K; are the proportional and integral gains, respectively, and T =5
is the sampling period. Although the controllers are tuned for a smooth rather than
fast response, they cannot compensate for the coupling effects following a change in
either output reference. The observed behaviour corresponds to the one indicated by
the RGA analysis.

The decoupling scheme depicted in Fig. 3.5 is used to eliminate the coupling. The
outputs of the detached PI controllers are fed to a time-varying decoupler based on the
fuzzy model (3.23). Using the model, at each sampling instant the input-output gains
are calculated, the corresponding transfer matrix is inverted and placed between the
PIs and the system. Note that here different tuning is used for the controller parameters
(Tab. 3.5), since the decoupler changes the system’s properties. In this sense the PI
controllers are tuned with respect to the augmented “decoupler & setup” system.

The system outputs and the control signals are given in Fig. 3.11. Comparing the
results achieved without a decoupler (Fig. 3.10a) with those achieved with a decoupler
(Fig. 3.11a), one can see that the improvement is considerable. While one may be
tempted to attribute such a performance gain to the tuning of the controllers, it is
necessary to realize that the decoupler does not only cancel the coupling but also
compensates for the nonlinearities in the setup, making the augmented system linear.

Decoupling control with an affine fuzzy model. To illustrate the decoupling scheme
for affine TS models, we constructed an affine model of the cascaded-tanks setup
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(b) Control inputs. Top: g, bottom: ¢;.

Figure 3.10. Real-time decentralized P! control of the cascaded-tanks setup.
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(b) Control inputs. Top: q, bottom: q;.

Figure 3.11.  Real-time decoupled PI control of the cascaded-tanks setup.
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Table 3.5. Pl parameters. The subscripts ND and D stand for Not Decoupled and
Decoupled, respectively.

PI Knvpp Knpi Kpp Kbpi
Left 0.02 0.0025 0.05 0.045
Right 0.105 0.00425 045 0.0750

based on the input-output data. The affineness of the fuzzy model means that inputs
of the system appear only in the consequence part, but not in the premises of the fuzzy
model.

The general (non-affine) TS fuzzy model (3.23) is used to simulate the setup. Al-
though structurally identical to the model employed in the controller, the presence of
the current inputs in the rule premises of the process model results in a considerable
difference between the two.

The decoupling method described in Section 3.3.1 is applied in combination with
a linear model predictive controller (Mollov, Babuska and Verbruggen, 2000a). The
predictive controller is used to provide a desired reference, taking into account the
input and output constraints (see Chapter 4). The outputs are limited to the interval of
[0, 0.5] m imposed by the real process. The input constraints of [0, 1] reflect the capac-
ity of the water pumps. The linear model used in the predictive controller is derived at
(hy, h2) = (0.2,0.15) m and is used throughout the simulation. A prediction horizon
of Hp, = 11 and a control horizon of H. =1 are used and the results are presented in
Fig. 3.12 through Fig. 3.14. To illustrate the influence of the input constraints on the
achievable decoupling, we consider three cases discussed in Section 3.3.2: (¢) no in-
put constraints; (¢¢) input constraints on the first control move only, and (#47) constant
input constraints over the complete prediction horizon.

As can be observed from the figures, when the input is not restricted, full decou-
pling is achieved. The changes in one of the outputs do not reflect on the other. This,
however, requires quite fast changes in both inputs. As a consequence, in the pres-
ence of input constraints, slight coupling remains (Fig. 3.13) (Note that the influence
of the input constraints on the coupling is also the same in the MPC controller, see
Chapter 4). Similar performance can be achieved by penalizing the control changes
in the optimized cost function. The influence of the constraints can be assessed by
comparing controller performance with constraints on the first move only and con-
stant constraints over the complete prediction interval (Fig. 3.14). In the latter case the
response is much more sluggish, but again almost complete decoupling is achieved.

Note that the computational complexity in the presented analytic decoupling meth-
ods is very low. The decoupling algorithm used for a non-affine TS model (Algo-
rithm 3.1) results in a matrix inversion which can be calculated either off-line or
on-line at each sampling instant. Comparable, although computationally a bit more
demanding (because of the way in which the matrix-to-be-inverted is composed) is
the decoupling method for an affine TS model. Also here the matrix G(x(k)) (in
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Figure 3.12. Simulated decoupled control of the cascaded-tanks setup. System out-
puts and control signals when no input constraints are present.
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Figure 3.13. Simulated decoupled control of the cascaded-tanks setup. System out-
puts and control signals when there are only constraints on the first control move.
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Figure 3.14. Simulated decoupled control of the cascaded-tanks setup. System out-
puts and control signals when there are constant constraints on the input.

(3.19)) can be hard coded or on-line inverted. The computational complexity of the
numeric decoupling method, however, is much greater — the numerical decoupling
law is obtained by solving a nonlinear optimization problem which is, in general, a
time-consuming task with no guarantee that the optimal solution will be obtained (see
Chapter 4).

3.5 Summary and concluding remarks

This chapter presented an extension of the Relative Gain Array (RGA) that facilitates
the analysis of interactions in MIMO TS fuzzy models (Section 3.2.1). The specific
TS structure is explored in order to obtain a small number of RGAs that indicate the
interactions throughout the model. Depending on the antecedent structure, it may be
possible to compute the RGAs for the separate rules. These RGAs, however, cannot
provide information about the coupling when two or more rules are active. To obtain
that information for a specific point in between in the rules, we first derive a linear
model valid around that point.

Another tool to analyse the interactions is the output sensitivity function proposed
in Section 3.2.2. It measures how (in)dependent a process output is on variations in
one or more of its inputs. The function is computed as partial derivative of the output
with respect to a given input while the remaining inputs are kept invariant.

The insight obtained by both the RGA and sensitivity analyses should be used
in the design of the control system. While within a certain operation region with
weak interactions SISO controllers may suffice, in a different region where strong
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coupling is present a full or partial decoupler should be designed. In Section 3.3,
three methods were introduced that achieve such decoupling, taking advantage of the
particular structure of the TS model. Essentially all of them aim to invert the model and
the difference between them is shown to be in the means used to achieve this inversion.
If the fuzzy model is an affine one, it is possible to obtain an analytic decoupling law
by applying tools from the differential geometry theory (Appendix B). For non-affine
fuzzy models we can either compute the input-output gains at each sampling instant,
or numerically invert the model by solving a nonlinear optimization problem.

The developed techniques were applied to a TS fuzzy model of a laboratory-scaled
cascaded-tanks setup (Section 3.4). The analysis based on both RGAs and output sen-
sitivity functions indicated strong input-output coupling that varies for the different
operating regions. Since detached controllers of PI type could not provide satisfac-
tory performance, a decoupler based on the fuzzy model was designed. It not only
cancelled the coupling, but also compensated for the nonlinearities in the setup. It
also rendered the resulting “decoupler & setup” system linear (input-output feedback
linearization), simplifying the control problem.

Finally, it should be noted that the proposed decoupling methods have different
computational complexities. The decoupling of affine TS models can be achieved
computationally very efficiently. This allows for their use in situations where, due
to short sampling times, some of the more advanced MIMO control techniques can-
not be properly utilized. The same holds for the analytic decoupling method for the
non-affine (general) TS model. In contrast, the numeric decoupling method is compu-
tationally demanding, which limits its application in fast processes. However, it is the
most general method that can be applied regardless of the model structure.




4 FUZZY MODEL PREDICTIVE
CONTROL

This chapter focuses on the optimization problem in fuzzy model predictive control.
The success of linear model predictive control in controlling constrained linear pro-
cesses is mainly due to the fact that the on-line optimization problem is convex. When
the process model is nonlinear fuzzy model, non-convex, time-consuming optimiza-
tion is necessary, with no guarantee of finding the optimal solution (Section 4.1). A
possible way around this problem is to linearize the fuzzy model at the current op-
erating point and use the linear predictive control (i.e., quadratic programming). For
predictive control with a long prediction horizon, however, the influence of the lin-
earization error may significantly deteriorate the performance. This is remedied by
linearizing the fuzzy model along the predicted input and output trajectories (Sec-
tion 4.3). One can further improve the model prediction by iteratively applying the
optimized control sequence to the fuzzy model and linearizing along the so obtained
simulated trajectories. Four different methods for the construction of the optimiza-
tion problem are proposed, making difference between the cases when a single linear
model or a set of linear models is used. By choosing an appropriate method, one
can achieve a desired tradeoff between the control performance and the computational
load. Section 4.4 shows how the optimization problem is formulated based on linear
time-varying state-space models.

The proposed techniques are tested and evaluated using two examples: control of
pH in a simulated continuous stirred tank reactor and real-time liquid level control of
a laboratory-scale tanks setup (Section 4.5).
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4.1 Problem formulation

In model predictive control (MPC), the control action is obtained by solving on-line, at
each sampling instant, an optimization problem in order to minimize the tracking error
(and possibly also the control effort). Nonlinear MPC should be applied in situations
where the controlled process is inherently nonlinear, large changes in the operating
conditions can be anticipated during routine operation, such as in batch processes,
or during the start-up and shutdown of continuous processes. The use of nonlinear
models in MPC is motivated by the need to improve the performance; these models
can predict the process behaviour better. TS fuzzy models proved to be suitable for
the use in nonlinear MPC because of their ability to accurately approximate complex
nonlinear systems by using data combined with prior knowledge.

The main problem in the real-time application of fuzzy MPC is that the convexity of
the optimization problem is lost, and hence time-consuming optimization is necessary,
with no guarantee of finding an optimal solution. This hampers the application to fast
processes, where iterative optimization techniques cannot be properly used for short
sampling periods. Here, methods are presented that avoid non-convex optimization by
employing a single state-space local linear model or a set of these that approximates
the fuzzy model along the predicted trajectories. The structure of the optimization
problem is explored in order to arrive at a suboptimal solution which is as close as
possible to the optimum in a limited amount of time, and this approach makes nonlin-
ear MPC also suitable for fast processes. Our approach is based on linear time-varying
(LTV) prediction models derived by freezing the parameters of the fuzzy model at a
given operating point!. (Note that other means for obtaining linear models from the
fuzzy model are also possible, for example Kavsek et al. (1997) extract a step response
model from the fuzzy one, while Abonyi et al. (2001) apply Jacobian linearization to
the fuzzy model.) The control signal is obtained by solving a constrained quadratic
programme (QP). To account for errors introduced by the linearization, an iterative
optimization scheme is proposed. In such a setting, the QP solution provides a search
direction toward the minimum of the optimization problem. Convergence is guaran-
teed through a line search mechanism that considers reduction both in the cost function
and in the constraints. The method belongs to the general class of sequential quadratic
programming methods (Powell, 1978; Pshenichnyj, 1994). However, a specific fea-
ture of our approach is the way we define (and update) the Hessian and gradient, using
the LTV interpretation of the TS fuzzy model. The advantage is its generic form that
does not depend on the structure of the fuzzy model used. It is similar to (but more
general than) the one presented by Gerksi¢ et al. (2000), who designed a nonlinear
model predictive control method for Wiener type models. To predict the process out-
put, the authors combine the linear dynamic part with a linear approximation of the
static nonlinearity derived at each sampling instant.

INonlinear models can be considered as linear-time varying (LTV) models around a given trajectory. From
such a point of view, the term linear parameter-varying (LPV) models would be better suited. However, for
consistency reasons we use the term LTV throughout the thesis.
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The considered fuzzy model predictive controller computes the optimal control
sequence u(k) with respect to the following cost function

H, H,
minJ = 3 [|ry(k+ilk) =5k +ilk)[lp + X IAF(k+i— 1k,
i=Hnin i=Hpnia

Hc—1 H.—1
+ X ek + k) —alk+ k) g + 3 la(k+jlk)5q, 4D
j=1 j=1

Here, §(k +i|k) is the output of the fuzzy model (2.6) predicted at time k, A§(k +14|k)
is the predicted output increment, ry(k + i|k) and r,(k + i|k) are the output and input
references, available at time k, @(k + ¢|k) and Ali(k + i|k) are the control signal and
its increment, assumed at time &, respectively, and || - || represents the inner-product
norm. The cost function J penalizes: (a) the deviations of the predicted controlled
outputs §(k +i|k) from the output reference trajectory ry(k +i|k), (b) the predicted
output increment Ay (k +i|k), (c) the deviations of the manipulated inputs @(k +|k)
from the input reference trajectory r,(k + ¢|k) (usually this is done when there are
more inputs than outputs), and (d) the input increment Au(k + j|k).

The parameters Hp, H. and Hm,, called the prediction, control and minimum
cost horizon, respectively, define the intervals over which the optimization is carried
out. The control horizon cannot be longer that the prediction horizon, H. < H,, and
a(k+jlk) =a(k+ H, — 1{k) for all j > H,, i.e., the control signal is manipulated
only within the control horizon and remains constant afterwards. The weights P;,
AP;, Q; and AQ; determine the relative importance of the different terms in the cost
function. Some of the above parameters may be dictated by economic objectives of
the control system, but essentially they are tuning parameters which can be adjusted to
give satisfactory performance in terms of reference tracking, disturbance rejection and
robustness against model-plant mismatch (Soeterboek, 1992; Maciejowski, 2002).

The inputs and outputs are subject to (time-varying) level and rate constraints

Upmin (K + 7 %) < u(k+jlk) < Umax (K + 7| k), (4.2a)
Aumin(k+j|k) < Au(k+7|k) < Aumax(k+j|k)7 (4.2b)
Ymin(k +14|k) < ylk+ilk) < Ymax(k+|k), (4.2¢)
AYmin(k +1|k) < Ay(k+ilk) < A¥max(k+1ilk). (4.2d)

Using the fuzzy model (2.6) and propagating the model output backward, one can
transform the output constraints into constraints on the control signal; hence (4.2) can

be written as
G;(u) <0, ji=1,...,c 4.3)

where c is the total number of constraints® (Boggs and Tolle, 1995; Boggs et al., 1999).
Given the optimization problem (4.1) — (4.3) for which we seek an optimal control
sequence Uy, the idea is to “adjoin ” the constraints (4.3) to the performance index

2Here it is assumed that the constraints are linearly independent, as the rank of the set of constraints, rather
than the number of constraints is the important value.
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(4.1) by a set of ¢ “undetermined multipliers,” A,..., A, as follows (Bryson and Ho,
1981)

L{w,)) = J(u)—i—i)\jGj(u)
= J(u)+AG(u). 4.4)

The function L(u, A) and the constants Ay, ..., . are often referred to as the Lagrange
function and Lagrange multipliers, respectively.

Then a QP sub-problem is formulated using a second-order approximation of the
Lagrange function (4.4). If the optimization problem is a convex programming prob-
lem, that is, both the cost function J(u) and the constraints G (u), 3=1,...,care
convex functions of u, then the necessary and sufficient condition for a global min-
imum is the existence of a solution of the Kuhn-Tucker (KT) equation (Kuhn and
Tucker, 1951)

(o3
VI (ugpt) + 2, AP VG (0p) = 0. (4.5)
j=1

The underlying idea is that if u,y is to be an optimal point subject to G; (uey) =0,
j=1,...,¢, ie., when all constraints are active, then V.J (uom) must lie between the
negative gradients of G;(uopn). Analytically this means that V.J(ugp) can be ex-
pressed as a negative linear combination of VG (o). In other words, “the gradient
V J(uop ) must be pointed in such a way that decrease of J can only come by violating
the constraints” (Bryson and Ho, 1981). Therefore, for the gradients to be canceled,
the Lagrange multipliers (A; > 0, j = 1,...,¢), are necessary to balance the devia-
tions in magnitude of the cost function and of the constraint gradients. Since only
active constraints are included in this canceling operation, the Lagrange multipliers
corresponding to non-active constraints (G (uep) < 0) are set to zero.

If we use the nonlinear TS model, however, the cost function is non-convex with
respect to the control signal. For the resulting non-convex optimization problem, the
existence of a solution of the KT equation is then only necessary but sufficient con-
dition to guarantee that a global minimum is attained. With the method we propose,
the optimization problem is approached in a different manner. The method has the
same structure as the Sequential Quadratic Programme (SQP) (given in Appendix C),
which is used to solve optimization problems for which the cost function and/or the
constraints are nonlinear functions of the control signal u in the following way:

1. Update the gradient and the Hessian of the Lagrange function (4.4).
2. Solve a QP subproblem based on the updated gradient and Hessian.
3. Perform a line search to ensure convergence in an iterative scheme.

The major difference lies in the procedure used to update the gradient and the Hessian
of the Lagrange function (Step 1 above). In most SQP implementations, the gradient
and the Hessian are updated at each iteration through a quasi-Newton approximation
(Appendix C.1). However, such an approximation introduces errors that can slow
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down the convergence of the solution and even lead to a local rather than to the global
minimum. Therefore instead of using a quasi-Newton approximation to update the
gradient and the Hessian, we first linearize the original fuzzy model R at the current
operating point or along a predicted trajectory (Appendix D). Having transformed
R to a local linear model (or a set of such models), we can apply the results from
linear MPC (Garcia et al., 1989) to get a direct — not an approximated — expression
for the gradient and the Hessian (Mollov, Babuska, Abonyi and Verbruggen, 2002).
The convergence of the optimized control sequences to the optimal one is guaranteed
through a line search routine that considers reduction both in the cost function and the
constraints (Appendix C.3).

4.2 Internal model control scheme

To compensate for the disturbances acting on the process, measurement noise and
model-plant mismatch, the internal model control (IMC) scheme is applied (Economou
et al., 1986). The purpose of the fuzzy model working in parallel with the process is
to subtract the effect of the control action from the process output (Fig. 4.1). If the
predicted and the measured process outputs are equal, the feedback signal is zero and
the controller works in an open-loop configuration. If a disturbance acts on the pro-
cess output, the feedback signal is equal to the influence of the disturbance and is not
affected by the effects of the control action. This signal is filtered and subtracted from
the reference. With a perfect process model, the IMC scheme is hence able to cancel
the effect of unmeasurable output-additive disturbances. Two basic properties of the
ideal IMC are inherent stability and perfect control. Inherent stability means that if the
controller and the process are input-output stable and a perfect model of the process
is available, the closed-loop system is input-output stable. If the system is not input-
output stable, but it can be stabilized by feedback, IMC can still be applied. Perfect
control means that if the controller is an exact inverse of the model, and the closed-
loop system is stable, then the control is error-free, i.e., y(k) = r(k), Vk. However,
in practice, the model is never an exact representation of the process. The feedback
signal then contains both the effect of unmeasurable disturbances and of the modeling
errors, and it becomes a true feedback. For large modeling errors, it deteriorates the
performance of the control system and may introduce stability problems. The feed-
back filter is introduced in order to filter out the measurement noise and to reduce the
loop gain (Morari and Zafiriou, 1989). The IMC scheme thus provides the nominal
stability, i.e., stability for the case when the model-plant mismatch can be neglected.

4.3 Schemes for obtaining linear models

The LTV models for the QP sub-problem are obtained as follows. The fuzzy model is
used to predict the future process behaviour. Then the linear models are derived as the
fuzzy model is linearized along the predicted input and output trajectories. Figure 4.1
presents the flow diagram of the fuzzy model predictive controller.

LetU = [u(k+1),..., u(k+ Hy)) e R™*Hrand Y = [y(k+1)....,y(k + Hy)] €

RP*Hr be some general input and output model trajectories, Uop: € R™*Hr and Yop, €
RP*Hy be the (unknown) optimal trajectories obtained by applying o to the nonlin-
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Figure 4.1.  Fuzzy model predictive control.

ear fuzzy model, and U* € R™*Hr and Y* € RP**h the trajectories computed by the
linear predictive controller (Quadratic Programme (4.22)—(4.25)).
Denote the LTV model extracted from the fuzzy model at the (k + ¢)th step by

M(k+i) = {A(k+9),B(k+i),Ck+9)} i=0,...,Hp, (4.6)

the LTV system comprising the models M (k +7) by

M= {M(k),M(k+1)...., Mk + H,)}.

IfU* = Uop and Y™ = Vo, then the solution of (4.1) — (4.3) is identical to the solution
of linear MPC, based on the LTV models. However, Uy, and Vop are not available,
and the problem is how to generate U{*, “close” to the optimal solution Iy that would
lead to Vopt, without solving (4.1) — (4.3).

M is generated by linearizing R along the trajectory I/ and Y, therefore the prob-
lem is the estimation of If and . Several methods can be distinguished depending on
the way M is obtained. Generally they can be classified into two groups: non-iterative
and iterative ones (Mollov, van der Veen, Babuska, Abonyi, Roubos and Verbruggen,
1999; Mollov, Babuska, Abonyi and Verbruggen, 2002).

4.3.1 Non-iterative methods

In the non-iterative methods, a single local model of a set of local models, obtained
at the current time instant & is used in the quadratic programme and the obtained QP
solution is directly applied to the controlled process.

Single model. This method is the basic one. The model set M comprises a single
linear model M (k), extracted at {u(k — 1),y(k)}. This model is used throughout the
entire prediction horizon. Even if this model is very accurate at the linearization point,
its accuracy decreases over the prediction horizon. As a consequence, there may be a
significant prediction error at k + Hp,. To reduce the error, a set of local linear models
can be extracted from the fuzzy one along the trajectories found at the previous time
instant k£ — 1. This is the basis of the multiple model method.
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Multiple model based on trajectory computed at the previous sampling instant.
LetU4*(k— 1) and Y*(k — 1) be the input and output sequences obtained by optimiza-
tion at time step k — 1 and by subsequent simulation of the nonlinear fuzzy model:

U (k1) = [w*(k = 1), 0’ (k),...,u* (k + H, — 1)]
Vik—1)= [y (k= 1,y (k).....y" (k+ Hy— 1)].

We use this information to approximate the yet unknown input and output sequences
at time k by shifting the elements one step forward and replacing the last element:

Uk) = [w(k)u* (k+1),...,u" (k+ Hy— 1), u(k+ Hy— 1)]
V(&) = [y (k)y" (k+ 1),y (k+ Hy— 1).y"(k + Hy — )]

The local linear models M = {M(k),M(k+1)...,M(k+ H,)} extracted from the
fuzzy model along {U(k), Y (k) } are then used to construct the quadratic programme
and to compute U* (k). In this way, the prediction error is reduced.

4.3.2 lterative methods

With the non-iterative methods, the performance still may be suboptimal due to the
fact that the control sequence, along which the fuzzy model is linearized, is from the
previous time step. To improve the performance, iterative methods can be introduced,
in which the optimized control sequence is not directly applied to the process, but
is first used to simulate the fuzzy model. The resulting model outputs (and control
inputs) then provide more accurate trajectories along which a new set of local models
is obtained and the whole procedure is iteratively repeated.

Iterative version of the Single model method. In the first iteration, a linear model
M (k) is obtained at {u*(k —1),y(k)}. This model is employed to compute U™ (k).
Thereafter, in the following iterations {u*(k),y(k)} is used as a linearization point.

To further reduce the error, a set of local linear model can be extracted from the
fuzzy model along the trajectories in an iterative manner. This is the basis of the
following iterative multiple model method.

Multiple model method. Rather than using a single model over the whole predic-
tion horizon, one can use a separate model for each step within the prediction horizon
(see Section 4.4), (Mollov et al., 1998a; Mollov et al., 1999b). The algorithm is sum-
marized on the following page.

Although, according to the receding-horizon principle, only the first control action
is used to control the process, the complete sequence is available. This can be used to
initialize the iterative routine at the next sample instant, starting from a point close to
the optimum.

Table 4.1 on page 67 summarizes how the linear models are obtained from the
fuzzy one in the different methods. In the iterative methods, at each iteration the fuzzy
model is linearized around the corresponding sequences V* (k) and U* (k).
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Algorithm 4.1 (Multiple model algorithm)

Use the already obtained linear model M (k) and compute the control
sequence U} (k) for the whole prediction horizon. Choose the termination
tolerance e.

Repeat for: =2,3,...

Step 1: Simulate the fuzzy model over the prediction horizon.

Step 2: Linearize the fuzzy model along the predicted trajectory
{Z,{i*_l(k), Vi \(k)} and obtain M.

Step 3: Use M to compute the new control sequence (k) for the
whole prediction horizon.

Until: |1 (k) — U, (k)| < € or the maximum number of iterations is
reached.

4.4 Optimization problem based on a linear time-varying model
Let the process be locally represented by a linear time-varying (LTV) model M (k) =
{A(k),B(k),C(k)},
Xiin(k + 1) = A(k)xiin (k) + B(k)u(k) 4.7
Yiin(k) = C(k)xiin (k).
To ensure an offset-free reference tracking, we define the optimization problem with

respect to the increment in the control signal Au, rather than with respect to the control
signal u. The state-space description is extended correspondingly

45591 [0 ][ [0 o

yink) = | C(k) 0 ] [u?zn(_kz)]

I <

Xin(k+1)

A(k)xin (k) + B(k)Au(k) (4.9)
Yin(k) =C

Xiin
(k‘)inn(k).
For the sake of simplicity, in the sequel we drop the bars from the modified state-

space form. Assuming that at time instant k the state vector and the future control
sequence are known, the future process outputs can be predicted through a successive
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Table 4.1. Schemes for obtaining local linear models. In the iterative methods these
local linear models are obtained as the fuzzy model is linearized in each iteration along
the corresponding sequences Y., (k) and U, (k).

Method, Iteration Model used at time instant

k k+1 k+2 .. k+ H,
Single model M(k) M (k) M(k) ... M (k)
Multiple model based on
trajectory computed at the
previous instant M(k) Mk+1) Mk+2) ... M(k+H,)
Iterative version of the
Single model
Iteration 1 M, (k) M, (k) M(k) ... Mk
Iteration 2 M;(k) M;(k) Myk) ... Myk)
Iteration N Mn(k) Mn(k) My(k) ... My(k)
Multiple model
Iteration 1 Mi(k) Mk+1) M(k+2) ... Mi(k+Hp)
Iteration 2 My(k) My(k+1) My(E+2) ... My(k+Hp)
Iteration N My(k) My(k+1) My(k+2) ... My(k+ Hp)
substitution:

xin(k+2) = A(k+ Dxjin(k 4+ 1) + B(k+ 1)Au(k+ 1)
=A(k+1)[A(k)xin(k) +B(k)Au(k)] +B(k+ )Au(k+ 1)
= A(k+ DA(k)xjn (k) + A(k+ 1)B(k)Au(k) + B(k+ 1)Au(k + 1)

0 Hp—1 i+1

xin(k+Hp)= [] Ak+i)xin(k)+ > [ Alk+7)Bk+0)Au(k+i),
i=Hp—1 i=0 J=Hp—1
j>i+l

where [10_p; _ A(k+1) = A(k + Hy — 1)A(k+ H, —2) - A(k + 1)A(k). The pre-
dicted output follows directly
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0

$in(k+Hp) =C(k+H,) [ A(k+i)xim(k)+ (4.10)
i=Hp—1
Hy—1 i+1
C(k+ Hp) 2 [T A®(+/)Bk+i)Au(k+i).
J=Hy—1,
F>i+1

The complete output sequence over the prediction horizon for Hy,, = 1 is given as

y(k+1) Au(k)
y(k+2) Au(k+1)
R = RXA(k)Xlin(k)+Ru . s (4.11)
y(k+ Hp) Au(k+ H.—1)
where
C(k)
C(k+ I)A(k)
Ry = , (4.12)
C(k+ Hp )Hl H, _1A(k+1)
C(k+1)B(k) 0
C(k+2)A(k+ DB(k) 0
R,= : - :
C(k+ H,)TI\_ H, _lA(k+z) (k)...C(k+H, )]'[l Hy—1 A(k+i)B(k+H.—1)
(4.13)
The input sequence for the input level constraints (4.2a) can be defined as
u(k) Im I. 6 ... 0 Au(k)
u(k+1) I In In ... 0 Au(k+1)
u(k+H.—1) | I ILn In ... Lyl |Au(k+H.—1)
N -
Iu IAu
(4.14)

where I, is an m x m identity matrix. Inserting (4.14) in (4.2a) gives

il Fayterithe at ) B

The input rate constraints (4.2b) are respectively

~Tym Iy mAumin(k)
l: IHP :|Au < |: IH:mAUm‘m(k) R 4.16)

Pm

where Iy,m is an (H, -m x Hy-m) identity matrix.



FUZZY MODEL PREDICTIVE CONTROL 69

The output level constraints (4.2c) can be derived through the prediction equation
4.11)

—R, - min(k') +RxA(k)X|m(k’)
I: R, }AU < [ ;:max(k) — R A(k)xpn (k) } . 4.17)

The output rate constraints (4.2d) are also derived through (4.11), although the expres-
sion is more involved. Since y(k) is not predicted but measured, for the prediction of
A$(k+ 1) we have
—dRy; ~AYmin(k) + AR A (k)Xiin (k) — Yiin(F) ]

Au < min , 4.18
[ :| - ’: Aymax(k) _dRXIA(k)xlin(k)+YIin(k) ' ( )

where the matrices dRy; and dR,,; are defined as dRy; = C(k) and dR,;; = C(k)B(k)—
C(k). The constraints on the predicted outputs Ay(k+2),...,A§(k + H,) are

‘ ~dR, —~Ynin(k) + dRA (k) xin (k)
‘\ [ dRu :,Au S l: Ymax(k) _deA(k)x:in(k) :, ’ (419)

where

C(k+ DA(k) — C(k)
C(k+2)A(k+ D)A(k) — C(k+ 1)A(k)

Ck+ Hy) Ty, Alh+3) — Clk+ Hy— DT 5 _, Al +3)
4.20)
C(k+2)A(k+1)B(k)~C(k+1)B(k)

i C(k+3)A(k+2)A(k+1)B(k)—C(k+2)A(k+1)B(k)

Clk+Hp) licy, 1 A(k+i)B(k)—é(k+Hp — DIlien, 2 A(k+i)B(k) ...
0
0

Clk+Hy) 15 Alk+0)B(k+He) — Clk+Hy — DI, Alk+0)B(k+He)
(4.21)
Given the LTV model (4.9), the cost function (4.1) and the constraints (4.2), the
optimization problem for the constrained linear MPC can be cast as a quadratic pro-
gramme (QP)

1
min { —AuT - Hs-Au+ fT-Au} , (4.22)
Au 2

where Hs and f are the Hessian and the gradient of the Lagrangian (4.4). The advan-
tage of the optimization problem stated in this way is that now the Hs and f can be
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straightforwardly derived from (4.1) using (4.12)-(4.14)
Hs=2 {RUT PRy + (R~ Ryp)" AP (R, —Ry2) +17,- Q- Ly, + AQ} (4.23)

£=2{ (Re-A(k) - xin(k) ~1y) " B-Rut (L u(k) 1) - Q- Lau +

(Ry-A(k) - Xiin(k) = Ry - xiin(k)) T - AP- (R, — Ryo) } :

where
0
C(k+1)B(k)
Ry, = C(k+21)A(k+1)B(k)

Clk+ Hy — DA(k+ Hy—2)-- Ak + 1)B(K)....

0
0

(4.24)

Clk+H,— DA(k+Hy,—1)---A(k+ H)B(k+ H. — 1)

and P, AP, Q and AQ in (4.24) are block-diagonal matrices of suitable dimensions,
where the diagonal blocks are respectively the weights P;, AP;, Q; and AQ; in the

cost function (4.1).

Using (4.15) through (4.18), we combine the constraints as follows

- IA u
IA u
- IHpm
IHpm
— Ru
Ry
—dRy,
dRy;
—dR,
dR,

Au <

4.5 Examples

—I, (Umin +ll(k - 1))
L, (Umax —u(k — 1))
_IHpm Aumin
IHpm Aupax
—¥min + RxA (k)Xyin (k)
Ymax _RxA(k)Xlin(k)
—A¥min1 + AR A (k)Xjin (k) — ¥iin (k)
A¥max1 — dRx1 A(k)Xpin (k) + Yiin (k)
_Aymin +deA(k)xlm(k)
Aymax —dRXA(kJ)X]in(k)

(4.25)

Two examples are given to illustrate and evaluate the methods: control of pH in a
simulated SISO continuous stirred tank reactor and real-time liquid level control in a
MIMO laboratory-scale cascaded-tanks setup.

4.5.1 pH control in a simulated continuous stirred tank reactor

The control of the pH (the concentration of hydrogen ions) in a continuous stirred tank
reactor (CSTR) is a well-known problem that presents difficulties due to the nonlin-
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earity of the process dynamics (McAvoy et al., 1972). The CSTR, given in Fig. 4.2 has
two input streams: one containing sodium hydroxide and the other acetic acid. The
acid neutralizes sodium hydroxide of concentration C, which flows into the reactor
at a rate F>. The volume of the reactor is constant and equal to V. The variable of
interest is the concentration of hydrogen ions pH (pH = —log,,[H "] ) of the outlet
stream, which can be expressed by

| —[H'H{FRC~(Fi+F)v}-[H+H KA FRC,—FC —(FiI+F)(v—p)}

H) =5 S+ 2[H (Ko 0} + {Kalv = p) ~ Ko}

4.26)

F,

F

I

Figure 4.2. Scheme of a continuous stirred tank reactor.

The parameters used in the simulation are given in Tab. 4.2. For simplicity the
acetic acid stream F) is considered to be constant at its nominal value. Thus we end
up with a single-input, single-output process with the sodium hydroxide stream F> as
input and the pH as output.

Table 4.2. CSTR: Parameters used in the simulation study.

Parameter Description Nominal Value
v Volume of the tank 1000 [1]

F Flow rate of acetic acid 81 [I/min]

B Flow rate of NaOH 515 [I/min]

C, Inlet concentration of acetic acid 0.32 [mol/l]

C Inlet concentration of NaOH 0.05 [mol/]
v= [N at] Initial concentration of sodium in the CSTR  0.0432 [mol/1]
p=[HAC+ AC~] Initial concentration of acetate in the CSTR  0.0432 [mol/l]
K, Acid equilibrium constant 1.753107°

K, Water equilibrium constant 10~ 14
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Fuzzy modeling. A TS fuzzy model is obtained from simulated input-output data
through fuzzy identification. A sampling time of 75 = 12s is used. This sampling
time was chosen since the settling time between two set points for the greater part
of the operating range is approximately two minutes. A first-order fuzzy model with
one sample time delay in the input appeared to give satisfactory results. Three fuzzy
If - then rules are used

R : IfpH(k)is Low and F>(k) is Low
then pH, (k4 1) = 0.868pH (k) + 0.046 F3(k) —22.9,

R »: If pH(k)is MEDIUM and F(k) is MEDIUM

then pHy(k + 1) = 0.909pH (k) +0.187Fy(k) — 96.0, (4.27)

R 5: If pH(k)is HIGH and F»(k) is HIGH
then pH3(k+1) = 0.817pH (k) +0.122F(k) — 61.4.

The cluster centers and the membership functions are given in Tab. 4.3 and Fig. 4.3,
respectively.

Table 4.3. CSTR: Cluster centers.

rule pH(K) Fa(k)

1 7.42 517
2 8.28 518
3 9.66 519

The model output is computed as weighted average of the consequents in the indi-
vidual rules
31 Bi(pH, F2) -pHi(k + 1)
Y1 Bi(pH, Fy)

pH(k+1)=

?
where

B (pHv FZ) = ,ULow(pH) ’ﬂbow(FZ)a (4.28)
Ba2(pH, F2) = pMediom(PH) - iMedium(F2),
B3(pH, Fy) = prign(pH ) - ptigh (F2)-

The model performance on a validation data set is shown in Fig. 4.4. To give a
quantitative measure of the model accuracy, we use two performance indices: the
Root Mean Square (RMS) error and the Variance Accounted For (VAF), in %. For the
validation data, the obtained measures are RMS = 0.1024 and VAF = 98.02. For a
comparison, a linear model has correspondingly RMS = 0.4225 and VAF = 63.41 on
the same validation data set, so the fuzzy model is significantly more accurate than the
linear one.
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Figure 4.3. CSTR: Membership functions.

519.5

9.5

pH
el

8.5r

7.5
0

200 400 600 800 1000
Time [s]

73

Figure 4.4. CSTR: validation of the fuzzy model (solid line: process output, dashed
line: model prediction).
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Controller configurations. The control objective is to follow set-point changes for
the pH in the interval [7.8, 8.8]. Four different controller configurations are used to
evaluate the performance of the optimization methods:

1. A linear MPC using a model obtained from the nonlinear process model at (pH =
8.3, F» = 518.28). This point is selected because it is the mean of the operating
range for the pH;

2. A single model (SM) method (Section 4.3.1);
3. A multiple model (MM) method (Section 4.3.2);

4. A nonlinear optimization method, referred to as Nlinear, that directly uses the fuzzy
model. It is based on the MATLAB? implementation of the Sequential Quadratic
Programming (SQP) method (Coleman et al., 1999).

The methods are compared with identical tuning parameters set as follows. Since
there is a delay of one sample, the minimum cost horizon Hp, = 1 (Soeterboek, 1992).
The process is well damped, therefore a prediction horizon of H, =5 is used to speed
up the response (the settling time is about 120s). For the same reason a control horizon
of H. =2 is selected even though the fuzzy model is of order one. The acetic acid flow
rate is kept at its nominal value F; = 81 I/min. The sodium hydroxide flow rate F is
subject to input level and rate constraints 510 < F> < 525 [I/min] and —2 < AF, <2
[I/min?]. The non-zero weights in the cost function (4.1) are P=1.0and AQ = 0.2, as
the latter is used to prevent aggressive actions. When the line search (LS) is applied,
five iterations are used with the maximum merit function iterations set to 50.

Note that although better tuning parameters could be found, the above were selected
on purpose to show the advantage of the successive linearization methods over the
linear MPC.

State-space model extraction. To illustrate the extraction of a local linear state-
space model from the fuzzy one, the first iteration in the MM controller is outlined.
The initial process input and output are F, = 517.5 I/min and pH = 7, respectively.
The fuzzy model state is £ = 7. To obtain an initial linear model M (k), k = 1, the
vector of degrees of fulfillment Js for each rule R;, i = 1,2, 3, are calculated according
to (4.28) using the cluster centers given in Tab. 4.3

3(517.5,7) =[1.0, 0.0, 0.0].

These are then combined with the rules’ consequents in (4.27) to get (*, n* and 6*

3MATLAB is a registered trade mark of The Mathworks Inc., Natick, MA.
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[ 0.8677 ]
[1.0 0.0 0.0] | 0.9095
3 3¢ 0.8165
= 21:31 Bii_ = = =0.8677
i1 B 1.0
[ 0.0461 |
(1.0 0.0 0.0] x | 0.1867
33 ;. 0.1217
n* = zﬁ' om - = =0.0461
a1 Bi 1.0
—22.8847
[1.0 0.0 0.0]x | —96.0340
3 3.9, —61.3953
Y= 21:31 Pt = —22.8847.
> 0 1.0

The corresponding A(k), B(k) and C(k) matrices are

0.8677 —22.8847

AkI=1 " 1.0000 ] B(k)=[0’0461

0 ] C(k)=[10].

The obtained matrices are used in the quadratic programme (4.22)—(4.25). The opti-
mized control sequence U * = [519.8612, 518.6208] is then applied to the fuzzy model
in order to provide new linearization points. The degrees of fulfillment, Js, for the in-
dividual rules at these points are

B(k+1)=[0.0015, 0.2277, 0.7707]

B(k+2) = [0.0000, 0.9081, 0.0918]

B(k+3) = [0.0000, 0.9860, 0.0139]

B(k +4) = [0.0000, 0.9872, 0.0127]
( [

B(k+5)=0.0000, 0.9600, 0.0399]
for which the local state-space models M (k+1),k=1,9=1,...,5 are

[ 0.8378 —69.2250 ] [ 0.1364 |

Alk+1)=1] ) Loooo |» BED=| T Clk+1)=[1 0]
A+2) = | 05009 20 | Bar+2)=] 01808 | corn=po
Alk+3)= — 0'9882 '193'3386 _ , B(k+3)= - 0‘1558 _ C(k+3) =11 0]
Alk+4)= | 0083 =92.5907 J - B = | O] ey =0
Ak+5)= _ 0'9857 _19%'8382 - B(k+5)= r 0'1541 _, Ck+5)=110]
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This set of linear models M = {M(k+ 1), M(k+1),...,M(k+5)} again forms the
quadratic programme. The optimized control sequence is i/* = [518.6760, 519.1455].
After three more iterations &/* = [518.8833, 519.0402]. The convergence of the op-
timized control sequence is shown in Fig. 4.5. The absolute variations in the control
signal computed in the different iterations are rather small, but note that the range of
F, is very narrow: F, € [516.5, 519.5]. Therefore, the relative differences amounts up
to 40%, see Tab. 4 4.

520 T T

519.5r

E (k)

519F

518.5 - : ;
1

519.4 ™ T

519.21

Fz(k+1)
W
o

518.81

518.6 - - -
1 2 3 4 5
Iteration

Figure 4.5. CSTR: Convergence of the control sequence.

Performance comparison. For performance comparison, two criteria are used that
calculate output and input variations. The sum square error (SSE) criterion gives a
quantitative measure, how close the process output y(k) is to the reference (k)

N

SSE, =Y (y(k) — yres(k))?. (4.29)
k=1

where N is the simulation length. To have a measure of how “large” the process input
u(k) is, we use the following criterion

1Y,
Vu=+ 3 u*(k). (4.30)
N~

The criteria values for the different controllers are given in Table 4.5 on the facing
page, where the ones obtained through the linear MPC are taken as 100%. A lower
percentage means a better performance.
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Table 4.4. CSTR: Variations in the sodium hydroxide stream at different iterations.

Iteration (k) Fy(k+1)
Value Deviation Value Deviation

Abs. Rel., % Abs. Rel., %

1 519.8612 - - 518.6208 ~ -

2 518.6760 1.1852 3950 519.1455 0.5247 17.49

3 518.9860 0.3100 1033 5189860 0.1595 532

4 518.8661 0.1199 399  519.0283 0.0423 1.41

5 518.8833 0.0172  0.57 519.0402 0.0119  0.40

Table 4.5. CSTR: Relative values of the input and output variation criteria for the dif-
ferent controllers, in %. The linear MPC is taken as 100%. A lower percentage means
a better performance.

Controller type Vo V&,  FLOPS
Linear MPC 100.0 100.0 100.0

SM 88.89  99.98 118
SM+LS 85.05 99.87 123
MM 79.11  99.98 149
MM+LS 79.11  99.97 153
Nlinear 162.44 1024 374

Nlinear & SM 68.55 99.97 381
Nlinear & Linear 7191 99.96 378

To assess the influence of the line search, the SM and MM performance is com-
pared with and without the line search. As expected, the initial guess for the nonlinear
optimization (Nlinear controller) turned out to be of crucial importance for the accu-
racy of the computed control action. A good initial guess can be obtained with the
SM method (Section 4.3.1), see ‘Nlinear & SM’. One can also use the linear MPC to
provide such an initial guess, see ‘Nlinear & Linear’.
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(a) System performance with linear MPC.
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(b) System performance with SM controlier.
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(c) System performance with Nlinear&SM controller.

Figure 4.6. CSTR: system performance with different controllers. Top: Linear MPC,
middie: SM controller, bottom: Nlinear&SM controller.
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One can see that the SM and MM lead to a significant improvement in the per-
formance criteria over the values achieved through linear MPC. This improvement is,
however, achieved at the expense of a higher computational load (FLOPS, floating-
point operations). The introduction of the line search slightly improves the controller
performance. When the nonlinear fuzzy model is used in the optimization routine, the
computational load is approximately four times higher than for the linear MPC and the
performance is poor. However, if the control sequence, obtained through a single iter-
ation with SM or Linear MPC is used as an initial guess to the nonlinear optimization,
a superior performance is achieved. Comparing this performance to the one obtained
with MM, the improvement of about 10% is paid for with nearly 2.5 times as many
FLOPS, increasing the time necessary for computation in a similar scale.

Figure 4.6 on the preceding page depicts the process behaviour for a part of the
considered trajectory. When Linear MPC is used, the process behaviour is fairly oscil-
latory, while both SM and Nlinear & SM provide satisfactory performance with only
a marginal superiority of the latter (achieved at the expense of a computational load
approximately three times higher than the one for the SM).

4.5.2 Real-time liquid level control in a MIMO cascaded-tanks setup

We demonstrate the real-time performance of the presented technique with the setup
described in Section 3.4. Again the control objective is to follow set-point changes in
the levels in the lower two tanks by adjusting the flow rates of the liquid entering the
upper tanks.

The single-model (SM) method and the multiple-model (MM) method are used
to assess the influence of the models employed in the optimization on the achieved
performance. The MPC parameters are selected according to the tuning rules proposed
by Soeterboek (1992). Since there is a delay of one sample, the minimum cost horizon
Hpin = 1. The process is a well-damped second-order one, so a prediction horizon
H, =7 and a control horizon H, = 2 are used. The non-zero weighting matrices are
P =1 and AQ = 0.11. The constraints on the inputs and outputs are set to

q) € [0, 10} ¢ € [0, 10] Aq € [——0.3, 03] Ag € [—03 03] 4.31)
h €0, 05] he0, 0.5] Ahye[—=0.1, 0.1] Ahy €[-0.1, 0.1]

Two first-order Butterworth filters with cut-off frequency f., = 0.05 Hz are used
as feedback filters (Fig. 4.1). The cut-off frequency is one fourth of the sampling
frequency (fsampling = 1/Ts = 0.2Hz).

The process behaviour for the two controllers is presented in Fig. 4.7 and Fig. 4.9,
respectively. While linear MPC (not shown in the figures) cannot stabilize the process,
both SM and MM provide satisfactory performance, as the latter is slightly superior.
The different degrees of coupling, noticeable in both figures, are due to the non-sym-
metric cross-connection. The cross-section area of the tube from tank 3 to tank 2 is
larger than the corresponding area between 4 and 1. Therefore a change in A level
will have a larger affect on & level than a change in h, on k. In the latter case the
inputs have enough freedom to compensate for the change in the level, while in the
former, the constraints and the weights imposed on the input increments prevent that.
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Figure4.7. MIMO cascaded-tanks setup: real-time system performance with SM. Top:

level h; bottom: level h,. Dashed line: output reference, solid line: setup output.

06— L
0.5
= (
0.3 L,, — L L — U S Y
0 200 400 600 800 1000 1200
0.4 =~ e e
0.35) Mww‘
£ ‘
0.3
02 - J B— S —
% 200 400 600 800 1000 1200
Time [s]

Figure 4.8. MIMO cascaded-tanks setup: control signal with SM. Top: g bottom: g,.
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Figure4.9. MIMO cascaded-tanks setup: real-time system performance with MM. Top:
level h;, bottom: level h,. Dashed line: output reference, solid line: setup output.
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Figure 4.10. MIMO cascaded-tanks setup: control signal with MM. Top: ¢;, bottom:
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4.6 Summary and concluding remarks

Model predictive control is a powerful technique for the control of constrained non-
linear multi-variable processes. Various modifications of the original concept have
been developed and also successfully applied in the industry. Nevertheless, there are
two main problems that hamper a wider application of MPC: (i) the derivation of an
accurate prediction model, which is not a trivial task, and (i¢) the computational cost
of the optimization problem that must be solved at each sampling period.

Fuzzy models of the Takagi—Sugeno (TS) type proved to be suitable for the use in
nonlinear MPC because of their ability to accurately approximate complex nonlinear
systems. This chapter presented an approach for using the TS fuzzy models in the
MPC framework that avoids the time-consuming, non-convex optimization.

The proposed approach is based on linear parameter-varying (LTV) prediction mod-
els derived by fixing the parameters of the fuzzy model at a given operating point or a
trajectory. In Section 4.3, algorithms for extracting a single model or a set of models
along the predicted trajectory using the fuzzy model have been discussed. In Sec-
tion 4.4 we showed how these linear models are used to construct the optimization
problem in a straightforward manner, contrary to the cases where a nonlinear process
model is used directly in the optimization problem.

Two benchmarks were presented (in Section 4.5) to illustrate the method. In the first
one, the superiority of the fuzzy predictive controller over a linear MPC was demon-
strated for pH control in a simulated continuous stirred tank reactor. The performance
achieved by the latter is comparable to the performance obtained through nonlinear
optimization, for which the computational load is considerably higher. The second
benchmark showed the real-time performance of the fuzzy predictive controller.

The methods for model predictive control presented in this chapter are especially
suited for high-quality control of nonlinear multivariable processes with short sam-
pling time. For such processes, linear model predictive control does not give satis-
factory results, while the optimization based on a nonlinear process model is too time
consuming.

Among the proposed model predictive controllers, the best results were obtained
using the multiple-model controller (Section 4.3), although the results were only slight-
ly better than the results obtained by the single-model controller. The calculation time
used by the latter is comparable to the time necessary for the linear model predictive
controller and it would therefore be preferred for processes where the calculation time,
compared to the sampling period, is a problem.




5 ROBUST STABILITY
CONSTRAINTS FOR FUZZY MODEL
PREDICTIVE CONTROL

This chapter addresses the robustness of the fuzzy model predictive controller dis-
cussed in Chapter 4. The goal is to obtain constraints on the control signal and its
increment that guarantee closed-loop robust asymptotic stability for open-loop BIBO
stable processes with an additive [, -norm bounded model uncertainty. The next section
states the robust stability problem in model predictive control. Section 5.2 presents the
theoretical background. The idea is closely related to (small-gain-based) ;-control
theory, but due to the time-varying approach, the resulting robust stability constraints
are less conservative. Bounds on the model uncertainty for models of the Takagi—
Sugeno type are derived in Section 5.3. The fuzzy model is viewed as a linear time-
varying model rather than as a nonlinear one. The incorporation of the robust stability
constraints in the model predictive control scheme is described in Section 5.4, which
also addresses nominal and robust performance and offset-free reference tracking. Ro-
bust asymptotic stability and offset-free reference tracking are achieved for asymptot-
ically constant reference trajectories and disturbances. In Section 5.5, a simulation
example and a real-time example are presented.

83
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5.1 Problem statement

Although the TS model usually yields a reasonably accurate approximation of the
process, one must keep in mind that a certain model-plant mismatch will always be
present. The mismatch can be due to unmodeled dynamics, time-varying and/or aging
phenomena, etc., and it will not only deteriorate the control performance; it may even
destabilize the closed-loop system. The availability of tools for the design of a robustly
stable predictive controlier is thus of critical importance. So far, this aspect of MPC
has only been addressed for linear time-invariant (LTT) process models, typically by
using techniques based on infinite prediction horizon (Rawlings and Muske, 1993) or
end-point constraints (Clarke and Scattolini, 1991; Mosca and Zhang, 1992).

The method presented in this chapter is an extension of the method proposed in
(de Vries and van den Boom, 1997), where conditions are given that guarantee ro-
bust asymptotic stability for open-loop stable linear systems with an additive oo-norm
bounded model uncertainty. Here, similar conditions are derived for open-loop stable
nonlinear systems with an additive co-norm bounded model uncertainty. Based on the
uncertainty description, we derive level and rate constraints for the control signal that
guarantee stability for any model-plant mismatch within the given bounds (Mollov,
van den Boom, Cuesta, Ollero and Babuska, 2002).

First, we derive time-varying level and rate constraints for a predictive controller
based on a general (i.e., possibly non-fuzzy) nonlinear model. These constraints guar-
antee bounded-input bounded-output (BIBO) stability for any model-plant mismatch
within certain bounds. Then an algorithm is presented that estimates the uncertainty
bounds when the nonlinear model is a fuzzy model of the Takagi—Sugeno type. The
method makes use of the fact that at each sampling instant, new measurements be-
come available and thus linear time-varying constraints can easily be incorporated in
the design. Input constraints are recalculated at each sampling instant, based on a lin-
ear time-varying model derived from the fuzzy model. The resulting constraints are
similar to (small-gain-based) ,-control theory, but they are much less conservative
as they are based on the uncertainty that actually occurs in the system, instead of on
the “allowed worst-case model uncertainty.” The uncertainty can also be viewed as a
fuzzy number having for support the “allowed worst-case model uncertainty” (Setnes
et al., 1998). Then, the uncertainty calculated at each sampling instant corresponds to
a certain a--cut.

Similar ideas have also been investigated within the gain-scheduling framework
(Shamma and Athans, 1990, 1991; Rugh, 1991). Shamma and Athans (1990, 1991)
give sufficient conditions that guarantee that the overall gain-scheduled system will
retain the feedback properties of the local designs when the process model is linear
parameter varying or when it is nonlinear. If the gain-scheduling methodology is used,
however, stability can only be guaranteed for sufficiently slow parameter variations.
Masubuchi et al. (1998) proposed a method based on a (gain scheduling) parameters-
dependent Lyapunov function that takes into account the rate of the parameter varia-
tions. While the conditions constructed in this way are both necessary and sufficient
to guarantee stability, they may become conservative because of the fixed number of
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off-line derived models. Our approach does not suffer from such conservatism, as the
linear models are derived locally around the current operation point.

Although a well-tuned predictive controller is usually quite robust with respect to a
model-plant mismatch (Soeterboek, 1992; Lee and Yu, 1994), a general theory dealing
with the stability and robustness issues in predictive control has been missing. There-
fore, the goal in this chapter is to provide the predictive controller with constraints
on the control signal that ensure stability of the closed-loop control system. Usually
stability is analyzed with respect to a given process model. However, often the process
is complicated and/or varies over time, hence it is difficult to obtain a perfect model.
A reasonable approach is to consider the process deviation from the available model
as model uncertainty, such that the process behavior is always contained within the set
of behaviors described by the model together with the associated uncertainty. Based
on the current model uncertainty, at each sample constraints on the control signal and
its increment are computed such that the control signal is in a (hyper)region where
stability is guaranteed for all possible perturbations in the process (Fig. 5.1).

Computation of
stability constraints

| Auo, woz
ref r Optimizer u(k) P » y(k+1)
+ (linear MPC) Tocess
Fuzzy model
linearization
+
{4, B, Cx Linear state-space Ymlkt1)
i model {4, B, C}y -
Feedback filter

Figure 5.1. Fuzzy model-based predictive control with robust stability constraints.

The process P is considered to be Linear Time Varying (LTV) rather than nonlinear
time invariant

P:ylk)=Gk)u(k)+g(k). G.D
Denote the “true” process by P,
Po:yi(k) = Gi(k)u(k) +gi(k), (5.2)

and the nominal process and available model by P. The offsets in the nominal and the
“true” process g and g respectively, are assumed to be bounded. The model uncer-
tainty €2, defined as the deviation of the true process from its nominal model, is then
given by (Fig. 5.2)
Q(k) =CMM—Q@}
wk) = glk)—gk)
The TS fuzzy models belong to this class; compare (5.1) to the expression for the

fuzzy model output (2.9). To remove the explicit dependence of the model output on its
previous values, we express the fuzzy model as a time-varying convolution operator.

ye(k) —y(k) = Q(k)u(k) +w(k).
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5.2 Derivation of robust stability constraints

This section presents general conditions that ensure robust stability of the control sys-
tem despite variations in the controlled process. These conditions are valid for the
class of open-loop BIBO stable processes that can be described through (5.1).

First, some definitions for [,-stability are recalled (Vidyasagar, 1993), where the
symbol /,, stands for the Lebesque spaces. For p € [1, 00), I, denotes the set of all
measurable functions, f: RT — R, whose pth powers are absolutely integrable over
[0, 00), i.e., f~ | f(t)[Pdt < oo, while I, denotes the set of essentially bounded mea-
surable functions f.

Definition 5.1 Let G be an input-output mapping on l,,. Then G is said to be [, stable
fy=Gu),uecl, =ycl,.

Definition 5.2 G is [, stable with finite gain (wfg) if it is [, stable, and in addition
there exist finite real constants yp and by, such that

I¥llp < pllullp+bp, (5.3)
where || ||, =[5 | - |Pdt is the p-norm of the corresponding signal.
Remarks:
1. l,-stability wfg implies /,,-stability.

2. If G is an l,-stable wfg input-output mapping, then the /,-gain v,(G) of G is the
minimal value for which there exists a non-negative parameter by, such that (5.3)
holds: 7, (G) = inf{~, : 3b, > 0 such that (5.3) holds}.

3. The 1-norm (or the induced oo-norm) of G is defined as

Gl = [Glls 00 = max (5.4)

4. Below BIBO stability and [ -stability, wfg has the same meaning.

Figure 5.2 on the facing page depicts a scheme which is solely used to compute the
stability bounds on the control signal and its increment. It is a general two-degree-
of-freedom control scheme in which all the blocks are input-output mappings. These
mapping are used to obtain the signal relations that are necessary to derive the stability
constraints.

It is assumed that the process is described by /-stable wfg mappings G,Q: R™ —
RP, which denote the nominal model and the additive model uncertainty, respectively.
The mappings R,Q : R? — R™ are the controllers to be designed. The signal y is
the output of the process, g is the output of the feedback controller Q, ug is the
output of the feedforward controller R, which filters the reference trajectory r, and u
is the output of the two-degree-of-freedom controller. The signals d and w are additive
disturbances on the input and the output of the process, respectively.
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Figure 5.2. A general IMC scheme which is only used to compute the stability con-
straints on the control signal and on its increment.

Recall that w is the difference between the offsets of the true (perturbed) process
and of the nominal model, w = g, — g, such that the parallel connection of the map-
pings G and Q is offset-free. To retain the input-output mapping (5.1), we add the
model offset g outside the feedback loop. It is also assumed that the model exactly
represents the nominal process G, i.e., the model-plant mismatch is contained in the
additive uncertainty €.

Denote uy (k) = w(k) + G(d(k)). It can be seen that the only feedback loop in the
controlled system is the one depicted in Fig. 5.3. Hence, the problem of guaranteeing
robust internal stability of the controlled system given in Fig. 5.2 can be reduced to
the general problem of guaranteeing that the feedback system of Fig. 5.3 is robustly
internally stable.

Figure 5.3. Feedback system for internal robust stability analysis, uy(k) = w(k) +
G (d(k)).

In nonlinear systems, the incremental input-output mappings are different from the
non-incremental ones (contrary to linear systems). Therefore, to describe the feedback
system Fig. 5.3, both the incremental (denoted through A) and the non-incremental
mappings are necessary:
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vk) = d(k)+ulk) e(k) = up (k) + (k)
a(k) = Q(k)(v(k)) um (k) = Q(k) (e(k))

uk) = Qk)(e(k)) =ug(k)+up(k) (5.5a)
Av(k) = Ad(k)+Aulk) Ae(k) = Auy(k) +Ad(k)
Ad(k) = Qa(k)(Av(k)) Aug (k) = Qa(k)(Ae(k))
Au(k) = Qa(k)(Ae(k)) = Aug(k)+Aug (k). (5.5b)

The stability constraints proposed in (de Vries and van den Boom, 1997) were
derived for convolution systems

y(k)=G(u(k)) = i Hg(k—1)u(r), keZ (5.6)

T=—0

where the input-output mapping G is a MIMO LTI system. The matrix Hg(k —7)
contains the time-invariant Markov parameters or kernels of the system (Kwakernaak
and Sivan, 1991). The system is called causal (or strictly causal) if Hg(k — 7) =
0,V7 >k (orT 2> k).

The following theorem gives the constraints on the controller mapping @ (and Q)
in the feedback system (5.5), which guarantee that this feedback system is globally
internally asymptotically stable for different assumptions on Q and/or Q).

Theorem 5.1 Consider the feedback system (5.5), where QQ and Q are | -stable LTI
convolution operators, Q is strictly causal and ||Q||; 00 < €q < 0. Under these con-

ditions the system is asymptotically stable if ||Q|];,« < 1/€q.

Proof: See Section 6.6 in (Vidyasagar, 1993). g

As the process model is time varying and contains an offset term, both the un-
certainty mapping €2 and its increment A€ are time varying, and cannot be written
directly in the form (5.6). To guarantee stability under these conditions, we first intro-
duce some necessary concepts and then give a new theorem.

Assume the process model (5.2) to be [ -stable with finite gain (wfg)

G (E)u(k) oo
o = Max ———Lfe——io
Teo = I u (k) e
beo = max ||g(k)|| and by < 00,
u

and Yoo < 00

that is,
[¥(k)lloo < Yoolla(k)|loo + boo-

Usually the offset g is regarded as a constant (Vidyasagar, 1993). However, for the
sake of generality, here it may be time varying.
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Thus for the uncertainty Q and its increment Q4 in (5.5), and the offset w and its
increment wy it holds that

vk
[0

o 19sRAVR)
120l oo = max =0 o

The corresponding theorem states the conditions for BIBO stability of the LTV system:

Theorem 5.2 Consider the feedback system (5.5), where Q(k) and Q(k) are |-
stable wfg LTV convolution operators, Q(k) is strictly causal and ||Q(k)|]; 0 < €q <
oo. Under these conditions, the system (5.5) is BIBO stable if | Q(k)||i.co < 1/€q.

120) s o = ma = and |w(k)

< bso

=A% and |(.UA(k‘)| < bA,QO.

Proof: The proof is similar to the proof of Theorem 5.1 (Section 6.6 in (Vidyasagar,
1993)). |

The constraint ||Q(k)||;,0o < !/€q is sufficient to guarantee stability for all possi-
ble perturbations which satisfy [|Q(k)]|; .o < eq. However, if the true perturbation is
only a small subset of all possible perturbations like, e.g., one fixed (but unknown)
convolution operator, this constraint is very conservative. Less conservative stability
constraints can be derived using the fact that all the signals in (5.5) are known up to
time k.

Theorem 5.3 Consider the feedback system (5.5), where Q(k), Qa(k), Q(k) and
Qa(k) are finite-order |« -stable wfg mappings of the form (5.6). Further, let Q(k)
and Qa(k) be causal, Q(k) and Qa(k) be strictly causal, and ||Q(k)|[;,00 < €q < 00

and ||Qa(k)]i,00 < €q, < 00. Under these conditions the system (5.5) is BIBO stable

if at least one of the following three constraints is satisfied.

Ca: |Q(k)li,00 < 1/€q and ||Qa(k)]

io0 < l/EQA.

Ch: ‘Q(k) (Q(k) (v(k))) ‘ < maxo<i<y |v(k — )| and ‘QA(k) (QA(Av(k))) ] <
maxo<i<n, |Av(k —1)| Vk where N and N, are integers such that
0< NS N(Q)+N(Q) and 0< Na < N(Qa) + N(Q4), where N () denotes
the order of the corresponding mapping.

Ce: | Q) (k) (v(1) )| < Plo(k)| and | Qs (k) (2 (80 () )| < Pafolk)] ¥k
where P and P are arbitrary strictly causal | -stable wfg operators of the
form (5.6) in which the the Markov parameters are greater than or equal to
zero. P and Py have finite orders N(P) = N(Q) + N(Q) and
N(Py) = N(Qa) + N(Q4), and induced oo-norms which satisfy || P||; co < 1
and “PA”i,oo < 1.

Proof:
Constraint Ca. Let || Q(k)|; oc =1 <eqand [|Q(k)|:,00 = 02 <1/eq, thus aja; <
1. To prove that system (5.5) is I, stable wfg (BIBO stable) when Ca is used, consider




90 FUZZY CONTROL OF MIMO PROCESSES

the external signal v (k)

[v(k) ]| =|d(k) + ug(k) + Q(k) (e(k))]| .
(k) oo + [Jue(k) Hoo+HQ(k (e(E)|.,
|4(E)|oo + [0s2(R) oo + [ Q(k) 1,00 /l€(K) oo
1A (k) [ oo + [l (k) oo + 1Q(R) 15,00 + {|QK) (w(K)) +ua (k)|
( )
)

(k)| oo + luse(k) oo + | QR) 11,00 (I12(K) 1,00 | (R)]| o0 + H12(K) [l o)
A(k)| oo + 1z () [0 + 10 || (K) |0 + |02 (k)] oc-

NWIAAIAIA T

The above is equivalent to

(1—aj02)[[v(k)[leo < [|A(K)[loc +lus(k) oo+ |2 ()]0
or

1008 oo < T 1) o + g 0B o

az
1 ()

1

Since T <ooand (=24 <oc,andd,ux € [T and u; € I3, we have that v € [TZ.

This in turn implies that u,ug, € {72, and from the [..-stability wfg of £ we have that
d,e €[, which leads to the conclusion that the system (5.5) is l-stable.
The proof for the incremental relations proceeds along the same lines.

Constraint Cb. The constraint Cb is a special case of Ce when the Markov parame-
ter p;(k) (in P), corresponding to the maximum value of |v(k —i)| for 0 < i < N(P)
(N(P)=N(Q)+ N(Q)) issetto pl with0 < p < I,

Plu(k)| = maxo<i<n(p) [U(k — ).

Constraint Cc. The proof that system (5.5) is [ stable wfg when Cc is used follows
the same reasoning as the proof for the Ca case

lo(k) oo = [|a(k) +va(k) + Q(k) (w2 (k) + Q) (k) )|

< (k) oo + ur(h) oo + [ QUR) (wa(B)) |, + [ QCK) (@) w()) )|

< [ld(k) oo + (koo + 1QR) 1,00 l02(E) oo + 1 P[v(K)lloo
< ld(k) s + [ue(k)lloo + all2 (K)o + | Plli 00 |0 (k) 0

Letting | Pl|; 00 < €p < 1, we get

ok oo < T 0R) oo+ 7= (8o + 22 s )
P P

1
Since ——; < oc and —2; < 00, and d,ug € I and u; € 2, we have that v € [.
In turn this implies that w,ug, € {7}, and from the /. -stability wfg of  we have that
d,e €17, which leads to the conclusion that the system (5.5) is [-stable.

The proof for the incremental relations proceeds along the same lines. O
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Constraint Ca is just as conservative as the constralnt 1Q(k)]i,00 < 1/eq in Theo-
rem 5.2 and it guarantees that [|QQ||; 00 = sup, || Q(Qw)) || /llullc < 1, Vu €.
Constraints Cb and Ce guarantee ||Q(k)(8(k)) || _/l|lv(k)]loo < 1 for the specific re-
alization of the signals v(k) and &(k) = Q(k)(wv(k)) that actually occur in the system.
They can be less conservative than Ca, depending on the exact situation in the system.
In other words, any of the constraints Ca, Cb and Ce guarantees stability for all pos-
sible perturbations that satisfy || Q(k)|;,.c < €q, but Cb and Ce automatically adapt
to the true realization of the output of Q(k), which usually makes them less conserva-
tive (de Vries and van den Boom, 1997). The following theorems provide more easily
implementable versions of the constraints Ca, Cb and Ce. First, the constraints are
defined with respect to some upper bounds of (), Qa, € and Q4 since the actual map-
pings are not known. Then the current “worst-case” upper bounds and input-output
disturbances are estimated.

Theorem 5.4 Consider the feedback system (5.5), where Q(k), Qa(k), Q(k) and
Qa(k) are operators that are l-stable wfg ¥V k >0, Vp € [1,00). Let Q(k) and
Qa(k) be causal and Q(k) and Qa(k) be strictly causal, ||Q(k)||i,00 < €a < o and

1Qa(K)||i,00 < €, < oc. Further, let Q and Q4 be stricily causal, finite-order
stable wfg operators of the form

% (u(k)) = ?N He(bru(r), keZ X=0QorQs  (.7)

that satisfy the following assumptions: HQ“zgo < eq, [|Qallicc < €q, and
1Q(k) (v(k))| < Q(v(k)). |Qa(Av(k))| < Qa(Av(k)),VE

_Deﬁne arbitrary causal loo-Stable wfg mappings Q and Q, of the form (5.7) with
1Qlli,00 < 1/€q and ||Qalli,00 < 1/€q,. Then the system (5.5)is BIBO stable if at least
one of the following two constraints is satisfied:

CL:fu(k)| < Q(e(k) + |ug(k)| and |Au(k)| < Qs(Ae(k)) + [Augl, V&.
C2:fuk)| < Q(Qu(K)) +Quak)) + lua(k)| and
[Au(k)| < Qa(Qa(Av(k)) +Qa(Aus(k) +[Aus(k)l. ¥k
where
u(k) = QUk) (QUk) (v(k) +ua(k)) ) +us(k) and
su(k) = Qa(k) (Qu(k) (Av(k) + Aus(k)) ) + Ava(k).

Proof:

The proof of Theorem 5.4 is based on the fact that upper bounds can be found that
guarantee stability for all the internal signals in system (5.5), by analyzing Av(k) and
v(k) explicitly. O

-
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Constraint C2 still cannot be implemented as Q, Qa, v(k) and u, (k) are unknown
in practice. In the following corollary two constraints are specified which are closely
related to C2 but which can be implemented. This is achieved by using the measurable
signal e(k) instead of the non-measurable v(k) and/or uy(k) and by using estimates
of the worst-case upper bounds Q and Q,.

Corollary 5.1 Let Q¢(k) and Qa (k) be arbitrary strictly causal l-stable wfg map-
pings R™ — R? of the form (5.7) with || Qe(k) i .0c <1/eq and ||QA¢( Nioo < 1/eq,.
The operators Qe(k) and Qa (k) can be seen as estimates of Q and Q, at the cur-
rent time instant. Then constraint C2 in Theorem 5.4 can be replaced by either of the
following

C3: [u(k)| < Q(e(k)) +ug(k)| and |Au(k)| < Qa(A&(K)) + |Aun(k)|, Vk
where
(k) = max {Q.(k)(u(k)).|e(k)|} and
Ag(k) = max {Q (k) (Au(k)),|Ae(k)|}, Vk.

Ca: |u(k)| <u(k), (k) = Q(k)(&(k)) + lug(k)| and
lAu(k)| <Au(k), Au(k)=Qa(A&(k)) + |Aug(k)|, Yk
where
é(k = max { Q. (k) (u(k)), e(k |} and
Ag(k) = max {Qa, (k) (AU(K)),|Ae(k)|}, VE.
Proof:

The proof of Corollary 5.1 is based on the same principles as the proof of Theo-
rem 5.4 except that Au(k) (or Ati(k)) should be analyzed explicitly for the case that
Ag(k) = Qa, (k) (Au(k)) or Ae(k) = Qa (k) (Au(k)), which, together with the result
C2 of Theorem 5.4, form the basis of the proof. |

Remarks:

s The interpretation of C3 and C4 is the same as that of Cb and Cc. There is a close
relation between C1 and Ca, but C1 can be implemented in a much simpler and
computationally faster form than Ca.

» The upper bounds  and Q, in Theorem 5.4 only need to exist. If C1, C3 or C4 is
used, they do not need to be known.

Below we derive such bounds for the nonlinear Takagi—Sugeno fuzzy model.

5.3 Fuzzy model as a convolution operator

In order to remove the explicit dependence of the model output on its previous values,
the fuzzy model (2.2) is represented as an LTV, /;-stable wfg convolution operator of
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the form (5.6)

y(k) = R(u(k)) (5.8)
= G(k)u(k) +g(k)
=Y Hy (k. i)u(k—i)+g(k)

=0

where Hy (k) is the time-varying matrix of the system’s kernels, which will be
obtained later on.

To find an upper bound for the (unstructured) model uncertainty Q, we use the
induced co-norm, as it accounts for the oc-norms of the input and output signals

—— IGIE
1600 =M% fa(i). 9

Recall that (Fig. 5.2)

18(8)lloe = max|6(k)|  and

5() = 3 Hy (vl — ), (5.10)
=0
then
18(8)]c = max 8(k) 511

<max 3, [Hsw(k,0)l-Jo(k—i)]
=0

0
< m]?x z |Hs 1 (K, )]
i=0

00 o
< Zméix |H5,tv(ksi)| < 2 ‘Hé,t\"max(i)'-

3=0 1=0

To find an expression for the kernels Hs « (k,%), we write the fuzzy model in a
specific state-space form. Since the model is assumed to match exactly the nominal
process, we give an extended description including both the process and the model

x(k+1) = Ak)xi (k) + Be(k)vk) (5.12)
x(k+1) = A(k)x(k) + B(k)o (k) (5.13)
8(k) = Cu(k)xi (k) — C(R)x(k). (5.14)

The vector x,(k) denotes the process state, and the model state x(k) contains the re-
gression vectors X; for the separate outputs in (2.2), reordered such that delayed out-
puts from all x;, [ = 1,...,p come first and then the delayed inputs. Note that x(k) is
identical to the one shown in Appendix D, without the last element of one.
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The matrices A(k), B(k) and C(k) denote the process model (and at the same time
the nominal process ), while the matrices A,(k), B,(k) and C,(k) denote the real
process G, (Fig. 5.2), where

Adk) = A(k) +AA(k)
Bi(k) = B(k) + AB(k)
C(k) = C(k). (5.15)

The matrices A(k), B(k) and C(k) are in the controllable canonical form. The
model-plant mismatch is taken into account through the variations in the model pa-
rameters, given in AA(k) and AB(k). These matrices have structures identical to the
ones used in A(k) and B(k) (without the ones and the fs in A(k)), and the entries are
the tripled values of the standard deviations of the corresponding parameters in the
fuzzy model consequents. These parameters, together with their standard deviations,
are obtained during the derivation of the fuzzy model. Since the matrix C (and C,) is
constant, and only used to select the necessary outputs from the state vector, we drop
the time index & for the sake of simplicity.

Equations (5.12) through (5.14) can be combined into

X(k+1) = A (k)xc (k) +Be(k)v(k) (5.16)
(k) = Ccexc(k)

with

= (58 ma= (498 miv= (38). € -

The output §(k) can be obtained through a Volterra series expansion
(

8(k) = CBo(k—1)v(k—1) + CcAc(k—1)Be(k—2)v(k—2)+
CeAc(k—1)Ac(k—2)Be(k—3)v(k—3)+... . (5.17)

Comparing (5.17) with (5.10), we obtain the needed kernels Hjs 1 (k,7)

i=0 :Hsy(k,0)=0

i=1 :Hsn(k,1)=CBc(k—1)
i=2 :Hsuw(k,2)=CcAc(k—1)Be(k—2)

H; o (ki) = < )

i=j Hsu(k,j)=CeAclk—1)...Ac(k—j+1)Bc(k~j)

\ J

1
(5.18)
Then, recall (5.11)
[Hso(k,5)| = |CcAc(k = 1)... Ac(k — j+ 1)Be(k — )
<|[CAc(k—1)... Ak — 7+ 1)Bc(k— )|
<||C:D™'DA(k—~1)D'D...D7'DA (k —j + 1)D~'DB.(k — j)|
' (5.19)
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where || - || = 0maz(-) (maximal singular value). In order to avoid | A (k —i)|| greater
or equal to one, ¢ = 1,...,5 — 1, which would imply instability, we introduce a Lya-
punov transformation through a matrix D, such that

[DA(k—i)D7 | <a <1, (5.20)
Then
Hs,w (K, 5)] < ||CcAc(k—1)... Ac(k —j+ 1)Be(k = j)|
< ||C.D~ || DB (k — ). (5.21)

To find an upper bound on the increment of the output A§(k) we follow the same
lines: 1A8(6)]

Oalli,co = e 5.22

[allice =1 Tad(R) ] 622

Analogously to (5.10) and (5.11)
[48(k)[loc = max[Ad ()|

AS(K) = 3 AHs (k,i)Av(k i) (5.23)
1=0
and
1A6(k)| 0o = max |AS (k)| (5.24)

oC

< max Y |AHs . (k,i)| - [Av(k —1)|
=0
o0

< m]?xi;)\AH(;,w(k,iﬂ

< szX|AH6,tv(kyi)| < z |AH6,tv,max(i)|'
=0 =0

To find an expression for Ad(k), we rewrite (5.16) in an incremental form
AS(k) = 6(k) —8(k —1) = Cc(xc(k) —xc(k— 1)) (5.25)
= Cc{[Ac(k—l)—I]xc(kwl)+Bc(k—1)v(k—l)}
= C{ A=)~ 1] [Ac(h—2)xe(k —2)

+Be(k— 2)v(k —2)] +Be(k — Dok — 1)}

Thus

AS(k) = ir(k,z‘)v(k—i)

=3 Ay (ki) (k )AV (R — i), (5.26)
1=0
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with
i
AHj (k1) = Y I( (5.27)
=0
where the parameters I'(k, ) are

i=0:T(k,0)=
i=1:T(k,1)= CCB (k—1)
i =2:T(k,2) = Cc(Ac(k—1)—T)Be(k—2)

T(k,i) =

:é:r(k,z) =C, [(Ac(k— 1)—I)§c(k—2).‘.Ac(k—l—HZ]BC(k—l)

\ -2

Analogously to (5.19)

|AHs o (k,i)| = [CcBe(k—1) + -+ Cc(Ac(k—1)=1) ... Ac(k—i+1)Bc(k—i)|
<||CeBe(k—1)+ -+ Cc(Ac(k—1)—1) ... Ac(k —i+ I)Bc(k—z)\]
<|ICBe(k= )|+ +||Cc(Ac(k—1)—T) ... Ac(k — i+ 1)Be(k — )|
SNCeBe(k— 1)+ +
|C.D'D(Ac(k—1)~I)D™" ... DA:(k — i+ 1)D"'DB.(k — i)
(5.28)
where || - || = Oymaz(+) is the maximal singular value and the matrix D is a Lyapunov
transformation, such that | DA.(-)D~!|| < a < 1 (and also |[D(Ac(k—1)-I)D~'|| <

o< l). Then

|AH; (ki) < Y |C.D™'||o? |DB.(k — j)|.- (5.29)
j=1

5.4 Synthesis of a robust fuzzy model predictive controller

This section combines the results presented so far to design a predictive controller
with guaranteed robust stability for stable TS models with oc-norm bounded addi-
tive uncertainty. Both offset-free reference tracking and robust stability are guaran-
teed for asymptotically constant reference trajectories (r(k) — roo as k — oo) and
disturbances. The control system is said to be robustly stable if the process output
(Fig. 5.2) goes to the constant value r, when ug and ug, become constant: y(k) =
G(k)(u(k)) +e(k) — roo as k — ko — 00 and Aug = Aup, = 0, V& > ko.

5.4.1 Tuning parameters for nominal and robust performance

The robust stability constraints calculated through C1, C3 or C4 use as parameters Qe,
Qa.., Q. Qa and the output ug of the feedforward filter R. Below the effect of these
“tuning parameters” of the constraints is explained and guidelines are given on how to
select them.
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In practice, besides robust stability and nominal performance, robust performance
is also desired. For optimal nominal performance the constraints on u and Au should
be as large as possible, while still guaranteeing stability. For robust performance the
upper bounds on J§ and Ad should be as small as possible. Although the MPC method
usually determines the compromise between the nominal and robust performance, the
robust stability constraints should also influence this compromise.

Nominal performance. When nominal performance is the main objective, C4
should be used in order to provide sufficient freedom to the constraints on u (and Au),
and Q., Qa,, Q and Q, should be chosen as large as possible. This would result in
good nominal disturbance rejection. The steady-state gain of the feedforward filter R
should be the inverse of the steady-state gain of G(k). Usually the choices proposed
by de Vries and van den Boom (1997)

l1-p
Qe (k) = ealk d
(b =k an
- 1—
Qu, (k) = egﬂ(k)l_—p;l—lf 0<p<l (5.30)

ensure that Qe (k) (u(k)) and Qa, (k) (Au(k)) are much larger than the true output (and
the output increment) of the model uncertainty, even if the actual model uncertainty
has a different realization. For the upper bounds of the controller mappings de Vries
and van den Boom (1997) suggested

<y AME) 1-p
W= T ™
= o /\A(k) l—p
Qa(k) = AR p— mpwg (5.31)

where €q, (k)[|G(k, 1) i.00 < Aa(k) < 1and eq(k)| Gk, 1)~ |i00 < A(k) < 1 and
G(k, 1) is the steady-state gain matrix of the nominal system at time instant k. These
choices also guarantee offset-free reference tracking.

Robust performance. When robust performance is required, the feedforward filter
R can be designed in a way similar to LTI [,-control or H,, control. However, due to
the LTV nature of the model, R has to be recomputed at each sampling instant reflect-
ing the current situation. In this case the constraint C1 can be used, where Q(k) and
Qa(k) are computed according to (5.31). This would result in conservative constraints
because C1 only depends on eg(k) and eq, (k) and no other information about Q(k)
and Q, (k) is taken into account. Such information could be used when C3 is applied.
For example, Q.(k) and Qa, (k) can be chosen such that Q¢ (k) (u(k)) = |W (k)u(k)|
and Q(k)(e(k)) = |Q(k)V (k)e(k)|, where V (k) and W (k) are the weighting filters
used in LTI H,, control (||V =" (k)Q(k)W = (k)i < 1), and Q(k) is the optimal
H, controller.
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5.4.2 Offset-free reference tracking and feedforward filter

Offset-free reference tracking. Although offset-free tracking should be guaranteed
by the MPC method, we investigate the assumptions that the robust stability con-
straints must satisfy in order to make the problem (at least) feasible.

In a steady state, uss must be equal to G(k, 1)~ 'roc anduto G(k, 1) ™! (rec —e(k)),
which leads to the well-known result that the steady gain of @ in (5.5) must be equal
to Q(k,1) = G(k,1)~! (and Qa(k, 1) = G(k,1)~'). This implies that the steady-state
gains of Q and Q, must be equal to |G(k, 1)™!| in order to guarantee offset-free track-
ing. Hence, in a steady state the 1-norms of @ and @, are equal to ||G(k,1)™!||;,00. In
the theorems given in Section 5.2, the condition that ||Q||;,0c < 1/€q and ||Qalls,c <
1/eq, must hold for each k and thus also in a steady state. The latter implies that the
bound on the induced oo-norm of the additive model uncertainty must be lower than a
specific value, which depends on the steady-state gain matrix of the nominal system —
eq <||G(k, 1)L, and eq, < |G(k, 1)~ ]|; -

Feedforward filter. As the forward gain of the fuzzy model is not constant, the
feedforward filter is recomputed at each sampling instant. Using the optimal control
sequence computed in the previous sampling instant, the fuzzy model is simulated
over the prediction horizon, and linear models are obtained at 4th step in the prediction
horizon, i = 1,..., H,. The filter gain is the inverse of the steady-state gain of these
models. There are three options:

1) asingle gain based on the linear model obtained for ¢ = 1;

2) asingle gain based on the entire set of linear models. For example, the minimal of
the steady-state gains;

3) different gains for each step ¢, ¢ = 1,..., Hp,, based on the steady-state gain of the
corresponding model.

While the first alternative is the simplest one, the third one leads to the most accurate
calculation. The second alternative is a compromise between the two, providing a
feasible solution.

The parameters A(k) = Aa(k) in (5.31) are set 10% higher than the product of the
uncertainty bound and the inverse of the steady-state gain of the current model, as
there is an absolute upper limit of 0.9

A(k) (= Aa(k)) = min(1L.1ea(k) [ G(k, 1) li,00,0.9).

5.5 Examples

Two examples are given to illustrate the method: liquid-level control in a simulated
SISO cascaded-tanks process and real-time control of the liquid level in the MIMO
laboratory-scale cascaded-tanks setup described in Chapter 3.

5.5.1 Liquid-level control in a simulated SISO cascaded-tanks setup

This example illustrates the computation of the uncertainty bounds, the different de-
gree of conservatism of the three implementable constraints C1, C3 and C4, and the
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influence of the constraints on the performance of the controller. Consider a labora-
tory setup consisting of two cascaded tanks (Fig. 5.4). The manipulated variable is the
pump flow rate g and the goal is to control the liquid level in the lower tank A; such
that it follows a prescribed reference.

q i
hy |
2

—]

— |

Figure 5.4. SISO cascaded-tanks setup.

The fuzzy model was identified using data from the real process, sampled with the
period T = 5s. The model consists of four rules of the form:

Rii if h] (k —1) is -Ail and h] (k‘ —2) is AiZ and q(]i) —1) is .Ai3 and q(k‘ —2) is .AZ'A
then hl(k) =a; hy (k — 1) + aizhl(k) - 2) + bi[q(k — 1) + bizq(k — 2) +6;
i=1,...,4.

The identification technique is based on fuzzy clustering and least-squares estimation

(Babuska, 1998), see Appendix A. The consequent parameters and their standard
variations are given in Tab. 5.1 and Tab. 5.2 on the following page.

Table 5.1. Consequent parameters.

Ri  ain a;2 bi 1 by 0;

I 152 -0598 387-107* 246-1072  3.34.1073
2 168 —0716 -3.16-107% 6.03-1072 —-1.39.10~2
3 166 —0.688 —1.37-107% 3.52-1072 —-6.57-1073
4 174 -0779 -392-107% 291-107% -6.15-1073

The performance of the model on a validation data set is shown in Fig. 5.5 on the
next page. The Variance Accounted For performance index is VAF = 90.4%.

This fuzzy model is used to represent the process model in the controller. The pro-
cess itself is simulated by using a perturbed fuzzy model obtained by randomly varying
the consequent parameters of the original fuzzy model. The perturbed parameters are
in the interval +3¢ (Tab. 5.3).

R
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Figure 5.5. SISO cascaded-tanks setup. Validation of the fuzzy model. Solid line:
process output, dashed line: mode! prediction.

Table 5.2.  Standard deviations of the consequent parameters.
Ri Tay, Oa; s Ob,. Ob; 2 06,
1 347-1072 2.86-1072 4.14-10~%> 4.80-1073 4.56-10~*
2 133.1072 1.22-1072 3.87-107% 4.73-107% 7.43.10~*
3 146-1072 137-107' 297-107* 3.57-107% 5.95.10~*
4 1.55-107% 1.48-107' 3.97-1073 4.57-1073 7.47.107*
Table 5.3.  Perturbed consequent parameters.
rule a a; by by 0
1 1.51 —-0.59%4 1.51-10~* 2.68-1072 3.84.1073
2 1.68 —0.714 —239.1073 6.64-1072 —1.35-1072
3 1.67 —0.68 —133-1073 3.68-1072 —6.45-1073
4 1.73 —0.750 —9.61-10~* 3.10-1072 -5.65-1073

The MPC parameters are selected according to the tuning rules given in Section 5.1.

Since there is a delay of one sample, the minimum cost horizon Hy;, = 1. The process
is well damped and a prediction horizon of H, = 4 is used to speed up the response
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(the settling time is about 25s). The process order is two, thus control horizon is
H. = 2. The weight in the cost function is P = 1 and the physical input constraints
are g € [0,1], Ag € [~1,1]. The gain of the feedforward filter R (Fig. 5.2) is equal
to the inverse of the minimal steady-state gain (2nd option in Section 5.4.2). The
parameter p in (5.30) and (5.31) is set to p = 0.5, which gives a first-order filter 29'35.
The choice of p determines how the stability constraints will react to a change either
in the model gain (A and A») or in the model uncertainty bounds (g and €, ): p < 1
allows rapid changes for a short period, while with p &~ 1 the transient is long with a
small amplitude.

The benefits of the proposed method can be appreciated when we compare the
result to unconstrained case. Figure 5.6 and Figure 5.7 on the following page demon-
strate the difference between controllers with and without stability constraints. With-
out stability constraints (only the physical constraints g € [0,1], Aq € [-1,1] are im-
posed) the system oscillates. The robust constraints smooth out the control signal,
which results in a smoother output. Note that offset-free reference tracking is achieved.

The calculation of the uncertainty bounds at time ¢ = 51s is shown below. The
bounds eq (k) and eq, (k) on the model uncertainty Q and Q, are computed according
to (5.9) and (5.22), respectively. For the sake of illustration, the considered convolu-
tion operators in (5.10) and (5.23) are of fifth order.

Att=351s,1ie., at k = 10 the previous values for the lower tank level are h; (k) =
0.1268m and i (k — 1) = 0.0955 m; the control input is (k) = 0.6066 and g(k — 1) =
0.6357. Based on these values, the matrices A (k) and B (k) extracted from the fuzzy
model (5.16) are

1.661 —0.689 0.035 0 0 0 -0.0014
1.060 @ 0 0 0 0 0

0 0 0 0 0 0 1.0000

Ac(k) = 0 0 0 1.706 —0.648 0.046 Be(k) = 0.0076
0 0 0 1.000 O 0 0

0 0 0 0 0 0 1.0000

The corresponding matrices obtained in the previous four sampling instants are
Ac(k—2)=Ak—1)=A.(k),B.(k—2)=B.(k—1)=B.(k) and

1.528 —0.608 0.026 0 0 0 0.0002
1.000 0 0 0 0 0 0

0 0 0 0 0 0 1.0000

Ac(k—3)= 0 0 0 1.626 —0.5260.040 B.(k-3) = 0.0123
0 0 0 1.000 0 0 0

0 0 0 0 0 0 1.0000

1.513 -0.5980.026 0 0 0 0.0004
1.000 0 0 0 0 0 0

0 0 0 0 0 0 1.0000

Ac(k—4) = 0 0 0 1.617-0.5130.039 Be(k—4) = 0.0128
0 0 0 1.000 0 0 0

0 0 0 0 0 0 1.0000

]
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Figure 5.6. SISO cascaded-tanks setup. Reference tracking with (solid) and without
(dashed) robust constraints.
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Figure5.7. SISO cascaded-tanks setup. Control signal with C1 (solid line) and without
robust stability constraints (dashed line).
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and the common matrixisC.=(1 0 0 -1 0 0).
For the kernels Hs ,(k,%), ¢ = 0,...,5 from (5.19) we have

i=0 : [Hsw(k,0)=0

i=1 : [Hsw(k, 1)] <0.0090
i=2 : |[Hsw(k.2)| <0.0260
i=3 : |Hsw(k,3) <0.0399
i=4 : |Hsw(k.4)] <0.0643
i=5 : [Hsw(k.5)| <0.0880

and using (5.9) through (5.11), eq(k) = 0.2272.
Analogously for the incremental kernels AH; ¢ (k,7), ¢

|H6,tv(kﬂ7’-)| = (5.32)

0,...,5 from (5.28) we

have
i=0 : |AHsu(k,0)|=0
i=1 : |AHsy(k.1)| <0.0090
L) i=2  [AH(k,2) <0.0260
AHso (kD=9 123 1 |AH(k,3)] <0.0229 (5-33)
i=4 : |AHgy(k,4)| <0.0261

i=5 : |AHsu(k,5) <0.0283

and using (5.9) through (5.11), the upper bound of the uncertainty is e, (k) = 0.1123.
The robust stability constraints on A g for the first 450s, computed through C1, C3 and
C4 are given in Fig. 5.8 on the next page. The input increment is guaranteed to stay
in the interval determined by the bounds A gmi, and Ag™* respectively (see Fig. 5.9
for the C1 case). Since Agpin and Ag™* are symmetric around zero (Theorem 5.4 and
Corollary 5.1), only Ag™* is shown in the figure. Note that the constraint based on
C1 is the most conservative one, while the one using C4 is the least conservative. The
C3 constraint is in the middle. After a reference change, the constraints based on C1
swiftly go to zero, while the C4 constraints allow some variation of the control signal.
The C3 constraints also tend to zero, but more slowly than the constraints based on
Cl.

5.5.2 Real-time liquid-level control in a MIMO cascaded-tanks setup

The real-time performance of the presented technique is demonstrated by using the
setup described in Section 3.4. Again the control objective is to follow set-point
changes in the levels in the lower two tanks by adjusting the flow rates of the liquid
entering the upper tanks.

The MPC parameters are selected as follows. The minimum cost horizon is Hyyi, =
1 as in the previous section. The control horizon is set to H, = 2 and the prediction
horizon is set only to Hp = 4 to improve the disturbance rejection properties. The
non-zero weighting matrix is P = I. The user-provided constraints on the inputs and
outputs are

a1 € [0, 1] 7 €0, 1] Agq € [-0.3, 0.3] Ag € [-0.3, 0.3]

hy € [0, 0.5] h, € [0, 0.5] Ahy € [-0.1, 0.1] Ahy € [-0.1, 0.1]
The process behaviour with and without robust stability constraints (C1) is pre-
sented in Fig. 5.10 on page 106. The bounds on the control signal and its increment
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Figure 5.8. SISO cascaded-tanks setup. Robust stability constraints C1 (solid line),

C3 (dotted line) and C4 (dashed line) on the control input increment Ag.
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Figure 5.9. SISO cascaded-tanks setup. Control input increment Ag (solid) and the
robust stability constraints based on C1 (dashed).
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are not very tight, due to the existing interactions inside the model (Fig. 5.11). Still,
the constraints on the control increment go to zero in steady state and when no dis-
turbances are present. Note that since the user-provided lower bounds on the control
signals are equal to zero, only the upper bounds are given in Fig. 5.11a.

While in both cases the controller achieves offset-free reference tracking, the intro-
duction of the robust stability constraints reduces the oscillations during a transition
between different set-point levels. At T'= 200s, a temporary power failure (lasting
five seconds) in the left pump is deliberately introduced. Again, the robust constraints
smooth out the controller reaction to this external disturbance.

5.6 Summary and concluding remarks

A general scheme for computing robust stability constraints for nonlinear MPC has
been presented. Constraints on the control signal and its increment are calculated
that guarantee stability for any model-plant mismatch within the given uncertainty for
general (also non-fuzzy) nonlinear plants. The underlying assumptions are as follows:
() the available model perfectly matches the nominal process, (i¢) the model-plant
mismatch is expressed as an additive uncertainty, and (¢i7) the offset is bounded.

The stability constraints can be derived using only the small-gain theorem, how-
ever, they may be too conservative. The conservatism is reduced by taking into ac-
count the model-plant mismatch. The process model is considered to be a linear time-
varying model, rather than a nonlinear time-invariant one, which makes possible the
use of linear input-output operators. The model-plant mismatch is expressed as an
output of such a linear time-varying operator. The stability constraints are recomputed
at each sampling instant, based on the current model-plant mismatch.

A systematic procedure for the computation of the bounds on the model uncer-
tainty has been proposed for a the process model that is a TS fuzzy model. The TS
model is assumed to match the nominal process perfectly and the model-plant mis-
match is given through the standard deviations of the fuzzy consequent parameters.
To compute the uncertainty bounds, the model-plant mismatch is represented as a lin-
ear time-varying convolution operator. The parameters (kernels) of the convolution
operator are expressed through the difference between the outputs of the nominal and
the perturbed process. Since here the incremental and non-incremental input-output
mappings are different, separate convolution operators for the incremental and non-
incremental relations are needed.

A simulated SISO cascaded-tanks process was used to illustrate the computation
of the uncertainty bounds, the different degrees of conservatism of the different im-
plementable constraints C1, C3 and C4, and the influence of the constraints on the
performance of the controller. To attain an offset-free reference tracking also in the
most conservative (C1) case, the feedforward filter has to be properly designed in or-
der to provide extra freedom. The filter gain is recomputed at each sampling instant,
using the current fuzzy model gain. The effectiveness of the approach in real time was
demonstrated using a MIMO laboratory cascaded-tanks setup.

It was shown that the stability constraints robustify the system performance in the
case of a model-plant mismatch without deteriorating the nominal performance. The
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Figure 5.10. MIMO cascaded-tanks setup. Real-time control performance with and
without robust stability constraints.
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Figure 5.11. MIMO cascaded-tanks setup. Robust stability constraints on the control

signals and their increments.
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stability constraints, rather than the weights in the cost function smooth out the control
signal. An additional advantage is that the stability constraints and the bounds on
the model uncertainty are computed in a systematic way, by extracting the necessary
information from the fuzzy model, either off-line (where possible) or on-line, at each
sampling instant.

The application of the stability constraints, however, has a significant drawback: its
complexity and, as a consequence, the computational time. In order to compute the
bounds on the model-plant mismatch, we represent the fuzzy model as a convolution
operator. The order of the convolution operator depends on the poles of subsystems in
the fuzzy model. As a result, when the poles move closer to the unit circle, this order
increases, and hence the memory requirements and the processing time as well.




6 FUZZY MODEL PREDICTIVE
CONTROL OF A GDI ENGINE

This chapter presents the first of the two real-world applications of the developed
methods for fuzzy model predictive control — a Gasoline Direct Injection engine. The
complexity of this system exceeds that of most of the previously reported applica-
tions of MPC, mainly because of the switching of combustion modes and the related
adaptation of the cost function and constraints. Section 6.1 introduces the physical
and technological principles of this engine. The GDI simulation model, developed by
Siemens Automotive SA in Toulouse, is given in Section 6.2. This model is imple-
mented in Simulink and includes the engine management system and the driver and
powertrain submodels. Section 6.3 describes the construction of the fuzzy prediction
models for MPC. The control design is presented in Section 6.4. The obtained re-
sults are presented in Section 6.5. Comparison with other control strategies is given in
Section 6.6.

109
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Figure 6.1. Overview of the differences between the HM and SM.

6.1 GDI engine

The technology currently used in most modern gasoline combustion engines is indirect
multiple point injection (MPI), in which the fuel is injected before the inlet valve
outside the cylinder (Ganesan, 1994). MPI, however, shows limitations with respect
to the new, more stringent requirements for reduced pollution and fuel consumption.

For years, engineers have known that if they could build a petrol engine that works
like a diesel engine ~ one in which fuel is injected directly into the cylinder and the
stratified, rich mixture near the spark plug is ignited — they would have an engine
that achieved both the fuel efficiency of a diesel engine and attained the high output
of a conventional petrol engine. However, development of such an engine has been
impeded by the poor combustibility of petrol.

The Gasoline Direct Injection (GDI) engine is a new type of engine which can
operate in two different combustion modes: homogeneous and stratified (Fig. 6.1). In
the homogeneous mode (HM), the operation of the engine resembles that of an MPI
engine. The fuel injection takes place early in the inlet stroke (Fig. 6.2) and the air-
fuel mixture is spread evenly throughout the cylinder (Fig. 6.1a). In the stratified mode
(SM), the injection takes place late in the compression stroke. A compact spray of fuel
is injected through a high-pressure swirl injector over the piston crown, resulting in an
optimal stratified air/fuel mixture immediately beneath the spark plug (Fig. 6.1b). The
movement of the fuel spray, the piston head’s deflection of the spray and the flow of the
air within the cylinder cause the spray to vaporize and disperse. The resulting mixture
of gaseous fuel and air is then carried up to the spark plug for ignition. The biggest
advantage of this system is that it enables precise control (sampling time T = 5 ms)
over the air/fuel ratio at the spark plug at the point of ignition. In this way, higher
efficiency can be achieved, which leads to fuel savings up to 30% and lower pollution
(Bortolet et al., 1998).
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Figure 6.2. Timinginthe two different combustion modes. The Start Of Injection (SOI),
the injection time (T}p;) and the IGnition Advance angle (IGA) are indicated. TDC and
EOI stand for Top Dead Center and End Of Injection, respectively. The moment of spark
flash is denoted by a star ().

Figure 6.2 shows the relation between engine timing and the main control vari-
ables: the Start Of Injection (SOI) and IGnition Advance angle (IGA) are expressed
in degrees before Top Dead Cgenter (TDC). The time of injection Tiy; is expressed
in milliseconds and can be recalculated to degrees by scaling with a factor of 0.006 -
N [deg/ms]. The main difference between the homogeneous and stratified mode is
the fuel injection timing. In the HM, the injection takes place in the intake stroke
(EOI > 180°), while in the SM the fuel is injected during the compression stroke
(EOI < 180°).

In response to driving conditions, the Engine Management System (EMS) changes
the timing of the fuel injection, alternating between the combustion modes: stratified
charge and homogeneous charge. Under normal driving conditions, when the speed
is stable and there is no need for sudden acceleration, the GDI engine operates in the
stratified mode (SM). The SM, however, can only be used in a restricted operating
range (in terms of engine speed and torque demand), and operation in the homoge-
neous mode (HM) is necessary in certain situations, e.g., to provide fast acceleration.
The GDI engine switches to the HM when the driver accelerates, i.e., when more
power is needed.

The task of the EMS is to control the combustion process such that the torque
demand is satisfied, while fuel consumption is minimized and the required driving
comfort is maintained (switching between the combustion modes can produce exces-
sive torque gradients and thus negatively influence the comfort). The choice of the
combustion mode has a large impact on the timing in the cylinder, and hence, on the
control strategy used.

The EMS controllers are normally designed using engine maps: look-up tables de-
rived through extensive experiments with an engine prototype (Gifvert et al., 2000).
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This is a laborious and time-consuming approach. Instead, here a model predictive
controller (MPC) is utilized, based on TS fuzzy models identified from input-output
data. The application of MPC to engine control is a new approach, which can po-
tentially surpass the shortcomings of the traditional control strategies applied to in-
creasingly sophisticated engines (Mollov, van der Veen and Babuska, 2001). MPC is
truly multi-variable and can handle constraints in an explicit way. No detailed pro-
cess knowledge is required to construct the fuzzy models. Instead, relatively simple
closed-loop experiments are run on the engine to collect data (Mollov, Babuska and
van der Veen, 2001).

The MPC determines optimal settings for the Start Of Injection SOI, the duration
of fuel injection Tiy;, the IGnition Advance angle IGA and the amount of fresh air in-
troduced into the cylinders MTC (Fig. 6.3). The important state and output variables
of the engine (such as the engine speed, effective torque or the air/fuel ratio) are pre-
dicted by fuzzy models. Different models are used in the different combustion modes.
The optimization algorithm is based on quadratic programming, using successive lin-
earization of the fuzzy prediction model (see Chapter 4). Due to the short sampling
period (Ts = 5ms), only a single linear model is extracted from the fuzzy one at the
current operating point. Mode-dependent constraints and weights in the cost function
are introduced in order to minimize the torque bumps during mode switching.

Engine
Management ——
System ‘.
MTC | IGA | S0l
S{)aﬂq | Ting
plug & |
Air—> J——\ — Bum

0 Crankshaft
Figure 6.3. A schematic diagram of one cylinder of the GDI engine with the main
control variables indicated.

6.2 The GDI simulation model

A dynamic simulation model of the GDI engine was developed by Siemens Auto-
motive SA in Toulouse within the European Esprit research project FAMIMO (Fuzzy
Algorithms for the control of MIMO Processes, LTR 219 11). The overall structure of
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the simulation model is shown in Fig. 6.4. It consists of three major subsystems: the
EMS and the driver and powertrain models.

European
Driving
Cycle

Speed reference Acc. pedal Throttle control Throttle position
Gear reference Engine Ignition advance Manifold pressure
Management ;
Sysgtem Injection start Engine speed
s Effective torque
Driver Injection time Power 4
train Air/Fuel Ratio
é Gear
Fuel flow into cylinder
Clutch
Brake Car speed

Figure 6.4. The simulation model including the powertrain submodel, the EMS and a
submodel of the driver.

The reference inputs are the speed and gear references defined by a driving sce-

driver tries to follow these references as closely as possible by operating the accel-
eration, clutch and brake pedals and the gearshift. Based on the driver commands and
the engine states and outputs, the EMS provides the four control inputs for the en-
gine. These signals are given in Fig. 6.4 and the corresponding symbols and units are
summarized in Table 6.1.

Table 6.1.

Control inputs and measured outputs of the engine.

Control inputs

Symbol Unit

nario, extracted from the European Driving Cycle (Commission, EU, 1993). The

Throttle command MTC % open
Ignition advance angle IGA deg before TDC
Start of injection SOI deg before TDC
Injection time Tin ms

Outputs Symbol Unit

Throttle position Pure % open
Manifold pressure Pn mbar

Engine speed N rpm

Effective torque TQE Nm

Air/fuel ratio RAF —

Fuel flow into cylinder  Qfyel kg/h

Car speed V km/h

The goal is to design an EMS that meets the following control objectives:
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1. Control the engine such that the effective torque follows the torque reference. This
is necessary in order to allow the car speed to follow the reference signal while
maintaining driving comfort (avoiding excessive torque gradients).

2. Operation in the SM requires less fuel and consequently reduces the pollution.
However, there are limitations to the range of operation in the SM which are defined
with respect to the engine speed and the indicated torque TQI (i.e., the effective
torque minus torque losses, TQI = TQE — TQL)

TQI < 50Nm and N < 3000 rpm. (6.1)

Since the SM operation is restricted, the engine should be able to switch between
the combustion modes according to the operating conditions. The commutation
between the HM and the SM must be such that any disturbance to the driver is
avoided.

3. During HM operation, keep the air/fuel ratio to a constant value RAF = 1 with an
allowed tolerance of 2%. During SM operation, the engine must run in lean burn
conditions, i.e., 1 < RAF.

4. Minimize the fuel consumption. Due to the low fuel consumption and low pollutant
emissions in the SM, the engine should operate whenever possible in this mode.

The powertrain model describes the behaviour of the car. Its dynamics are given
through three state variables: the fresh-air throttle position ¢wuc, the pressure of the
intake manifold Py, and the engine speed N, and through a number of nonlinear maps.
The powertrain model can be divided in two parts: engine model and engine load
model (Fig. 6.5). The engine model contains two of the states: ¢ur and Py, while N
is hosted by the engine load model (Sun et al., 1999).

Shift
MTC . . .
—~ | Engine TQE transmission
I1GA RAF +
- =1 Brake
so1 N +

T @ Chassis

Figure 6.5. The powertrain model. The engine delivers the torque TQE to the trans-
mission, which determines the engine speed N on the basis of the load and the gearshift.

The engine load model includes the transmission, the brakes and the chassis. It
describes the car’s behaviour for a given gearshift and is assumed to be invariant during
the simulations.

The engine model can be decomposed into three subsystems: the air intake, the
engine manifold, and the cylinder (Fig. 6.6). The volume of intake air is manipulated
through the position of the fresh-air throttle ¢, with control input MTC. The air
intake delivers the air with flow rate Qyy to the engine manifold, affecting the manifold
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Figure 6.6. The three parts of the engine model: the air intake, the intake manifold
and the cylinder.

pressure Py,. The manifold pressure and the engine speed N control the air intake in
the cylinder Qcylinder, While Py, is also influenced by Qcylinder. The inputs Tiy; and SOI
control the fuel intake and the injection timing, respectively (Fig. 6.2). The cylinder
subsystem contains no dynamics, hence the effective torque TQE and the air/fuel ratio
RAF are determined directly by the inputs IGA, SOI, Tiyj, Py, and N.

In practice, not all signals inside the engine (states and outputs) can be directly
measured with sensors (e.g., the air/fuel ratio). Nevertheless, because observers can
be applied to reconstruct the non-measurable signals, it is assumed here that all signals
are available.

The approach chosen in the FAMIMO project is to consider the engine benchmark
as a “‘gray box.” Therefore the engine model (mathematical equations, look-up tables)
cannot be utilized directly for control design. The model can only be used to gain
some basic knowledge regarding engine control (e.g., “In the HM, the engine torque
depends mainly on the air introduced in the cylinder and can be reduced through the
ignition advance and the air/fuel ratio”). Nevertheless, for control purposes some
look-up tables can directly be used to express the various constraints on the signals
and parameters of the engine, such as (Section 6.4.1 — Section 6.4.2):

1. The SM operation domain;
2. IGA constraints both in the HM and in the SM;

3. Start and end of injection (SOI and EOI).

6.3 Construction of the prediction model for MPC

The development of a physical (white-box) model of the powertrain for control pur-
poses is a difficult and time-consuming task. An alternative approach is to build a TS
fuzzy model based on measured data.

]
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Figure 6.7. Relations between the RAF and TQE, and inputs MTC, Tj;; and IGA in
the HM.

6.3.1 Generation of experimental data

Many of the nonlinearities in the engine are related to the engine speed N, hence to
obtain a good model one should cover the complete range of N. The initial experiments
indicated that a random distribution of the inputs may drive N out of the operation
range [900, 3700] rpm, therefore some type of control for N is needed.

The engine speed is an integral of the effective torque, so through TQE one can
keep the N in the desired range. Figure 6.7 gives an impression of the influence of
the inputs on TQE and RAF in the HM during the first ten seconds after ignition. An
increase in the MTC results in a higher throttle opening ¢urw. As a result the air flow
increases, hence also RAF. The air flow influences the manifold pressure Pp,,. Together
RAF and Py, influence the torque TQE. The injection time Ti,; controls the fuel flow
Qruel, and thus influences RAF inversely. The IGnition Advance angle IGA determines
the spark flash moment, hence affects only TQE.

Proportional and PI controllers have been devised to provide the torque in the dif-
ferent combustion modes, so that the engine speed is well spread over the operational
range [900, 3700]rpm. In the HM, this is accomplished by a cascaded manipulation
of MTC, Ti, and IGA, keeping RAF approximately one. In the SM, only the Tiy;
and MTC inputs are used and RAF is maintained above one. In both modes MTC is
proportional to the difference between the current and desired engine speed. Based on
the MTC value, Tiyj is adjusted proportionally to the difference between the current
and desired engine speed. The ignition advance angle IGA is determined on the ba-
sis of Tiyj and Qguer- Random variations are applied to each of these control variables




FUZZY MODEL PREDICTIVE CONTROL OF A GDI ENGINE 117

xf MTC e o MTC Throttle position
— controller Manifold pressure
Tinj Ti“j ;
controller l: Engine speed
1GA I Effective tor:
que
SOI & IGA Power : :
controller KYe )4 train Air/Fuel Ratio

Fuel flow into cylinder

Car speed

Figure 6.8. The closed-loop identification scheme.

in order to achieve proper excitation of the system. In the homogeneous mode, the
start of injection SOI is a constant, and in the stratified mode, SOI and IGA are pre-
described through a look-up table, thus they are not subject to optimization. Below
the relations in the controllers used for data generation in the homogeneous mode are
briefly presented. The output of the MTC controller is calculated as

MTC = min(max(3 +97 - k; - n¥ +n,,3), 100),

where k; = 0.1, k, = 6 if N > N and k; = 1, k>, = 3 otherwise. n; is a random
signal, uniformly distributed in [0, 1], and n, is a normally (Gaussian) distributed
random signal with zero mean and a variance of 0.1.

The output of the Tiy; controller is calculated as

Tinj = min(max(Tinj base - 701 + MinMair - 712, maxMyi ), minMaic ),

where
Tinj base = Min(50, maxMy;r) — max (0, minMy;),

ny is a random signal, uniformly distributed in [0, 1], and 7, is a normally (Gaussian)
distributed random signal with zero mean and a variance of 0.00005. M,;; is a function
of the engine speed and throttle input, Mair = Mair(Nper, N,MTC), and minM;; = 1.8
10™*Mgir + 0.15 and maxMy;r = 0.1126 - 10~*M,;; +0.15.

The signals IGA and SOI are determined through look-up tables, using the current
engine speed, the flow of fuel in the cylinder and the computed Tiy;.

It should be noted that these controllers are designed only to generate data and
cannot be used to control the engine, as they cannot handle the switches between
the combustion modes. The controllers only maintain a “stable” mode (HM or SM)
operation and thus it is not possible to bring the engine to a regime close to the one
during a mode switch. As consequence, the identification data miss such regimes.

Figure 6.9 shows a part of the identification data set for the HM, sampled with
sampling time of T, = 5ms. The apparent correlation between Qg and Py, is not
only caused by the engine characteristics but also a result of the control actions (Tin),
as the fluctuations in it are due to RAF variations. The RAF is controlled to stay
within 15% around one, a region where no control action is supplied. The engine
speed increases, as intended.
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Figure 6.9.  Part of the identification data set for the HM.
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6.3.2 TS Modeis

The characteristics of the engine depend on the combustion mode, therefore separate
TS models (2.2) are developed for each mode. These are optimized with respect to
optimal efficiency during a “stable” mode operation (i.e., when a switch is not ex-
pected and has not just been performed). However, at the moment of switching, the
engine variables (states and outputs) have to allow operation in either mode. This re-
sults in a lower engine efficiency (sub-optimal operation), which cannot be predicted
by the fuzzy models. More precisely, when the fuzzy model for the SM is used, it is
not possible to bring the manifold pressure down during the transition to the HM. An
additional model thus prove to be necessary for the transient SM—HM. For the tran-
sient mode HM—SM, the fuzzy model for the HM is still used. The transient mode
SM—HM fuzzy model is derived based on a subset of the data generated in the HM,
where RAF is in the interval [1, 1.5].

The structure of the different TS models is selected using prior knowledge and
some testing during the identification stage. The four engine inputs can be used as
model inputs. In the HM, the start of injection is constant and MTC, Ti,; and IGA are
subject to optimization. Therefore only these are included in the model. In the SM,
the start of injection and the ignition advance angle are pre-described according to a
look-up table. The regressors for the outputs in the HM, SM and SM—HM models
are given in Tab. 6.2 through Tab. 6.4, respectively.

The manifold pressure submodel for the HM is given as an example. The mem-
bership functions for the linguistic terms (‘Low’, ‘Medium’, etc.) were constructed
by using fuzzy clustering. The functions used in the above manifold pressure sub-
mode] are shown in Fig. 6.10. The consequent parameters were estimated by local
least squares (Appendix A).

1. If N(k) is Low and ¢y (k) is ZERO and P, (k) is VERY LOW then
Pr(k+1)=—0.0178-N(k) + 4.6 - ¢wrc(k) +0.92 - P (k) +25.9

2. If N(k) is MEDIUM and ¢wirc(k) is LOow and Py, (k) is Low then
Pn(k+1) = —0.0413-N(k) +6.12 - ¢ync(k) + 0.798 - Ppy(k) + 111

3. If N(k) is HIGH and ¢yac(k) is MEDIUM and P,,(k) is MEDIUM then
Pm(k+1) = —0.0148 -N(k) + 0.6 - purc(k) +0.765 - Py (k) + 218

4. If N(k) is VERY HIGH and ¢urc(k) is HIGH and P, (k) is HIGH then
Pu(k+1) = —0.005-N(k) 4+ 4.1 - ure(k) +0.835 - Pyy(k) +23.1

(6.2)

To achieve a satisfactory prediction accuracy of the fuzzy models, one must choose
the number of rules properly. This number was optimized with respect to the obtained
accuracy of prediction. It is important to consider the prediction error on a validation
data set as well as the evaluation of the model within the controller. Therefore for
each of the operation regimes, “a batch” identification was carried out that produced
an extensive set of fuzzy models with different numbers of rules. Each of these fuzzy
models was first validated on a data set different from the identification data set. Next,
the models were utilized in the MPC to predict the engine outputs for a set of operating
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Table 6.2. Regressors selected for the different outputs in the HM.
Output Outputs Inputs
TQE() Quea(K) NK) e K) Pn(k) | MTC(K) Tipj (k) IGA (k)
RAF (k+1) X X X
TQE (k+1) X X X X X
quel (k+1) X X
N (k+1) X X X X X
Gurc (k+1) X X
Pr (k+1) X X X
Table 6.3. Regressors selected for the different outputs in the SM.
Outputs Inputs
Output MTC(k)
TQE(k) Qra(k)y Nk Nk Pnk) MTC(k — 1) Tinj (k)
MTC(k—2)
RAF (k+1) X X X
TQE (k+1) x X X
quel (k+1) X X
N (k+1) X X
N (k) X
Pm (k+1) X X X X

Table 6.4. Regressors selected for the different outputs in the transient mode

SM—HM.

Output Outputs ' Inputs
TQE (k) OQua (k) N(K) &urc(k-1) Pm(k) | MTC (k) Tiy (k)

RAF (k+1) X X X
TQE (k+1) x 9 9
Qfuet (k+1) x x
N (k+1) X X X
dure (k+1) X X
P (k+1) x X X
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Figure 6.10. Membership functions.
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conditions. Table 6.5 displays the numbers of rules for the different fuzzy models for

which best validation and prediction performance was achieved.

Table 6.5. Number of fuzzy rules for different models.

Output HM SM SM—HM

RAF 9 7 7
TQE 6 7 7
Qruel 4 6 6
N 4 1 3
Prre 1 — 1
Pn 4 9 5

6.4 Control design

The EMS reacts to the driver’s commands, given by the acceleration, brake and clutch
pedals, and the gear engaged. Further, the EMS has to deal with different disturbances

such as noisy sensor data and varying loads.
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The controller operation is described by four modes: two corresponding to the
combustion modes HM and SM, and two transient modes: HM — SM and SM —
HM. The transient modes are necessary to prepare the engine for switching, as the
combustion modes are based on different physical phenomena.

The implemented controller configuration consists of an MPC optimizer, assisted
by a mode switching logic (Fig. 6.11). The MPC optimizer provides control signals
based on the minimization of a cost function which guarantee optimal operation within
the given combustion mode. To gain maximal efficiency from the engine, however, the
selection of the combustion modes should be based on the demands on the torque and
the engine speed. The mode switching could be based on the optimization of a cost
function too, but this would result in an excessive computational load. Therefore the
signal optimization is only performed within the MPC (containing all models of the
engine), while the strategy for switching between the combustion modes is embedded
in the switching logic. This logic is necessary to prepare the engine for the switch, as
the two modes require different settings for the manifold pressure, the air/fiel ratio, etc.
The switching logic facilitates this by suitably modifying the cost function, constraints
and references.

y
u
MPC -
Iy, I'y Switching logic -

Figure 6.11.  Control configuration.

6.4.1 MPC optimizer

The predictive controller described in Chapter 4 is utilized. It optimizes the following
cost function

H, Hy
m“ing Z‘}ry(k+i)—31(k+i)“i + Zi”Af’(k'i'i'l)”iP
i=1 =

H, H,
+ 3 ru(k+i— D) —u(k+i- Do+ 2 [Auk+i- D], (63
Jj=1 =1

where r, and ry are the input and output references, respectively, and u = IMTC, Tiyj,
IGA|T and y = [RAF, TQE, Qet, N, dure, P} 7 . The inputs and outputs are subject to
level and rate constraints. The fuzzy models derived in Section 6.3 are used to predict
the engine outputs during operation in the corresponding mode.

The second term in the cost function is used to restrict the output variations. Dur-
ing the switching periods, penalizing the variations is preferred to imposing explicit
constraints, as the latter may result in infeasibility. The third term provides the nec-
essary mechanism to manipulate the inputs during the transient modes: e.g., keeping
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the Tiy; (and thus the fuel flow) constant while closing the air throttle MTC reduces
the air flow and hence the air/fuel ratio. Because of the closed-loop data generation
(Section 6.3.1), the switching behaviour of the engine is not modeled precisely. Since
the fuzzy models cannot accurately predict the engine outputs during a switch, the
single-model method (Section 4.3) is preferred. Depending on the controller’s op-
erating mode (HM, HM—SM, SM or SM—HM), the corresponding fuzzy model is
linearized at the current operation point and the derived linear model is used in the
optimization routine.

The prediction and control horizons are selected using the guidelines proposed
by Soeterboek (1992). The car is well damped, therefore the prediction horizon is
H, = int(ts/Ts) where the settling time ¢, ~ 50ms for a large part of the operation
region (Bortolet et al., 1998), thus H,, = 10. Since the engine is of order two, accord-
ing to Soeterboek (1992) a control horizon H. = 2 was initially applied. However,
experiments related to the switching between the combustion modes showed that the
control horizon H. = 8 results in the best performance. When H, = 8 is used, the
control signal has additional degrees of freedom that are necessary for a fast reaction
during a switch in the combustion mode. The other parameters — the weighting ma-
trices and the input and output constraints — vary in the different controller’s modes.
Reference signals are only used for RAF, TQE and Qg (Section 6.2), so only these
are weighted (Tab. 6.6). For N, ¢wne and Py, only level and rate constraints are consid-
ered (Tab. 6.7). Note that in order to avoid infeasibility problems in the optimization
routine, the output constraints are relaxed during the switching periods. In this way
the stability of the control system is ensured, since feasibility rather than optimality
suffices for guaranteeing stability (Michalska and Mayne, 1993; Scokaert et al., 1999).

Table 6.6. Diagonal elements of the weighting matrices.

Weight HM HM — SM SM SM — HM
P [2000,4,0] [100,2,0]  [0,160,1]  [1000,15,0]
AP [0,50,0]  [0,400,0] [0,0,0] 0,0,0]
Q  [0,0,001] [0,50,0.01] [0,0] [0,0]

AQ  [150,10,1] [0,105,0] [100,2-10°]  [0,100]

Some of the input constrains are imposed by the system itself, e.g., the level con-
straints on IGA in HM and HM—SM depend non-linearly on the throttle position, the
manifold pressure, and the engine speed (Section 6.2)

IGAmin (¢MTC1Pm7N) S IGA S IGAbase(qﬁMTC7Pm7N)7

where IGApin and IGAp,s are known nonlinear functions of ¢wrc, Pn and N, given
analytically and through look-up tables (denoted by LUT in Tab. 6.7).

To reduce the influence of noise, Butterworth filters are used in the IMC scheme
(Fig. 4.1). They are first-order filters, with cut-off frequencies 35Hz for RAF and
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Table 6.7. Level and rate constraints.

Mode Output Input
RAF TQE N MTC Tiy IGA
aM  level (900,3700]  [0,100]  [0,3.5] LUT
rate [—10,10] [-0.05,0.05]
HM—sMmlevell0.5,00)  [~50,100]  [900,3700] [0,100]  [0,3.5] LUT
rate -1,1] [-0.1,0.1] —
sp  level [900,3000] [0,100]  [0,3.5]
rate [£20,20] |-100,100] [=1,1] [=0.I,0.]] —
SM_HMmlevel [—50,49.5+TQL][900,3000]  [0,100]  [0,3.5]
rate [£100,100] [=0.02,0.02]  —

20Hz for TQE, respectively, taking into account the different dynamics of these out-
puts (Bortolet et al., 1998).

The control objectives are defined with respect to three of the engine’s outputs:
the air/fuel ratio, the fuel consumption and the produced torque. The references for
the air/fuel ratio and the fuel consumption, imposed by the engine and the combus-
tion mode, are available beforehand. The torque reference is based on the driver’s
torque demand expressed through the accelerator pedal, and as such is not known
beforehand. Therefore it is kept constant over the prediction horizon. The following
paragraphs discuss in more detail how the references are derived. The reference values
are summarized in Table 6.8 on page 127.

Air/fuel ratio reference. The controller should keep the air/fuel ratio at a constant
value (RAF = 1) in the HM operation. In SM, the engine must run in lean-burn con-
dition, i.e., RAF > 1. Thus a reference value for RAF is only used in the HM: RAF,¢
= 1. During the transient modes, the RAF,s is modified to bring the RAF up or down,
depending on the mode.

Fuel flow reference. The fuel consumption is an integral of the fuel flow Qg that
goes into the cylinder, hence for low consumption the fuel flow should be as low as
possible. Therefore, the reference for the fuel flow is set to a value corresponding to
consumption of six liters per 100km.

Torque reference. The torque is the engine’s output which directly influences the
car’s acceleration and thus much effort is spent on controlling it. The torque reference
TQE, is designed to take into account other factors, such as the engine speed, the
idle-speed control and the load disturbances:
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Idle speed control. When no gear is engaged or the engine is declutched from the
transmission, we have an idle speed operation. The engine speed in this phase
should be close to Nige = 1000rpm.

Safety constraints. During the decelerating phases, the torque is negative, i.e., the
engine brakes. The maximal negative torque is limited from below by —20Nm,
which corresponds to RAF = 100 (almost fuel-free). Despite being very attractive
from an economic point of view, a big negative torque is far from desired as in the
beginning of an acceleration phase the engine efficiency is low, due to the insuf-
ficient fuel content. The TQE cannot follow the reference during a period needed
for getting the RAF down. To avoid this situation, the maximum allowed negative
torque is restricted to —6Nm, i.e., when the reference TQE,; goes below —6Nm,
it is restored to that value.

Critical engine speed. The engine speed must always be higher than the critical en-
gine speed N¢ = 900rpm which is the lowest level before the engine stalls. When
the N drops below a prescribed value (925 rpm), an additional critical-speed con-
troller is engaged to compensate for the difference between the current and the idle
engine speed Njge = 1000rpm.

Load disturbance rejection. Load disturbances such as lights and the air conditioner
are also considered. The lights’ load is represented by an increase in the torque
demand of 3.5Nm. This torque demand is relatively low and the controller does
not consider it explicitly unless some of the safety constraints are violated. In such
a case, the corresponding safety controller is engaged.

The air conditioner’s load is represented by an increase in the torque demand by
15Nm. Contrary to the light load, here the request can be delayed for a period of
at most five seconds, which allows the controller to increase the TQE,.; gradually.
This prevents the engine from leaving the SM. The same strategy is used when
the air conditioner is turned off: TQE, is linearly brought down for another five
seconds.

6.4.2 Mode switching logic

The mode switching logic determines the current controller’s mode of operation and
adapts the relevant control parameters such that smooth alternation between HM and
SM is provided (e.g., to keep the torque gradient within the allowed limits). The
controller mode can have one of the following values (Fig. 6.12):

1.

2.

HM operation;

HM—SM operation (transient mode);

. SM operation;

SM—HM operation (transient mode).
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SM - HM (4) HM - SM (2)

Figure 6.12.  Controller modes.

To accomplish a switch, the controller goes through a sequence of operation modes:
(1) = (2) — (3) for a switch from the HM to the SM, or (3) — (4) — (1) from the
SM to the HM.

At the moment of switching, the engine variables (states and outputs) have to be
such that they support operation in either mode. However, this is accompanied by a
drop in the combustion efficiency. In the first couple of milliseconds after the switch,
the efficiency in the new mode is lower than in the old one. As a result, since the aim
is to gain maximal efficiency, a new switch would be initiated to the mode just left.
To prevent such a back switch, a dead time is introduced at the moment of switching.
During this dead time the engine variables are changed to values that ensure optimal
operation in the new combustion mode. The dead time varies from three to six samples
(Ts = 5ms) for the different gears, and is used to adapt the controller parameters
(weights and constraints) and the references.

The switching strategies are summarized below. Note that the signal variations are
restricted by means of the weights in the cost function, rather than by using constraints.
This is done on the one hand to avoid infeasibility problems in the optimization rou-
tine, and on the other hand it allows priority changes during operation. The weights
are modified to obtain desired compromise between the requirements imposed on the
different inputs and outputs. It appeared that the tuning of the weights and especially
the timing is critical for the stable operation of the engine.

Switching strategy SM—HM. The stratified mode is preferred as it requires less fuel
and reduces the pollution, but its operation range is limited with respect to the engine
speed and the indicated torque, see (6.1) on p. 114. The controller’s mode of operation
is therefore based on the current and predicted values of these signals. For the current
values, safety margins of one Nm and 50 rpm are included for N and TQI, respectively.
Since the mode switch is accomplished within a single engine cycle and the driver’s
actions are not known in advance, N and TQI are predicted only one step ahead. Thus
as soon as any of the constraints

TQI <49, N <2950, TQlyes <50, Ny <3000 (6.4)

is violated, a switch is initiated. During the switching period, RAF must decrease from
about 4.5 to one, guaranteeing the most efficient combustion in the HM. The RAF can
be reduced either by increasing the fuel flow, or by decreasing the air flow. Increas-
ing the fuel flow will cause a rapid increase in the produced torque, which does not
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only negatively influence the driving comfort, but may also damage the combustion
chambers and the crankshaft. Therefore RAF is reduced through the air flow, by ma-
nipulating the air-throttle position. The switching strategy is summarized as follows.

1.

Decrease the RAF reference in order to bring the RAF down (approximately to
one), which is necessary for an efficient HM operation. The relative importance be-
tween the RAF and the TQE at this moment is expressed by increasing the weight
for the RAF in the cost function (6.3): Prar = 5000, while Prqg = 1. These tem-
poral terms are used during the first 0.2 s in the HM instead of the nominal values
Prar = 2000 and Prqg = 4 (Tab. 6.6).

Allow large variations in MTC (AQumtc = 0), while restricting T;,; variations
(AQrT,,= 1000). The nominal weights are AQmrc = 150 and AQr,; = 10 (Tab. 6.6).

To achieve good driving comfort during the switch, use a rate limiter to restrict the
variations in the TQE reference within 0.5 Nm per sample.

Switching strategy HM—SM. The switching is initiated when constraints (6.4) are
satisfied. The switching strategy is summarized as follows.

1.

The RAF reference increases to 1.6 to make the RAF sufficiently high to allow op-
eration in the SM. The importance of the RAF with respect to the TQE is expressed
by increasing the weight on the RAF in the cost function (6.3): Prar = 1000, while
Proe = 50. These temporal terms are used during the first 0.2s in the SM instead
of the nominal Prap = 0 and Prgg = 160 (Tab. 6.6).

. In both HM—SM and SM, TQE is controlled by using Tiy;, rather than by MTC.

In the HM, MTC is open relatively little (5 — 10%), while in the SM most of the
time it is open about 80% and more. At the moment of switching large variations in
the MTC are allowed while the variations in the Tiy; are restricted. As a result, on
the one hand RAF rapidly increases while on the other the fuel flow is kept low to
prevent large gradients in the TQE. This is accomplished by using different weights
in the cost function: AQurc = 0, while AQr,; = 10000. They are used during
the first 0.2s in the SM instead of the nominal AQpmyc = 100 and AQTinj = 2000
(Tab. 6.6).

Table6.8. Reference values in the differentmodes. Vi denotesthe desired car speed.

Signal HM HM—SM SM SM—HM
RAF | 1—1.6 >3, Decrease to 1
depending on TQE
Q 6-0.75Veer 6-0.75Ves 6-0.75Vies 6-0.75Ver
fuel 100 100 100 100

TQE See Section 6.4.2 and Section 6.4.1
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6.5 Results

In order to evaluate the fuel consumption and the pollutant gas emission of a car, the
European Community has defined a normalized driving cycle, in which a combination
of speed and gear reference is imposed on the driver (Commission, EU, 1993). A
driving scenario with the duration of 5955, extracted from the European driving cycle,
is used to demonstrate the performance of the controller (Fig. 6.13). During the driving
scenario, 26 combustion mode switches are performed. The engine spends about the
same time in the HM and the SM. The mean fuel consumption of 7.12 I/100km is
comparable to the consumption achieved by other controllers, developed within the
FAMIMO project (Boverie, 2000).
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Figure 6.13.  Car speed and gearshift engaged. SM (- -) and HM (-).

To give a more detailed picture of the behaviour of the car, we show the subinterval
from the 85th to 125th second in Fig. 6.14 to Fig. 6.15. In this period all the con-
sidered events are present: gear changes, switches in the combustion mode, an idle
speed phase and additional loads. Figure 6.14a shows the engine speed N, the clutch
position, and the car speed V. During the first ten seconds, the car decelerates. At
the moment of declutching, the idle speed controller is engaged (Fig. 6.14b), which
brings the TQE to 0Nm and N to Njge = 1000rpm. At t = 1065 the lights are turned
on, which increases the torque demand. This causes the engine speed to drop ap-
proximately to 967 rpm, still well above the critical engine speed N¢ = 900rpm. At
t = 1165 the first gear is engaged. The controller switches from the SM to the HM,
as the former cannot provide the torque required (Fig. 6.14b). The necessary drop in
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RAF (Fig. 6.15a) is achieved through a rapid decrease of MTC (Fig. 6.15b). However,
this leads to a significant undershoot in RAF (RAF ~ 0.4), thus reducing the engine’s
effectiveness (Fig. 6.14b). As soon as the constraints (6.4) are satisfied (at ¢t &~ 1225s),
a switch to the SM is initiated. Again, when second gear is engaged, the controller
switches to the HM.

The control strategy has been applied to a reduced version of this benchmark that
comprises only the engine model, see Fig. 6.5. Different engine configurations have
been tested, based on combinations of aging phenomena and sensor noise as follows.
The aging phenomena are expressed through variations in the torque losses, such as:
(¢) increased and (47) reduced torque losses, and through sensor flaws given through
white noise perturbations with amplitude 5% of the measured signal for N, P;, and
RAF.

The simulations carried out showed that the controller is robust against torque vari-
ations, but is rather noise sensitive. To deal with the noisy sensors, we designed filters
on the important signals (TQE, N and Py,) and introduced additional parameters deal-
ing with the noise. For example, a switch in the combustion mode is initiated only
if there is a constraint violation in three consequent samples. Note that because of
the safety margins, the delay introduced in this way does not lead to violation of the
technological constraints. With these modifications, reasonable performance has been
achieved also for the noisy cases. Here, reasonable means that the stable operation is
maintained, although at the expense of, e.g., increased fuel consumption and intensi-
fied throttle action.

6.6 Comparison with other control strategies

The presented control design is compared with two other approaches, developed within
the FAMIMO project by the Department of Automatic Control of the Lund Institute
(Sweden) and the Advanced Development Department of Siemens Automotive SA in
Toulouse (France), respectively. Both of them are based on functional decomposition
of the engine into subsystems (Fig. 6.16) and the complete control system is built by
integrating local controllers, designed for the different sub-problems (Boverie, 2000).

The difference between these two approaches is in the way the control structure
is realized: several combinations of feedforward and feedback controllers can be uti-
lized to control the produced torque and the air/fuel ratio. In the Lund design, the
linear feedback loops are predominant, hence the name linear feedback design. The
feedforward actions are given by (almost) linear inversions of the mapping between
the system inputs and outputs. The priority is put on the minimization of the fuel con-
sumption. This is done through an extremum seeking controller for the optimization
of the fresh air flow introduced into the cylinders.

The approach exploited by Siemens mainly relies on feedforward control, and the
feedback actions are principally used to reject disturbances, hence the name fuzzy
Seedforward design. The multiple-model approach is used to derive a TS fuzzy model
of the engine. The corresponding fuzzy controller is essentially an inverse controller.
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The priority is given to the air/fuel regulation in addition to the torque regulation, and
the efficiency of the combustion process is controlled through the ignition advance.

The main difference between the fuzzy MPC design on the one hand and the linear
feedback and fuzzy feedforward designs on the other is in the amount of “white-box”
technological knowledge incorporated in the design. The linear feedback design fol-
lows the approach currently used in car manufacturing: the EMS is designed using
engine maps (look-up tables) derived through extensive experiments with the engine
prototype. The fuzzy MPC design, however, uses simple closed-loop experiments to
derive prediction models. The fuzzy feedforward design is in between the fuzzy MPC
and linear feedback designs, as it only uses fuzzy models to approximate unknown
static relations.

A number of criteria have been defined to evaluate and compare the different de-
signs.

Throttle criterion. The following criterion is used to evaluate the activity of the air
throttle actuator

Y, IMTC(k) — MTC(k — 1)|
Crhrottle = ;

]\T
where MTC(k) and MTC(k — 1) are the throttle actions at time k and k£ — 1 respec-
tively, and NV is the total number of samples.

Consumption criterion. 'The consumption criterion is the mean consumption over

the scenario:
f quel -dt

CConsumption = m '
where V is the car speed, and 0.75 [kg/1] is the fuel density constant.

100,

N
Tinj Homogeneous Pm Stratified
torque torque

Air/fuel ratio

Figure 6.16. Engine functional decomposition. The air admission subsystem com-
putes the manifold pressure P, based on the engine speed N. The air/fuel ratio
subsystem determines the RAF using the air and fuel flows. These flows are manip-
ulated by the manifold pressure Py, and the injection time Tiy;, respectively. Separate
subsystems are used to administer the torque in the different combustion modes. In
the HM, the torque depends on the engine speed, air and fuel flows, and the moment
of ignition through IGA. In the SM, IGA is pre-described according to a look-up table.
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Air/fuel ratio criterion. To evaluate the regulation of the RAF in the homogeneous
mode, we used the following criterion
RAF — RAF ¢
-mode - dt ,
THomogeneous / ‘ ARAFmax )

CraF =

where Thomogeneous 18 the time spent in the HM, RAF,s = 1 is reference for the air/fuel
ratio, ARAF,,x = 0.02 is the maximum acceptable deviation from the reference, and
mode is a boolean flag (1: homogeneous mode, 0: stratified mode).

Car speed criterion. The following criterion is defined to evaluate the car speed

regulation,
/ V-~ ‘/ref
“=7/|3 Vinax

where T is the duration of the scenario, Vs is the car speed reference defined by the
driving scenario, and A Vj,,x = 2km/h is the maximum acceptable deviation from the
reference.

Idle speed criterion. The following criterion is defined to evaluate the idle speed
N — Nigie

regulation,
1
CN1 3 = —/ AN
¢ Tidle ANid]e max

where Tigj. is the length of the idle phase period, Njg = 1000rpm is the engine idle
speed, ANigie max = 50rpm is the maximum acceptable deviation from Nigje, and idle
is a boolean flag (0: non-idle phase, 1: idle phase).

idle- dt,

Torque criteria. Several criteria are considered to evaluate the torque performance.
To preserve the car driveability during acceleration and deceleration phases, it is nec-
essary to limit the produced torque gradient. The corresponding criterion is

max( £l - dE?Emax’O)
CTorquel = T/ dTQE 02 'dt,

dt  max

where T’ is the duration of the scenario and %mx is the maximal torque gradient
authorized (Fig. 6.14b).

The main problem during the switching phases is to ensure that the torque change
is within the allowed limit, so that the driver does not experience any hi-cough

‘TQEbefore commutation TQEafter commutationl < 10Nm.
The respective criterion is defined as follows

1
CTorqueZ = o X
N bcommutau'on

dTQE
max ()TQEbefore commutation — TQEafter commutationr T4t maz T, 0)

ATQE, ’

commutation max
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where N beommutation 15 the number of commutations between the two modes, Ts = Sms
is the sample time of the controller, %max is the maximal torque gradient allowed
and ATQE ... ymutation max = 10 Nm is the maximal torque deviation allowed during com-
mutation (Fig. 6.14b).

Global criterion. A global criterion is defined that aggregates five of the seven crite-
ria defined above:

1
CGloba.I = g (CRAF + CTorquel + CTorqueZ +Cv+ CN;‘“E) . (6'5)

The objective of the controller is to minimize Cgiobai, Crhrotte @Nd Cconsumption a8
much as possible. Thus a lower value implies a more effective control strategy, re-
sulting in more driving comfort, fewer control actions and less fuel consumption. The
criterion Cgiopal 15 the most important one, as Cgiobal greater than one means that the
EMS should not be used because it either does not comply with the specifications
(high C, and Cy,,) or will damage the combustion chambers and the manifold (high
CRraF; CTorquel and CTorqueZ)-

The criteria values for the discussed control strategies are summarized in Tab. 6.9.
Comparing the fuel consumption, all designs use approximately equal amount of fuel.
The lowest consumption is achieved with the linear feedback design, where an ex-
tremum seeking controller is applied to optimize the quantity of fresh air introduced
into the cylinder during the SM phases. This is accomplished at the expense of
very tight throttle control, as indicated by Crhroule- In the fuzzy feedforward design
(Siemens SA), ignition advance IGA is used instead of the throttle opening, which
explains the low value achieved for this criterion. In the fuzzy MPC design, since the
control actions are optimized with respect to a multivariable cost function, the effort
is distributed between the different controls. As a result Crprone = 0.04 is higher than
the value for the feedforward design, but much below the one for the linear design.

For the global criterion, the feedback and the feedforward designs achieved sim-
ilar results, which were much better than the ones achieved by the fuzzy MPC. The
main contributors to Cgjebal in the fuzzy MPC are Crorquer and Crosquez (6.5): the used
fuzzy models are based on data collected for stable operation in a certain mode, and
cannot accurately predict the torque during mode switches. This results in deviations
from the reference and high torque gradients (Fig. 6.14b). The linear feedback design
follows the torque reference much better (lower Crorque2), however, at the expense of
higher torque gradients (higher Crorque1) during mode switches. On the contrary, the
feedforward design tries to keep the torque gradients within the imposed limits, while

Table 6.9. Criteria results for the different control strategies.

Controller Coalobal CConsumption Crnrottte

Fuzzy MPC design 0.59 7.12 0.04
Linear feedback design 0.0091 6.78 0.84
Fuzzy feedforward design  0.0102 6.87 0.016
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allowing larger deviations from the reference (Boverie, 2000). The advantage that the
linear feedback and fuzzy feedforward designs have over the fuzzy MPC design in
terms of Cgiopar can be explained through the use of “white-box” technological knowl-
edge. In the linear feedback design, the synthesis of the EMS controllers is based on
the white-box engine model, and fuzzy models are used only to model the unknown
nonlinearities. Local controllers are applied to the different subsystems also in the
fuzzy feedforward design. The use of fuzzy models in this design is limited to the
adaptation of the controller parameters depending on the operating conditions. Con-
trary, the fuzzy MPC design is centered on fuzzy models derived from experimental
data. No white-box knowledge is used, except to provide the constraints on the in-
put and output signals used in the MPC optimizer. Despite the relatively high value of
Caiobal» the fuzzy MPC design is still well below the allowed maximum, thus satisfying
the imposed specifications. Using additional priori knowledge can further improve the
control performance. For example, we could build a “gray-box” model of the engine,
where TS models only represent the nonlinear input-state and state-output mappings.

Comparison concerning the complexity of designed EMSs is not straightforward.
The linear feedback and the fuzzy feedforward designs are decentralized controllers
reflecting the functional decomposition of the engine (Fig. 6.16). The separate con-
trollers are based on output feedback or PIDs which can be individually tuned (an
exception is the extremum seeking controller in the Lund design, which optimizes
the air flow). The fuzzy MPC design is a centralized multivariable design, where
the interactions between the different inputs and outputs are taken into account, and
a compromise is made at each sampling instant. Here the complexity (measured in
terms of time needed for producing the control actions) is considerable higher than
reported for the two other approaches. So far, the fuzzy MPC has been implemented
in MATLAB and has not been optimized for real-time application. While the current
implementation needs 93ms on Pentium II 233MHz to compute one control action,
we believe that it is possible to reduce the computation time to such an extend that it
can be used in real time (recall that 7 = 5ms).

6.7 Summary and concluding remarks

This chapter presented a real-world application of fuzzy model predictive control. The
process under consideration is a gasoline direct-injection engine. The core of the En-
gine Management System (EMS) controller consists of a model predictive control
optimizer, with fuzzy models of the Takagi—Sugeno type derived through closed-loop
identification. Because of the engine complexity, it was not possible to satisfactorily
describe its behaviour in the whole domain of operation using a single fuzzy model.
Different models were developed for each combustion mode and an additional model
proved to be necessary for one of the transient modes. The fuzzy models were opti-
mized with respect to the obtained accuracy of prediction, both on a validation data
set and within the controller.

To avoid the drawbacks of the nonlinear optimization, we derived linear models
from the fuzzy model at the current point and used in the MPC. Since the derived
fuzzy models are not very accurate, at each sampling instant a single model was ex-
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tracted and used during the whole prediction horizon. Switching logic was used to
provide smooth switching between the combustion modes by means of modifying the
references to be followed and the MPC parameters.

The most difficult part in the control design was the switching between the com-
bustion modes. Not only different models were used, but when switching from one
combustion mode to another the controller parameters were changed as well: the refer-
ences were modified, temporary weights were introduced in the cost function (lasting
less than half a second) and the constraints were relaxed.

The obtained results demonstrate the potential of fuzzy model predictive control for
such a complicated system. Although slightly worse, for the most part they are com-
parable to the results achieved by using first-principle and technological knowledge.
In the linear feedback and the fuzzy feedforward designs, the synthesis of the EMS
controllers is based on the white-box engine model. The use of fuzzy models is limited
to modeling the unknown nonlinearities, or to tuning the controller parameters in the
different combustion modes. On the contrary, the fuzzy MPC design is based on fuzzy
models derived from experimental data. Because the engine operation during switches
in the combustion mode cannot be modeled accurately, the fuzzy MPC gives a poor
performance expressed in terms of high torque gradients during such a switch. How-
ever, this design is the most general one. As it follows a relatively standard procedure
and does not require detailed information about the engine, it can easily be applied to
a different engine. In this sense, it can reduce the time and cost of the control design
and the tuning phase.



7 FUZZY MODEL-BASED CONTROL
OF A BINARY DISTILLATION COLUMN

This chapter presents the second application of the developed methods for fuzzy model-
based control. The considered benchmark is a simulation model of a distillation col-
umn, used to separate a liquid mixture of two substances into its component fractions.
Multivariable distillation columns pose a number of challenging problems for both
system identification and control due to their nonlinear and ill-conditioned nature. The
simulation model of the column proposed by S. Skogestad is introduced in Section 7.2.
Section 7.3 describes the construction of the TS fuzzy models. The analysis of inter-
actions is presented in Section 7.4. A decentralized control scheme with a decoupler
design and a design of a multivariable controller are described in Section 7.5 and Sec-
tion 7.6, respectively. The latter is based on the MPC algorithm that uses local linear
models derived from the fuzzy model around the current operating point. To illus-
trate the influence of the model prediction on the achieved performance, a disturbance
signal is included as an additional input of the fuzzy model. Finally, the robustifying
effect of the stability constraints is shown. Comparison with MPC algorithms based
on a Wiener model is given in Section 7.6.2.
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7.1 Distillation unit

Distillation columns operate on the principle that the vapor of a boiling mixture is
rich in the components that have lower boiling points. Therefore, when this vapor is
cooled and condensed, the condensate will contain more volatile (light) components.
The remaining mixture will contain more of the less volatile material, see Appendix F.

Distillation columns consist of several units such as a vertical shell, column stages
(trays), reboiler, condenser, and reflux drum. These units are used to transfer heat
energy or enhance material transfer. The vertical shell contains the column trays and
together with the condenser and the reboiler constitutes the distillation column. A
schematic diagram of a typical distillation column with a single feed (raw material)
and two product streams is shown in Fig. 7.1.

The objective is to produce high-purity products at both ends of the distillation
column. This means that we have to control the component compositions in the top
and the bottom products, D and B, respectively. The top and bottom compositions are
denoted by yp and z g, respectively.
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Figure 7.1. A schematic diagram of a typical distillation unit with a single feed and two
product streams.
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Among the signals in the distillation column, five manipulated variables (control
inputs) and five controlled variables (outputs) can be distinguished. These are summa-
rized in Tab. 7.1. Typically the distillation column is first stabilized by closing three
decentralized (SISO) loops for level and pressure control, involving the condenser
level, Mp, the reboiler level, Mg, and pressure in the shell, p,

y2=[Mp Mp p|*.

The three decentralized loops usually interact weakly and may be tuned independently
of each other (Skogestad, 1997). The remaining two outputs are the product composi-

tions
yi=[yp IB]T.

There exist many possible choices for u, that is used to control y,, and for u,
controlling y;. By convention, each choice (“configuration”) is named by the inputs
u, left for composition control. Most commonly used is the “LV-configuration” with

w=[L VT, w=[D B V"

This means that the top product flow D, the bottom product flow B, and the overhead
vapor Vi are used to stabilize the column, and the reflux and reboiler flows L and V',
respectively, are used for composition control'. Hence, we end up with a 2 x 2 control
problem as shown in Fig. 7.2.

Table 7.1. Control inputs, measured outputs and disturbances of the distillation col-
umn.

Control inputs Symbol Unit

Reflux flow L kmol/min

Reboiler flow v kmol/min

Distillate (top) product flow D kmol/min

Bottom product flow B kmol/min

Overhead vapor Vr kmol/min

Outputs Symbol Unit

Distillate (top) product composition  yp mole fraction, %

Bottom product composition rp mole fraction, %

Condenser level Mp m

Reboiler level Mg m

Pressure D kPa

Disturbances Symbol Unit

Feed rate F kmol/min

Composition rate ZF mole fraction, %
! Another, less common configuration is the “DV-configuration” where u; = [D V|7 and w; =

(L B VqT.
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Figure 7.2.  Distillation column LV control configuration.

When the column operates in a wide range, its characteristics are strongly nonlinear
— especially towards high-purity, because of the physical saturation at 100% purity
of the products (Fuentes and Luyben, 1983; Sriniwas et al., 1995). Apart from the
nonlinearity, high-purity distillation columns exhibit the effect of directionality (or ill-
conditioning), which means that the process gain depends on the direction of the input
vector. (The direction of the input vector is determined as the ratio of the process
inputs L and V.) The directions of the input vector which are least and most amplified
are called the low-gain and high-gain input directions, respectively. The high-gain
direction causes the top product to be purer, but, at the same time, the bottom product
becomes less pure. The low-gain direction causes both products to become purer or
less pure simultaneously. Since the objective is the dual composition control, the low-
gain direction is the important direction for control (Skogestad and Morari, 1988).

7.2 The simulation model

The simulation model is implemented in MATLAB & Simulink? and has 39 stages,
a reboiler and a condenser, see Fig. 7.1. The simulation model has been developed
by Skogestad (1997)* under the assumption of a binary component, constant pressure,
negligible vapor holdup, total condenser, equimolal flow, and vapor-liquid equilibrium
at all stages. These assumptions cover the most important effects of the dynamics
of a real distillation column. Throughout the identification and control experiments
reported in this chapter, the product compositions are expressed as impurities, i.e., the
mole fraction of the heavy component in the top product and of the light component
in the bottom product.

The disturbances considered in the simulation model are the feed rate /' and the
feed composition zr, modeled as uniformly distributed white-noise signals: F ~
U([0.9, 1.0]) and 2y ~ U([0.45,0.55]). Such disturbance levels are common in an
industrial environment (Skogestad, 1997). The feed-rate disturbance is assumed to be
measurable, so its influence can be incorporated in the fuzzy model as an input that
cannot be manipulated. The feed composition is typically a non-measurable quan-
tity and its influence is not considered in the fuzzy model, leaving it as an unknown
process disturbance.

2MATLAB and Simulink are registered trade marks of The Mathworks Inc., Natick, MA.
31t is available from the Internet at http://www.chembio.ntnu.no/users/skoge/distillation/.
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7.3 Fuzzy modeling

Because of the phenomenon of directionality, open-loop identification only excites the
process in the high-gain direction. As a consequence, it is hard to make both products
purer at the same time, which corresponds to increasing the flows with L/V constant
(low gain), see Section F.2. Hence, open-loop experiments do not give information
about the low-gain direction, i.e., whether both products are simultaneously getting
more pure or less pure (Fig. 7.3, top). To get both low-gain and high-gain direc-
tions well excited, we carried out a closed-loop experiment. Another reason for using
closed-loop data generation is that the product compositions may not vary too much
during the experiment, but sufficiently large variations are allowed on the reflux and
reboiler flows. Based on the closed-loop experiments reported by Chou et al. (2000),
identification data sets are generated in closed-loop experiments by using two separate
(continuous-time) PI controllers. The controller parameters are given in Tab. 7.9. The
reference signals of the controllers are designed to cover operating ranges of impurity
[0,0.02] for both yp and x5 (Fig. 7.3, bottom). Two experiments are carried out: (%)
with constant nominal feed rate and feed composition, i.e., no disturbances are present,
and (i1) with varying feed rate and feed composition, as described in Section 7.2. Part
of the closed-loop generated data for the second case (with disturbances present) is
shown in Fig. 7.4.

Two TS fuzzy models were constructed by using 8000 input-output data pairs sam-
pled with the sampling time 75 = 2min. Since the process nonlinearity (gain direc-
tionality) is related to the composition concentrations, these variables are chosen as
the antecedent variables. The domain of each of the compositions was manually par-
titioned into two fuzzy subsets, see Fig. 7.5. The respective rules describe the column
operation in the four distinct cases: both products pure, both products impure, and one
product pure and the other impure. For the disturbance-free case, the fuzzy model has
the structure shown in (7.1) with consequent parameters given in Tab. 7.2 and Tab. 7.3,
respectively. (When the disturbances are present, also the feed-rate disturbance is used
as an input to the fuzzy model.) The cluster centers and membership functions are pre-
sented in Tab. 7.4 and Fig. 7.5, respectively. The standard deviations of the consequent
parameters (see Appendix A for details) are given in Tab. 7.5 through Tab. 7.6. These
deviations are used later in the MPC design to compute the bounds on the model-plant
mismatch, which are necessary for the computation of the stability constraints on the
control signals, recall Chapter 5.

R]i If yD(k— l) is -Ali,l and IB(k—- 1) is Ali,2 then
yp(k) = Ciiyp(k — 1)+ Cripyp(k —2) + Cuazp(k — 1)+ Cuazp(k —2)+
T]”,IL(k — 1) + 771,',2L(k' — 2) -+ T]]@g,V(k — 1) +771¢4V(k — 2) + 644
Roi: Wyp(k—1)is Ay 1 and zg(k — 1) is Ay, » then
zg(k) = Gityplk — 1)+ CGipyp(k —2) + (uszp(k— 1) + (axs(k —2)+
tin Lk —1)+miaL(k —=2) +misV{k— 1)+ 4V (k—2)+60
i=1,....4
1.1)

I



142 FUZZY CONTROL OF MIMO PROCESSES

BRSNS B S0 syt ot 2o oY
0.04 0.06 0.08 0.
Bottom product impurity

-

product impunty

.O
=]
2
o

T

0.02

Bottom product impurity

Figure 7.3. Distribution of open-loop (top) and closed-loop (bottom) identification data.

£o.01 5 A g | . » I | i
g ) M w&]wi Tq) Umm VM h\ ‘*JL_.?l ) jw
g8 | P L A
§o 005 1\4:‘-”“] J bw :1}:(‘]

0 . .
5000 6000 7000 8000

9000

10000 11000 12000 13000 14000

20 " r r .
=2
Q
g fb\; ,
° ﬂw’\ - My oo
3 _ ] A
E oA
Q ]
S ) i
E jM J |
o | N
2 hd N
oM 0 L

5000 6000 7000 8000 9000 10000 11000 12000 13000 14000

Time [min]

Figure 7.4. Closed-loop generated data. Solid line: process output, dashed line: ref-

erence.




FUZZY MODEL-BASED CONTROL OF A BINARY DISTILLATION COLUMN 143

Table 7.2. Consequent parameters for output top composition impurity (yp).

Ri (i Ci2 Cii3 Cri e Mi,t  Ma2 M3 M4 0.

1 1975 —0.976 0.0037 —0.0040 —0.0021 0.0017 0.0018 —0.0016 —0.0070
2 1.967 —0.969 —0.0543 0.0530 —0.0044 0.0049 0.0041 —0.0039 —0.001
3 1.937 —0.939 —0.0262 0.0258 —0.0045 0.0042 0.0041 —0.0039 —0.0030
4 1980 —0.981 —-0.0040 0.0035 —0.0018 0.0023 0.0017 —0.0019 —0.0002

Table 7.3. Consequent parameters for output bottom composition impurity (zp).

R G G2 Cugs [T 24,1 7,2 i3 Mg 02,

1 —0.2095 0.2134 1.9106 —0.9219 0.0034 —0.0032 —0.0066 0.0064 0.0118
2 -0.0133 0.0134 1.9067 —0.9071 0.0012 —0.0014 —0.0033 0.0032 0.0044
3 —0.0707 0.0725 1.8805 —0.8805 0.0029 -0.0025 —0.0075 0.0072 0.0057
4 —0.0244 0.0268 1.9437 —0.9420 0.0018 —0.0021 —0.0039 0.0037 0.0118
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06 B
0.4+ =
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0 0.005 0.01 0.015
xg(k=1)

Figure 7.5. Membership functions for yp and zp.

The model performance on a validation data set is illustrated in Fig. 7.6. The perfor-
mance is assessed by using the variance accounted for (VAF) and the root-mean-square
error (RMS) indices. The results are RMS = 0.0561, VAF = 96% for top composi-
tion impurity (yp) and RMS = 0.0296, VAF = 99% for bottom composition impurity
(zp), respectively.
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Table 7.4. Cluster centers forrule i = 1,...,4, output/ = 1,2.

Ri yD(k——l) .'133(]{2—1)

B LN -

0.0025 0.
0.0025 0.0125
0.0125 0.0025
0.0125 0.0125

0025

Table 7.5. Standard deviations of the consequent parameters for output yp, x 1074,

Ri TG4, O¢liy %¢ia 9Cuia %man Omiz 965 Omaa 961
1 2022 20.10 14.82 14.66 0.17 0.24 0.15 0.19 0.08
2 2356 2343 991 9.8l 0.17 023 0.15 0.20 0.07
3 2206 2196 23.17 2285 0.22 0.30 0.17 023 0.10
4 2070 20.58 10.09 10.01 0.17 0.22 0.15 0.19 0.07

Table 7.6. Standard deviations of the consequent parameters for output x5, x 107,

Ri T4, 010 T¢iia G¢1i4 Tnii O Tnis 3 Omia e, ;
1 4798 4763 3252 3215 0.36 0.52 0.33 0.42 0.18
2 8048 7993 31.04 30.70 0.47 077 042 0.65 0.30
3 7579 7532 30.96 30.66 0.52 0.70 048 0.61 0.23
4 3215 32.00 2698 26.67 0.29 040 0.23 0.31 0.13
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Figure 7.6. Fuzzy model validation. Solid line: validation data, dashed line: model

prediction.
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7.4 Analysis of interactions

Two methods have been recommended as suitable for quantifying the degree of direc-
tionality and the level of interactions in a distillation column: the condition number
and the Relative Gain Array (RGA) (Skogestad and Postlethwaite, 1996). The reader
interested in the condition number and its application to the distillation column prob-
lem should refer to the above reference, where the subject is treated in detail. In the re-
mainder of this section, the fuzzy RGA method and the sensitivity analysis, proposed
in Chapter 3, will be used to explore the degree of coupling (also called the input-
output interactions) between the top and the bottom compositions (Mollov, Babugka
and Verbruggen, 2001b).

7.4.1 RGA analysis

Since the antecedent structure of the fuzzy model (7.1) is identical for the two outputs,
it is possible to start the analysis by computing the RGA for the individual rules. In
this way a measure is obtained that shows how the interactions vary in the different
operating regions.

Consider the linear model of the distillation column valid around yp = 0.0025 and
xp = 0.0025, i.e., the first rule for each output of the model:

yp(k) =1.975yp(k—1) —0.976yp(k—2) +0.0037zp(k—1) — 0.0040z 5(k—2)
—0.0021L(k—1)4+0.0017L(k—2)+0.0018V(k—1)—0.0016V (k—2)—0.007

rp(k) = —0.2095yp(k—1) +0.213yp(k—2)+ 19106z 5(k—1) — 0.921925(k—2)
+0.0034L(k—1)—0.0032L(k—2)—0.0066V(k—1)+0.0064V (k—2)+0.012

The offset term is omitted since it can be considered as an additional, constant input

that does not influence the output change due to variations in the reflux and reboiler
flows. This model is stable, with transfer matrix (recall (3.4))

G, _ ( 03077 01538
= 0.0769 —0.0769

and the relative gain array is

_ ~-I\T _ 2.0000 —1.0000
A=Gix(G)" = < ~1.0000 20000 /-
If we compare A| with the Relative Gain Array obtained by using the white-box model

of the column, linearized at this point

2.1500 —1.1500
Atin = ( —1.1500  2.1500 ) 72

we see that the corresponding elements of A; and Ay, are quite close. This can be
seen as additional evidence of the steady-state model accuracy.

The RGAs for the four rules are shown in Tab. 7.7. Looking at the As for the
individual rules, one can see significant differences. This indicates varying degree of
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coupling for the different compositions. Despite the variations for the separate rules,
RGAs suggest pairing between reflux flow L and top composition yp, and between
reboiler flow V' and bottom composition z g. While this conclusion can also be derived
by using only a single linear model, the fuzzy RGAs provide additional insight in the
nature of interactions in the different operating regions. Negative As in the RGAs for
the first three rules indicate that the control loops counteract (i.e., try to compensate
each other). For the last rule, the RGA values suggest that the interaction can lead
to extra oscillations (recall Remark 3.2). As expected, the weakest interaction found
is for the fourth rule, corresponding to the most impure compositions (yp = 0.0125
and zp = 0.0125). It is interesting, however, that the interaction indicated when the
compositions are most pure (yp = 0.025 and xp = 0.0025) is not as strong as when
the one is pure and the other impure (second and third fuzzy rules).

Table7.7. RGAforrule:i=1,...,4.

rule A;

2.0000 -1.0000
-1.0000  2.0000

5.0000 -4.0000

1

2 -4.0000  5.0000
3 9.0000 -8.0000

-8.0000  9.0000
4 0.6250  0.3750

0.3750  0.6250

To show why it is not possible to analyze the interactions in between the rules by
using individual RGAs (3.5), let us analyze the evolution of the upper-left element of
the RGA (A1) during a change in the active rule, e.g., from rule one to rule two. The
transfer function matrix is a linear function of the degree of fulfillment 3:

Gs = (1-08)G+8-Ga

~03077 0.1538 0.1724  0.0690
(1_5)< ~0.0769 0.0769 )*5 ( ~0.6667 —0.3333 >

_ —0.3077+0.13533  0.1538 —0.084873 1.3)
B —0.0769 —0.58983 —0.0769 —0.25643 ) ’
Applying formula (3.4) to G, we obtain an RGA with an upper-left element
0.41023 —0.0769)(—0.3077 +-0.4801
Ang = ( s ) f) (7.4)

0.2469520632 — 0.247328355 — 0.0118

The evolution of A;; s when 8 changes from zero (rule 1 only active) to one (rule 2
only active) with a step of 0.001 is shown in Fig. 7.7 by a solid line. The indicated
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values for Ay;, g3 when a single rule is active coincide with the ones given in Tab. 7.7,
however, in between A1) g leaves the interval [2, 5] defined by the RGA elements for
the individual rules.

For a comparison, consider the combined RGA (3.10) for 5 = 0.9. At this point the
transfer matrix Gg—g.9 is

0.1240 0.0775 ) (1.5)

Go-09= ( 0.4286 0.4286
which results in

3.4427 —2.4427
Ag=09 = ( —2.4427  3.4427 ) (7.6)

This is what one would intuitively expect, as the elements in A(8 = 0.9) are in the
intervals defined by the corresponding values of A; and A, (Tab. 7.7). The complete
evolution of A, 4 is given in Fig. 7.7 by a dashed line.

From the performed analysis, a couple of guidelines for the control design can be
given. First, the indicated degree of coupling varies for the different operating regions
(fuzzy rules). The RGAs reveal that a decoupling design is required for the second
and third region. In the first and the fourth regions, control with sufficient quality can
be achieved using detached SISO control loops.

OB .

=]

| ! [

|
\
0 0.2 0.4 0.6 0.8 1
Rule 1 B Rule 2

Figure 7.7. Evolution of \;; g during a transition from the first to the second rule. Solid
line: “individual RGA,” Dashed line: “combined RGA”.

7.4.2 Sensitivity analysis

While the extended fuzzy RGA analysis provided an indication for the static interac-
tions, the output sensitivity analysis can be used also to give insight in the asymmetry
of the interactions and on the dynamic interactions. First the interactions for the linear
models of the distillation column that correspond to the individual rules of the model
(7.1) are analysed. At a steady state where a single rule is valid, a variation in ei-
ther input is introduced and the sensitivity function (3.15) is computed based on the
output response (Mollov, Babuska and Verbruggen, 2001b). The selected amplitude
of 0.0345 corresponds to the input variations used to compensate for the disturbances

S
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in the fuzzy MPC in a steady-state operation. The values of s for the different
rules are given in Tab. 7.8. Like in the previous section, for all rules the reflux flow
L has a larger influence on the top composition impurity yp than the reboiler flow
V. Similarly, the bottom composition impurity x g is affected more by V' than by L.
Comparing the RGAs (Tab. 7.7) with the sensitivity function (3.15) (Tab. 7.8) for the
different rules, we can observe a close similarity. Both methods indicate that the in-
teractions for compositions that are both pure (first rule) or impure (fourth rule) are
weaker than those for a pure and an impure composition (second and third rules).

Table 7.8.  Output Sensitivity Functionforrule : = 1,...,4.

rule  sf: L Vv

yp 1992 -1231
TB ~7.53  13.42

3 yp 2847 -22.47
rp -16.77 25.84

3 ¥p  39.65 -28.65
rp  -3033  39.63

4 Up 122 543
rp  -535 103

We demonstrate how the amplitude of an input change influences the interactions
with Fig. 7.8, which shows the static input-output interactions after a change in either
input with the amplitude varying in [0.0045,0.0445]. Note that since the sensitivity
analysis is based on the complete fuzzy model rather than on the individual fuzzy
rules, as the fuzzy RGA (recall Section 3.2.2), the fuzzy model has to be explicitly
simulated to compute the output sensitivity with respect to a change in a certain input.
The fuzzy model is simulated long enough (50 steps ahead) to reach a steady state.
(The sensitivity functions are only depicted for a relatively narrow band of feasible
combinations of L and V.) At the moment of the input variation, the process is in a
steady-state operation. From the figure the following can be observed: (7) the influence
of the reflux flow L on yp is greater than the influence of the reboiler flow V' (up to
25 and up to —7, respectively), see panels | through 2, and the influence of L on
zp is significantly lower than that of V' (up to —6 and up to 22, respectively) see
panels 3 through 4; (47) there are differences between the influence of the L on yp
and that of V' on zp, as a result of the non-symmetric coupling (see also Tab. 7.8). It
can be observed that in all four cases, the largest influence is achieved for a certain
ratio of input variations. While this ratio is not constant for the different input-output
combinations, in each of them it can be considered approximately linear (Fig. 7.8).
The conclusion is that for the fastest transition between two operating regions, one
should keep the input ratio constant while modifying the amplitudes, i.e., use the low-
gain direction for control purposes.
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At yD(k-1) =0.0025, y ,(k-2) = 0.0025, x 4(k-1) = 0.0025, x B(k-2) =0.0025, L(k-2) = 2.7667, V(k-2) = 3.2447

S{yp (k+49).L(k-1)}

V(k-1) L(k-1)

S{yD(k+49),V(k-1 B

L(k-1) Vik-1)

(a) Top composition.

Aty,(k-1) = 0.0025, y j(k-2) = 0.0025, x ,(k-1) = 0.0025, x (k-2) = 0.0025, L(k-2) = 2.7667, V(k-2) = 3.2447

s{xy(k+49)L(k-1))
[N P RN )

@
W
a

3.15 27

V(k-1) L(k-1)

s(xB(k+49),V(k-1 )

V(k-1)

(b) Bottom composition.

Figure 7.8. Static coupling for 50-step ahead simulation of the model: (a) Top compo-
sition yp, (b) Bottom composition x 5.
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To give an impression of the dynamic coupling, Fig. 7.9 shows the series szz((]fgf),

7=0,...,50, at level (yp,zg) = [0.0025,0.0025]7 and (L, V) = [2.7667, 3.2447]T
for the input change of 0.0345. A non-symmetric steady-state coupling is clearly
visible, as the influence of V' on yp (s7?) is higher than that of L on xg (s{").

The sensitivity analysis thus provides additional insight for the control design. The
two control loops have a non-symmetric influence: the top composition is more sensi-
tive to the reflux flow than the bottom composition to the reboiler flow. Dynamically,
the top composition reacts faster to changes in the reflux flow than to changes in the
reboiler flow. Similarly, the bottom composition reacts faster to changes in the reflux
flow than to the ones in the reflux flow. This can be explained by taking into account
the positions where the two flows enter the column: the reflux flow is introduced at
the top of the shell, while the reboiler flow is inserted at the bottom.

24 T T - T T 1

0 10 20 30 40 50

15 . ) . .
0 10 20 30 40 50

T

Figure 7.9. Dynamic coupling.

7.5 Decoupling control design

As mentioned in the introduction, the LV-configuration is preferable since the effect of
the reflux and reboiler flows (u; ) on the output compositions (y, ) is nearly independent
of the tuning of the level and pressure controllers (involving u; and y»), as shown in
(Skogestad and Postlethwaite, 1996). However, in this configuration y, and u, interact
significantly (Section 7.4.1).

When using the LV-configuration for composition control, one should compensate
for the interactions between the product compositions. Figure 7.10, left shows the con-
trol performance achieved by two detached PI controllers, proposed by Skogestad and
Postlethwaite (1996). The PI parameters are given in Tab. 7.9. These controllers are
tuned for fast reference tracking. As a result, however, there is a significant coupling
after a change in either of the composition references. Different controller settings
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Figure 7.10. Distillation column: simulated control system performance. Left: Skoges-
tad PI, right: Pl & fuzzy decoupler. Top: top composition impurity yp, bottom: bottom
composition impurity x 5.

were proposed by Chou et al. (2000), see Tab. 7.9, to achieve a smooth rather than fast
response (not shown in Fig. 7.10). Nevertheless, they cannot deal with the coupling.

To reduce the coupling, we apply the control scheme depicted in Fig. 3.5. The
outputs of the detached PI controllers are fed to a time-varying decoupler based on the
fuzzy model (7.1). Using the model, at each sampling instant the input-output gains
are calculated and the corresponding transfer matrix is inverted and placed between the
PI controllers and the system (Mollov and Babuska, 2002). Note that here, because
of the discrete-time fuzzy model, discrete-time PI controllers are used (Astrom and
Wittenmark, 1997b). Since the decoupler changes the dynamics of the process, the
discrete-time PI controllers are experimentally tuned with respect to the aggregated
“fuzzy decoupler & process” system (Tab. 7.9).

The performance achieved with the decoupling control scheme is shown in Fig. 7.10
on the right. Comparing the results with the ones achieved without a decoupler shows
that the improvement is significant. Although not completely removed, the coupling
effects are significantly reduced. This also leads to an improvement in the overall
performance, e.g., less overshoot during transitions. A quantitative measure of the

,
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control performance is given in Tab. 7.10. The sum squared error (SSE) is used as a
performance criterion, as lower values represent better control performance.

7.6 Fuzzy model predictive control

A model predictive controller has been designed as a typical example of a truly multi-
variable control technique (Mollov, Babuska, Abonyi and Verbruggen, 2002; Mollov
and BabuSka, 2002). The performance is compared with the PI controllers discussed
above. Two different PI control configurations are shown (Tab. 7.9) because they are
tuned with respect to different objectives. As a consequence, the difference in their
performance is significant.

The predictive controller use the single model method in the optimization problem
(Section 4.3.1). The MPC parameters are selected according to the tuning rules given
in Section 5.1. Since there is a delay of one sample, the minimum cost horizon is set
to Hpin = 1. The process is well damped for the larger part of the operating range,
therefore a prediction horizon H, = 6 is used. Larger values of H, would slow the
response and reduce the disturbance rejection properties of the controller (the current
disturbance is used throughout the prediction horizon). Although the process is of or-
der four, a control horizon H. = 2 rather than H, = 4 is chosen as it makes the control
less aggressive. The weighting matrices P = I and AQ = 0.025 - I are experimentally
fine-tuned to achieve a reasonably fast response without an excessive overshoot. The
input constraints are respectively

Table 7.9. Pl controllers parameters. The last controller is a discrete-time one, with a
sampling time of T, = 2min.

Controller Krp Kri Kvp Kvy1

P11 (Skogestad and Postlethwaite, 1996) 26.1 694 —-37.5 —11.329
PI2 (Chou et al., 2000) 8.1 0.69 -9.5 —0.772
PI & Fuzzy decoupler 2025 124 -2375 —1.39

Table 7.10. Relative performance of the different controllers, in %. Skogestad’s Pl
controller performance is taken as 100%. Lower values represent better controi perfor-
mance.

Controller SSE,, SSE;,
PI1 (Skogestad and Postlethwaite, 1996)  100.0 100.0
PI2 (Chou et al., 2000) 98.2 95.4

PI & Fuzzy decoupler 62.2 75.4
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Le[1.7371, 3.7371] V€ [2.1536, 4.1536]
AL €[-02, 02] AV e [-0.2, 02).

The performance of the control system for the different controllers is compared for
several set-point changes within the operating region (Fig. 7.11). The proportional &
integral controllers PI1 (not shown in the figure) and PI2 have similar performance.
Both predictive controllers perform superior to the PI controllers (Tab. 7.11). Note
that to obtain a meaningful comparison, we use the same output references the PIs and
the fuzzy MPC. The reference signal for the PI controllers is correspondingly shifted
in order to anticipate a reference change.

Next, in order to show the influence of the model prediction on the control per-
formance, we compare it with a fuzzy MPC that uses a fuzzy model that has as an
input also the feed-rate disturbance F'. The incorporation of the feed rate improves the
model’s prediction and thus the control system performance, see (Fig. 7.11, bottom).
A quantitative performance measure is presented in Tab. 7.11. One can see that the
presented fuzzy predictive controllers significantly improves the performance criteria.

Table 7.11. Relative performance of the different controllers, in %. Skogestad’s Pl
controller performance is taken as 100%. The abbreviation FMPC+F indicates the
MPC algorithm using a fuzzy model which has as an input the feed-rate disturbance.

Controller SSE,, SSEg
PI1 (Skogestad and Postlethwaite, 1996)  100.0 100.0
PI2 (Chou et al., 2000) 102.3 97.9
FMPC 43.1 454
FMPC+F 394 41.2

7.6.1 Robust stability constraints

To illustrate the effect of the robust stability constraints on the control performance,
we introduce the C1-constraints (Chapter 5). The gain of the feedforward filter R
(Fig. 5.2) is equal to the inverse of the minimal steady-state gain (2nd option in Sec-
tion 5.4.2). The parameter p in (5.30) and (5.31) is set to p = 0.5, which gives a
first-order filter %3~

The calculation of the uncertainty bounds at time ¢ = 33 s is shown below. At
this moment the column is at a steady-state operation, which is influenced by the
disturbances on the feed rate and feed composition. The bounds e¢p and €, on the
model uncertainty Q and Q, are computed according to (5.9) and (5.22), respectively.
For the sake of illustration, the considered convolution operators in (5.10) and (5.23)
are of third order.

At ¢t = 33s, i.e., at k = 16 the previous two values for the product compositions
are (yp(k—1), yp(k—2)) = [0.0101,0.0101] mole fraction and (zp(k—1), z5(k—
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Figure7.11. Simulated control system performance for varying feed rate and feed com-

position. Top: PI2 controller, middle: fuzzy predictive controller, bottom: fuzzy predictive
controller with fuzzy model including the feed rate disturbance (F' ~ U([0.9, 1.0])). Left:
top composition impurity yp, right: bottom composition impurity z 5.
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2)) = [0.0131,0.0130] mole fraction; the control inputs are (L(k —1), L(k—2)) =
2.5374,2.5398] kmol/min and (V' (k — 1), V(k —2)) = [3.0183, 3.0279] kmol/min.
Note that although the output references do not change, the previous values for all the
signals are different as a result of the feed-rate disturbance. The degrees of fulfillment
for the individual rules of the first and the second output are 3; = [0.0052,0.4389,
0.7616, 0.0024] and 3, = [0.05824, 0.14866, 0.7240, 0.8355], respectively. Based on
these values, the matrices A.(k) and B, (k) extracted from the fuzzy model (5.16) are

1.8 —0.8 0.07 —0.07 0.005 —0.004 0 0 0 0 0 0

100 0 O 0 0 0 0 0 0 0 0 0

—0.01 0.01 1.53 —0.53 0.002 0.009 0 0 0 0 0 0

0 0 100 O 0 0 0 0o 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

A(k)= 0 0 0 0 0 0 0 0 0 0 0 0

c( )“ 0 0 0 0 0 0 1.81 —0.8 0.08 —0.07 0.005 —0.004

0 0 0 0 0 0 .00 0 O 0 0 0

0 0 0 0 0 0 —0.01 0.01 1.53 —0.53 0.002 0.01

0 0 0 0 0 0 0 0 0 0 0 1.0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

The corresponding matrices obtained in the previous two sampling instants
Ac(k—1), Ac(k—2) and B.(k), Bc(k— 1) and Bc(k —2) are

1.8 —0.8 0.07 —0.07 0.005 —0.004 0O 0 0 0 0 0
.00 0 O 0 0 0 0 0 0 0 0 0
—0.01 0.01 1.56 —0.56 0.002 0.008 0 0 0 0 0 0
0 0 1.00 O 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Ac(k - 1) - 0 0 0 0 0 0 1.82 —0.82 0.07 —0.07 0.005 —0.004

0 0 0 0 0 0 1.00 0 0 0 0 0
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The common matrix C; is
C.= 1 00 00 0 -1 0 0 0 0 O
CT\yY0 01 00O 00 -1 0 0 0/

From (5.19), for the kernels H; v (k,7), i = 0,...,3 we have

i=0 : [Hsu(k,0)]=0
) i=1 1 Hsu(k,1)] <0.0085
Hon(BDI =9 52 o |Hyu(k2)] < 00236 77
i=3 : [Hsu(k3) < 00288

and by using (5.9) through (5.11), we obtain eg (k) = 0.0609. The resulting stability
constraints (max) on the non-incremental signals are L™* = 3.224 and for V™ =
3.66.

Analogously, for the incremental kernels AHg ( (k,7), 2 =0,...,3 from (5.28) we
have

i=0 : |AH;.(k,0)]=0
) i=1 : |[AHsq(k,1)] <0.0085
AHs (k) =9 5o [AH; 4 (k,2)| < 0.0088 (7.8)
i=3 : |AHs.(k,3)] <0.0131

and by using (5.9) through (5.11), we obtain the upper bound of the uncertainty
€, (k) = 0.0304. The stability constraints (max) on the incremental signals are
AL™* =(.1393 and AV™* = 0.1174, respectively.

The robust stability constraints on L and V', non-incremental and incremental, for
the first 300 minutes are given in Fig. 7.12, middle and bottom panels, respectively.
Since Ly, and L™ (and Vpin and V™) are symmetric around zero (Theorem 5.4
and Corollary 5.1), only L™ and V™ are shown in Fig. 7.12, middle.

In the beginning, the stability constraints on the incremental signals are rather loose
as a consequence of the large model-plant mismatch. Between the 100th and 200th
second, the model-plant mismatch is limited and thus the constraints are much tighter.
The non-incremental constraints are smoother in this period as well. During the next
100 seconds the model-plant mismatch becomes larger, which is again reflected in the
stability constraints: the ones imposed on the incremental signals become less tight
and the ones imposed on the non-incremental signals fluctuate more.
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The application of the stability constraints, however, has a significant drawback: its
complexity and, as a consequence, the computation time. As shown in Chapter 5, the
computation of these constraints requires an additional control loop, with the corre-
sponding memory and processing time requirements.

Table 7.12. Relative performance of the different controllers, in %. Skogestad’s Pl
controller performance is taken as 100%, see Tab. 7.9.

Controller SSE,, SSE;;
FMPC 43.1 45.4
FMPC&

Robust Stability constraints ~ 40.3 41.1

7.6.2 Comparison with an MPC algorithm based on Wiener models

The results presented in this chapter are comparable to the results reported by Bloe-
men et al. (2001), who use a nonlinear Wiener-type prediction model in two MPC
algorithms.

Wiener models consist of a linear dynamic part followed in series by a static non-
linear element. To be useful for control purposes, however, the nonlinearity must be
invertible. Although any form of nonlinear function can be used, usually a polynomial
model is employed.

The authors identify a Wiener model by using again the closed-loop data generation
experiment proposed by Chou et al. (2000). The output nonlinearity is described by
two third-order univariate polynomials

H”(wl) 0

ym = h(w) =H(w)w = 0 Hyy(ws)

where H,; and Hj, are second-order polynomials and w is the output of the linear
dynamics. By restricting the operation region for w (since the model is only valid
within the region of the identification data), it is possible to compute the lower and
upper bounds on Hy; and Hy;. All possible values of Hy; and Hj; are within the
convex hull defined by these lower and upper bounds.

The cost function used in the MPC algorithm is similar to the one presented in
Chapter 4

oC
J(k) =Y Yon(k+i+11k) TPym(k+i+ 1k) + Au(k+ilk)TAQu(k +ilk) (7.9)
i=1
under the assumption of (¥, ref, Allrer) = (0, 0). When this assumption does not hold,
the origin of the system can be shifted respectively.

To avoid the infinite number of degrees of freedom arising from the infinite pre-
diction and control horizons, the above cost function is split into two parts, in a way
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Figure 7.12. Simulated control system performance with robust stability constraints
imposed. Top: control system performance. Left: top composition impurity yp, right:
bottom composition impurity zg. Middle: constraints on the non-incremental input
signals, bottom: constraints on the incremental input signals. Left: reflux flow L, right:

reboiler flow V.



FUZZY MODEL-BASED CONTROL OF A BINARY DISTILLATION COLUMN 159

that transforms the minimization of J(k) into a linear cost function, subject to matrix
inequalities which are affine in the nonlinearity H(w).

In the first MPC algorithm, the nonlinearity of the Wiener model is transformed
into a polytopic description. Through the use of the polytopic description in the cost
function (7.9), these nonlinear matrix inequalities are satisfied when they hold for
every vertex of the polytopic description. Thus the minimization problem then leads
to a convex, LMI-based, optimization problem.

In the second MPC algorithm, the inverted nonlinearity is used in the control
scheme to compensate for the nonlinearity (Norquay et al., 1998) and thus to remove
it from the optimization problem. The resulting convex optimization problem can be
stated as a quadratic programme plus a terminal cost term.

In Bloemen et al. (2001), the performance achieved through Wiener MPC is com-
pared to the performance achieved by using (7) a finite impulse response (FIR) model,
based on open-loop data generation, and (i7) a linear state-space model based on
closed-loop data generation. The MPC algorithm using the FIR model gives poor per-
formance, because the low-gain direction of the process is not captured in the model.
The linear state-space model captures the low-gain direction much better, and im-
proves the system performance. However, the linear model is not able to capture the
nonlinearity of the process, which leads to a model-plant mismatch at certain regions.
The Wiener model can straightforwardly handle this nonlinearity, which improves the
model prediction and thus the control system performance.

In the following, we compare the MPC algorithms based on a Wiener model with
the fuzzy MPC algorithms used in this chapter in terms of generality of the method,
stability properties and computational complexity.

The MPC algorithms using the Wiener model are developed with respect to the
specific structure of these models — linear dynamics followed by a static invertible
nonlinearity. Moreover, the algorithm based on polytopic description of the nonlin-
earity relies on a certain assumption about the nonlinearity. For general nonlinearities,
the number of LMIs rapidly increases. The algorithm based on the inversion of non-
linearity can be applied only when the model nonlinearity is invertible.

From this point of view, the fuzzy MPC algorithms presented in this thesis are more
general, as they do not rely on a certain structure of the nonlinearity. Moreover, the ro-
bust stability constraints are not even restricted to TS models and can be applied to an
arbitrary nonlinear model within a certain class. Additionally, when these constraints
are used, stability is guaranteed also during a transient between two operating regions,
which is not the case with the LMI-based MPC algorithm. However, the application
of the stability constraints has a significant drawback: its on-line complexity and, as a
consequence, the computational time.

7.7 Summary and concluding remarks

In this chapter, the techniques for analysis and control design based on TS fuzzy mod-
els have been applied to a simulation model of a distillation column. This benchmark
is well-known for its nonlinear behaviour and directionality character, typical for most
distillation columns used in the industry.
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The need of closed-loop identification that can identify the low-gain direction was
motivated and the corresponding experiment was presented. Based on the collected
data, fuzzy models of the TS type were identified and used (2) in the analysis of input-
output interactions and input-output decoupling, and (47) in the design of fuzzy MPC
algorithms.

The input-output analysis of the fuzzy model, based both on RGA and output sen-
sitivity functions, indicated that the input-output coupling varies for the different oper-
ating regions. To reduce this coupling, we constructed a decoupler that uses the fuzzy
model. It compensates for the coupling existing in the process by inverting the model
on-line, at each sampling instant. It was demonstrated that in this way the coupling
can be significantly reduced.

Thereafter the fuzzy model is utilized in the fuzzy MPC algorithm proposed in
Chapter 4. We have showed that the performance of the resulting control system is
significantly better than that of detached PI controllers. As a next step, it was demon-
strated how the MPC performance can be improved by improving the model predic-
tion. This is done by including disturbances as inputs in the fuzzy model. Finally
the effect of the robust stability constraints on the control performance was discussed.
The stability constraints were computed and linked to the model-plant mismatch. It
was demonstrated that the stability constraints provide additional smoothness of the
control signal, which results in a better control performance. However, the application
of the stability constraints has a significant drawback: its complexity and consequently
the computational time.

The results presented in this chapter are comparable to those of MPC algorithms
using a nonlinear Wiener-type prediction model. Both of them are superior to the
ones obtained by MPC using a FIR model based on open-loop data generation, and
to those obtained by MPC using a linear state-space model based on closed-loop data
generation. In terms of the method’s generality and stability properties, the fuzzy
MPC algorithm appears to be more general, as its computational complexity does not
depend on the type of model nonlinearity.




8 CONCLUSIONS AND
SUGGESTIONS

This thesis addresses various aspects of multivariable process control using fuzzy
models and fuzzy model-based control. Several algorithms are proposed that have
a sound theoretical background and a potential for industrial-scale applications. The
purpose of this final chapter is to summarize the main ideas and results, to present
the general conclusions of the research described in this thesis, and finally, to give
recommendations for future research directions in this field.
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8.1 Motivation and preliminaries

During the past decades, fuzzy control has emerged as one of the most active areas of
application of fuzzy set theory and fuzzy logic. Fuzzy control systems have been rec-
ognized as an appealing alternative to classical control schemes when partially known,
nonlinear or multivariable processes are addressed. Their structure facilitates the com-
bination of qualitative knowledge and input-output process data. Still, the design
of fuzzy control systems is a time-consuming task involving knowledge acquisition
and parameter tuning, especially for MIMO control applications. There have been no
generic solutions for the design of stable fuzzy logic controllers that take into account
the analysis of the interactions (static and dynamic) among the inputs and outputs, and
that allow for parameter tuning for nominal or robust performance.

Chapter 1 gives a short overview of the MIMO aspects in the process control and
introduces the fuzzy systems in the context of multivariable process control. It also
states the primary motivation for the research carried out, namely that the fuzzy ap-
proach should offer a user-friendly way of designing nonlinear controllers for multi-
variable processes.

Chapter 2 contains background material about the local linear approach used in the
developed methods for fuzzy analysis and control design. The chapter introduces the
Takagi—Sugeno (TS) type fuzzy models used throughout the thesis. If local models
are available for different operating regions, controllers corresponding to them can
be found in advance. This local approach appears to be well suited for the design of
fuzzy state feedback and output feedback controllers and fuzzy observers. Still, there
are issues of different character that limit the applications of this approach both in con-
ceptual and implementation terms, as shown in Chapter 2. In the consequent chapters,
different paradigms are used for the development of methods for fuzzy control design.
As a result, some of those shortcomings can be avoided or solved.

8.2 Extensions and novel results

The methods for fuzzy analysis and control design presented in the thesis are ordered,
according to the author’s opinion, from least to most important with respect to their
level of novelty and contribution to already existing techniques.

8.2.1 RGA for TS fuzzy models

In Chapter 3, an extension of the Relative Gain Array (RGA), which was originally
introduced for linear systems, was presented to facilitate the analysis of interactions in
MIMO TS fuzzy models. The TS structure is analyzed in order to obtain an RGA per
rule that indicates the interactions present in the region where the rule is valid. When
all MISO submodels have the same antecedent structure, RGAs can be computed for
the individual rules. These RGAs, however, cannot provide information about the in-
teraction when two or more rules are active, or when the antecedent structure differs
per output. To obtain that information for a specific point when two or more rules
are active, we derive first the model valid around that point. This method can only
be applied to analyse static input-output interactions. Therefore, to have a meaningful
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interpretation of the RGA values, it is necessary that the fuzzy model under consid-
eration is a stable one. Another drawback of the method is that for 2 x 2 models, the
interactions are always indicated as being symmetrical.

8.2.2 Output sensitivity analysis

Another tool to analyse interactions is the output sensitivity function introduced in
Chapter 3. It measures whether and to what extend a process output depends on vari-
ations in one or more of its inputs. The sensitivity function is computed as partial
derivative of the output with respect to a given input, while the remaining inputs are
kept constant. The sensitivity analysis gives additional information for the control
design. Unlike the RGA, the sensitivity functions can indicate a non-symmetrical
coupling between the control loops even for 2 x 2 models. Further, not only static but
also dynamic coupling can be obtained to characterize the intermediate effects that an
input change has on the considered output.

8.2.3 Input-output decoupling

The insight obtained by the RGA and sensitivity analysis can be used in the design
of a MIMO control system. While within an operation region with weak interactions,
SISO controllers may suffice, for regions where strong coupling is present, a decoupler
should be designed. In Chapter 3, three methods were discussed that achieve such
decoupling, by taking advantage of the structure of the TS fuzzy models. All of them
essentially invert the model; the differences are in the means used to achieve this
inversion. If the fuzzy model is an affine one with at least as many inputs as outputs, an
analytical decoupling law can be obtained. For non-affine fuzzy models, the inversion
can be accomplished either by inverting the input-output transfer function matrix or by
solving a nonlinear optimization problem. The computational complexity varies for
the different decoupling methods. The decoupling of affine TS models can computed
very efficiently, allowing applications when short sampling times are necessary. The
same holds for the analytic decoupling method for the non-affine TS model. The
numerical decoupling is computationally demanding, which limits its application to
fast processes. However, it is the most general method that can be applied regardless
of the model structure.

8.2.4 Fuzzy model predictive control

TS fuzzy models proved to be suitable for use in nonlinear MPCs because of their
ability to accurately approximate complex nonlinear systems. With a nonlinear predic-
tion model, however, the optimization problem is a non-convex one, requiring time-
consuming iterative optimization methods with no guarantee of reaching the global
minimum. The approach to fuzzy MPC presented in Chapter 4 is based on linear
time-varying prediction models derived by the fuzzy model at a given operating point
or along a pre-computed trajectory. The optimization problem obtained in this way
is convex and can be effectively solved. To account for errors introduced by the lin-
earization, we propose an iterative optimization scheme where the QP solution pro-
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vides a search direction toward the minimum of the optimization problem. Essentially,
the algorithm is a specific implementation of the Sequential Quadratic Programming
method, based on the structure used in linear MPC to predict the process behavior. Its
advantage is its generic form that does not depend on the particular structure of the
fuzzy model used, as opposed to that of, e.g., the feedback linearization techniques.
Moreover, because of the fast convergence rate, which is due to the straightforward
manner in which the optimization problem is formulated, the algorithm can be applied
to nonlinear multivariable processes with a short sampling time. For such processes,
linear MPC does not give satisfactory results, while the optimization which directly
applies the nonlinear TS model is time consuming.

Compared to already reported applications of MPC using fuzzy prediction mod-
els, the algorithms presented in this thesis have several advantages. First, they can be
directly applied to MIMO processes. Second, the input and output constraints are ex-
plicitly considered during optimization. Last but not least, the achieved performance
is near to the one that is achieved by using the nonlinear fuzzy model directly and thus
nonlinear optimization techniques, while at the same time the computational complex-
ity is comparable to that of the linear MPC.

8.2.5 Robust stability constraints for fuzzy model predictive control

In Chapter 5, a general scheme for computing robust stability constraints for nonlinear
MPC is presented. Constraints on the control signals and their increments are calcu-
lated that guarantee stability for any model-plant mismatch within given uncertainty
bounds for general nonlinear plants. Next, a systematic procedure for the computa-
tion of the bounds on the model uncertainty is proposed when the process model is
a TS fuzzy model. To compute the uncertainty bounds, the model-plant mismatch is
represented as a linear time-varying convolution operator.

It is shown that the stability constraints robustify the system performance in the
presence of a model-plant mismatch without deteriorating the nominal performance.
The latter is achieved by an additional feedforward filter that accounts for the process
gain. The stability constraints, rather than the weights in the cost function, smooth
out the control signal. The application of the stability constraints, however, has a
significant drawback — it leads to complexity and, as a consequence, to a considerable
computational effort.

8.2.6 Fuzzy control of a High-Purity Distillation Column

Chapter 7 demonstrates the advantages of using fuzzy modeling and control design
techniques on a simulation model of a distillation column. This benchmark is well-
known by its nonlinear behaviour and directionality character, typical for most dis-
tillation columns used in the industry. Because of the directionality phenomena, a
closed-loop identification experiment was necessary. Based on the collected data, TS
fuzzy models have been identified and used in the analysis of input-output interac-
tions and in the control design. A decentralized control structure with a decoupler and
a multivariable controller based on fuzzy MPC were presented.




CONCLUSIONS AND SUGGESTIONS 165

The input-output analysis carried out on the fuzzy model indicated that the input-
output coupling varies for the different operating regions. To reduce this coupling,
we redesigned a decoupler that inverts the model on-line, at each sampling instant,
which reduces the coupling significantly. Next, the fuzzy model was utilized in the
fuzzy MPC. The resulting performance is significantly better than the one achieved
by means of decentralized controllers. The performance of the MPC controller is also
ameliorated by including a disturbance as an input in the fuzzy model, improving
the model prediction. Additional improvement is gained by using the robust stability
constraints.

The presented results are comparable to the results achieved through MPC algo-
rithms using a nonlinear Wiener-type prediction model. These results are superior to
the ones obtained by linear MPC using a FIR model based on open-loop data gener-
ation, and by MPC using a linear state-space model based on closed-loop data gen-
eration. In terms of the generality and stability properties, the fuzzy MPC algorithm
appears to be more general, as its computational complexity does not depend on the
type of model nonlinearity. Moreover, the stability of the fuzzy MPC-based control
system is guaranteed in the presence of model-plant mismatch, while with the Wiener
MPC algorithms only the nominal stability is guaranteed. The application of the sta-
bility constraints, however, considerably increases the computational effort.

8.2.7 Fuzzy model predictive control of a GDI engine

A real-world application of fuzzy model predictive control to a gasoline direct in-
jection (GDI) engine was presented in Chapter 6. GDI engines can operate in two
different combustion modes: homogeneous and stratified. The GDI engine is a highly
nonlinear, multi-variable system with four inputs, three states and six outputs. The
nonlinearity results from the combustion efficiency and generated torque in the differ-
ent combustion modes as well as from the flow relations and saturation effects in each
mode. An additional complication is the switching between the combustion modes.
Then the engine parameters have to be properly adapted to allow efficient operation in
either mode.

The Engine Management System controllers are normally designed by using en-
gine maps, i.e., look-up tables derived through extensive experiments with an engine
prototype. The application of MPC to engine control is a new approach, which can
potentially overcome the shortcomings of the traditional control strategies applied to
increasingly sophisticated engines. The obtained results demonstrate the potential of
fuzzy model predictive control for such a complicated system. Generally, they are
comparable to the results achieved by using first-principle and technological knowl-
edge, as the remaining problem is the control of the torque gradients during a switch
in the combustion mode. As the control design follows a relatively standard procedure
and does not require detailed information about the engine, it can reduce the time and
cost of the control design and tuning phase of new engines to be developed.
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8.3 Suggestions for future research

The set of tools and methods for fuzzy control design presented in this thesis is not
complete or fixed. Based on the obtained results and the possible applications, we
recommend a couple of “starting points” for future research, which are outlined below.

8.3.1 Analysis of dynamic interactions using the Relative Gain Array

The RGA was proposed as a technique that allows for the analysis of the input-output
interactions, both static and dynamic. The majority of the results published so far
have been directed to continuous-time domain systems. In Chapter 3, a modification
has been proposed that addresses these interactions in discrete-time fuzzy models.
While the extension to the static case is relatively straightforward, a question arises
when dynamic interactions are to be analysed. A problem still to be investigated is
the relation between the sampling frequency of the model and the interactions of the
system at a given frequency, i.e., how the indicated dynamic interactions are influenced
as a function of the frequency range of the model.

8.3.2 Robust stability analysis through sensitivity analysis

Recently much effort has been focused on the robustness and stability analysis of
TS fuzzy control systems. However, few attempts have been made to incorporate
the sensitivity analysis (Chapter 3) into the robustness analysis, as most effort has
been concentrated on stability margins without providing bounds on the input-output
interactions. These should be addressed when one discusses stability and robustness
issues of fuzzy systems. With the output sensitivity function, it might be possible to
formulate an energy-like function that describes the evolution of the system outputs
in terms of a quadratic Lyapunov function. While in the continuous-time case such a
quadratic Lyapunov function can be derived relatively easily as shown by Farinwata
(2000), for discrete-time systems no such a formulation is available yet.

8.3.3 Speed-up of fuzzy model predictive control

The optimization problem in fuzzy MPC (Chapter 4) uses a QP subproblem based on
the gradient and Hessian of the corresponding Lagrange function. As a result of the
specific structure of the optimization problem, in many situations the Hessian is sparse.
Then significant speed can be gained if first an SVD decomposition is performed and
thus the dimension of the optimization problem is correspondingly reduced.

8.3.4 Design of max-min-plus and max-plus-linear predictive
controllers using fuzzy models

Although in MPC usually linear discrete-time models are applied, it is possible to ex-
tend MPC to a class of discrete-event systems, as shown in (De Schutter and van den
Boom, 2000a) where an MPC framework for max-plus-linear systems is presented.
The term max-plus-linear means that the basic operations in these systems are max-
imization and addition. In general, the resulting optimization problem is nonlin-




CONCLUSIONS AND SUGGESTIONS 167

ear and non-convex. However, if the control objective and the constraints depend
monotonously on the outputs of the process, the MPC problem can be recast as a
problem with a convex feasible set. In addition, if the objective function is convex,
then the resulting optimization problem is also convex. This, in turn, would provide
an optimal solution to the exact, not the approximated problem.

The max-min-plus systems are extensions of the max-plus-linear systems that can
be described by equations in which the operations maximization, minimization and
addition appear (Olsder, 1994; Gunawardena, 1994). As for the max-plus-linear case,
here also the resulting optimization problem is, in general, nonlinear and non-convex
(De Schutter and van den Boom, 2000b). However, if the state equations are decoupled
and if the control objective and the constraints depend monotonously on the states
and outputs of system, the max-min-plus MPC problem can be recast as a problem
with a convex feasible set. As before, if the objective function is convex, then the
optimization problem is also convex.

The TS fuzzy models seem to be very suitable for use in min-max and max-plus-
linear predictive controllers, as the inference mechanism can easily be modified to
match both types of systems. By replacing the product operator in the fuzzy inference
mechanism by max-min or max-plus-linear operators, we obtain fuzzy min-max or
max-plus-linear models, respectively, that can be applied in the corresponding min-
max or max-plus-linear predictive controller.

8.3.5 Design of analytic constrained predictive controllers using fuzzy
models

As stated in Chapter 4, one of the biggest advantages of MPC is that it can effectively
deal with constraints; disadvantage is that for every time step a computationally ex-
pensive optimization problem has to be solved. The time required for the optimization
makes MPC not always suitable for fast systems or complex problems. A viable pos-
sibility is to avoid the on-line optimization via off-line approximating the input-output
mapping of the MPC controller by means of fuzzy models.

Recently, it was shown that the solution to the predictive control problem is a con-
tinuous function of the output, the reference signal, the noise and the disturbances
(Hoekstra et al., 2001). Therefore, instead of performing an optimization at every
time-instant, one can use a fuzzy model to provide the control signal. The result-
ing controller would allow a faster implementation compared to the traditional opti-
mization procedure and the approach is applicable to complex problems with many
constraints.

There have been attempts to utilize a feed-forward neural network to compute on-
line the control move, see (Parsini and Zopolli, 1995; Pottmann and Seborg, 1997,
Hoekstra et al., 2001). A disadvantage is that in this setting, the controller performs
an input-output mapping that is generated by using certain control parameters, hence
it cannot handle varying control parameters as the prediction and control horizons,
weights and constraints. Additionally if the neural network cannot learn the mapping
perfectly, a steady-state error or violation of the constraints may result. If a fuzzy
model is used instead, it could be possible to design separate rules that correspond

,



168 FUZZY CONTROL OF MIMO PROCESSES

to certain control configurations, e.g., a set of control parameters. Moreover, in this
way desired control actions (safety rules, for example) can be imposed “on top” of the
controller mapping.

8.4 Summary of the main results of the research described in this
thesis

The main contributions of this thesis to the field of fuzzy MIMO control design can
be summarized as follows. Chapter 3 deals with the analysis of input-output coupling
and interactions, and the consequent decoupling design. Chapter 4 focuses on effective
optimization in fuzzy model predictive control. Chapter 5 addresses the derivation of
constraints on the control input in MPC that guarantee closed-loop robust asymptotic
stability for open-loop BIBO stable processes with an additive /;-norm bounded model
uncertainty.



Appendix A
Constructing TS fuzzy models from data

Although the development of a TS fuzzy model was not one of the aims of this re-
search, we briefly discuss below a class of fuzzy clustering algorithms based on input-
output process data, used to derive fuzzy models throughout the thesis. An extensive
survey of these data-driven methods can be found in (Babuska, 1998).

Because a single MISO submodel is derived at a time, the submodel index is
skipped unless it is necessary to preserve the consistency. Further, it is assumed that
the structure of the model, i.e., the input and output variables, has been determined.
In the case of dynamic systems, it also means that the representation of the dynam-
ics within the fuzzy model has been chosen. To construct a TS fuzzy model it is
then necessary to determine the number of fuzzy rules, and to derive the antecedent
fuzzy sets and the consequent parameters for each rule (recall (2.4) on page 16). Prior
knowledge, input-output data, or a combination of the two can be used to obtain these
parameters.

A.1 Knowledge-based approach

The two main sources of process knowledge are the precise mechanistic description
and the unstructured, (semi-) qualitative expert knowledge. Complex processes can
also be described through a combination of simpler and well-understood linear sub-
systems only valid in certain operating regions. Such knowledge can be expressed in
the form of TS fuzzy rules. The variables that characterize the change of the operating
regions become antecedent variables, and membership functions are defined to specify
the relevancy of each model for the given region (Murray-Smith and Johansen, 1997).
The local subsystems are stored in the consequents of the rules, and the global output
is obtained as the weighted mean of the individual contributions. The consequent pa-
rameters can be derived through linearization of a known nonlinear white-box model,
or estimated from input-output data.

The process complexity is typically not uniform, which means, for instance, that
a single model can well approximate the process dynamics in certain regions, while
other regions require rather fine partitioning. In order to accurately describe the pro-
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o cwvesof
- equidistance

s 35

T i - —

.

Figure A.1. Hyperellipsoidal fuzzy clusters in the product space of the regressors for
a pH neutralization process, see Section 4.5 on page 70. The antecedent membership
functions are obtained by projecting the clusters onto the antecedent variables. The
points represent the data, ‘+ are the cluster centers. Also shown are equidistance level
curves of the clusters.

cess with as few rules as possible, the membership functions must be placed such that
they capture the non-uniform behavior of the process.

Identification methods based on fuzzy clustering use the concept of graded mem-
bership to represent the degree to which a given object, represented as a vector of
features, is similar to some prototype. The degree of similarity is calculated through
a suitably chosen distance measure. Based on the similarity, objects can be arranged
such that the objects within a cluster are as similar as possible, and objects from dif-
ferent clusters are as dissimilar as possible. Cluster prototypes can be defined as linear
subspaces (lines, planes, hyperplanes) and the distance measure quantifies the distance
of data points from that linear subspace (Bezdek, 1981). Each obtained cluster cor-
responds to one rule in the TS fuzzy model. The antecedent membership functions
are obtained by projecting the clusters onto the antecedent variables. This approach
is illustrated in Fig. A.1 and described below. Then the consequent parameters are
estimated by least-squares methods.

A.2 Data clustering

Product-space fuzzy clustering is based on the data in the product space of the regres-
sor and the regressand X x Y, recall (2.2). Let N denote the number of data samples
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selected from the input and output data sequences, which has to be much larger of
the number of the regressors, N > ¥. Let npmax = max, j(ny,i, 7y, ;) be the largest
delay in the regressors. Then the number of points actually used in the identification
iISN,=N—nmnax— 1.

Let ® € RY+x? denote the regressor matrix having the regression vector X(k)7 in
its rows, and Y € R™: contain the regressand y(k + 1), & = nmax,...,N — 1

XT(nmax) y(nmax + 1)
XT(N —1) y(N)
The set to clustered Z is formed by appending Y to @
Z=[dY].

The rows of Z are denoted by {zx,k =1,...,N,}. Let U= [us] € [0, 1]EexNa de-
note a fuzzy partitioning matrix of Z, let V.= [v;,v,...,Vg,| be a vector of cluster
prototypes (centers) to be determined, and let F = [F,F,,... . Fg,| be a set of cluster
covariance matrices F; € RV*+1x 7+

T
Yoo (in)™ (2 — i) (25 — Vi)
N
2k:| (ﬂik)m

where m > 1 is a weighting exponent that determines the fuzziness (or the overlap-
ping) of the resulting clusters.

Given Z and the desired number of clusters X, the Gustafson and Kessel (1979)
algorithm (GK) searches for an optimal fuzzy partition U and vector of cluster proto-
types V by minimizing the cost function

F; =

K; N
J(Z;U,V,E) =Y 2 1) "2, (A.2)
i=1j=
where the function d;;g, is the distance of a data point to the cluster prototype yielded
by a norm-inducing matrix E;

dig, = (2x — Vi) Ei(z1 — vi).

The measure of dissimilarity in (A.2) is the squared distance between each data
point z; and the cluster prototype v;. This distance is weighted by the power of the
membership degree of that point (u;;)™. The shape of the clusters is determined
through the matrix E;: E; = I induces the standard Euclidean norm, while

= (Nia;; (zj-2)(z; — i)T)

induces the Mahalanobis norm on R? (Bezdek, 1981). Here Z denotes the sample
mean of the data.
The GK algorithm can be found in (Babuska, 1998), among others.
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A.3 Estimating antecedent membership functions

The antecedent membership functions can be derived by projecting the fuzzy partition
matrix U onto the antecedent variables, or by computing the membership degrees
directly in the product space of the antecedent variables.

When antecedent membership functions are generated by projection, the multidi-
mensional fuzzy sets stored in the rows of the partitioning matrix U are projected onto
the individual antecedent variables. These variables can be the original regression
variables or antecedent variables transformed by means of eigenvalue projection, us-
ing the p largest eigenvectors of the cluster covariance matrices F;. The eigenvector
projection should be applied when the clusters are opaque to the regression space,
and cannot be represented by an axis-orthogonal projection with sufficient accuracy
(Babugka and Verbruggen, 1995).

To derive a point-wise representation of the antecedent fuzzy set A4, ;, we project
the ith row p,; of the partitioning matrix U onto the antecedent variable X, h =
1,...,9. This point-wise membership function is approximated by some suitable an-
alytic function, e.g., a piece-wise exponential membership function. In this way the
membership degrees can be computed for control or prediction purposes, and also for
input data not contained in the data set Z.

When multidimensional antecedent membership functions are utilized, the mem-
bership degree is computed directly for the entire input vector (without decomposi-
tion), i.e., 5;(X) = pa,(X). Here the membership functions .A; are derived through
the distance of X from the projection of the cluster prototype (center) v; onto X. The
membership degree is computed in inverse proportion to this distance. Denote with

the partition of the cluster covariance matrix F; which includes all but the last col-
umn. This matrix describes the norm of the cluster in the antecedent space X. The
corresponding norm-inducing matrix is

EX = [ridet (FX)] /7 (FX) ",

where x; = |E;|. Let v¥ = [vy;,...,vs;] denote the projection of the cluster center v;
onto the regressor space. The inner-product norm

dx(X,vY) = (X —v)TEX (x = ¥))
is converted into membership degree by
1

pa, (X) = .
35 (dex (X, vX) fdgx (X v5)) /7Y

The last expression is known as a “probabilistic” method, since the degree of fulfill-
ment of one rule is computed relatively to the other rules, and the sum of the member-
ship degrees of all rules equals one.
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A.4 Estimating consequent parameters

Once the antecedent membership functions have been determined, the consequent pa-
rameters ¢,, 17; and 0; can be obtained by using two different approaches based on
the least-squares estimate. One is to solve K independent, local or weighted, least-
squares problems, one for each rule. This approach is independent of the aggrega-
tion/defuzzification method used; the parameters for each model are estimated sepa-
rately. The other is to solve a global least-squares problem resulting from the weighted
mean defuzzification formula (2.6). For the purpose of local interpretation and analy-
sis of the TS model, the weighted least-squares approach is preferable as it gives more
reliable local models. The global least-squares method gives a minimal prediction
error, and thus it is more suitable for deriving prediction models. At the same time,
however, it biases the estimate of the local model parameters.

The identification data are given in the matrices ® and T, see (A.1), and the mem-
bership degrees of the fuzzy partition are arranged in the following matrix:

Ba 0 - 0
0 Bn - 0

W; = . L . . (A.3)
0 0 - Bin

The consequent parameters of the rule belonging to the 4th cluster, ¢;, 77; and ; are
concatenated into a single parameter vector ©;:

o= [¢InT,0:] ‘) (A4)
Appending a unitary column to & gives the extended regressor matrix ®.:
®, =[D,1], (A.5)
and correspondingly X, = [X, 1].

A.4.1 Local Least-squares Method

Assuming that each cluster represents a local linear model of the system, we can ob-
tain the consequent parameters for each rule ©;, i = 1,2, ..., Kj, as a weighted least-
squares estimate. The association of the data pair (X, yx) with the ith local model is
given through the corresponding membership degree 3;%.

If the columns of @, are linearly independent and 3, > 0 for 1 <k < N,, then

0, = [0TW,2.]” /W,y (A.6)

is the least-squares solution of y = ®.0 + ¢, where the kth data pair (Xg,yx) is
weighted by 3;x. The parameters ¢;, 7; and 6; are given by:

Ci: [9’19’27@:7] nzz[ ;)+lv ;J+2="'*®llo+m]= 9i:[®:>+m+l]’ (A7)
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Note that for a computer implementation, it is more efficient to first multiply each row
of @, and y by /3%, rather than to use (A.6):

VBaXZ VB
B VBaXL, i vV Biay2
®; = : y Yi= . (AS)
ﬂiNa XZNu ,BiNayNa
and to compute ©; by:
T 17
0, — [q)i q>i] &'y, (A.9)

Having determined a best-fit set of parameter values, it is useful to have some
indication of the significance of the estimated parameters. Such an indication can be,
for example, the standard deviation of each parameter, see Chapter 5. One approach
for estimating the standard deviations {c(©; ;) }}-9:1 of the parameter values ©; is given
in (Bard, 1974). An estimate of the standard deviation of the parameter ©, ; is given

by 0(©;;) = \/3;; » where

2 - ~ T —1
G m@j *§; - 9,0,)7 (U; 5§, - $,0,) (@fcbi) . (A.10)

The symbol x here denotes element-by-element multiplication (Hadamard or Schur
product).

A.4.2 Global Least-squares Method

The weighted least-squares method gives an optimal estimate of the parameters of
the local models, but it does not provide an optimal TS model in terms of a minimal
prediction error. In order to obtain an optimal global predictor, we consider the con-
tribution of all rules simultaneously. The fuzzy-mean defuzzification formula (2.6) is
linear in the consequent parameters, so parameter estimates can be obtained by solving
a least-squares problem.

The degree of fulfillment of the ¢th rule 3;; can be obtained by projecting the ith
row g, of the fuzzy partitioning matrix U onto the antecedent space (recall that each
row of U contains a point-wise definition of the membership function for the data in
the product space X x Y):

Bir = proj(pix), k=1,..., Ny, (A.11)

where “proj” denotes the projection operator (Yager and Filev, 1994). Through the
projection, a set of repeated identical regression vectors Xy, in the data is assigned
the maximum membership degree from this set (which may depend on yj as well).
Another possibility is to compute the degrees of fulfillment after generating the an-
tecedent membership functions.

In order to write (2.6) in a matrix form for all the data (Xg,yx), 1 < k < N,
denote T'; a diagonal matrix in R V+*M: having the normalized membership degree
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wik = Bix/ ZJK:‘ | Bk as its kth diagonal element. Denote @' the matrix in RV (1)

composed from matrices I'; and @, as follows
' = [(T1D.), (D), ..., (Fk, Pe)]
Denote the parameter vector @ ¢ RE!(7+1) py
o =[ef.ef.....e%] (A.12)
The resulting least-squares problem Y = ®'@’ + ¢ has the solution
o = [(@)T®] " (@)
From (A.12) the optimal parameters ¢;,7; and 8; are

Ci = [®;+1,®;+2: .. '79{5+P] ?

n;, = [ ’s+p+l’ ,s+p+27"~=®/s+p+m] )
0; =[O prmar] where s = (i — 1)(?+ 1). (A.13)

Now the estimate of the standard deviation {U(@i,j)}?:l of the parameters ©; is
given by 0(0©; ;) = ,/S;; » where

2 —1
[g,JﬁLIl = m\/ (r—r;®.0,)" (Y -T;®.0;) (®TD.) . (A.14)

A.4.3 Interpretation of the consequent parameters

The output of the TS model is an interpolation of the local linear submodels, hence
the steady-state dynamic gain of the model can be locally interpreted as the gain of the
interpolated local submodels (Abonyi and Babuska, 2000). This locally interpreted
gain is not equal to the gain obtained by linearization of the fuzzy model at the con-
sidered equilibrium. Fuzzy models with consequent parameters obtained through the
weighted least-squares method typically yield a poor steady-state representation and
the model can only be interpreted locally. In contrast, when the global least-squares
method is used to derive the consequent parameters, a qualitatively bad local interpre-
tation of the gain can result, even though the model approximates the process well.

The difference between the globally and locally interpreted gain can be reduced by
incorporating prior knowledge in global identification (Abonyi et al., 1999), while the
steady-state representation of locally identified fuzzy models can be improved through
inference based on the smoothed maximum operator rather than on the weighted mean
(Babuska et al., 1996).







Appendix B
The concept of right invertibility

A right inverse is a second discrete-time nonlinear system that is such that when the
original system is applied in series with this right inverse, then its outputs are equal
to the inputs of the right inverse system (Fig. B.1). More general is the concept of
forward time-shift right inverse in which the input to the right inverse system is ob-
tained by using the a-step forward time-shift operator ¢ on the reference signal:
et (k) 2 et (k + @) (Kotta, 1995).

Consider the discrete-time nonlinear system

3. { x(k+1) F(x(k).u(k))
' y(k) H(x(k)),

xeEXCR™ueld cR™, ye) CRP?, for which we state the following

i

(B.1)

i

Definition B.1 The system (B.1) is called locally right invertible in a neighborhood
of its equilibrium point (x°,u®), if there exist sets U° and )° such that given initial
xo € X, we are able to find for any sequence {y.t(k);0 <k <kr} € Y° a control
sequence {urs(k); 0 < k < kp} € U° (not necessarily unique) such that

y(k,XO,llref(O), o :urcf(k)) = yref(k)7 0 S k < kFa
for kg some finite time instant.

Definition B.2 The system (B.1) is called locally forward time-shift right invertible in
a neighborhood of its equilibrium point (x°,u®), if there exist integers 0 < a; < ap <
v < o, a reordering of output components y;, 1 =1,....p, sets U° and Y° such
that given xo € Xq we are able to find for any sequence {y(k);0 <k <kp} €)°a
control sequence {Us(k);0 < k < kp} € U° yielding

yi (kix()',ul'ef(o)',"' 7uref(k)) = Yref.i(k)c
a; <k<kp, i=1,...,p.
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Dres(K); : {u(k); Drerlh):
0<k<kp} Right | 0<k<k.} 0<k<kgp}
= inverse = System [————=
system
(a)
s (6); Dreslkro); {ulk); Dres(K);
0<k<kg} . 0<k<kg} Ellvg:rtse oskskFi System 0<k<kg}
system
(®)

Figure B.1. Right invertibility: (a) Right inverse system; (b) FTS Right inverse system

Definition of (d), ..., d,)-forward time-shift right invertibility. With each compo-
nent of the output y; we can associate a delay order d; (also referred to as characteristic
number or relative degree) with respect to u in the following manner: d; — if it exists
— determines the inherent time delays between the inputs and the sth output; the input
u(k) affects the ith output only after d; steps, that is, at the time instant k£ + d;. The
interpretation of d; = oc is that the ¢th output evolves over time independently of the
input sequence applied to the (B.1).

Definition B.3 The system (B.1)is locally (di, ..., d,)-forward time-shift ((dy, ... .dp)
- FTS) right invertible in a neighborhood of its equilibrium point (x°,u®) if there
exist sets U° and Y° such that given xo € Xo we are able to find for any sequence
{¥:et(k);0 < k < kr} € Y° a control sequence {us(k);0 < k < kp} € U° yielding

y: (k7x07uref(0)a e ~uref(k)) = yref,i(k)a
di<k<kp, i=1,...p.

This definition says that for ith output it is possible to reproduce all sequences from )/?
beginning at time instant d;. But (d,,...,d,) -FTS right invertibility does not allow us
to reproduce the first d; terms in the arbitrary sequence {yre i (k);0 <k < kp} from
.

Necessary and sufficient conditions for (d;,...,d,) -forward time-shift right in-
vertibility. To be useful in the state-space approach, the conditions for invertibility
should be phrased directly in terms of the function F and H.

The idea is to apply the one-step FTS operator g to those output components which
do not explicitly depend on the input. Assuming that each delay order d; is finite,
we modify the output equation of the system by repeatedly operating on each of the
scalar output equations the FTS operators, so as to obtain a system of equations each
of which depends explicitly on the control u(k). From the definition of delay orders
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d;,i=1,...,p, we obtain

¢hyi(k) = yi(k+di)=h{ (F(x(k),u(k)))
¢ yp(k) = yp(k+dp) = hyr (F(x(k),u(k))). (B.2)

or in the vector form
yi(k+dp)
: = A(x(k),u(k)), (B.3)
Yp(k +dp)

where h9(F(x,u)) and h? (F(x, u)) are defined as h;(x, u) “ hY(F(x,u)) and b (x,u)

qifhf (F(x,u)),forj=0,...,q;.
Let the decoupling matrix K(x,u) be

5 5 b (F(x,u))
K(x,u) = %A(x,u) = % : . (B.4)
hy” (F(x,u))

The rank of K(x,u) is, in general, state and control dependent. To ensure smoothness
of the solution of (B.3) with respect to u(k) we have to assume that K(x,u) has a
constant rank.

Definition B.4 We call the equilibrium point (x°,u°) of the system (B.1) regular with
respect to (di,...,dp) -FTS right invertibility, if the rank of the decoupling matrix
K(x,u) of the system (B.1) is constant around (x°,u®).

Theorem B.1 Assume that for the system (B.1) d; <n, i = 1,...,p. Then the system
(B.1) is locally (dy,...,dyp) -FTS right invertible around a regular equilibrium point
(x°,u%), if and only if the rank (K(x°,u%)) = p.

Remark. Clearly, rank K (x°,u®) = p requires m > p. So p < m is always a necessary
condition for system to have a (dy,...,d,) -FTS right inverse, that is, the system must
have at least as many inputs as outputs.

The right inverse of a discrete-time nonlinear system can be obtained by solving
a system of nonlinear (transcendental) algebraic equations with respect to the control
vector. Let Zfo be the input/output map of S with initial condition x¢. Then

Z5 (u(k)) = Yrer(k + 1). (B.5)
The solution of (B.5) with respect to u(k) (provided X3 u(k) is invertible) is

s () = (£5) " (Yeer( +1)). (B.6)

Finding an analytical solution for (B.6) is not a trivial problem. It could be solved
numerically at each sample by transforming it into constrained nonlinear optimization
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problem. The latter, however, is a time-consuming task with no guarantees for reach-
ing the global optimum. For linear-in-control (or affine) systems, the conditions for the
existence of an analytical solution of (B.6) are much looser. Consider a discrete-time
affine nonlinear input-output system

y(k+1)=F(x(k)) + G (x(k))u(k),

where the matrix function G(x) is invertible in a neighborhood of an equilibrium x°.
Then

uref(k') = g_] (X(k)) (yref(k) "F(X(k)))



Appendix C
Sequential quadratic programme

The constrained nonlinear optimization problem to be solved at time instant % is stated
as

min J(u(k)) (C.1)
u(k)eER™
subject to:
Gi(u(k))=0 j=1,...,c (C.2a)
Gj(u(k)) <0 j=ce+1,...,c (C.2b)

where u(k) € R", n = mH, is the vector of manipulated variables (control actions),
J (u(k)) : R™ — R is the nonlinear cost function, and the nonlinear vector function
G(u(k)) : R™ — R returns the values of equality and inequality constraints evaluated
atu(k).

Given the optimization problem (C.1)-(C.2), the idea is to iteratively formulate a
QP sub-problem based on linearized constraints and a quadratic approximation of the
Lagrangian function

C
L(u(k),A) = J(u(k)) + 21 A;Gj(u(k)).
j=

At each iteration, an approximation is made of the Hessian of the Lagrangian func-
tion using a quasi-Newton updating method. These are used to generate a QP sub-
problem whose solution forms a search direction for a line search procedure. Below
the three main stages are discussed briefly.

To avoid ambiguity, throughout this appendix the index j is used to denote an el-
ement of a vector and the indices ¢ and s refer to an SQP and a QP sub-problem
iteration, respectively.

C.1 Updating the Hessian matrix

Ateach SQP iteration ¢, a positive definite quasi-Newton approximation of the Hessian
of the Lagrangian function is calculated using the formula of Broyden (1970), Fletcher
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(1970), Goldfarb (1970) and Shanno (1970) (BFGS)

T T
q:q; Hs; Hs;
q/s;  siHs;s;

Hs; 1 = Hs; +

where

s =w;1 (k) —u;(k)
q; = VJ(ui+1(k)) + i )\jVGi (lli+1(k)) — (VJ(uz(k)) i .n

j=1

)\jVGz‘ (ul(k))> .

7=1

A positive definite Hessian is maintained providing that ql's; is positive at each
update and that Hs is initialized with a positive definite matrix. When q's; is not
positive, q; is modified on an element by element basis to ensure qiTsi > 0.

C.2 Quadratic programme solution

At each SQP iteration a QP problem

u(g}liernnz{ _q(u(k)) = 1 (k) Hsu(k) + £t u(k) (C.3)

N

Ajll(k):bj ]Z 1,...,Ce
Aju(k) <b; j=cetl,...,c

is solved, where A; refers to the jth row of the ¢ X n matrix A of linearized con-
straints. The solution of the QP involves a two-stages procedure. In the first stage,
a feasible point is calculated (if one exists). During the second stage, a sequence of
feasible points is generated that converge to the solution. In this way an active set A
is maintained, which is an estimate of the active constraints at the solution point.

The active set A, is updated at each iteration s and is used to form a basis for a
search direction dy (here d, is used to distinguish from u;(k) in the high-level itera-
tions). Equality constraints always remain in the active set A,. The search direction
d, is calculated such that to minimize the objective function while remaining on the
boundaries of any active constraints. The feasible subspace for d, is formed from a
basis Z, whose columns are orthogonal to the active set As (AsZs; =0). Thus a search
direction, based on columns of Z, is guaranteed to remain on the boundaries of the
active constraints.

The matrix Z, contains the last ¢ — I columns (I < ¢) of the QR decomposition the
matrix A7, where [ is the number of active constraints

Zs=Q[,l+1:c], whereQTAl = [ l; ] )

Having found Z;, a search direction d, is sought that minimizes g(d), where d, is
a linear combination of the columns of Z,: d; = Zp for some vector p.

O
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Then substituting p for &S in the cost function (C.3)
1
Q(p) = EPTZZHS Z.p+ fTZsp

which, when differentiated with respect to p, yields
Vg(p) =Z HsZ,p+ Z7ft.

The terms Vg(p) and ZT'HsZ, are respectively the projected gradient and Hessian of
the cost function onto the subspace defined by Z;. Assuming the Hessian is positive
definite, then the minimum of the cost function in the subspace defined by Z; is at the
point where Vg(p) = 0, which is the solution of the system of linear equations

Z'HsZ.p= -7t

Then d is updated
doy =d,+ad,, whered, =Zp.

Because of the quadratic nature of the cost function, there are only two possible values
for the step length & at each iteration. A unit step along d is the exact step to the min-
imum of the cost function restricted to the null space of A,. If such a step can be taken
without violating the constraints, then this is the solution to the QP (C.3). Otherwise,
the step along d, to the nearest constraint is less that unity and a new constraint is in-
cluded in the active set in the next iteration. The distance to the constraint boundaries

in any direction d is
—(A:d.— b
& = min ——M , Jj=1...c
J Ajds '

and is defined for constraints not in the active set, and where the direction ﬁs is toward
the constraint boundary, i.e., Ajfis > 0.

When n independent constraints are included in the active set without locating the
minimum, Lagrange multipliers A are calculated that satisfy the nonsingular set of
linear equations

AT), =1

If all elements of A are positive, then d is the solution to the QP (C.3). If an
element of A, is negative and does not correspond to an equality constraint, it is deleted
from the active set and new iteration is initiated.

Initialization. A feasible point is needed to start the algorithm. If initial point is not
feasible, then the linear programme (LP)

min _~ (C4)
YER,AER™
Ajd:bj j:1,...,ce

Ajd—"}’Sbj j=ce+1,...,c
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can be applied to find a feasible point. Such a feasible point to (C.4) can be found by
setting d to a value that satisfies the equality constraints.

The QP algorithm is modified for LP by setting the search direction to the steepest
descent direction at each iteration

A

d,=-7Z,727g,

where g, is the gradient of the linear cost function (equal to the coefficients).
If a feasible point is found using the LP method, the second QP stage is entered.
The search direction d; is initialized with a search direction d, obtained by solving

Hsd, =g,,

where g is the gradient of the cost function at the current iteration, i.e., g, = Hsd, +f.
If a feasible solution is not found for the QP problem, the search direction of search
for the main SQP routine d; is taken as the one that minimizes .

C.3 Convergence through line search

In an iterative optimization scheme, the QP solution in 7th SQP iteration at time instant
k, d;(k), provides a search direction toward the minimum of the optimization problem.
To guarantee convergence, a line search mechanism is used that takes into account
reduction both in the cost function and in the constraints

u; (k) :{ wi_ (k) +od;(k) Ifi>1 €

where 0 < «;; < 1 1s a step length chosen by a line search routine to give a reduction
in the merit function proposed by Powell (1983)

W (ui(k),r;) = J(ui(k)) + Zri,jGj (ui(k)) + i r;,; Max |:O,Gj (ul(k))}

j=cet+l
(C.6)
which considers reduction both in the cost function (C.1) and in the constraints (C.2).
The positive parameters r € R are updated according to

1
Tit+1,5 :mjax{)\j E(ri’j+)\j)}’ j:l,...,c (C7)

where A; are the Lagrange multipliers for the current QP solution. This allows positive
contributions from constraints that are inactive in the QP solution, but were recently
active. The penalty parameter r is initially set to

NZACIO)
=T ———, J=1,...,¢ (C.8)
VG ()]
where | - || represents the Euclidean norm. This results in larger contributions to the

penalty parameter from constraints with smaller gradients, which would be the case
for active constraints at the solution point.
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Let o be the first element in a monotonously decreasing sequence {ay, a2, a3,...}.
Then it can be proved (Powell, 1983) that the line search generates a sequence {u;(k),
i=1,2,3,...} whose limit is the Kuhn-Tucker point of the optimization problem (4.9)
to (4.25). The line search routine is summarized in Algorithm C.1.

The introduction of the line search routine, however, as reported by Powell (1983)
may decrease the convergence rate. The situation oo = 1 which gives superlinear con-
vergence in (C.5) is not always allowed by the merit function (C.6).

Algorithm C.1 (Line search algorithm)

Step 1: Initialize r; according to (C.8) if i = 1 or according to (C.7) oth-
erwise.

Step 2: Calculate the cost function J(u;(k)) and constraints
G;(uw;(k)), j = 1,...,c. The merit function W(u;(k),r;) is split
into two parts looking for improvements in the cost function and the
constraints, respectively

\PJ,init = ~1/(J(llz(k')) + l)
Y inie = J(i(k)) + X ri;Gj(wi(k)) + Y, 1 max (O,Gj (ui(k)))
j=1 j=ce+1
Step 3: Seta; =2,¥; =Y ini+1and ¥Yg =Yq init + 1.
Repeat:
Step 4.1: Reduce the step length o; = ¢, /2.
Step 4.2: Update the solution u; (k) = u;— (k) + a; - d; (k).
Step 4.3: Update the cost function J = J(ui(k)).
Step 4.4: Update the constraints and take max
Gj = Gj(lli(k)), ] = 1,...,c
Gmax = m?X(Gj)
i

Step 4.5: Update ¥ ; and W
if Guax >0, %) = Gnax
elseif J>0,¥;=-1/(J+1)
else ¥;=0

Yog=J+ 2?;1 T3 Gj (u,(k)) -+ z§:ce+1 74,5 Max (O,Gj (lll(k‘))>

Until: ¥; <Y init or Yo < ¥ inet Or the maximum number of iter-

ations is reached.







Appendix D
Fuzzy model linearization for predictive control

The local linear state-space model to be used in the MPC algorithms in Chapter 4 is
extracted by freezing the parameters of the fuzzy model at a certain operating point.
This point can be the current one or along the trajectory predicted with the fuzzy
(nonlinear) model. Given the operating point y(k) and u(k — 1) in the first iteration or
u(k) afterwards, the local model is calculated as follows.

Comparing the time-varying representation (2.6) of the TS fuzzy model given on
page 17 with the LTV state-space model (4.7) on page on page 66, the state Xiin (k)
contains the regression vectors X;(k) for the separate MISO submodels. The elements
in Xy, (k) are reordered such that delayed outputs from all x;(k), I = 1,...,p come
first and then delayed inputs. The matrices A(k), B(k) and C(k) are in the standard
controllable canonical form with the parameters ¢; (X, (k)), n,(X;(k)) and 6;(X;(k))
positioned such that they reflect the structure of the state vector. Note that for nota-
tional simplicity ¢} = ¢;(X:i(k)), n; = n;(Xi(k)) and 6} = 6,(X;(k)) in A(k), B(k)
and C(k).

Gy G e e e e Gy B
A L O
0 1 o 0
Alk) = C;J Ciz Cz”“p 03 ®.1)
T € TTRY G
| O 0 0 0 L]
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Uf,l 77?,2 cee 77f,m 1
0 . 0
Wi Tha o Thm
B(k) = 0 0 (D.2)
Tp1 o2 -+ Tpm
0 0
0 0
L O O 4
1 0 ... ... ... ...0
Ck)=| : : (D.3)
0 1 0 0

As an example, a local state-space model is extracted from a 2 x 2 fuzzy model:
R[:i If Y1 (k) is ./411',1 and yl(k — 2) is .A]i,z and ul(k‘) is .Ali,3 and
ul(k — 1) is .A]iy4 and UZ(k) is A1i75 and Uz(k — 1) is .A]i‘ﬁ then

yi(k+1)= i1y (k) + Ciayi (k= 2) + Crigui(k — 1) + Croauz (b — I)JD 4a)

X1(k)
+ i (k) +mispua (k) +61

u(k)

Rggi If yz(k‘) is Agm and yg(k' — 2) is Agi’z and Ul (k‘) is .Azig and
ul(k — 1) is .A2i74 and ’U.z(k) is A2i,5 and UZ(k - 1) is ./421“5 then

w(k+1) = Ci1v2(k) + Giava(k —2) + G aur (k— 1) + Criqua(k—1)

x2(k) (D.4b)
+ 1,10 (k) +mis2ua (k) +61

u(k)

The state, input and output vectors of the linear state-space model are

xin(k) = [pk),p(k—1),y1(k—2),12(k), y2(k —1),y2(k —2),...
ul(k—l),uz(k—l),l}T

uk) = [wi(k),uz(k)]”

Vin(k) = [Zin,1(k), Zrin 4 ()] . (D.5)
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The C(k) matrix is thus

oo
oo
=)
)
oo
oo
oo
oo

C(k) =

O -

The B(k) matrix contains 7);’s corresponding to u; (k) and us(k):

UT,l me
0 0
0 0

My Mo
B(k) = 0 0
0 0
1 0
0 1

L O 0 -

The ones in the 7th and 8th rows store the current inputs in the state vector in the
positions for the delayed inputs, making them available at time k+ 1 as u(k — 1).

The rows in A(k) correspond to the state vector in (D.5) — outputs, inputs and offset,
while the columns reflect the structure of fuzzy rule consequents. Thus the first row
correspond to y; (k), the second to y; (k — 1), third to y; (k — 2), fourth to y2(k), fifth
to y2(k — 1) and the sixth to y>(k —2). The elements in the first and the fourth row are
positioned accordingly to (D.4): in the first row ¢j'; multiplies 1 (k), ¢}, multiplies
yi1(k —2), ¢ 3 multiplies u;(k — 1) and ¢, multiplies u>(k — 1), in the fourth (7,
multiplies y2(k), (5 , multiplies y2(k —2), ¢ ; multiplies u; (k— 1) and (5 4 multiplies
u(k — 1) correspondingly. The ones in the second, third, fifth and sixth rows arrange
the states for the next sample.

Gr 0 G, 00 0 iy (o O
I o0 0 0 0 0 0 O
o 1 0 0 0 0 0 0 0
0.0 0 G\ 0 Gy Gy G 6
Ak)=| 0 0 0 1 0 0 0 0 0
©o 0 0 0 1 0 0 0 0
©o 00 0 0 0 0 0 0
©o 0 0 0 0 0 0 0 O
|l o 0o 0o 00 0 0 0 1|

Note that the above linearization method differs from the standard Jacobian lin-
earization (Johansen et al., 2000). Recall the input-output representation of the TS
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fuzzy model (2.6)
Z, 1/8%(5( ) ( )) (Clzg( )+nlz (k)'l‘oli)
k
yikd) Ko G €(K) u(k))
K,
= gwh(&(k),u(k))<fh-(£(k),u(k)), (D.6)
where

B (€(k). u(k))
22 Bu(€(k),u(k))
is the normalized degree of fulfillment and

Fii(€(k),u(k)) = C& (k) +mu(k) + 01

is the linear model of the ith fuzzy rule.
Applying the Jacobian linearization to (D.6), we have

oyi(k+1) E(Bwn(é(k),u(k))

wii (§(k),u(k)) =

oEk)y A~ € (k) ful€(k)) +wis (&(k),u(k)) -

mk+1) ([ Owu((k),uk)) i (u(k))
_(lgu@)— = 2(W'fti(“(k))+wu(£(k),u(k))'—m>

8fu(€(k))
9&(k)

i=1

Comparing this result with (2.9) and (2.10), one can see that the terms containing
the derivatives of the membership functions (degrees of fulfillment) are missing in
these expressions. We can thus conclude that rather than a variant of the standard
linearization, our approach is parameter scheduling that relies on the assumption that
the individual rules of the TS model are good local linear models of the system. The
linear parameter-varying model obtained at each operating condition then ‘tracks’ the
nonlinear process dynamics in a way similar to using a linear adaptive model to track
nonlinear dynamics. This is in contrast with the ’global approach’, where the fuzzy
rules typically do not have any local interpretation and the emphasis is on the global
approximation accuracy. For the global approach, the standard Jacobian linearization
would be more appropriate. For more details see (Johansen et al., 2000; Abonyi and
Babuska, 2000). A clear advantage of our approach is that the time-consuming com-
putation of the membership function derivatives is avoided.




Appendix E
L,-control theory

E.1 Discrete-time linear systems

A Linear Time-Invariant (LTI) discrete-time system is defined by its state-space rep-
resentation

x(k+1) = Ax(k) + Bu(k) (E.1)
y(k) = Cx(k) + Du(k)

where x € R” is the state vector, u € R™ is the input vector and y € RP is the output
vector. The system matrices A, B, C and D, of compatible size, are fixed in time and
describe the behaviour of the system. The notation G(z) = G(2I—A) “'B+Disalso
used for representing an LTI system. The symbol z is the argument of the Z-transform
of the system G.

A discrete-time LTI system is stable if A has all its eigenvalues strictly within the
unit disc.

A transfer function is proper if G(oo) is bounded. A system is inversely stable, if
G~!(z) is proper and stable.

A Linear Time-Varying (LTV) system has time-varying system matrices and is de-
fined by

x(k+1) = A(k)x(k) +B(k)u(k) (E.2)
y(k) = C(k)x(k) +D(k)u(k).

E.2 Lebesgue spaces

Consider a discrete-time signal u(k) € Z defined in the interval [0, oc). Restrict u(k)
to be square-Lebesgue integrable

i u(k) u(k) < oc.
k=0

The set of all such signals is the Lebesgue space denoted by I3[0, co) or just by L.
191
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E.3 Norms

In the scalar case the gain of the system G(z) at a specific frequency w is given by
the absolute value of G(e?“”*). For multiple-input multiple-output systems this gain
is not a single value but should be rather viewed as a range of gains. Therefore matrix
norms are used induced by the corresponding vector norms.

Let X be a vector space, then a real-valued function || - || defined on X is said to be
anorm on X if it satisfies the following properties:

1. |lu|| > O (positivity);
2. |lul| =0 if and only if u = O (positive definiteness);
3. ||au|| = a||ul|, for any scalar o (homogeneity);

4. |[a+y|| < |jufl + ||yl (triangle inequality)

foranyue X andy € X.
The p-norm of the vector u € R™ is defined as

i=1

m 1/p
Jull = (zluinv) ri<peae

For p = 1,2,oc we have
m
lalp = jJuil;
=1
m
[ull2 = z |u;)? = VuTu (Euclidean norm);

= max |u
oo = max sl
A norm of a vector is a measure of the vector “length”, for example |lul|» is the
Euclidean distance of the vector u from the origin. A similar kind of measure can be

introduced for a matrix.
The matrix norm of the matrix A = [a;;] € R™*", induced by a vector p-norm is

defined as
[ uIIp

For p = 1,2, 00, the corresponding induced matrix norm can be computed as

1Al = Sl

”AHI = 1r<nza<xn Z !azj } (Cohlmn Sl.lm)

”A”Z = /\max(ATA)
Al

Il

]r<nlax Zniazjl (row sum)
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where Anax (AT A) is the maximal eigenvalue of the product (ATA).

The matrix norm induced by vector p-norms are called induced p-norms, because
they are defined, or induced, from a vector p-norm. Actually A can be viewed as a
mapping from a vector space R™ equipped with a vector norm || - ||, to another vector
space R™ equipped with a vector norm || - ||,. So from a system theoretical point of
view, the induced norms can be interpreted as input-output amplification gains.

E.4 Operators

A discrete-time operator G is a function from one signal space u € {* to another
yely:
y = G(u).

The operator is linear if

G(u; +u) = G(u;) + G(uy)
G(au) = aG(u)

where a € R. Linear operator are, for instance, the linear systems. An operator is
casual if (Gu)(k) only depends on past values of w. The /;-induced norm for G is
defined as IG(u)
G(u 2
6] = sup 1SWI
u€ L,,u0 [[ull2

E.5 Stability

We have already defined stability for linear time-invariant systems in terms of the
eigenvalues of the A-matrix. We will now extend the definition to uncertainty systems.
Consider the feedback configuration shown in Fig. E.1. The stable LTI system G(z) €
I3 is interconnected with the causal operator Q : [J — I} with a bounded /5-induced
norm.

" Q
n
G
Figure E.1. lllustration of a dynamic system with uncertainty feedback.

The closed-loop system response from u to e is given by
e=(I- QG(z))_lu.

We say that the closed-loop system (€, G(z)) is bounded-input bounded-output (or
BIBO) stable if e € I} for all u € I7. A related definition is the following.
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The feedback system defined by the pair (2, G(z)) is well posed if the operator
(I—QG(z)) is causally invertible, i.e., there exists a casual F : {J — [J' such that
F(I-QG(z)) = (I-QG(2))F = L. Assume that D is a set of operators D C {Q:
Qely —13}. The system (D, G(z)) is robustly stable if (Q, G(z)) is well-posed for
every Q € D.

The well-known small-gain theorem (Vidyasagar, 1993) states that, assuming
and G(~) are stable operators, the closed-loop system (Q, G(z)) is stable is [|G(z) | <
v < 1 and ||Q|| < 1. This follows, e.g., from the definition of well-posedness, since

|a-2671)] = |3 @6()*| < T lec)|“ < 3+ = 1% < oo,
k=0 k=0 k=0 g

Thus the gain of the closed-loop system is always bounded.




Appendix F
Distillation Columns

F.1 Distillation principle

Distillation columns operate on the principle that the vapor of a boiling mixture will be
richer in the components that have lower boiling points. Therefore, when this vapor is
cooled and condensed, the condensate will contain more volatile (light) components.
The remaining mixture will contain more of the less volatile material.

Distillation columns are made up of several units which are used either to transfer
heat energy or enhance material transfer: (i) a verfical shell where the separation
of liquid components takes place; (i7) column stages such as trays or plates used
to enhance component separations; (i47) a reboiler that vaporizes part of the liquid
leaving the bottom of the column; (iv) a condenser used to cool and condense the
vapor leaving the top of the column; (v) a reflux drum where the condensed vapor
from the top of the column is stored so that liquid (reflux) can be recycled back to the
column. The vertical shell contains the column trays and together with the condenser
and the reboiler constitutes the distillation unit. A schematic diagram of a typical
distillation unit with a single feed and two product streams is shown in Fig. 7.1.

The liquid and the vapor are in countercurrent contact inside the column: the liquid
| flows down and the vapor flows up. At each distillation stage, some of the vapor

moving up the column is condensed and this in turn evaporates some of the liquid
moving downwards. With two components in the processed mixture, a greater amount
of the heavier (less volatile) component condenses and a greater amount of the lighter
(more volatile) component evaporates at each tray.

The mixture containing the components to be separated is known as feed. The feed
can be in any state from a cold liquid to a superheated vapor. It is usually introduced
somewhere near the middle of the column to a tray known as feed tray. The feed tray
divides the column into a rectifying (top) section and a stripping (bottom) section. The
rectifying section comprises the stages above the feed point, where the concentration
of the lighter component increases in both the liquid and the vapor. The stripping
section comprises the stages below the feed point, where the concentration of the
lighter component decreases in both the liquid and the vapor.

195
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The bottom liquid, with the least volatile components in the feed, flows from the
base of the column to a reboiler (Fig. F.1). The reboiler is a heat exchanger, where heat
is used to vaporize some of the liquid that flows back up the column in countercurrent
flow with the liquid level moving down the column. Although the source of heat input
can be any suitable medium, in most chemical plants this is normally steam. The
amount of the heat fed to the reboiler determines the vapor flow up the column. The
liquid removed from the reboiler is known as the bottom product or simply, bottoms.

A @

Steam

I

bottom product B, xp

Figure F.1.  Distillation column bottom operation.

The overhead vapor with the most volatile components in the feed moves from the
top of the column to a condenser (Fig. F.2). This condenser is another heat exchanger,
where cooling water is used to condense the vapor to a liquid. The condensed liquid
is stored in a holding vessel known as the reflux drum or reflux holdup. The liquid
leaving the reflux drum is split into two parts: (¢) the reflux flow which is fed back to
the column, where it moves downwards in countercurrent flow with the vapor flowing
up the column and (i¢) the condensed liquid which is removed from the system, known
as the distillate or top product.

overhead

|
vapor E
Vr E .@
: .

--------------- reflux flow L distillate D, yp

Figure F.2. Distillation column top operation.
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The operation of a distillation column is affected by various factors disturbing the
performance, e.g., feed conditions (feed rate, feed composition), internal liquid and
fluid flow conditions, state of trays (packings), weather conditions, etc. The feed rate
and feed composition affect the number of stages required for the separation. They
also affect the location of the feed tray. To overcome the problems associated with
the feed, some columns have multiple feed points when the feed is expected to con-
taining varying amounts of components. Since distillation columns are open to the
atmosphere, changing weather conditions can affect column operation although many
of the columns are insulated. Therefore, the reboilers and the condensors must be ap-
propriately sized to ensure that enough vapor can be generated during cold and windy
operation and that it can be sufficiently cooled down during hot seasons.

F.2 Justification of closed-loop data generation

Because of the phenomenon of directionality (Section 7.1), open-loop identification
only excites the process in the high-gain direction. To demonstrate why this happens,
an analysis for the linear case is given. (Linear analysis suffices because the TS fuzzy
model comprises linear models derived for different operating regions.) Consider the
transfer function matrix G(z) from the inputs reflux and reboiler flows L and V, re-
spectively, to the outputs top and bottom compositions yp and x g, respectively. The
frequency response G (jw) has singular value decomposition (Andersen and Kiimmel,
1992)

G(jw) = [Ui(jw) Uz(jw)] [ 0[(()W) 02(()W

) | Uvit vite 1.

where * denotes complex conjugate transpose and o (w) > o2(w). The vectors U;
and V; specify the principal input and output directions, respectively and the singular
values o specify the principal gains of the process. Most distillation columns are ill-
conditioned in the sense that o; (w) > 0>(w) over a large frequency range. Denoting
the spectral densities of the input and output vectors by ®,(w) and ®y(w), we have

Dy(w) = G(jw)Pu(w)G" (jw).

If the proces inputs are two independent pseudo random binary signals (PRBS) with a
unit variance, then ®, (w) is an identity matrix and

@) = i) UaGil | 18 0 ][3I0 ).

The interpretation of the last expression is that the output of the column has a signifi-
cant component in the U, direction, that is the high-gain direction. This means that by
manipulating the flows L and V, one product becomes more pure and the other less
pure. It is hard to make both products purer at the same time which corresponds to
increasing the flows with L/V" constant (low-gain). Hence, open-loop experiments do
not give information about the low-gain direction, i.e., when both products are getting
more pure or less pure simultaneously (Fig. 7.3, top).
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Therefore, to get both low-gain and high-gain directions well excited, a closed-loop
experiment is carried out. Let K and r denote the feedback controller and a set-point
output reference, respectively. The frequency content of the input is given by

u(jw) = (1+K(jw)G(jw)) ™ K(jw)r(jw).

At frequencies where the gain of the controller is (sufficiently) high, the above relation
can be approximated by

i
u(jw) ~ G (jw)r(jw) = [Vi(jw) Va(jw)] { " |

o2(w)

[ i ].

Since oy (w) 3> 02(w), the input is likely to contain mainly the low-gain component.




Appendix G
Symbols and abbreviations

Printing Conventions. Lower case characters in bold print denote column vectors.
For example, x and 7 are column vectors. A row vector is denoted by using the
transpose operator, for example x” and 7. Lower case characters in italics denote
elements of vectors and scalars. Upper case bold characters in bold print denote ma-
trices, for instance, X is a matrix. Upper case calligraphic characters such as .A denote
crisp and fuzzy sets or input-output mappings, e.g., 7 depending on the context. Up-
per case italic characters denote domains, such as X.

No distinction is made between variables and their values, hence z may denote a
variable or its value, depending on the context. No distinction is made either between
a function and its value, e.g., si’f] ((1;:;1) may denote both an output sensitivity function
and its value. When a signal or a system is time-dependent, the time index is included
in round brackets, e.g., u(k).

General mathematical symbols

A/B,C.D system matrices in state space

u(k) e R™ input of a dynamic system at time &
y(k) e RP output of a dynamic system at time k

A, B fuzzy sets

K number of rules in a rule base

R fuzzy rule

X, Y domains (universes) of variables x and y

,n, 6 consequent parameters in a TS model
state vector in the /th MISO model
dimension of the state vector x;

(k) regression vector in the /th MISO model

=p+m dimension of the regression vector X; (k)

membership degree

degree of fulfillment of a rule
normalized degree of fulfillment
set of integer numbers

set of real numbers

HNE BT XD %N
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C
I

set of complex numbers
identity matrix of appropriate dimensions

Symbols related to fuzzy clustering

[1tix]

N <30 NoE=™-Q

=
B

regressor matrix

regressand vector

cluster covariance matrix

norm-inducing matrix

fuzzy partition matrix

matrix containing cluster prototypes (means)
data (feature) matrix

number of clusters

distance measure

weighting exponent (determines fuzziness of the partition)
cluster prototype (center)

data vector

membership of data vector zj, into cluster ¢

Symbols related to (robust) fuzzy predictive control

M (k+1)
M
Uy

g(k)
’YP(G)
Hc(k - 7')
lp

Q(k)
Qa(k)
N(G)

Operators:
XT

7]

det, | - |

diag

ok

signal increment

gradient of the Lagrange function

Hessian of the Lagrange function

prediction horizon

control horizon

minimum cost horizon

cost function

Lagrange function

Lagrange multipliers

LTV model extracted from the fuzzy model at time (k + )
LTV system comprising the LTV models M (k + )
predicted input and output trajectories

uncertainty upper bound

model offset at time &

{p-gain of system G

kernels (Markov parameters) of system G
Lebesque space

model uncertainty at time k

model uncertainty increment at time &
order of system G

transpose of matrix X

partial derivative

determinant of a matrix

diagonal matrix

element by element multiplication (Hadamard or Schur product)




rank(X)
sup

Vv

[l -1l

” ’ ”l)p

Abbreviations

B&B
BIBO
CSTR
d.c.
DOF
FLC
FLOP
FM
GDI
GK
LMI
LS
LTI
LTV
MIMO
MISO
MM
MPC
(N)ARX
PDC
PID
PRBS
QP
RGA
RMS
SISO
SM
SQP
STD
TLS
TS
VAF

APPENDIX G: SYMBOLS AND ABBREVIATIONS

rank of matrix X

suprenum

(vector) gradient

p-norm of a signal

induced p-norm of a system

branch-and-bound technique
bounded-input bounded output (stability)
continuous stirred tank reactor
direct current

degree of fulfillment

fuzzy logic control

floating point operations

fuzzy model

gasoline direct injection (engine)
Gustafson—Kessel algorithm
linear matrix inequalities

line search (in MBPC)

linear time-invariant

linear time-varying
multiple-input, multiple-output
multiple-input, single-output
multiple model method (in MPC)
model predictive control
(nonlinear) autoregressive with exogenous inputs
parallel distributed compensation
proportional integral derivative (controller)
Pseudo-random binary signal
quadratic programme

relative gain array

root mean square

single—input, single—output

single model method (in MBPC)
sequential quadratic programming
standard deviation

total least-squares method
Takagi-Sugeno type fuzzy model
variance accounted for

Abbreviations related to GDI engine

EOI
IGA
Mai r
Miuel
MTC
N

End of injections

Ignition advance angle
Mass of air in the cylinder
Mass of fuel in the cylinder
Air throttle command
Engine speed
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Nidle
Pm
Qair
quel
RAF
SOI
Tinj
TDC
TQE
TQI
TQL
¢MTC

FUZZY CONTROL OF MIMO PROCESSES

Idle engine speed
Manifold pressure

Air flow in the cylinder
Fuel flow in the cylinder
Air-fuel ratio

Start of injection
Injection time

Top dead center
Effective torque
Indicated torque
Torque losses

Alr throttle position




Summary

The continual enhancement of the quality and performance of industrial processes is a
primary target in the academics and industry alike. The development of new methods
for control design and their utilization in the increasingly sophisticated control systems
is the key to controlling the more and more sophisticated processes.

The classical linear control theory is based on greatly simplifying assumptions con-
cerning the nature and behavior of the controlled process. In practice, however, these
assumptions do not hold for complex, multivariable, not very well understood, or par-
tially unknown systems. Hence, methods are sought which can cope with such sys-
tems.

The use of intelligent control systems is more and more often used for applications
where the process to be controlled is multivariable, nonlinear and/or time varying, and
for which mathematical models are difficult to obtain or to use. Automotive and chem-
ical industries are typical examples of such applications. Multivariable processes pose
difficult control problems because of their complex behavior and interacting phenom-
ena such as directionality and ill-conditioning. Moreover, the imposed economical
goals are usually conflicting. Depending on the specific process and goals, we can
have a centralized control system based on a MIMO controller, or a decentralized
control system using a number of SISO controllers. Multivariable controllers usually
outperform decomposed controllers, but this gain in performance must be traded off
against the cost of obtaining and maintaining a sufficiently detailed model.

Since its introduction in 1965, fuzzy set theory has found its application in the
control systems theory, not only from the scientific community but also from industry.
The interest in fuzzy algorithms for control is based on the fact that many systems
are not amenable to conventional control approaches due to the lack of precise, formal
knowledge about the system, due to strongly nonlinear behavior, due to the high degree
of uncertainty, or due to the time varying characteristics.

We put the main accent of this thesis on the development of methods for analysis
and design of control structures based on Takagi—Sugeno fuzzy models. As prelimi-
nary material, state-space and input-output forms of the TS model are presented and
the inference mechanism in the Takagi—Sugeno model is discussed. For completeness
of the presentation, a brief overview of the mainstream of the research efforts directed
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to the state feedback and output feedback control using TS models is included. Along
with this presentation, we show some of the shortcomings of the approach using TS
models such as handling the offset term, or having estimated variables in the rule an-
tecedents. As shown later, the methods proposed in this thesis can overcome solve
some of these shortcomings.

In the methodology developed in this thesis, we use information derived from the
TS model locally at a certain point to design off-line or on-line effective control struc-
tures, as opposed to utilizing the TS model as a global nonlinear model. This approach
allows us to approximate the nonlinearity specific for a given region by linear dynam-
ics valid only in this region. By analyzing the approximated linear dynamics we can
derive properties of the original nonlinear process model. The Relative Gain Array
(RGA) approach for analysis of input-output interactions has been extended to deal
with TS models, in order to provide a number of arrays that can sufficiently well indi-
cate the interactions throughout the model. Additional insight in the interactions can
be gained by using the output sensitivity analysis. While the extended fuzzy RGA
analysis provided an indication for the static interactions, the output sensitivity analy-
sis can be used also to give insight in the dynamic interactions. Based on the obtained
knowledge and the design specifications, we can decide whether or not a decoupler is
needed that can reduce or completely remove the undesired coupling.

The same local linear approach can be used for the decoupler design. We redesign
the decoupler on-line, at each sampling instant, taking into account the fuzzy rules
which are currently active. If the fuzzy model is an affine one with at least as many
inputs as outputs, an analytical decoupling law is be obtained. For non-affine fuzzy
models, the inversion is accomplished by inverting the input-output transfer function
matrix. The decoupling based on the local interpretation of TS models can be achieved
computationally very efficiently. This allows for their use in situations where, due to
short sampling times, more computationally involved control methods cannot be prop-
erly utilized. An alternative approach is to invert the TS model as a whole by means
of a nonlinear optimization technique. This approach is called numeric decoupling.
Numeric decoupling, despite of being the most general method, is computationally
demanding, which limits its application in fast processes.

An important part of this thesis is devoted to the formulation of Model Predictive
Control (MPC) algorithms which can be efficiently solved on-line based on TS mod-
els. By analyzing the structure of the resulting optimization problem, we propose a
formulation which has a complexity comparable to linear MPC algorithms and, at the
same time, significantly improves the performance. We use of the nonlinear TS model
available to obtain predicted process input and output trajectories. By linearizing the
TS model along these trajectories, a set of linear models is derived that can approx-
imate the process behaviour over the prediction horizon. The accuracy of prediction
can be further improved by iterating the above procedure to compensate for possi-
ble linearization errors. The convergence of the iterative scheme is guaranteed by a
line search mechanism that considers reduction both in the cost function and in the
constraints. The methods for MPC presented in this thesis are especially suited for
applications with nonlinear multivariable processes. They can be used when the sam-
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pling interval is short. For such processes, linear model predictive control does give
poor performance, while nonlinear predictive control is too time consuming.

The feasibility of the optimization problem on the one hand, and the use of the
Internal Model Control (IMC) scheme on the other hand, guarantee the stability of
the closed-loop system in the nominal case i.e., when the process model is an ac-
curate approximation of the process. However, a certain model-plant mismatch will
always be present due to unmodeled dynamics, time-varying aging phenomena, etc.
This model-plant mismatch will not only deteriorate the control performance; it may
even destabilize the closed-loop system. A reasonable approach is to consider the
process deviation from the available model as a model uncertainty, such that the pro-
cess behavior is always contained within the set of behaviors described by the model
combined with the associated uncertainty. Then the robust stability of the closed loop
system is ensured by means of extra constraints on the control signal that guaran-
tee stability for any model-plant mismatch within certain given bounds. To derive
these bounds, the TS model is viewed as a linear time-varying model rather than as
a nonlinear one. We demonstrated that the stability constraints robustify the system
performance in the case of a model-plant mismatch without deteriorating the nominal
performance. The stability constraints, rather than the weights in the cost function
smooth out the control signal. The application of the stability constraints, however, is
computationally demanding.

We can conclude that the methodologies proposed in this thesis offer novel tools for
the analysis and design of control structures for complex MIMO processes. This has
been demonstrated by several simulation studies and real-time laboratory experiments.
An application of fuzzy MPC to a simulation model of a GDI engine illustrates the
utilization of a data-driven TS model in a control structure comprising a multivariable
MPC optimizer and a complex switching logic. A real-time application of the fuzzy
MPC methods is demonstrated on a laboratory-scale cascaded-tanks system. This
setup is also used to test the robust stability constrains in real time. The smoothing
effect of the stability constraints has been demonstrated. The techniques for analysis
of input-output interactions and input-output decoupling have been illustrated on a
simulation model of a binary distillation column and again on the laboratory cascaded-
tanks setup.

Finally, the main contributions of this thesis to the field of fuzzy MIMO control
design can be summarized as follows. New methods have been proposed for the anal-
ysis of input-output coupling and interactions, and for decoupling design. An effective
formulation of the optimization problem in fuzzy model predictive control has been
devised. Constraints on the control signal in MPC have been introduced which guaran-
tee closed-loop robust asymptotic stability for open-loop BIBO stable processes with
an additive {;-norm bounded model uncertainty.







Samenvatting

De continue verbetering van de kwaliteit en prestatie van industriéle processen staat
voorop bij zowel de academische als de industri¢le wereld. De ontwikkeling van
nieuwe regelmethoden en het gebruik hiervan voor het ontwerpen van steeds meer
geperfectioneerde regelsystemen is essentieel voor het regelen van steeds ingewikkeld-
er processen.

De klassieke lineaire regeltheorie is gebaseerd op sterk vereenvoudigde veronder-
stellingen over de eigenschappen en het gedrag van het te regelen proces. In de praktijk
gaan deze veronderstellingen echter niet op voor complexe, multivariabele, slecht be-
grepen of gedeeltelijk onbekende systemen. Daarom is men op zoek naar methodes
die zulke systemen aankunnen.

Steeds vaker worden intelligente regelsystemen gebruikt voor toepassingen waar
het te regelen proces multivariabel, niet-lineair, en/of variabel in de tijd is, en waarvoor
wiskundige modellen moeilijk te verkrijgen of te gebruiken zijn. De auto industrie en
de chemische industrie zijn typische voorbeelden van zulke toepassingen. Multivari-
abele processen geven aanleiding tot moeilijke regelproblemen vanwege hun com-
plexe gedrag en hun wisselwerking met fenomenen als richtingsafhankelijkheid en
slechte geconditioneerdheid. Daarnaast zijn de beoogde economische doelen meestal
in strijd met elkaar. Afhankelijk van het specifieke proces en de doelen is sprake van
een gecentraliseerd regelsysteem dat is gebaseerd op een MIMO systeem, of van een
gedecentraliseerd regelsysteem dat een aantal SISO systemen gebruikt. Multivariabele
regelaars presteren over het algemen beter dan separaat ontwikkelde regelaars, maar
deze verbetering in prestatie moet worden afgewogen tegen de kosten van het bepalen
en onderhouden van een model dat voldoende gedetailleerd is.

Sinds haar introductie in 1965 is de fuzzy set theorie toegepast in de theorie van
regelsystemen, zowel in de academische wereld als in de industrie. De belangstelling
voor fuzzy regel-algoritmen komt door het feit dat de conventionele regelmethodes
vaak niet gebruikt kunnen worden voor een systeem omdat er geen precieze, formele
kennis over het systeem is, het systeem sterk niet-lineair gedrag vertoont, er een hoge
mate van onzekerheid is, of het systeem in de tijd variérende eigenschappen heeft.

In dit proefschrift kijken we vooral naar het ontwikkelen van methodes voor het
analyseren en ontwerpen van regelstructuren die zijn gebaseerd op Takagi—Sugeno
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fuzzy modellen. Er wordt uitgegaan van state-space en input-output vormen van het
TS model en de berekeningsmethode van het Takagi—-Sugeno model wordt bespro-
ken. Voor de volledigheid geven we ook een kort overzicht van de belangrijkste on-
derzoeken naar state feedback en output feedback regelaars waarbij gebruikt wordt
gemaakt van TS modellen. Ook laten we een paar tekortkomingen zien van de aanpak
met TS modellen zoals het omgaan met de “offset term”, of met geschatte variabe-
len in de antecedents waaraan de regels die het systeem beschrijven moeten voldoen.
Zoals we later laten zien, kunnen de methodes die we hier voorstellen sommige van
deze tekortkomingen oplossen.

In de onderzoeksmethode die we in dit proefschrift ontwikkelen, gebruiken we in-
formatie die plaatselijk op een bepaald punt van het TS model is afgeleid om off-line of
on-line effectieve regelstructuren te ontwerpen, in plaats van dat we het TS model als
een globaal niet-lineair model gebruiken. Deze aanpak maakt het mogelijk om de niet-
lineariteit die specifiek is voor een bepaald gebied te benaderen met lineaire dynamica
die alleen voor dit gebied geldt. Door de benaderde lineare dynamica te analyseren
kunnen we karakteristieken van het originele niet-lineaire procesmodel afleiden. De
“Relative Gain Array” (RGA) benadering voor het analyseren van input-output inter-
acties is uitgebreid om TS modellen aan te kunnen, om zo een aantal rijen te verkrij-
gen die voldoende goed kunnen aangeven welke interacties in het model plaatsvinden.
Extra inzicht in de interacties kan worden verkregen door de “output sensitivity” te
analyseren. Terwijl de uitgebreide fuzzy RGA analyse alleen de statische interacties
kan aangeven, kan de output sensitivity analyse ook worden gebruikt om inzicht te
krijgen in de dynamische interacties. Op grond van de verkregen kennis en de on-
twerpspecificaties kunnen we beslissen of er al dan niet een ontkoppelaar nodig is die
ongewenste koppeling kan verminderen of geheel opheffen.

Dezelfde plaatselijk lineaire aanpak kan worden gebruikt voor het ontwerp van een
ontkoppelaar. We ontwerpen de ontkoppelaar opnieuw on-line, tijdens iedere bemon-
steringsperiode, rekening houdend met de fuzzy regels die op dat moment van kracht
zijn. Als het fuzzy model affien is met tenminste evenveel inputs als outputs dan
volgt er een analytische ontkoppelingswet. Voor niet-affiene fuzzy modellen verkrij-
gen we de inversie door de input-output matrix van overdrachtsfuncties te inverteren.
De ontkoppeling gebaseerd op de plaatselijke interpretatie van TS models kan efficiént
worden berekend. Dit maakt het mogelijk ze te gebruiken in situaties waar, door de
korte tijd tussen de bemonsteringen, rekentijd-intensievere regelmethoden niet goed
kunnen worden toegepast. Een andere benadering is het TS model in zijn geheel in-
verteren door middel van een niet-lineaire optimalisatietechniek. Deze methode wordt
numerieke ontkoppeling genoemd. Alhoewel deze methode het meest algemeen wordt
gebruikt, is hij ook reken-intensief, waardoor hij minder geschikt is voor snelle pro-
cessen.

Een belangrijk deel van dit proefschrift wordt gewijd aan het formuleren van Model
Predictive Control (MPC) algoritmen die efficiént on-line kunnen worden berekend
op basis van TS modellen. We analyseren de structuur van het resulterende opti-
malisatieprobleem en op basis hiervan formuleren we een benadering die ongeveer
net zo complex is als die van lineaire MPC algoritmen, maar tegelijkertijd veel beter
presteert. We gebruiken het niet-lineaire TS model om voorspelde input en output
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trajectorie€n te verkrijgen. Door het TS model langs deze trajectorieén te linearis-
eren, leiden we een set lineaire modellen af die het gedrag van het proces binnen
de voorspellingshorizon kunnen benaderen. De nauwkeurigheid van de voorspelling
kan verder worden verbeterd door bovenstaande procedure te itereren om mogeli-
Jjke linearisatiefouten te corrigeren. De convergentie van het iteratie schema wordt
gegarandeerd door een line-search mechanisme dat reductie bewerkstelligt in zowel
de kostenfunktie als in de restricties. De methodes voor MPC die in dit proefschrift
worden gepresenteerd zijn speciaal geschikt voor toepassingen met niet-lineaire mul-
tivariabele processen. Ze kunnen worden gebruikt wanneer er weinig tijd zit tussen de
bemonsteringstijdstippen. Voor zulke processen geeft voorspellend regelen gebaseerd
op lineaire modellen slechte resultaten, terwijl niet-lineair voorspellend regelen teveel
tijd kost.

De haalbaarheid van het optimalisatieprobleem aan de ene kant en het gebruik van
het “Internal Model Control” (IMC) schema aan de andere kant garanderen de sta-
biliteit van het gesloten-lus systeem in een ideaal geval, dat wil zeggen, wanneer het
procesmodel een accurate benadering is van het te regelen proces. Er zal echter al-
tijd een zekere discrepantie zijn tussen model en systeem door ongemodelleerde dy-
namica, in de tijd veranderende verouderingsverschijnselen, etc. Het verschil tussen
model en systeem kan niet alleen resulteren in een slechtere regelprestatie; het kan
zelfs zorgen voor destabilisatie van het gesloten-lus systeem. Een redelijke aanpak is
om de afwijking van het proces van het beschikbare model als een onzekere factor in
het model te beschouwen, zodat het gedrag van het proces altijd valt binnen de set
gedragingen die het model beschrijft samen met de daarmee geassocieerde onzeker-
heid. Dan wordt de robuuste stabiliteit van het gesloten-lus systeem verzekerd door
middel van extra restricties op het regelsignaal die stabiliteit garanderen voor welk
verschil tussen model en systeem dan ook binnen zekere gegeven grenzen. Om deze
grenzen af te leiden, beschouwen we het TS model als een lineair in de tijd variérend
model in plaats van als een niet-lineair model. We hebben aangetoond dat de sta-
biliteitsrestricties de prestatie van het systeem robuuster maken wanneer er een ver-
schil is tussen model en systeem zonder dat de nominale prestatie wordt beinvloed.
De stabiliteitsrestricties, en niet zozeer het wegen van factoren in de kostenfunctie,
zorgen dat problemen met het regelsignaal worden opgelost. De toepassing van de
stabiliteitsrestricties is echter rekenintensief.

We kunnen concluderen dat met de methodes die in dit proefschrift worden voorge-
steld, regelstructuren voor complexe MIMO processen op een nieuwe manier kun-
nen worden geanalyseerd en ontworpen. Dit is aangetoond met verschillende simu-
laties en real-time laboratoriumexperimenten. De toepassing van een fuzzy MPC op
een simulatiemodel van een GDI motor illustreert het gebruik van een data-gestuurd
TS model in een regelstructuur bestaand uit een multivariabele MPC optimizer en
complexe schakel-logica. Een real-time toepassing van de fuzzy MPC methodes is
beschreven uitgaande van een cascaded-tanks systeem op laboratoriumschaal. Deze
opstelling is ook gebruikt om de robuuste stabiliteitsrestricties in real-time te testen.
Het effect die de stabiliteitsrestricties op het regelgedrag hebben is aangetoond. De
technieken voor het analyseren van input-output interacties en input-output ontkop-
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peling zijn geillustreerd met een simulatiemodel van een binaire distillatiekolom en
daarna met een opstelling van cascaded tanks in het laboratorium.

Tenslotte vatten we de belangrijkste bijdragen tot het gebied van fuzzy MIMO
regelontwerp samen. Nieuwe methodes zijn gepresenteerd voor het analyseren van
input-output koppeling en interacties, en voor het ontwerp van de ontkoppelaar. Een
effectieve formulering van het optimalisatieprobleem in voorspellend regelen met ge-
bruik van fuzzy modellen is gegeven. Restricties voor het regelsignaal in MPC zijn
geintroduceerd die gesloten-lus robuuste asymptotische stabiliteit garanderen voor
open-lus BIBO stabiele processen met een extra onzekerheidsfactor die het model
begrenst: de {; norm.
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constraints, 86, 89, 96, 98, 103, 153, 156
conservatism, 91, 103
implementable, 92, 98, 103

Schur product, see Hadamard product
search direction, see optimization problem
sensitivity analysis, 32, 39, 41, 147, 148
dynamic, 50
static, 49
sensitivity function, 8, 39
separation principle, 27
SSE, 76, 152
stability, 84
lp, 86
with finite gain, 86
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asymptotic, 88
BIBO, 86, 89
internal, 87

Takagi—Sugeno model, see fuzzy model




VAF, 47

variable, 32
controlled, 2, 32
disturbing, 2

SUBJECT INDEX
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Wiener model, see MPC
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