
 
 

Delft University of Technology

Incremental sliding mode flight control

Wang, Sherry

DOI
10.4233/uuid:c8259a08-bbee-4af0-b570-1350a2dd8d89
Publication date
2019
Document Version
Final published version
Citation (APA)
Wang, S. (2019). Incremental sliding mode flight control. [Dissertation (TU Delft), Delft University of
Technology]. https://doi.org/10.4233/uuid:c8259a08-bbee-4af0-b570-1350a2dd8d89

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:c8259a08-bbee-4af0-b570-1350a2dd8d89
https://doi.org/10.4233/uuid:c8259a08-bbee-4af0-b570-1350a2dd8d89




INCREMENTAL SLIDING MODE FLIGHT CONTROL





Propositions

accompanying the dissertation

INCREMENTAL SLIDING MODE FLIGHT CONTROL

by

Xuerui WANG

1. Contrary to model-based sliding mode control methods, the sensor-based incre-
mental sliding mode control framework proposed in this thesis can simultane-
ously reduce the model dependency and the control/observer gains. (this thesis)

2. Part of the system dynamics, external disturbances and the influences of faults
can be captured by the measured or estimated output derivatives. (this thesis)

3. The incremental sliding mode flight control can help an aircraft resist a wide range
of model uncertainties, atmospheric disturbances, actuator faults, and structural
damages, without requiring fault detection and diagnosis or controller reconfigu-
ration. (this thesis)

4. Fast and distributed wing-trailing-edge control surfaces are beneficial to multi-
objective flexible aircraft flight control. (this thesis)

5. Similar as in control theory, also in everyday life it is true that although finite-
time convergence is more challenging, it is also more appreciated than asymptotic
convergence.

6. In meditation, one must fully observe and understand breaths and thoughts be-
fore controlling the mind; analogously, a successful controller cannot be designed
without sufficiently observing and understanding its targeted physical system.

7. In our uncertain world, many policies deviate from their original intentions in
practice because the “loop” is not closed, i.e., the feedback from society and the
appropriate policy adaptations are missing.

8. The ultimate goal of debate is not to win but to reduce unconscious biases and
create a more complete picture in people’s mind.

9. In yoga, relaxation is as important as tightening muscles; in scientific work, “clear-
ing the mind” is as important as focusing.

10. Just as ideal sliding motions cannot be achieved without an ideal actuator, perfect
life (without any flaw) cannot be achieved by mortals, but this should not prevent
us from approaching the “boundary layer” of perfection.

These propositions are regarded as opposable and defendable, and have been
approved as such by the promotor prof. dr. ir. M. Mulder.
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SUMMARY

The swift growth of air traffic volume stresses the importance of flight safety enhance-
ment. Statistical data shows that fly-by-wire technology with automatic flight control
systems can effectively reduce the fatal accident rate of loss of control in-flight. Although
the dynamics of an aircraft are nonlinear and time-varying, it is common practice to de-
sign flight control laws based on local linear time-invariant (LTI) dynamic models, and
apply gain-scheduling method. Here, the flight envelope is divided into many smaller
operating regimes, and LTI model-based controllers are designed and tuned for each of
them. However, this approach is cumbersome and cannot guarantee flight stability and
performance in-between operational points.

In view of the challenges encountered by LTI model-based control, nonlinear con-
trol methods have attracted attention from the flight control community. Nonlinear dy-
namic inversion (NDI) and backstepping (BS) are two frequently used nonlinear con-
trol methods in flight control. These two approaches cancel the nonlinearities in the
closed loop using a nonlinear model of the system. However, mismatches between the
model and real dynamics inevitability exist, especially when an aircraft encounters at-
mospheric disturbances and when sudden actuator faults or even structural damages
occur. To enhance the robustness of model-based nonlinear control methods to model
mismatches, a commonly adopted approach is to augment them with online model
identification. This process, however, is computational intensive and requires sufficient
excitation, which can make an impaired aircraft fly out of the diminished safe flight en-
velope. In consideration of these challenges, the main goal of this thesis is:

To design a stability-guaranteed nonlinear flight control framework with
reduced model dependency and enhanced robustness.

Since this thesis aims at designing a nonlinear control framework, Lyapunov stabil-
ity criteria are adopted. The robustness to model uncertainties, external disturbances,
sudden actuator faults and structural damages are all considered. Incremental nonlin-
ear dynamic inversion (INDI) is a candidate to fulfill this goal. The core idea of INDI is
to feed back angular accelerations and actuator positions to enhance the robustness of
NDI to model mismatches. This idea has been applied to various flight control prob-
lems, and has shown promising effectiveness in rejecting disturbances and tolerating
faults. However, this thesis reveals that existing derivations of INDI, which are based on
the time-scale separation assumption and term omissions, have some limitations. The
cascaded control structure of INDI used in flight control also restricts its applicability to
more general nonlinear systems. More importantly, the stability and robustness anal-
ysis of INDI using transfer functions and the negative definiteness of the frozen-time
eigenvalues are not rigorous, which leads to the first research question of this thesis:

How can the stability of incremental nonlinear dynamic inversion control be
analyzed and expressed?

xi



xii SUMMARY

To address this question and to remedy the limitations of INDI control, this thesis
first generalizes INDI for nonlinear uncertain systems with arbitrary input–output rel-
ative degrees, without using the time-scale separation assumption or term omissions.
Then the stability of the generalized INDI control is analyzed using Lyapunov methods,
considering the internal dynamics. Moreover, nonlinear system perturbation theory is
adopted to analyze the robustness of INDI control to model uncertainties, external dis-
turbances, and sudden changes in system dynamics. It is found that in the closed-loop
system under INDI control, a perturbation term remains, which includes the influences
of disturbances, dynamic variations, and the control effectiveness estimation errors.

One approach to enhance the robustness of INDI control is to augment it with adap-
tive parameter update laws, which requires to parameterize the perturbations using pre-
defined model structures. This parameterization procedure can be tedious for external
disturbances and dynamic variations remaining in the closed-loop of INDI. Further-
more, in these adaptation laws, the unknown parameters are assumed to be constant
or slowly time-varying, which can become invalid when a sudden fault occurs. In addi-
tion, online parameter updates increase the computational load, which is unfavourable
in flight control.

Another approach to enhance the robustness of INDI is to robustify it by using slid-
ing mode control (SMC). The properties including finite-time convergence and the in-
variance (better than robust) to matched uncertainty have promoted the application of
SMC to many aerospace control problems. Nonetheless, there is a contradiction be-
tween the reduction of model dependency and the reduction of uncertainty in exist-
ing SMC methods. Reducing the model dependency can simplify the implementation
process and reduce the onboard computational load, while reducing the uncertainty
decreases the SMC gains, which is crucial to chattering reduction. These observations
raise the following research question:

How can the contradiction between the reduction of model dependency and
the reduction of uncertainty in sliding mode control be solved?

Through the analysis of INDI control, it is found that a part of the input–output
mapping of a nonlinear system is included in the estimated or directly measured out-
put derivatives. This system information contained in sensor measurements can po-
tentially solve the contradiction in SMC. Therefore, this thesis hybridizes (higher-order)
SMC and sliding mode disturbance observers (SMDO) with the generalized INDI con-
trol for generic multi-input/multi-output nonlinear systems, named incremental sliding
mode control (INDI-SMC). Theoretical analysis shows that this hybrid control frame-
work inherits the advantages and remedies the drawbacks of both approaches. On the
one hand, the incorporation of SMC and SMDO into INDI compensates for the influ-
ences of perturbations and also brings fixed/finite-time convergence property. On the
other hand, by virtue of the sensor-based control structure of INDI, the model depen-
dency and uncertainty are simultaneously reduced in INDI-SMC.

The theoretical developments in INDI and INDI-SMC also help to improve the con-
cept of incremental backstepping (IBS) control. In the literature, IBS is proposed for
second-order systems in the strict-feedback form. The outer-loop design of IBS is the
same as standard model-based backstepping, while the inner-loop IBS design follows
the idea of INDI control. As a consequence, the discussed limitations of INDI also exist



SUMMARY xiii

in IBS control. The closed-loop system using IBS control is also perturbed by uncertain-
ties. These lead to the next research question:

How can the concept of incremental backstepping control be improved and
how can its robustness be enhanced?

In this thesis, IBS is generalized for higher-order nonlinear uncertain systems in the
strict-feedback form, without using the time-scale assumption or term omissions. It is
then proposed to hybrid the generalized IBS with SMC, named incremental backstep-
ping sliding mode control (IBSMC). Theoretical analysis shows that, on the one hand,
IBSMC can compensate for the remaining uncertainty in IBS; on the other hand, as com-
pared to backstepping sliding mode control in the literature, IBSMC can simultaneously
reduce the model dependency and the minimum possible SMC gains. In addition, for
nonlinear systems in the strict-feedback form, the recursive IBSMC design is simpler
than INDI-SMC.

The INDI-SMC framework proposed in this thesis can induce both first- and higher-
order sliding modes. In the literature, higher-order sliding modes can also be achieved
by other control structures. This leads to the last research question of this thesis:

What is the relationship between the INDI-based SMC proposed in this thesis,
the NDI-based SMC, and higher-order SMC with artificially increased relative
degree?

In this thesis, analytical and numerical comparisons are made among these control
structures. All of them can be used to induce higher-order sliding modes in finite time. It
is found that only the estimated control effectiveness matrix is needed by the considered
higher-order (HO) SMC and INDI-SMC, while NDI-SMC has higher model dependency.
Moreover, although the considered HOSMC and INDI-SMC originate from completely
different ideas, their nominal control increments are approximately equivalent if certain
conditions are satisfied. Furthermore, the minimum possible switching gains needed by
the considered HOSMC are approximately equal to those needed by INDI-SMC divided
by the sample interval. Even so, these two control structures result in comparable chat-
tering magnitudes, which are effectively reduced as compared to NDI-SMC.

The two hybrid control frameworks proposed in this thesis, INDI-SMC and IBSMC,
are derived for generic nonlinear uncertain systems. Their effectiveness in flight con-
trol is evaluated by numerical simulations and quadrotor flight tests. When INDI-SMC
and IBSMC are applied to fixed-wing aircraft fault-tolerant control problems, simula-
tions show that a wide range of actuator faults and structural damages can be tolerated,
without using additional fault detection and diagnosis (FDD) or online model identi-
fication. Even though the model dependencies of INDI-SMC and IBSMC are reduced,
they present better robust performance than the NDI-SMC, BSMC, NDI, and BS control
methods. Moreover, the SMC gains required by INDI-SMC and IBSMC are lower than
those of NDI-SMC and BSMC, which mitigates the chattering effect.

To evaluate the effectiveness of the hybrid control in practice, this thesis imple-
ments INDI-SMC driven by a SMDO on a quadrotor. It is found that, in the presence
of model uncertainties, wind disturbances, and actuator faults, INDI-SMC/SMDO has
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better tracking performance than NDI-based SMC/SMDO. Moreover, the sliding mode
control and observer gains needed by INDI-SMC/SMDO are lower, which alleviates the
chattering effect. In addition, the onboard computational load is reduced by INDI-
SMC/SMDO since a wide range of perturbations are passively resisted without adap-
tation, FDD or model identification. Last but not least, the implementation process of
INDI-SMC/SMDO is simplified because of its reduced model dependency and smaller
variations of the resulting uncertainty.

In the past decades, the trend of using composite materials to reduce airplane struc-
tural weight has emerged. This trend also brings challenges to flight control design be-
cause the accompanying increase in structural flexibility reduces the frequency sepa-
ration between structural and rigid-body modes. This has been demonstrated by the
loss of NASA’s Helios Prototype aircraft. The design of highly flexible aircraft becomes a
multidisciplinary problem, where the nonlinearities contributed by structural-, aero-
and flight dynamics need to be considered. Therefore, this thesis proposes an inte-
grated flexible aircraft flight control law based on incremental control. Numerical sim-
ulations show that the proposed control law can regulate rigid-body motions, alleviate
gust loads, reduce the wing root bending moments, and suppress wing elastic modes.
Furthermore, the proposed control law shows enhanced robustness to aerodynamic
model uncertainties and actuator faults by virtue of its sensor-based nature.

In conclusion, guaranteed stability in the Lyapunov sense, reduced model depen-
dency and computational load, reduced control and observer gains, as well as enhanced
robustness to faults and disturbances, make the proposed incremental sliding mode
control and incremental backstepping sliding mode control frameworks promising for
enhancing flight safety in real life. The application of these two hybrid control frame-
works to other nonlinear systems such as hydraulic systems and robotic manipulators
are recommended as future work.
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De snelle groei van het luchtverkeersvolume benadrukt het belang van verbetering van
de vliegveiligheid. Statistische gegevens tonen aan dat fly-by-wire technologie bij au-
tomatische vluchtbesturingssystemen het dodelijke ongevalspercentage van verlies van
controle tijdens de vlucht effectief kan verminderen. Hoewel de dynamica van een vlieg-
tuig niet-lineair is en in de tijd variëerd, is het in de praktijk gebruikelijk om vluchtre-
gelwetten te ontwerpen op basis van lokale lineaire tijdsinvariabele (LTI) dynamische
modellen, en om de gain-schedulingmethode toe te passen. Hier is de vluchtenvelop
verdeeld in vele kleinere besturingsregimes, en zijn controllers gebaseerd op het LTI-
model ontworpen en afgestemd voor elke hiervan. Deze aanpak is echter omslachtig en
kan de vluchtstabiliteit en prestaties tussen operationele punten niet garanderen.

Met het oog op de uitdagingen die worden ondervonden door op LTI-modellen ge-
baseerde besturing, hebben niet-lineaire besturingsmethoden de aandacht getrokken
van de vluchtbesturingsgemeenschap. Niet-lineaire dynamische inversie (NDI) en back-
stepping (BS) zijn twee vaak gebruikte niet-lineaire besturingsmethoden voor vlucht-
controle. Deze twee methodes annuleren de niet-lineariteiten in de closed-loop met een
niet-lineair model van het systeem. Echter bestaan er onvermijdelijk mismatches tus-
sen het model en de werkelijke dynamiek, vooral wanneer een vliegtuig atmosferische
storingen tegenkomt en wanneer plotselinge actuatorfouten of zelfs structurele schade
optreden. Om de robuustheid van modelgebaseerde niet-lineaire besturingsmethoden
naar-model te verbeteren, is een algemeen geaccepteerde aanpak om ze te vergroten
met online modelidentificatie. Dit proces is echter computationeel intensief en vereist
voldoende excitatie, waardoor een beperkt vliegtuig uit de verminderde veilige vlucht-
envelop kan vliegen. Met het oog op deze uitdagingen, is het belangrijkste doel van dit
proefschrift:

Een stabiliteitsgegarandeerde niet-lineair vluchtcontrolekader te ontwer-
pen met verminderde modelafhankelijkheid en verbeterde robuustheid.

Aangezien dit proefschrift is gericht op het ontwerpen van een niet-lineair bestu-
ringskader, zijn de stabiliteitscriteria van Lyapunov aangenomen. De robuustheid-naar-
model onzekerheden, externe verstoringen, plotselinge actuatorfouten en structurele
schade zijn allemaal in beschouwing genomen. Incrementele niet-lineaire dynamische
inversie (INDI) is een kandidaat om dit doel te bereiken. De kerngedachte van INDI
is om hoekversnellingen en actuatorposities terug te koppelen om de robuustheid van
NDI-naar-model mismatches te verbeteren. Dit idee is toegepast op verschillende vlucht-
controleproblemen en heeft veelbelovende resultaten laten zien bij het afwijzen van
storingen en het tolereren van fouten. Dit proefschrift laat echter zien dat bestaande
afwijkingen van INDI, die gebaseerd zijn op de time-scale separation aanname en term
omissions, enkele beperkingen hebben. De gecascadeerde controlestructuur van INDI

xv



xvi SAMENVATTING (SUMMARY IN DUTCH)

gebruikt in vluchtcontrole beperkt ook de toepasbaarheid ervan tot meer algemene niet-
lineaire systemen. Belangrijker nog is dat de stabiliteits- en robuustheidsanalyse van
INDI met behulp van transferfuncties en de negatieve bepaaldheid van de frozen-time
eigenwaarden niet rigoureus zijn, wat leidt tot de eerste onderzoeksvraag van dit proef-
schrift:

Hoe kan de stabiliteit van incrementele niet-lineaire dynamische inversiebe-
sturing worden geanalyseerd en uitgedrukt?

Om deze vraag te beantwoorden en de beperkingen van de INDI-besturing te verhel-
pen, generaliseert dit proefschrift eerst INDI voor niet-lineaire onzekere systemen met
willekeurige relatieve input-output-graden, zonder gebruik te maken van de time-scale
separation aanname of term omissions. Vervolgens wordt de stabiliteit van de gegene-
raliseerde INDI-besturing geanalyseerd met behulp van Lyapunov-methoden, rekening
houdend met de interne dynamiek. Bovendien wordt niet-lineaire systeemverstorings-
theorie gebruikt om de robuustheid van de INDI-besturing-naar-model onzekerheden,
externe verstoringen en plotselinge veranderingen in de systeemdynamiek te analyse-
ren. Het is gebleken dat in het gesloten-lussysteem onder INDI-besturing een versto-
ringsterm overblijft die de invloeden van storingen, dynamische variaties en schattings-
fouten voor de controle-effectiviteit omvat.

Eén benadering om de robuustheid van de INDI-besturing te verbeteren, is om deze
te vergroten met adaptieve parameterupdatewetten, die vereist dat de verstoringen wor-
den geparametreerd met behulp van vooraf gedefinieerde modelstructuren. Deze para-
metreringsprocedure kan tergend zijn voor externe verstoringen en dynamische varia-
ties die overblijven in de closed-loop van INDI. Bovendien worden in deze aanpassings-
wetten de onbekende parameters verondersteld constant te zijn of langzaam in de tijd
te variëren, wat ongeldig kan worden als zich een plotselinge fout voordoet. Bovendien
verhogen online parameterupdates de computationele belasting, wat ongunstig is voor
de vluchtcontrole.

Een andere benadering om de robuustheid van INDI te verbeteren, is om het te
versterken door gebruik te maken van sliding mode controle (SMC). De eigenschap-
pen, waaronder ook eindige-tijdconvergentie en de invariantie (beter dan robuust) voor
bijbehorende onzekerheid, hebben de toepassing van SMC bij vele problemen in de
ruimtevaartcontrole bevorderd. Niettemin is er een tegenspraak tussen de verminde-
ring van modelafhankelijkheid en de vermindering van onzekerheid in bestaande SMC-
methoden. Het verminderen van de modelafhankelijkheid kan het implementatiepro-
ces vereenvoudigen en de computationele belasting aan boord verminderen, terwijl het
verminderen van de onzekerheid de SMC gains verlaagt, wat cruciaal is voor het ver-
minderen van chattering. Deze waarnemingen werpen de volgende onderzoeksvraag
op:

Hoe kan de tegenstelling tussen de vermindering van de modelafhankelijk-
heid en de vermindering van onzekerheid in sliding mode controle worden
opgelost?

Door de analyse van de INDI-besturing is gevonden dat een deel van de input-output
mapping van een niet-lineair systeem is inbegrepen in de geschatte of direct gemeten
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output derivatives. Deze systeeminformatie in sensormetingen kan mogelijk de tegen-
strijdigheid in SMC oplossen. Daarom hybridiseert dit proefschrift SMC- en sliding
mode disturbace observers (SMDO) met de gegeneraliseerde INDI-besturing voor gene-
rieke multi-input / multi-output niet-lineaire systemen, genaamd incrementele sliding
mode controle (INDI-SMC). Theoretische analyse laat zien dat dit hybride besturings-
kader de voordelen overneemt en de nadelen van beide benaderingen verhelpt. Aan de
ene kant compenseert de opname van SMC en SMDO in INDI de invloeden van ver-
storingen en brengt ook vaste/eindige-tijdconvergentie-eigenschappen met zich mee.
Aan de andere kant worden, op grond van de sensorgebaseerde besturingsstructuur van
INDI, de afhankelijkheid van het model en de onzekerheid tegelijkertijd verminderd in
INDI-SMC.

De theoretische ontwikkelingen in INDI en INDI-SMC helpen ook om het concept
van incrementele backstepping (IBS)-besturing te verbeteren. In de literatuur wordt IBS
voorgesteld voor systemen van de tweede orde in de strict-feedback vorm. Het outer-
loop ontwerp van IBS is hetzelfde als standaard, op model gebaseerde backstepping,
terwijl het inner-loop IBS-ontwerp het idee van INDI-besturing volgt. Als gevolg hiervan
zijn de besproken beperkingen van INDI ook aanwezig in IBS-besturing. Het closed-
loopsysteem met IBS-besturing is ook verstoord door onzekerheden. Deze leiden tot de
volgende onderzoeksvraag:

Hoe kan het concept van incrementele backstepping-besturing worden verbe-
terd en hoe kan de robuustheid ervan worden verbeterd?

In dit proefschrift wordt IBS gegeneraliseerd voor hogere-orde, niet-lineaire onze-
kere systemen in de strict-feedback vorm, zonder gebruik te maken van de time-scale
aanname of term omissions. Vervolgens wordt voorgesteld om de gegeneraliseerde IBS
te hybridiseren met SMC, genaamd incrementele backstepping sliding mode controle
(IBSMC). Theoretische analyse toont aan dat enerzijds IBSMC kan compenseren voor
de resterende onzekerheid in IBS; anderzijds, in vergelijking met backstepping sliding
mode controle in de literatuur, kan IBSMC tegelijkertijd de modelafhankelijkheid en de
minimaal mogelijke SMC-gains verminderen. Voor niet-lineaire systemen in de strict-
feedback vorm is het recursieve IBSMC-ontwerp bovendien eenvoudiger dan INDI-SMC.

Het INDI-SMC-raamwerk dat in dit proefschrift wordt voorgesteld, kan zowel eerste-
als hogere orde sliding modi induceren. In de literatuur kunnen hogere-orde sliding
modes ook worden bereikt door andere besturingsstructuren. Dit leidt tot de laatste
onderzoeksvraag van dit proefschrift:

Wat is de relatie tussen de op INDI gebaseerde SMC zoals voorgesteld in dit
proefschrift, de op NDI gebaseerde SMC, en hogere-orde SMC met een kunst-
matig verhoogde relatieve graad?

In dit proefschrift worden analytische en numerieke vergelijkingen gemaakt tussen
deze besturingsstructuren. Allen kunnen worden gebruikt om hogere orde sliding modi
in eindige tijd te induceren. Het is gebleken dat alleen de geschatte matrix voor de
controle-effectiviteit nodig is voor de hogere orde (HO) SMC en INDI-SMC, terwijl NDI-
SMC een hogere modelafhankelijkheid heeft. Bovendien zijn, hoewel de beschouwde
HOSMC en INDI-SMC hun oorsprong vinden in totaal verschillende ideeën, hun no-
minale besturingsincrementen ongeveer gelijkwaardig als aan bepaalde voorwaarden
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is voldaan. Verder zijn de minimaal mogelijke switching-gains die nodig zijn voor de
beschouwde HOSMC ongeveer gelijk aan die welke nodig zijn voor INDI-SMC gedeeld
door het sample interval. Toch resulteren deze twee besturingsstructuren in vergelijk-
bare chattering groottes, die effectief worden verminderd in vergelijking met NDI-SMC.

De twee hybride besturingskaders voorgesteld in dit proefschrift, INDI-SMC en IBSMC,
zijn afgeleid voor generieke niet-lineaire onzekere systemen. Hun effectiviteit in vlucht-
controle is geëvalueerd door numerieke simulaties en quadrotor-vluchttesten. Wan-
neer INDI-SMC en IBSMC worden toegepast op fixed-wing vliegtuig fouttolerante be-
sturingsproblemen, laten simulaties zien dat een groot bereik aan actuatorfouten en
structurele schade kan worden getolereerd, zonder gebruik van aanvullende foutdetec-
tie en diagnose (FDD) of online-modelidentificatie. Hoewel de modelafhankelijkheid
van INDI-SMC en IBSMC wordt verminderd, vertonen ze betere robuustheidsprestaties
dan de NDI-SMC, BSMC, NDI en BS besturingsmethoden. Bovendien zijn de SMC-gains
vereist door INDI-SMC en IBSMC lager dan die van NDI-SMC en BSMC, wat het chatte-
ringeffect verminderd.

Om de effectiviteit van de hybride besturing in de praktijk te evalueren, implemen-
teert dit proefschrift INDI-SMC, aangestuurd door een SMDO op een quadrotor. Het
blijkt dat, in de aanwezigheid van modelonzekerheden, windverstoringen en actuator-
fouten, INDI-SMC/SMDO betere trackingprestaties heeft dan op NDI-gebaseerde SM-
C/SMDO. Bovendien zijn de benodigde observer-gains en sliding mode controle voor
INDI-SMC/SMDO lager, wat het chatteringeffect verlicht. Verder wordt de computa-
tionele belasting aan boord verminderd door INDI-SMC/SMDO, aangezien een groot
bereik aan verstoringen passief wordt weerstaan zonder aanpassing, FDD of modeli-
dentificatie. Ten slotte wordt het implementatieproces van INDI-SMC/SMDO vereen-
voudigd vanwege de verminderde modelafhankelijkheid en kleinere variaties van de re-
sulterende onzekerheid.

In de afgelopen decennia is de trend van het gebruik van composietmaterialen om
het structurele gewicht van vliegtuigen te verminderen in opkomst geweest. Deze trend
brengt ook uitdagingen met zich mee voor het ontwerp van de vluchtcontrole omdat de
bijbehorende toename in structurele flexibiliteit de frequentiescheiding tussen structurele-
en rigid-body modi vermindert. Dit is aangetoond door het verlies van het Helios Prototype-
vliegtuig van de NASA. Het ontwerp van zeer flexibele vliegtuigen wordt een multidis-
ciplinair probleem, waarbij rekening moet worden gehouden met de niet-lineariteiten
door de structurele-, aero- en vluchtdynamiek. Daarom stelt dit proefschrift een ge-
ïntegreerde flexibele vluchtregelwet voor vliegtuigen voor gebaseerd op incrementele
besturing. Numerieke simulaties tonen aan dat de voorgestelde regelwet rigid-body be-
wegingen kan reguleren, last door windvlagen kan verlichten, de vleugelwortel buigmo-
menten kan verminderen en elastische modi van vleugels kan onderdrukken. Boven-
dien vertoont de voorgestelde regelwet een verbeterde robuustheid voor onzekerheden
in aerodynamische modellen en actuatorfouten vanwege zijn sensor-gebaseerde aard.

Kortom, gegarandeerde stabiliteit in de Lyapunov-zin, verminderde modelafhanke-
lijkheid en computationele belasting, verminderde besturings- en observer gains, even-
als verbeterde robuustheid tegen fouten en verstoringen, zorgen ervoor dat de voorge-
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stelde incrementele sliding mode besturing en incrementele backstepping sliding mode
besturingskaders veelbelovend zijn voor het verbeteren van vliegveiligheid in het echte
leven. De toepassing van deze twee hybride besturingskaders op andere niet-lineaire
systemen zoals hydraulische systemen en robotachtige manipulators wordt aanbevolen
als toekomstig werk.
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Latin Letters

C w matrix of direction cosines between (xw , yw , zw ) and (x f , y f , z f )
C f matrix of direction cosines between (x f , y f , z f ) and (XE ,YE , ZE )
C e matrix of direction cosines between (xe , ye , ze ) and (x f , y f , z f )
C uw , C ψw damping matrices for the bending and torsion of the wing
d vector of external disturbances
e vector of tracking errors
E I , G J bending and torsional stiffness, N·m2

E f matrix relating Eulerian velocities to angular quasi-velocities
fs sampling frequency
F, M generalized resultant forces and moments, N, N·m
Fuw , Fαw Rayleigh dissipation function densities
G control effectiveness matrix
J inertia matrix for the deformed aircraft
K uw , K ψw stiffness matrices for the bending and torsion of the wing
L Lagrangian for the aircraft
L , H matrices of stiffness differential operators for the wing
M st system mass matrix
Mr wing root bending moment, N·m
nz vertical load factor, m/s2

pV f , pω f momentum vectors for aircraft translation and rotation
puw , pψw momentum vectors for bending and torsion
q vectors of generalized coordinates for bending
rw , r f , re nominal position vector of a point on the wing, fuselage, and tail, m
r f w radius vector from O f to Ow , m
r f e radius vector from O f to Oe , m
R f position vector of the origin of (x f , y f , z f ) relative to (XE ,YE , ZE ), m
s vectors of generalized coordinates for bending velocities, m/s, rad/s
S̃ matrix of the first moments of inertia of the deformed aircraft
T , V kinetic, potential energy of the aircraft
uw bending displacements of the wing, m
u control input
ueq the equivalent control
Û resultant of the force density vector
vw bending velocities of the wing, m/s
V f translational velocity vectors of (x f , y f , z f ), m/s
xr m state reference vector
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xr , xe rigid and elastic state vectors
v̄w , v̄ f , v̄e velocity of an arbitrary mass element on the wing, fuselage, tail, m/s

Greek Letters

αw torsion velocity vector of the wing, rad/s
∆ increments in one time step
εndi the resulting uncertainty term in NDI control
εindi the resulting uncertainty term in INDI control
η vector of internal states
ηw vector of generalized coordinates for torsion
φ,θ,ψ Euler angles
ψw torsion displacements of the wing, rad
Ψ̂ resultant of the moment density vector
ξ vector of external states
ξw vector of generalized coordinates for torsion
θ f Euler angle vector
ω f angular velocity vector of (x f , y f , z f ), rad/s
ρ relative degree vector
Γξ ultimate bound of the external states
Γη ultimate bound of the internal states
Φ shape function matrix of the bending
Ψ shape function matrix of the torsion
κ fault indicator
ν virtual control vector

Acronyms
ABS adaptive backstepping
AFCS automatic flight control systems
BS backstepping
BSMC backstepping sliding mode control
CAT clear-air turbulence
FBW fly-by-wire
FDD fault detection and diagnosis
FDI fault detection and isolation
FRTC finite reaching-time continuous
FTC fault-tolerant control
GLA gust load alleviation
HOSMC higher-order sliding mode control
IBS incremental backstepping
IBSMC incremental backstepping sliding mode control
IMU inertia measurement unit
INDI incremental nonlinear dynamic inversion
INDI-SMC incremental sliding mode control
KF Kalman filter
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LOC-I loss of control in-flight
LQR linear-quadratic regulator
LQG linear-quadratic Gaussian
LTI linear time-invariant
MIMO multi-input and multi-output
MRAC model reference adaptive control
NASA national aeronautics and space administration
NDI nonlinear dynamic inversion
NDI-SMC sliding mode control based on nonlinear dynamic inversion
NLTV nonlinear time-varying
OFC oscillatory failure case
PCH pseudo-control hedging
PID proportional-integral-derivative
PSD power spectral density
RMS root mean square
SISO single-input and single-output
SMC sliding mode control
SMDO sliding mode disturbance observer
SPM singular perturbation margin
UAV unmanned aerial vehicle
VCCTEF variable camber continuous trailing edge flap
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INTRODUCTION

1.1. THREATS TO FLIGHT SAFETY
Over the past decades, we have witnessed a swift growth of air transport. Statistical data
show that air traffic volume has doubled every 15 years since 1976, and this trend is ex-
pected to continue by Airbus’s global market forecast [1]. The expansion of air transport
not only brings more opportunities to the aviation industry, but also increases the im-
portance of flight safety enhancements.

Using the data of the CAST/ICAO common taxonomy team [2], the causes of aviation
fatalities and fatal accidents from 2008 to 2017 are plotted in Fig. 1.1. It can be seen that
25.5% of the fatal accidents are caused by loss of control in-flight (LOC-I). This category
also contributes to 49.9% of onboard fatalities. LOC-I is generally related to a significant
deviation from the nominal flight envelope, which can be triggered by human behaviors,
aircraft malfunctions, external disturbances, etc. [3, 4].

Continuous efforts have been put into reducing the accident rate caused by LOC-I.
A statistical analysis conducted by Airbus shows that with the help of fly-by-wire (FBW)
technology installed on the fourth generation of civil aircraft, the fatal LOC-I accident
rate has been reduced by 75% as compared to the third generation [1]. FBW technology
omits the complex and heavy mechanical linkage between the pilot and the hydraulic
control system, and makes it possible to enhance flight safety using more advanced
automatic flight control systems (AFCS). For new generations of aircraft, the design of
AFCS is challenged by many factors, including potential actuator faults and structural
damages, atmospheric disturbances, the increase of structural flexibility, and nonlin-
ear dynamics. These factors will be briefly addressed in the following subsections, after
which the thesis goal is stated.

1.1.1. ACTUATOR FAULTS AND STRUCTURAL DAMAGES
Many flight accidents were induced by actuator faults and/or structural damages. On
October 4th, 1992, the pylon of engine no.3 of a Boeing 747-200F (El Al Cargo Flight
LY1862, registration: 4X-AXG) broke, shortly after the takeoff. This structural damage led
to loss of both right wing engines, serious damage to the right wing leading edge, and the
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Figure 1.1: Fatalities occurrence categories for worldwide commercial jet fleets from 2008 to 2017 [2].

complete effectiveness loss of outboard ailerons, outboard flaps, spoilers, as well as the
inner left and outer right elevators. This aircraft crashed and killed four on-board flight
crew and 39 people on the ground [4, 5]. On August 12th 1985, a dome joint of a Boeing
747SR (flight JA8119) broke during flight, which resulted in an explosive decompression.
This led to severe damage on the vertical tail and a complete loss of hydraulics. Using
differential thrust, the pilots stabilized the aircraft for half an hour, but unfortunately,
they did not make it in the end due to crew fatigue [4].

(a) 4X-AXG, photoed on 23th August 1992 at Los
Angeles international Airport, © Torsten Maiwald.

(b) The Groeneveen and Klein-Kruitberg complexes
after the crash of El Al Flight 1862, © Jos Wiersema.

Figure 1.2: Photos about the crash of El Al Flight 1862.

On March 3rd, 1991, shortly after a Boeing 737-200 (United Airlines flight 585) com-
pleted its turn onto the final approach course, the aircraft rolled steadily to the right and
pitched down until it reached a nearly vertical attitude. This aircraft eventually crashed
near the airport [6]. On September 8th, 1994, a Boeing 737-300 (USAir flight 427) en-
countered a similar accident during its landing phase. This aircraft eventually crashed
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(a) JA8119 at Itami Airport 1984, © Harcmac60. (b) Route of JA8119, © Eluveitie.

Figure 1.3: Pictures of the Boeing 747SR JA8119.

with all 132 people on board killed [7]. The probable cause of these two accidents was
“a loss of control of the airplane resulting from the movement of the rudder surface to its
blowdown limit” (Ref. [7], Page 295).

In some cases, the faulty aircraft is still controllable, and some level of performance
can still be achieved, which is sufficient to allow the pilot to safely land the aircraft. An
investigation showed that the fatal crash of El Al Flight 1862 could have been avoided [8].
A few examples where pilots saved the aircraft and passengers are also known. For ex-
ample, on November 22th, 2003, pilots successfully landed the DHL Airbus A300B4-203F
freighter after it was hit by a surface-to-air missile. On April 12th, 1997, during the take-
off of a Lockheed L-1011 aircraft (Delta Air Lines Flight 1080), its left elevator got stuck
in a fully upwards position, which made the aircraft pitch up aggressively and nearly
caused stall. Luckily, L-1011 has an engine on the vertical tail, and by using differential
thrust, the pilots successfully controlled the pitching angle and landed the aircraft [9].

To reduce the accident rate induced by actuator faults and structural damages, many
researchers propose to include a “self-repairing” capability in the flight control system,
which can reduce the workload of pilots and make full use of the remaining control
ability of the faulty aircraft. A closed-loop control system which can tolerate compo-
nent malfunctions, while maintaining stability and desirable performance, is said to be
a fault-tolerant control (FTC) system [4, 10]. A national aeronautics and space adminis-
tration (NASA) experiment shows that FTC systems can indeed help pilots to control an
impaired plane [11, 12]. A bibliographical review of FTC systems can be found in [10].

1.1.2. ATMOSPHERIC DISTURBANCES
Air travel can be very unpleasant and even hazardous due to atmospheric disturbances.
Flying an aircraft in the disturbed atmosphere is like cycling on a rough road, which
causes fatigue in both structure and human beings. The fatigue in structure can lead to
cracks/crushes and even breakages. The passenger ride comfort is compromised, and
injuries can also happen. More importantly, the fatigue of pilots and the reduced aircraft
handling quality can impair the precise control of flight path needed for safe takeoff and
landing, as well as collision avoidance [13, 14].

In history, many flight accidents were directly/indirectly caused by atmospheric dis-
turbances. Twenty-five percent of the 729 accidents reported by the U.S. air carriers from
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(a) Downdraft Wind shear clouds illuminate at
Twilight over the Mojave Desert, © Jessie Eastland.

(b) NASA artist’s rendering of a microburst, © NASA.

Figure 1.4: Illustrations for a downdraft windshear and a microburst.

1964 to 1975 are turbulence related [13]. Among these accidents, 115 cases occurred in
convective turbulence and 68 in clear-air turbulence (CAT) [15]. In 1972, CAT accidents
caused about 23 million dollars’ worth of loss to the airlines [15]. One of the critical at-
mospheric disturbance types is wind shear, which refers to the variation of wind over
either horizontal or vertical distances [16]. Twenty-six major civil airplane accidents be-
tween 1964 and 1985 were directly caused or contributed to by wind shear, which led to
620 deaths and 200 injuries [17]. These accidents highlight the importance of designing
an AFCS that can reduce the effects of atmospheric disturbances.

1.1.3. INCREASE OF STRUCTURAL FLEXIBILITY

On December 17th, 1903, the world witnessed the first successful flight of a heavier-
than-air powered aircraft, the Wright Flyer. The lateral control of the Wright Flyer was
achieved by making use of the flexible wing structure. That is, the angle of attack was
changed locally by warping the wing tips [18]. Because of its biplane configuration and
relatively low airspeed (maximum speed: 30 mph (48 km/h)), the Wright Flyer did not
encounter significant detrimental aeroelastic effects [18].

With the development of aircraft propulsion systems, the maximum airspeed record
was constantly broken. At the same time, the wing structures were becoming stiffer
and stiffer to shoulder the increasing wing load and to ensure aeroelastic stability. Roll
control is normally executed by trailing edge ailerons, which are built independently
from the main wing structures. However, stiffer wings lead to a side effect that is very
undesirable in aircraft design, namely the increase in structural weight.

Presently, composite materials bring more opportunities to aircraft structural de-
sign. They can provide structural strength comparable to metallic alloys, but with re-
duced structural weight. The Boeing 787 Dreamliner, the first commercial aircraft con-
structed primarily of composite materials, is designed to be 20% more fuel-efficient than
the Boeing 767 [19]. The use of composite materials also brings challenges, including the
increase of structural flexibility.
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As the wing flexibility increases, the frequency separation between structural and
rigid-body modes becomes smaller. Consequently, the usual separation of flight dy-
namic and aeroelastic analysis becomes less appropriate for gust response predictions
and flight control designs. One famous example is the loss of NASA’s Helios Prototype
Aircraft, shown in Fig. 1.5. This aircraft had a long and slender wing, with aspect ratio
30.9 for enhancing the aerodynamic efficiency [20]. On June 26th, 2003, the Helios Pro-
totype entered moderate air turbulence during a test flight, causing extreme dihedral
and leading to an uncontrollable series of pitch oscillations, which resulted in structural
breakup and crash of the aircraft [20].

Further research discovered that the instability of the phugoid mode during large
dihedral angles was the main reason of the Helios crash [21–23]. Apart from the phugoid
mode, the interaction of the structural and rigid-body modes can also lead to instability
of other conventional flight dynamic modes [22, 24–26]. These emphasize the necessity
of an integrated flight control design for flexible aircraft.

(a) Flight test of Helios on July
14, 2001, © NASA

(b) Helios at high wing dihedral
prior to structural failure, © NASA

(c) Helios falling toward the Pacific
Ocean (on June 26, 2003), © NASA

Figure 1.5: Photos of the NASA’s Helios, a solar-and fuel-cell-system-powered unmanned aerial vehicle.

1.1.4. NONLINEAR DYNAMICS
The free-flying dynamics of flexible aircraft are nonlinear time-varying (NLTV) [22, 27].
The nonlinearities are contributed to by flight dynamics, aeroelasticity and the inertial
couplings between them [27]. For the convenience of analysis and design, the structural
vibration dynamics are often described by a series of linear differential equations, and
their inertial couplings with rigid-body dynamics are assumed to be negligible [27, 28].
However, these simplifications become invalid for highly flexible aircraft [24, 29–32],
whose design becomes a multidisciplinary problem involving intrinsically nonlinear
structural, aero-, and flight dynamics [30].

Even for a “rigid” aircraft, its free-flying dynamics are also NLTV. Moreover, when the
angle of attack is high or when the aircraft is in transonic flight, the nonlinearities in
aerodynamics can become influential. In the literature of flight control, it is a common
practice to linearize the NLTV system around an equilibrium point, which results in a
linear time-invariant (LTI) system. Many control methods are designed based on the
LTI model, and the stability of the closed-loop system is analyzed based on the nega-
tive definiteness of the eigenvalues. However, this design approach is only valid in the
neighborhood of the equilibrium point [33]. In order to expand the applicability of LTI



1

6 INTRODUCTION

model-based control, the gain-scheduling method is widely used, where the flight en-
velope is divided into many smaller operating regimes, and LTI model-based control is
designed and tuned for each of them. However, this approach is cumbersome and does
not guarantee stability and performance in between operational points.

The dynamic linearization and the gain-scheduling processes are not needed by
nonlinear control designs. Stability criteria for these designs are normally defined in
the sense of Lyapunov [33]. Since closed-loop stability is of paramount importance in
flight control, it will be included in the research goal of this thesis.

1.2. RESEARCH GOAL
The challenges stated in Sec. 1.1 motivate the main research goal of this thesis:

Research Goal

To design a stability-guaranteed nonlinear flight control framework with re-
duced model dependency and enhanced robustness.

In this thesis, Lyapunov stability criteria are adopted. The robustness to model un-
certainties, external disturbances, sudden actuator faults and structural damages are
considered, whereas the robustness to sensor faults is out of the scope, and readers are
recommended to [10, 34]. Nonlinear control designs with reduced model dependency
can simplify the implementation process and reduce cost. To reduce onboard compu-
tational load, this thesis also aims at tolerating a wide range of perturbations without
using fault detection and diagnosis (FDD) or model identification. Extreme scenarios
where these mechanisms become necessary will be discussed in Chapter 8.

Two nonlinear control methods that are frequently used in flight control are non-
linear dynamic inversion (NDI) and backstepping (BS) [33, 35]. Both NDI and BS are
model-based control methods, which means that their implementation requires a model
of the physical system, and their effectiveness relies on the model accuracy. However,
mismatches between the estimated model and the real system dynamics inevitability
exist. To enhance the robustness of these model-based control methods to model mis-
matches, they are augmented with various robust and adaptive mechanisms [35–41]. In
contrast to these augmentations, incremental control proposes to improve robustness
by fully exploring the sensor measurements.

1.3. INCREMENTAL CONTROL
Incremental control methods include incremental nonlinear dynamic inversion (INDI)
[42] and incremental backstepping (IBS) [43]. IBS is an extension of INDI for second-
order systems in the strict-feedback form. Incremental control methods were proposed
in the aerospace community, and they are referred to as sensor-based approaches.

1.3.1. LITERATURE REVIEW ON INCREMENTAL CONTROL
The idea of INDI can be traced back to the late nineties. In view of the challenges in
NDI control, Smith proposed a “simplified” NDI approach in 1998 [44]. This approach is
based upon manipulations of the flight dynamic equations and assumptions about the
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bandwidth separations. It is found in [44] that the feedback of rotational (angular) accel-
eration and control surface position can enhance the robustness of NDI to uncertainties
in the mathematical model.

The derivations in [44] are further improved in [45, 46]. By virtue of the feedback
of accelerations and actuator positions, the control method is shown to accommodate
aerodynamic changes without the use of stability derivatives [45, 46]. Moreover, a recon-
figurable control is developed in [46] using the “simplified” NDI along with sensor failure
detection and isolation systems. The aircraft model used in [46] has control redundancy;
thus a weighted least squares method is used to allocate the control command. In [47],
the “simplified” NDI is referred to as an implicit design of NDI, with which a cascaded
aerodynamic angle tracking controller is designed, with its effectiveness demonstrated
by numerical simulations.

Inheriting the idea of feeding back angular accelerometers and actuator positions,
INDI is first proposed in [42]. The sensor-based control idea of INDI is also shared
by [48] and [49]. The derivation of INDI is based on the Taylor series expansion of the
system dynamic model and the “time-scale separation” assumption1. Simulations on
an unmanned aerial vehicle (UAV) model show the insensitivity of this method to aero-
dynamic, center of mass and inertia mismatches [42]. It is also shown in [42] that this
method is sensitive to sensor measurement time delays. Therefore, a linear predictive
filter is proposed in [42] to predict the angular accelerations.

After its proposal in [42], INDI has been applied to various aerospace systems. In [50],
INDI is used to control the angular rate of a spacecraft. In [51], INDI is applied to control
the angular rate of an ADS-33 helicopter. The pseudo-control hedging technique [52] is
used along with INDI to handle actuator saturations. In [53], numerical simulations
show that INDI can tolerant aileron and rudder jamming faults without using online
model identification or FDD. Online model identification requires sufficient excitation
and selection of thresholds, which can be tricky in practice [53].

INDI also shows promising robustness against external disturbances. In [54], a gust
load alleviation control is designed using INDI, which shows better performance and ro-
bustness than a linear-quadratic regulator (LQR) control. In [55, 56], it is demonstrated
by quadrotor flight tests in a wind tunnel that INDI has better position tracking per-
formance than a PID controller. Recent research in [57] uses INDI along with the pri-
mary axis principle [58], which achieves controllable high-speed (over 9 m/s) flight of a
quadrotor despite complete loss of a single rotor.

The idea of INDI inspired the proposal of IBS in [43] for second-order nonlinear sys-
tems in strict-feedback form. The outer-loop control design of IBS is the same as the
standard backstepping control. The differences appear in the inner loop, where the sys-
tem dynamics are first rewritten in an incremental form, based on which the control
increment is designed. Because of the feedback of angular accelerations and actuator
positions, numerical simulations using a missile model show that IBS has better robust-
ness against aerodynamic uncertainties than standard backstepping control [43]. This
robustness enhancement is also verified by outdoor flight tests on a hexarotor [59].

1As will be explained in Sec. 1.3.2, this assumption used in INDI control means that the controls can change
significantly faster than the states.
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1.3.2. CHALLENGES IN INCREMENTAL CONTROL
In spite of the effectiveness of incremental control shown in the literature, challenges
and limitations still exist. In this subsection, the derivations of INDI will be briefly re-
viewed. The same derivations are applicable to the inner-loop IBS control. The limita-
tions of incremental control will then be exposed.

INDI control is derived for the following nonlinear system:

ẋ = f (x)+G(x)u, (1.1)

where f : Rn → Rn , and G is a nonsingular smooth function mapping Rn → Rn×m . The
columns of G and f are smooth vector fields. It is further assumed that m = n, and the
output vector is chosen as y = x . For this set-up, the input–output relative degree for
each control channel equals one, and there are no internal dynamics.

Regarding the applications of incremental control in the literature, the internal dy-
namics are normally avoided by using a cascaded control structure [42, 50, 51, 53–56, 59–
67]. However, the stability of cascaded control structures is not easy to prove because of
its dependency on whether there is sufficient time-scale separation between different
control loops. Moreover, for under-actuated systems, such as a quadrotor with com-
plete loss of two or more rotors, considering the internal dynamics becomes important.

Denote the sampling interval as ∆t ; then the first step of INDI control or inner-loop
IBS control is to take the first-order Taylor series expansion of Eq. (1.1) around the con-
dition at t −∆t (denoted by subscript 0) as:

ẋ = ẋ0 + ∂[ f (x)+G(x)u]

∂x

∣∣∣
0
∆x +G(x0)∆u +R1, (1.2)

where ∆x and ∆u represent the state and control increments in one sampling time step
∆t ; R1 represents the higher-order expansion remainder. Although INDI shows effec-
tiveness on external disturbance rejection [54–57, 57] and tolerance to sudden faults [53],
these factors are not modeled in Eq. (1.1), and partial derivatives are also not taken with
respect to the corresponding variables in Eq. (1.2).

The core step of INDI or inner-loop IBS control is the model simplification based
on the so-called “time-scale separation” principle (or assumption). It is noteworthy that
this principle is different from the widely accepted time-scale separation between cas-
caded control loops, which is based on singular perturbation theories. In [42, 50, 51, 53–
56, 59–66, 68, 69], the separation concept used in incremental control is described as fol-
lows: the controls can change significantly faster than the states, i.e., ∆u À ∆x . There-
fore, the state-variation-related term and the higher-order terms can be omitted from
Eq. (1.2), which yields the simplified incremental dynamics:

ẋ ≈ ẋ0 +G(x0)∆u (1.3)

This simplification is worth some further discussion; because the plant simplifica-
tion is made before introducing the INDI control inputs, this simplification becomes
questionable for unstable plants. Moreover, although the state-variation-related terms
and higher-order terms are not used in INDI control design, they should be kept in the
closed-loop dynamic equations. Generally speaking, these potential issues have been
overlooked in the literature [42, 50, 51, 53–56, 59–66, 68, 69].
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Replacing ẋ by a linear virtual control ν, and inverting the dynamics in Eq. (1.3), the
INDI or the inner-loop IBS control increment is designed as:

∆u =G−1(x0)(ν− ẋ0) (1.4)

This equation defines the control increment∆u. The actual control command given
to the actuator equals u = u0+∆u, where u0 is the measured or estimated control input
at the previous time step t −∆t [42, 70].

Since Eq. (1.4) is independent of the model of f (x), it is concluded in [42, 50, 51, 56,
60, 62] that INDI and IBS are robust to the uncertainties in f (x). However, this conclu-
sion needs further analysis since the omitted terms, which reflect system dynamics, still
remain in the closed-loop dynamics. In [42] and [60], it is shown by using linear trans-
fer functions derived from block diagrams that if actuator dynamics are not considered,
the model uncertainties in G(x) do not affect the closed-loop system, and the dynamics
from ν to x become perfectly decoupled integrators. However, stability proofs based on
transfer functions are only valid for LTI systems. Moreover, whereas the assumption of
ẋ = ẋ0 is made in the block diagram derivations, this is in principle incorrect because
in that case, ∆u would be zero at all times. Finally, regarding the robustness analysis
in [42, 60], the designed control input (Eq. (1.4)) is substituted into the simplified incre-
mental dynamics Eq. (1.3) instead of the actual dynamics, Eq. (1.2) or Eq. (1.1), so the
effects of the omitted terms are not considered at all.

In [60], the stability and robustness of the closed-loop system under IBS control con-
sidering actuator dynamics are analyzed by formulating the closed-loop system into a
state-space form and testing the frozen-time eigenvalues of the time-varying system
matrix. However, it has been shown in [71–73] that for linear time-varying systems, the
stability criterion based on the negative definiteness of the frozen-time eigenvalues is
neither sufficient nor necessary. The Lyapunov methods and concepts from nonlinear
system perturbation theory are needed for more rigorous stability and robustness anal-
yses of nonlinear time-varying systems.

Although INDI and IBS do not rely on the model of f (x), they do depend on knowl-
edge of the control effectiveness matrix G(x). To improve its robustness against un-
certainties in G(x), INDI is augmented with an online least mean squares adaptive filter
in [62]. Although this approach works in practice, from a theoretical point of view, due to
the separation of control design and model identification, the stability of indirect adap-
tive control in general cannot be guaranteed.

The uncertainties in G(x) are also considered in [61], where the IBS method is aug-
mented with three adaptive parameter update laws: tuning functions, immersion and
invariance, and least-squares. It is shown by numerical simulations that these augmen-
tations yield comparable effectiveness in improving the robustness of IBS to parametric
uncertainties in G(x). For these adaptive augmentations, the uncertainties need to be
parameterized using pre-definied model structures, and the unknown parameters are
assumed to be constant or slowly time-varying [61, 74, 75]. This assumption is likely to
be invalid when a sudden fault occurs [76]. Apart from the uncertainties in G(x), the
uncertainties under incremental control also contain a state-variation-related term and
the high-order terms in Eq. (1.2), as well as the increments of external disturbances [70].
Parameterization for these terms can be tedious due to the difficulties in model struc-
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ture selection. Moreover, the high computational load of online parameter update also
makes these adaptive augmentations less appropriate for FTC problems.

The challenges exposed in this subsection raise two research questions:

Research Question 1: How can the stability of incremental nonlinear dynamic
inversion control be analyzed and expressed?

Research Question 2: How can the concept of incremental backstepping control
be improved and how can its robustness be enhanced?

In view of the limitations of using adaptive augmentations to enhance the robust-
ness of incremental control, a promising approach is to robustify it using sliding mode
control (SMC). As a special case of variable structure control [77], SMC is invariant (bet-
ter than robust) to matched uncertainty [77, 78]. The finite-time, or even fixed-time
convergence property [77, 79–83] can be achieved in the SMC scheme. The uncertainty
parameterization process is also not needed by SMC. In [10], SMC is classified as a pas-
sive FTC approach, i.e., it has the ability to tolerate faults without using fault detection
and diagnosis, or controller reconfiguration. These advantages have promoted the ap-
plication of SMC and sliding mode disturbance observers (SMDO) to many aeronautical
and space vehicle control problems, where they show benefits in reducing cost in pre-
flight design and analysis cycles [84]. To properly define the third research question,
these methods will be reviewed in the next section.

1.4. SLIDING MODE CONTROL AND DISTURBANCE OBSERVER

1.4.1. AEROSPACE APPLICATIONS OF SMC
To deal with significant damage to the airframe and actuators, a first-order SMC with
an asymptotic observer is proposed in [85]. Simulations on an F-18 aircraft model show
that desirable performance can be achieved after a fault occurs, without using FDD [85].
In [86], both actuator and sensor faults of a civil aircraft are considered. For handling the
actuator faults, a first-order SMC is designed, which contains a model-based equivalent
control estimation and a switching term. The sensor faults are reconstructed online
using a sliding model observer. The SMC designed in [86] is augmented by a control
allocation technique in [87], and the entire control scheme was verified on TU Delft’s
research flight simulator SIMONA [4, 86].

In [88], a cascaded reconfigurable sliding mode flight control is designed for an F-16
aircraft. First-order sliding mode is achieved in each loop, using a model-based equiv-
alent control estimation and a boundary-layer approximation for the signum function.
The thickness of the boundary layer is reconfigured to account for actuator dynamics,
deflection limits, and rate limits. Simulation results show that this control can passively
tolerate 50% of rudder and horizontal tail area losses without using online model identi-
fication. A similar SMC design is used along with a control allocation method to control
a reusable launch vehicle in [89], where simulations show that desirable tracking per-
formance can be achieved in the presence of bounded external disturbances and un-
certainties [89]. Similarly, the reconfigurable flight control idea in [88, 89] is applied to
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control a tailless aircraft in [90].

The dynamic sliding manifold, which shows benefits in solving the non-minimum
phase system tracking problems, is adopted for aeronautical and space vehicle control
in [91]. An SMC driven by SMDO framework is designed in [84] with application to a
reusable launch vehicle tracking problem. An integral terminal SMC with gain adapta-
tion is applied to a hypersonic gliding vehicle for tolerating actuator faults and model
uncertainties [92]. A hypersonic vehicle tracking problem, in the presence of matched
and unmatched external disturbances and model uncertainties, is addressed in [93] us-
ing a continuous adaptive higher-order SMC.

1.4.2. CHALLENGES IN SLIDING MODE CONTROL

One of the founders of SMC, V. I. Utkin, pointed out that chattering, which is inher-
ent in sliding motions, is the main obstacle for SMC application [94]. Therefore, in the
past decades, many researchers have dedicated themselves to reducing the influences
of chattering. Since chattering is caused by the discontinuous signum function in SMC,
the most widely used approach to reduce its magnitude is to approximate the signum
function by other continuous functions [33, 35, 88–91, 95–99]. However, these approxi-
mations (and hence compromises) lead to partial loss of robustness [33, 78].

In order to avoid discontinuous control inputs, various higher-order SMC techniques
have been proposed. By artificially increasing the input–output relative degree, the dis-
continuous signum function is “hidden” in the higher-order derivatives of the control
input. Because of the integration process, the final control command becomes contin-
uous. However, as pointed out in [78], this branch of methods, including those designed
using recursive or nested structures [100–102], cannot totally eliminate chattering.

Unlike the idea of SMC, (higher-order) SMDO observes the disturbances and pro-
vides this observation to the control for direct compensation. The relative merits of
using SMDO over SMC have been investigated in [103]. Although the observations pro-
vided by SMDO are always continuous, the filtering process in first-order SMDO, and
the integration process in super-twisting SMDO, can only attenuate instead of totally
rejecting chattering in the observations [84].

Since the amplitude of chattering is proportional to the magnitude of discontinuous
control [94], one of the research focuses in SMC is on adaptation mechanisms for reduc-
ing the discontinuous control gain to its minimum admissible value whilst maintain-
ing the sliding motions and the finite-time convergence property. An SMC adaptation
method is proposed in [94] based on the online evaluations of the equivalent control.
This method requires knowledge of bounds on the uncertainties and their derivatives. It
also calls for the selection of the minimum and maximum allowed adaptive gains. These
are not needed for the dual-layer nested adaptive method [78, 104, 105], which can be
applied to conventional, super-twisting and higher-order sliding mode schemes.

In spite of the variations of gain adaptation methods in the literature, the sufficient
condition for enforcing a sliding motion still requires the switching gain to be larger
than the norm of the uncertainty (for first-order methods), or the corresponding norms
of the uncertainty derivatives (for higher-order methods) [78, 94, 104, 105]. Therefore, a
method that could reduce the uncertainty would be fundamentally beneficial to reduc-
ing the minimum possible sliding mode control/observer gains.
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1.4.3. A WAY TO REDUCE THE UNCERTAINTY IN SMC
Consider a multi-input/multi-output nonlinear system formulated by:

ẋ = f (x)+G(x)u +d x , y = h(x), (1.5)

where f : Rn → Rn and h : Rn → Rm are smooth vector fields. G is a smooth function
mapping Rn → Rn×m , whose columns are smooth vector fields. d x ∈ Rn represents
the external disturbances. Define the vector relative degree of y with respect to u as
ρ = [ρ1,ρ2, ...,ρm]T . Assume ρ = ∑m

i=1ρi = n; then by differentiating the output, the
input–output mapping of the system is given by:

y (ρ) =α(x)+B(x)u +d , (1.6)

where α(x) = [L ρ1

f h1,L ρ2

f h2, ...,L ρm

f hm]T , B(x) ∈ Rm×m , Bi j = Lg j L
ρi−1
f hi , and d =

[L ρ1

dx
h1,L ρ2

dx
h2, ...,L ρm

dx
hm]T , with L

ρi
f hi , L

ρi
dx

hi , Lg j L
ρi−1
f hi the corresponding Lie

derivatives [33]. Assume B(x) is nonsingular.
For the generic nonlinear system formulated by Eq. (1.5) with input–output map-

ping given by Eq. (1.6), one approach is to design (higher-order) SMC/SMDO completely
independent of the model. In other words, the input–output mapping is written as
y (ρ) = u +εfree, where εfree = α(x)+ (B(x)− I )u +d is treated as a lumped uncertainty
term. This sliding mode design approach is adopted in [106, 107]. However, for many
physical systems that do not have sufficiently high control authority, this model-free de-
sign approach can be impractical. This is because the resulting uncertainty term εfree

could have a large norm and variations, which require sufficiently high SMC/SMDO
gains for enforcing the sliding modes. Severe variations of the uncertainty term also
challenge the online gain adaptation of SMC.

An intuitive approach to reduce the uncertainty is using a preliminary model-based
feedback control term to roughly cancel the nonlinearities and couplings. Regarding the
dynamics given by Eq. (1.6), the nominal model y (ρ) = ᾱ(x)+B̄(x)u can be used in the
control design. Design the control in the structure of:

undi-s = B̄−1(x)(ν− ᾱ(x)) (1.7)

Substituting Eq. (1.7) into Eq. (1.6) leads to the dynamics y (ρ) =ν+εndi-s , with εndi-s =
(α−ᾱ)+(B−B̄)undi-s +d . In these new dynamics, after the model-based feedback, the
virtual control ν only needs to deal with the remaining uncertainty term εndi-s . With
the help of the nominal models ᾱ(x) and B̄(x), the norm of the remaining uncertainty,
‖εndi-s‖, can be reduced as compared to ‖εfree‖. This reduction of uncertainty is benefi-
cial to robust control in general. Regarding sliding mode control and observation, based
on the discussions in Sec. 1.4.2, this uncertainty reduction can reduce the minimum
possible sliding mode control/observer gains.

The control structure given by Eq. (1.7) is widely used in the SMC community. Exam-
ples include first-order SMC [33, 35, 84, 88, 90, 91, 95, 108–112], higher-order SMC [79,
113–115], SMC driven by a first-order SMDO [84, 116, 117], and SMC driven by a higher-
order SMDO [78, 84, 93, 105, 113, 114, 116–118]. Essentially, this control structure is
based on feedback linearization, which is also known as NDI in the aerospace commu-
nity [42, 51, 53].
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For model-based control approaches, the effectiveness of uncertainty reduction de-
pends on the model estimation accuracy. However, for complex systems like an aircraft,
obtaining accurate models is costly and time-consuming. When a sudden fault occurs,
‖εndi-s‖ can increase abruptly, which is supported by results in [76, 87, 99, 119]. Conse-
quently, in order to reduce ‖εndi-s‖ in faulty conditions for gain reduction, online model
identification becomes necessary. This process requires sufficient excitation, which can
aggravate structural vibration and even make the aircraft fly out of the shrunken (be-
cause of the faults) safe flight envelope [120, 121]. Online model identification also re-
quires the selection of model structures and thresholds, which can be tricky in prac-
tice [4, 53]. Control methods with high model dependency also complicate the imple-
mentation process and increase the onboard computational load.

Ideally, one would design a control method which could simultaneously reduce the
model dependency and the resulting uncertainty. These two objectives are contradic-
tory in SMC designs. On one hand, if the model structure in Eq. (1.7) is adopted, then
the reduction of model dependency makes εndi-s approach εfree, which indicates an in-
crease in the resulting uncertainty. On the other hand, it can be seen from the formu-
lation of εndi-s that the reduction of uncertainty requires more accurate model estima-
tions. These observations lead to the third research question of this thesis:

Research Question 3: How can the contradiction between the reduction of
model dependency and the reduction of uncertainty in sliding mode control be
solved?

A possible approach to solve this contradiction is to introduce other sources of sys-
tem information. For example, we can “learn” the characteristics of a system from sen-
sor measurements. This is actually the core idea of incremental control. As presented
in Sec. 1.3.1, the model dependency of NDI and BS can be reduced in the sensor-based
control framework; in spite of their reduced model dependency, INDI and IBS actually
show better robustness to model mismatches as compared to NDI and BS [42, 43].

1.5. RESEARCH APPROACH AND CONTRIBUTIONS
In this section, the main research approach of this thesis will be addressed in Sec. 1.5.1,
then the main contributions will be summarized in Sec. 1.5.2.

1.5.1. RESEARCH APPROACH AND QUESTIONS
As presented in Sec. 1.2, the main goal of this thesis is to design a nonlinear control
framework for uncertain systems. Subsections 1.3.1 and 1.4.1 explained that both in-
cremental control and SMC can deal with model uncertainties, external disturbances
and faults. However, these two branches of methods also have their limitations. In view
of the limitations presented in Sec. 1.3.2, the main body of this thesis will start with
more rigorous analyses for incremental control. Sec. 1.3.2 also showed that incremen-
tal control can potentially be robustified by SMC. Furthermore, it has been revealed in
Sec. 1.4.3 that the sensor-based control structure is promising in solving the contradic-
tion between the reductions of model dependency and the resulting uncertainty in SMC.
These observations inspired the idea to develop a hybrid between SMC and incremental
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control, to inherit the advantages and remedy the drawbacks of both approaches.
The proposed hybrid control framework designs the control increment ∆u. In the

literature, there are other control structures, including NDI-based SMC (designs u) and
high-order SMC that artificially increases the relative degree by one order (i.e., designs
u̇). All of these three approaches can induce higher-order sliding modes in finite-time.
Since u̇ approximately equals ∆u/∆t when ∆t is sufficiently small, an interesting re-
search question emerges:

Research Question 4: What is the relationship between the INDI-based SMC
proposed in this thesis, the NDI-based SMC, and higher-order SMC with artifi-
cially increased relative degree?

1.5.2. MAIN CONTRIBUTIONS
The main contributions of this thesis can be elaborated from three aspects. First of all,
it contributes to incremental control methods:

CONTRIBUTIONS TO INCREMENTAL CONTROL METHODS

• Generalization of incremental control methods for nonlinear uncertain systems
with arbitrary input–output relative degrees, without using the time-scale separa-
tion assumption or term omissions.

• Lyapunov-based stability analysis of incremental control methods considering the
internal dynamics.

• Analysis of the robustness of incremental control methods to model uncertain-
ties, external disturbances, sudden changes in system dynamics using nonlinear
system perturbation theory.

• Design of a hybrid control framework that robustifies incremental control meth-
ods, which also brings other beneficial properties, including fixed/finite-time con-
vergence in spite of perturbations.

Second of all, this thesis contributes to sliding mode control. This thesis mainly fo-
cuses on the control structure; thus the contributions listed below are not constrained
by the specific SMC virtual control designs:

CONTRIBUTIONS TO SLIDING MODE CONTROL METHODS

• A solution for the contradiction between the reduction of model dependency and
the reduction of uncertainty in sliding mode control.

• Reduction of the minimum possible (higher-order) sliding mode control/observer
gains in the hybrid framework, which is beneficial to chattering reduction.

• Comparison of three control structures (NDI-based SMC, higher-order SMC with
artificially increased relative degree, and INDI-SMC), which can be used for en-
forcing higher-order sliding modes.
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Generic nonlinear uncertain systems are considered in the control designs and anal-
yses. Therefore, the preceding contributions are applicable to generic nonlinear uncer-
tain systems, not necessarily aerospace systems.

Third of all, this thesis also has contributions in its flight control applications, which
are summarized as follows:

CONTRIBUTIONS TO FLIGHT CONTROL

• Verification by numerical simulations and quadrotor flight tests, that the hybrid
control framework can help aircraft passively tolerate a wide range of model un-
certainties, external disturbances, sudden actuator faults and structural damages.

• Design of an INDI-based integrated flight control law for flexible aircraft, which
can control the rigid-body motions, alleviate the gust loads, reduce the wing root
bending moment and suppress the elastic modes.

1.6. OUTLINE OF THE THESIS
The main body of this thesis is based on peer-reviewed journal/conference papers. Each
chapter of the main body can therefore be read independently. At the beginning of each
chapter, there is an introductory paragraph which places the chapter into the context of
the full thesis. Figure 1.6 shows a schematic layout of this thesis, where the main body is
divided into two parts.

Chapter 2: Stability and
Robustness of INDI

 Chapter 7:
Flexible Aircraft

Control 

Chapter 3:
INDI-SMC 
Framework 

Chapter 6: INDI-
SMC/SMDO 
Quadrotor 

Chapter 4:
IBSMC 

Framework 

Chapter 5: Relationships
of INDI-SMC, NDI-SMC,

and HOSMC 

Chapter 1:
Introduction

Part I: Theory Part II: Applications

Chapter 8:
Conclusions

Figure 1.6: Structure of the thesis.

Part I lays emphasis on the theoretical development of the control methods. The
derivations and analyses in Part I are applicable to generic nonlinear uncertain systems,
not necessarily aerospace systems. Part I starts from Chapter 2, which answers Research
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Question 1. It is found in Chapter 2 that an uncertainty term remains in the closed-loop
system under INDI control. The properties of this term and a systematic way of com-
pensating for its influences are dealt with in Chapter 3. To answer Research Question 3,
a novel control framework which hybridizes INDI with (higher-order) sliding mode con-
trollers/observers is proposed in Chapter 3.

Research Question 2 is answered in Chapter 4, where the stability and robustness of
IBS is analyzed. IBS is further hybridized with SMC for robustness enhancement, which
is named IBSMC. Research Question 4 is addressed in Chapter 5, where the proposed
hybrid control framework is compared with NDI-based SMC methods and a class of
higher-order (HO) SMC methods in the literature.

Apart from the theoretical developments, Part I also contains some aerospace ap-
plications. Chapter 2 handles a rigid aircraft gust load alleviation problem using the
reformulated INDI. The control methods proposed in Chapters 3 and 4 are numerically
validated via aircraft attitude command tracking problems in the presence of sudden
actuator faults and structural damages.

Part II places emphasis on flight control applications. In Chapter 6 the effectiveness
of the hybrid control framework proposed in Chapter 3 is verified by flight tests on a
partially damaged quadrotor. INDI is used to design an integrated flight control law for
flexible aircraft in Chapter 7.

Finally, this thesis is closed by Chapter 8, which presents the conclusions, discus-
sions, and recommendations for future work.
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2
STABILITY ANALYSIS FOR

INCREMENTAL NONLINEAR

DYNAMIC INVERSION CONTROL

The first research question of how to analyze and express the stability of incremental non-

linear dynamic inversion (INDI) control will be addressed in this chapter. As discussed

in Chapter 1, although INDI has shown effectiveness in flight control, its derivations and

analyses have some limitations. Therefore, this chapter will first reformulate INDI for

more general nonlinear systems, without using the time-scale separation assumption or

term omissions. Then the stability and robustness of the reformulated INDI will be an-

alyzed using Lyapunov methods and nonlinear system perturbation theory. Finally, this

chapter will make analytical and numerical comparisons between the reformulated INDI

and the model-based nonlinear dynamic inversion (NDI) control.

This chapter is based on the following article:
Wang, X., van Kampen, E., Chu, Q. P., and Lu, P., “Stability Analysis for Incremental Nonlinear Dynamic
Inversion Control”, Journal of Guidance, Control, and Dynamics, Vol. 42, No. 5, 2019, pp. 1116-1129.
doi:10.2514/1.G003791.
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As a sensor-based control method, incremental nonlinear dynamic inversion (INDI)
has been applied to various aerospace systems and shown desirable robust perfor-
mance against aerodynamic model uncertainties. However, its previous derivation
based on the time-scale separation principle has some limitations. There is also a
need for stability and robustness analysis for INDI. Therefore, this chapter reformu-
lates the INDI control law without using the time-scale separation principle and gen-
eralizes it for systems with arbitrary relative degree, with consideration of the inter-
nal dynamics. The stability of the closed-loop system in the presence of external dis-
turbances is analyzed using Lyapunov methods and nonlinear system perturbation
theories. Moreover, the robustness of the closed-loop system against regular and sin-
gular perturbations is analyzed. Finally, this reformulated INDI control law is verified
by a Monte-Carlo simulation for an aircraft command tracking problem in the pres-
ence of external disturbances and model uncertainties.

2.1. INTRODUCTION

NONLINEAR dynamic inversion (NDI) is a nonlinear control approach that cancels the
system nonlinearity by means of feedback, which results into entirely or partly lin-

earized closed-loop system dynamics, to which conventional linear control techniques
can then be applied [1, 2]. This method is essentially different from the widely used Jaco-
bian linearization around specific operating points in combination with gain-scheduled
linear controllers, whose stability and performance become questionable between op-
erational points. To achieve an exact dynamic cancellation, the NDI control method
requires an accurate knowledge of the nonlinear system dynamics. Such a requirement
is almost impossible to meet in reality due to model simplifications, computational er-
rors and external disturbances. This main drawback of NDI motivated many control
technologies to improve its robustness. One popular approach is combining NDI with
linear robust control techniques such as structural singular value (µ) analysis [3, 4] and
H∞ synthesis. Although these techniques have brought benefits to regular NDI, not all
the uncertainties are taken into account or some known nonlinear time-varying (NLTV)
dynamics are treated as uncertainties [5]. Therefore, the closed-loop systems can be ei-
ther marginally or overly conservative in performance and stability robustness [5]. There
also exists many attempts on using indirect adaptive control methods to improve the ro-
bustness of NDI [6]. Indirect adaptive control methods, in some form or the other, rely
on on-line identification, which requires on-line excitation and selection of thresholds.
However, the stability of indirect adaptive NDI are not guaranteed [6, 7].

Incremental nonlinear dynamic inversion (INDI) is a sensor-based control method,
which requires less model information in both qualitative and quantitative sense, and
thus improving the system robustness against model uncertainties. The concept of this
method originates from the late nineties and was previously referred to as “simplified
NDI” [8] and “modified NDI” [9]. INDI control has been applied to various aerospace
systems [7, 10–21]. Regarding its applications on aerospace systems, the INDI method
was normally used for the inner-loop angular rate control [7, 10–12, 18–20, 22], where
the relative degree for each control channel equals one. The internal dynamics are then
avoided by using a cascaded control structure, which is a common practice in flight
control system designs [7, 11, 14, 18–20]. However, the stability of cascaded control
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structures is not easy to prove because of its dependency on the time-scale separations
between different control loops. Also, this cascaded control structure is unsuitable for
some problems. For example, it is neither physically meaningful nor practical to sepa-
rate the higher-order aeroelastic dynamics into cascaded loops.

The existing derivations of the INDI control law are based on the so-called time-scale
separation principle, which is actually different from the widely used separations based
on singular perturbation theories. In [7, 10–20], this separation concept was claimed
as: the controls can change significantly faster than the states. The nonlinear dynamic
equations describing the plant dynamics are then simplified into linear incremental dy-
namic equations by omitting state-variation-related terms and higher-order terms in
their Taylor series expansion, based on which the incremental control inputs are de-
signed. This approach is not mathematically rigorous since the plant simplification is
made before introducing the INDI control inputs and thus becomes deficient for un-
stable plants. Moreover, although the state-variation-related terms and higher-order
terms are not used in the INDI controller design, they should be kept in the closed-loop
dynamic equations and remain influencing the closed-loop system stability and perfor-
mance, which is also not the case in the literature.

Furthermore, in spite of the numerically verified robustness of INDI to aerodynamic
model uncertainties [10, 15, 21], and disturbances [13–15, 21], its previous theoretical
stability and robustness proofs have some drawbacks. These previous attempts drew
the stability conclusions based on the linear transfer functions derived from block dia-
grams [10, 13, 14], where inappropriate assumptions are made. The influences of dis-
turbances and uncertainties on the internal dynamics also remain unknown in the liter-
ature.

In this chapter, the INDI control in the literature is reformulated for systems with
arbitrary relative degree, without using the time-scale separation principle. The sta-
bility and robustness of the reformulated INDI is then analyzed using Lyapunov-based
methods. Finally, this reformulated INDI is compared with NDI both analytically and
numerically, considering model uncertainties and external disturbances.

This chapter is structured as follows: Sec. 2.2 reformulates the INDI control law for
three different problems. The stability and robustness issues of INDI are discussed in
Sec. 2.3. The effectiveness of the reformulated INDI is numerically verified in Sec. 2.4.
Main conclusions are presented in Sec. 2.5.

2.2. REFORMULATIONS OF INCREMENTAL NONLINEAR DYNAMIC

INVERSION

In this section, the incremental nonlinear dynamic inversion (INDI) control method
will be reformulated for three problems, namely the input–output linearization, output
tracking and input-to-state linearization in the presence of external disturbances.
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2.2.1. INPUT–OUTPUT LINEARIZATION
Consider a multi-input/multi-output nonlinear system described by

ẋ = f (x)+G(x)u

y = h(x) (2.1)

where f : Rn → Rn and h : Rn → Rp are smooth vector fields. G is a smooth function
mapping Rn → Rn×m , whose columns are smooth vector fields. When p < m, which
means the number of outputs is smaller than the number of inputs, control of this sys-
tem via input–output linearization is an overdetermined problem, where a control al-
location technique is needed. On the other hand, p > m yields an underdetermined
problem. Although a weighted least squares method can be used to solve underdeter-
mined problems, the desired control aims cannot be fully achieved. p = m is assumed
in the following derivations.

Denote the elements of h as hi , i = 1,2, ...,m, and the column vectors of the matrix
G as g j , j = 1,2, ...,m, then the Lie derivatives [2] of the function hi with respect to the
vector fields f and g j are defined as

L f hi = ∂hi

∂x
f , Lg j hi = ∂hi

∂x
g j , L k

f hi =
∂(L k−1

f hi )

∂x
f , Lg j L

k
f hi =

∂(L k
f hi )

∂x
g j (2.2)

The relative degree ρi for each output channel i is defined as the smallest integer
such that for all x ∈Rn , at least one j ∈ {1,2, ...,m} satisfies Lg j L

ρi−1
f hi 6= 0.

Define the vector relative degree [23] of the system as ρ = [ρ1,ρ2, ...,ρm]T , which
satisfies

ρ = ‖ρ‖1 =
m∑

i=1
ρi ≤ n (2.3)

then the output dynamics of the system can be represented as


y (ρ1)

1

y (ρ2)
2
...

y (ρm )
m

=


L

ρ1

f h1(x)

L
ρ2

f h2(x)
...

L
ρm

f hm(x)

+


Lg1L

ρ1−1
f h1(x) · · · Lgm L

ρ1−1
f h1(x)

Lg1L
ρ2−1
f h2(x) · · · Lgm L

ρ2−1
f h2(x)

...
...

Lg1L
ρm−1
f hm(x) · · · Lgm L

ρm−1
f hm(x)

u (2.4)

or

y (ρ) =α(x)+B(x)u (2.5)

If ρ = n, then the system given by Eq. (2.1) is full-state feedback linearizable. Other-
wise, there are n−ρ internal dynamics unobservable from the output y . According to the
Frobenius theorem [24], ∀x∗ ∈Rn , there exist smooth functionsφ(x) = [φ1(x), ...,φn−ρ(x)]T

defined in a neighborhood D0 of x∗ such that

∂φk

∂x
g j (x) = 0, ∀k ∈ {1,2, ...,n −ρ}, ∀ j ∈ {1,2, ...,m}, ∀x ∈ D0 (2.6)
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Also, z = T (x) defined by

z = T (x) = [T 1(x);T 2(x)] = [η;ξ], η=φ(x), ξ= [ξ1;ξ2; ...;ξm],

ξi = [hi (x),L f hi (x), ...,L ρi−1
f hi (x)]T , i = 1,2, ...,m (2.7)

is a diffeomorphism on the domain D0 [2, 24]. η and ξ are the state vectors for the inter-
nal and external dynamics respectively. Using Eqs. (2.5, 2.6, 2.7), the nonlinear system
described by Eq. (2.1) can be transformed into

η̇ = f 0(η,ξ) = ∂φ

∂x
f (x)

∣∣∣
x=T −1(z)

ξ̇ = Acξ+B c [α(x)+B(x)u]

y = C cξ (2.8)

where Ac = diag{Ai
0}, B c = diag{B i

0}, C c = diag{C i
0}, i = 1,2, ...,m, and (Ai

0,B i
0,C i

0) is a
canonical form representation of a chain of ρi integrators.

Assume det{B(x)} 6= 0, otherwise, p = m would still lead to an underdetermined
problem. The nonlinear dynamic inversion (NDI) linearization is designed as u =B−1(x)
(ν−α(x)), where ν ∈Rm is called the pseudo-control input. In the absence of model un-
certainties and disturbances, this linearization results in the closed-loop system

η̇ = f 0(η,ξ)

ξ̇ = Acξ+B cν

y = C cξ (2.9)

which indicates this closed-loop system has n −ρ internal dynamics, and m decoupled
channels. The input–output mapping for each channel from νi to yi is a chain of ρi

integrators.
NDI linearization however is based on the exact mathematical cancellation of the

nonlinear terms α(x) and B(x). This is almost impossible in practice due to model
simplifications, computational errors and external disturbances. One method to reduce
the control law model dependency is incremental nonlinear dynamic inversion (INDI),
which will be reformulated here.

Taking the first-order Taylor series expansion of Eq. (2.5) around the condition at
t −∆t (denoted by the subscript 0) as follows:

y (ρ) = α(x)+B(x)u

= y (ρ)
0 + ∂[α(x)+B(x)u]

∂x

∣∣∣
0
∆x +B(x0)∆u +R1 (2.10)

where ∆x and ∆u represent the state and control increments in one sampling time step
∆t . R1 in Eq. (2.10) is the expansion remainder, whose Lagrange form is

R1 = 1

2!

[
∂2[α(x)+B(x)u]

∂2x

∣∣∣
m
∆x2 +2

∂2[α(x)+B(x)u]

∂x∂u

∣∣∣
m
∆x∆u

]
(2.11)

in which (·)|m means evaluating (·) at a condition where x ∈ (x(t −∆t ), x(t )), u ∈ (u(t −
∆t ),u(t )). In Eq. (2.11), R1 is not a function of ∆u2, since according to Eq. (2.5), y (ρ) is
linear with respect to u .
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Design the incremental control input as

∆u =B−1(x0)(ν− y (ρ)
0 ) (2.12)

where y (ρ)
0 is measured or estimated. The total control command for the actuator is

u = u0 +∆u. Substituting Eq. (2.12) into Eq. (2.10) results in the input–output mapping
of y (ρ) =ν+δ(z ,∆t ), where the perturbation term equals

δ(z ,∆t ) =
[∂[α(x)+B(x)u]

∂x

∣∣∣
0
∆x +R1

]∣∣∣
x=T −1(z)

(2.13)

In the closed-loop system, the values of u and∆u have already been substituted into
the right-hand side of Eq. (2.13), thus δ(z ,∆t ) is only denoted as a function of the states
z and the sampling interval. Using the same diffeomorphism z = T (x), the closed-loop
system dynamics under INDI linearization are given by

η̇ = f 0(η,ξ)

ξ̇ = Acξ+B c [ν+δ(z ,∆t )]

y = C cξ (2.14)

which are consistent with Eq. (2.9) except for the perturbation term δ(z ,∆t ). The in-
fluence of δ(z ,∆t ) on system stability and robustness will be elaborated in Sec. 2.3. Al-
though Eq. (2.9) under NDI control seems to be neat, perturbation terms will appear
when model uncertainties and external disturbances are considered, which will also be
shown in Sec. 2.3. As compared to the conventional NDI control law, the INDI control
method is less sensitive to model mismatches, because α(x) is not used in Eq. (2.12).

On the other hand, this INDI control law needs the measurement or estimation of y (ρ)
0

and the actuator position u0, this is why INDI control is referred to as a sensor-based
approach.

2.2.2. OUTPUT TRACKING
INDI control can also be designed for command tracking problem. Consider the nonlin-
ear plant (Eq. (2.1)) with relative degree ρ = [ρ1,ρ2, ...,ρm]T , which can be transformed
into the internal and external dynamics given by Eq. (2.8), the output tracking problem
requires the output y to asymptotically track a reference signal r (t ) = [r1(t ),r2(t ), ...,rm(t )]T .

Assume ri (t ), i = 1,2, ...,m and its derivatives up to r (ρi )
i (t ) are bounded for all t and

r (ρi )
i (t ) is piecewise continuous. Denote the reference and the tracking error vectors as

R = [R1;R2; ...;Rm], Ri = [ri ,r (1)
i , ...,r (ρi−1)

i ]T , i = 1,2, ...,m, e = ξ−R (2.15)

Using the definitions of the Ac and B c matrices, and the formulation of R, it can be

derived that AcR − Ṙ = −B c r (ρ), with r (ρ) = [r (ρ1)
1 ,r (ρ2)

2 , ...,r (ρm )
m ]T . Therefore, Eq. (2.8)

can be transformed into

η̇ = f 0(η,e +R)

ė = Ac e + AcR−Ṙ+B c [α(x)+B(x)u]

= Ac e +B c [α(x)+B(x)u − r (ρ)] (2.16)
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The NDI control for output tracking is designed as

u =B−1(x)[ν−α(x)+ r (ρ)] (2.17)

When prefect model cancellation is assumed, this NDI control law results in the
closed-loop system

η̇= f 0(η,e +R), ė = Ac e +B cν (2.18)

On the other hand, by using Eq. (2.10), the INDI control for output tracking is de-
signed as

∆u =B−1(x0)[ν− y (ρ)
0 + r (ρ)] (2.19)

which leads to the closed-loop system as

η̇= f 0(η,e +R), ė = Ac e +B c [ν+δ(z ,∆t )] (2.20)

The closed-loop system dynamics given by Eq. (2.14) and Eq. (2.20) are essentially
the same. Only the equilibrium point of z = [η;ξ] = 0 is shifted to z ′ = [η;e] = 0, so
similar stability and robustness analyses can be made.

2.2.3. INPUT-TO-STATE LINEARIZATION UNDER DISTURBANCE PERTUR-
BATIONS

Consider a special case of input–output linearization by taking the outputs as yi = hi (x) =
xi − xi∗, i = 1,2, ...,m, or equally y = H(x − x∗), where H is a Boolean selection matrix
and x∗ is the equilibrium point. This choice of output results in a so-called symmetri-
cal system [23] where all m channels have the same relative degree ρi = 1, and the total
relative degree is ρ = m. When m < n, there are n −m internal dynamics.

Adding the disturbance perturbation d ∈Rn into the nonlinear plant (Eq. (2.1)) as

ẋ = f (x)+G(x)u +d

y = H(x −x∗) (2.21)

Recall Eq. (2.7), since ρi = 1, the external states are given by ξi = hi (x) = xi − xi∗, i =
1,2, ..,m, with dynamics

ẏ = ξ̇= f̄ (ξ)+Ḡ(ξ)u +Hd (2.22)

where f̄ : Rm → Rm , Ḡ : Rm → Rm×m can be calculated by substituting xi = ξi + xi∗, i =
1,2, ...,m into Eq. (2.21). Taking the first-order Taylor series expansion of the external
dynamic equations as

ξ̇ = f̄ (ξ)+Ḡ(ξ)u +Hd

= ξ̇0 +
∂[ f̄ (ξ)+Ḡ(ξ)u]

∂ξ

∣∣∣
0
∆ξ+Ḡ(ξ0)∆u +H∆d +R ′

1 (2.23)

In Eq. (2.23), R ′
1 is the expansion remainder which is expressed in its Lagrange form

as follows:

R ′
1 =

1

2

∂2[ f̄ (ξ)+Ḡ(ξ)u]

∂2ξ

∣∣∣
m
∆ξ2 + ∂2[ f̄ (ξ)+Ḡ(ξ)u]

∂ξ∂u

∣∣∣
m
∆ξ∆u (2.24)
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in which (·)|m means evaluating (·) at a condition where ξ ∈ (ξ(t −∆t ),ξ(t )), u ∈ (u(t −
∆t ),u(t )), and d ∈ (d (t−∆t ),d (t )). R ′

1 is not a function of∆u2,∆d 2,∆ξ∆u,∆ξ∆d , which
can be examined using Eq. (2.22).

Design the incremental control law as∆u = Ḡ
−1

(ξ0)(ν−ξ̇0), the closed-loop external
dynamics are formulated by

ξ̇=ν+H∆d +δ(ξ,∆t ) (2.25)

where δ(ξ,∆t ) contains the closed-loop values of R ′
1 and ∂[ f̄ (ξ)+Ḡ(ξ)u]

∂ξ

∣∣
0∆ξ in Eq. (2.23).

Analogously, using Eq. (2.6), the internal dynamics under disturbance perturbations are
given by

η̇= ∂φ

∂x
( f (x)+G(x)u +d ) = ∂φ

∂x
( f (x)+d ) = f d (η,ξ,d ) (2.26)

where f d (η,ξ,d ) :Rn−ρ×Rρ×Rn →Rn−ρ . Choosingφ(x∗) = 0, then the diffeomorphism
z = T (x) = [η;ξ] transforms the equilibrium x = x∗ into the origin point z = [η;ξ] = 0.

When d = 0, the input-to-state linearized closed-loop system dynamics given by
Eqs. (2.25, 2.26) are a special case of Eq. (2.14). It can also be observed from Eqs. (2.25, 2.26)
that the disturbance d influences the external dynamics only by its increments∆d while
it directly influencing the internal dynamics. Most external disturbances in real life are
continuous, thus lim∆t→0 ‖d‖2 = 0. In other words, when d 6= 0, ∃∆t , s.t . ‖∆d‖2 < ‖d‖2.
This is another feature of INDI control, that the main part of the disturbance influences
have already been included by previous measurements and compensated by the con-
troller. This control method thus presents improved disturbance rejection ability as ver-
ified by simulations [15, 21] and flight tests [13, 14]. This feature of INDI will be further
analyzed in Sec. 2.3.

2.3. STABILITY AND ROBUSTNESS ANALYSIS
The stability and robustness of the reformulated INDI control will be analyzed in this
section. In the first subsection, the influences of the state-variation-related terms on
closed-loop system stability will be discussed. The second subsection discusses the sys-
tem robustness to regular and singular perturbations.

2.3.1. STABILITY ANALYSIS
In this subsection, the stability of the origin z = 0 of closed-loop system given by Eq. (2.14)
under INDI control will be analyzed. Similar conclusions can be drawn for systems mod-
eled by Eq. (2.20) and Eqs. (2.25, 2.26) without disturbances. The closed-loop system un-
der the perturbations of external disturbances and model uncertainties will be analyzed
in subsection 2.3.2. The proofs in this section also assume ideal actuators and perfect
sensing. The actuator dynamics, nonlinear limits of actuators and the sensing issues will
also be discussed in subsection 2.3.2.

Design the pseudo-control ν = −Kξ such that Ac − B c K is Hurwitz. As a result,
Eq. (2.14) equals

η̇ = f 0(η,ξ)

ξ̇ = (Ac −B c K )ξ+B cδ(z ,∆t ) (2.27)

where the output equation is dropped since it plays no role in the stabilization problem.
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Remark 1 The term δ(z ,∆t ) in Eq. (2.10) or the term δ(ξ,∆t ) in Eq. (2.23) are directly
omitted in the literature [7, 10–20] by claiming that the∆z (or∆ξ) related term is smaller
than the ∆u related term when the sampling frequency is high, which is referred to as
the time-scale separation principle (different from the widely used separation principle
based on singular perturbation theory). This statement is not mathematically rigorous
and is especially deficient for unstable nonlinear plants because the plant simplifica-
tions are made before designing the INDI control inputs. Consequently, the simplified
(by omitting terms) incremental dynamic equations fail to adequately model the plant
dynamics. Moreover, although these terms are dropped out for the convenience of con-
troller design, they should be kept in the closed-loop system equations and remain in-
fluencing the stability and performance, which has been overlooked in the literature.

Considering the following system as the nominal system

η̇ = f 0(η,ξ)

ξ̇ = (Ac −B c K )ξ (2.28)

whose stability has been extensively proved in the literature, and is listed here for com-
pleteness.

Lemma 1 [2] The origin of Eq. (2.28) is asymptotically stable if the origin of η̇ = f 0(η,0)
is asymptotically stable.

η̇ = f 0(η,0) is referred to as the zero dynamics, and the nonlinear system is said to
be minimum phase if its zero dynamics has an asymptotically stable equilibrium point.
The definition of asymptotically stable can be found in Appendix A, Definition 4.

Lemma 2 [2] The origin of Eq. (2.28) is globally asymptotically stable if the system η̇ =
f 0(η,ξ) is input-to-state stable.

The definitions of globally asymptotically stable and input-to-state stable can be
found in Appendix A, Definition 4. The proofs for Lemma 1 and Lemma 2 can be found
in [2]. After presenting stability of the nominal system, stability of the perturbed system
given by Eq. (2.27) will be considered.

Assumption 1 The partial derivatives ofα(x) and B(x) with respect to x , up to any order,
are bounded.

Since x is continuously differentiable (Eq. (2.1)), lim∆t→0 ‖∆x‖2 = 0. Recall Eq. (2.13),
under Assumption 1, the norm value of δ(z ,∆t ) can be reduced by increasing the sam-
pling frequency.

Theorem 1 If ‖δ(z ,∆t )‖2 ≤ δ̄ε is satisfied for all z ∈Rn , and η̇= f 0(η,ξ) is input-to-state
stable, then the state z of Eq. (2.27) is globally ultimately bounded by a class K function
of δ̄ε.

Proof : Choose the candidate Lyapunov function as V (ξ) = ξT Pξ, where P = P T > 0 is
the solution of the Lyapunov equation P (Ac −B c K )+ (Ac −B c K )T P = −I , then V (ξ) is
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positive definite and also satisfies

α1(‖ξ‖2) ≤V (ξ) ≤α2(‖ξ‖2)

α1(‖ξ‖2),λmin(P )‖ξ‖2
2, α2(‖ξ‖2),λmax(P )‖ξ‖2

2 (2.29)

λmin(P ), λmax(P ) are the minimum and maximum eigenvalues of the P matrix. α1,α2

belong to the class K∞ functions (Appendix A, Definition 2). The time derivative of the
candidate Lyapunov function is calculated as

V̇ = ξT [P (Ac −B c K )+ (Ac −B c K )T P ]ξ+2ξT P B cδ(z ,∆t )

≤ −‖ξ‖2
2 +2‖ξ‖2‖P B c‖2δ̄ε

≤ −θ1‖ξ‖2
2, ∀‖ξ‖2 ≥ 2‖P B c‖2δ̄ε

1−θ1
,µ1δ̄ε (2.30)

with constant θ1 ∈ (0,1). Consequently, for ∀ ξ(t0) ∈ Rρ , there exists a class K L func-
tion (Appendix A, Definition 3) β and finite T1 ≥ 0 independent of t0 such that ‖ξ(t )‖2

satisfies [2]

‖ξ(t )‖2 ≤β(‖ξ(t0)‖2, t − t0), t0 ≤∀ t ≤ t0 +T1

‖ξ(t )‖2 ≤α−1
1 (α2(µ1δ̄ε)), ∀ t ≥ t0 +T1 , t ′0 (2.31)

The preceding equations indicate that the external state ξ is bounded for all t ≥ t0

and is ultimately bounded by Γδ̄ε,α−1
1 (α2(µ1δ̄ε)) =

√
λmax(P )/λmin(P )µ1δ̄ε. The defi-

nition of ultimate boundedness can be found in Appendix A, Definition 6.
Moreover, by the definition of input-to-state stability (Appendix A, Definition 7),

there exists a class K L function β0 and a class K function (Appendix A, Definition 2)
γ0 such that for ∀ η(t ′0) ∈Rn−ρ and bounded input ξ, the internal state η satisfies

‖η(t )‖2 ≤ β0(‖η(t ′0)‖2, t − t ′0)+γ0( sup
t ′0≤τ≤t

‖ξ(τ)‖2)

= β0(‖η(t ′0)‖2, t − t ′0)+γ0(Γδ̄ε) (2.32)

In addition, because β0 belongs to class K L functions, then β0(‖η(t ′0)‖2, t − t ′0) ≤
θ2δ̄ε, for some finite T2 > 0 and θ2 > 0. Hence, the state z satisfies

‖z(t )‖2 ≤ ‖ξ(t )‖2 +‖η(t )‖2 = (Γ+θ2)δ̄ε+γ0(Γδ̄ε), ∀t ≥ t0 +T1 +T2 (2.33)

which proves that z(t ) is globally ultimately bounded (Appendix A, Definition 6) by a
class K function of δ̄ε. ä

Theorem 1 has no restriction on the values of the initial state and the perturbation
bound δ̄ε. However, when the internal dynamics η̇= f 0(η,ξ) is not input-to-state stable,
but only the origin of the zero dynamics η̇= f 0(η,0) is exponentially stable (Appendix A,
Definition 5), then there will be restrictions on both the initial state, and the perturba-
tions. These phenomena are presented in Theorem 2.

Theorem 2 If ‖δ(z ,∆t )‖2 ≤ δ̄ε is satisfied for all z ∈ Rn , and the origin of η̇ = f 0(η,0) is
exponentially stable, then there is a neighborhood Dz of z = 0 and ε∗ > 0, such that for
every z(0) ∈ Dz and δ̄ε < ε∗, the state z of Eq. (2.27) is ultimately bounded by a class K

function of δ̄ε.
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Proof : According to the converse Lyapunov theorem [2], because the origin of η̇= f 0(η,0)
is exponentially stable, there exists a Lyapunov function V2(η) defined in Dη = {η ∈
Rn−ρ | ‖η‖ < rη} that satisfies the inequalities

c1‖η‖2
2 ≤V2(η) ≤ c2‖η‖2

2,
∂V2

∂η
f 0(η,0) ≤−c3‖η‖2

2, ‖∂V2

∂η
‖2 ≤ c4‖η‖2 (2.34)

for some positive constants c1,c2,c3,c4. Denote

α′
1(‖η‖2), c1‖η‖2

2, α′
2(‖η‖2), c2‖η‖2

2 (2.35)

then α′
1,α′

2 belong to class K∞ functions. Furthermore, because f 0 is continuous and
differentiable, there exists a Lipschitz constant L of f 0 with respect to ξ such that

‖ f 0(η,ξ)− f 0(η,0)‖2 ≤ L‖ξ‖2, ∀‖η‖ < rη (2.36)

Choose V2(η) as the candidate Lyapunov function for η̇= f 0(η,ξ), with derivative

V̇2(η) = ∂V2

∂η
f 0(η,0)+ ∂V2

∂η
[ f 0(η,ξ)− f 0(η,0)]

≤ −c3‖η‖2
2 + c4L‖η‖2‖ξ‖2

≤ −c3(1−θ3)‖η‖2
2,

c4L‖ξ‖2

c3θ3
≤∀‖η‖2 ≤ rη (2.37)

with constant θ3 ∈ (0,1). Denote

µ,
c4L

c3θ3
( sup

t ′0≤τ≤t
‖ξ(τ)‖2), θ5( sup

t ′0≤τ≤t
‖ξ(τ)‖2) (2.38)

then
V̇2(η) ≤−c3(1−θ3)‖η‖2

2, µ≤∀‖η‖2 ≤ rη, ∀t ≥ t ′0 (2.39)

Since the conditions for the external states ξ are the same as compared to Theorem 1,
Eqs. (2.29, 2.30, 2.31) also hold true in this Theorem. From Eq. (2.31), the supremum of
the external state is given by

sup
t ′0≤τ≤t

‖ξ(τ)‖2 =α−1
1 (α2(µ1δ̄ε)) (2.40)

Take 0 < r < rη such that Dr ⊂ Dη, according to the boundedness theories [2], if

µ<α′−1
2 (α′

1(r )), ‖η(t ′0)‖2 ≤α′−1
2 (α′

1(r )) (2.41)

then there exists a class K L function β′
0 such that

‖η(t )‖2 ≤β′
0(‖η(t ′0)‖2, t − t ′0)+α′−1

1 (α′
2(µ)), ∀t ≥ t ′0 (2.42)

Eq. (2.41) proposes requirements on both the initial condition and the perturbation
bound. Using Eqs. (2.38, 2.40, 2.41), the maximum perturbation that the system can
sustain is given by

δ̄ε < ε∗ , (1/µ1)α−1
2 (α1((1/θ5)α′−1

2 (α′
1(r )))) (2.43)
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From Eqs. (2.38, 2.40, 2.42), the normal value of the internal state yields

‖η(t )‖2 ≤ β′
0(‖η(t ′0)‖2, t − t ′0)+α′−1

1 (α′
2(θ5α

−1
1 (α2(µ1δ̄ε))))

≤ θ6δ̄ε+θ5α
′−1
1 (α′

2(α−1
1 (α2(µ1δ̄ε)))), ∀t ≥ t0 +T1 +T3 (2.44)

for some finite T3 > 0 and θ6 > 0. Hence, state z satisfies

‖z(t )‖2 ≤ ‖ξ(t )‖2 +‖η(t )‖2

= (Γ+θ6)δ̄ε+θ5α
′−1
1 (α′

2(α−1
1 (α2(µ1δ̄ε)))), ∀t ≥ t0 +T1 +T3 (2.45)

which proves the z(t ) is ultimately bounded by a class K function of δ̄ε. ä

2.3.2. ROBUSTNESS ANALYSIS

DISTURBANCE REJECTION

The INDI control method has promising disturbance rejection ability as has been veri-
fied by both simulations [15, 21] and quad-rotor flight tests [13, 14]. However, there is
a lack of theoretical proof for the stability of the closed-loop system using INDI control
under the perturbation of external disturbances. These issues will be discussed in this
subsection.

Normally, the external disturbances are bounded in real life. Denote

d̄ , sup{‖d (t )‖2, d ∈Rn}, ∀t ≥ t0 (2.46)

which is independent of the sampling interval∆t . Most external disturbances in real life
are continuous, thus lim∆t→0 ‖d‖2 = 0. Therefore, for a given sampling rate, the supre-
mum of ‖∆d‖2 exists. Denote

d̄ε(∆t ), sup{‖∆d (t )‖2, ∆d ∈Rn}, ∀t ≥ t0 (2.47)

As a function of ∆t , d̄ε(∆t ) can be reduced by increasing the sampling frequency.
Recall the system modeled by Eqs. (2.25, 2.26), and design the pseudo-control as ν =
−Kξ to stabilize the origin z = [η;ξ] = 0, the closed-loop system is then given by

η̇ = f d (η,ξ,d )

ξ̇ = −Kξ+H∆d +δ(ξ,∆t ) (2.48)

Proposition 1 If ‖δ(ξ,∆t )‖2 ≤ δ̄ε is satisfied for all ξ ∈Rρ , η̇= f d (η,ξ,d ) is continuously
differentiable and globally Lipschitz in (η,ξ,d ), and the origin of η̇= f d (η,0,0) is globally
exponentially stable, then the external state ξ is globally ultimately bounded by a class K

function of δ̄ε, d̄ε, while the internal state η of Eq. (2.48) is globally ultimately bounded
by a class K function of d̄ , δ̄ε, d̄ε.

Proof : The norm value of the perturbation term in Eq. (2.48) satisfies

‖H∆d +δ(ξ,∆t )‖2 ≤ ‖H‖2‖∆d‖2 +‖δ(ξ,∆t )‖2 = d̄ε+ δ̄ε (2.49)



2.3. STABILITY AND ROBUSTNESS ANALYSIS

2

41

where ‖H‖2 = 1 since H is a Boolean selection matrix. Similar to the proof of Theorem 1,
choose the candidate Lyapunov function as V (ξ) = ξT Pξ, where P = P T > 0 is the solu-
tion of the Lyapunov equation P K +K T P = I , then the time derivative of V (ξ) satisfies

V̇ ≤−θ1‖ξ‖2
2, ∀‖ξ‖2 ≥ 2‖P‖2(δ̄ε+ d̄ε)

1−θ1
,µ2(δ̄ε+ d̄ε) (2.50)

Therefore, ∀ ξ(t0) ∈ Rρ , there exists a class K L function β and T4 ≥ 0 independent
of t0 such that ‖ξ(t )‖2 satisfies

‖ξ(t )‖2 ≤β(‖ξ(t0)‖2, t − t0), t0 ≤∀ t ≤ t0 +T4

‖ξ(t )‖2 ≤α−1
1 (α2(µ2(δ̄ε+ d̄ε))), ∀ t ≥ t0 +T4 (2.51)

In other words, the external state ξ is bounded for all t ≥ t0 and ultimately bounded
by Γξ,α−1

1 (α2(µ2(δ̄ε+ d̄ε))), which is a class K function of δ̄ε and d̄ε.
On the other hand, perturbations directly act on the internal dynamics. Since the

origin of η̇ = f d (η,0,0) is globally exponentially stable, Eq. (2.34) is satisfied globally.
Moreover, since η̇ = f d (η,ξ,d ) is continuously differentiable and globally Lipschitz in
(η,ξ,d ), there exists a global Lipschitz constant L such that

‖ f d (η,ξ,d )− f d (η,0,0)‖2 ≤ L(‖ξ‖2 +‖d‖2), ∀η ∈Rn−ρ (2.52)

Analogous to the proofs of Theorem 2, Eq. (2.39) is satisfied for ∀‖η‖2 ≥µ′ with µ′ ,
θ5(supt0+T4≤τ≤t (‖ξ(τ)‖2 +‖d (τ)‖2)), and the internal state η satisfies

‖η(t )‖2 ≤β′
0(‖η(t0 +T4)‖2, t − t0 −T4)+θ5α

′−1
1 (α′

2(Γξ+ d̄)), ∀t ≥ t0 +T4 (2.53)

without restrictions on the initial values and the bound of disturbances. Due to the at-
tenuation property of β′

0

‖η(t )‖2 ≤ [θ7d̄ +θ5α
′−1
1 (α′

2(d̄))]+θ5α
′−1
1 (α′

2(α−1
1 (α2(µ2(δ̄ε+ d̄ε))))),Γη,

∀t ≥ t0 +T4 +T5 (2.54)

for some θ7 > 0 and finite T5 > 0. The preceding equation indicates that η is globally
ultimately bounded by a class K function of d̄ , δ̄ε, d̄ε. ä

Remark 2 These estimations of the ultimate bounds could be conservative for a given
perturbation term H∆d +δ(ξ,∆t ), because the term 2ξT P B cδ(z ,∆t ) in Eq. (2.30) can
be either positive or negative. Worse-case analyses are done in Eq. (2.30) and Eq. (2.49)
by taking the inequality constraints, which may lead to conservative estimations of the
ultimate bounds. More accurate ultimate bounds of a perturbed nonlinear system can
be obtained via numerical simulations.

The disturbance rejection capability of a control method can be evaluated by the
values of the ultimate bounds under prescribed disturbance perturbations. In view of
Eqs. (2.51, 2.54), the ultimate bounds Γξ and Γη are correlated to:
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1. System dynamics: Γξ and Γη are functions of δ̄ε. Recall Eq. (2.13), δ̄ε can be
viewed as a gauge for system dynamics. When system dynamics are fast, which
indicates ‖ ∂[α(x)+B(x)u]

∂x |0‖2 is large, the sampling frequency should be higher to
ensure desired ultimate bounds. This has been verified by many application cases,
for rigid airplane control, normally fs = 100 Hz is enough [7, 12, 15, 18–20], while
fs = 1000 Hz is needed for flexible aircraft control [21]. fs = 512 Hz is used in
Ref. [13, 14] for quadrotor flight control. For the applications on hydraulic sys-
tems, fs = 5000 Hz is desirable for controlling the hydraulic forces [16, 17].

2. Disturbance intensity: This can be seen from the expressions for Γξ, Γη and defi-
nitions of d̄ , d̄ε, that stronger disturbances lead to larger ultimate bounds.

3. K gains: As shown in Eqs. (2.51, 2.54), both Γξ and Γη are monotonically increas-
ing functions of µ2. From Eq. (2.50) and the Lyapunov equation, it can be seen
that larger K gains lead to smaller µ2, and further resulting in smaller ultimate
bounds. Therefore, increasing K gains is beneficial to releasing the requirement
on sampling frequency. However, K gains are constrained by actuation system
limits, high-gain control would also amplify measurement noise.

4. Sampling frequency: Increasing the sampling frequency can reduce the value of
both d̄ε and δ̄ε. As discussed in Sec. 2.2, if d 6= 0, ‖∆d‖2 < ‖d‖2 when the sam-
pling interval ∆t is sufficiently small. The main part of the disturbances d 0 can
be included by the measurement of ξ̇0, thus only the remaining increment ∆d is
perturbing ξ. This is one feature that distinguishes INDI from linear-quadratic
regulator, proportional-integral and NDI control methods, where normally the
disturbances can only be reflected in the measurement of state ξ, which is an in-
tegration of ξ̇0. Consequently, these control methods show inferior disturbance
rejection ability as compared to the INDI method. In practice, the choice of sam-
pling frequency is constrained by the hardware.

5. Internal dynamics: It can be seen that the first term of Eq. (2.54) cannot be re-
duced by increasing the sampling frequency, and is a function of d̄ . This is be-
cause the internal dynamics are uncontrolled by the INDI method. Moreover, be-
ing inspired by Theorem 2, when only the origin of η̇ = f d (η,0,0) is ensured to
be exponentially stable or f d is not globally Lipschitz, constraints on both initial
condition and the disturbance intensity need to be imposed. This is presented as
Corollary 1. Therefore, the properties of internal dynamics are important for the
stability and robustness of the system.

Corollary 1 If ‖δ(ξ,∆t )‖2 ≤ δ̄ε is satisfied for all ξ ∈Rρ , and the origin of η̇= f 0(η,0,0) is
exponentially stable, then there is a neighborhood Dz of z = 0 and ε∗ > 0, such that for ev-
ery z(0) ∈ Dz and (δ̄ε+ d̄ε) < ε∗, the external state ξ in Eq. (2.48) is ultimately bounded by
a class K function of δ̄ε, d̄ε, while the internal state η in Eq. (2.48) is ultimately bounded
by a class K function of d̄ , δ̄ε, d̄ε.

The proof of Corollary 1 is similar to the proofs of Proposition 1 and Theorem 2.
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ROBUSTNESS TO MODEL UNCERTAINTIES

The model uncertainties considered in this section are classified into the regular pertur-
bations, which are defined in the nonlinear system perturbation theories as the pertur-
bations that do not change the order of the nominal system, such as negligible nonlin-
earities, parametric dispersions and variations [5, 25].

There were few attempts on proving the robustness of the INDI control method to
aerodynamics model uncertainties. In Ref. [10], it was shown by using linear transfer
functions derived from block diagrams that the model mismatches of the control ef-
fectiveness matrix G(x) (or the generalized B(x)) have no influence on the closed-loop
system. However, the assumption of ẋ = ẋ0 is made in the block diagram derivations,
which is incorrect since otherwise there will be no ∆u term. Moreover, the δ(z ,∆t ) term
did not show up at all in previous proofs [10, 11, 13]. In view of these reasons, the ro-
bustness of INDI to model uncertainties will be rediscussed here.

Considering the nonlinear system with relative degree ρ ≤ n transformed into inter-
nal and external dynamics given by Eqs. (2.7, 2.8), the nominal NDI control to stabilize
the system origin is given by

ūndi =B−1(x)(ν−α(x)) =B−1(x)(−K T 2(x)−α(x)) (2.55)

which requires the model knowledge ofα,B,T 2 (defined in Eq. (2.7)). When the control
law is applied using the approximated model as α̂,B̂, T̂ 2, the control input is given as

undi = B̂
−1

(x)(−K T̂ 2(x)− α̂(x)) (2.56)

which results in a closed-loop system as

η̇ = f 0(η,ξ)

ξ̇ = Acξ+B c [α(x)+B(x)B̂
−1

(x)(−K T̂ 2(x)− α̂(x))]

= [Acξ−B c K T̂ 2(x)]+B c (α(x)− α̂(x))+B c (B(x)B̂
−1

(x)− I )(−K T̂ 2(x)− α̂(x))

= (Ac −B c K )ξ+B c K (T 2 − T̂ 2)+B c (α− α̂)+B c (BB̂
−1 − I )(−K T̂ 2 − α̂)

, (Ac −B c K )ξ+B cεndi(z) (2.57)

where I ∈ Rm×m is an identity matrix. Using Eq. (2.12), the nominal INDI control for
stabilization is given by

∆ūindi =B−1(x0)(−K T 2(x)− y (ρ)
0 ) (2.58)

When applied using estimated models, Eq. (2.58) becomes

∆uindi = B̂
−1

(x0)(−K T̂ 2(x)− y (ρ)
0 ) (2.59)

and the closed-loop system dynamics are given by

η̇ = f 0(η,ξ)

ξ̇ = (Ac −B c K )ξ+B c K (T 2 − T̂ 2)+B cδ(z ,∆t )+B c (BB̂
−1 − I )(−K T̂ 2 − y (ρ)

0 )

, (Ac −B c K )ξ+B cεindi(z ,∆t ) (2.60)
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The regularly perturbed closed-loop dynamics given by Eqs. (2.57, 2.60) are both in
the form of Eq. (2.27). The only difference is the value of the perturbation terms. There-
fore, it is straightforward to derive the corollaries of Theorem 1 and Theorem 2 as:

Corollary 2 If ‖εndi/indi‖2 ≤ ε̄ndi/indi is satisfied for all z ∈Rn , and η̇= f 0(η,ξ) is input-to-
state stable, then the states z of Eq. (2.57) and Eq. (2.60) are globally ultimately bounded
by a class K function of ε̄ndi and ε̄indi, respectively.

Corollary 3 If ‖εndi/indi‖2 ≤ ε̄ndi/indi is satisfied for all z ∈Rn , and the origin of η̇= f 0(η,0)
is exponentially stable, then there is a neighborhood Dz of z = 0 and ε∗ > 0, such that for
every z(0) ∈ Dz and ε̄ndi/indi < ε∗, the states z of Eq. (2.57) and Eq. (2.60) are ultimately
bounded by a class K function of ε̄ndi and ε̄indi, respectively.

Although the closed-loop dynamics given by Eq. (2.57) and Eq. (2.60) have the same
form, the perturbation terms εndi(z) and εindi(z ,∆t ) have different properties, which
consequently influence the ultimate bounds of the state z . This will be shown as follows:

The first perturbation term K (T 2−T̂ 2) is identical in εndi (Eq. (2.57)) and εindi (Eq. (2.60)).
For the second perturbation term, since INDI control ∆uindi is based on the measure-

ments or estimations of y (ρ)
0 instead of the dynamic model α(x), the model uncertainty

termα(x)−α̂(x) in Eq. (2.57) is replaced by δ(z ,∆t ) (Eq. (2.60)) under INDI control. The
influences of ‖δ(z ,∆t )‖2 can become negligible under sufficiently high sampling fre-
quency, while ‖α(x)− α̂(x)‖2 is normally large for aerospace systems, mainly because
of the difficulties of modeling the aerodynamics. The last terms of εndi/indi are mainly
caused by the multiplicative uncertainties of the B(x) matrix, which were incorrectly
omitted in the previous literature [10, 11, 13, 14]. Recall Eq. (2.59), the last term of εindi

can be written as

(BB̂
−1 − I )(−K T̂ 2 − y (ρ)

0 ) = (BB̂
−1 − I )B̂∆uindi = (B−B̂)∆uindi (2.61)

Since∆uindi is a control increment, ‖B−B̂
−1‖2‖∆uindi‖2 can be reduced by increas-

ing the sampling rate. On the contrary, recall Eq. (2.56), the last term of εndi equals

(BB̂
−1 − I )(−K T̂ 2 − α̂) = (BB̂

−1 − I )B̂undi = (B−B̂)undi (2.62)

which depends on the entire control term undi and is independent of∆t . When undi 6= 0,
there exists a ∆t such that ‖∆uindi‖2 < ‖undi‖2.

In summary, under sufficiently high sampling frequency, the norm of the closed-
loop perturbation terms is smaller under INDI control in the presence of model uncer-
tainties. As a result, according to Corollary 2, when the internal dynamics η̇ = f 0(η,ξ)
are input-to-state stable, INDI control will result in smaller ultimate bounds for z . More-
over, when only the origin of η̇ = f 0(η,0) is exponentially stable, it is easier for systems
under INDI control to fulfill the boundedness condition ε̄ndi/indi < ε∗ in Corollary 3.

SENSING AND SINGULAR PERTURBATIONS

Based on preceding analyses, INDI control has shown promising inherent robustness to
disturbances and regular perturbations without using any additional robust or adaptive
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control technique. There are also other sources of perturbations, which increase the or-
der of the system, such as actuator dynamics and higher-order elastic dynamics. These
perturbations are classified into singular perturbations [5, 25]. Consider the singularly
perturbed system model as [2]

ẋ = f (t , x , z p ,ε), εż p = g z (t , x , z p ,ε) (2.63)

where the perturbed dynamics are decomposed into reduced (slow) and boundary-layer
(fast) dynamics. According to the Tikhonov’s theorem [2], when the null (quasi) equilib-
rium states of both the fast and slow dynamics are exponentially stable, there exists a
constant εmax > 0 such that the null equilibrium of the singularly perturbed system is
exponentially stable for all ε< εmax. This parameter εmax > 0 is referred to as the singu-
lar perturbation margin (SPM) in [25], and is equivalent to the phase margin of linear
time-invariant systems in the sense of the bijective function [25].

Regarding the aerospace applications of INDI on angular rate control problems, the
sensing or estimation of angular accelerations is needed [7, 10–14, 18–20]. Angular ac-
celerometers are already available on the market [22], and a commonly used alternative
way to estimate the angular accelerations is to differentiate the filtered angular rate sig-
nals [7, 11–14, 18–20]. Consequently, the estimations are lagged owing to the filtering
process. Ref. [13, 14, 17, 18] propose to synchronize the input signal with the lagged
estimations by imposing the same filter on the input. However, synchronization errors
still exist in practice. Based on the preceding discussions, the system is able to sus-
tain sufficiently small lags caused by filtering and actuator dynamics. This proposes
an interesting research question of enlarging the singular perturbation margin of the
closed-loop system. Possible solutions could be using predictive filters [10] or actuator
compensators [26].

2.4. NUMERICAL VALIDATION
Since there have been extensive applications of INDI on aircraft [10, 15, 18–20], heli-
copter [11], micro air vehicle [13] and spacecraft [12] angular velocity control, this prob-
lem will not be repeated here. The numerical example in this section considers a rigid
aircraft gust load alleviation (GLA) problem, where the vertical velocity is included in
the inner-loop INDI controller. This idea originates from [15], but the old INDI deriva-
tion in [15] also has the blemishes mentioned before. Therefore, this GLA problem will
be resolved here using the reformulated INDI control. Subsection 2.4.1 presents the air-
craft and turbulence models. The INDI flight control is designed in subsection 2.4.2. A
command tracking problem in a turbulence field is considered in subsection 2.4.3. The
robustness of INDI to model uncertainties and external disturbances will be compared
with NDI control in subsection 2.4.4.

2.4.1. AIRCRAFT AND TURBULENCE MODELS

The six-degree-of-freedom rigid aircraft dynamic equations defined in the body frame
are given by

V̇ f =−ω×V f +
F

m
, ω̇=−J−1ω× Jω+ J−1M (2.64)
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where V f = [Vx ,Vy ,Vz ]T indicates the velocity of the aircraft center of mass (c.m.) rel-
ative to the inertial axis expressed in the body axis, and ω = [p, q,r ]T represents the
angular velocity. m is the total mass and J is the inertia matrix. F and M are the total
forces and moments, which can be expanded as:

F = F a(V f ,ω,V w )+F T (V f ,δp )+F au (V f ,ω)u +F G

M = M a(V f ,ω,V w )+M au (V f ,ω)u (2.65)

In the preceding equation, u = [δe ,δr ,δar ,δal ]T denotes the elevator, rudder, right
and left aileron deflection angles. F a and M a denote the aerodynamic forces and mo-
ments when u = 0. V w is the wind velocity. F au u and M au u represent the control forces
and moments generated by the aerodynamic control surfaces. F T is the thrust, as a
function of throttle δp . F G is the gravitational force.

The aircraft model for simulations is set up using the aerodynamic, inertia and ge-
ometric data in [27]. The aerodynamic model is based on the quasi-steady strip the-
ory [27, 28]. This aircraft is abstracted to multiple two dimensional aerodynamic sur-
faces. There are four aerodynamic control surfaces, each of them contains np strips.
There are also six aerodynamic surfaces, namely the wing, horizontal and vertical tails,
horizontal and vertical lifting surfaces of the fore-fuselage, the engine pylon. Each of
these aerodynamic surfaces contains nk strips. r i denotes the distance vector from the
c.m. to the aerodynamic center of the i -th strip. The local airspeed of the i -th strip
expressed in the body frame is V a,i = V f +ω× r i −V w,i , where V w,i is the local wind
velocity [29, 30]. In this chapter, V w,i is calculated in real-time by interpolating the spa-
tial turbulence field at the aerodynamic center of the i -th strip, and then transformed
to the body frame. The gust penetration effect [15, 29, 30] is considered since V w,i de-
pends on the spatial location of the i -th strip. A two dimensional vertical von Kármán
turbulence field is presented in Fig. 2.1, in which XE and YE represent the positions in
the inertial frame. The turbulence velocity is in unit m/s. The turbulence length scale
equals Lg = 762 m, and the variance equals σ= 3 m/s. Fig. 2.1 also shows a sketch map
of the aircraft exposed to the turbulence field, the strips on the wing and the horizontal
tail are illustrated.
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Figure 2.1: A 2D von Kármán vertical turbulence field with Lg = 762 m, σ= 3 m/s.

For the four control surfaces, the distributed force f u,i on the i -th strip is a function
of V a,i , u and the local derivatives of lift with respect to u, which is denoted as CLu,i . The
resultant forces and moments are F au u =∑

i f u,i , M au u =∑
i r i × f u,i . For the strips on

the k-th aerodynamic surface, the distributed force f a,i depends on the local airspeed
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V a,i , and the local aerodynamic coefficients. The resultant forces and moments are F a =∑
i f a,i , M a =∑

i r i × f a,i .

2.4.2. FLIGHT CONTROL DESIGN
Using Eq. (2.65), Eq. (2.64) can be rewritten in the form of ẋ = f (x)+G(x)u +d as:[

V̇ f

ω̇

]
=

[ −ω×V f + 1
m (F a(V f ,ω,0)+F T +F G )

−J−1ω× Jω+ J−1M a(V f ,ω,0)

]
+

[ 1
m F au

J−1M au

]
u

+
[ 1

m (F a(V f ,ω,V w )−F a(V f ,ω,0))
J−1(M a(V f ,ω,V w )−M a(V f ,ω,0))

]
(2.66)

where the aerodynamic influences of turbulence are lumped in the disturbance vector
d . Consider an output tracking problem, and choose y = H x = [Vz , p, q,r ]T , where H is
a Boolean selection matrix. Based on Eq. (2.5), the vector relative degree of this system
equalsρ = [1,1,1,1]T ,α(x) = H f (x), B(x) = HG(x). According to Eq. (2.22), the external
states vector ξ = y . There are also two dimensional internal dynamics in this applica-
tion case. Although the input-to-state stability of the internal dynamics is not easy to
prove, the analysis of the origin stability of f d (η,0,0) is practical. The two dimensional
submanifold for the zero dynamics is given by

Z ∗ = {x ∈R6, Vz −V ∗
z = p = q = r = 0} (2.67)

where V ∗
z is the vertical velocity in trim condition. Define A(t ) = ∂ f d

∂η |η=0, then η = 0 is
an exponentially stable equilibrium point of f d if and only if it is an exponentially stable
equilibrium point of the linear system η̇ = A(t )η [2]. This allows the origin stability of
the zero dynamics to be easily tested via linearization. The origin of η̇ = f d (η,0,0) has
been tested to be exponentially stable for this model.

Actuator dynamics and limits are considered in this validation. Actuators for aerody-
namic control surfaces are modeled as first-order systems with transfer function A(s) =

20
s+20 . The deflection limits of ailerons, elevator and rudder are ±35◦,±25◦,±25◦, respec-
tively. The rate limit for ailerons is 100◦/s and is 60◦/s for elevator and rudder. Constant
throttle δ∗p is used in the simulations. An additional velocity controller using throttle
can be designed if desired. The simulation frequency (difference from the sampling fre-
quency) is 2000 Hz, which is chosen to be sufficiently high to simulate the property of
the continuous dynamics in real life. Fig. 2.2 illustrates a block diagram of INDI applied
considering actuator dynamics.

2.4.3. COMMAND TRACKING IN A TURBULENCE FIELD
This subsection considers a command tracking problem in the presence of external dis-
turbances. During simulations, the aircraft is flying through the von Kármán turbulence
field shown in Fig. 2.1. Symmetrical excitations are assumed in this subsection, namely
the local gust velocities V w,i are interpolated using the spatial locations of the right-
hand side strips of the aircraft. V w,i of the left-hand side strips are assumed to be sym-
metrical to the right. Asymmetrical excitations will be considered in subsection 2.4.4.
Using the flight controller designed in subsection 2.4.2, and referring to Corollary 1, the
η and reference tracking error e can then be concluded to be ultimately bounded under
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Figure 2.2: The block diagram for a reference tracking problem applied considering actuator dynamics.

small perturbations. Moreover, the ultimate bounds have been proven to be monoton-
ically decreasing functions of K gains and the sampling frequency in subsection 2.3.2.
The simulations in this subsection will test the fidelity of these conclusions when actu-
ator dynamics and limits are considered.

Set the references for [Vz , p,r ]T to be their trim values [V ∗
z ,0,0]T , and the reference

signal for q is designed as a sinusoid signal with amplitude of 1.5◦/s and frequency of
1.5 rad/s. The initial errors are e(t = 0) = [0.5 m/s, 0◦/s, 2◦/s, 0◦/s]T . Design the gain
matrix as K = a · I 4×4, a > 0. In view of Fig. 2.2, there are three sampling processes in

this control law, namely the measurement of y (ρ)
0 , ξ and the actuator position u0. The

sampling interval ∆t will be varied in the subsequent analyses for testing its influences
on the ultimate bounds.
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Figure 2.3: Pitch rate tracking responses.

In view of Fig. 2.3 and Fig. 2.4, the aircraft is able to track the pitch rate command
using all sets of controller parameters. When a = 3, the ultimate bounds for ∆t = 0.01 s
are |eVz | = 0.23 m/s, |eq | = 0.30◦/s, which degrade into larger ultimate bounds of |eVz | =
0.68 m/s, |eq | = 0.85◦/s when the sampling interval increased into ∆t = 0.2 s. Using the
same sampling interval∆t = 0.01 s, when the outer loop gains increased from K = 3·I 4×4
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Figure 2.4: Tracking error responses for pitch rate and vertical velocity.

to K = 8 · I 4×4, the closed-loop system responds faster to the errors, which results into
smaller ultimate bounds. The control surface deflections are illustrated by Fig. 2.5.
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Figure 2.5: Control surface deflections.

Fig. 2.6 shows the ultimate bounds of eVz and eq using various controller parameters.
The tested sampling intervals varies from ∆t = 0.001 s to ∆t = 0.2 s. As can be seen from
Fig. 2.6, in general, for a given gain matrix K = a · I 4×4, the ultimate bounds decrease
as the sampling interval decreases. This trend of decrease becomes slower around ∆t =
0.12 s as the contour lines become sparser. Further decreasing the sampling interval
does improve the performance but would impose higher requirements on the hardware.

On the other hand, for a given ∆t , as a increases from a = 1 to a = 13, the ultimate
bounds decrease first, reaching a minimum around a ≈ 8, and then show a trend of in-
crease as a further increases. As analyzed before, the ultimate bounds will be smaller for
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Figure 2.6: The influences of sampling interval and outer-loop gains on the ultimate bounds.

larger K gains when ideal actuators are applied. However, since actuators have band-
width, rate and position limits, high-gain control can impose unachievable commands
on actuators, which consequently degrades the performance for a > 8 and potentially
leads to divergence. High-gain control also amplifies the measurement noise in prac-
tice.

In summary, simulation results in this subsection verified the ultimate boundedness
of the states under INDI control, especially when actuator dynamics and limits are con-
sidered. The influences of K gains and ∆t on the ultimate bounds are also verified.

2.4.4. ROBUSTNESS COMPARISONS WITH NONLINEAR DYNAMIC INVERSION

In this subsection, the robustness of the reformulated INDI control will be compared
with nonlinear dynamic inversion (NDI) control, in the presence of asymmetrical tur-
bulence excitations and model uncertainties. Eqs. (2.56, 2.58) formulate the NDI and
INDI control laws when the estimated models are used. Since ξ= y = H x , then T 2(x) =
T̂ 2(x) = H x in Eqs. (2.56, 2.58). During simulations, the aircraft is gradually flying through
the 2D von Kármán turbulence field shown in Fig. 2.1, and the turbulence velocity on
each aerodynamic strip is independently interpolated as V w,i . The references for ξ =
[Vz , p, q,r ]T are illustrated in Fig. 2.7. The reference for Vz equals its trim value V ∗

z . The
reference for p is a 3211 signal with magnitude of 5◦/s realized by smoothly combined
sigmoid functions. The sigmoid function f (t ) = 1/(1+ e−t ) is chosen because of its dif-
ferentiable property up to any order. The reference for q is a smooth realization of a
doublet signal with magnitude of 1.5◦/s. The reference for r is a sinusoid signal with
magnitude of 3◦/s and frequency of 1 rad/s. Typical testing signals are chosen as ref-
erences for comparing the effectiveness and NDI and INDI. In practice, these reference
signals are provided by outer-loop controllers for various flight control tasks. For exam-
ple, the reference for Vz can be designed for load alleviation purposes [15], the reference
for r can be designed for minimizing the side-slip angle [10], the references for p and
q can be designed for the attitude tracking of φ and θ [7], etc. The sampling frequency
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used in this subsection is 100 Hz. For fair comparisons, the control gain matrices for
both NDI and INDI are identical to K = 8 · I 4×4.

The tracking performance of NDI and INDI in the 2D von Kármán turbulence field
(Fig. 2.1) is compared in Figs. 2.7-2.9. Model uncertainties are not introduced in this
simulation yet, i.e., α̂ = α,B̂ = B. However, the disturbance d as a function of V w

(Eq. (2.66)) is non-zero. Since the turbulence excitations are asymmetric, lateral states
including p and r are also disturbed by d . In view of Fig. 2.7 and Fig. 2.8, aircraft us-
ing INDI control can better track the references in the turbulence field. The rms values
of the tracking errors for this simulation case are summarized in the first two rows of
Table 2.1, in which INDI shows smaller rms value of errors in all the four controlled
channels. These results verify the analyses in subsection 2.3.2, that the ultimate bounds
for ξ are only influenced by the disturbance increments ∆d , and the main influences
of d 0 have been included in the measurements/estimations of ξ̇0. Fig. 2.9 shows the
control inputs, where INDI responses more actively for alleviating the turbulence influ-
ences. Moreover, the control surface deflection angles are within the limits under both
NDI and INDI control.
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Figure 2.7: Command tracking in a 2D turbulence field.
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Figure 2.8: Tracking errors in a 2D turbulence field.

Referring to subsection 2.3.2, when implementing the control methods, INDI con-
trol only needs the estimated control effectiveness matrix B̂, while NDI requires both
α̂ and B̂. Recall Eq. (2.66), α̂ and B̂ contain the inertia and aerodynamic parameters,
whose accurate estimations are very difficult to obtain in practice. Herein, the robust-
ness of NDI and INDI to model uncertainties will be compared. Fig. 2.10-2.12 present
the reference tracking responses of the aircraft in the turbulence field (Fig. 2.1). The es-
timated model B̂ = 1.3B is used by both NDI and INDI. In other words, both controllers
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Figure 2.9: Control inputs in the presence of external disturbances.

Table 2.1: RMS values of the tracking errors under NDI and INDI control.

Controllers rms(eVz ) [m/s] rms(ep ) [deg/s] rms(eq ) [deg/s] rms(er ) [deg/s]
NDI 0.188 0.387 0.465 0.230
INDI 0.033 0.223 0.130 0.122
NDI uncertain 0.323 0.999 0.564 0.565
INDI uncertain 0.047 0.312 0.155 0.140

overestimate the control effectiveness matrix by 30%. On the other hand, the perfect
model α̂ = α is used by NDI, even so, the tracking performance of NDI is still inferior
than INDI as presented in Fig. 2.10 and Fig. 2.11.
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Figure 2.10: Command tracking in a 2D turbulence field with mismatched B̂.
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Figure 2.11: Tracking errors in a 2D turbulence field with mismatched B̂.
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The rms values of the tracking errors in the presence of external disturbances and
model uncertainties are presented in the last two rows of Table 2.1. It can be seen from
Fig. 2.10, Fig. 2.11 and Table 2.1 that INDI has better robustness than NDI. When using
NDI control, the rms values of the errors in Fig. 2.11 are respectively increased by 71.8%,
158%, 21.3%, 146% as compared to errors in Fig. 2.8. By contrast, INDI is less influenced
by the mismatches between B̂ and B, as the rms values of the errors in Fig. 2.11 are
increased by 42.4%, 39.9%, 19.2%, 14.8% as compared to errors in Fig. 2.8. Furthermore,
Table 2.1 shows that when mismatched B̂ is used, the rms values of the tracking errors
under INDI control are at least three times smaller than the values under NDI control.
These results verify the analyses in subsection 2.3.2. In addition, the control surface
deflections are illustrated in Fig. 2.12, where both INDI and NDI satisfy the actuator
constrains.
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Figure 2.12: Control inputs in the presence of external disturbances and model uncertainties.

The results of a Monte-Carlo simulation containing 1000 samples of uncertain mod-
els are presented in Fig. 2.13. Both aerodynamic and inertia uncertainties are added
to the estimated models α̂ and B̂. As presented in subsection 2.4.1, the aerodynamic
model of the present aircraft is based on strip theory. Each of the six aircraft components
or the four aerodynamic control surfaces contains nk /np strips with local aerodynamic
coefficients. Herein, the slope of lift curve uncertainties for the k-th aircraft component
are modeled as normally distributed real numbers as:

∆k ∼N (0,σ2
k ), σk = 0.3

nk

i=nk∑
i=1

CLα,i (2.68)

which means that for each aircraft component k, the mean value of the slope of lift curve
uncertainties equals zero, and the standard deviationσk is chosen as 30% of the average
CLα value of this component. Analogously, for the p-th aerodynamic control surface:

∆p ∼N (0,σ2
p ), σp = 0.3

np

i=np∑
i=1

CLu,i (2.69)

∆p in the preceding equation represent the uncertainties for the derivatives of lift
with respect to u. The mean value of ∆p equals zero, and the standard deviation σp is
chosen as 30% of the average CLu value of the p-th control surface. It is worth noting
that this step up is more elaborate than introducing uncertainties to the conventional
stability and control derivatives (e.g., Cmα , Cmq , Cnβ , Cnr , Cmδe

, Cnδr
, etc.), by virtue
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of the usage of the strip theory [28]. The uncertainties for mass are assumed to have
normal distribution, with µm = 0 and σm equals 10% of the nominal mass. Normally
disturbed uncertainties are also introduced to the inertia parameters Jxx , Jy y , Jzz , Jxz .
For each of the four parameters, the mean value of uncertain equals zero, and the stan-
dard derivation is taken as 25% of the nominal inertia value.

This Monte-Carlo simulation considers the command tracking task in the presence
of external disturbance (Fig. 2.1) and model uncertainties. The references for ξ are the
same as presented in Fig. 2.7 and Fig. 2.10. Simulation results with rms{eVz } > 50 m/s
or max{rms{ep }, rms{eq }, rms{er }} > 50◦/s are considered as the controller fails to track
the commands. Among all the 1000 samples, 31 cases fail under NDI control, while
there is no failure case under INDI control. The reason for the failure cases under NDI
control can be revealed by Corollary 2 and Corollary 3 that the ultimate boundedness
of the states can only be guaranteed if εndi is bounded. Also, when only the origin of
η̇ = f 0(η,0,0) is guaranteed to be exponentially stable, the uncertainties that NDI can
sustain are limited, i.e., ε̄ndi < ε∗ (Corollary 3). However, since εndi contains both α− α̂
and (B−B̂

−1
)undi (Eqs. (2.57), (2.62)), it can become unbounded in severe perturbation

circumstances, especially when the actuators have nonlinear constrains.
According to the analyses in subsection 2.3.2, even for the cases that εndi is bounded,

the norm value of εndi is still larger than that of εindi. As a consequence, the states under
NDI control also have larger ultimate bounds in the presence of perturbations. This is
verified by the box plots in Fig. 2.13, in which the 31 failure cases under NDI control have
been discarded. The interquartile range (IQR) values and the medians of rms(ei ), i =
Vz , p, q,r are summarized in Table 2.2. It can be seen from Fig. 2.13 and Table 2.2 that
the robust performance of NDI is significantly degraded by εndi (Eq. (2.57)). By con-
trast, INDI is more robust to model uncertainties and disturbances, as IQR{rms(ei )} us-
ing INDI control are at least one order of magnitude smaller than that under NDI control
for all i = Vz , p, q,r . Furthermore, the median values of rms(ei ) under INDI control are
at least three times smaller than that using NDI control, for all i =Vz , p, q,r .
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Figure 2.13: Box plots of a Monte-Carlo simulation for robustness comparisons between NDI and INDI.

2.5. CONCLUSIONS
This chapter reformulates the incremental nonlinear dynamic inversion (INDI) control
without using the time-scale separation principle, and generalizes it for systems with
arbitrary relative degree. Using Lyapunov methods and nonlinear system perturbation
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Table 2.2: IQR and median values of rms(ei ), i =Vz , p, q,r under NDI and INDI control.

Control Metrics i =Vz [m/s] i = p [deg/s] i = q [deg/s] i = r [deg/s]

NDI
IQR{rms(ei )} 17.04 0.621 13.27 0.706
median{rms(ei )} 0.339 0.677 1.119 0.595

INDI
IQR{rms(ei )} 0.014 0.088 0.036 0.016
median{rms(ei )} 0.032 0.220 0.129 0.122

theories, the state of the closed-loop system is proved to be ultimately bounded by a
class K function of the perturbation bounds. There is no restriction on the perturba-
tion value and the initial condition if the internal dynamics are input-to-state stable.
Otherwise, corresponding restrictions are needed. Disturbances are shown to directly
perturb the internal dynamics while perturbing the external dynamics only by their in-
crements, which contributes to the better disturbance rejection capability of the INDI
method. Moreover, INDI is shown to be more robust to regular perturbations than non-
linear dynamic inversion (NDI), without using any additional robust or adaptive tech-
niques. It can also resists certain region of singular perturbations. Finally, numerical
comparisons with NDI and a Monte-Carlo simulation demonstrate the effectiveness of
the reformulated INDI control, even in the presence of model uncertainties and external
disturbances.
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3
INCREMENTAL SLIDING MODE

FAULT-TOLERANT FLIGHT

CONTROL

In Chapter 2, it was found that under incremental nonlinear dynamic inversion (INDI)

control, an uncertainty term, εindi, remains in the closed-loop system. The properties (es-

pecially the boundedness) of this term will be further explored in this chapter. An ap-

proach to compensate for the influences of εindi will also be addressed. It was concluded

in Chapter 2 that INDI control is more robust to regular perturbations than is nonlinear

dynamic inversion (NDI) control. This inspired the idea of using the sensor-based control

structure of INDI to solve the contradiction between the reduction of model dependency

and the reduction of uncertainty in sliding mode control. The hybrid of INDI with (higher-

order) sliding mode control and sliding mode disturbance observers will be elaborated.

This chapter is based on the following article:
Wang, X., van Kampen, E., Chu, Q. P., and Lu, P., “Incremental Sliding-Mode Fault-Tolerant Flight Con-
trol,”Journal of Guidance,Control, and Dynamics, Vol. 42, No. 2, 2019, pp. 244–259. doi:10.2514/1.G003497.
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This chapter proposes a novel control framework that combines the recently re-
formulated incremental nonlinear dynamic inversion with (higher-order) sliding mode
controllers/observers, for generic multi-input/multi-output nonlinear systems, named
incremental sliding mode control. As compared to the widely used approach that de-
signs (higher-order) sliding mode controllers/observers based on nonlinear dynamic
inversion, the proposed incremental framework can further reduce the uncertainties
whilst requiring less model knowledge. Since the uncertainties are reduced in the in-
cremental framework, theoretical analyses demonstrate that the incremental sliding
mode control can passively resist a wider range of perturbations with reduced mini-
mum possible control/observer gains. These merits are validated via numerical sim-
ulations for aircraft command tracking problems, in the presence of sudden actuator
faults and structural damages.

3.1. INTRODUCTION

SAFETY is of paramount importance to aerospace systems. Although air transport re-
mains to be the safest means of transportation, it inevitably suffers from sudden

actuator faults, sensor faults and even structural damages. These faults and damages
can lead to a non-equilibrium flight accompanied with varied aerodynamic properties,
changed inertia properties, new sources of uncertainties and reduced flight control au-
thority. Therefore, fault-tolerant control [1], which is capable of automatically tolerating
faults and damages while maintaining stability and desirable performance, is highly de-
manded.

Fault-tolerant control systems can be classified into passive fault-tolerant control
systems and active fault-tolerant control systems [1, 2]. The active fault-tolerant control
systems use fault detection and isolation processes to obtain the most up-to-date infor-
mation of the faulty system. This knowledge is then supplied to reconfigurable mecha-
nisms to redesign the on-board controller. By contrast, the passive fault-tolerant control
systems are robust enough to cope with considered faults/damages without any detec-
tion or reconfiguration [1]. Being invariant (better than just robust) to matched uncer-
tainties [3, 4], Sliding mode control methods are widely used in passive fault-tolerant
control systems [1, 2, 5–11]. A recent flight evaluation demonstrated the effectiveness of
a model-based sliding mode controller on solving active actuator fault-tolerant control
problems [12].

A well-known obstacle for sliding mode control applications is the chattering phe-
nomenon, caused by high frequency switching of the control input [13, 14]. Although
higher-order sliding mode control techniques offer a continuous control signal by arti-
ficially increasing the input–output relative degree, chattering is only mitigated instead
of being totally eliminated [14]. Another popular approach to alleviate chattering is us-
ing approximations of the signum function, such as saturation and sigmoid functions.
However, these approximations (and hence compromises) result in partial loss of ro-
bustness [15, 16]. On account of the fact that the chattering amplitude is proportional
to the magnitude of the discontinuous control, a current research focus is on adaption
mechanisms for achieving the minimum possible value of the control gain [13–15, 17].
In spite of the variations of gain adaption methods, the sufficient condition for enforc-
ing a sliding motion still requires the switching gain to be larger than the uncertainty
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bound (for first-order sliding mode control), or the corresponding bound for uncertainty
derivatives (for higher-order sliding mode control) [13–15, 17].

Many (higher-order) sliding mode disturbance observer designs are based on slid-
ing mode control techniques [18–21]. For these methods, the required switching gain
for guaranteeing convergence is a monotonically increasing function of the uncertainty
bound, or the corresponding bound for uncertainty derivatives [18–21]. Although the
observations provided by disturbance observers are always continuous, the filtering pro-
cess in first-order sliding mode disturbance observer, and the integration process in
super-twisting disturbance observer can only attenuate instead of totally rejecting chat-
tering in the observations [19]. Therefore, a method that could reduce the uncertainty
is fundamentally beneficial to reducing the minimum possible gains of both (higher-
order) sliding mode controllers and observers.

An intuitive approach to reduce the uncertainty is using a preliminary model-based
feedback control term to roughly cancel the nonlinearities and couplings. For nonlin-
ear system control problem, this goal is normally fulfilled by feedback linearization, also
known as nonlinear dynamic inversion (NDI) in the aerospace community [22–24]. Ex-
amples that use NDI as the baseline control are: first-order sliding mode control [4–
6, 10, 11, 16, 19, 25–29], higher-order sliding mode control [30–32], sliding mode con-
trol driven by first-order sliding mode disturbance observers [18–20], sliding mode con-
trol driven by higher-order sliding mode disturbance observers [14, 15, 18–21, 31–33].
However, side-effects of the model-based approach are also well-known. For instance,
pursuing decent models for complex aerospace systems is costly and time-consuming.
Model identifications and updates, which are challenging and require sufficient excita-
tions, are also necessary in the presence of faults [24].

In view of the preceding analyses, an interesting research question emerges, i.e., is
there a baseline control method that could reduce the uncertainty whilst requiring less
model knowledge?

Incremental nonlinear dynamic inversion (INDI) is a sensor-based control approach,
which requires less model knowledge than NDI, but has enhanced robustness than both
NDI [22, 23], and NDI with model identifications [24]. Numerical simulations [22–24, 34,
35], quadrotor flight tests [36], and passenger aircraft flight tests [37] have consistently
demonstrated the robustness and easy implementation of this method, which makes it
promising as a baseline control for inducing sliding modes. This chapter follows the re-
cently reformulated INDI in [38], which is more general and more rigorous than INDI in
the previous literature [22–24, 34–37]. Research questions still exist for this reformulated
INDI. First of all, the property of the remaining uncertainty term after INDI feedback is
unclear from the literature. Moreover, there is no explicit model and analysis for the in-
fluences of sudden (discontinuous in time) faults on INDI. What is more important is
that a compensation method for further improving the robustness of INDI in perturbed
circumstances is desired.

The main contribution of this chapter is the hybridization of (higher-order) sliding
mode controllers/observers with the reformulated INDI for generic multi-input/multi-
output nonlinear systems, named incremental sliding mode control (INDI-SMC), which
inherits the advantages and remedies the drawbacks of both methods.
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Contributions to the reformulated INDI
In this chapter, the properties (especially the boundedness) of the remaining un-

certainty term after INDI feedback will be analyzed. The influences of sudden actuator
faults and structural damages on INDI will also be explicit modeled and analyzed. The
robustness enhancement that sliding modes bring to INDI will be proved and numeri-
cally verified.

Contributions to (higher-order) sliding mode control
The present chapter introduces an incremental sliding mode control framework,

which reduces uncertainty whilst requiring less model knowledge. By virtue of the un-
certainty reduction, the minimum possible control/observer gains can be reduced, which
is beneficial to chattering alleviation. The advantages of inducing sliding modes based
on INDI instead of NDI will be analyzed and numerically validated by aircraft fault-
tolerant control problems.

This chapter is organized as follows: The derivations and robustness comparisons
between NDI and the reformulated INDI are presented in Sec. 3.2. The INDI-SMC frame-
work is proposed in Sec. 3.3, considering the hybridizations of the reformulated INDI
with (higher-order) sliding mode controllers/observers. This INDI-SMC framework is
then applied to aircraft flight-tolerant control problems in Sec. 3.4 and compared with
NDI, reformulated INDI, and sliding mode control based on NDI in Sec. 3.5. Main con-
clusions are drawn in Sec. 3.6.

3.2. COMPARISONS BETWEEN NDI AND THE REFORMULATED

INDI
3.2.1. PROBLEM FORMULATION
Considering a multi-input/multi-output nonlinear control-affine system described by

ẋ = f (x)+G(x)u, y = h(x), (3.1)

where f : Rn → Rn and h : Rn → Rm are smooth vector fields. G is a smooth function
mapping Rn → Rn×m , whose columns are smooth vector fields. Define the vector rela-
tive degree of y with respect to u as ρ = [ρ1,ρ2, ...,ρm]T . Assume ρ = ∑m

i=1ρi = n, then
by differentiating the output, the input–output mapping of the system is given by

y (ρ) =α(x)+B(x)u (3.2)

In the preceding equation,α(x) = [L ρ1

f h1,L ρ2

f h2, ...,L ρm

f hm]T , B(x) ∈Rm×m , Bi j =
Lg j L

ρi−1
f hi , with L

ρi
f hi , Lg j L

ρi−1
f hi are the corresponding Lie derivatives [16]. As-

sumed det{B(x)} 6= 0 (before and after faults), which yields a controllable system with-
out control redundancy. Sensor faults are not considered in the present chapter, and
the reader is recommended to Ref. [39] for sensor fault detection and fault-tolerant con-
trol methods. Define ξi = [hi ,L f hi , ...,L ρi−1

f hi ]T , ξ = [ξ1;ξ2; ...;ξm], i = 1,2, ...,m, the

nonlinear system described by Eq. (3.1) can be transformed into a canonical form as

ξ̇= Acξ+B c [α(x)+B(x)u], y =C cξ, (3.3)
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where Ac = diag{Ai
0}, B c = diag{B i

0}, C c = diag{C i
0}, i = 1,2, ...,m, and (Ai

0,B i
0,C i

0) is a
canonical form representation of a chain of ρi integrators. The control object is to make
the output y asymptotically track a reference signal y r (t ) = [yr1 (t ), yr2 (t ), ..., yrm (t )]T .

Assume yri (t ), i = 1,2, ...,m, and its derivatives up to y (ρi )
ri

(t ) are bounded for all t and

each y (ρi )
ri

(t ) is continuous. Denote the reference and the tracking error vectors as

R = [R1;R2; ...;Rm], Ri = [yri , y (1)
ri

, ..., y (ρi−1)
ri

]T , i = 1,2, ...,m, e = ξ−R (3.4)

Using Eq. (3.3), the error dynamics are given by

ė = Ac (R+e)+B c [α(x)+B(x)u]−Ṙ = Ac e +B c [α(x)+B(x)u − y (ρ)
r ] (3.5)

where y (ρ)
r = [y (ρ1)

r1
, y (ρ2)

r2
, ..., y (ρm )

rm
]T .

3.2.2. NDI AND THE REFORMULATED INDI
The standard NDI control law for stabilizing e in Eq. (3.5) is designed as

undi = B̄−1(x)(νc − ᾱ(x)), νc = y (ρ)
r −K e, (3.6)

with the gain matrix K = diag{K i }, i = 1,2, ...,m, and K i = [Ki ,0,Ki ,1, ...,Ki ,ρi−1] is de-
signed such that Ac −B c K is Hurwitz. νc ∈Rm is called the virtual control. The nominal
models B̄ and ᾱ are used by NDI, which results in the closed-loop dynamics as

ė = (Ac −B c K )e +B cεndi (3.7)

where
εndi = (α− ᾱ)+ (BB̄−1 − I )(νc − ᾱ) = (α− ᾱ)+ (B−B̄)undi (3.8)

εndi is the residual cancellation error of NDI caused model uncertainties, external
disturbances, faults and damages.

Denote the sampling interval as ∆t , and follow the recently reformulated INDI [38],
the incremental dynamic equation is then derived by taking the first-order Taylor series
expansion of Eq. (3.2) around the condition at t −∆t (denoted by the subscript 0) as

y (ρ) = α(x)+B(x)u

= y (ρ)
0 + ∂[α(x)+B(x)u]

∂x

∣∣∣
0
∆x +B(x0)∆u +R1 (3.9)

in which ∆x and ∆u represent the states and control increments in one sampling time
step ∆t . R1 in Eq. (3.9) is the expansion remainder, whose Lagrange form is

R1 = 1

2

∂2[α(x)+B(x)u]

∂2x

∣∣∣
m
∆x2 + ∂2[α(x)+B(x)u]

∂x∂u

∣∣∣
m
∆x∆u (3.10)

in which (·)|m means evaluating (·) at a condition where x ∈ (x(t −∆t ), x(t )), u ∈ (u(t −
∆t ),u(t )). In Eq. (3.10), R1 is not a function of ∆u2, since according to Eq. (3.2), y (ρ) is
linear with respect to u .
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The incremental control law for stabilizing the error dynamics in Eq. (3.5) is then
designed as

∆uindi = B̄−1(x0)(νc − y (ρ)
0 ), νc = y (ρ)

r −K e, (3.11)

where K is kept identical to the gain matrix in Eq. (3.6) for fair comparisons. y (ρ)
0 is

measured or estimated. The total control command for actuator is hence uindi = uindi,0+
∆uindi [38]. Substituting Eq. (3.11) into Eqs. (3.5) and (3.9) results in the closed-loop
dynamics as

ė = Ac e +B c [y (ρ)
0 +B(x0)(B̄−1(x0)(νc − y (ρ)

0 ))+δ(x ,∆t )− y (ρ)
r ]

, (Ac −B c K )e +B cεindi (3.12)

Using Eqs. (3.9, 3.10), δ(x ,∆t ) in Eq. (3.12) equals[
∂[α(x)+B(x)uindi]

∂x

∣∣∣
0
+1

2

∂2[α(x)+B(x)uindi]

∂2x

∣∣∣
m
∆x + ∂B(x)

∂x

∣∣∣
m
∆uindi

]
∆x (3.13)

δ(x ,∆t ) is only a function of the state vector x and the sampling interval, since in the
closed-loop system, the values of u and∆u have already been substituted into Eq. (3.13).
The closed-loop perturbation term εindi in Eq. (3.12) is further derived as

εindi =δ(x ,∆t )+ (BB̄−1 − I )(νc − y (ρ)
0 ) =δ(x ,∆t )+ (B−B̄)∆uindi (3.14)

As compared to NDI control, this INDI control is less sensitive to model mismatches,
because the model information of α(x) is not used in Eq. (3.11). On the other hand, the

INDI control law needs the measurement or estimation of y (ρ)
0 and u0; this is why INDI

control is referred to as a sensor-based approach [36, 38].

3.2.3. COMPARISONS BETWEEN εNDI AND εINDI

Referring to the stability analyses in [38], if εndi/indi is bounded by ε̄ndi/indi, then the
tracking error in Eqs. (3.7, 3.12) is ultimately bounded (Appendix A, Definition 6) by a
class K function (Appendix A, Definition 2) of ε̄ndi/indi. Even so, the control perfor-
mance is inevitable impaired by εndi/indi.

The formulations for εndi and εindi are presented by Eqs. (3.8, 3.14). For the rea-
son that INDI is a sensor-based approach, in the sense that the model information of

α is obtained by measuring or estimating y (ρ)
0 and u0, the mismatch error α− ᾱ in εndi

is accordingly replaced by δ(x ,∆t ) in εindi. Assume that the partial derivatives of α(x)
and B(x) with respect to x , up to any order, are bounded. Due to the continuity of x ,
lim∆t→0 ‖∆x‖ = 0. Therefore, recall Eq. (3.13), the norm value of δ(x ,∆t ) term in εindi

could become negligible under sufficiently small sampling interval ∆t . The insensitiv-
ity of INDI to δ(x ,∆t ) has been numerically verified in [22–24, 34–36] and flight tested
in [37]. The other terms in Eqs. (3.8, 3.14), i.e., (B−B̄)undi and (B−B̄)∆uindi, are caused
by the multiplicative uncertainties in the B(x) matrix.

Theorem 3 If ‖I−BB̄−1‖ ≤ b̄ < 1, and if ‖δ(x ,∆t )‖ ≤ δ̄, under sufficiently high sampling
frequency fs , the residual error εindi of INDI given by Eq. (3.14) is ultimately bounded.
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Proof : Recall Eqs. (3.9, 3.11, 3.14), the output dynamics under INDI control can also be

written as y (ρ) = νc +εindi. Also, at the previous time step y (ρ)
0 = νc0 +εindi0 . Therefore,

using Eq. (3.14), εindi can be rewritten as

εindi = (BB̄−1 − I )(νc − y (ρ)
0 )+δ

= (I −BB̄−1)εindi0 − (I −BB̄−1)(νc −νc0 )+δ
, Eεindi0 −E∆νc +δ (3.15)

which can be written in an recursive way as

εindi(k) = E (k)εindi(k −1)−E (k)∆νc (k)+δ(k) (3.16)

νc is designed to be continuous in time, thus the following equation holds

lim
∆t→0

‖νc −νc0‖ = 0, ∀x ∈Rn (3.17)

Eq. (3.17) also indicates that ∀∆νc > 0,∃∆t > 0, s.t . for all 0 <∆t ≤∆t , ∀x ∈Rn , ‖νc−
νc0‖ ≤ ∆νc . In other words, there exists a ∆t that guarantees the boundedness of νc −
νc0 . Also, this bound can be further diminished by increasing the sampling frequency.
Consequently, Eq. (3.16) satisfies

‖εindi(k)‖ ≤ (b̄)k‖εindi(0)‖+
k∑

j=1
(b̄)k− j+1‖∆νc ( j )‖+

k−1∑
j=1

(b̄)k− j ‖δ( j )‖+‖δ(k)‖

≤ (b̄)k‖εindi(0)‖+∆νc

k∑
j=1

(b̄)k− j+1 + δ̄
k−1∑
j=1

(b̄)k− j + δ̄

= (b̄)k‖εindi(0)‖+∆νc
b̄ − b̄k+1

1− b̄
+ δ̄1− b̄k

1− b̄
(3.18)

Since b̄ < 1, Eq. (3.18) satisfies

‖εindi‖ ≤
∆νc b̄ + δ̄

1− b̄
, as k →∞ (3.19)

In conclusion, εindi is bounded for all k, and is ultimately bounded by ∆νc b̄+δ̄
1−b̄

. ä
The boundedness of perturbations is the precondition of many robust control tech-

niques [4]. ‖I −BB̄−1‖ ≤ b̄ < 1 requires a diagonally dominant structure of BB̄−1,
which excludes unacceptable estimations of B (e.g., the signs of B and its estimation B̄

are opposite). Similar requirements can be found in [5, 6, 19, 26, 30]. fs = 100 Hz is a rea-
sonable choice for flight control, as has been verified by both simulations [22–24, 34, 35]
and passenger aircraft flight tests [37].

By contrast, as a function of both x , undi, and being independent of ∆t , the residual
error of NDI is undetermined under the same conditions. The boundedness of εndi is
normally assumed for the feasibility of sliding mode control designs [5, 6, 19, 26]. How-
ever, it will be shown in Sec. 3.5 that even if ‖I −BB̄−1‖ ≤ b̄ < 1, εndi has the possibility
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to become unbounded in severe damage cases with limited control authority. As a con-
sequence, the NDI based sliding mode controllers can only deal with situations where
both the boundedness of εndi and ‖I −BB̄−1‖ ≤ b̄ < 1 are satisfied.

One may argue that for some moderate fault and damage cases, εndi is normally
bounded. Even if this is true, by comparing εndi with εindi under the same fault/damage
circumstances, εindi typically has smaller bound, which can be further diminished by
increasing fs . This can be demonstrated by comparing Eq. (3.8) with Eq. (3.14), where
‖δ(x ,∆t )‖ can become negligible under sufficiently high fs (Eq. (3.13)), while ‖α− ᾱ‖
is normally large in the presence of faults and disturbances, especially for aerospace
systems. Moreover, when undi 6= 0, there exists an fs such that ‖∆uindi‖ < ‖undi‖. Denote
ε̄ndi = ‖α− ᾱ‖+ ‖B − B̄‖‖undi‖ ≥ ‖εndi‖, and ε̄indi = ‖δ(x ,∆t )‖+ ‖B − B̄‖‖∆uindi‖ ≥
‖εindi‖, then consequently, in the perturbed conditions that ‖α− ᾱ‖ 6= 0, ‖B− B̄‖ 6= 0,
and ‖undi‖ 6= 0, there exists an fs such that ε̄indi < ε̄ndi.

The smaller bound of εindi is a useful feature, because for many (higher-order) slid-
ing mode controllers/observers, the required gains for inducing sliding modes are mono-
tonically increasing functions of the perturbation bounds. High control/observer gains
are undesirable in practice, because they amplify the measurement noise, excite the un-
modeled parasitic dynamics, induce chattering, threaten the actuator rate and/or posi-
tion limits and potentially lead to divergence. The advantages of the incremental frame-
work will be further demonstrated in Sec. 3.3.

3.3. PROPOSAL OF THE INCREMENTAL SLIDING MODE CON-
TROL FRAMEWORK

This section proposes a new control approach that hybridizes the reformulated INDI
with (higher-order) sliding mode controllers/observers, defined as incremental sliding
mode control (INDI-SMC). First, the control frameworks for INDI-SMC and NDI-SMC
are presented. Then it will be shown in the following subsections that a wide variety
of (higher-order) sliding mode control designs in the literature belong to the NDI-SMC
framework, and redesigning them in the new incremental framework is beneficial to
chattering reduction and robustness enhancement.

The INDI-SMC framework is proposed as:

∆uindi-s = B̄−1(x0)(νc +νs − y (ρ)
0 ) (3.20)

where νc is designed for stabilizing the unperturbed system, while νs can be designed
using (higher-order) sliding mode control/observer techniques for perturbation com-
pensations. By contrast, control methods in the literature that are in the form of

undi-s = B̄−1(x)(νc +νs − ᾱ(x)) (3.21)

are classified as NDI-SMC.
Design the sliding variable as σ(x) : Rn → Rm , and define the vector relative degree

of σ with respect to u as r = [r1,r2, ...,rm]T , then the dynamics of the sliding variable σ
are given by

σ(r ) =ασ(x)+Bσ(x)u, ασi =L
ri
f σi , Bσi j =Lg j L

ri−1
f σi , i , j = 1,2, ...,m. (3.22)
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In the context of sliding mode control, σ is designed such that when the sliding sur-
face σ= 0 is reached, the system obtains the desirable dynamics, in spite of uncertain-
ties. The following subsections will show how the incremental framework can be used to
enforce (higher-order) sliding modes, and its advantages as compared to the NDI-SMC
framework.

3.3.1. FIRST-ORDER INCREMENTAL SLIDING MODE CONTROL
In Eq. (3.22), if ri = 1, i = 1,2, ...,m, control methods that achieveσ= 0 are referred to as
first-order (or conventional) sliding mode control [30, 40]. In order to reduce the switch-
ing magnitude, many sliding mode controllers introduce a continuous preliminary feed-
back component based on the equivalent control method [41]. The equivalent control
is defined as the control effort needed to maintain the sliding motion on the surface and
is calculated by requiringσ= σ̇= 0 [4, 41]. Recall Eq. (3.22), for first-order sliding mode,
σ̇ =ασ(x)+Bσ(x)ueq = 0. By dynamically inverting this nonlinear algebraic equation,
the equivalent control ueq is calculated by

ueq =−Bσ
−1(x)ασ(x) (3.23)

Since ueq contains uncertainties and disturbances, only the model-based nominal
equivalent control ūeq = −B̄−1

σ (x)ᾱσ(x) is available for feedback control. The most
widely used first-order sliding mode control structure is

u = ūeq +us = B̄−1
σ (x)(νs − ᾱσ(x)) (3.24)

Remark 3 Eq. (3.24) is widely used in sliding mode control techniques regardless of the
choice of sliding surface and reaching law. For example, this control structure is adopted
using integral-type sliding surfaces [6, 11, 19, 25], linear sliding surfaces [4, 10, 16], dy-
namic sliding manifolds [26], terminal sliding surfaces [27–29], finite reaching time con-
tinuous sliding mode designs [5], etc.

It will be shown by an example that sliding mode control laws designed in the form
of Eq. (3.24) are essentially NDI based. Since INDI is able to preserve the benefits of NDI
(e.g., decoupling, linearization) while requiring reduced model knowledge, it can also be
used in sliding mode control designs. The integral sliding surface is taken as an example,
because of its simplicity, strong robustness, and design flexibility.

Design the matrix D = diag{D i }, D i = [Ki ,1, ...,Ki ,ρi−1,1], K 0 = diag{K i ,0}, K i ,0 =
[Ki ,0,0, ...0], i = 1,2, ...,m, and then design the integral-type sliding variable as

σ= De −De(t0)−
∫ t

0
D(Ac −B c K )edτ= De −De(t0)+

∫ t

0
K 0edτ (3.25)

where K matrix is the same as used in Eqs. (3.6, 3.11). D(Ac −B c K ) =−K 0 can be proved
by substituting the expressions for D , K 0 into Eq. (3.25), and using the condition that
(Ai

0,B i
0,C i

0) is a canonical form representation of a chain of ρi integrators.
Equivalently, Eq. (3.25) can be written as

σi = e(ρi−1)
i +Ki ,ρi−1e(ρi−2) +Ki ,ρi−2e(ρi−3) + ...+Ki ,1e(0) +

∫ t

0
Ki ,0ei dτ

−(e(ρi−1)
i (t0)+Ki ,ρi−1e(ρi−2)(t0)+Ki ,ρi−2e(ρi−3)(t0)+ ...+Ki ,1e(0)(t0))(3.26)
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It can be seen from Eq. (3.26) that σ(t0) = 0, which means if the initial conditions
are known, system dynamics initiate on the sliding surface without a reaching phase.
Furthermore, σ̇= 0 is equal to the desired closed-loop error dynamics as shown by

σ̇i = e(ρi )
i +Ki ,ρi−1e(ρi−1)

i +Ki ,ρi−2e(ρi−2)
i + ...+Ki ,1e(1)

i +Ki ,0ei = 0, i = 1,2, ...,m,

σ̇ = y (ρ) − y (ρ)
r +K e = 0 (3.27)

In the preceding equation, y (ρ) contains system dynamics, y (ρ)
r and K e are known

or measurable. Substituting Eq. (3.2) into Eq. (3.27), control law designed in the form of
Eq. (3.24) is

σ̇ = (α(x)+B(x)u)− y (ρ)
r +K e = 0

undi-s = ūeq +us = B̄−1(x)(νs − ᾱ(x)−K e + y (ρ)
r ) (3.28)

which belongs to NDI-SMC (Eq. (3.21)) with νc = y (ρ)
r −K e.

By contrast, if the incremental output dynamics (Eq. (3.9)) are substituted into Eq. (3.27),
then INDI-SMC (Eq. (3.20)) is designed as

σ̇ = (y (ρ)
0 +B(x0)∆u +δ(x ,∆t ))− y (ρ)

r +K e = 0

∆uindi-s = B̄−1(x0)(νs − y (ρ)
0 −K e + y (ρ)

r ) (3.29)

As an example, νs is designed in the classical way as

νs =−K s sign(σ) =−[Ks,1sign(σ1),Ks,2sign(σ2), ...,Ks,msign(σm)]T (3.30)

where sign represents the signum function, and the switching gains Ks,i > 0, i = 1,2, ...,m.
If the conditions in Theorem 3 are satisfied, using Eq. (3.14), then the time derivative of
the candidate Lyapunov function V = 1

2σ
Tσ under the control of Eqs. (3.29, 3.30) is cal-

culated by

V̇ = σT σ̇=σT [y (ρ)
0 +B(x0)B̄−1(x0)(νs − y (ρ)

0 +νc )+δ(x ,∆t )−νc ]

= σT [δ(x ,∆t )+ (BB̄−1 − I )(νc − y (ρ)
0 )+BB̄−1νs ]

= σT [εindi −BB̄−1K s sign(σ)] ≤
m∑

i=1

(|σi ||εindi,i |+ b̄Ks,i |σi |−Ks,i |σi |
)

≤ −η
m∑

i=1
|σi | = −ησT sign(σ), ∀Ks,i ≥

η+|εindi,i |
1− b̄

. (3.31)

where η is a small positive constant. V̇ ≤−ησT sign(σ) is referred to as the η reaching law
and guarantees the sliding surface σ = 0 is reached in finite time [6–8]. On the sliding
surface, the desired error dynamics are achieved, which ensure e converges to zero.

Reviewing the discussions in subsection 3.2.3, the boundedness of εndi is undeter-
mined even if the conditions in Theorem 3 are satisfied. For the feasibility of sliding
mode control design, assume εndi is bounded, then similar to the derivations in Eq. (3.31),
NDI-SMC given by Eq. (3.28) guarantees the convergence of σ, when νs = −K s sign(σ),
∀Ks,i ≥ (η+|εndi,i |)/(1− b̄).
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Remark 4 First-order sliding mode control that contains a model-based nominal equiv-
alent control term are essentially NDI based, and can be correspondingly designed in
the proposed incremental framework. Recall the gain requirement in Eq. (3.31), and
the analyses in subsection 3.2.3, this incremental framework is able to passively resist
a wider range of perturbations with reduced control gains, because the boundedness
condition of εindi is easier to fulfill, and there exists an fs which makes the bound of εindi

smaller than the bound of εndi under the same perturbation circumstances.

3.3.2. HIGHER-ORDER INCREMENTAL SLIDING MODE CONTROL
The problem of higher-order sliding mode control is equivalent to the finite time sta-
bilization of higher-order integrator chains with bounded nonlinear perturbations [30,
42]. Since NDI is able to reduce the dynamic couplings and nonlinearities by providing
a preliminary feedback term based on the nominal model, it is widely used in higher-
order sliding mode controllers [30–32].

Consider an output tracking problem for the system described by Eq. (3.1), and choose
the sliding variable as σ = y − y r . Assume the time derivatives of σi , σ̇i , ...,σi

(ri−1) are
continuous functions for all i = 1,2, ...,m, and the manifold defined as

S r = {x |σi (x) = σ̇i (x) = ... =σi
(ri−1)(x) = 0, i = 1,2, ...,m.} (3.32)

called the “r th-order sliding set” [30, 43] is non empty and locally an integral set in the
Filippov sense [44], then the motion on S r is called the “r th-order sliding mode” with
respect to the sliding variable σ. It is noteworthy that a r th-order sliding mode can also
be established for a system with relative degree ρ less than r by manually increasing
the length of the integrator chains [40]. For clarity, only ρ = r will be considered in the
following derivations.

Recall Eqs. (3.2, 3.5), and define z = [z1; z2; ...; zm], z i = [σi (x),L f σi (x), ...,L ri−1
f σi (x)]T ,

i = 1,2, ...,m, then the dynamics of the sliding variable σ are given by

ż = Ac z +B c [α(x)+B(x)u − y (ρ)
r ], σ(r ) = y (ρ) − y (ρ)

r (3.33)

In order to achieve the r th-order sliding mode, Ref. [30] design a higher-order sliding
mode controller in the form of Eq. (3.21) as

undi-s = B̄−1(x)(νs +νn − ᾱ(x)+ y (ρ)
r ) (3.34)

where νn is a continuous virtual control to achieve the finite time stabilization of the
integrator chains [30, 45]. νc = νn + y (ρ)

r in Eq. (3.34), which is able to stabilize the un-
perturbed system. It is noteworthy that the formulations for εndi/indi (Eqs. (3.8, 3.14)) and
Theorem 3 are not constrained by the specific νc design, they are valid as long as νc is
continuous in time.

By contrast, using the incremental output dynamics (Eq. (3.9)), the incremental higher-
order sliding mode control law is designed in the form of Eq. (3.20) as

∆uindi-s = B̄−1(x0)(νs +νn − y (ρ)
0 + y (ρ)

r ) (3.35)

The r th-order sliding mode can then be established by properly designing νn and
νs . As an example, design the augmented sliding variable as s =σ(r−1)+sau , ṡau =−νn ,
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and design νs in the classical way as νs =−K hsign(s) =−[Kh,1sign(s1),Kh,2sign(s2), ...,
Kh,msign(sm)]T , Kh,i > 0, i = 1,2, ...,m. When the conditions in Theorem 3 are satisfied,
using Eq. (3.14), the time derivative of the candidate Lyapunov function Vs = 1

2 sT s yields

V̇s = sT ṡ = sT [y (ρ)
0 +B(x0)B̄−1(x0)(νs +νn − y (ρ)

0 + y (ρ)
r )+δ(x ,∆t )− y (ρ)

r −νn]

= sT [δ(x ,∆t )+ (BB̄−1 − I )(νc − y (ρ)
0 )+BB̄−1νs ]

= sT [εindi −BB̄−1K hsign(s)] ≤
m∑

i=1

(|si ||εindi,i |+ b̄Kh,i |si |−Kh,i |si |
)

≤ −η
m∑

i=1
|si | = −ηsT sign(s), ∀Kh,i ≥

η+|εindi,i |
1− b̄

. (3.36)

Eq. (3.36) proves that when Kh,i ≥ (η+|εindi,i |)/(1−b̄), the sliding surface s = 0 will be
reached in finite time. On the sliding surface, using the equivalent control method [41],
σ(r ) =−ṡau =νn , which means the system dynamics are integrator chains with νn as an
input. Design νn using the geometric homogeneity based method introduced in [45],
then the r th-order sliding mode is established in finite time.

Analogously, assume ‖I −BB̄−1‖ ≤ b̄ < 1 and εndi is bounded, then Eq. (3.34) guar-
antees the establishment of the r th-order sliding mode in finite time whenνn ensures fi-
nite time convergence of integrator chains, andνs =−K hsign(s), ∀Kh,i ≥ (η+|εndi,i |)/(1−
b̄).

Remark 5 In view of the gain requirement in Eq. (3.36), similar to the Remark 4, design-
ing a higher-order sliding mode controller in the incremental form enables it to passively
resist a wider range of perturbations using lower control gains.

Remark 6 For simplicity, the classical νs design using the signum function is adopted
in the preceding derivations. To migrate the chattering effects, continuous approxima-
tions of the signum function are widely used in the literature [2, 4, 6–9, 12, 16]. Other
continuous νs designs such as the fast terminal sliding mode-type reaching law [29] can
also be used. In spite of the variations of νs designs, the relation that larger perturbation
bounds require higher control gains consistently holds.

Remark 7 The sliding mode control gains can also be adaptive, which removes the pre-
knowledge requirement on the uncertainty bound. Many advanced adaptive sliding
mode control methods are aiming for the “as small as possible” gain to migrate the chat-
tering effects [13–15, 17]. Theoretically, the smallest gain that can enforce sliding motion
is a monotonically increasing function of the perturbation bound. Since there exists an
fs such that the bound of εindi is smaller as compared to the bound of εndi, the chatter-
ing reduction benefit of the incremental framework still holds in the context of adaptive
sliding mode control.

3.3.3. FIRST-ORDER INDI-SMC DRIVEN BY FIRST-ORDER SLIDING MODE

DISTURBANCE OBSERVERS
An increasingly popular approach is designing sliding mode control in conjunction with
sliding mode disturbance observers, known as sliding mode control driven by sliding
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mode disturbance observers [14, 15, 18–21, 31–33]. The main idea is using the uncer-
tainty observations in νs such that the uncertainties are directly compensated in the
framework of Eq. (3.21). This subsection will show the merits of the incremental frame-
work, when a first-order disturbance observer is incorporated. Higher-order sliding
mode controllers/observers will be discussed in the next subsection.

Considering the first-order sliding variable Eq. (3.25) with dynamics given by Eq. (3.27)
as an example. Ref. [18–21] design sliding model controllers driven by sliding mode dis-
turbance observers in the form of Eq. (3.21), which leads to the closed-loop dynamics:

σ̇ = y (ρ) −νc = (α(x)+B(x)undi-s )−νc

= νs + ((α− ᾱ)+ (B−B̄)undi-s ),νs +εndi-s (3.37)

in which νs contains the perturbation observations, and will be designed later. It is
worth noting that the uncertainties in the control effectiveness matrix B(x) are not con-
sidered in [18–21], while they are included in the present chapter.

By contrast, using the incremental framework given by Eq. (3.20) leads to

σ̇ = y (ρ) −νc = (y (ρ)
0 +B(x0)∆uindi-s +δ(x ,∆t ))−νc

= νs + (δ(x ,∆t )+ (B−B̄)∆uindi-s ),νs +εindi-s (3.38)

Proposition 2 If ‖I −BB̄−1‖ ≤ b̄ < 1, ‖δ(x ,∆t )‖ ≤ δ̄, and if νs is continuous in time,
under sufficiently high sampling frequency fs , the residual error term εindi-s in Eq. (3.38)
is ultimately bounded.

Proof : The only difference between εindi-s (Eq. (3.38)) and εindi (Eq. (3.14)) is the incor-
poration of νs . In the context of sliding mode observer designs, νs is always continuous
in time. Therefore, analogous to Eq. (3.17) and the subsequent discussions, under suffi-
ciently high fs , ∆νs = νs −νs0 is bounded. Denote the bound as ∆νs , then analogous to
the proof of Theorem 3, εindi-s is bounded for all k, and is ultimately bounded by

‖εindi-s‖ ≤
∆νc b̄ +∆νs b̄ + δ̄

1− b̄
(3.39)

ä
Moreover, sinceνs is continuous in time, similar to the discussions in subsection 3.2.3,

under the same perturbation circumstances, there exists an fs such that εindi-s has a
smaller bound as compared to εndi-s (Eq. (3.37)). This feature is beneficial to disturbance
observations, which will be shown as follows:

Using the first-order sliding mode disturbance observer proposed in [18–21], the
auxiliary sliding variable s is designed as s = σ+ zo , żo = −νs −νo , with dynamics ṡ =
εndi-s/indi-s−νo under the control of Eqs. (3.21, 3.20). If s is stabilized by νo = K obsign(s),
then the equivalent control exactly equals εndi-s/indi-s . This equivalent control can be
estimated by low-pass filtering νo , consequently, the estimated equivalent control ν̂eq

reconstructs εndi-s/indi-s with a small error proportional to the the time constant of the
low-pass filter. Finally, designing νs =−Kσσ−ν̂eq with positive definite Kσ ensuresσ is
bounded by an arbitrary small bound.
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Remark 8 The sufficient condition for stabilizing s is the observer gains Kob,i > |εndi-s/indi-s |
+η, with a small positive η. Even though the observation termνs is continuous, the chat-
tering effects are only attenuated instead of being rejected by the filtering process [19].
Therefore, aiming for the “as small as possible” observer gains is still meaningful. Since
there exists an fs such that εindi-s has a smaller bound as compared to εndi-s , the incre-
mental framework is beneficial to chattering reduction.

3.3.4. HIGHER-ORDER INDI-SMC DRIVEN BY HIGHER-ORDER SLIDING

MODE DISTURBANCE OBSERVERS
This subsection will show how to design a higher-order sliding mode control driven by
a higher-order sliding mode disturbance observer in the incremental framework. Fol-
lowing the derivations in subsection 3.3.2, design the sliding variable as σ= y − y r and

design νc =νn + y (ρ)
r , then the dynamics of σ under the control of Eq. (3.21) is

σ(r ) = y (ρ) − y (ρ)
r = ᾱ(x)+B̄(x)undi-s +εndi-s − y (ρ)

r =νn +νs +εndi-s (3.40)

By contrast, using Eqs. (3.9, 3.38), the dynamics of σ under the control of Eq. (3.20)
equals

σ(r ) = y (ρ) − y (ρ)
r = y (ρ)

0 +B̄(x0)∆uindi-s +εindi-s − y (ρ)
r =νn +νs +εindi-s (3.41)

The only difference between Eq. (3.40) and Eq. (3.41) is the value of the perturbation
terms. Since εindi-s has better properties than εndi-s , higher-order sliding mode distur-
bance observers (such as the (adaptive) super-twisting disturbance observer) designed
for Eq. (3.40) [14, 15, 18–21, 31–33] can be straightforwardly applied to Eq. (3.41). Design
the augmented sliding variable as s = σ(r−1) + sau , ṡau = −νn , then ṡ = νs +εndi-s/indi-s

for dynamics given by Eqs. (3.40, 3.41). If s is stabilized by the (adaptive) super-twisting
control, then νs observes −εndi-s/indi-s in finite time. Consequently, the closed-loop sys-
tems described by Eqs. (3.40, 3.41) behave like unperturbed systems in finite time. It is
noteworthy that the observation termνs provided by (adaptive) super-twisting observer
is continuous because of the integration of the signum function.

Remark 9 Theoretically, (adaptive) super-twisting control/observer may be less suit-
able for resisting sudden (discontinuous in time) on-board faults or damages, since the
classical super-twisting control/observer requires bounded ε̇ndi-s/indi-s , and the adap-
tive super-twisting requires bounded ε̈ndi-s/indi-s [14, 15, 19]. Nevertheless, many phys-
ical processes in reality are at least twice differentiable, which makes the incorporation
of (adaptive) super-twisting control/observer possible.

3.3.5. ADVANTAGES OF THE INDI-SMC FRAMEWORK
In this subsection, the NDI (Eq. (3.6)), INDI (Eq. (3.11)), NDI-SMC (Eq. (3.21)), and INDI-
SMC (Eq. (3.20)) methods will be compared. The main focus of this chapter is on demon-
strating the properties of the incremental framework, instead of specific νc and νs de-
signs. Therefore, the following comparisons are also independent of νc , νs , as long as
they are kept consistent in the four different control frameworks for fair comparisons.

Fig. 3.1 illustrates the relations of the four control frameworks. When the sliding
mode module for calculating νs is deactivated, Fig. 3.1 shows the control structure of
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Figure 3.1: Control structures of NDI, INDI, NDI-SMC, and INDI-SMC.

NDI and INDI. To be specific, when the two switches are connected with the blue dashed
lines, Fig. 3.1 shows the control structure of NDI, where the nominal model ᾱ(x) is
needed. By contrast, when the two switches are connected with the black solid lines,
INDI control presents, which does not need the model ᾱ(x) but depends on the mea-

surements/estimations of y (ρ)
0 and uindi,0. Activating the sliding mode module inserts

the νs virtual control for resisting perturbations, which results in the NDI-SMC, and
INDI-SMC frameworks. Moreover, INDI and INDI-SMC design the control increments,
while NDI and NDI-SMC directly design the total control commands.

By virtue of the incorporation ofνs , the advantage of INDI-SMC over INDI is straight-
forward, i.e., robustness enhancement. On the other hand, the advantages of the INDI-
SMC framework over NDI-SMC are:

1. Less model dependency and lower computational burden.

2. Lower sliding mode control/observer gains required.

3. Improved robustness, since INDI is more robust than NDI.

4. Capability to solve problems that are non-affine in the control.

ᾱ(x) contains the aerodynamics for aerospace systems, which are difficult to be
modeled accurately. Since the incremental framework is independent of ᾱ(x), the im-
plementation process is simplified, and the computational burden can also be reduced.
INDI-SMC also requires lower control and observer gains, mainly because of the better
properties of εindi(-s). The conditions in Theorem 3 and Proposition 2 ensure the bound-
edness of εindi(-s). By contrast, being independent of ∆t , the boundedness of εndi(-s) is
not guaranteed under the same conditions. Moreover, in the same fault scenario, there
exists an fs such that εindi(-s) has a smaller upper bound as compared to εndi(-s). These
properties enable INDI-SMC to passively resist a wider range of perturbations using
lower control and observer gains, as compared to NDI-SMC in the literature. In addi-
tion, the incremental framework can also deal with non-affine in the control problems,
since the incremental dynamic equation (Eq. (3.9)) is derived by taking partial derivative
with respect to u. The merits of the incremental sliding mode control framework will be
numerically verified in Sec. 3.5.
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3.4. FAULT-TOLERANT FLIGHT CONTROL DESIGN
In this section, the nominal six degrees of freedom nonlinear equations of motion of
aircraft are given first. Then the actuator faults and structural damages are modeled.
After that, the control methods derived in Sec. 3.3 are applied to damaged aircraft fault-
tolerant control problems.

3.4.1. NOMINAL EQUATIONS OF MOTION
In the nominal case, the origin of the body-fixed frame is assumed to coincide with the
aircraft center of mass (c.m.), and the equations of motion for a rigid aircraft are given
by

[
V̇
ω̇

]
=

[
mI 0

0 J

]−1 [ −mω̃V +F
−ω̃Jω+M

]
θ̇ = T (θ)ω (3.42)

where V = [u, v, w]T andω= [p, q,r ]T represent the translation and rotational velocities
of the body-fixed frame relative to the inertial frame. θ = [φ,θ,ψ]T contains the Euler an-
gles. m is the total mass and J represents the inertia matrix. F and M are the total force
and moment vectors. The T (θ) matrix links angular velocitiesω to Eulerian velocities θ̇.
Bold mark indicates vectors and matrices. (̃·) denotes the skew-symmetric matrix of the
corresponding vector. F and M contain aerodynamic, gravitational, and thrust forces
and moments. Furthermore, the aerodynamic forces and moments are normally given
as functions of the aerodynamic coefficients as

M a = q∞SM bc

 Cl (β,r, p)
Cm(α, α̇, q)
Cn(β,r, p)

+
 Clδa

(α,β) 0 Clδr
(α,β)

0 Cmδe
(α) 0

Cnδa
(α,β) 0 Cnδr

(α,β)

 δa

δe

δr


F a = q∞S[Cx (α,β, q,δe ), Cy (α,β, p,r,δa ,δr ), Cz (α,β, q,δe )]T (3.43)

In the preceding equation,α,β represent the angle of attack and the sideslip angle. V
is the airspeed, and the dynamic pressure is given by q∞ = 0.5ρV 2 (ρ is the air density).
M bc = diag([b, c̄,b]), and S,b, c̄ are the wing area, wing span and mean aerodynamic
chord respectively.

3.4.2. ACTUATOR FAULTS
The actuator faults considered in this chapter are the loss of control surface area and
control surface jamming problems. The inertia effects of loss of control surface area
are assumed to be negligible, and the aerodynamic effects can be modeled by multiply-
ing the control derivatives with an effectiveness scaling factor, namely, C ′

i j
= µ j Ci j , i =

l ,m,n, j = δa ,δe ,δr , µ j ∈ [0,1], with (·)′ indicating the post-failure condition.
There are two main effects of actuator jamming. One is the influence on control ef-

fectiveness, the other is the induced extra forces and moments. If one side of the ailerons
or elevators is stuck, the corresponding control derivatives are halved, i.e., µ j = 0.5, j =
δa ,δe . Jamming faults also introduce new control derivatives such that the decoupling
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between longitudinal and lateral controls no longer holds. Specifically, aileron jamming
would introduce Cmδa

, and elevator jamming would introduce Clδe
and Cnδe

.
Furthermore, extra forces and moments will be induced if control surfaces are jammed

at non-neutral positions. If one of the ailerons is jammed at δa∆, the induced force and
moment coefficients can be given by

∆Cl =
1

2
Clδa

δa∆, ∆Cn = 1

2
Cnδa

δa∆, ∆Cy = 1

2
Cyδa

δa∆, ∆Cz = ∆Cl b

ray

, ∆Cm =−∆Cl brax

c̄ray

(3.44)
where r a = [rax ,ray ,raz ]T is the position vector from c.m. to the aerodynamic center of
the jammed aileron. Analogously, the induced force and moment coefficients of one-
side elevator jamming is calculated by

∆Cz =−
Cmδe

δe∆c̄

2rex

, ∆Cm = 1

2
Cmδe

δe∆, ∆Cl =
∆Cz rey

b
(3.45)

with r e = [rex ,rey ,rez ]T indicates the position vector from c.m. to the aerodynamic cen-
ter of the jammed elevator.

3.4.3. STRUCTURAL DAMAGES
There are three main effects of structural damages: the changes of aerodynamic proper-
ties, inertia properties, and the control effectiveness [46, 47].

The structural damages may reduce the control effectiveness, and introduce new
control derivatives if asymmetric damages are encountered. The methods for modeling
these effects have been discussed in the previous subsection.

The structural damages are normally accompanied with mass loss. As a consequence,
the center of mass instantaneously shifts to a new location. Since Eq. (3.42) uses c.m. as
the reference frame origin O, it should be modified for post-damage cases.

A conventional way to model the dynamics of post-damage aircraft is setting up the
EoM on the new c.m. location O′, which is referred to as the CM-Centric method in [47].
Denote the distance vector from O to O′ as r OO′ = [r∆x ,r∆y ,r∆z ]T . When using the CM-
Centric method, Eq. (3.42) can still be used for post-damage conditions. Consequently,
the reference point of moments due to external fores should be transfered to the new
c.m. location O′. Furthermore, the inertia tensor needs to be modified with respect to
the new point O′ using parallel axis theorem. Last but not least, the translational velocity
V in Eq. (3.42) actually refers to the velocity of a new point O′, with the relationship V O′ =
V O +ω× r OO′ . As a result, there is a discontinuity in V if ω is non-zero at the damage
instant, so a trigger logic to reset the integrator of V is required. This discontinuity and
trigger logic are totally avoided by using the non-CM approach [47], which means the
frame origin is still fixed on O after damage. The reference frames for moments and
inertia tensor are also kept invariant. Additionally, the moment due to gravity MG =
r OO′ ×G needs to be added. The equations of motion using non-CM approach is given
by [35, 47]

[
V̇
ω̇

]
=

[
m′I S̃

T

S̃ J ′

]−1 [
−m′ω̃V − ω̃S̃

T
ω+F ′

−Ṽ S̃
T
ω− ω̃S̃V − ω̃J ′ω+M ′

]
(3.46)
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(̃·) in Eq. (3.46) denotes the corresponding skew-symmetric matrix of the vector (·).
S = [m′r∆x ,m′r∆y ,m′r∆z ]T is non-zero when using the non-CM approach, which leads
to coupled translational and rotational motions.

The aerodynamic characteristics of partially damaged aircraft have been investi-
gated in [46, 48]. It has been found that damages of horizontal stabilizers lead to signifi-
cant loss in both static and dynamic longitudinal stability. The static derivative Cmα and
damping derivative Cmq are approximately linear to the scale of tip loss. An additional
rolling moment coefficient due to pitch rate ∆Clq is induced if geometric asymmetrical
damages are imposed on horizontal stabilizers.

Similarly, the damages of vertical tail cause reductions in static and dynamic stability
on the directional axis with an approximately linear relationship with the damage scale.
These effects are reflected by reductions of Cnβ and Cnr .

The tip loss of the wing directly leads to the reduction of the lift slope CLα . The un-
equal lift on left and right wings also induces an additional rolling moment coefficient
∆Cl (α). For aircraft with positive dihedral angle, Clβ reduces as the wing area lost. The
rolling damping coefficient Clp is also expected to reduce because the wing is the ma-
jor source of rolling damping. Similar to the effects of asymmetric horizontal stabilizer
damage, the asymmetric wing damage would also generate a rolling moment coefficient
during pitch motions indicated by ∆Clq .

The influences of wing, horizontal stabilizer and vertical tail damages on aerody-
namic coefficients are summarized in Table 3.1.

Table 3.1: The main influences of structural damages on aerodynamic coefficients.

Damaged component Changed coefficients New coefficients
Horizontal stabilizer Cmα , Cmq ∆Clq

Vertical tail Cnβ , Cnr –
Wing CLα , Clβ , Clp ∆Clq , ∆Cl (α)

3.4.4. AIRCRAFT ATTITUDE FAULT-TOLERANT CONTROL DESIGN
Recall Eqs. (3.42, 3.43). the aircraft attitude dynamics can be written in a more compact
form as

ẋ1 = f 1(x1)x2

ẋ2 = f 2(x1, x2)+G2u (3.47)

where x1 = [φ,θ,ψ]T , x2 = [p, q,r ]T , u = [δa ,δe ,δr ]T . The plant is perturbed by model
uncertainties, damages and failures.

f 2 = f̄ 2 + ( f f2
− f̄ 2)κ+∆ f 2, G2 = Ḡ2 + (G f2 −Ḡ2)κ+∆G2 (3.48)

In Eq. (3.48), f̄ 2 and Ḡ2 represent the nominal dynamics given by Eq. (3.42). f f2
and

G f2 denote the new dynamics after sudden actuator faults or structural damages. ∆ f 2
and∆G2 indicate the model uncertainty terms as continuous functions of x . κ(t ) ∈ [0,1]
is a failure indicator, with κ = 1 denotes post-fault condition, and κ = 0 denotes the
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fault free case. κ(t ) is designed as a unit step function to indicate the sudden structure
breaks and actuator faults during flight. Since the first equation of Eq. (3.47) represents
the kinematics of the aircraft attitude, there is no model uncertainty ( f 1 = f̄ 1). V ,α,β
in Eq. (3.43) are viewed as measurable inputs. Choosing y = x1, the vector relative de-
gree is then ρ = [2,2,2]T . With knowledge only about the nominal model, the controller
aims at passively tolerating these faults/damages and model uncertainties. This chapter
chooses the attitude control as a demonstrative case for testing the decoupling perfor-
mance of the controllers. The output and x1 can also be chosen as y = x1 = [µ,α,β]T

or y = x1 = [φ,θ,β]T . Using the kinematic equations for µ,α,β [24], the vector relative
degree for these two choices still equals ρ = [2,2,2]T . Therefore, the control methods
designed in this chapter can be applied straightforwardly.

Using Eqs. (3.8, 3.47), the NDI control input is undi = B̄−1(νc − ᾱ) (Eq. (3.6)) with
residual error

εndi = (α− ᾱ)+ (BB̄−1 − I )(νc − ᾱ)

= f 1( f 2 − f̄ 2)+ ( f 1G2Ḡ
−1
2 f 1 − I )(νc −

∂ f 1x2

∂x1
( f 1x2)− f 1 f̄ 2) (3.49)

where f 1 = f̄ 1 is used in the preceding equation. The INDI controller is designed by
Eq. (3.11), but since a new variable κ as a discontinuous function of time is incorporated
to indicate the sudden faults/damages on-board, δ(x ,∆t ) in Eq. (3.13) needs to be aug-
mented by a κ related terms. First, δ(x ,∆t ) is augmented by the first-order Taylor series
expansion with respect to κ, using Eqs. (3.47, 3.48), this term equals

ηκ = ∂[α+Bu]

∂κ

∣∣∣
0
∆κ=

∂[
∂ f 1x2
∂x1

( f 1x2)+ f 1 f 2 + f 1G2u]

∂κ

∣∣∣
0
∆κ

= f 1[( f f2
− f̄ 2)+ (G f2 −Ḡ2)u]

∣∣
0∆κ (3.50)

Since κ(t ) is a unit step function, then ∆κ(t ) is a single square pulse with the magni-
tude of one and width of ∆t . Consequently, this ηκ term is only non-zero at the failure
instant, and at the next time step, the faults/damages have already been reflected in
the measurements. This remarkable feature makes the sensor-based INDI a promising
approach for fault-tolerant control problems. Recall Eq. (3.50), ηκ is bounded if at the
fault instant t f , [( f f2

− f̄ 2)+ (G f2 −Ḡ2)u]|t=t f is bounded. This is a reasonable assump-

tion since stricter requirements on the boundedness of f 2 − f̄ 2 = ( f f2
− f̄ 2)κ+∆ f 2 and

G2 −Ḡ2 = (G f2 −Ḡ2)κ+∆G2 for all t are often made in the literature [2, 5–10].
Second, δ(x ,∆t ) is also augmented by the closed-loop value of the κ-related Taylor

series expansion reminder:

Rκ = ∂2[α+Bu]

∂2κ

∣∣∣
m
∆κ2 + ∂2[α+Bu]

∂κ∂u

∣∣∣
m
∆κ∆u + ∂2[α+Bu]

∂κ∂x

∣∣∣
m
∆κ∆x

= f 1(G f2 −Ḡ2)
∣∣
m∆u∆κ+

∂ f 1[( f f2
− f̄ 2)+ (G f2 −Ḡ2)u]

∂x

∣∣∣
m
∆x∆κ (3.51)

in which (·)|m means evaluating (·) at a condition where x ∈ (x(t −∆t ), x(t )), u ∈ (u(t −
∆t ),u(t )), and κ ∈ (κ(t −∆t ),κ(t )). The ∆κ2-related term in Rκ equals zero since system
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dynamics are linear with respect to κ (Eqs. (3.47, 3.48)). Since ∆κ converges to zero af-
ter the fault occurs, the ultimate bound of ε indi(-s) is not influenced by κ. Even though
ηκ only appears at the fault/damage instant, it inevitably degrades the tracking perfor-
mance of INDI. Therefore, it is meaningful to incorporate νs into INDI for robustness
enhancement.

3.5. NUMERICAL VALIDATION
In this section, the NDI, INDI, NDI-SMC, and INDI-SMC designed for an aircraft com-
mand tracking problem will be compared numerically. The nominal aerodynamic model,
thrust model and inertia model are set up adopting the public data of F-16 [49]. The non-
linear dynamic equations of motion before and after failures are given by Eq. (3.42) and
Eq. (3.46) respectively. The aerodynamic model and control effectiveness after faults/-
damages are modeled using the methods in subsection 3.4.2 and subsection 3.4.3. Only
the rudder, ailerons and stabilator are considered as inner-loop control variables and
they are all modeled as first-order systems with rate and position limits. The bandwidth
and limits for the actuators are listed in Table 3.2. A simple proportional-integral thrust
control to maintain the airspeed is designed in a separate control loop. This aircraft is
initially trimmed at a steady-level flight condition with airspeed V = 500 ft/s and altitude
h = 10,000 ft. The sampling frequency used by the controllers is fs = 100 Hz.

Table 3.2: Limits and bandwidths of actuators.

Actuators Bandwidth, rad/s Rate limit, deg/s Position limit, deg
Ailerons δa 20.2 80 ± 21.5
Elevators δe 20.2 90 ± 25
Rudder δr 20.2 120 ± 30

3.5.1. FLIGHT CONTROL IN THE NOMINAL CASE
The properties of actuators influence the performance of INDI and (higher-order) slid-
ing mode control since both methods need “fast” actuator dynamics. The actuator dy-
namics are included in some (higher-order) sliding mode controllers [6, 26], which would
however increase the relative degree of the overall system. This increase would require
higher-order derivatives of the outputs as mentioned in [9]. When the bandwidth of the
actuators are sufficiently higher than the system dynamics, the controller can be de-
signed without considering the actuator dynamics, which is a common practice in the
literature. This approach is adopted in the present chapter, and the control performance
is expected to be improved if faster actuators are used.

The successive tracking references for φ,θ,ψ are illustrated in Fig. 3.2, which are
smoothly combined sigmoid functions. The sigmoid function fr (t ) = 1

1+e−t is chosen
because of its differentiable property up to any order.

Remark 10 As discussed in subsection 3.3.5, NDI-SMC or INDI-SMC actually indicates
a branch of sliding mode control methods designed using the structure of NDI or INDI,
regardless of the sliding order, sliding surface and reaching law designs. Therefore, the
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Figure 3.2: Tracking commands.

comparisons are also independent of these factors. Eqs. (3.28, 3.29) with first-order
integral-type sliding variable (Eq. (3.25)) are implemented as an example.

The reference tracking controllers using NDI and INDI methods are givens by Eqs. (3.6)

and (3.11). For fair comparisons, νc =−K e+y (ρ)
r for all the four controllers, with the de-

sired error dynamics consistently given by

ëi +KD,i ėi +KP,i ei = 0, i = 1,2,3. (3.52)

The gains are designed as KD,i = 5.6, KP,i = 16, i = 1,2,3 to achieve desired second-
order error dynamics with natural frequency 4 rad/s and damping ratio 0.7. νs is de-
signed in the classical way as νs = −K s sign(σ) with K s = diag([1,0.5,0.3]). The widely
used boundary-layer method [2, 4, 6, 9, 16, 25] that replaces the signum functions by sat-
uration functions are also adopted to reduce chattering. The thickness of the boundary
layers are ζi = 0.01, i = 1,2,3.

In the nominal condition, namely f = f̄ ,G = Ḡ , the aircraft responses, tracking er-
rors, and control inputs using the proposed four controllers are illustrated in Fig. 3.3.

As can be seen from Fig. 3.3, all the four controllers are able to make the system
track the commands. Owing to the singular perturbations from the actuator dynam-
ics [16, 38], the closed-loop dynamics no long behave like second-order systems under
NDI and INDI controls. The aircraft using INDI control has sightly better performance
as compared to that using NDI as can be seen from the tracking error responses. Fur-
thermore, by using both NDI and INDI based sliding mode controllers, the tracking per-
formance is improved without requiring additional control efforts.

3.5.2. FLIGHT CONTROL IN THE PRESENCE OF ACTUATOR FAULTS
In this subsection, the performance of aircraft command tracking in the presence of
actuator faults are simulated. The first actuator fault scenario considered is that the
rudder suddenly lost 50% of its effectiveness during flight at t = 7 s. As can be seen
from Fig. 3.4, the rotational and directional tracking performance get noticeably worse
from t = 7 s under the control of NDI, INDI, and NDI-SMC. The tracking errors under
NDI control have the largest rms (root mean square) value. Although the aircraft using
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Figure 3.3: Aircraft responses and control inputs under the nominal condition.

NDI-SMC is able to recover from the fault, it presents distinct tracking errors during
t ∈ [7,13] s. On the other hand, INDI-SMC is able to rapidly recover from the rudder
fault with much smaller transition tracking errors.
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Figure 3.4: Aircraft responses and control inputs under a rudder fault condition (t = 7 s).
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The second actuator fault scenario considered is when t = 3 s, the right aileron runs
away with it maximum rate and gets jammed at δa∆ = 15.05◦. The positive deflections
are defined in the conventional way, namely a positive δa indicates the right aileron de-
flects downwards and the left aileron deflects upwards. As discussed in subsection 3.4.2,
one side of ailerons stuck at a non-neutral position leads to halved control effective-
ness, newly introduced Cmδa

, as well as aerodynamic coefficient increments given by
Eq. (3.44). As shown in Fig. 3.5, the aileron jamming induced rolling coefficient ∆Cl

makes the aircraft roll to the left from t = 3 s under NDI and NDI-SMC control. The
coupling effects also make the aircraft yaw to the left under NDI control. ∆Cm makes
the aircraft slightly pitch down. NDI control itself shows poor robust performance in
this scenario. When combined with sliding mode control, NDI-SMC has improved ro-
bustness especially on pitch and yaw channels. However, after fault occurs, the aircraft
using NDI-SMC is unable to track the rolling command anymore, and the rudder has a
potential to get saturated.
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Figure 3.5: Aircraft responses and control inputs under an aileron jamming condition (t = 3 s).

On the contrary, aircraft using both INDI and INDI-SMC are able to recover from the
aileron fault, and continue to track the commands. In view of Fig. 3.5, the left aileron
deflects downwards at −14◦ and rudder deflects at −2.6◦ after the commands vanish to
re-trim the aircraft. Although the aircraft under INDI control can recover, its φ tracking
performance degrades. When using the INDI control, the rms value of eφ is 0.17◦ in the
nominal case, but degrades to 0.57◦ in the presence of fault. By using INDI-SMC, the rms
value of eφ is reduced to 0.07◦. The aircraft under INDI-SMC also shows better tracking
performance in pitch and yaw control channels.

The third actuator fault scenario considered in this chapter is the elevator/stabilator
jamming problem. At t = 5 s, the left stabilator is jammed downwards at δe∆ = −12.5◦.
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Consequently, the stabilator control effectiveness is halved, Clδe
, Cnδe

are introduced,
and the aerodynamic coefficient increments are given by Eq. (3.45). Theses coefficient
increments cause a positive rolling moment and a negative pitching moment as can be
seen from the responses under NDI control in Fig. 3.6.
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Figure 3.6: Aircraft responses and control inputs under a stabilator jamming condition (t = 5 s).

Due to the coupling effects, the yaw angle track performance also deteriorates under
NDI control. Even though this deterioration is compensated by NDI-SMC, the roll and
pitch angles are still unable to recover from the fault under NDI-SMC control. Aircraft
using INDI or INDI-SMC is able to recover from the fault and continue to track the com-
mands. Moreover, the rms of eθ is diminished from 0.29◦ under INDI control to 0.02◦
under INDI-SMC control.

The fourth actuator fault scenario is the combination of the preceding three sce-
narios with responses shown in Fig. 3.7. Similar phenomena can be observed that NDI
and NDI-SMC are unable to recover from the actuator faults, with the yaw angle shows
a trend of divergence. Aircraft using INDI or INDI-SMC can recover and continue to
track the commands. However, using INDI control, the stabilator gets saturated when
t ∈ [7.1,7.4] s. By contrast, INDI-SMC shows the highest tracking accuracy before and
after faults without actuator saturation.

As analyzed in subsection 3.2.3, the sensor-based INDI control has reduced residual
error in the presence of faults/damages as compared to NDI control. The conditions
in Theorem 3 lead to a bounded εindi, while the boundedness of εndi is undetermined
under the same conditions. These phenomena are verified via simulations under the
fourth actuator fault scenario as shown in Fig. 3.8.

As can be observed from Fig. 3.8, the value of ‖I −BB̄−1‖ for both NDI and INDI
show jumps at t = 3,5,7 s due to successive actuator faults. The variations of ‖I−BB̄−1‖
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Figure 3.7: Aircraft responses and inputs with aileron, stabilator and rudder faults occur at t = 3, 5, 7 s.
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Figure 3.8: Value of ‖I −BB̄−1‖ and the residual errors in the fourth actuator fault scenario.

are because B(x) is a function of states. ‖I −BB̄−1‖ ≤ b̄ < 1 are satisfied for both
NDI and INDI during the entire time history. While the residual errors of INDI remain
bounded for all the three control channels, εndi,r however shows a trend of divergence.
Furthermore, ‖εindi‖ is smaller than ‖εndi‖ in this scenario. It is noteworthy that ‖εindi‖
can be further diminished by decreasing the sampling interval ∆t in practice, while
‖εndi‖ is independent of ∆t .

For the reason that the switching gains of most sliding mode control methods are
monotonically increasing functions of perturbation bounds, the smaller and bounded
εindi also requires lower control gains. When the same control gains are used for INDI-
SMC and NDI-SMC, which is the situation for all the preceding simulations, INDI-SMC
shows better performance. One may suppose that improved performance for NDI-SMC
can be achieved if the switching gains are increased. This guess is tested by gradually
increasing the switching gains of NDI-SMC as K s = c ·diag([1,0.5,0.3]) under the fourth
actuator fault scenario, with the simulation results shown in Fig. 3.9.



3

84 INCREMENTAL SLIDING MODE FAULT-TOLERANT FLIGHT CONTROL

0 5 10 15

φ
 [
°
]

-40

-20

0

20

0 5 10 15

e
φ
 [
°
]

-20

0

20

40

0 5 10 15

δ
a
 [
°
]

-40

-20

0

20

40 NDI-SMC, c=1

NDI-SMC, c=3

NDI-SMC, c=5

NDI-SMC, c=7

0 5 10 15

θ
 [
°
]

-10

-5

0

5

10

0 5 10 15

e
θ
 [
°
]

-2

0

2

4

6

0 5 10 15

δ
e
 [
°
]

-30

-20

-10

0

t [s]

0 5 10 15

ψ
 [
°
]

-10

-5

0

5

10

t [s]

0 5 10 15

e
ψ
 [
°
]

-10

-5

0

5

10

t [s]

0 5 10 15

δ
r [
°
]

-40

-20

0

20

40

Figure 3.9: Responses using NDI-SMC with gradually increased switching gains.

In view of Fig. 3.9, when the switching gains for NDI-SMC increased from c = 1 to
c = 5, the tracking performance of NDI-SMC is indeed improved. However, the roll angle
still has about ten degree’s of transition error when c = 5. Further increasing the gains to
c = 7 induces a divergence owing to the rate and position constrains and limited band-
width of the actuators. The increased switching gains after faults/damages would also
amplify the measurement noise in practice. By contrast, the INDI-SMC is able to handle
all the considered four actuator fault cases with fixed and lower gains.

3.5.3. FLIGHT CONTROL IN THE PRESENCE OF STRUCTURAL DAMAGES
The aircraft attitude tracking using the proposed four control methods subject to struc-
tural damages are simulated in this subsection. The dynamic equations after dam-
ages are given by Eq. (3.46). The aerodynamic effects of damages are given in subsec-
tion 3.4.3. The inertia properties of this aircraft after damages are calculated by using a
model of F-16. In accompany with the specific component breaks, the corresponding
control surface is also damaged. Only the nominal model is known by the controllers,
and the faults/damages are intended to be tolerated by the controllers.

The first structural damage scenario considered here is the vertical tail damage case.
To be specific, half of the vertical tail area is lost at t = 7 s. At the same time, 50% of the
rudder effectiveness is also lost. The system responses and control inputs are presented
in Fig. 3.10.

Fig. 3.10 seems to be similar to Fig. 3.4 at the first glance, but the influences of the
forward c.m. shift caused by the vertical tail loss can be seen from the pitch angle track-
ing error in Fig. 3.10. Under NDI control, the pitch tracking has a steady-state error of
0.21◦. The yaw and roll channels also show obvious transition errors under NDI control.
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Figure 3.10: Aircraft responses and control inputs under a vertical tail damage condition (t = 7 s).

NDI-SMC is able to compensate for the errors in roll and pitch channel, but still shows
noticeable eψ. INDI-SMC has improved performance as compared to both INDI and
NDI-SMC.

The second structural damage scenario simulated here is that at t = 5 s, the entire left
stabilator is lost, while the right stabilator is still working normally. Accompanying with
the left stabilator lost, the c.m. shifts forwards and to the right. The effects of the rolling
and pitching moment increments can be seen from the responses under NDI control in
Fig. 3.11. The reduced longitudinal damping and stability margin are also influencing
the closed-loop system responses. Using NDI control is not enough to make the system
recover from this failure. Although NDI-SMC shows improved performance, its conver-
gence speed is slow and still presents small eθ at t = 15 s. Owing to the asymmetrical
c.m. shift and the newly induced coefficient ∆Clq , the rms value of eφ increased to 0.18◦
under INDI control and is reduced by 96% using INDI-SMC.

The third structural damage scenario modeled here is at t = 3 s, the right wing lost
25% of its area. At the meanwhile, the right aileron is also lost. The unequal lift on
the left and right wing immediately causes a positive rolling moment as can be seen
from Fig. 3.12. The coupling effects also cause performance degradations on pitch and
yaw channels under NDI and NDI-SMC controls. Using NDI or NDI-SMC, the aircraft
is unable to recover form the damage, and the rudder has a potential to get saturated.
Both INDI and INDI-SMC are able to make the aircraft recover and continue the tracking
missions. The rms value of eφ degrades to 0.51◦ under INDI control in this scenario, and
can be improved into 0.24◦ using INDI-SMC.

The fourth structural damage scenario is a combination of the preceding three struc-
tural damage cases. Specifically, 25% of the right wing breaks at t = 3 s, the entire left
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Figure 3.11: Aircraft responses and control inputs under a stabilator damage condition (t = 5 s).

0 5 10 15

φ
 [
°
]

-20

0

20

40

0 5 10 15

e
φ
 [
°
]

-30

-20

-10

0

10

0 5 10 15

δ
a
 [
°
]

-10

0

10

20

NDI

INDI

NDI-SMC

INDI-SMC

0 5 10 15

θ
 [
°
]

-5

0

5

10

0 5 10 15

e
θ
 [
°
]

-1

0

1

2

0 5 10 15

δ
e
 [
°
]

-10

-5

0

5

10

t [s]

0 5 10 15

ψ
 [
°
]

-4

-2

0

2

4

t [s]

0 5 10 15

e
ψ
 [
°
]

-1

-0.5

0

0.5

t [s]

0 5 10 15

δ
r [
°
]

-10

0

10

20

30

Figure 3.12: Aircraft responses and control inputs under a wing damage condition (t = 3 s).

stabilator is lost at t = 5 s, and at t = 7 s, half area of the vertical tail is lost. The corre-
sponding control surfaces are also lost in accompany with the structural damages. The
simulation results are shown in Fig. 3.13, from which it can be seen that both NDI and
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NDI-SMC controls are unable to help the aircraft recover from the damages, and the
rudder get saturated from t = 9.6 s. INDI as well as INDI-SMC can complete the tracking
missions in the presence of structural damages. Furthermore, INDI-SMC has the best
tracking accuracy.
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Figure 3.13: Aircraft responses and inputs with wing, stabilator and vertical tail damaged at t = 3, 5, 7 s.

The conditions in Theorem 3 are sufficient for a bounded εindi, while the bounded-
ness of εndi is undetermined under the same conditions (analyses in subsection 3.2.3).
This is also verified when the aircraft is subjected to the fourth damage scenario, as il-
lustrated in Fig. 3.14, where εndi,r shows a trend of divergence. Furthermore, ‖εindi‖ is
smaller than ‖εndi‖ in Fig. 3.14, which leads to smaller minimum possible gain values
for INDI-SMC.
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Figure 3.14: Value of ‖I −BB̄−1‖ and the residual errors in the fourth structural damage scenario.
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3.6. CONCLUSIONS
The incremental sliding mode control (INDI-SMC) framework is proposed in this chap-
ter by hybridizing (higher-order) sliding mode controllers/observers with the reformu-
lated incremental nonlinear dynamic inversion (INDI). The incorporations of the sliding
mode robustification terms into INDI compensate for the residual errors of INDI, whilst
the incremental framework simultaneously reduces the control/observer gains and the
model dependency.

It is verified theoretically and numerically that the boundedness conditions for the
INDI residual error (εindi) are less strict than those of the nonlinear dynamic inversion
(NDI) residual error (εndi). In severe damage cases, εndi can become unbounded. More-
over, in the same faults/damages scenario, there exists a sampling frequency which
makes the upper bound of εindi smaller than the upper bound of εndi. These benefi-
cial properties of INDI enable the INDI-SMC framework to passively resist a wider range
of perturbations with lower sliding mode control/observer gains, as compared to the
widely used way of designing sliding mode control based on NDI.

When applied to passive fault-tolerant flight control problems, the proposed INDI-
SMC framework shows better robust performance over NDI, INDI, and the NDI based
sliding mode control, in the presence of sudden actuator faults and structural damages,
which makes it a promising approach to enhance aircraft survivability in real life.
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4
INCREMENTAL BACKSTEPPING

SLIDING MODE FAULT-TOLERANT

FLIGHT CONTROL

In Chapter 3, incremental nonlinear dynamic inversion (INDI) control was hybridized

with sliding mode control (SMC) to inherit the advantages and remedy the drawbacks

of both approaches. However, for a nonlinear system with high relative degree, the con-

trol design based on the input–output mapping can become complicated. If a nonlinear

system is in the strict-feedback form, it can be stabilized in a recursive way using back-

stepping control. Since backstepping control is a model-based approach, researchers have

been attempting to combine it with SMC for robustification. In view of the benefits that

INDI brings to SMC (shown in Chapter 3), this chapter proposes hybridizing incremental

backstepping (IBS) with SMC, which could reduce the model dependency of backstepping

while reducing the gain of SMC. Before the hybridization, IBS control will be reformulated

for more general systems without using the time-scale separation assumption. The stabil-

ity and robustness of a closed-loop system under IBS control will also be analyzed using

Lyapunov methods.

This chapter is based on the following peer-reviewed conference paper:
Wang, X., van Kampen, E., and Chu, Q. P., “Incremental Backstepping Sliding Mode Fault-Tolerant Flight Con-
trol,” AIAA SciTech Guidance Navigation and Control (GNC) conference, 2019, pp. 1–16. doi:10.2514/6.2019-
0110.
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Fault-tolerant flight control has the potential of improving the aircraft survivabil-
ity in real life. This chapter proposes an incremental backstepping sliding mode con-
trol (IBSMC) framework for multi-input/output nonlinear strict-feedback systems con-
sidering model uncertainties, sudden faults, and external disturbances. This approach
is a hybridization of the sliding mode control (SMC) and a reformulated incremental
backstepping (IBS). By virtue of the benefits contributed by both SMC and IBS, theo-
retical analyses show that IBSMC has less model dependency and enhanced robust-
ness as compared to backstepping and backstepping hybridized with SMC (BSMC).
When applied to aircraft fault-tolerant control problems, numerical simulations demon-
strate IBSMC can passively tolerate a wider range of model uncertainties, sudden
actuator faults, and sudden structural damages as compared to backstepping and
BSMC, using smooth control inputs with lower gains.

4.1. INTRODUCTION

SAFETY improvement is a timeless topic in the aerospace community. Over the past
few decades, aircraft loss of control has remained one of the key factors of fatal air-

craft accidents [1, 2]. Aircraft loss of control is defined to include significant departure
from the controlled operational flight envelop, which may be caused by inappropriate
crew responses, aircraft impairments, icing, etc. [3]. To prevent loss of control, redun-
dancies and fault tolerant features are strongly recommended in [3]. Fault-tolerant flight
control, which is able to automatically maintain the stability and achieve acceptable
level of performance in the presence of faults and disturbances with the remaining us-
able control effectors, is a promising approach to enhance aircraft survivability.

Backstepping is a nonlinear control method, which can globally stabilize the strict-
feedback systems though a recursive process [4, 5]. Due to its model-based nature, clas-
sical backstepping method is sensitive to model mismatches. Adaptive backstepping
(ABS), including immersion and invariance ABS [6], tuning functions ABS [7], can im-
prove the system robustness to parametric uncertainties. However, the uncertainties
need to be parameterized using pre-defined model structures, and the unknown pa-
rameters are normally required to be constant or slowly time-varying [8–10]. Moreover,
when the system has high order, calculations of the virtual control in ABS can become
complicate. Tuning the gains in the parameter update law can also be tedious. These is-
sues constrain the applicability of ABS to fault-tolerant flight control problems, since the
aerodynamic model structure is difficult to design, especially when structural damages
occur. Furthermore, not all the uncertainties and disturbances can be parameterized
and meet the slowly time-varying requirement at the same time. The high computa-
tional load of ABS is also unfavorable for fault-tolerant flight control.

Sliding mode control (SMC) [4, 5] is a type of variable structure control method fea-
tured by its robustness and easy implementation. External disturbances, parametric
and nonparametric uncertainties are all incorporated into a lumped uncertainty term by
SMC. Only the upper bound of this lumped uncertainty term is needed by conventional
first-order SMC methods [11], while the upper bounds of the uncertainty derivatives are
required by higher-order SMC methods [12, 13]. These requirements on knowledge of
the bounds can further be removed by various adaptive sliding mode control (ASMC)
methods [10, 14]. Different from ABS which update the uncertain parameters online,
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ASMC directly adapt the control gains according to the distance from the sliding vari-
able to the sliding surface [10, 14].

There have been continuous efforts in combining backstepping techniques with SMC
to preserve the merits of both methods [8, 10, 14–17]. For example, a second-order
SMC is combined with ABS for feedback linearizable single-input/output (SISO) non-
linear systems that can be transformed into the parametric-pure feedback form and the
parametric-strict feedback form in [8], where an SMC virtual control is included at the
last step of the ABS design to improve robustness. When the system can only be trans-
formed to the semi-parametric strict feedback form, the SMC virtual control terms are
needed in each recursive step to compensate for nonparametric uncertainties [15]. Dy-
namical ABS and SMC are hybridized in [16] for a class of SISO non-triangular nonlinear
systems with unmatched parameterized uncertainties. In [17], integral backstepping is
combined with conventional first-order SMC for a quadrotor trajectory control prob-
lem. In order to remove the pre-knowledge of the uncertainty bound, backstepping
is hybridized with an ASMC method for a spacecraft attitude control problem in [10].
Adaptive fast terminal SMC with nonlinear sliding surface is incorporated into the back-
stepping framework for controlling the ducted fan engine of a thrust-vectored aircraft
in [14]. In spite of the various SMC designs, the core idea of the combination is con-
sistent in the above methods, that for the recursive steps encounter uncertainties, SMC
virtual controls are incorporated into the baseline backstepping virtual control designs
to compensate for uncertainties. Regarding the baseline backstepping methods, ABS
is less suitable for fault-tolerant flight control as discussed before, while the (integral)
backstepping has strong model dependency. A control method that could reduce the
model dependency of the baseline backstepping methods without adding extra compu-
tational load or impairing robustness is desired.

Incremental backstepping (IBS) is a sensor-based nonlinear control method, which
can preserve the benefits of conventional backstepping control, while requiring less
model knowledge. IBS was first proposed in [9], which was inspired by the incremen-
tal nonlinear dynamic inversion (INDI) method [18]. It has been shown in [19] that INDI
has better robustness against regular perturbations than nonlinear dynamic inversion
(NDI). The same as INDI, the only model information required by IBS is the control
effectiveness matrix. To further improve the robustness of IBS to uncertainties in the
control effectiveness matrix, on-line parameter update laws are incorporated into IBS
in [9], while the tuning and compensation methods are introduced in [20]. It is shown
in [21, 22] that IBS can passively tolerate aircraft actuator jamming fault cases. Flight
tests of a fixed-wing UAV under the control of command filtering IBS verified the ro-
bustness of this method to model uncertainties and disturbances [23]. Recently, the
effectiveness of IBS using the direct measurement of angular accelerometers has been
demonstrated by real-world flight tests on a Cessna Citation II aircraft [24]. Although IBS
is a promising candidate for fault-tolerant flight control, its previous derivations based
on the time-scale separation principle are not mathematically rigorous. The existing
stability and robustness analyses for IBS also have limitations. These issues will be ad-
dressed in the Sec. 4.2.1.

A hybrid nonlinear control framework named incremental sliding mode control (INDI-
SMC) has been proposed in [25]. As a hybridization of SMC and INDI, the INDI-SMC
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approach can robustify INDI while reducing the minimum possible gains of SMC. The
theoretical developments in [25] have been verified by quadrotor flight tests in [26].
However, the control framework proposed in [25] has some limitations. First of all,
when the input–output relative degree is higher than two, the design of INDI-SMC us-
ing the input–output mapping can become complicated. Moreover, the SMC reach-
ing law used in [25] is discontinuous, which requires continuous approximations of the
signum function for chattering reduction. However, these approximations (hence com-
promises) lead to partial loss of robustness. Finally, external disturbances are not con-
sidered in [25]. These limitations of Ref. [25] will be remedied in this chapter.

Considering the dynamics of aircraft, physical time-scale separations between fast
and slow dynamics exist, which allow the controller to be designed in a cascaded way. In
the literature, cascaded NDI/INDI are widely used in flight control. However, since the
interconnections between loops are assumed to be negligible by cascaded NDI/INDI,
they cannot guarantee the closed-loop stability. By contrast, backstepping and IBS are
designed in a recursive way, and their closed-loop stability are guaranteed in the Lya-
punov sense. Moreover, backstepping control can also stabilize non-minimum phase
systems, which can not be solved by NDI/INDI [4]. The matching condition in SMC can
also be relaxed in backstepping [4].

The main contribution of this chapter is the proposal of incremental backstepping
sliding mode control (IBSMC) framework for multi-input/output nonlinear strict-feedback
systems under the perturbations of model uncertainties, on-board sudden faults, and
external disturbances. First, the IBS method in the literature is reformulated for more
general nonlinear uncertain systems. The new derivation in this chapter does not need
the time-scale separation assumption and term omissions. The IBSMC framework is
then proposed by incorporating the sliding mode virtual control into the reformulated
IBS virtual control designs. As compared to SMC designs hybridized with backstep-
ping (referred to as BSMC in this chapter), theoretical analyses show IBSMC has not
only less model dependency, but also enhanced robustness. Moreover, it is analyzed
that the switching gains can be reduced by the IBSMC framework, which is beneficial to
chattering reduction. These merits are further verified numerically by an aircraft fault-
tolerant control problem in the presence of model uncertainties, on-board sudden ac-
tuator faults and structural damages.

The derivations and analytical comparisons are presented in Sec. 4.2. A fault-tolerant
flight control problem is presented in Sec. 4.3 and Sec. 4.4. Main conclusions are drawn
in Sec. 4.5.

4.2. INCREMENTAL BACKSTEPPING SLIDING MODE CONTROL
Consider a multi-input/output nonlinear uncertain system formulated by:

ẋ1 = f 1(x1)+G1(x1)x2

ẋ2 = f 2(x1, x2)+G2(x1, x2)x3

...

ẋn = f n(x1, x2, ..., xn ,κ(t ))+Gn(x1, x2, ..., xn ,κ(t ))u +d

y = x1 (4.1)
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where x = [xT
1 , xT

2 , ..., xT
n ]T is the state vector, with x i ∈ Rm , i = 1,2, ...,n. u ∈ Rm , y ∈

Rm are the system input, output vectors. f i ∈ Rm , i = 1,2, ...n − 1 is a set of smooth
vector fields. G i ∈ Rm×m , i = 1,2, ...,n − 1 is a set of smooth function mappings. The
columns of each G i are smooth vector fields. Assume G i , i = 1,2, ...,n−1 are nonsingular.
f i , G i , i = 1,2, ...,n − 1 are known dynamics. d ∈ Rm represents external disturbance
vector. f n ∈ Rm , Gn ∈ Rm×m are perturbed by uncertainties and on-board faults, which
are modeled as:

f n = f̄ n+( f f − f̄ n)κ(t )+Φnθ+η f (x , t ), Gn = Ḡn+(G f −Ḡn)κ(t )+Ψnθ+ηG (x , t ) (4.2)

where κ(t ) ∈ R is designed as a step input to model the sudden fault at t = t f during
flight. Specifically, t < t f , κ = 0 indicates the fault-free case, and t ≥ t f , κ = 1 de-
notes post-fault condition. f̄ n and Ḡn are the nominal models used for controller de-
sign, while f f and G f denoting the post-fault dynamics. f̄ n , f f as well as the columns

of Ḡn ,G f are smooth vector fields. Φnθ and Ψnθ represent parametric uncertainties,
where the parameter vector θ ∈ Rp is not necessarily constant nor slow time-varying.
Φn(x),Ψn(x) ∈ Rm×p , whose columns are known smooth vector fields. η f , ηG ∈ Rm are
smooth vector fields denoting nonparametric uncertainties. Assume Gn(x ,κ) is nonsin-
gular for all t . It will be shown in Sec. 4.3 that a class of aerospace system dynamics can
be described by Eqs. (4.1, 4.2).

4.2.1. REFORMULATION AND ROBUSTNESS ANALYSIS FOR INCREMENTA

BACKSTEPPING
In order to reduce the model dependency of backstepping, the incremental backstep-
ping (IBS) control was proposed in [27], and has been used for solving many flight con-
trol problems [9, 20–24, 27]. However, the existing derivations and robustness analyses
of IBS have some limitations:

The core step of the existing IBS derivations is the model simplification based on
the time-scale separation principle, which claims that the controls can change signifi-
cantly faster than the states [9, 20–23, 27]. Based on this principle or assumption, when
the sampling frequency is high, the state variation related nonlinear terms and higher-
order terms are omitted from the Taylor series expansion of the nonlinear plant, which
results in the simplified incremental dynamics used for controller design. This plant
simplification is not mathematically rigorous since the states of an open-loop unsta-
ble plant may change faster that the controls. Furthermore, although the higher-order
terms and state variation related terms are not used by the IBS control, they still exist in
the closed-loop dynamics and remain influencing the closed-loop system stability and
performance. These issues have been overlooked in the literature.

The existing robustness analyses of IBS also need improvements. It is straightfor-
ward concluded in [20], that systems under IBS control are robust to the uncertainties
in system dynamics f n(x), because the model of f n(x) is not used in IBS designs. This
statement is deficient since the influences of f n(x) still remain in the closed-loop sys-
tem, although its model is not used by the controller. Moreover, Ref. [20] concludes if
ideal actuators are used, the inner-loop system dynamics under IBS control is a single
integrator, even when the control effectiveness matrix contains uncertainties. This con-
clusion is also defective because it is proved by using linear transfer functions derived
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from block diagrams, where the inappropriate condition ẋn = ẋn,0 is used. Last but not
least, in [20], the stability and robustness of the closed-loop system under IBS control
considering actuator dynamics are analyzed by formulating the closed-loop system into
a state-space form, and testing the frozen-time eigenvalues of the time-varying system
matrix. However, it has been proved in [28] that for linear time varying systems, the
stability criterion based on the negative definiteness of the frozen-time eigenvalues is
neither sufficient nor necessary.

Although the robustness of IBS to sudden actuator jamming faults has been numer-
ically evaluated in [22], there is a lack of explicit theoretical analyses for the influences
of sudden (discontinuous in time) faults on IBS. In addition, IBS in the literature is only
derived for systems whose relative degree equals two.

In view of these limitations of the existing IBS derivations, before the proposal of
incremental backstepping sliding mode control (IBSMC), the IBS control will be refor-
mulated for more general systems (Eq. (4.1)) without using the time-scale separation
principle. The stability of the closed-loop system will be analyzed using Lyapunov meth-
ods.

Denote the sampling interval as ∆t . Taking the first-order Taylor series expansion
for the dynamics of xn around the condition at t −∆t (denoted by the subscript 0) as:

ẋn = ẋn,0 +
∂[ f n(x ,κ)+Gn(x ,κ)u]

∂u

∣∣∣
0
∆u + ∂[ f n(x ,κ)+Gn(x ,κ)u]

∂x

∣∣∣
0
∆x

+∂[ f n(x ,κ)+Gn(x ,κ)u]

∂κ

∣∣∣
0
∆κ+∆d +R1 (4.3)

where ∆x = x − x0, ∆u = u −u0, respectively denote the variations of states and control
inputs in one incremental time step. ∆d = d −d 0 denotes the variations of the external
disturbances d in ∆t , while ∆κ= κ−κ0 denotes the changes of the fault indicator κ. R1

in Eq. (4.3) is the expansion remainder, whose Lagrange form is

R1 = 1

2

∂2[ f n +Gn u]

∂2x

∣∣∣
m
∆x2 + ∂2[ f n +Gn u]]

∂x∂u

∣∣∣
m
∆x∆u

+∂
2[ f n +Gn u]]

∂x∂κ

∣∣∣
m
∆x∆κ+ ∂2[ f n +Gn u]]

∂u∂κ

∣∣∣
m
∆u∆κ (4.4)

in which (·)|m means evaluating (·) at a condition where x ∈ (x(t −∆t ), x(t )), u ∈ (u(t −
∆t ),u(t )), d ∈ (d (t−∆t ),d (t )), and κ ∈ (κ(t−∆t ),κ(t )). In Eq. (4.4), R1 is not a function of
∆u2, ∆d 2, ∆κ2, nor ∆u∆d , ∆d∆κ, which can be examined using Eqs. (4.1, 4.2). Eq. (4.3)
is referred to as the incremental dynamic equation (without any term omission).

Consider an output tracking problem and denote the reference vector as y r = [yr1 , yr2 ,
..., yrm ]T . Assume the derivatives of yri (t ), i = 1,2, ...,m, up to y (n)

ri
(t ) are continuous

bounded functions, IBS is recursively reformulated as:
Step 1:

Define the error variable as z1 = x1 − y r , recall Eq. (4.1), then ż1 = f 1 +G1x2 − ẏ r .
This subsystem can be stabilized with respect to a candidate Lyapunov function V1(z1) =
1
2 zT

1 z1, if x2 equals its desired value x2,d , which is designed as:

x2,d =φ1(x1) =G−1
1 (− f 1 −K 1z1 + ẏ r ) (4.5)
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where K 1 is a positive definite diagonal gain matrix. If x2 = x2,d , substituting Eq. (4.5)
into Eq. (4.1) leads to V̇1(z1) =−zT

1 K 1z1 ≤ 0.
Step k (2 ≤ k ≤ n −1):

Define the tracking error of xk as zk = xk −xk,d , where xk,d =φk−1(x1, ..., xk−1) is the
desired value for xk designed in Step k-1. By using Eq. (4.1), the dynamics of zk is given
by żk = f k +Gk xk+1 − φ̇k−1(x1, ..., xk−1). Design the desired value for xk+1 as:

xk+1,d =φk (x1, ..., xk ) =G−1
k (− f k −K k zk + φ̇k−1 −GT

k−1zk−1) (4.6)

When xk+1 = xk+1,d , by substituting Eq. (4.6) into Eq. (4.1), the time derivative of a
candidate Lyapunov function Vk (z1, ..., zk ) = 1

2

∑k
i=1 zT

i z i is derived as:

V̇k =−
k−1∑
i=1

zT
i K i z i + zT

k−1Gk−1zk + zT
k (−K k zk −GT

k−1zk−1) =−
k∑

i=1
zT

i K i z i ≤ 0 (4.7)

Step n:
Different from the above steps, model uncertainties, faults, and disturbances appear

in the last step. Define the tracking error of xn as zn = xn − xn,d = xn −φn−1. Using
Eq. (4.3), the dynamics of zn are given as:

żn = ẋn,0 +Gn(x0,κ0)∆u + ∂[ f n(x ,κ)+Gn(x ,κ)u]

∂x

∣∣∣
0
∆x

+∂[ f n(x ,κ)+Gn(x ,κ)u]

∂κ

∣∣∣
0
∆κ+∆d +R1 − φ̇n−1 (4.8)

Design the IBS control increment as:

∆uibs = Ḡ
−1
n (−ẋn,0 −K n zn + φ̇n−1 −GT

n−1zn−1), Ḡ
−1
n (νc − ẋn,0) (4.9)

where ẋn,0 instead of the nominal model f̄ n (Eq. (4.22)) is used by the controller. The
total control command vector for actuators is uibs = uibs,0 +∆uibs. In practice, ẋn,0 and
uibs,0 can be either estimated [23, 29] or directly measured [24, 30].

Considering a candidate Lyapunov function Vn = 1
2

∑n
i=1 zT

i z i , then substituting Eq. (4.9)
into Eq. (4.8) yields:

V̇n =−
n∑

i=1
zT

i K i z i + zT
n (δ(x ,κ,∆t )+ (GnḠ

−1
n − I )(νc − ẋn,0)+∆d ),−

n∑
i=1

zT
i K i z i + zT

nεibs

(4.10)
where I ∈ Rm×m is an identity matrix. δ(x ,κ,∆t ) in Eq. (4.10) denotes the closed-loop
values of the variations in Eq. (4.8), specifically

δ(x ,κ,∆t ),
[
∂[ f (x ,κ)+G(x ,κ)u]

∂x

∣∣∣
0
∆x + ∂[ f (x ,κ)+G(x ,κ)u]

∂κ

∣∣∣
0
∆κ+R1

] ∣∣∣
u=uindi

(4.11)
In view of Eq. (4.10), the closed-loop system is perturbed by εibs, in which δ(x ,κ,∆t )

contains the influences of sudden faults, state-variation-related terms and higher-order
terms. The term caused by control effectiveness matrix mismatches presents in εibs even
without considering actuator dynamics. The characteristics of εibs will be further ana-
lyzed in Sec. 4.2.4.
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4.2.2. PROPOSAL OF INCREMENTAL BACKSTEPPING SLIDING MODE

CONTROL
As shown in Sec. 4.2.1, the closed-loop system under IBS control is perturbed by εibs

when considering faults, uncertainties and disturbances. The influences of εibs were
also observed in the real-world flight tests of a fixed-wing UAV [23]. δ(x ,κ,∆t ) and ∆d
are not easy to be parametrized, so it is less appropriate to use ABS. Instead, IBSMC will
be proposed in this subsection to compensate for the influences of εibs. The control
increment of IBSMC is designed as:

∆uibsmc = Ḡ
−1
n (νc +νs − ẋn,0) (4.12)

where νc is the continuous IBS virtual control, which is identical to νc in Eq. (4.9). The
SMC virtual control νs can be designed using any SMC technique. In this chapter, the
finite reaching-time continuous (FRTC) SMC method [31, 32] is adopted. This method
not only achieves finite-time convergence to the sliding surface, but also has enhanced
robustness to noise and disturbances as compared to the boundary-layer approxima-
tion for the signum function [4, 11, 31]. Design the sliding surface as σ = zn = 0, and
design νs as:

νs =−K s sig(σ)γ =−[Ks,1|σ1|γ1 sign(σ1),Ks,2|σ2|γ2 sign(σ2), ...,Ks,m |σm |γm sign(σm)]T ,

i = 1,2, ...,m (4.13)

where Ks,i > 0, γi ∈ (0,1). It is noteworthy that |σi |γi sign(σi ) is a continuous function

of σi without any approximation. Assume ‖I −GnḠ
−1
n ‖ ≤ b̄ < 1, and εibs (Eq. (4.10)) is

bounded, then by using Eq. (4.10), the time derivative of Vn = 1
2

∑n
i=1 zT

i z i using IBSMC
is calculated by:

V̇n = −
n∑

i=1
zT

i K i z i + zT
n (εibs −GnḠ

−1
n K s sig(σ)γ)

≤ −
n∑

i=1
zT

i K i z i +
m∑

i=1
(|σi ||εibs,i |+ b̄Ks,i |σi |γi+1 −Ks,i |σi |γi+1)

≤ −
n∑

i=1
zT

i K i z i −
m∑

i=1
ρi |σi |, ∀|σi | ≥

(ρi +|εibs,i |
(1− b̄)Ks,i

) 1
γi , ∀ρi > 0 (4.14)

Eq. (4.14) proves the ultimate bound [4] of σi equals
(
ρi+|εibs,i |
(1−b̄)Ks,i

) 1
γi , whose size can

be made arbitrarily small when Ks,i > ρi+|εibs,i |
(1−b̄)

, and if γi is arbitrarily small. Define

z = [zT
1 , zT

1 , ..., zT
n ]T , since Vn = 1

2‖z‖2
2, and σ = zn , Eq. (4.14) also proves z is uniformly

ultimately bounded [4, 29].

4.2.3. OTHER SLIDING SURFACE DESIGNS
The sliding variable σ is not necessarily equal to zn , it can also be a linear or nonlinear
function of z i . For example, design σ in the following form:

σ= zn +C n−1zn−1 +C n−2zn−2 + ...+C 1z1 (4.15)
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Design a candidate Lyapunov function as follows:

V = 1

2

n−1∑
i=1

zT
i z i + 1

2
σTσ (4.16)

Reviewing Sec. 4.2.1 and 4.2.2, the closed-loop system dynamics are given as:

ż1 = f 1 +G1x2,d − ẏ r +G1z2 =−K 1z1 +G1z2

ż i = f i +G i x i+1,d − φ̇i−1 +G i z i+1

= −K i z i −GT
i−1z i−1 +G i z i+1, 2 ≤ i ≤ n −1 (4.17)

Using Eqs. (4.15, 4.17), the dynamics of the sliding variable are derived as:

σ̇=C 1(−K 1z1 +G1z2)+
n−1∑
i=2

C i (−K i z i −GT
i−1z i−1 +G i z i+1)+ żn (4.18)

The derivative of the candidate Lyapunov function (Eq. (4.16)) is derived using Eqs. (4.15),
(4.17), (4.18), and (4.8) as:

V̇ = −
n−1∑
i=1

zT
i K i z i + zT

n−1Gn−1zn +σT σ̇

= −
n−1∑
i=1

zT
i K i z i − zT

n−1Gn−1(C n−1zn−1 + ...+C 1z1)+ zT
n−1Gn−1σ

+σT [C 1(−K 1z1 +G1z2)+
n−1∑
i=2

C i (−K i z i −GT
i−1z i−1 +G i z i+1)

+(ẋn,0 +Gn(x0,κ0)∆u +∆d +δ(x ,κ,∆t )− φ̇n−1)] (4.19)

An SMC virtual control termνs is needed to compensator for the uncertainties, faults
and disturbances present in żn . Design the IBSMC input as:

∆uibsmc = Ḡ
−1
n (−ẋn,0 + φ̇n−1 −GT

n−1zn−1 −C 1(−K 1z1 +G1z2)

−
n−1∑
i=2

C i (−K i z i −GT
i−1z i−1 +G i z i+1)−K cσ+νs )

, Ḡ
−1
n (ν′c +νs − ẋn,0) (4.20)

where K c is a positive definite gain matrix. Analogous to the preceding control designs,
νs can be designed using any SMC technique. As an example, following the classical
way as νs = −K s sign(σ), where K s is a positive definite diagonal gain matrix. Assume

‖I −GnḠ
−1
n ‖ ≤ b̄ < 1, and ε′ibs =δ(x ,κ,∆t )+(GnḠ

−1
n − I )(ν′c − ẋn,0)+∆d is bounded, then
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substituting Eq. (4.20) into Eq. (4.19) results in:

V̇ = −
n−1∑
i=1

zT
i K i z i − zT

n−1Gn−1(C n−1zn−1 + ...+C 1z1)+σT (ε′ibs −K cσ−GnḠ
−1
n K s sign(σ))

≤ −[zT
1 , zT

2 , ..., zT
n−1]


K 1 0 ... 0
0 K 2 ... 0
...

...
...

...
Gn−1C 1 Gn−1C 2 ... Gn−1C n−1 +K n−1




z1

z2
...

zn−1


−σT K cσ+

m∑
i=1

(|σi ||ε′ibs,i |+ b̄Ks,i |σi |−Ks,i |σi |)

≤ −[zT
1 , zT

2 , ..., zT
n−1]Q[zT

1 , zT
2 , ..., zT

n−1]T −σT K cσ

−
m∑

i=1
ρi |σi |, ∀Ks,i ≥

ρi +|ε′ibs,i |
1− b̄

, ∀ρi > 0 (4.21)

V̇ ≤ 0 if Q is a positive definite matrix, which can be achieved by properly choosing
the gain matrices C i and K i . If the positive definiteness of Q is achieved, then accord-
ing to Barbalat’s Lemma [5], z i , i = 1,2, ...,n −1, and σ converge to zero in spite of the
perturbation of ε′ibs.

4.2.4. COMPARISONS BETWEEN BSMC AND IBSMC
For the nonlinear dynamics in Eq. (4.1), the standard backstepping control input is de-
sign as:

ubs = Ḡ
−1
n (− f̄ n −K n zn + φ̇n−1 −GT

n−1zn−1), Ḡ
−1
n (νc − f̄ n) (4.22)

whereφn−1 is the same as in Eq. (4.6). As a model-based control approach, the nominal
models f̄ n and Ḡn are used by backstepping in Eq. (4.22). Substituting Eq. (4.22) into
Eq. (4.1) yields:

V̇n =−
n∑

i=1
zT

i K i z i +zT
n ( f n− f̄ n+(GnḠ

−1
n −I )(νc− f̄ n)+d ),−

n∑
i=1

zT
i K i z i +zT

nεbs (4.23)

εbs in the above equation indicates the uncertain vector that remains in the closed-
loop system. If εbs is bounded, then z i , i = 1,2, ...,n, can be proved to be ultimately
bounded by class K functions of εbs [4, 29]. If εbs is unbounded in severe damage cases,
z i , i = 1,2, ...,n will also become unbounded.

To improve the robustness of backstepping control, earlier research suggests com-
bining SMC with backstepping [8, 10, 14–17]. The main idea of this combination is to
use an SMC virtual control input to compensate for the uncertain term εbs. Specially,
the hybrid BSMC input is designed in the following structure:

ubsmc = Ḡ
−1
n (νc +νs − f̄ n) (4.24)

where νs is the SMC virtual control input, which can be designed using any SMC tech-
nique.



4.2. INCREMENTAL BACKSTEPPING SLIDING MODE CONTROL

4

103

After reviewing the BSMC approach, it will be analytically compared with the IBSMC
proposed in Sec. 4.2.2. The main focus of the comparisons are on the control structure,
thus the conclusions draw in this subsection are not constrained by the specific SMC
virtual control design. In other words, the sliding variable can be any function of z i . The
νs in Eqs. (4.24, 4.12) can be designed using any SMC technique, as long as the same
SMC method is consistently used by BSMC and IBSMC for fair comparisons.

The first difference between BSMC and IBSMC can be revealed by Eqs. (4.24, 4.12),
where the nominal model f̄ n is used by BSMC, while the measurements or estimations
of ẋn,0 and u0 are needed by IBSMC. Consequently, IBSMC has less model dependency
than BSMC, but is more sensitive to sensing issues (e.g., sensor noise, delays, etc.).

In the presence of model uncertainties, sudden faults, and external disturbances,
different perturbation terms exist in BSMC and IBSMC, namely εbs in Eq. (4.23) and εibs

in Eq. (4.10). These two perturbation terms have different properties. Actually, εibs is in
a similar form with εindi in [26], expect two differences: 1) εibs contains Gn while εindi

in [26] uses G ; 2) εibs distinguishes the parametric and nonparametric uncertainties in
f n and Gn , which is not the case in εindi. Based on the similarities between εindi and
εibs, the following corollary of the Theorem 2 in [26] is proposed:

Corollary 4 If ‖I −GnḠ
−1
n ‖ ≤ b̄ < 1 for all t , and if ‖δ(x ,κ,∆t )‖ ≤ δ̄, under sufficiently

high sampling frequency, εibs given by Eq. (4.10) is bounded for all t , and is ultimately

bounded by ∆νc b̄+δ̄+∆d
1−b̄

, where∆νc and∆d are the upper bounds of∆νc and∆d in Eq. (4.10),
respectively.

Moreover, εbs (4.23) is in a similar form with εndi in [26]. Therefore, analogous to the
comparisons of εndi and εindi in [26], the following conclusions are drawn for εbs and
εibs:

1. The conditions in Corollary 4 guarantee a bounded εibs, while the boundedness
of εbs is undetermined in the same conditions.

2. Even if both εbs and εibs are bounded, if the sampling frequency is sufficient high,
the upper bound of εibs is smaller than that of εbs, before and after a fault occurs.

3. εibs has smaller variations in different fault cases, while εbs is more fault-case de-
pendent.

The smaller bound of εibs can fundamentally release the control effort of SMC be-
cause for most SMC designs, the required SMC gains are monotonically increasing func-
tions of the uncertainty bounds. As a consequence, inheriting the robustness of both IBS
and SMC, IBSMC is able to attain better robustness using not only reduced model infor-
mation, but also reduced SMC gains (beneficial to chattering reduction). These conclu-
sions will be numerically validated in Sec. 4.4. A reasonable choice of the sampling fre-
quency depends on the specific system characteristics and hardware constraints [29].
It has been proved by flight tests that 50∼100 Hz is suitable for airplane flight con-
trol [23, 24, 30].
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4.3. FAULT-TOLERANT FLIGHT CONTROL SYSTEM DESIGN
In this section, the control methods derived for generic nonlinear uncertain systems
(Eq. (4.1) in Sec. 4.2) will be applied to fault-tolerant flight control problems. The six-
degree-of-freedom dynamics for rigid-aircraft with and without structural damage can
be found in [25]. However, the flight control design in [25] has some limitations. First,
the attitude control in [25] enforces the aircraft to track independent roll, pitch and
heading angle commands. This can be impractical because normally the side-slip an-
gle should be stabilized to zero during maneuvers for minimizing the side force. More-
over, the actuator fault scenarios considered in [25] only include partial loss of control
effectiveness and solid jamming. For these two types of fault, the fault-induced disturb-
ing force and moment coefficients are constant. Time-varying disturbing coefficients
are more challenging for control design. In view of these limitations, the flight con-
trol design in this chapter will minimize the side-slip angle. The solid oscillatory failure
case (OFC), which induces time-varying disturbing coefficients will also be modeled and
evaluated in simulations.

The solid OFC is mainly caused by electronic components in fault mode generating
spurious sinusoidal signals, which propagate through the servo-loop control, and lead
to control surface oscillations [33]. “Solid” means the spurious sinusoidal signals substi-
tute instead of being added to (“liquid” OFC) the normal control signal [33]. If one-side
of elevator or aileron has solid OFC, the corresponding control derivatives are halved,
namely C ′

i j
= µ j Ci j , i = l ,m,n, j = δa ,δe ,δr , µ j = 0.5, with (·)′ indicating the post-fault

condition. Asymmetric actuator faults also invalidate the decoupling between lateral
and longitudinal controls. Specially, Cmδa

will be introduced by asymmetric aileron
fault, while Clδe

and Cnδe
will be introduced by asymmetric elevator fault. Furthermore,

time-varying disturbing force and moment coefficients (C̃x ,C̃y ,C̃z ,C̃l ,C̃m ,C̃n) will be in-
duced by solid OFC. These coefficients are proportional to the control derivatives and
control surface positions, thus they are also spurious sinusoidal signals.

This section considers an aircraft attitude control problem, where the controlled at-
titude angles are chosen as y = x1 = [φ,θ,β]T . φ, θ and β are the roll, pitch angles and
side-slip angle. Their kinematics can be found in [34]. Choose x2 equals the angular rate
ω= [p, q,r ]T , and u equals the deflections of aileron δa , elevator δe and rudder δr , then
the aircraft attitude dynamics [34] are written in a more compact form:

ẋ1 = f 1(x1)+G1(x1)x2

ẋ2 = f 2(x1, x2)+G2(x1, x2)u (4.25)

In the presence of faults, model uncertainties and disturbances, the kinematics of
x1 are unaffected while the dynamics of x2 are perturbed. Therefore, the aircraft atti-
tude dynamics modeled by Eq. (4.25) belong to Eq. (4.1), so the controllers designed in
Sec. 4.2 can then be directly applied to this control problem.

4.4. NUMERICAL VALIDATION
In this section, the robustness of BS, BSMC and IBSMC will be numerically evaluated by
evaluating their ability of passively tolerating faults and uncertainties. “Passive” means
these control methods are not aware of the faults and uncertainties, and consistently
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use the model estimated in the nominal condition. The nominal aerodynamic, thrust
and inertia models are set up using the public data of F-16 [35]. It is noteworthy that
this aerodynamic data for pitching moment coefficient is non-affine in δe , which results
in insolvable control problem for BS and BSMC. By contrast, IBSMC and IBS are able to
solve non-affine in the control problems, because Eq. (4.3) takes partial derivatives with
respect to u. For fair comparisons, an affine in δe model approximated using polyno-
mial functions [9] are consistently used by all the controllers. The dynamics of rudder,
ailerons and stabilators are all modeled as first-order systems. The bandwidth and lim-
its for the actuators can be found in Table 2 of Ref. [25]. A simple proportional-integral
thrust control is designed in a separate control loop to maintain airspeed. This aircraft is
initially trimmed at a steady level flight condition with airspeed V = 500 ft/s and altitude
h = 10,000 ft. The sampling frequency is fs = 100 Hz.

The main focus of this chapter is on the comparisons of different control structures,
which is independent of specific νc and νs designs. For fair comparisons, gain matrices
K 1 = diag([2,2,2]) (in Eq. (4.5)), and K 2 = diag([5,5,5]) (in Eqs. (4.22, 4.9)) are consis-
tently used by all the controllers. The νs for BSMC and IBSMC are both designed using
FRTC SMC method, with σ= zn . The SMC parameters used by both BSMC and IBSMC
(in Eq. (4.14)) are K s = diag([0.5,0.5,0.1]) and γi = 0.3, i = 1,2,3. The control perfor-
mance with varied K s and γi will also be analyzed in the following contexts.

4.4.1. FLIGHT CONTROL IN THE NOMINAL CASE
The references forφ and θ are smoothly combined sigmoid functions as continuous and
differentiable realizations of 3211 signals. As can be seen from Fig. 4.1, |φr | = 20◦, and
|θr −θ∗| = 15◦, where θ∗ is the pitch angle in the trim condition. βr = 0◦ to minimize the
side force during maneuvers.

Fig. 4.1 shows that all the three controllers, BS, BSMC and IBSMC are able to steer the
aircraft to follow the commands. Only small tracking errors present in transition phases,
and they are all ultimately bounded. The control surface deflections are smooth, and
IBSMC has slightly better performance than BS and BSMC.

4.4.2. FLIGHT CONTROL IN THE PRESENCE OF MODEL UNCERTAINTIES
In this subsection, the robustness of the controllers to uncertainties will be evaluated.
The attitude references are the same as references in the nominal case. Parametric
uncertainties are added to the nonlinear system. Specifically, the inertia parameters
Jxx , Jy y , Jzz , Jxz , the damping coefficients Cyr ,Cyp ,Cnr ,Cnp ,Clr ,Clp ,Czq ,Cmq ,Cxq , the con-
trol effectiveness Clδa

,Clδr
,Cnδa

,Cnδr
,Cyδa

,Cyδr
, and the coefficients Cx (α,δe , M), Cz (α,δe , M),

Cm(α,δe , M), Cy (α,β, M),Cl (α,β, M),Cn(α,β, M) are multiplied with random combina-
tions of scaling factors, which are in the range of [0.2,2]. The aircraft responses in the
presence of uncertainties are shown in Fig. 4.2, from which it can be seen IBSMC has the
best tracking performance. Furthermore, the tracking errors using all these three con-

trollers are ultimately bounded. In view of Fig. 4.3, ‖I −GnḠ
−1
n ‖ < 1 is satisfied in this

simulation case, and the bound of εibs is smaller than that of εbs. These results verify the
analyses in Sec. 4.2.4.

For the responses shown in Fig. 4.2, the νs for BSMC and IBSMC are identically de-
signed using FRTC SMC, with the same parameters K s and γi . It can be seen from
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Figure 4.1: Aircraft responses and control inputs in the nominal condition.
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Figure 4.2: Aircraft responses and control inputs in the presence of model uncertainties.

Fig. 4.2 that BSMC using these parameters only brings limited performance improve-
ments to standard backstepping. Recall Eq. (4.14), the ultimate bound of σi can be
reduced by increasing Ks,i and reducing γi . The νs in Eq. (4.13) using difference pa-
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Figure 4.3: Responses of ‖I −GnḠ−1
n ‖ and εbs, εibs in the presence of model uncertainties.

rameters are illustrated in Fig. 4.4.
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Figure 4.4: The FRTC SMC input νs (Eq. (4.13)) with different parameters.

Fig. 4.5 illustrates the influences of SMC gains on the tracking performance of BSMC,
where the gain matrix K s is multiplied with successively increased coefficient c = 1,3,5,
while γi = 0.3 is consistently used. As can be seen from the left subplot of Fig. 4.4, the
increased gains amplify the control effort of νs , which can consequently improve the
tracking performance of BSMC as verified by Fig. 4.5. However, high-gain control not
only amplifies the measurement noise in practice, but can also impose unachievable
commands on actuators. Since actuators have limited bandwidth and nonlinear con-
strains, high-gain control would induce oscillations and potential instabilities, which is
verified in Fig. 4.5 for the c = 5 case. Moreover, BSMC using five-times higher gains than
IBSMC still has inferior robust performance than IBSMC, which can be seen by compar-
ing Fig. 4.5 with Fig. 4.2.

The ultimate bound of σi can also be reduced by diminishing γi (Eq. (4.14)). As
shown by Eq. (4.13) and the right subplot of Fig. 4.4, sig(σ)γ = |σ|γsign(σ) becomes
steeper near σ = 0 as γ approaches zero, which can speed up the convergence near
the sliding surface. This is verified by the tracking performance of BSMC using varies
γ shown in Fig. 4.6. However, if γ= 0, then sig(σ)γ = sign(σ), which means although the
νs designed by Eq. (4.13) is continuous, chattering would present in practice if γ is too
small. This phenomenon is verified in Fig. 4.6 by the γ= 0.05 case. Therefore, trade-offs
should be made between performance and chattering reduction. Furthermore, the per-
formance of IBSMC is better than BSMC with all the tested γ values, which can be seen
by comparing Fig. 4.6 with Fig. 4.2.
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Figure 4.5: The influences of SMC gains on the tracking performance of BSMC.
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Figure 4.6: The influences of SMC parameter γ on the tracking performance of BSMC.

4.4.3. FLIGHT CONTROL IN THE PRESENCE OF ACTUATOR FAULTS

In this subsection, the robustness of BS, BSMC, and IBSMC will be evaluated by their
abilities of passively resisting the left stabilator solid OFC fault. This fault is introduced
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from t = 5 s. Based on the modeling method in Sec. 4.3, the post-fault deflection of
the left stabilator is modeled as δe,l = 10sin(2(t − 5)) (◦), t ≥ 5 s. The right stabilator
is still under control. Because of the fault, Cmδe

is halved, and new control derivatives
Clδe

and Cnδe
are induced. The disturbing coefficients caused by the solid OFC signif-

icantly deteriorate the tracking performance of backstepping, as shown in Fig. 4.7. IB-
SMC shows the best performance over backstepping and BSMC in all the three channels.

‖I −GnḠ
−1
n ‖ < 1 is satisfied in this scenario as shown in Fig. 4.8. It is also illustrated in

Fig. 4.8 that the bound of εibs is smaller than that of εbs. Because of the smaller per-
turbation bound, when the same SMC gains are used, the ultimate bound of z i using
IBSMC has smaller ultimate bound, which is verified by Fig. 4.7.

0 5 10 15 20

φ
 [
°
]

-20

-10

0

10

20

Ref BS BSMC IBSMC

0 5 10 15 20

e
φ
 [
°
]

-5

0

5

10

0 5 10 15 20

δ
a
 [
°
]

-10

-5

0

5

10

0 5 10 15 20

θ
 [
°
]

0

5

10

15

20

0 5 10 15 20

e
θ
 [
°
]

-10

-5

0

5

0 5 10 15 20

δ
e

,r
 [
°
]

-40

-20

0

20

t [s]

0 5 10 15 20

β
 [
°
]

-1

-0.5

0

0.5

t [s]

0 5 10 15 20

e
β
 [
°
]

-0.5

0

0.5

1

t [s]

0 5 10 15 20

δ
r [
°
]

-10

-5

0

5

10

Figure 4.7: Aircraft responses and control inputs with a stabilator solid OFC fault occurs at t = 5 s.
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Figure 4.8: Responses of ‖I −GnḠ−1
n ‖ and εbs, εibs with a stabilator solid OFC fault occurs at t = 5 s.
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4.4.4. FLIGHT CONTROL IN THE PRESENCE OF STRUCTURAL DAMAGES
In this subsection, the robustness of BS, BSMC, and IBSMC will be evaluated by their
abilities of passively resisting structural damages. The damaged aircraft is unable to
execute severe maneuvers, because of its shrunken flight envelop. Therefore, the atti-
tude references are halved in this subsection as compared to the nominal case, namely,
|φr | = 10◦, |θr −θ∗| = 7.5◦, βr = 0◦. The influences of structural damages are modeled
using methods in [25].

During simulations, the right wing lost 25% of its area at t = 3 s. Afterwards, the entire
left stabilator is lost at t = 5 s. Subsequently, one half area of the vertical tail is lost at
t = 7 s. Accompanying with the structural damages, the corresponding control surfaces
are also lost. The aircraft responses and control inputs using BS, BSMC, and IBSMC
are shown in Fig. 4.9, from which it can be seen IBSMC has the best tracking accuracy.
Although the tracking errors using BSMC and BS are ultimately bounded, remarkable
performance deteriorations present. The conclusion that εibs has smaller bound than
εbs is further verified in Fig. 4.10, which consequently leads to the better robustness of
IBSMC.
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Figure 4.9: Aircraft responses and control inputs with wing, stabilator and vertical tail damaged at t = 3, 5, 7 s.

Analogous to the discussions in Sec. 4.4.2, the performance of BSMC can be im-
proved by reducing γ and increasing K s . It has been shown in Fig. 4.6 that chattering
effects would present as γ approaching zero. Fig. 4.11 shows the tracking responses of an
aircraft using BSMC in the second structural damage scenario with gradually increased
gains K s = c ·diag([0.5,0.5,0.1]). It can be seen from Fig. 4.11 that high-gain BSMC can
indeed enhance the tracking performance, but will cause oscillations owing to the ac-
tuator limits, and will also amplify measurement noise in practice. By contrast, IBSMC
with much lower SMC gains is able to provide satisfactory tracking performance in spite
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Figure 4.10: Responses of ‖I −GnḠ−1
n ‖, εbs, εibs with wing, stabilator and vertical tail damaged at t = 3, 5, 7 s.

of structural damages, as illustrated in Fig. 4.9.
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Figure 4.11: The influences of the SMC gains on the tracking performance of BSMC in a structural damage
scenario.

4.5. CONCLUSIONS
This chapter proposes an incremental backstepping sliding mode control (IBSMC) frame-
work for multi-input/output nonlinear strict-feedback systems under the perturbations
of model uncertainties, sudden faults, and external disturbances. Inheriting the mer-
its of both incremental backstepping (IBS) and sliding mode control (SMC), this hybrid
framework has both lower model dependency and enhanced robustness than backstep-
ping and SMC hybridized with backstepping (BSMC). Moreover, the SMC gains needed
by IBSMC are lower than that of BSMC, which is beneficial to chattering reduction and
migrating the effects of measurement noise. In addition, tuning of IBSMC is straightfor-
ward, and is easier than adaptive backstepping.
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For solving the aircraft fault-tolerant control problem, the SMC virtual controls in
BSMC and IBSMC are consistently designed using the finite reaching-time continuous
SMC method. Numerical simulations verify that IBSMC has better robustness over back-
stepping and BSMC, in the presence of model uncertainties, sudden actuator faults and
structural damages. In conclusion, easier implementation, reduced model dependency,
and enhanced robustness make the proposed IBSMC framework promising for enhanc-
ing aircraft survivability in real life.
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5
COMPARISONS OF THREE

CONTROL STRUCTURES FOR

INDUCING HIGHER-ORDER

SLIDING MODES

In Chapter 3, the incremental sliding mode control (INDI-SMC), as a hybridization of

incremental nonlinear dynamic inversion (INDI) and sliding mode control (SMC) was

proposed. This hybrid framework designs the control increment ∆u, and can be used to

achieve higher-order sliding modes in finite time. In the literature, there are also other

control structures for enforcing higher-order sliding modes. A widely adopted approach

is to use the control structure of nonlinear dynamic inversion (NDI) to directly design u.

Another approach is to artificially increase the input–output relative degree and design

the higher-order derivatives of u. Based on these observations, this chapter will make

analytical and numerical comparisons among these three different control structures that

can be used for inducing higher-order sliding modes.

This chapter is based on the following peer-reviewed conference paper:
Wang, X., van Kampen, E., Chu, Q. P., “Comparisons of Three Control Structures for Inducing Higher-Order
Sliding Modes”, European Control Conference, IEEE, Naples, Italy, 2019, pp. 1-8.
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For mitigating the chattering effect in the sliding mode control (SMC), many adap-
tion mechanisms have been proposed to reduce the switching gains. However, less
attention is paid to the control structure, which influences the resulting uncertainty
term and determines the minimum possible gains. This chapter compares three con-
trol structures for inducing higher-order sliding modes in finite time: nonlinear dy-
namic inversion (NDI) based SMC, higher-order sliding mode control (HOSMC) with
artificially increased relative degree, and the recently proposed incremental nonlin-
ear dynamic inversion (INDI) based SMC. The latter two control structures have re-
duced model dependency as compared to NDI-SMC. Moreover, their nominal con-
trol increments are found to be approximately equivalent if the sampling interval is
sufficiently small and if their gains satisfy certain conditions. Under the same cir-
cumstances, the norm value of the resulting uncertainty using INDI-SMC is several
orders of magnitude smaller than those using other control structures. For main-
taining the sliding modes, the minimum possible gains required by HOSMC approxi-
mately equal those needed by INDI-SMC divided by the sampling interval. Neverthe-
less, these two approaches have comparable chattering degrees, which are effectively
reduced as compared to NDI-SMC. The analytical results are verified by numerical
simulations.

5.1. INTRODUCTION

FEATURED by its invariance to the matched uncertainty and its finite time convergence
property, sliding mode control (SMC) is a useful approach for stabilizing perturbed

systems. However, many SMC methods suffer from the chattering phenomenon, which
is the high frequency switching in the control signal. Although continuous approxima-
tions of the signum function and a class of higher-order sliding mode control (HOSMC)
techniques can mitigate the chattering effect, it is shown in [1] that none of these meth-
ods can totally eliminate chattering.

In view of the fact that the chattering amplitude is proportional to the discontinu-
ous switching gain [2], a recent research focus in the SMC community is on adapting
the switching gains to their minimum possible values whilst maintaining the sliding
modes and the finite-time convergence property [1–4]. An adaption mechanism for
the super-twisting algorithm based on direct measurements of the equivalent control
is presented in [2]. A dual-layer nested adaptive method is proposed in [4] and further
developed in [1, 3], which can be applied to super-twisting, conventional (first-order),
and higher-order sliding mode schemes. These methods are derived for the sliding vari-
able dynamics, which contain a lumped uncertainty term and decoupled control inputs.
However, the real system dynamics usually have coupled control inputs, and are per-
turbed by both additive and multiplicative uncertainties. Converting the real coupled
system dynamics to the decoupled sliding variable dynamics is an important interme-
diate step which has been overlooked in the literature. This issue is influential because
different control structures used for this conversion will result in different closed-loop
uncertainty terms which are crucial to the minimum possible values of the sliding mode
control/observer gains.

Feedback linearization, which is also known as nonlinear dynamic inversion (NDI)
in the aerospace community [5–7] is a widely used control structure for solving nonlin-
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ear system sliding mode control problems. A recent review of NDI based SMC with var-
ious sliding orders and virtual control designs can be found in [8]. It is also shown in [8]
that SMC which contains a model-based estimation of the equivalent control [1, 2] is
essentially NDI based. However, the NDI control structure has a contradiction between
the reduction of uncertainty and model dependency. To be specific, reducing the model
dependency of NDI is beneficial to complex system (such as an airplane) control imple-
mentations, but would increase the norm of the remaining uncertainties in the sliding
variable dynamics, which eventually requires higher sliding mode control/observer gain
for perturbation compensations.

In order to solve this contradiction, recent research proposes to use the control struc-
ture of incremental nonlinear dynamic inversion (INDI) for inducing sliding modes [8].
INDI is a so-called, sensor-based control approach developed in the aerospace commu-
nity, which designs the control increment∆u in one sampling interval∆t [5]. The idea of
INDI can be traced back to the late nineties, when it was found in [9] that the feedback of
angular acceleration and control surface position can enhance the robustness of NDI to
model uncertainties. Inheriting this idea, INDI was first proposed in [6], and has shown
promising effectiveness on fault-tolerant flight control [7], helicopter control [10], flexi-
ble aircraft control [11], and high-speed control of a damaged quadrotor with complete
loss of a single rotor [12], in the past decade. A recent research generalized INDI for
generic nonlinear uncertain systems with arbitrary relative degree, without using the
time-scale separation assumption [5]. It is found in [5], that part of the system dynam-
ics and external disturbances are contained in the output derivatives and control inputs
at the previous time step. Therefore, feeding back their latest samples/estimations can
improve the robustness of NDI to regular perturbations while reducing its model depen-
dency. This analytical conclusion is verified by real-world passenger airplane flight tests
in [13, 14]. The sensor-based control idea of INDI is also shared by [15, 16], where the sig-
nals at the previous time step are used to estimate disturbance. Different from [15, 16],
the only model information required by INDI is the estimation of the control effective-
ness matrix. By virtue of the sensor-based nature of INDI, SMC using the control struc-
ture of INDI instead of NDI can simultaneously reduce the control model dependency
and uncertainties remaining in the sliding variable dynamics [8], which is beneficial to
chattering reduction.

Another strategy for chattering mitigation is artificially increasing the input–output
relative degree, and designing the higher-order derivatives of the control input [17, 18].
The actual control input is then integrated from the designed control derivatives. Be-
cause of this integration process, the high frequency chattering can be smoothened. Al-
though this strategy is widely used, the property of the resulting uncertainty term and
its influences on the minimum possible SMC gains remain unclear in the literature. In
this chapter, particular interest is paid to HOSMC which artificially increases the rela-
tive degree by one order (designs u̇). Since u̇ approximately equals ∆u/∆t when ∆t is
sufficiently small, an interesting research question emerges: is there any relationship
between the INDI-SMC and HOSMC with artificially increased relative degree, although
these two methods originate from completely different ideas?

The main contributions of this chapter are the comparisons among three different
control structures that can be used for inducing higher-order sliding modes. These
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three control structures are NDI-SMC and HOSMC with artificially increased relative
degree developed in the SMC community, and the INDI-SMC recently proposed in the
aerospace community. The comparisons are mainly in three aspects: 1) model depen-
dency and the required signals for implementation; 2) the relationships of the nominal
controls; 3) the properties of the resulting uncertainty terms and their influences on the
minimum possible values of the sliding mode control/observer gains.

This chapter is structured as follows: The three control structures will be presented
in Sec. 5.2, analytically compared in Sec. 5.3, and numerically compared in Sec. 5.4.
Main conclusions are drawn in Sec. 5.5.

5.2. THREE CONTROL STRUCTURES FOR INDUCING HIGHER-
ORDER SLIDING MODES

Consider a multi-input/multi-output nonlinear control-affine system

ẋ = f (x)+G(x)u +d x , y = h(x), (5.1)

where f : Rn → Rn and h : Rn → Rm are smooth vector fields. G is a smooth function
mapping Rn → Rn×m , whose columns are smooth vector fields. d x ∈ Rn represents ex-
ternal disturbances. Boldfaces indicate vectors and matrices.

Assumption 2 The vector relative degree of y with respect to u denoted as r = [r1,r2, ...,rm]T

is constant and known, and the corresponding internal dynamics are stable.

By differentiating the output, the input–output mapping of the system is given by

y (r ) =α(x)+B(x)u +d , (5.2)

where y (r ) = [y (r1)
1 , ..., y (rm )

m ]T , B(x) ∈Rm×m , Bi j =Lg j L
ri−1
f hi ,α(x) = [L r1

f h1, ...,L rm
f hm]T ,

d = [L r1
dx

h1, ...,L rm
dx

hm]T , with L
ri
f hi , L ri

dx
hi , Lg j L

ri−1
f hi the corresponding Lie deriva-

tives. The control effectiveness matrix B(x) is nonsingular under Assumption 2.
The control objective is to make the output y track a reference signal y c (t ) = [yc1 (t ), ...,

ycm (t )]T . Assume yci (t ), i = 1, ...,m, and its derivatives up to y (ri+1)
ci

(t ) are bounded for
all t . Choose the sliding variable as σ= y − y c .

Definition 1 [17, 18] Consider the nonlinear system given by Eq. (5.1) and the sliding
variable σ, assume the time derivatives of σi , σ̇i , ...,σi

(ri−1) are continuous functions for
all i = 1, ...,m. The manifold defined as

S r = {x |σi (x) = σ̇i (x) = ... =σi
(ri−1)(x) = 0, i = 1, ...m} (5.3)

is called the “r th-order sliding set” [18, 19]. If this sliding set is non empty and locally
an integral set in the Filippov sense [20], then the motion on S r is called the “r th-order
sliding mode” with respect to the sliding variable σ.

In the following subsections, three control structures for inducing the r th-order slid-
ing mode will be presented.
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5.2.1. NONLINEAR DYNAMIC INVERSION BASED CONTROL

The estimated system dynamics y (r ) = ᾱ(x)+B̄(x)u are used for control design, which
bring both additive uncertaintiesα−ᾱ+d , and multiplicative uncertainties B−B̄. For
inducing the r th-order sliding mode, the nonlinear dynamic inversion (NDI) control
structure is adopted in [18, 21] as:

undi-s = B̄−1(x)(νn +νs + y (r )
c − ᾱ(x)) (5.4)

where y (r )
c = [y r1

c1
, y r2

c2
, ..., y rm

cm
]T . νn and νs are two virtual control terms. This control

structure will be abbreviated as NDI-SMC in the subsequent context. Using Eq. (5.4),
the dynamics of σ are

σ(r ) = y (r ) − y (r )
c = ᾱ(x)+B̄(x)undi-s +εndi-s − y (r )

c

= νn +νs +εndi-s (5.5)

where

εndi-s = (α− ᾱ)+ (BB̄−1 − I )(νn +νs + y (r )
c − ᾱ)

= (α− ᾱ)+ (B−B̄)undi-s +d (5.6)

εndi-s in Eq. (5.6) is the closed-loop uncertainty term caused by model uncertain-
ties, external disturbances, actuator faults, structural damage, etc [8]. If νs can com-
pensate for εndi-s , and if the nominal virtual control νn can stabilize the unperturbed
r th-order integrator chains [18, 22], then the r th-order sliding mode can be established
by Eq. (5.4).

5.2.2. INCREMENTAL SLIDING MODE CONTROL
Incremental sliding mode control (INDI-SMC) is a recently proposed control frame-
work [8], which can simultaneously reduce the model dependency and the minimum
possible switching gains of NDI-SMC. Denote the sampling interval as ∆t . To begin
with, the incremental dynamic equation is derived by taking the first-order Taylor series
expansion of Eq. (5.2) around the condition at t −∆t (denoted by subscript 0) as

y (r ) = y (r )
0 +B(x0)∆u +∆d + ∂[α(x)+B(x)u]

∂x

∣∣∣
0
∆x +R1 (5.7)

where ∆x = x −x0, ∆u = u−u0, ∆d = d −d 0 respectively denote the variations of states,
control inputs and external disturbances in one incremental time step. R1 in Eq. (5.7) is
the expansion remainder, whose Lagrange form is

R1 = 1

2

∂2[α(x)+B(x)u]

∂2x

∣∣∣
m
∆x2 + ∂2[α(x)+B(x)u]

∂x∂u

∣∣∣
m
∆x∆u (5.8)

in which (·)|m means evaluating (·) at a condition where x ∈ (x(t −∆t ), x(t )), u ∈ (u(t −
∆t ),u(t )), and d ∈ (d (t −∆t ),d (t )). In Eq. (5.8), R1 is not a function of ∆u2, ∆d 2, ∆u∆d .
This can be examined using Eq. (5.2), where y (ρ) is linear with respect to both u and d .

Based on Eq. (5.7), the INDI-SMC framework is proposed as [8]

∆uindi-s = B̄−1(x0)(νn +νs + y (r )
c − y (r )

0 ) (5.9)

The total control command vector for the actuators is uindi-s = uindi-s,0 +∆uindi-s .
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Remark 11 uindi-s,0 denotes the latest sampled actuator position vector, instead of the
control command given to the actuator at the previous time step. The flight tests in [23]
shows that this sensing process can mitigate the influences of actuator dynamics. If ac-
tuator dynamics are not considered, uindi-s =

∑
∆uindi-s , which is essentially a numerical

integration process.

As compared to the NDI based control structure (Eq. (5.4)), INDI-SMC is indepen-
dent of the model information ᾱ(x), which simplifies the implementation process. Only
the estimation of the control effectiveness (B̄) is needed by INDI-SMC. The calculation
of the partial derivatives in Eq. (5.7) is not needed for control implementation. It will be
shown later that the multiplications of these partial derivatives with ∆x are treated as
perturbations in the closed-loop system. This approach also inherits the sensor-based
nature of INDI, since the measurements/estimations of y (r )

0 and uindi-s,0 are needed.

For some physical systems, including aircraft, y (r )
0 and uindi-s,0 can be directly mea-

sured [13, 14].
Finally, substituting the control input (Eq. (5.9)) into Eq. (5.7), and using the defini-

tion of σ, the resulting closed-loop dynamics are

σ(r ) = y (r ) − y (r )
c = y (r )

0 +B̄(x0)∆uindi-s +εindi-s − y (r )
c

= νn +νs +εindi-s (5.10)

where

εindi-s = ∂[α(x)+B(x)uindi-s ]

∂x

∣∣∣
0
∆x +R1|u=uindi-s + (B−B̄)|0∆uindi-s +∆d (5.11)

in which (B − B̄)|0 denotes B(x0)− B̄(x0). R1|u=uindi-s means substituting u = uindi-s

into the remainder R1 in Eq. (5.8). It can be seen that Eq. (5.10) is in the same form
as Eq. (5.5), thus the r th-order sliding mode can be achieved by properly designing νn

and νs . However, the NDI and INDI based control structures result in different closed-
loop perturbation terms: εndi-s and εindi-s . The properties of these two terms, and their
influences on the minimum possible gains will be elaborated in Sec. 5.3.2 and Sec. 5.3.3.

5.2.3. HIGHER-ORDER SLIDING MODE CONTROL WITH ARTIFICIALLY IN-
CREASED RELATIVE DEGREE

Consider artificially increasing ri by one order for all i = 1, ...,m. Dynamically extend
Eq. (5.2) as

y (r+1) = ∂(α(x)+B(x)u)

∂x
ẋ +B(x)u̇ + ḋ (5.12)

Design the control derivative in the structure of

u̇ho-s = B̄−1(x)(ν′n +ν′s + y (r+1)
c ) (5.13)

which is referred to as HOSMC with artificially increased r . This control structure results
in

σ(r+1) = y (r+1) − y (r+1)
c = B̄(x)u̇ho-s +εho-s − y (r+1)

c

= ν′n +ν′s +εho-s (5.14)
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where

εho-s =
∂(α(x)+B(x)uho-s )

∂x
ẋ + (B−B̄)u̇ho-s + ḋ (5.15)

It is noteworthy that the y (r+1)
c term is viewed as uncertainty by [24], and is not used

in Eq. (5.13). It is suggested in this chapter to include this term in Eq. (5.13) as a known
term. In view of Eq. (5.14), the r + 1th- order sliding mode can be induced if ν′s can
compensate for εho-s , and if the nominal virtual control ν′n can achieve the stabilization
of the r +1th-order unperturbed integrator chains [18, 22].

The actual control is integrated from Eq. (5.13) and can be further derived as

uho-s =
∫ t

0
u̇ho-s =

∫ t−∆t

0
u̇ho-s +

∫ t

t−∆t
u̇ho-s

≈ uho-s,0 + u̇ho-s (t )∆t (5.16)

which means the control increment of uho-s in ∆t approximately equals

∆uho-s ≈ u̇ho-s (t )∆t = B̄−1(x)(ν′n +ν′s + y (r+1)
c )∆t (5.17)

The control increment of uho-s is derived in Eqs. (5.16) and (5.17) for the convenience
of comparison with Eq. (5.9). As compared to ∆uindi-s in Eq. (5.9), uho-s is also indepen-
dent of the model information ᾱ(x). However, the y (r+1)

c term used in Eq. (5.17) is not
needed by INDI-SMC (Eq. (5.9)). Other similarities and differences between this method
and INDI-SMC will be further explored in Sec. 5.3.

5.3. ANALYTICAL COMPARISONS
In this section, the three control structures presented in Sec. 5.2 will be analytically com-
pared. The nominal control parts will be considered in 5.3.1. The properties of the per-
turbation terms will be compared in 5.3.2. The perturbation compensations and mini-
mum possible gain requirements will be discussed in 5.3.3.

5.3.1. COMPARISONS OF THE NOMINAL CONTROL
This subsection considers the nominal case where the perturbation terms in Eqs. (5.5),
(5.10), and (5.14) all equal to zero. The virtual controls νs and ν′s for perturbation com-
pensation are also zero. Under this circumstance, the closed-loop dynamics using NDI-
SMC and INDI-SMC become r th- order integrator chains with the nominal virtual con-
trolνn as an input, namelyσ(r ) =νn . Analogously, using the control structure of HOSMC
with artificially increased r ,σ(r+1) =ν′n according to Eq. (5.14). Three approaches of the
nominal dynamics stabilization will be discussed.

ASYMPTOTIC STABILIZATION

It is classical to stabilize the unperturbed integrator chains asymptotically by linear vir-
tual controls. For NDI and INDI based SMC, νn in Eqs. (5.4, 5.9) is consistently designed
as:

νn =−K r−1σ
(r−1) −K r−2σ

(r−2)...−K 0σ (5.18)
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where the positive definite diagonal gain matrices K r−1 = diag{Kr−1,i }, ...,K 0 = diag{K0,i },
i = 1, ...,m are designed such that the r th- order polynomials pri +Kr−1,i pri−1 + ...+K0,i

are Hurwitz.
Analogously, for asymptotically stabilizing the r +1th- order integrator chains, ν′n in

Eq. (5.17) is designed as:

ν′n =−K ′
rσ

(r ) −K ′
r−1σ

(r−1) −K ′
r−2σ

(r−2)...−K ′
0σ (5.19)

where K ′
r = diag{K ′

r,i }, ...,K ′
0 = diag{K ′

0,i }, i = 1, ...,m are designed such that the r +1th-

order polynomials pri+1 +K ′
ri

pri +K ′
r−1,i pri−1...+K ′

0,i are Hurwitz.

Using the definition of the sliding variable, σ(r ) = y (r ) − y (r )
c in Eq. (5.19). Therefore,

the nominal control part B̄−1(x0)(νn + y (r )
c − y (r )

0 ) in Eq. (5.9) approximately equals the
nominal control increment B̄−1(x)ν′n∆t in Eq. (5.17) if

1. B̄−1(x0) ≈ B̄−1(x)

2. y (r ) ≈ y (r )
0

3. K ′
r = I m

∆t , K ′
r−1 = K r−1

∆t , ..., K ′
0 = K 0

∆t .

where I m is an m dimensional identity matrix. Using the continuity of x , lim∆t→0 ‖x −
x0‖ = 0. Therefore, the first condition can be satisfied when ∆t is sufficiently small. y (r )

0
used by Eq. (5.9) represents the value of y (r ) at the previous time step, which can be
directly measured [5, 14] or estimated [13, 23]. For HOSMC, y (r ) is normally numerically
differentiated from y using, for example, sliding mode differentiator [17, 24]. Although
based on different ideas, y (r ) and y (r )

0 become close under sufficiently small∆t . The last
gain condition can be derived by comparing Eq. (5.9) with Eq. (5.17), and comparing
Eq. (5.18) with Eq. (5.19).

FINITE TIME STABILIZATION

The unperturbed integrator chains can also be stabilized in finite time using nonlinear
continuous virtual controls.

Proposition 3 Consider the unperturbed integrator chain set σ(r ) = νn , there exists εi ∈
(0,1), i = 1, ...,m, such that for every αi ∈ (1− εi ,1), the r th- order sliding mode is estab-
lished in finite time by

νn = [νn,1,νn,2, ...,νn,m]T

νn,i = −Kr−1,i |σ(ri−1)
i |αri ,i sign(σ(ri−1)

i )− ...−K0,i |σi |α1,i sign(σi ), i = 1, ...,m (5.20)

where K r−1 = diag{Kr−1,i }, ...,K 0 = diag{K0,i }, and their elements are chosen such that the
r th- order polynomials pri +Kr−1,i pri−1 +Kr−2,i pri−2...+K0,i are Hurwitz. The scalars
α1,i , ...,αri ,i satisfy

αk−1,i =
αk,iαk+1,i

2αk+1,i −αk,i
, k = 2, ...,ri , i = 1, ...,m (5.21)

with αri+1,i = 1, αri ,i =αi .
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Proof : Using Definition 1, this proposition is essentially a multi-input/multi-output
generalization of the Proposition 8.1 in [22]. ä

Using Proposition 3, there exists ε′i ∈ (0,1), i = 1, ...,m, such that for every α′
i ∈ (1−

ε′i ,1), the r +1th- order sliding mode is established in finite time by

ν′n = [ν′n,1,ν′n,2, ...,ν′n,m]T

ν′n,i = −K ′
r,i |σ(ri )

i |α
′
ri +1,i sign(σ(ri )

i )− ...−K ′
0,i |σi |α

′
1,i sign(σi ), i = 1, ...,m (5.22)

The gain choices are the same as in Eq. (5.19). The scalars α′
1,i , ...,α′

ri+1,i satisfy

α′
k−1,i =

α′
k,iα

′
k+1,i

2α′
k+1,i −α′

k,i

, k = 2, ...,ri +1, i = 1, ...,m (5.23)

with α′
ri+2,i = 1, α′

ri+1,i =α′
i .

Comparing Eq. (5.20) with Eq. (5.22), the nominal control part B̄−1(x0)(νn + y (r )
c −

y (r )
0 ) in Eq. (5.9) approximately equals the nominal control increment B̄−1(x)ν′n∆t in

Eq. (5.17) if

1. B̄−1(x0) ≈ B̄−1(x)

2. y (r ) ≈ y (r )
0

3. K ′
r = I m

∆t , K ′
r−1 = K r−1

∆t , ..., K ′
0 = K 0

∆t .

4. α′
ri ,i =αri ,i , ..., α′

1,i =α1,i .

5. εi ¿ 1, α′
ri+1,i =

2α′
ri ,i

1+α′
ri ,i

.

As discussed in subsection 5.3.1, the first two conditions can be satisfied using suf-
ficiently small ∆t . If the third and fourth conditions are satisfied, νn,i in Eq. (5.20) ex-

actly equals ν′n,i +K ′
r,i |σ

(ri )
i |α

′
ri +1,i sign(σ(ri )

i ) in Eq. (5.22) multiplied with∆t . Ifα′
ri+1,i = 1,

then |σ(ri )
i |α

′
ri +1,i sign(σ(ri )

i ) =σ(ri )
i = y (ri )

i − y (ri )
ci

, which means the first terms in Eq. (5.22),

multiplied with ∆t , approximate y (r )
c − y (r )

0 in Eq. (5.9), under the second and third con-
ditions. In order to enforce the finite time convergence, the fifth condition is proposed,
in which α′

ri+1,i satisfies Eq. (5.23), while α′
ri+1,i and α′

ri ,i =αri ,i are sufficiently close to
one by requiring εi ¿ 1.

Remark 12 The unperturbed integral chains can also be stabilized in fixed-time using
continuousνn andν′n [25]. Analogous conditions can be derived which make B̄−1(x0)(νn+
y (r )

c − y (r )
0 ) in Eq. (5.9) and B̄−1(x)ν′n∆t in Eq. (5.17) approximately equal.

5.3.2. COMPARISONS OF THE PERTURBATION TERMS
εndi-s (Eq. (5.6)) and εindi-s (Eq. (5.11)) have been compared in [8, 26]. The main conclu-
sions are summarized as follows:

1. The boundedness conditions for εndi-s are stricter than those of εindi-s .
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2. Even if εndi-s is bounded, under the same perturbation circumstance, there exists
a ∆t such that the upper bound of εindi-s is smaller than that of εndi-s .

3. εindi-s has less variations in different fault scenarios, while εndi-s is more fault-case
dependent.

By virtue of these properties, the INDI-SMC framework is able to passively resist a
wide range of uncertainties with lower sliding mode control/observer gains, as com-
pared to the widely used NDI-SMC framework.

The properties of εho-s will be addressed here. Using Eq. (5.15), the first-order ap-
proximation of εho-s equals

εho-s ≈
∂(α(x)+B(x)uho-s )

∂x

∆x

∆t
+ (B−B̄)

∆uho-s

∆t
+ ∆d

∆t
(5.24)

Therefore, in comparison with Eq. (5.11), εho-s (t )∆t ≈ εindi-s (t ), ε̇ho-s (t )∆t ≈ ε̇indi-s (t )
if uho-s (t ) ≈ uindi-s (t ). Although uho-s and uindi-s are designed using different control
structures, their nominal increments are approximately equivalent if the conditions in
Sec. 5.3.1 are satisfied. Moreover, based-on the equivalent control concept [2, 27], the
required average control to maintain the sliding mode is identical in spite of the control
structures. To be specific, once the r +1th-order sliding mode is achieved by HOSMC,
σr ≡ 0, thus uho-s ≡ B−1(y (r )

c −α−d ) according to Eq. (5.2). This value is also what
uindi-s must take on average to maintain the r th-order sliding mode [27]. In other words,
once the r th and r+1th-order sliding modes are respectively achieved by INDI-SMC and
HOSMC, the condition uho-s ≈ uindi-s is satisfied.

5.3.3. PERTURBATION COMPENSATIONS AND THE MINIMUM POSSIBLE GAINS
The three control structures discussed in Sec. 5.2 result in different closed-loop pertur-
bation terms, which have different properties Eq. (5.3.2). It will be shown in this subsec-
tion that the minimum possible gains in νs and ν′s are determined by the norms of these
perturbation terms.

FIRST-ORDER PERTURBATION COMPENSATION

For stabilizing the perturbed dynamics in Eqs. (5.5, 5.10), design an auxiliary sliding
variable as s = σ(r−1) − ∫

νn , then ṡ = νs + εndi-s/indi-s under the control of NDI and
INDI based SMC. These dynamics can be stabilized using a first-order SMC as νs =
−K s sign(s) = −[Ks,1sign(s1), ...,Ks,msign(sm)]T . The sufficient condition to enforce a
sliding motion in finite time is that Ks,i (t ) > η+ |εndi-s/indi-s,i (t )|, which coincides with
the time-varying minimum possible gain requirement in [1]. η is a small positive design
constant for satisfying the η-reachability condition [1, 27].

When the sliding surface s = 0 is reached, the equivalent closed-loop dynamics [18,
27] becomeσ(r ) =νn , which recover the nominal condition despite the presence of per-
turbations. Using the νn designed in Sec. 5.3.1, the r th-order sliding mode with respect
to σ is achieved.

Analogously, for HOSMC with artificially increased r , design an auxiliary sliding vari-
able as s ′ = σ(r ) − ∫

ν′n , then ṡ ′ = ν′s + εho-s using Eq. (5.14). s ′ can be stabilized at
zero in finite time by ν′s =−K ′

s sign(s ′) =−[K ′
s,1sign(s′1), ...,K ′

s,msign(s′m)]T , with K ′
s,i (t ) >



5.3. ANALYTICAL COMPARISONS

5

125

η+ |εho-s,i (t )| for all t . As a result, within finite time, σ(r+1) = ν′n on the sliding surface
s ′ = 0. Using ν′n designed in Sec. 5.3.1 ensures the establishment of the r +1th-order
sliding mode with respect to σ.

Since there exists a ∆t , such that the bound of εindi-s is smaller than that of εndi-s

(5.3.2), the minimum possible gains needed by INDI-SMC are lower than those required
by NDI-SMC. Moreover, it has been shown in 5.3.2 that once the sliding modes are
achieved, εho-s (t )∆t ≈ εindi-s (t ). Therefore, for maintaining the sliding modes, the mini-
mum possible value of K ′

s (t ) approximately equals K s (t ) used by INDI-SMC divided by
∆t .

Remark 13 Although K ′
s (t ) used by HOSMC with artificially increased r should be sev-

eral orders of magnitude higher than K s (t ) used by INDI-SMC, the chattering magni-
tudes of these two methods are comparable since ν′s is multiplied with ∆t in ∆uho-s

(Eq. (5.17)).

SUPER-TWISTING OBSERVER

In this subsection, νs and ν′s will be designed by a super-twisting observer. The classical
fixed-gain super-twisting observer will be designed first, then the observer with time-
varying gain will be discussed.

Assumption 3 The time derivatives of εndi-s (t ) (Eq. (5.6)), εindi-s (t ) (Eq. (5.11)), εho-s (t )
(Eq. (5.15)) are bounded. Denote their upper-bounds as: |ε̇ndi-s,i (t )| < ε̄ndi-s,i , |ε̇indi-s,i (t )| <
ε̄indi-s,i , |ε̇ho-s,i (t )| < ε̄ho-s,i .

Use the same auxiliary sliding variables s and s ′ as in 5.3.3, and design

νs =−λ|s|1/2sign(s)−β
∫

sign(s) (5.25)

where λ= diag{λi }, λi = 1.5ε̄1/2
ndi-s/indi-s,i , β= diag{βi }, βi = 1.1ε̄ndi-s/indi-s , i = 1, ...,m,

then s = ṡ = 0 is established in finite time [4]. On the sliding surfaces, νs (t ) observes
−εndi-s/indi-s (t ) according to Eqs. (5.5, 5.10), thus the unperturbed dynamics σ(r ) = νn

are recovered in finite time. Analogously, s ′ is stabilized in finite time by

ν′s =−λ′|s ′|1/2sign(s ′)−β′
∫

sign(s ′) (5.26)

where λ′ = diag{λ′
i }, λ′

i = 1.5ε̄1/2
ho-s,i , β = diag{βi }, βi = 1.1ε̄ho-s,i , i = 1, ...,m, then ν′s

observes −εho-s in finite time. Consequently, the unperturbed dynamicsσ(r+1) =ν′n are
achieved in finite time. Adopting ν′n designed in 5.3.1 enforces the r +1th-order sliding
mode with respect to σ.

Once the sliding modes are achieved ε̇ho-s (t )∆t ≈ ε̇indi-s (t ) according to the analyses
in 5.3.2. Therefore, in view of the gain conditions, λ′ approximately equals λ used by
INDI-SMC divided by

p
∆t to maintain the sliding mode. Moreover, β′ approximately

equals β used by INDI-SMC divided by ∆t .
The super-twisting observers designed by Eqs. (5.25, 5.26) use fixed gain matrices.

Although the discontinuous signum functions have been integrated, the chattering ef-
fects can not be totally eliminated [1, 2]. This issue inspires some recent researches to
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use time-varying β(t ) and β′(t ) for mitigating the chattering effects. Different adap-
tation mechanisms are proposed in [1–3] which make βi (t ) and β′

i (t ) as low as possi-
ble, whilst still guaranteeing that βi (t ) > |ε̇ndi-s/indi-s,i (t )|, β′

i (t ) > |ε̇ho-s,i (t )|, i = 1, ...,m.
In view of these conditions, for maintaining the sliding modes, the minimum possible
value of β′(t ) still approximately equals β(t ) used by INDI-SMC divided by ∆t .

Remark 14 When the super-twisting observers are used, the chattering magnitude of
HOSMC with artificially increased r is similar with that of INDI-SMC, because ν′s will be
multiplied with ∆t in Eq. (5.17).

Remark 15 The influences of control structures on the minimum possible control/ob-
server gain values are not restricted to the two preceding νs /ν′s designs. This is because
for most sliding mode control/observer designs, the minimum possible gains are pos-
itively correlated with the norms of the closed-loop uncertainties or the norms of the
corresponding derivatives.

5.4. NUMERICAL COMPARISONS
Consider a nonlinear control-affine system:

ẍ = ẋ +3x +x2 +10u +d (5.27)

where the external disturbance d = 0.5sin(10t ). The control aim is making the output
y = x track the reference signal yc = 5sin(t ) in finite time. The relative degree r of the
system equals two. As compared to Eq. (5.2), α = ẋ + 3x + x2, B = 10 for this system.
Assume the estimated model used for control design is ᾱ= x +0.5x2, B̄ = 15, which has
mismatches with the plant. The disturbance d is unknown by the controllers. Design
the sliding variable asσ= y−yc . The initial conditions are: y(t = 0) = 2, ẏ(t = 0) = 0. The
sampling frequency is fs = 1000 Hz (∆t = 0.001 s).

Using Eqs. (5.4, 5.9, 5.13), the control inputs using the three discussed control struc-
tures are

undi-s = (1/15)(νn +νs + ÿc − (x +0.5x2)) (5.28)

∆uindi-s = (1/15)(νn +νs + ÿc − ÿ0) (5.29)

u̇ho-s = (1/15)(ν′n +ν′s +
...
y c ) (5.30)

νn in Eqs. (5.28, 5.29) are designed using Proposition 3 with the control parameters
K0 = 16, K1 = 6.4, α2 = 0.98. α1 is calculated using Eq. (5.21) as α1 = 0.96. Design ν′n us-
ing Eq. (5.22, 5.23), while satisfying the five conditions in subsection 5.3.1, then the nom-
inal control increment B̄−1(x)ν′n∆t in Eq. (5.17) becomes close to the nominal control
increment of INDI-SMC (Eq. (5.9)). Explicitly, K ′

0 = 16/∆t , K ′
1 = 6.4/∆t , K ′

2 = 1/∆t , α′
2 =

0.98, α′
1 = 0.96, α′

3 = 0.99. νs and ν′s are designed using the super-twisting observer
in 5.3.3, their gain selection issues will be addressed later on.

Evolutions of the output, and the derivatives of σ using three different control struc-
tures are shown in Fig. 5.1. It can be seen that the 2nd -order sliding mode with respect to
σ is achieved within finite time by both NDI-SMC and INDI-SMC despite the presence
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Figure 5.1: Evolutions of the output y , and the derivatives of σ.

of the disturbance and model mismatches. The 3r d -order sliding mode is also estab-
lished by HOSMC within finite time. Because the control parameters are chosen cor-
respondingly, similar transient responses are present, with |σndi-s −σindi-s | < 0.020 and
|σindi-s −σho-s | < 0.007 throughout the entire time history.

As discussed in subsection 5.3.2, the three considered control structures result in
different perturbation terms. The evolutions of these terms are shown in the left sub-
plot of Fig. 5.2, from which it can be seen that εndi-s (Eq. (5.6)) is quite different form
εindi-s /∆t (Eq. (5.11)) and εho-s (Eq. (5.15)). This difference can be revealed by compar-
ing the formulations of the uncertainty terms, where it can be found that only εndi-s

contains α− ᾱ. Worse ᾱ estimation would result in increased |εndi-s |. The upper bound
of εindi-s is three orders of magnitude smaller than that of εndi-s and εho-s . Except for
rare time instances where εndi-s = 0, while εindi-s 6= 0, |εindi-s (t )| < |εndi-s (t )| throughout
the entire time history. This inequality is beneficial to chattering reduction, since the
time-varying minimum possible switching gain is determined by the absolute value of
the uncertainty (subsection 5.3.3).

Moreover, for all t ∈ (0,10], |εindi-s /∆t − εho-s | < 1.24, which verifies the analyses in
Sec. 5.3.2. As a consequence, K ′

s (t ) used by HOSMC should be three orders of magnitude
higher than Ks (t ) used by INDI-SMC if νs and ν′s are designed using the first-order SMC
(5.3.3). Nevertheless, these two methods will lead to comparable chattering magnitude
according to Remark 13.

The evolutions of the uncertainty derivatives are shown in the right subplot of Fig. 5.2.
ε̇ndi-s has quite different responses as compared to ε̇indi-s /∆t and ε̇ho-s . For all t ∈ (0,10],
|ε̇indi-s /∆t − ε̇ho-s | < 2.51, which verifies the analyses in subsection 5.3.2. In this simu-
lation case, ε̄ndi-s = 120, ε̄ho-s = 350, while ε̄indi-s is only 0.35. Using the gain conditions
imposed on Eqs. (5.25, 5.26), the super-twisting observations are illustrated in Fig. 5.3.
All the three observers converge within 0.3 seconds, after which the nominal dynamics
are recovered, thus the higher-order sliding modes are established in spite of perturba-
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Figure 5.2: Evolutions of the uncertainties (left) and their derivatives (right).

tions as shown in Fig. 5.1.
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Figure 5.3: The real and observed (via super-twisting observers) uncertainties.

Even though the observations provided by the super-twisting observers are contin-
uous, chattering is only attenuated instead of being totally rejected by the integration
in Eqs. (5.25, 5.26) [1]. This is verified by Fig. 5.4, where the NDI-SMC control input has
a chattering magnitude of about 0.06. By contrast, because of the three orders of mag-
nitude smaller observer gains, uindi-s is much smoother, which is verified by Fig. 5.4 in
both time and frequency domains. The right subplot of Fig. 5.4 illustrates the Welch’s
power spectral density estimation of the control inputs (using the Matlab command
“pwelch”). It can also be observed from Fig. 5.4 that although HOSMC has even higher
observer gains than NDI-SMC, the chattering magnitude of uho-s is comparable with
that of uindi-s . This has been explained by Remark 14 and is verified by Fig. 5.4. Further-
more, because the five conditions in subsection 5.3.1 are satisfied, HOSMC with artifi-
cially increased r and INDI-SMC provide similar control inputs as |uindi-s−uho-s | < 0.014
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for all t ∈ (0,10] s.
It can be seen from the evolutions of the uncertainty derivatives that once the sliding

modes are established, the gains determined by the upper bounds can be conservative.
As argued in subsection 5.3.1, even if the observer gains are adapted, their minimum
possible values are still constrained by the norms of the uncertainty derivatives. In view
of the right subplot of Fig. 5.2, INDI-SMC has the smallest minimum possible observer
gains among all the three discussed control structures.
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Figure 5.4: Control inputs in the time (left) and the frequency (right) domains.

In view of the preceding results, when the five conditions in 5.3.1 are satisfied, INDI-
SMC and HOSMC with artificially increased r have similar performance and chattering
magnitude. Their resulting uncertainties, uncertainty derivatives, and the minimum
possible gains are directly connected by∆t . A natural research question would be: what
if the conditions in 5.3.1 are unsatisfied? This is tested by a case where the previously
used K ′

0 and K ′
1 are multiplied with 0.3, with the results shown in Fig. 5.5.

In this case, Fig. 5.5 shows that the transient responses of INDI-SMC and HOSMC
no long resemble each other. Since K ′

0 and K ′
1 are reduced, it takes longer (six seconds)

for HOSMC to converge. However, once the sliding modes are enforced, uho-s ≈ uindi-s .
Furthermore, εho-s (t ) ≈ εindi-s (t )/∆t , ε̇ho-s (t ) ≈ ε̇indi-s (t )/∆t after t = 6 s in Fig. 5.5. These
results verify the analyses in subsection 5.3.2.

5.5. CONCLUSIONS
In this chapter, three control structures for inducing higher-order sliding modes: nonlin-
ear dynamic inversion based sliding mode control (abbreviated to NDI-SMC, which de-
signs undi-s ), incremental sliding mode control (indicated as INDI-SMC, which designs
∆uindi-s ), and higher-order sliding mode control (HOSMC) with artificially increased rel-
ative degree by one order (designs u̇ho-s ) are compared analytically and numerically.
undi-s needs both the estimations of system dynamics and control effectiveness for con-
trol implementation, while only the estimated control effectiveness is needed by∆uindi-s

and u̇ho-s . Nevertheless,∆uindi-s depends on the measurements/estimations of the out-
put derivatives, while u̇ho-s relies on the numerically differentiated output derivatives
and the higher-order derivatives of the tracking commands.
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Figure 5.5: A test case in which the conditions in 5.3.1 are not satisfied.

Although the considered HOSMC and INDI-SMC originate from completely differ-
ent ideas, their nominal control increments are found to be approximately equivalent if
the sampling interval ∆t is sufficiently small and if their control parameters satisfy the
conditions presented in subsection 5.3.1. When these conditions are satisfied, similar
transient responses and control performance are achieved by HOSMC and INDI-SMC.
Otherwise, although their transient responses would be different, once the higher-order
sliding modes are achieved, the control efforts needed to maintain the sliding modes
become the same.

In the presence of external disturbances and model uncertainties, these three con-
trol structures result in different closed-loop uncertainty terms, namely εndi-s , εindi-s and
εho-s . It is verified in this chapter that there exists a ∆t such that ‖εindi-s (t )‖ < ‖εndi-s (t )‖
almost everywhere. Moreover, it is found that once the sliding modes are enforced,
εho-s (t )∆t ≈ εindi-s (t ), ε̇ho-s (t )∆t ≈ ε̇indi-s (t ). For most sliding mode control/observer
designs, the minimum possible gains are determined by the norms of the uncertainty
terms or the norms of the corresponding derivatives. Therefore, for maintaining the
sliding modes, the minimum possible gains required by HOSMC approximately equal
those needed by INDI-SMC divided by ∆t . Even so, these two control structures lead
to comparable chattering magnitudes, which are efficaciously reduced as compared to
NDI-SMC.
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QUADROTOR FAULT-TOLERANT

INCREMENTAL SLIDING MODE

CONTROL DRIVEN BY SLIDING

MODE DISTURBANCE OBSERVERS

In Chapter 3, the incremental sliding mode control (INDI-SMC), which hybridizes the in-

cremental nonlinear dynamic inversion (INDI) and sliding mode control (SMC) was pro-

posed. The effectiveness of this hybrid control will be evaluated by quadrotor flight tests

in this chapter. The derivations in Chapter 3 will also be improved. Specifically, the in-

fluences of external disturbances and sudden actuator faults will be considered in both

derivations and robustness analysis. In this chapter, SMC driven by sliding mode distur-

bance observers (SMDO) will be implemented. It will be shown that the reduced model

dependency of INDI-SMC/SMDO and its smaller uncertainty variations can simplify the

implementation process. Furthermore, this chapter will confirm that a wide range of ac-

tuator faults and external disturbances can be passively tolerated by INDI-SMC/SMDO,

with reduced and fixed control and observer gains.

This chapter is based on the following article:
Wang, X., Sun, S., van Kampen, E., and Chu, Q.P., “Quadrotor Fault-Tolerant Incremental Sliding Mode Con-
trol Driven by Sliding Mode Disturbance Observers,”Aerospace Science and Technology, Vol. 87, 2019, pp.
417–430. doi:10.1016/j.ast.2019.03.001.
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This chapter proposes an incremental sliding mode control driven by sliding mode
disturbance observers (INDI-SMC/SMDO), with application to a quadrotor fault tol-
erant control problem. By designing the SMC/SMDO based on the control structure
of the sensor-based incremental nonlinear dynamic inversion (INDI), instead of the
model-based nonlinear dynamic inversion (NDI) in the literature, the model depen-
dency of the controller and the uncertainties in the closed-loop system are simul-
taneously reduced. This allows INDI-SMC/SMDO to passively resist a wider variety
of faults and external disturbances using continuous control inputs with lower con-
trol and observer gains. When applied to a quadrotor, both numerical simulations
and real-world flight tests demonstrate that INDI based SMC/SMDO has better per-
formance and robustness over NDI based SMC/SMDO, in the presence of model un-
certainties, wind disturbances, and sudden actuator faults. Moreover, the implemen-
tation process is simplified because of the reduced model dependency and smaller
uncertainty variations of INDI-SMC/SMDO. Therefore, the proposed control method
can be easily implemented to improve the performance and survivability of quadro-
tors in real life.

6.1. INTRODUCTION

CHARACTERIZED by mechanical simplicity, high maneuverability, and task adaptabil-
ity, autonomous quadrotors have attracted considerable interests in academic and

industrial communities. A recent research revealed the usage of quadrotors has a po-
tential for reducing the greenhouse gas emissions and energy consumption [1]. Due to
the lack of redundancies, rotor failures have high impacts on quadrotor safety. To make
widespread applications of quadrotors possible in the future, improving their reliability
while maintaining affordability becomes more and more important.

Being invariant (better than just robust) to matched uncertainties [2, 3], sliding mode
control (SMC) is a promising candidate to fulfill this goal. A variety of SMC methods have
been proposed for quadrotors to resist external disturbances and to cope with faults [4–
14]. In spite of the varieties in SMC designs, for most SMC algorithms, the required
control gains are positively correlated with uncertainty bounds (for first-order SMC),
or the bounds of uncertainty derivatives (for higher-order SMC). However, high-gain
SMC methods are problematic, they amplify the measurement noise, excite unmodeled
dynamics, and aggravate the well-known chattering phenomenon [15]. On account of
these side-effects, one of the research focuses in the SMC community is on achieving
the minimum possible value of the SMC gains [15–18].

Two effective approaches can be used to reduce the SMC gains. One is using a
continuous model-based preliminary feedback control term to roughly cancel the non-
linearities and dynamic couplings, such that only the remaining uncertainties need to
be compensated by SMC. Regrading nonlinear control problems, this feedback term is
commonly derived by dynamically inverting nonlinear algebraic equations, namely, by
using nonlinear dynamic inversion (NDI). Examples can be given for both first-order [4–
9, 12, 19] and higher-order [11, 13, 20, 21] sliding mode control methods. The other ap-
proach is incorporating the uncertainty estimations, for example by using sliding mode
disturbance observers (SMDO), such that only the estimation errors need to be dealt
with by SMC [8, 13, 19, 22]. Although these two approaches have their advantages, it is
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impractical and tedious to pursue a perfect model. Moreover, the switching gains used
in SMDO still need to be larger than the uncertainty bounds or their derivatives [8, 13,
19, 22]. Even though continuity can be retained by using a filtering process in the equiv-
alent control estimations of SMDO, the high-frequency switching component can only
be attenuated instead of being totally rejected [19]. Therefore, it is valuable to design
a control method which could fundamentally reduce the control efforts of SMC/SMDO
whilst requiring less model knowledge.

Incremental nonlinear dynamic inversion (INDI) is a sensor-based control method,
which not only has less model dependency, but also obtains better robustness as com-
pared to the NDI control [23, 24]. INDI was initially proposed in [25], and has been
successfully applied on the angular rate control [26] and position control [27] prob-
lems of quadrotors. Flight tests on a CS-25 certified passenger aircraft demonstrate that
INDI outperforms NDI, in the presence of model uncertainties, sensor noises, and real-
world disturbances [23]. Recently, this INDI control method was reformulated in [24]
to broaden its applicability. The stability and robustness of this method are also ana-
lyzed in [24] using Lyapunov methods and the nonlinear system perturbation theories.
It has been proved in [24] that for a nonlinear system with stable internal dynamics, if
the remaining regular perturbation term in INDI is bounded, then the states will be ulti-
mately bounded by a class K function of the regular perturbation bound. Although the
ultimate bound of the states can be reduced by increasing the sampling frequency and
the control gains, these two approaches have practical limitations.

A nonlinear control framework named incremental sliding mode control (INDI-SMC),
which hybridizes the reformulated INDI with SMC was proposed in [28]. This hybridiza-
tion inherits the advantages and remedies the drawbacks of both methods. On the one
hand, by introducing a SMC term into INDI, the influences of the remaining regular per-
turbation term can be compensated. On the other hand, by designing SMC based on the
sensor-based INDI control framework, the model dependency and the minimum possi-
ble control gains of SMC can simultaneously be reduced. Nevertheless, Ref. [28] still has
some limitations. First of all, the influences of sudden faults were not explicitly consid-
ered in the control derivations and the stability analyses. Also, the external disturbances
were not included in the control derivations, analyses and simulation tests. Finally, only
a classical first-order SMC hybridized with INDI was numerically verified in [28], whilst
the consequences of incorporating SMDO have not been demonstrated yet. These is-
sues will be dealt with in the present chapter.

The main contributions of this chapter are the proposal of incremental sliding model
control driven by sliding mode disturbance observers (INDI-SMC/SMDO), and its appli-
cation to a quadrotor fault tolerant control problem. Apart from its lower model depen-
dency, the proposed method also has improved robustness and performance as com-
pared to SMC/SMDO designs based on NDI in the literature. Moreover, by virtue of the
sensor-based characteristic of INDI, the control objectives can be achieved using lower
switching gains, which effectively mitigates the chattering effects of SMC. Furthermore,
a wider range of disturbances and faults can be passively resisted without gain adap-
tion. Finally, the effectiveness of this method is verified by both numerical simulations
and real-world flight tests.

The structure of this chapter is as follows: Sec. 6.2 proposes the INDI-SMC/SMDO



6

138 QUADROTOR FAULT-TOLERANT INCREMENTAL SMC DRIVEN BY SMDO

method and analyzes its stability and robustness. Theoretical comparisons with NDI
based SMC/SMDO are also conducted in Sec. 6.2. Both the NDI and INDI based SM-
C/SMDO methods are applied to a quadrotor fault tolerant control problem in Sec. 6.3.
The effectiveness of the proposed INDI-SMC/SMDO method is demonstrated by simu-
lations in Sec. 6.4 and by flight tests in Sec. 6.5. Main conclusions are drawn in Sec. 6.6.

6.2. INCREMENTAL SLIDING MODE CONTROL DRIVEN BY SLID-
ING MODE DISTURBANCE OBSERVERS

Consider a nonlinear multi-input/multi-output control-affine system:

ẋ = f (x ,κ(t ))+G(x ,κ(t ))u +d (t ), y = x , (6.1)

where x ∈ Rn ,u ∈ Rn , f (x ,κ(t )) ∈ Rn ,G(x ,κ(t )) = [g 1, g 2, .., g n] ∈ Rn×n , g i ∈ Rn , i =
1,2, ...,n. d ∈Rn represents the bounded external disturbances. To indicate the sudden
fault at t = t f during flight, κ(t ) ∈ R is designed as a step function, with t < t f , κ = 0
indicates the fault-free case and t ≥ t f , κ= 1 denotes the post-fault condition. f and G
are expanded as:

f = f̄ + ( f f − f̄ )κ+ f̂ , G = Ḡ + (G f −Ḡ)κ+Ĝ (6.2)

In the preceding equation, f̄ , Ḡ are the nominal dynamics used for controller design,
f f , G f denote the post-fault dynamics, and f̂ , Ĝ represent the model uncertainties as
continuous functions of x .

Assumption 4 G(x ,κ(t )) in Eq. (6.1) is nonsingular for all t .

Assumption 4 constrains the damage intensity considered in the present chapter.
If G(x ,κ(t )) becomes singular because of faults, subspace control strategies need to be
used. For example, a subspace control strategy is used in conjunction with incremen-
tal nonlinear dynamic inversion (INDI) in [29] for achieving the high speed flight (over
9 m/s) of a damaged quadrotor with complete loss of a single rotor.

The control aim is to design a continuous sliding mode control (SMC) input that
achieves decoupled asymptotic output tracking y c −y = e → 0, in the presence of model
uncertainties, external disturbances, and sudden faults. The output reference y c should
be differentiable with continuous ẏ c . In the context of the sliding mode control, the slid-
ing variable σ is designed such that when σ = 0 is reached, the desired error dynamics
are achieved. For fair comparisons, a sliding variable designed as

σ= e +K c

∫
edt (6.3)

will be consistently used in this chapter. K c = diag{Kci }, i = 1,2, ..,n, and Kci are chosen
to achieve desired error dynamics.

In subsection 6.2.1, SMC/sliding mode disturbance observers (SMDO) based on the
control structure of NDI will be introduced first as a benchmark, then INDI-SMC/SMDO
will be proposed in subsection 6.2.2. These two control approaches will be compared
analytically in subsection 6.2.3.
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6.2.1. NDI-SMC/SMDO
Using Eq. (6.1), the dynamics of the sliding variable in Eq. (6.3) are given by:

σ̇ = ė +K c e = (ẏ c +K c e − f̄ )+ ( f̄ − f −d )−Ḡu − (G −Ḡ)u

, Ψ̄+∆Ψ−Ḡu −∆Gu (6.4)

in which ∆Ψ and ∆G are unavailable for controller design. It is noteworthy that ∆G rep-
resents the multiplicative uncertainties in the control effectiveness matrix, which was
not considered in Ref. [8, 19].

In order to reduce the control gains, SMC can be used along with SMDO, which can
estimate bounded uncertainties. SMDO designs are independent of the model struc-
ture, only the bounds of uncertainties are needed by the classical SMDO designs, and
the bounds of the uncertainty derivatives are required by the higher-order SMDO (e.g.,
Super-twisting SMDO [8, 19, 22]) designs. This chapter designs a classical SMDO as an
example, where the auxiliary sliding variables are introduced as:

s =σ+ z , ż =−Ψ̄+Ḡu −νo (6.5)

Substituting Eq. (6.4) into Eq. (6.5) yields:

ṡ = (∆Ψ−∆Gu)−νo ,−εndi −νo (6.6)

Denote the control input as undi, then using Eqs. (6.2, 6.4), εndi in Eq. (6.6) is rewrit-
ten as:

εndi =−∆Ψ+∆Gundi = [ f̂ +Ĝundi +d ]+κ[( f f − f̄ )+ (G f −Ḡ)undi] (6.7)

Assumption 5 For all x ∈Rn , κ ∈R, and bounded external disturbance d ∈Rn , εndi in
Eq. (6.7) is bounded.

The boundedness of the perturbations is the precondition of many robust control
methods. For example, Assumption 5 is made in [19, 30–33]. Design νo as:

νo = K s Sign(s) = [Ks,1sign(s1),Ks,2sign(s2), ...,Ks,nsign(sn)]T , Ks,i ≥ η+|εndi,i| (6.8)

where η is a small positive constant. Then s is stabilized at zero in finite time. This can be
proved by introducing a candidate Lyapunov function V1 = 1

2 sT s. Using Eqs. (6.6, 6.8),
the time derivative of V1 is:

V̇1 = sT ṡ = sT (−εndi −νo) ≤
n∑

i=1
|si ||εndi,i |−Ks,i |si | ≤ −η

n∑
i=1

|si | (6.9)

sT ṡ ≤−η∑n
i=1 |si | is referred to as the η reaching law, which ensures si = 0 is reached

in finite time tr,i ≤ |si (0)|/η [18, 19]. Therefore, in view of Eq. (6.6), the equivalent con-
trol [2, 19] νeq,i estimates exactly −εndi,i , ∀ti ≥ tr,i . One way to obtain νeq is filtering
νo as ν̂eq,i (s) = GLPF (s)νo,i (s), in which s is a Laplace variable and GLPF (s) is the trans-
fer function of a low-pass filter. When first-order low-pass filters with time constant
τi are used, ν̂eq estimates −εndi with a small estimation error proportional to τi , i.e.,
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|−εndi,i − ν̂eq,i | <O (τi ). Using ‖ · ‖ to denote the 2-norm of a vector, then ‖εndi + ν̂eq‖ <
O (τ) , ‖[O (τ1), ...,O (τn)]T ‖. As presented in [19], τi can be taken very small, and its
lower boundary is the sampling interval of the onboard computer.

Following the SMDO design, the continuous SMC/SMDO control input that asymp-
totically stabilizes σ is designed as:

undi = Ḡ
−1

(Ψ̄+Kσσ+ ν̂eq) (6.10)

where Kσ = diag{Kσ,i }, Kσ,i > 0. Substituting Eqs. (6.6, 6.10) into Eq. (6.4) leads to σ̇ =
−Kσσ+ [∆Ψ−∆Gundi]− ν̂eq =−Kσσ− (εndi + ν̂eq). Introducing a candidate Lyapunov
function V2 =σT Pσ, where P = P T > 0 is the solution of the Lyapunov equation P Kσ+
K T
σP = I . I ∈Rn×n is an identity matrix. Then when t > max{tr,i }, the time derivative of

V2 is:

V̇2 = −σT [P Kσ+K T
σP ]σ−2σT P (εndi + ν̂eq)

< −‖σ‖2 +2‖σ‖‖P‖O (τ)

≤ −γ‖σ‖2, ∀‖σ‖ ≥ 2‖P‖O (τ)

1−γ (6.11)

with constant γ ∈ (0,1). Eq. (6.11) proves that under Assumptions 4 and 5, the NDI-
SMC/SMDO control law given by Eq. (6.10), in which ν̂eq is observed using a SMDO with
gain condition given in Eq. (6.8) ensures that the stateσ is ultimately bounded by a class
K function [24, 34] of O (τ). Theoretically, this ultimate bound can be made arbitrarily
small [19, 31] by reducing τi and increasing Kσ,i .

Remark 16 The control input given by Eq. (6.10) is essentially based on the control
structure of nonlinear dynamic inversion (NDI), whose virtual control now contains
three parts: the classical NDI virtual control ẏ c + K c e, the SMC virtual control Kσσ,
and the SMDO virtual control ν̂eq. Therefore, Eq. (6.10) is referred to as NDI based SMC
driven by SMDO in this chapter, which is abbreviated to NDI-SMC/SMDO.

Remark 17 Many other SMC/SMDO designs in the literature also contain a prelim-
inary feedback term using NDI to reduce the control efforts of SMC/SMDO. For ex-
ample, adaptive fuzzy gain-scheduling SMC [12], first-order SMC using the equivalent
control estimated from the nominal model [4, 6–9, 19], adaptive SMC [5], higher-order
SMC [20–22], adaptive super-twisting SMC [11], modified super-twisting SMC using a
higher-order sliding mode observer [13].

One well-known drawback of NDI is its model dependency, which consequently re-
duces its robustness to model uncertainties, on-board faults and external disturbances.
SMC/SMDO is able to observe and compensate for bounded perturbations, as shown
in Eqs. (6.9, 6.10). Even though the SMC/SMDO control input designed by Eq. (6.10) is
continuous, the high-frequency switchings ofνo are only attenuated by filtering, instead
of being totally rejected [19]. In other words, the ν̂eq term in Eq. (6.10) is still oscillating.
A method that can simultaneously reduce the model dependency of NDI and mitigate
the side effects of SMC/SMDO would be beneficial.
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6.2.2. INDI-SMC/SMDO
INDI-SMC/SMDO aims to reduce the model dependency, and improve the robustness
of NDI-SMC/SMDO, without using high control/observer gains. Denote the sampling
interval as∆t . To begin with, the incremental dynamic equation is derived by taking the
first-order Taylor series expansion of Eq. (6.1) around the condition at t −∆t (denoted
by the subscript 0) as:

ẏ = ẏ 0 +G(x0,κ0)∆u + ∂[ f (x ,κ)+G(x ,κ)u]

∂x

∣∣∣
0
∆x

+∂[ f (x ,κ)+G(x ,κ)u]

∂κ

∣∣∣
0
∆κ+∆d +R1 (6.12)

In the above equation, ∆x = x − x0, ∆u = u −u0, respectively denote the variations
of states and control inputs in one incremental time step ∆t . ∆κ = κ−κ0 denotes the
changes of the fault indicator κ, while∆d = d −d 0 denotes the variations of the external
disturbances d in ∆t . ẏ 0 is the latest sampled output derivative vector. If ẏ 0 cannot be
measured, it can be estimated from the sampled outputs. The approaches of obtaining
ẏ 0 for control implementation will be further discussed in Sec. 6.5. R1 in Eq. (6.12) is the
expansion remainder, using Eqs. (6.1, 6.2), the Lagrange form of the remainder is

R1 = 1

2

∂2[ f +Gu]

∂2x

∣∣∣
m
∆x2 + ∂G

∂x

∣∣∣
m
∆x∆u + (G f −Ḡ)|m∆u∆κ

+
∂[( f f − f̄ )+ (G f −Ḡ)u]

∂x

∣∣∣
m
∆x∆κ (6.13)

in which (·)|m means evaluating (·) at a condition where x ∈ (x(t −∆t ), x(t )), u ∈ (u(t −
∆t ),u(t )), d ∈ (d (t −∆t ),d (t )), and κ ∈ (κ(t −∆t ),κ(t )). In Eq. (6.13), R1 is not a function
of ∆u2, ∆d 2, ∆κ2, nor the coupling terms ∆x∆d , ∆κ∆d , ∆u∆d . This can be examined
using Eqs. (6.1, 6.2). As compared to the incremental dynamic equations derived in [24,
28], Eq. (6.12) takes partial derivatives with respect to both κ and d .

The same sliding variable σ in Eq. (6.3) is also used by INDI-SMC/SMDO for fair
comparisons. However, the controller will be designed based on Eq. (6.12) instead of
Eq. (6.1). The dynamics of σ are then derived as:

σ̇ = ė +K c e = [
ẏ c +K c e − ẏ 0

]−Ḡ∆u − (G −Ḡ)∆u

−
[
∂[ f (x ,κ)+G(x ,κ)u]

∂x

∣∣∣
0
∆x + ∂[ f (x ,κ)+G(x ,κ)u]

∂κ

∣∣∣
0
∆κ+∆d +R1

]
, Ψ̄

′+∆Ψ′−Ḡ∆u −∆G∆u (6.14)

Design an auxiliary sliding variable s ′ = σ+ z ′, ż ′ = −Ψ̄′+ Ḡ∆u −ν′o , then by using
Eq. (6.14), the dynamics of s ′ are:

ṡ ′ = (∆Ψ′−∆G∆u)−ν′o ,−εindi −ν′o (6.15)

εindi in Eq. (6.15) is the lumped perturbation term in INDI-SMC/SMDO. Denote the
control input as uindi, which will be designed in Theorem 4. The control input in one
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incremental time step is denoted as ∆uindi. Using Eq. (6.2), the closed-loop values of the
perturbations in Eq. (6.14) are further derived as:

δ(x ,κ,∆t ) ,
[
∂[ f (x ,κ)+G(x ,κ)u]

∂x

∣∣∣
0
∆x + ∂[ f (x ,κ)+G(x ,κ)u]

∂κ

∣∣∣
0
∆κ+R1

] ∣∣∣
u=uindi

= δb(x ,∆κ,∆t )+δd (x ,∆t )κ0 +δκ(x)∆κ (6.16)

in which

δb(x ,∆κ,∆t ) = ∂[ f̄ + f̂ + (Ḡ +Ĝ)uindi]

∂x

∣∣∣
0
∆x +R1|u=uindi

δd (x ,∆t ) =
∂[( f f − f̄ )+ (G f −Ḡ)uindi]

∂x

∣∣∣
0
∆x

δκ(x) = [( f f − f̄ )+ (G f −Ḡ)uindi]|0 (6.17)

Therefore, recall Eq. (6.14), εindi in Eq. (6.15) is written as:

εindi =−∆Ψ′+∆G∆uindi = [δb +Ĝ∆uindi +∆d ]+κ0δd +κ(G f −Ḡ)∆uindi +δκ∆κ (6.18)

For a bounded εindi, design ν′o in Eq. (6.15) as:

ν′o = K ′
s Sign(s ′) = [K ′

s,1sign(s′1),K ′
s,2sign(s′2), ...,K ′

s,nsign(s′n)]T , K ′
s,i ≥ η+|εindi,i| (6.19)

where η is a small positive constant.

Theorem 4 For system described by Eqs. (6.1, 6.2), and the sliding variable σ in Eq. (6.3),
if the INDI-SMC/SMDO control is designed as

∆uindi = Ḡ
−1

(Ψ̄
′+K ′

σσ+ ν̂′eq) (6.20)

where Ψ̄
′

is defined in Eq. (6.14), K ′
σ = diag{K ′

σ,i }, K ′
σ,i > 0, and ν̂′eq is low-pass filtered

from ν′o in Eq. (6.19), then under Assumption 4, for a bounded εindi (Eq. (6.18)),σwill be
ultimately bounded by an arbitrarily small bound.

Proof : Chose a candidate Lyapunov function V3 = 1
2 s ′T s ′, and use Eqs. (6.15, 6.19) lead

to:

V̇3 = s ′T ṡ ′ = s ′T (−εindi −ν′o) ≤
n∑

i=1
|s′i ||εindi,i |−K ′

s,i |s′i | ≤ −η
n∑

i=1
|s′i | (6.21)

Therefore, according to the η reaching law [18, 19], the sliding surfaces s′i = 0, i =
1,2, ...,n are reached in finite time t ′r,i ≤ |s′i (0)|/η. On the sliding surfaces, using Eq. (6.15),

the equivalent control [2, 19] ν′eq,i equals −εindi,i . This equivalent control can be esti-

mated by filtering ν′o as ν̂′eq,i (s) = GLPF (s)ν′o,i (s), where GLPF (s) is the transfer function

of a low-pass filter. Consequently, ν̂′eq,i estimates −εindi,i in finite time with a small esti-

mation error proportional to the time constant of the filter, i.e., |−εindi,i − ν̂′eq,i | <O (τi ).

In a vector form, ‖εindi + ν̂′eq‖ <O (τ), ‖[O (τ1), ...,O (τn)]T ‖.
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Use the observed perturbation term ν̂′eq, and substitute Eqs. (6.18, 6.20) into Eq. (6.14)
result in:

σ̇=−K ′
σσ+ [∆Ψ′−∆G∆uindi]− ν̂′eq =−K ′

σσ− (εindi + ν̂′eq) (6.22)

Introducing a candidate Lyapunov function V4 = σT P ′σ, where P ′ = P ′T > 0 is the
solution of the Lyapunov equation P ′K ′

σ+K ′T
σ P ′ = I . Then when t > max{t ′r,i }, the time

derivative of V4 is:

V̇4 = −σT [P ′K ′
σ+K ′T

σ P ′]σ−2σT P ′(εindi + ν̂′eq)

< −‖σ‖2 +2‖σ‖‖P ′‖O (τ)

≤ −γ‖σ‖2, ∀‖σ‖ ≥ 2‖P ′‖O (τ)

1−γ (6.23)

with constant γ ∈ (0,1). Eq. (6.23) proves σ is ultimately bounded by a class K func-
tion [24, 34] of O (τ). In theory, this ultimate bound can be made arbitrarily small [19, 31]
by reducing τi and increasing K ′

σ,i . ä
The total control command of INDI-SMC/SMDO is uindi = uindi|0 +∆uindi, where

∆uindi is designed as Eq. (6.20), uindi|0 is the latest sampled uindi. If uindi|0 is not directly
measurable, it can also be estimated online [35]. In view of Eqs. (6.14, 6.20), the con-
trol law designed using the structure of INDI does not require the model information
of f . Even through the model dependency of INDI-SMC/SMDO is reduced, its robust-
ness is enhanced by virtue of its sensor-based structure [24, 28, 36]. This distinguishes
INDI-SMC/SMDO from Ref. [37, 38], where the nominal model of f is still needed. The
sensor-based structure also has lower computation load than the online dynamic recon-
struction using neural networks [39]. Apart from its reduced model dependency, other
benefits of using the INDI control structure in SMC/SMDO designs will be further ex-
plored.

For both NDI and INDI based SMC/SMDO, the boundedness of the perturbation
term is the precondition of controller design. The boundedness of εndi for all t is as-
sumed in Assumption 5. Instead of making a similar assumption for εindi, it will be
shown in Theorem 5 that some less strict conditions can guarantee the boundedness
of εindi.

Assumption 6 δκ(x) in Eq. (6.17) is bounded by δ̄κ for t f ≤ t < t f +∆t .

Assumption 6 is less strict than Assumption 5. It can be seen from Eq. (6.7) and
Eq. (6.17) that the κ[( f f − f̄ )+(G f −Ḡ)undi] term contained in εndi corresponds to δκ(x)
in εindi. However, only the boundedness ofδκ(x) for a short time interval∆t is needed in
Assumption 6, while the boundedness of the entire εndi for all t is required in Assump-
tion 5. Since κ(t ) is a step function to indicate a sudden fault,∆κ is a single square pulse
with magnitude of one and width of ∆t . Consequently, the term δκ(x)∆κ is only non-
zero during a short time interval t f ≤ t < t f +∆t . After t = t f +∆t , the main influences
of the fault have already been included by the measurements/estimations at the latest
sampled condition.

Assumption 7 In Eq. (6.17), ‖δb(x ,∆κ,∆t )‖ ≤ δ̄b , while ‖δd (x ,∆t )‖ ≤ δ̄d .



6

144 QUADROTOR FAULT-TOLERANT INCREMENTAL SMC DRIVEN BY SMDO

Since x is continuously differentiable, lim∆t→0 ‖∆x‖ = 0. Then if the partial deriva-
tives of f and G in Eq. (6.1) with respect to x , up to any order, are bounded, according to
the expressions in Eq. (6.17), the norm values of δb and δd can be reduced by increasing
the sampling frequency.

Theorem 5 If ‖I −GḠ
−1‖ ≤ b̄ < 1 for all t , under Assumptions 6 and 7, for sufficiently

high sampling frequency, εindi given by Eq. (6.18) is ultimately bounded.

Proof : Using Eqs. (6.14, 6.18, 6.20), εindi is written as

εindi = δ(x ,κ,∆t )+∆d +∆GḠ
−1

(Ψ̄
′+K ′

σσ+ ν̂′eq)

= δ(x ,κ,∆t )+∆d + (GḠ
−1 − I )((ẏ c +K c e)+K ′

σσ+ ν̂′eq − ẏ 0) (6.24)

Define the lumped virtual control term as ν= (ẏ c +K c e)+K ′
σσ+ν̂′eq, which contains

three parts: the classical INDI virtual control ẏ c +K c e, the SMC virtual control K ′
σσ, and

the observation term ν̂′eq. These three terms are all continuous in time.
Using the definitionσ= e+K c

∫
edt , e = y c −y , and the closed-loop dynamics given

by Eq. (6.22), then
σ̇=−K ′

σσ− (εindi + ν̂′eq) = ẏ c − ẏ +K c e (6.25)

Therefore
ẏ = (ẏ c +K c e)+K ′

σσ+ ν̂′eq +εindi =ν+εindi (6.26)

Eq. (6.26) is valid for all t , thus for the previous time step, ẏ 0 =ν0+εindi0 . Substituting
this equation into Eq. (6.24) yields:

εindi = δ(x ,κ,∆t )+∆d + (GḠ
−1 − I )(ν− ẏ 0)

= (I −GḠ
−1

)εindi0 − (I −GḠ
−1

)(ν−ν0)+δ(x ,κ,∆t )+∆d

, Eεindi0 −E∆ν+δ(x ,κ,∆t )+∆d (6.27)

which can be written in a recursive way as:

εindi(k) = E (k)εindi(k −1)−E (k)∆ν(k)+δ(k)+∆d (k) (6.28)

k in the above equation indicates the k-th time step. Since ∆κ is only non-zero for
t f ≤ t < t f +∆t , then δκ∆κ is bounded under Assumption 6. Recall Eq. (6.16), then
under Assumptions 6 and 7, ‖δ(x ,κ,∆t )‖ ≤ ‖δb(x ,∆κ,∆t )‖+‖δd (x ,∆t )‖·1+‖δκ(x)∆κ‖ ≤
δ̄b + δ̄d + δ̄κ, δ̄.

Furthermore, ν is designed to be continuous in time, thus

lim
∆t→0

‖ν−ν0‖ = 0, ∀x ∈Rn (6.29)

which also indicates that ∀ ∆ν > 0,∃ ∆t > 0, s.t . for all 0 < ∆t ≤ ∆t , ∀x ∈ Rn , ‖ν−ν0‖ ≤
∆ν. In other words, there exists a ∆t that guarantees the boundedness of ν−ν0. Also,
this bound can be further diminished by increasing the sampling frequency. In addi-
tion, for a bounded disturbance vector d , its increment in one time step ∆d is also
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bounded. Denote this bound as ∆d . Using these bounds, and recall the condition

‖E‖ = ‖I −GḠ
−1‖ ≤ b̄ < 1 in this theorem, Eq. (6.28) satisfies:

‖εindi(k)‖ ≤ (b̄)k‖εindi(0)‖+
k∑

j=1
(b̄)k− j+1‖∆ν( j )‖+

k−1∑
j=1

(b̄)k− j ‖δ( j )+∆d ( j )‖+‖δ( j )+∆d ( j )‖

≤ (b̄)k‖εindi(0)‖+∆ν
k∑

j=1
(b̄)k− j+1 + (δ̄+∆d)

k−1∑
j=1

(b̄)k− j + (δ̄+∆d)

= (b̄)k‖εindi(0)‖+∆ν b̄ − b̄k+1

1− b̄
+ (δ̄+∆d)

1− b̄k

1− b̄
(6.30)

Since b̄ < 1, Eq. (6.30) satisfies:

‖εindi‖ ≤
b̄∆ν+ δ̄+∆d

1− b̄
, as k →∞ (6.31)

In conclusion, εindi is bounded for all k, and is ultimately bounded by b̄∆ν+δ̄+∆d
1−b̄

. ä
Remark 18 Theorem 5 in this chapter improves the Theorem 1 in [28] in three aspects:
1) consideration of the external disturbances d ; 2) consideration of the sudden faults,
as δ(x ,κ,∆t ) is a function of the fault indicator κ; 3) the virtual control ν in this chapter
also includes the contributions from SMC and SMDO, while theνc in [28] only considers
the classical INDI virtual control term.

Remark 19 Theorem 5 proves that a diagonally dominate structure of GḠ
−1

, a suffi-
ciently high sampling frequency, as well as Assumptions 6 and 7 guarantee a bounded
εindi. This bound can also be further diminished by increasing the sampling frequency.
By contrast, εndi is independent of ∆t , and its boundedness is undetermined under
the same conditions. Therefore, for the feasibility of the NDI-SMC/SMDO design, the
stricter Assumption 5 needs to be imposed.

6.2.3. COMPARISONS BETWEEN NDI AND INDI BASED SMC/SMDO
A block diagram is shown by Fig. 6.1, in which two switches are used to transform be-
tween NDI and INDI based SMC/SMDO. When these switches are connected to black
solid lines, the INDI-SMC/SMDO control structure is activated, where the controller
uses the measurements/estimations of ẏ 0 and uindi|0. On the contrary, when the switches
are connected to blue dashed lines, the NDI-SMC/SMDO control structure is activated,
which depends on the model f̄ (x). This block diagram mainly illustrates the control
structures, so the gain matrices Kσ, K s can be different for these two approaches.

As can be seen from the derivations of NDI and INDI based SMC/SMDO and Fig. 6.1,
the same SMC/SMDO design is used to compensate for different perturbations, εndi and
εindi. The properties of these perturbations are crucial to the stability and robustness of
the closed-loop systems. As discussed in subsection 6.2.2, εindi is bounded when the
conditions in Theorem 5 are satisfied, while the boundedness of εndi is undetermined
under the same conditions. Moreover, it has been proved in [28] that there exists a ∆t
such that εindi has smaller bound as compared to εndi. This feature of the incremen-
tal framework is fundamentally beneficial to reducing the switching gains in SMC [28].
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Figure 6.1: Block diagram for INDI-SMC/SMDO (black solid lines) and NDI-SMC/SMDO (blue dashed lines).

However, only the model uncertainties are considered in [28]. In this chapter, the prop-
erties of εndi and εindi will be compared considering model uncertainties, external dis-
turbances and sudden faults. Their influences on SMC/SMDO design will also be re-
vealed.

Denote the fault instant as t = t f , the values of εndi and εindi will be analyzed in three
cases:

1. Pre-fault t < t f : κ0 = κ= 0, ∆κ= 0.

2. Fault instant t f ≤ t < t f +∆t : κ0 = 0, κ= 1, ∆κ= 1.

3. Post-fault t ≥ t f +∆t : κ0 = κ= 1, ∆κ= 0.

For the pre-fault condition, recall Eqs. (6.7, 6.18), εndi = f̂ + Ĝundi +d , while εindi =
δb + Ĝ∆uindi +∆d . ‖ f̂ ‖ is normally large because f̂ contains the uncertainties of iner-
tia and aerodynamic properties for aerospace systems, which are the most challenging
parts to model. On the contrary, since ‖∆x‖ vanishes towards zero as ∆t goes to zero,
‖δb‖ can become negligible under sufficiently high sampling frequency. Also, when
undi 6= 0, there exists a ∆t that ensures ‖Ĝ‖‖∆uindi‖ < ‖Ĝ‖‖undi‖ [24, 28]. As compared
to the fixed-wing aircraft control, this inequality is easier to fulfill in quadrotor control,
because the control inputs (rotor speeds) are far from zero for overcoming gravity. More-
over, most external disturbances in real life are continuous, thus lim∆t→0 ‖d‖ = 0. In
other words, when d 6= 0, ∃∆t , s.t . ‖∆d‖ < ‖d‖. For the discontinuous disturbances,
such as a bird strike or a sudden collision, the influences of d can be analyzed in the
same way as that of κ. In summary, when t < t f , if d 6= 0, undi 6= 0, there exists a∆t , such
that the upper bound of εindi is smaller than that of εndi.

During t f ≤ t < t f +∆t , κ0 = 0, κ = 1, ∆κ = 1. Recall Eqs. (6.7, 6.18), an additional
term ( f f − f̄ )+ (G f −Ḡ)undi is added to εndi, while (G f −Ḡ)∆uindi +δκ is added to εindi.
Using the formulation of δκ (Eq. (6.17)), and the condition uindi = uindi|0 +∆uindi, it can
be seen that these two additional perturbation terms have comparable bounds.

When compared to the pre-fault condition, εndi is augmented by ( f f − f̄ )+ (G f −
Ḡ)undi in the post-fault condition, while δd + (G f − Ḡ)∆uindi is added to εindi. As dis-
cussed in subsection 6.2.2, the δκ(x)∆κ term in εindi converges to zero after the fault.
Even though the multiplicative uncertain term (G f − Ḡ)∆uindi still exists in εindi, there
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exists a ∆t that ensures ‖(G f − Ḡ)‖‖∆uindi‖ < ‖(G f − Ḡ)‖‖undi‖, when undi 6= 0. More-
over, system using the INDI control structure is only perturbed by δd instead of f f − f̄ .
Consequently, after the fault occurs, if d 6= 0, undi 6= 0, there exists a ∆t , such that the
upper bound of εindi is smaller than that of εndi.

In summary, there exists a sampling interval ∆t , such that in the perturbed circum-
stances, if undi 6= 0, the upper bound of εindi is smaller than that of εndi, before and
after the fault. Also, the upper bound of εindi can be further diminished by decreas-
ing ∆t . These properties of εindi can fundamentally reduce the control efforts of SM-
C/SMDO, because for most SMC and SMDO methods, the required switching gains are
monotonically increasing functions of the uncertainty bounds. As a consequence, the
SMC/SMDO designs based on the incremental control structure can achieve better per-
formance and robustness using not only less model information but also reduced gains,
as compared to those NDI based methods. The robustness of the incremental control
structure is contributed by its sensor-based characteristic, that the uncertainties can be
reduced by fully exploiting the measurements.

It is worth noting that εindi also has smaller variations in different fault cases, while
the augmented uncertainty term ( f f − f̄ )+ (G f − Ḡ)undi in εndi is more fault-case de-
pendent. Therefore, INDI-SMC/SMDO has the potential of passively resisting a wider
range of perturbations, while gain adjustments may be required by NDI-SMC/SMDO in
different fault scenarios.

The above analyses are conducted for generic nonlinear systems. The condition of
“sufficiently high sampling frequency” may sound strict, but actually it is not difficult
to find a reasonable ∆t in practice. Further discussions about the selections of ∆t can
be found in [24]. In the following two sections, the benefits of INDI-SMC/SMDO will be
demonstrated via both simulations and flight tests for a quadrotor fault tolerant control
problem.

6.3. QUADROTOR FAULT-TOLERANT FLIGHT CONTROL
In order to compare the performance and robustness of NDI and INDI based SMC/S-
MDO, a quadrotor attitude control problem in the presence of model uncertainties,
wind disturbances, and actuator faults will be considered in this section. The position
control of quadrotors can be designed in the same way.

6.3.1. QUADROTOR MODEL

BO

Figure 6.2: A Bebop 2 quadrotor and axes definition.
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A Parrot Bebop 2 quadrotor is shown in Fig. 6.2. Denote the body frame as (OB , XB ,YB , ZB ),
where OB coincides with the aircraft center of mass, and OB XB ZB represents the air-
craft symmetrical plane. The distances to each of the rotors along the OB XB and OB YB

axes are respectively given by l and b. The rotation rates of the four rotors are de-
noted by ω = [ω1,ω2,ω3,ω4]T . The orientation of the vehicle is described by Euler an-
gles θ = [φ,θ,ψ]T . Assume θ ∈ (−π

2 , π2 ), φ ∈ (−π
2 , π2 ). Expressing the angular rate of the

quadrotor in the body frame asΩ= [p, q,r ]T , then the kinematic equations for the Euler
angles are:

θ̇ = Rθ(θ)Ω (6.32)

in which Rθ(θ) can be found in [40]. The quadrotor rotational dynamics are given by:

I v (κ)Ω̇+Ω× I v (κ)Ω= M c (ω2,κ)+M a(Ω,V a ,κ)+M r (ω,ω̇,Ω, I rzz (κ)) (6.33)

where I v (κ) is the inertia matrix of the whole quadrotor, M a(Ω,V a ,κ) is the aerody-
namic moment vector, V a is the quadrotor airspeed, M c (ω2,κ) is the control moment
vector. M r (ω,ω̇,Ω, I rzz (κ)) contains two parts: the gyroscopic moments of the rotors (as
a function of ω, Ω, rotor inertia vector I rzz (κ)), and also the spin-up torque of the ro-
tors (as a function of ω̇ and I rzz (κ)). For the rotor failure cases considered in the present
chapter, the fault indicator κ is introduced to I v , I rzz , M c , M a in Eq. (6.33). On the
one hand, rotor failures directly lead to changes in the rotor inertia I rzz and the inertia
matrix of the whole quadrotor I v . On the other hand, rotor failures modify the aero-
dynamic properties of the vehicle, thus the aerodynamic moment M a and the control
moment M c are also functions of κ.

The thrust and reactive torque of the rotors are approximately proportional toω2 [26,
41], and the proportionality coefficients are respectively denoted by ki , λi , i = 1,2,3,4.
Therefore, using the geometry parameters shown in Fig. 6.2, M c and the total thrust T
can be modeled by: M c

T

=


−bk1 bk2 bk3 −bk4

lk1 l k2 −lk3 −lk4

λ1 −λ2 λ3 −λ4

k1 k2 k3 k4

ω2 ,Gm(κ)ω2 (6.34)

The spin-up toque in M r was neglected by most publications about quadrotor con-
trol, but it was shown in Ref. [26] via flight tests that this term is influential to the yaw
channel control. However, if M r is incorporated into the controller design, the system
dynamics become ẋ = f (x ,κ)+G(x ,ω,ω̇,ω2,κ), which is not affine in ω. Actually, be-
cause the incremental dynamic equation is derived by taking partial derivatives with
respect to u (Eq. (6.12)), the INDI control structure can also deal with non-affine in the
control systems, as also shown in [24, 26]. In spite of this benefit of INDI, for fair com-
parisons with NDI-SMC/SMDO, M r is viewed as uncertainty in this chapter, and will be
observed by a SMDO. Consequently, the dynamic model for controller design becomes
affine inω2.

6.3.2. CONTROLLER DESIGN

The control objective is quadrotor attitude command tracking, i.e., θ = [φ,θ,ψ]T → θc .
Considering the natural time-scale separation of the quadrotor dynamics [8, 26, 27], the
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control law can be designed using two nested control loops. An alternative way is taking
y = θ, which makes the relative degree of y with respect toω2 equals two. Non-cascaded
controllers can then be designed analogous to Eqs. (6.10, 6.20) [24]. Since these two
approaches are analogous, and the cascaded control structure is more widely used in
aerospace systems, this chapter also designs the controllers in a cascaded way.

The inner-loop controller will be separately designed using NDI and INDI based SM-
C/SMDO methods, aiming atΩ→Ωc , T → Tc , whereΩc and Tc will be provided by the
outer-loop controllers. In view of Eqs. (6.33, 6.34), the inner-loop dynamics are written
as:(

Ω̇

T /m

)
=

( −I−1
v (Ω× I vΩ−M a)

0

)
+

(
I−1

v 03×1

01×3 1/m

)
Gmω

2 +
(

d 1 + I−1
v M r

d2

)
(6.35)

in which d 1 ∈R3, d2 ∈R represent external disturbances.

Remark 20 In Ref. [4, 5, 7, 9–12, 14], the control input vector is taken as u = [M c , T ]T .
This choice is deficient because only the uncertainties of I v can be considered in the
controller designs. However, it is more difficult to estimate Gm owing to the aerody-
namic effects. Furthermore, actuator faults have the largest influences on Gm . In addi-
tion, for real-life implementations, u = [M c , T ]T still needs to be converted into rotor
speed commands. Therefore, this chapter takes u =ω2, and the rotor speed command
vector is accordingly

p
u.

Define x = [Ω,
∫

(T /m)dt ]T , then Eq. (6.35) can be expressed in the form of Eq. (6.1).
Following the procedures in subsection 6.2.1, the inner-loop control using NDI-SMC/SMDO
is designed by Eq. (6.10). On the other hand, the INDI-SMC/SMDO controller is de-
signed using the incremental dynamic equation, which is derived as:(

Ω̇

T /m

)
=

(
Ω̇0

T0/m

)
+

(
δ(Ω,V a ,κ,∆t )

0

)
+

(
I−1

v 03×1

01×3 1/m

)
Gm∆ω

2 +
(
∆d 1 +δMr

∆d2

)
(6.36)

where

δ(Ω,V a ,κ,∆t ) = ∂[I−1
v (−Ω× I vΩ+M a)]

∂Ω

∣∣∣
0
∆Ω+ ∂[I−1

v (−Ω× I vΩ+M a +M c )]

∂κ

∣∣∣
0
∆κ

+∂[I−1
v M a]

∂V a

∣∣∣
0
∆V a +R ′

1 (6.37)

and with δMr representing the variations of I−1
v M r in one incremental time step. R ′

1
is the Taylor’s expansion remainder of Eq. (6.36). According to the physical time-scale
separations of quadrotor dynamics, the variations of velocities are slower than the vari-
ations of angular rates. Also, since V a is a continuous function of time, ‖∆V a‖ vanishes
to zero as ∆t approaches zero. Following the procedures in subsection 6.2.2, the inner-
loop control using INDI-SMC/SMDO is then designed by Eq. (6.20).

After the design of the inner-loop controllers using both NDI and INDI based SM-
C/SMDO, the outer-loop controllers are designed to provide the commandsΩc and Tc .
Ωc is designed to achieve attitude control: θ→ θc , while Tc is designed to control height:
h → hc .
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Recall Eq. (6.32), since there is no model uncertainty in this kinematic equation, a
simple NDI controller can be adopted. Design the virtual control asνat t = θ̇c+K at t (θc−
θ), K at t = diag{Kat ti }, Kat ti > 0, i = 1,2,3, then the reference for the angular rates is
designed asΩc = R−1

θ
(θ)νat t . Rθ(θ) is invertible when θ ∈ (−π

2 , π2 ).

For the height control, define the position vector as P = [x, y,−h]T , then its dynamics
are given as:

P̈ = g +R I B (F a +T )/m (6.38)

where g = [0,0, g ]T is the gravitational acceleration vector, R I B is the rotational matrix
from the body frame to the inertial frame. F a is the aerodynamic force vector expressed
in the body frame, and T = [0,0,−T ]T is the thrust vector. Denote the z component
of P̈ as az , and assume the aerodynamic force in the OB ZB direction is negligible as
compared to thrust, then the last row of Eq. (6.38) is written as az = g − (cosθcosφ)T /m.
Design the command for az as azc =−ḧc −Kd (ḣc − ḣ)−Kp (hc −h), Kd > 0, Kp > 0, then
the command for thrust is accordingly given by (Tc /m) = (g −azc )/(cosθcosφ).

At this point, the height, attitude, and angular rate controllers have been completely
designed. In order to enforce the natural time-scale separations in the closed-loop sys-
tem, the gain matrices K c , K at t , need to fulfill min(Kci ) > max(Kat ti ) for roll, pitch, and
yaw control channels.

6.4. NUMERICAL VALIDATIONS
In this section, the controllers designed in Sec. 6.2 and Sec. 6.3 will be evaluated in the
Matlab/Simulink environment. Two models for a Parrot Bebop quadrotor are set up.
One high fidelity model identified from wind tunnel test data [41] is used for simulations.
Another simplified model, which excludes aerodynamic effects, gyroscopic moments
and spin-up torque, is used by the controllers. It is worth noting that neglecting these
factors in quadrotor control design is a common practice. The actuator dynamics are
modeled as first-order low-pass filters with time constants of 0.02 s. The maximum and
minimum rotational speed of the rotors are 12000 revolutions per minute (rpm) and
3000 rpm respectively. The controller sampling frequency is 500 Hz.

Three perturbation sources are evaluated: model uncertainties, wind disturbances
and sudden actuator faults during flight.

For the model uncertainties, the inertia matrix Ī v used by on-board controllers equals
70% of the nominal I v . The mismatch between I v and Ī v brings model uncertain-
ties to both f and G . The Gm matrix used for simulations is time varying because
ki , λi , i = 1,2,3,4 are influenced by the aerodynamic conditions (airspeed, air density,
etc.). However, for the simplicity of implementation, constant Ḡm matrix evaluated at
the hover condition is used by the controllers, which brings model mismatches even
without actuator fault.

Remark 21 The pure INDI control designed for a quadrotor in Ref. [26] identifies the
time varying control effectiveness matrix during flight. This system identification based
adaption is a modular approach, whose stability cannot be ensured. The usage of con-
stant control effectiveness matrix in this chapter is simpler, and the corresponding un-
certainties can be compensated by SMC/SMDO.
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The airspeed V a of a quadrotor equals V −V w [40], where V is the ground speed, and
V w denotes the velocity of the atmosphere relative to the inertial frame. In this chapter,
V w is considered as the “1-cos” gust [42]. As shown in Fig. 6.3, gusts are added along the
x and y directions of the inertial frame. The maximum gust velocity equals 3 m/s. Since
the airspeed V a contains V w , the dynamic pressure and the angle of attack of the rotor
system are influenced by V w . Consequently, the thrust, in-plane forces, and moments
on each rotor are affected by V w . As mentioned in Sec. 6.3, these aerodynamic effects
caused by V w are viewed as external disturbances. For more details about the influences
of atmospheric disturbances on the quadrotors, readers are recommended to Ref. [29].
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Figure 6.3: Wind disturbances.

Finally, to model a sudden fault of the i -th rotor during flight, for t ≥ t f , the cor-
responding effectiveness in Gm is scaled in the simulation model, i.e., k ′

i = µi ki , λ′
i =

µiλi , µi ∈ (0,1]. However, in spite of faults, constant Ḡm matrix is consistently used by
both controllers.

The attitude commands are smoothly combined sigmoid functions (shown in Fig. 6.4
and Fig. 6.8) as continuous realizations of doublet signals. These commands on different
channels have phase shifts with each other, in which way the decoupling performance of
the controllers can be evaluated. The height command is h = 1 m. The initial conditions
are φ(t = 0) = 0◦, θ(t = 0) = 0◦,ψ(t = 0) = 0◦,h(t = 0) = 0 m.

The main focus of this chapter is on the comparisons between NDI and INDI based
SMC/SMDO designs, so the outer-loop controllers are kept identical. The gains used by
the outer-loop controllers are: Kp = 10, Kd = 5, K at t = diag([2,2,1]), K c = diag([8,8,6]).
Trade-offs should be made when tuning the inner-loop parameters: Kσ, K s , and the
filter time constants τi . High Kσ gains can accelerate the convergence of σ, but will
amplify measurement noise at the meanwhile. Trade-offs also exist in tuning the filter
parameters in SMDO. Specifically, high cut-off frequency introduces more chattering
and noise into ν̂eq, but low cut-off frequency increases the observation errors O (τi ). For
fair comparison, Kσ = diag([0.5,0.5,0.5,1]), and τ = [0.05,0.05,0.08,0.05]T are used by
both NDI and INDI based SMC/SMDO controllers. The filter time constant in the yaw
channel is larger for suppressing the oscillations caused by the spin-up torque.

The gain requirements presented in Eqs. (6.8, 6.19) are the minimum possible gains
for enforcing sliding motions [15–18]. Since εndi and εindi are time-varying, the mini-
mum possible gains are also time-varying. The dual layer nested adaptive methodology
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in [18] can be used to adjust the gains online. In subsection 6.2.3, it has been shown that
there exists a ∆t , such that the upper bound of εindi is smaller than that of εndi, in the
presence of model uncertainties, wind disturbances, and sudden faults. Moreover, εindi

also has smaller variations in different fault cases. Because of these merits, the required
K s gains for INDI-SMC/SMDO are lower and need less adjustments. For the simplicity
of implementation, constant K s gains will be used by both NDI and INDI based SMC/S-
MDO. In the following two subsections, the robustness and chattering magnitude of the
two methods will be compared.

6.4.1. SIMULATION RESULTS OF NDI-SMC/SMDO
Fig. 6.4 illustrates the tracking performance of NDI-SMC/SMDO. In all of the three dif-
ferent cases, model uncertainties and wind disturbances are incorporated, while the de-
gree of actuator faults varies. Without loss of generality, sudden effectiveness losses are
imposed on the third rotor at t = 5 s, which are reflected by the abrupt tracking over-
shoots in Fig. 6.4. Regardless of these overshoots, the quadrotor using NDI-SMC/SMDO
control is able to recover from faults within seconds, and resist the perturbations of
model uncertainties and wind disturbances at the same time. However, the tracking
and decoupling performance of this controller indeed deteriorates with the increases of
fault degree.
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Figure 6.4: Quadrotor responses under NDI-SMC/SMDO control.

The responses of the sliding variables σ are shown in Fig. 6.5, as consistent with the
analyses in Sec. 6.2, σ asymptotically converges to the sliding surface. Additionally, ‖σ‖
distinctly increases after the actuator fault occurs, and ‖σ‖ is positively correlated to the
fault degree. It can also be observed from Fig. 6.5 that the auxiliary sliding variable s
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converges in finite time under perturbations. The high frequency switchings of s (which
is normal [19]) will not influence the continuity of u because of the filtering process in
SMDO.
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Figure 6.5: Responses of sliding variables under NDI-SMC/SMDO control.

One core parameter that guarantees the convergence of s is K s . As proved by Eqs. (6.8)
and (6.9), the elements of K s need to be larger than the uncertainty bounds. In view of
Eq. (6.7) and the discussions in subsection 6.2.3, the uncertain term εndi is influenced by
all the three perturbation sources. Moreover, owing to the term ( f f − f̄ )+ (G f −Ḡ)undi,
‖εndi‖ varies significantly for different fault cases. This is verified by Fig. 6.6, which
presents abrupt increases of ‖εndi‖ after t = 5 s, and also strong correlations of ‖εndi‖
with the fault degree. As a consequence, the K s used in NDI-SMC/SMDO must be
adapted or manually adjusted in different scenarios. For the simulation cases shown
in Fig. 6.6, K s = diag([4,5,3,8]) is used when no actuator fault occurs. To guarantee the
convergence of s, K s needs to be increased to diag([50,40,4,10]) for the ‘25% fault’ case,
and be further raised to diag([150,90,5,12]) when half of the rotor effectiveness is lost.
These gain increases induce a side effect, chattering. As illustrated by Fig. 6.6, the oscil-
lation magnitudes of ν̂eq increase with the rise of K s .

Furthermore, in view of Eq. (6.10), an increase of K s will lead to the oscillations in
the control input. It can be seen from Fig. 6.7 that even though filtered by the actuator
dynamics, the measured (without noise in simulations) rotor speeds are still oscillating.
In addition, ω3 in Fig. 6.7 increases after t = 5 s to compensate for the effectiveness loss.
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Figure 6.6: Observed uncertainties ν̂eq under NDI-SMC/SMDO control.
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Figure 6.7: Measured rotor speeds under NDI-SMC/SMDO control in the ‘50% fault’ case.

6.4.2. SIMULATION RESULTS OF INDI-SMC/SMDO
In this subsection, the same fault scenarios will be used to test the effectiveness of INDI-
SMC/SMDO.

When comparing Fig. 6.8 with Fig. 6.4, obvious tracking performance improvements
of INDI based control can be observed. The effectiveness of INDI-SMC/SMDO is hardly
influenced by the perturbations, and only small ripples appear after t = 5 s.

The responses of the sliding variables in Fig. 6.9 also show improvements when com-
pared to the responses in Fig. 6.5. Specifically, |σp |, |σq | under INDI-SMC/SMDO are
one order of magnitude smaller than the values using NDI-SMC/SMDO control. More-
over, σ in Fig. 6.9 has a higher convergence rate, and smaller variations. The auxiliary
sliding variable s also shows smaller fluctuations in Fig. 6.9.
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Figure 6.8: Quadrotor responses under INDI-SMC/SMDO control.

The main reason for the performance and robustness improvements of INDI based
SMC/SMDO can be seen from Fig. 6.10. Since s in both Fig. 6.5 and Fig. 6.9 converges,
ν̂eq in Fig. 6.6 and Fig. 6.10 can respectively estimate −εndi and −εindi. According to the
analyses in subsection 6.2.3, the upper bound of εindi is smaller than that of εndi, in the
presence of faults, model uncertainties and disturbances. This is verified by comparing
Fig. 6.10 with Fig. 6.6, where |νeq,p | and |νeq,q | are two orders of magnitude smaller un-
der INDI based SMC/SMDO control than NDI based in the ‘50% fault’ case. Also, |νeq,r |
and |νeq,T /m | are one order of magnitude smaller under INDI-SMC/SMDO control. Fur-
thermore, as illustrated in Fig. 6.10, since δκ(x)∆κ is only non-zero for t f ≤ t < t f +∆t
(subsection 6.2.3), εindi has comparable bounds before and after a sudden fault. Fur-
thermore, according to Eq. (6.18), after a fault occurs, the term δd + (G f − Ḡ)∆uindi is
added to εindi, which also has smaller changes in different fault cases as verified by
Fig. 6.10.

These beneficial properties of εindi allow a lower and fixed gain matrix K s = diag([2,2,
0.5,1]) to be used for resisting all the tested perturbations, which simplifies the imple-
mentation process, and fundamentally reduces the chattering effects of SMC/SMDO. As
can be seen by comparing Fig. 6.10 with Fig. 6.6, the uncertainty observations ν̂eq are
much smoother when using INDI-SMC/SMDO. The rotor speeds in Fig. 6.11 are also
much smoother than those shown in Fig. 6.7.
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Figure 6.9: Responses of sliding variables under INDI-SMC/SMDO control.
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Figure 6.10: Observed uncertainties ν̂eq under INDI-SMC/SMDO control.

6.5. EXPERIMENTAL VALIDATIONS

6.5.1. EXPERIMENTAL SETUP
The performance and robustness of the proposed INDI-SMC/SMDO controller are fur-
ther validated via flight tests. These experiments are conducted using a Parrot Bebop
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Figure 6.11: Measured rotor speeds under INDI-SMC/SMDO control in the ‘50% fault’ case.

2 quadrotor as shown in Fig. 6.12. The control laws are executed on-board using an
open-source autopilot software, Paparazzi, which is able to read the MPU 6050 inertia
measurement unit (IMU) measurements and drive the motors at 512 Hz. The position
and attitude are measured by external motion capture system (OptiTrack) in 120 Hz and
transmitted to the on-board controller via Wi-Fi.

Figure 6.12: A Bebop 2 quadrotor with one damaged rotor.

Some practical issues should be considered before implementing the INDI-SMC/SMDO
control law. The first issue is the way of obtaining Ω̇0 when applying Eqs. (6.20, 6.36) in
the inner-loop. The feasibility of directly measuring Ω̇0 via angular accelerometers has
been demonstrated in Ref. [43]. Another simple way is estimating Ω̇0 from gyroscope
measurements using a wash-out filter [26]. To deal with the corresponding lag, the in-
put signal should be synchronized with the estimations. Since this way of estimation
and synchronization has been verified via both passenger aircraft and quadrotor flight
tests [23, 26, 27], it is also adopted in the present flight tests. T0/m in Eq. (6.36) is calcu-
lated from the specific force measured by linear accelerometers. The rotor speed uindi|0
is measured by the Brushless DC Motor Driver of the Bebop2 quadrotor.
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The outer-loop controllers used in flight tests are identical with the simulated con-
trollers. For the inner-loop, Kσ is still equal to diag([0.5,0.5,0.5,1]), while τ is increased
to [0.1,0.1,0.17,0.1]T for attenuating the measurement noise. An estimated constant
control effectiveness matrix Ḡ is used by both NDI and INDI based controllers. The
nominal model f̄ used by NDI-SMC/SMDO is a hover model which excludes aerody-
namic effects, gyroscopic moments and spin-up torque. As shown in Eqs. (6.14, 6.20),
INDI-SMC/SMDO does not need the model information f̄ .

Both controllers are evaluated in two scenarios: with and without actuator faults.
Even if four unbroken rotors are equipped, model mismatches still exist, which become
more conspicuous when airspeed increases during maneuvers. For the faulty configu-
ration, the diameter of the right rear rotor disk (third) is reduced by 5 cm as shown by
Fig. 6.12, which approximately reduce its effectiveness by 55% according to flight test
results.

6.5.2. FLIGHTS WITHOUT ACTUATOR FAULT

The SMDO gain matrix K s = diag([20,20,1,1]) is used by INDI-SMD/SMDO in flight
tests. The K s used by NDI-SMC/SMDO is first tuned to be identical to the INDI based,
as denoted by ‘NDI-S/S’ in the subsequent figures, then it is increased to ensure the
convergence of s as denoted by ‘NDI-S/S-HG’.

Fig. 6.13 illustrates the responses of a quadrotor tracking a filtered doublet pitch an-
gle command. When using INDI-SMC/SMDO control, the quadrotor performs the best
with smallest overshoots and tracking errors. Although NDI based SMC/SMDO control
using the same K s is able to follow the command, large transition errors are present.
This performance deterioration is mainly caused by model uncertainties. As also shown
by Fig. 6.14, ‘NDI-S/S’, which uses the same K s as ‘INDI-S/S’, is unable to adequately
observe the uncertainties in pitch, yaw and thrust channels. The large variations of εndi

can only be observed when K s is raised to diag([20,50,20,10]), as shown by the high-gain
‘NDI-S/S-HG’ in Fig. 6.14. This high-gain controller performs better than the low-gain
‘NDI-S/S’, but is still inferior than INDI based SMC/SMDO as illustrated by Fig. 6.13.

It can also be seen from Fig. 6.14 that the observed uncertainties under INDI based
control have smaller variations. Increasing the switching gains in NDI-SMC/SMDO can
better observe εndi, but consequently cause severe oscillations, especially in pitch and
yaw channels.

The responses of the sliding variables are presented in Fig. 6.15. As is consistent
with the above analyses, using the same K s with INDI based control is insufficient for
NDI-SMC/SMDO, because sr diverges, and sq , sT are absent from the sliding surfaces
for about two seconds. Moreover, σr under low-gain NDI based control also diverges.
High-gain NDI-SMC/SMDO can enforce the convergence of σ and s. However, severe
oscillations in sq are present, and the convergence of σq , σT /m is still slower than the
response under INDI-SMC/SMDO control.

6.5.3. FLIGHTS WITH ACTUATOR FAULT

This subsection presents the flight test results of NDI and INDI based SMC/SMDO con-
trollers applied to a quadrotor with one damaged rotor (Fig. 6.12). As verified by simu-
lations, INDI based SMC/SMDO is able to passively tolerate actuator faults and model
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Figure 6.13: Quadrotor tracking responses without actuator fault.
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Figure 6.14: Observed uncertainties ν̂eq without actuator fault.

uncertainties, thus the same SMDO gain matrix K s = diag([20,20,1,1]) is still used by the
faulty quadrotor. However, this gain matrix is insufficient for NDI based SMC/SMDO,
even without actuator fault, as shown in the previous subsection. Therefore, in this sub-
section, it is going to be evaluated whether NDI based SMC/SMDO can passively resist
the actuator fault without gain adjustment. Namely, K s = diag([20,50,20,10]) is used by
NDI based controller first, as denoted by ‘NDI-S/S-HG’ in the subsequent figures.

Fig. 6.16 shows that although the faulty quadrotor can follow the trend of command
without gain adjustment, its performance deteriorates. Recall from Eq. (6.7) that ac-
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Figure 6.15: Sliding variable responses without actuator fault.

tuator faults introduce ( f f − f̄ )+ (G f − Ḡ)undi into εndi. This term causes large varia-
tions in ‖εndi‖ after fault occurs because undi is far from zero for trimming the quadro-
tor. Therefore, as exposed by Fig. 6.17, the gain matrix tuned for the fault-free case is
insufficient, which leads to saturations in the observed uncertainties in the pitch and
roll channels. In order to fully observe the uncertainties, K s needs to be increased to
diag([80,100,20,10]) according to the flight test results. This very high gain control case
is denoted by ‘NDI-S/S-VHG’ in Fig. 6.16-6.19. This controller with even higher switch-
ing gains can better observe −εndi as shown in Fig. 6.17, and consequently improve the
tracking performance as illustrated in Fig. 6.16.

On the contrary, INDI-SMC/SMDO is able to tolerate the actuator fault passively
without any gain adjustment. In view of Fig. 6.17, the observed −εindi has much smaller
oscillations as compared to the observed −εndi. Moreover, as shown in Fig. 6.16, INDI-
SMC/SMDO performs the best with smallest transition errors. Analogous to the above
analyses, when using NDI-SMC/SMDO control without gain adjustment, sp diverges
and sq is absence from the sliding surface throughout the maneuvering time period,
as illustrated by Fig. 6.18. Even though without gain adaption, the sliding variables σ
and s under INDI-SMC/SMDO control have the highest convergence rates and lightest
oscillations among all the tested controllers.

Reducing the switching gains is crucial for chattering reduction of SMC/SMDO meth-
ods. As verified by both simulations and flight tests, the filtering process in SMDO can
only attenuate instead of rejecting the oscillations in ν̂eq. Therefore, the lower gains
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Figure 6.16: Quadrotor tracking responses with actuator fault.
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Figure 6.17: Observed uncertainties ν̂eq with actuator fault.

used by INDI-SMC/SMDO also lead to lighter oscillations in ν̂eq (Fig. 6.10, 6.14, 6.17)
and in the rotor speeds (Fig. 6.11).

The rotor speeds under the control of very-high-gain NDI-SMC/SMDO and INDI-
SMC/SMDO are shown in Fig. 6.19. The first rotor get saturated at 3000 rpm for 0.3 s
under NDI-SMC/SMDO control, while the rotor speeds are within limits using INDI-
SMC/SMDO. Owing to the measurement noise, the chattering reduction advantage of
INDI based SMC/SMDO becomes less obvious in Fig. 6.19, where the rotor speeds using
NDI and INDI based controllers seem to have comparable oscillations.
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The reason behind this phenomenon can be better revealed in the frequency do-

main. Divide undi (Eq. (6.10)) into undi,s = Ḡ
−1

(Kσσ+ν̂eq) (the contributions of SMC/S-

MDO), and undi,c = Ḡ
−1
Ψ̄ (the contributions of the traditional NDI). Also, uindi (Eq. (6.20))

is divided into uindi,s = Ḡ
−1

(K ′
σσ+ ν̂′eq) and uindi,c = uindi|0 + Ḡ

−1
Ψ̄

′
. The power spec-
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tral densities (PSD) of undi,si and uindi,si , i = 1,2,3,4 for the four rotors are illustrated
in the left subplot of Fig. 6.20, where it can be seen that Puu,indi,s is lower than Puu,ndi,s

in most frequency ranges. This verifies that the control efforts of SMC/SMDO is indeed
released using the INDI control structure, and the chattering is reduced in uindi,s . On
the other hand, INDI-SMC/SMDO is contributed more by uindi,c , which has less model
dependency than undi,c but relies more on sensor measurements. The corresponding
measurement noise in uindi,c conceals the benefit of uindi,s in high frequency range, and
leads to a comparable PSD of the overall uindi and undi as illustrated by the right subplot
of Fig. 6.20. The noise level in uindi,c can be reduced by using better sensors, which can
be easier than perfecting the model used by NDI-SMC/SMDO.
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Figure 6.20: The left subplot presents the PSD of undi,s ,uindi,s , while the right shows the PSD of undi,uindi.

6.6. CONCLUSIONS
A control method named INDI-SMC/SMDO, which designs the sliding mode control
(SMC) driven by sliding mode disturbance observers (SMDO) based on the control struc-
ture of incremental nonlinear dynamics inversion (INDI) is proposed in this chapter. By
virtue of the sensor-based characteristic of INDI, SMC/SMDO designs based on INDI re-
quire less model knowledge than designs based on nonlinear dynamics inversion (NDI).
In the presence of model uncertainties, external disturbances and sudden faults, it has
been shown both analytically and numerically that the perturbation terms under NDI
and INDI based SMC/SMDO control (εndi and εindi) have different properties. First of
all, the boundedness of εindi is guaranteed when the conditions in Theorem 5 are satis-
fied, while the boundedness of εndi is undetermined under the same conditions. More
importantly, there exists a sampling frequency that makes the upper bound of εindi is
smaller than that of εndi, which can fundamentally reduce the control efforts of SMC/S-
MDO because for most SMC and SMDO designs, there is a positive correlation between
the required switching gains and the uncertainty bounds. εindi is also proved to have
smaller variations in different fault circumstances, while εndi is more fault-case depen-
dent. These merits of εindi allow INDI-SMC/SMDO to use reduced and fixed gains for re-
sisting a wider variety of faults and disturbances, while the gains for NDI based SMC/S-
MDO are higher and require adjustments in different scenarios. Finally, the advantages
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of INDI-SMC/SMDO are demonstrated by both numerical simulations and real-world
quadrotor flight tests. In conclusion, easier implementation, reduced model depen-
dency, improved performance and robustness make the proposed INDI-SMC/SMDO a
promising method for enhancing aircraft safety in real life.
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7
FLEXIBLE AIRCRAFT GUST LOAD

ALLEVIATION WITH INCREMENTAL

NONLINEAR DYNAMIC INVERSION

As discussed in Chapter 1, an integrated flight control design considering both rigid-body

and aeroelastic dynamics becomes more and more important with the increase of struc-

tural flexibility. In view of Chapters 2 and 3, the inherent robustness of incremental non-

linear dynamic inversion (INDI) makes it a promising candidate for flexible aircraft con-

trol. Therefore, this chapter designs a multi-objective INDI control law for free-flying flexi-

ble aircraft; in the process, it demonstrates how to make trade-offs among different control

objectives in the framework of INDI. Practical issues, including the online estimations of

elastic states and state derivatives, will also be considered.

This chapter is based on the following article:
Wang, X., van Kampen, E., Chu, Q. P., “Flexible Aircraft Gust Load Alleviation with Incremental Nonlinear
Dynamic Inversion,” Journal of Guidance, Control, and Dynamics, 2019, pp. 1–16. doi:10.2514/1.G003980.
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In this chapter, a controller based on incremental nonlinear dynamic inversion
(INDI) is designed for the flexible aircraft gust load alleviation (GLA) problem. First,
a flexible aircraft model that captures both inertia and aerodynamic coupling effects
between flight dynamics and structural dynamics is presented. Then, an INDI GLA
controller is designed for this aircraft model based on sensor measurements and the
Kalman filter online estimation. Besides, the fifth order Padé approximation is used
to model the pure time delay in the state estimation. Furthermore, simulations of the
flexible aircraft flying through various spatial turbulence and gust fields demonstrate
the effectiveness of the proposed controller on rigid-body motion regulation, vertical
load alleviation, wing root bending moment reduction and elastic modes suppres-
sion. Additionally, numerical perturbation tests and a Monte Carlo study show the
robustness of the proposed controller to aerodynamic model uncertainties.

7.1. INTRODUCTION

WHILE enjoying the benefits provided by light-weight composite materials, aircraft
designers are facing the challenges of the accompanying greater structural flexi-

bility. As the structural flexibility increases, not only do the interactions between aerody-
namics and structural dynamics become significant, the coupling effects between rigid-
body dynamics and structural dynamics are also non-negligible [1–4]. When a flexible
aircraft encounters atmospheric disturbances, both the rigid-body and flexible modes
are excited, which reduces pilot handling qualities, degrades passenger ride quality, in-
troduces extra structural loads, and shortens the structural fatigue life. Traditionally, the
flight control and structural vibration suppression are performed separately, and notch
filters are used to avoid interactions between them. This design approach may be less
appropriate for modern flexible aircraft. Instead, an integrated control design, which si-
multaneously accounts for rigid-body and aeroelastic control, can lead to better overall
performance.

The free-flying dynamics of flexible aircraft are nonlinear and time-varying (NLTV) [2,
5]. The nonlinearities are contributed to by flight dynamics, aeroelasticity and the iner-
tial couplings between them [2]. Even for a rigid aircraft, when the angle of attack is high
or when the aircraft is in transonic flight, the aerodynamics are nonlinear. Under the
small deformation assumption, the structural vibration dynamics are described by a se-
ries of second-order linear differential equations, and their inertial couplings with rigid-
body dynamics are negligible. These can be invalid for highly flexible aircraft, for which
the consideration of nonlinearity in flight control design becomes important [6, 7].

In the literature of flexible aircraft flight control, it is a common practice to linearize
the NLTV system around an equilibrium point, and then execute a model reduction pro-
cedure. Based on the resulting low-order and linear time-invariant (LTI) system, the
linear-quadratic Gaussian (LQG) method is used for gust load alleviation (GLA) in [8, 9],
and for flutter suppression in [10, 11]. Although both linear-quadratic regulator (LQR)
and the Kalman filter are optimal, as their combination, LQG does not automatically en-
sure good robustness properties. Linear robust control can improve the robustness of a
closed-loop system. An H∞ robust controller is designed in [12] for reducing the wing
root bending moment of a very flexible aircraft. In [7], a mixed norm H2/H∞ control
is used to alleviate the gust load of a flexible aircraft. However, it is commented in [13]
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that LTI model based robust control could be either marginal or overly conservative in
performance and stability robustness. Moreover, to ensure desirable handling qualities
over the entire flight envelope, controllers based on LTI models need to be used along
with the gain scheduling method, which can be cumbersome and does not guarantee
stability robustness [14].

Flexible aircraft control designs considering nonlinearities do exist in the literature.
In [15], the nonlinear dynamic inversion (NDI) method is used to control a high alti-
tude long endurance highly flexible aircraft. Since NDI design uses a nonlinear model,
it can be applied in the absence of gain scheduling. Nonetheless, the robustness of NDI
is impaired by its model dependency. An adaptive backstepping (ABS) control is de-
signed for an aeroservoelastic system in [16], where the plant is parameterized using
pre-defined model structures. However, the unknown parameters are assumed to be
constant or slowly time-varying in ABS design [17], which limits its applicability. Fur-
thermore, not all the uncertainties and external disturbances can be parameterized, and
even if they can, tuning of the resulting design can be tedious. An LTI aeroservoelastic
system augmented by a nonlinear perturbation term is regulated by a model reference
adaptive control (MRAC) in [16], where it was assumed that the perturbation satisfies
the matching condition and can be parameterized into the multiplication of regressors
and constant parameters. The reference model used in [16] is also LTI, thus, model up-
dates are necessary when the flight condition changes or when a fault occurs. Because
the flight envelope shrinks in faulty conditions [18], enforcing the system to track an LTI
model designed in the nominal case can lead to instability. Last but not least, dynamic
equations need to be solved for the parameter adaptation in MRAC, which requires high
computational resources, especially for a high-order aeroservoelastic system.

Incremental nonlinear dynamic inversion (INDI) is a nonlinear sensor-based con-
trol approach. After its proposal in [19], its effectiveness has been demonstrated by
real-world flight tests on a tail-sitter UAV [20], quadrotors [21–23], and even a CS-25
certified passenger aircraft [24]. The stability and robustness of INDI is analyzed in [25]
using Lyapunov methods and nonlinear system perturbation theory. As compared to
LTI model-based control methods, the gain scheduling technique is not needed by INDI.
The uncertainty parameterization process is also omitted in INDI, which removes slowly
time-varying parameter assumption and eliminates the tedious model structure selec-
tion procedure. INDI has less model dependency than NDI, ABS and MRAC, which sim-
plifies its implementation process. The tuning of INDI is straightforward [26]. Being in-
dependent of the dynamic parameter update laws, INDI also has lower computational
cost.

Although the model dependency of INDI is reduced, its robustness is enhanced by
the feedback of output derivatives. The robustness of INDI to model uncertainties has
been analyzed in [25], and evaluated in [19, 27]. By virtue of its sensor-based nature,
INDI is able to passively tolerate a wide range of actuator faults and structural damages
without using any additional robust or adaptive techniques [28]. As analyzed in [25],
INDI also has inherent robustness to external disturbances. The wind-tunnel tests in [21]
show that under the INDI control, a damaged quadrotor with complete loss of a single
rotor can resist over 9 m/s of wind disturbance. A rigid aircraft GLA problem is consid-
ered in [29], where INDI outperforms the LQR control. These merits of INDI inspired
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the idea of using it to solve the flexible aircraft GLA problem, which has not been ad-
dressed in the literature. Due to the complexity of aeroservoelastic systems, several
research questions emerge: How to conduct a reasonable model simplification based
on the characteristics of flexible aircraft? How to make trade-offs among different con-
trol objectives in the framework of INDI? How to obtain the state derivatives of flexible
aircraft? How is the robustness of the control to state estimation errors, external dis-
turbances, sudden faults and model uncertainties? These questions will be answered in
this chapter.

The main contributions of this chapter are as follows: 1) an integrated nonlinear
control law for flexible aircraft aiming at rigid-body motion regulation, gust load allevi-
ation, wing root bending moment reduction and elastic mode suppression; 2) an online
optimal state observer with a Padé approximation to model the pure time delay; 3) the-
oretical analyses and numerical validations for the robustness of the proposed control
to external disturbances, sudden faults and model uncertainties.

The rest of the chapter is organized as follows: Sec. 7.2 presents the models for flex-
ible aircraft and turbulence fields. Sec. 7.3 derives the INDI GLA control law with the
simulation results shown and discussed in Sec. 7.4. The main conclusions are drawn in
Sec. 7.5.

7.2. FLEXIBLE AIRCRAFT AND GUST MODELS

7.2.1. FLEXIBLE AIRCRAFT EQUATIONS OF MOTION

In order to capture both aerodynamic and inertial coupling effects between the rigid-
body and structural dynamics of free-flying flexible aircraft, the dynamic equations de-
rived in quasi-coordinates [2] are adopted in this chapter. The flexible wings are mod-
eled as cantilever beams undergoing bending and torsional deformations. The remain-
ing components, namely fuselage and empennage (horizontal and vertical tails) are as-
sumed to be rigid. A set of body-fixed axes (Oi , xi , yi , zi ) with i = f , w,e, are attached to
the undeformed aircraft as shown by Fig. 7.1. Generic Lagrangian equations of motion
in quasi-coordinates are given in Eq. (7.1) [2].

Figure 7.1: Coordinate system definition [2].
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(
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∂V f
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∂L

∂R f
= F

d

d t

(
∂L

∂ω f

)
+ Ṽ f

∂L

∂V f
+ ω̃ f

∂L

∂ω f
−E−T

f

∂L

∂θ f
= M

∂

∂t

(
∂L̂

∂vw

)
− ∂L̂

∂uw
+ ∂F̂uw

∂u̇w
+L uw = Û

∂

∂t

(
∂L̂

∂αw

)
+ ∂F̂αw

∂ψ̇w
+Hψw = Ψ̂ (7.1)

In Eq. (7.1), L = T − V represents the Lagrangian energy for the whole aircraft. V f

and ω f represent the (x f , y f , z f ) axes translational and rotational velocities, while R f

andθ f indicate the position and Euler angles of the (x f , y f , z f ) axes relative to (XE ,YE , ZE ).
F and M are the total forces and moments, while Û and Ψ̂ are the resultant of force and
moment density vectors. C f (φ,θ,ψ) is the rotation transformation matrix from iner-
tial axes (XE ,YE , ZE ) to (x f , y f , z f ), and the E f (φ,θ) matrix links angular velocities ω f

to Eulerian velocities θ̇ f . (̂·) indicates the volume density of energy terms and (̃·) refers
to the skew-symmetric matrix of a vector. L and H are matrices of stiffness differen-
tial operators, with Fuw and Fαw represent the Rayleigh dissipation function densities.
uw and vw = u̇w represent elastic bending displacement and velocity vectors, whileψw
andαw = ψ̇w represent elastic torsion angle and angular velocity vectors. The Galerkin
method is used to discretize the flexible displacements in modal form as

uw (rw , t ) =Φ(rw )q(t ), q̇(t ) = s(t ),

ψw (rw , t ) =Ψ(rw )ξw (t ), ξ̇w (t ) =ηw (t ), (7.2)

where Φ(rw ) and Ψ(rw ) are bending and torsion shape function matrices respectively.
r f w and r f e represent relative distances of component axes. C w and C e refer to the
coordinates transformation matrices. The velocities of an infinitesimal mass element
dm on the wing, v̄w , the fuselage, v̄ f , and the tail, v̄e , can be expressed as

v̄w (rw , t ) = C w V f +C w r̃ T
f wω f + (r̃ w + Φ̃q)T C wω f + r̃ T

wΨη+Φs

v̄ f (r f , t ) = V f + r̃ T
f ω f

v̄e (re , t ) = V f + (r̃ f e +�C T
e r e )Tω f (7.3)

Using Eq. (7.3), the total kinetic energy of the aircraft is

T =∑
i

Ti = 1

2
VT MV, Ti = 1

2

∫
v̄T

i v̄i dmi , i = f , w,e (7.4)

in which V = [V T
f ω

T
f sT ηT

w ]T , M is the system mass matrix varies with deformations
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given as

M st =


mI 3×3 S̃

T
C T

w

∫
Φdmw C T

w

∫
r̃ T

wΨdmw

S̃ J C T
w

∫
(r̃ w + Φ̃q)Φdmw C T

w

∫
(r̃ w + Φ̃q)r̃ T

wΨdmw∫
ΦTΦdmw

∫
ΦT r̃ T

wΨdmw

s ymmetr i c
∫
ΨT r̃ T

wΦdmw
∫
ΨT r̃ w r̃ T

wΨdmw


=

[
M r r M r e

M er M ee

]
(7.5)

with S̃ represents the matrix of first moment of area, and J represents moment of inertia
of the deformed aircraft, defined as

S̃ =
∫

r̃ f dm f +
∫

r̃ f e dme +
∫

C T
e r̃ eC e dme +

∫
r̃ f w dmw +

∫
C T

w (r̃ w + Φ̃q)T C w dmw

J =
∫

r̃ T
f r̃ f dm f +

∫
[C w r̃ T

f w + (r̃ w + Φ̃q)T C w ]T [C w r̃ T
f w + (r̃ w + Φ̃q)T C w ]dmw

+
∫

[C e r̃ T
f e + r̃ T

e C e ]T [C e r̃ T
f e + r̃ T

e C e ]dme (7.6)

The linear momentum of the aircraft p = [pT
V f

pT
ω f

pT
uw pT

ψw ]T can be calculated as

p = ∂T

∂V
= M st V (7.7)

For the model in present chapter, potential energy is purely due to wing deformation
strain energy, which can be expressed as

V = 1

2
(q T K uw q +ξT

w K ψwξw ), K uw =
∫

E I (Φ′′)TΦ′′dx, K ψw =
∫

G J (Ψ′)TΨ′dx

(7.8)
where E I and G J refer to the bending and torsion stiffness respectively. Assume struc-
tural damping matrices C uw ,C ψw are respectively proportional to K uw ,K ψw . Sub-
stituting Eqs. (7.2, 7.4, 7.7, 7.8) into Eq. (7.1), the system dynamics can be expressed in
discrete form as [2]

ṗV f = −ω̃ f pV f +F

ṗω f = −Ṽ f pV f − ω̃ f pω f +M

ṗuw = ∂T

∂q
−K uw q −C uw s +Q

ṗψw = −K ψwξw −C ψwηw +Θ (7.9)

where ∂T
∂q = ∂v̄T

w
∂q

∂T
∂v̄w

=ΦâC wω f
T ∫

v̄w dmw includes Coriolis and centrifugal forces of the
wing. Eq. (7.9) includes the translational, rotational, bending and torsion dynamic equa-
tions. The kinematic equations of the aircrft are given as

Ṙ f =C T
f V f , θ̇ f = E−1

f ω f (7.10)
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The generalized forces on the right-hand side of Eq. (7.9) can be obtained by means
of virtual work. They are listed here for completeness [2].

F =
∫

D f

[f f +FEδ(r− rE )]dD f +C T
w

∫
Dw

fw dDw +C T
e

∫
De

fe dDe

M =
∫

D f

r̃ f [f f +FEδ(r− rE )]dD f +
∫

Dw

[r̃ f w C T
w +C T

w (r̃ w + Φ̃q)]fw dDw

+
∫

De

[r̃ f eC T
e +C T

e r̃e ]fe dDe

Q =
∫

Dw

ΦT fw dDw , Θ=
∫

Dw

ΨT r̃ w fw dDw (7.11)

f f , fw , fe in Eq. (7.11) are distributed forces acting on the fuselage, wing and empen-
nage. They contain the aerodynamic, gravitational and control forces. The aerodynamic
forces are calculated based on quasi-steady strip theory, and the local airspeed on each
strip is perturbed by motions and gusts. δ represents the Dirac delta function. FE indi-
cates the thrust and rE represents the engine position.

The main feature of the modeling approach in [2] is that the flight dynamics and
structural dynamics are coupled both inertially and aerodynamically. The aerodynamic
couplings can be seen from the right-hand side of Eq. (7.9) where the generalized forces
F,M,Q ,Θ are functions of both the rigid-body and elastic states. The inertial couplings
reflect on Eq. (7.5), where the off-diagonal blocks of the mass matrix M er , M r e are non-
zero. Also, in the rigid-body mass matrix M r r , S̃ and J are functions of deformations as
shown in Eq. (7.6). These inertial coupling effects can be considerable for highly flexible
aircraft.

7.2.2. UNSTEADY AERODYNAMIC MODELS

δ

f
c
2

h
Elastic axis

Hinge axis

a c
2c

2

Figure 7.2: A 2D airfoil with a trailing edge flap.

In this chapter, the unsteady aerodynamics of the wing and tails are modeled using
the modified strip theory. In this approach, the considered lifting surface is discretized
into a series of undeformable strips. The aerodynamic force and moment on each strip
are calculated using its steady-flow aerodynamic properties and the unsteady aerody-
namic theories for a 2D airfoil. Considering a 2D airfoil exposed to disturbed atmo-
sphere with three degrees of freedom: heave h, pitching around the elastic axis ε, and a
flap deflection δ. The geometric parameters and the positive directions of movements
are indicated in Fig. 7.2. It is worth noting that h and ε contain the contributions from
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both rigid-body and structural motions. In incompressible flow, the sectional lift coeffi-
cient and pitching moment coefficient around the elastic axis are formulated as

CL = C c,hε
L +C nc,hε

L +C c,δ
L +C nc,δ

L +C c,g
L

Cm = C c,hε
m +C nc,hε

m +C c,δ
m +C nc,δ

m +C c,g
m (7.12)

In Eq. (7.12), the superscripts c and nc respectively indicates the circulatory and
noncirculatory contributions. The circulatory terms are caused by the vorticity in the
flow, which is time-history dependent. The noncirculatory terms result from the change
in momentum of the surrounding air caused by the airfoil motions and flap deflections.
In incompressible flow, the noncirculatory contributions are instant and not subject to
a time-history effect [30]. The superscripts hε, δ, and g respectively denotes the contri-
butions from the airfoil motions, flap deflections and atmospheric disturbances. Using
the expressions of Theodorsen [31], the circulatory terms due to airfoil motions are:

C c,hε
L =C SF

Lα
C (k)α3/4, C c,hε

m =
(

1

4
+ a

2

)
C c,hε

L (7.13)

where C SF
Lα

is the lift curve slope in steady flow, which includes a compressibility correc-
tion using the Prandtl-Glauert factor. It is noteworthy that Theodorsen considers thin
airfoils, thus the lift curve slope C SF

Lα
is assumed to be 2π [31]. In this chapter, more gen-

eral expressions are used. α3/4 = ε+ ḣ
V + c

2V ( 1
2 −a)ε̇ is the angle of attack at the three quar-

ter chord. C (k) is the Theodorsen’s function, where k = ωc
2V is the reduced frequency [31].

For an airfoil with lift curve slope C SF
Lα

in steady flow, the noncirculatory coefficients due
to airfoil motions are [31]:

C nc,hε
L =

C SF
Lα

2π

c

4V

(
ε̇+ ḧ

V
−a

c

2V
ε̈

)

C nc,hε
m = −

C SF
Lα

2π

c

8V

((
1

2
−a

)
ε̇−a

ḧ

V
+ c

2V

(
1

8
+a2

)
ε̈

)
(7.14)

The circulatory terms contributed by flap deflections also have time-history effects, they
are given as

C c,δ
L =C SF

Lα
C (k)

(
T10

π
δ+ T11

2π

c

2V
δ̇

)
, C c,δ

m =
(

1

4
+ a

2

)
C c,δ

L (7.15)

where T10 and T11 are constant geometric parameters depending on the hinge posi-
tion [31]. The noncirculatory terms contributed by the flap are functions of δ, δ̇ and δ̈.
Their specific expressions can be found in [31]. C (k) in Eq. (7.15) is the same as used in
Eq. (7.13), which depends on the reduced frequency k. However, this formulation is less
suitable for simulating aircraft maneuvers under random turbulence excitations in the
time-domain. Wagner’s function, which gives the lift response to a step change in angle
of attack due to airfoil motions, is the time-domain counterpart of Theodorsen’s func-
tion [32]. An exponential approximation of Wagner’s function isφ(τ) = 1−0.165e−0.0455τ−
0.335e−0.3τ, where τ= 2V t/c is a non-dimensional time variable [33]. On the other hand,
the unsteady responses of an airfoil to a unit sharp-edged gust is given by the Küssner’s
function, which is exponentially approximated as ψg (τ) = 1− 0.5e−0.13τ − 0.5e−τ [32].
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Bothφ(τ) andψg (τ) are in the form of f (τ) = 1−a1e−b1τ−a2e−b2τ. Using the Duhamel’s
integral, a system that has an indicial response function f (τ) can be realized in the con-
trol canonical form as:[

ẋa1

ẋa2

]
=

[
0 1

−( 2V
c

)2
b1b2 −( 2V

c

)
(b1 +b2)

][
xa1

xa2

]
+

[
0
1

]
u

y =
[

(a1 +a2)b1b2

(
2V

c

)2

, (a1b1 +a2b2)

(
2V

c

)][
xa1

xa2

]
+(1−a1 −a2)u (7.16)

Substituting the parameters of φ(τ) into Eq. (7.16), and choosing u = α3/4 + ( T10
π δ+

T11
2π

c
2V δ̇), then based on Eqs. (7.13, 7.15), the circulatory lift coefficient caused by arbi-

trary airfoil motions and flap deflections is C c,hε
L +C c,δ

L =C SF
Lα

y . The corresponding circu-

latory moment coefficient equals C SF
Lα

y multiplied with 1
4 + a

2 (Eq. (7.13) and Eq. (7.15)).
On the other hand, considering the airfoil encounters an arbitrary vertical gust input

wg (t ) on the leading edge. Substituting the parameters ofψg (τ) into Eq. (7.16), then the
gust induced lift coefficient C c,g

L equals C SF
Lα

y when the input u equals atan(wg (t )/V ).

Analogously, C c,g
m in Eq. (7.12) equals ( 1

4 + a
2 )C c,g

L . xa1 and xa2 in Eq. (7.16) are known
as the aerodynamic lag states. In view of the preceding derivations, four aerodynamic
lag states are needed by each strip. Two of them are used for modeling the time-history
dependent effects caused by motions and flap deflections, and the other two are used to
model unsteady gust responses.

This chapter considers viscous flow, and the sectional drag coefficient is modeled as
CD = CD0 + kD (C c,hε

L +C c,δ
L +C c,g

L )2. CD0 is the drag coefficient corresponding to zero
lift. Only the circulatory part of the lift contributes to the quadratic drag [32]. Using the
sectional aerodynamic coefficients CL ,CD ,Cm , the distributed aerodynamic forces and
moments can be calculated.

7.2.3. GUST AND TURBULENCE MODELS
Two methods are often used to model atmospheric disturbances, namely the stochas-
tic continuous turbulence and the deterministic discrete gust. The continuous turbu-
lence is often simplified into a stationary, homogeneous, isotropic stochastic process
with Gaussian distribution. The power spectral density of the two commonly used tur-
bulence models, Dryden (denoted by subscript Dw ) and von Kármán models (denoted
by subscript vK w ) are respectively given by [34]

ΦDw (ω) =σ2 Lg

πV

1+3(
Lgω

V )2

[1+ (
Lgω

V )2]2
, ΦvK w (ω) =σ2 Lg

πV

1+ 8
3 (a

Lgω

V )2[
1+ (a

Lgω

V )2
] 11

6

(7.17)

where ω is the angular frequency, Lg is the turbulence scale length, σ is the turbulence
intensity. Constant a = 1.339, and V is the aircraft speed. While von Kármán model bet-
ter fits available experimental and theoretical data, especially in high frequency range [35],
its irrational spectra requires approximate difference equations to generate turbulence
velocities in the time domain. As an alternative, it can be realized in the two dimensional
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spatial domain based on the 2D von Kármán spectrum [35]

Swg wg (Ωx ,Ωy ) = 4σ2(aLg )4

9π

Ω2
x +Ω2

y

[1+ (aΩx Lg )2 + (aΩy Lg )2]7/3
(7.18)

whereΩx andΩy are the spatial frequencies along the XE and YE directions. The vertical
turbulence velocity wg as a function of the spatial position (XE ,YE ) is calculated as

wg (XE ,YE ) =F−2{
√

Swg wg (Ωx ,Ωy )F 2{wn(XE ,YE )}} (7.19)

in which wn(XE ,YE ) represents the 2D Gauss white noise generated in the spatial do-
main. F−2 represents the 2D inverse Fourier transform, while F 2 denotes the 2D Fourier
transform. For more details about this 2D realization, readers are recommended to [36].
In this chapter, the external disturbances are assumed to be symmetrical to the aircraft
(O f , x f , y f ) plane, while the turbulence velocities vary along the wing span. For example,
a realization of the 2D symmetrical von Kármán moderate turbulence field with Lg = 762
m andσ= 1.5 m/s is shown in Fig. 7.3. This realization can be verified by comparing the
covariance function of the simulated field with its theoretical values [35].
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Figure 7.3: A 2D symmetrical von Kármán vertical turbulence field (Lg = 762 m, σ= 1.5 m/s).

The rational spectra of the Dryden model allow it to be directly realized in the time
domain, by passing a white noise through a filter given by Eq. (7.20). This filter will be
used in the state estimation process (Sec. 7.3.3).

HDw (s) =σ
√

Lg

πV

1+
p

3Lg

V s

(1+ Lg

V s)2
(7.20)

The “1−cos” gust model can more precisely capture the solitary gust feature, as com-
pared to the sharp-edged and the ramped gust models. A “1− cos” gust is defined as
Eq. (7.21) and can be broadened into a symmetric wgs and an asymmetric wga gust field
as described by Eq. (7.22).

wg = wm

2
(1−cos

2πXE

λx
), (7.21)

wgs = wm

4
(1−cos

2πXE

λx
)(1−cos

2πYE

λy
)b

wga = wm

2
(1−cos

2πXE

λx
)sin

2πYE

λy
(7.22)
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where wm represents the maximum gust velocity and λx , λy refer to the gust lengths in
XE , YE directions, respectively. An example of a symmetric gust field is given by Fig. 7.4,
in which the parameters of the first gust wg1 is λx1 = λy1 = 100 m, wm1 = 5 m/s and of
the second gust wg2 is λx2 =λy2 = 180 m, wm2 = 5 m/s.
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Figure 7.4: A 2D symmetrical “1- cos” vertical gust field.

During time-domain simulations, the flexible aircraft flies through the 2D spatial
turbulence and gust fields. For each aerodynamic strip, the local vertical gust velocity
wg is independently interpolated using the spacial location of the airfoil leading edge. In
this way, the gust penetration effect [35] is naturally captured. In short, this effect means
that the gust met by the wings at the current time instant will only be encountered by
the tail after a short time period.

7.3. FLEXIBLE AIRCRAFT GUST LOAD ALLEVIATION CONTROL

7.3.1. INCREMENTAL NONLINEAR DYNAMIC INVERSION CONTROL
Considering a nonlinear control-affine system:

ẋ = f (x ,κ(t ))+G(x ,κ(t ))u +d (t ) (7.23)

where d represents a bounded external disturbance vector. To indicate a sudden fault
at t = t f during flight, κ(t ) ∈R is designed as a step function, with t < t f , κ= 0 indicates
the fault-free case and t ≥ t f , κ= 1 denotes the post-fault condition.

Expanding f and G as:

f = f̄ + ( f f − f̄ )κ+ f̂ , G = Ḡ + (G f −Ḡ)κ+Ĝ (7.24)

where f̄ , Ḡ are the nominal dynamics used for controller design, f f , G f denote the

post-fault dynamics, and f̂ , Ĝ represent the model uncertainties as continuous func-
tions of x . Taking the first-order Taylor series expansion of Eq. (7.23) around the condi-
tion at t −∆t (denoted by the subscript 0) as:

ẋ = ẋ0 +G(x0,κ0)∆u + ∂[ f (x ,κ)+G(x ,κ)u]

∂x

∣∣∣
0
∆x

+∂[ f (x ,κ)+G(x ,κ)u]

∂κ

∣∣∣
0
∆κ+∆d +R1 (7.25)

In the above equation, ∆x = x − x0, ∆u = u −u0, respectively denote the variations
of states and control inputs in one incremental time step ∆t . ∆κ = κ−κ0 denotes the
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changes of the fault indicator κ, while∆d = d −d 0 denotes the variations of the external
disturbances d in∆t . R1 in Eq. (7.25) is the expansion remainder, using Eqs. (7.23, 7.24),
the Lagrange form of the remainder is

R1 = 1

2

∂2[ f +Gu]

∂2x

∣∣∣
m
∆x2 + ∂G

∂x

∣∣∣
m
∆x∆u + (G f −Ḡ)|m∆u∆κ

+
∂[( f f − f̄ )+ (G f −Ḡ)u]

∂x

∣∣∣
m
∆x∆κ (7.26)

in which (·)|m means evaluating (·) at a condition where x ∈ (x(t −∆t ), x(t )), u ∈ (u(t −
∆t ),u(t )), d ∈ (d (t −∆t ),d (t )), and κ ∈ (κ(t −∆t ),κ(t )). In Eq. (7.26), R1 is not a function
of∆u2, ∆d 2, ∆κ2, nor the coupling terms∆x∆d , ∆κ∆d , ∆u∆d , which can be examined
using Eqs. (7.23, 7.24).

Using the nominal system control effectiveness matrix Ḡ(x) to design the INDI con-

trol increment as ∆u = Ḡ
−1

(x)(ν− ẋ0), where ν is the virtual control. Then based on
Eq. (7.25), the closed-loop system dynamics under INDI control are:

ẋ = ẋ0 +GḠ
−1

(ν− ẋ0)+∆d +δ(x ,κ,∆t ) (7.27)

where δ(x ,κ,∆t ) indicates the closed-loop value of the perturbations, specifically

δ(x ,κ,∆t ) =
[
∂[ f (x ,κ)+G(x ,κ)u]

∂x

∣∣∣
0
∆x + ∂[ f (x ,κ)+G(x ,κ)u]

∂κ

∣∣∣
0
∆κ+R1

] ∣∣∣
u=uindi

(7.28)
Based on Eqs. (7.27, 7.28), the closed-loop dynamics are written as

ẋ =ν+ [
(G −Ḡ)∆u +∆d +δ(x ,κ,∆t )

]
,ν+εindi (7.29)

εindi in Eq. (7.29) is a nonlinear perturbation term remaining in the closed-loop sys-
tem, which is caused by model mismatches, external disturbances and sudden faults.
If the conditions in Theorem 5 of Chapter 6 are satisfied, the perturbation term εindi is
ultimately bounded.

The virtual control ν can be designed for different control purposes (e.g. command
tracking, state stabilization, etc. [25]). Considering a command tracking problem, where
the first-order time derivative of the reference vector xref is assumed to be bounded and
piecewise continuous.

Proposition 4 If ‖εindi‖ ≤ ε̄indi for all x ∈ Rn , design ν = ẋref +K p (xref − x), where K p is
a positive definite gain matrix, then the tracking error e = xref − x for the system given by
Eq. (7.29) is globally ultimately bounded by a class K function of ε̄indi.

Proof : The definitions for global ultimate boundedness and the class K function can
be found in Appendix A, Definition 6, Definition 2. This Proposition can be proved con-
sidering a candidate Lyapunov function V = (xref − x)T (xref − x), and using Lemma A.3
and Proposition B.1 in [25]. ä

The INDI control is featured by its robustness to model mismatches and reduced
model dependency. For rigid aircraft control, the estimated control effectiveness matrix
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Ḡ is the only model information needed by INDI. Even though the controller is indepen-
dent of f (x), its robustness is improved by the feedback of ẋ0. In the presence of model
uncertainties, external disturbances, sudden faults and even structural damages, εindi

has a smaller bound than the bound on the remaining perturbation term in nonlinear
dynamic inversion control [28]. As a consequence, the ultimate bound of the tracking
errors under INDI control is also smaller (Proposition 4).

7.3.2. INDI FOR FLEXIBLE AIRCRAFT GLA
The flexible aircraft dynamics given by Eqs. (7.9, 7.10) coupled with unsteady aerody-
namics (Sec. 7.2.2) are nonlinear and of high order. For an aircraft model with me elastic
modes and na aerodynamic strips, there are 6 kinematic states, 6 states for pV f and pω f ,
me states for puw and pψw , me states for q and ξw in Eq. (7.2), and 4na aerodynamic lag
states (Sec. 7.2.2). In order to reduce the computational load of the on-board controller,
and also to ensure the observability of the system, it is beneficial to reduce the number
of states in the model used for control design. Therefore, a reduced-order nonlinear flex-
ible aircraft model is established, whose kinematic and dynamic equations are still given
by Eqs. (7.9, 7.10), but only the first m′

e < me structural modes are included. The dynam-
ics of the remaining me −m′

e modes are viewed as singular perturbations [14, 25] to the
system. This is reasonable since the high frequency structural modes are more damped,
and are less coupled with the rigid-body modes. The gust related 2na aerodynamic lag
states are not needed in this reduced-order model, since gust inputs are viewed as ex-
ternal disturbances by the controller, and are uncorrelated with system dynamics. The
other 2na aerodynamic lag states related to motions are also viewed as singular pertur-
bations to the system [14, 25]. The noncirculatory aerodynamic terms do not increase
the order of the system, thus they are viewed as regular perturbations [25, 37]. This pro-
cess reduces the number of states from 12+ 2me + 4na to 12+ 2m′

e , and also reduces
the model information available to the controller. The characteristics of the full and
reduced-order models will be compared in Sec. 7.4.1. The reduced-order model will be
used to design the INDI GLA control law. This control law will be validated using the
full-order model in Sec. 7.4.4.

Define the rigid-body states as xr = [V T
f ω

T
f ]T , and the elastic states as xe = H [q T ξT

w ]T .

H is a boolean selection matrix to choose part of the structural modes for control. Con-
sidering the dynamics of the reduced-order model (Eq. (7.9)), and taking the first-order
Taylor series expansion as:

ṗV f = ṗV f0
+

(
−
∂ω̃ f pV f

∂xr

∣∣∣
0
∆xr −

∂ω̃ f pV f

∂ẋe

∣∣∣
0
∆ẋe + ∂F

∂xr

∣∣∣
0
∆xr

)
+ ∂F

∂xe

∣∣∣
0
∆xe + ∂F

∂ẋe

∣∣∣
0
∆ẋe

+ ∂F

∂u

∣∣∣
0
∆u , ṗV f0

+Kr +Ke +Kde +Ku +ε1

ṗω f = ṗω f0
+

(
−
∂Ṽ f pV f + ω̃ f pω f

∂xr

∣∣∣
0
∆xr −

∂Ṽ f pV f + ω̃ f pω f

∂ẋe

∣∣∣
0
∆ẋe + ∂M

∂xr

∣∣∣
0
∆xr

)

+ ∂M

∂xe

∣∣∣
0
∆xe + ∂M

∂ẋe

∣∣∣
0
∆ẋe + ∂M

∂u

∣∣∣
0
∆u , ṗω f0

+Wr +We +Wde +Wu +ε2
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ṗuw = ṗuw0 −K uw∆q −C uw∆s +
(
∂Q

∂xr

∣∣∣
0
∆xr +

∂( ∂T∂q )

∂xr

∣∣∣
0
∆xr +

∂( ∂T∂q )

∂xe

∣∣∣
0
∆xe +

∂( ∂T∂q )

∂ẋe

∣∣∣
0
∆ẋe

)

+ ∂Q

∂xe

∣∣∣
0
∆xe + ∂Q

∂ẋe

∣∣∣
0
∆ẋe + ∂Q

∂u

∣∣∣
0
∆u , ṗuw0 +Uq +Us +Ur +Ue +Ude +Uu +ε3

ṗψw = ṗψw0 −K ψw∆ξw −C ψw∆ηw + ∂Θ

∂xr

∣∣∣
0
∆xr + ∂Θ

∂xe

∣∣∣
0
∆xe + ∂Θ

∂ẋe

∣∣∣
0
∆ẋe + ∂Θ

∂u

∣∣∣
0
∆u

, ṗψw0 +Yξ+Yη+Yr +Ye +Yde +Yu +ε4 (7.30)

In the above equations, the control vector is defined as u = [δas ,δaa ,δe ,δr ]T . δas

and δaa respectively denote the symmetrical and asymmetrical aileron deflections. δe

indicates the elevator deflections while δr represents the rudder deflections. εi , i =
1,2,3,4 includes the ∆κ related terms, the disturbance variations ∆d , and the higher-
order terms in Eq. (7.25).

Since INDI uses the information of discrete samples, its performance is influenced
by the sampling frequency, which is constrained by the hardware in practice. For a given
∆t , the value of δ(x ,κ,∆t ) in Eq. (7.27) depends on the specific system dynamics. It has
been proved in [25] that for faster system dynamics, ∆t should be smaller to ensure a
desirable ultimate bound. This also makes sense from a physical point of view that the
characteristics of rapidly changing dynamics can only be captured by using high sam-
pling frequency. For flexible aircraft dynamics, the variations of elastic states are typ-
ically faster than the rigid-body states. In Eq. (7.30), partial derivatives are separately
taken with respect to xr , xe and ẋe . Although the state variation related terms can all be
viewed as perturbations, in which way the only model information used by the control
is Ḡ(x) (Eq. (7.29)), for relaxing the requirement on the sampling frequency, while main-
taining the control performance, it is chosen in this chapter to include the terms related
to the elastic state variations in control design. Nevertheless, since the rigid-body states
have slower dynamics, the ∆xr related terms are viewed as perturbations by the con-
troller.

The complexity of the control can be further reduced by analyzing the physics of
the flexible aircraft. Although the mass matrix of the flexible aircraft is a function of the
elastic states, it is still diagonally dominant. Consequently, in the translational and ro-
tational equations, the partial derivatives of the nonlinear coupling terms with respect
to ẋe can become less significant in ∆t . Moreover, the partial derivatives of the Coriolis
and centrifugal forces with respect to xe and ẋe have limited effects on the wing bending
dynamics. Therefore, these terms are also viewed as perturbations by the controller. The
specific expressions of these partial derivatives can be found in [38]. For simplicity, the
incremental terms in the translational, rotational, bending and torsion dynamic equa-
tions are respectively denoted by K, W, U, Y in Eq. (7.30). Based on the above analyses,
in one incremental time step ∆t , the Kr , Wr , Ur , Yr terms are less influential, thus they
are viewed as perturbations by the controller. The feasibility of this simplification will
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be verified in Sec. 7.4.2. Consequently, Eq. (7.30) is simplified into the following form:



ṗV f

ṗω f

ṗuw

ṗψw

q̇
ξ̇w

 =



ṗV f0

ṗω f0

ṗuw0

ṗψw0

q̇ 0
ξ̇w,0

+



∂F
∂s

∂F
∂ηw

∂F
∂q

∂F
∂ξw

0 ∂M
∂s

∂M
∂ηw

∂M
∂q

∂M
∂ξw

−C uw + ∂Q
∂s

∂Q
∂ηw

−K uw + ∂Q
∂q

∂Q
∂ξw

0 ∂Θ
∂s −C ψw + ∂Θ

∂ηw

∂Θ
∂q −K ψw + ∂Θ

∂ξw

0 I 0

∣∣∣∣
0

∆V f

∆ω f

∆s
∆ηw
∆q
∆ξw

+



∂F
∂δas

∂F
∂δaa

∂F
∂δe

∂F
∂δr

∂M
∂δas

∂M
∂δaa

∂M
∂δe

∂M
∂δr

∂Q
∂δas

∂Q
∂δaa

∂Θ
∂δas

∂Θ
∂δaa

0

0 0

∣∣∣∣
0


∆δas

∆δaa

∆δe

∆δr

+ε (7.31)

where I and 0 are the identity matrix and zero matrix. ε is the augmented perturbation
term. In view of Eq. (7.31), the partial derivatives of the generalized forces with respect to
xe and ẋe contribute to aerodynamic stiffness and damping respectively. Furthermore,
the control surface deflections directly lead to acceleration variations.

For the convenience of the virtual control design, define x = [pT
V f

pT
ω f

pT
uw pT

ψw q T ξw
T ]T .

Velocities and deformations can also be used as states as xV = [V T
f ω

T
f sT ηT

w q T ξT
w ]T ,

with a simple transformation of x = M s xV , M s = diag([M st , I ]). Recall Eq. (7.31), the
system dynamic equation is represented as

ẋ = ẋ0 +Γ
∣∣
0∆xV +Υ∣∣

0∆u +ε (7.32)

The above equation is different from the incremental dynamic equation for rigid
aircraft [19, 26, 27, 29] since the ∆xV related term still remains. ∆xV ≈ M−1

s

∣∣
0∆x +

∆(M−1
s )x0 +∆(M−1

s )∆x , where ∆(M−1
s ) is caused by the off-diagonal variations of ∆q .

Since the mass matrix is diagonally dominant [38], the terms containing∆(M−1
s ) and the

higher-order terms can be viewed as perturbations. ε′ is used to combine these terms
with the ε in Eq. (7.31). Denote Ae , (ΓM−1

s )|0, B e ,Υ|0, Eq. (7.31) is then simplified to

ẋ = ẋ0 + Ae∆x +B e∆u +ε′ (7.33)

The main control aim of this chapter is load alleviation, so a reference model is de-
signed to generate references for the states and state derivatives for load control pur-
poses. The internal loads, also known as “stress resultants” are caused by the externally
applied forces and moments. The strategy of this controller is to use control surface
deflections to compensate for the load variations caused by perturbations, so that the
generalized forces are retained at their nominal values F∗, M∗, Q∗, Θ∗. The subscript
(·)∗ indicates the nominal trimmed condition. Expanding the total force as the nominal
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force F∗, the forces variations due to aerodynamic uncertainties ∆Fa , caused by atmo-
spheric disturbances ∆Fd , and generated by control inputs ∆Fc as

F = F∗+∆Fa +∆Fd +∆Fc (7.34)

The moment M, and the generalized elastic forces Q andΘ in Eq. (7.9) can also be ex-
panded in this form. In order to retain the forces and moments at their nominal values,
the desired forces generated by the control surfaces should be

∆Fc =−∆(Fa +Fd ), ∆Mc =−∆(Ma +Md )

∆Qc =−∆(Q a +Qd ), ∆Θc =−∆(Θa +Θd ) (7.35)

Recall Eq. (7.9), in order to satisfy the above equations, assuming the Coriolis and
centrifugal forces are small, then the virtual controlνr m = [νT

PV f
νT

Pω f
νT

Puw
νT

Pψw
νT

q ν
T
ξ

]T

can be designed as

νPV f
= −ω̃ f pV f +F∗

νPω f
= −Ṽ f pV f − ω̃ f pω f +M∗

νPuw = −K uw q −C uw s +Q∗ =−K uw (q −q∗)−C uw (s − s∗)

νPψw = −K ψwξw −C ψwηw +Θ∗ =−K ψw (ξw −ξw,∗)−C ψw (ηw −ηw,∗)

νq = 0, νξ = 0 (7.36)

If the nominal condition is steady level flight, then F∗ = M∗ = s∗ = ηw,∗ = 0. The
nominal condition can also be constant speed climb and decent, level turn, etc. The
desired q̇ , ξ̇w are all equal to zero. The reference for states are obtained by integrating
the virtual control as

xr m = xr m∗ +
∫ t

0
νr m dτ (7.37)

A proportional virtual control term νp is added to minimize the reference tracking
errors as

ν=νr m +νp =νr m +K p (xr m −x) (7.38)

where K p is a positive definite gain matrix (the same as in Proposition 4). Using Eq. (7.33),
and based on Sec. 7.3.1, the INDI GLA control law is designed as:

∆u = (B T
e W B e )−1B T

e W (ν− ẋ0 − Ae∆x) (7.39)

For the reason that the number of control variables is less than the number of states,
the weighted least squares method is used in the present INDI control law. The weight-
ing matrix W is chosen as a positive definite matrix, which can be tuned based on the
control priority. The total control command for the actuator is u = ∆u +u0, where u0

is the sampled actuator position vector [25]. A block diagram is illustrated in Fig. 7.5,
where z−1 represents one time step delay, Ts /(z −1) is a discretized integrator using the
forward Euler method, PI D represents a proportional-integral-derivative regulator.
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Figure 7.5: Flexible aircraft INDI gust load alleviation control law structure.

7.3.3. SENSING AND STATE ESTIMATION
The INDI GLA control law given by Eqs. (7.36, 7.39) requires the feedback of the states
and state derivatives. The rigid-body states xr = [V T

f ω
T
f ]T and V̇ f can be obtained

from the integrated inertial navigation system. Angular accelerations can be directly
measured by angular accelerometers [39], numerically differentiated from gyro mea-
surements [22], predicted by a linear predictive filter [19], etc.

The elastic states xe = H [q T ξT
w ]T can be estimated using an online observer. In this

chapter, the bending and torsion motions are captured by nine accelerometers on the
flexible aircraft. As shown by the red dots in Fig. 7.1, one accelerometer is installed on
the center of mass and eight accelerometers are placed on the wings. On each wing, the
accelerometers are placed in pairs at the mid-span and the wing tip. For each pair, one
accelerometer is placed in front of the elastic axis, and the other one is behind, such that
the torsional deformations can be observed. The accelerometers on the wing are placed
along with the z axis of the local wing coordinate (Fig. 7.1).

Considering an infinitesimal mass element dm on the wing, whose absolute veloci-
ties are given as [38]

v̄w (rw , t ) =C w V f +C w r̃ T
f wω f + (r̃ w + Φ̃q)T C wω f + r̃ T

wΨηw +Φs (7.40)

Differentiate Eq. (7.40), the acceleration vector of the infinitesimal mass element is

aw (rw , t ) =C w V̇ f +C w r̃ T
f w ω̇ f + (r̃ w + Φ̃q)T C w ω̇ f + Φ̃s

T
C wω f + r̃ T

wΨη̇w +Φṡ (7.41)

Evaluating rw in Eq. (7.41) by the position vector of a wing accelerometer, then the-
oretically its measurement is given by the z component of aw (rw , t ). In reality, the mea-
surements always contain noise v. Therefore, the system output equation is written as
y = h(x)+v, where h(x) is based on Eq. (7.41).

The extended Kalman filter and unscented Kalman filter are widely used for the state
estimation of nonlinear systems. However, these two methods require high computa-
tional power. Since the nonlinear INDI control is able to retain the states near the equi-
librium point, the linear Kalman filter is a reasonable and efficient observer for systems
under INDI control. It is noteworthy that the accelerometer measurements are calcu-
lated using the full-order nonlinear flexible aircraft model, while only the reduced-order
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model is available for the observer design. Linearize the reduced-order model around
the equilibrium point, the resulting dynamics are written as ẋr

ẍe

ẋe

 =
[

Ar r Ar e

Aer Aee

] xr

ẋe

xe

+
[

B r

B el

]
u +

[
wr

we

]

yV = [
C r C el

][
xr ẋe xe

]T +DV u +v (7.42)

The process noise [wT
r wT

e ]T contains the model errors and external disturbances.
For GLA problems, it is common to augment the linear system models with the Dryden
turbulence model as a prior knowledge of the process noise [10, 40]. In reality, however,
the turbulence spectrum is usually unknown. In order to get a satisfactory state estima-
tion while making the controller be capable of handling a broad range of disturbances,
the Dryden model is augmented into the system model with parametric uncertainties.
These uncertain parameters can be modeled as random walks and be estimated online.
Recalling Eq. (7.20), the state-space realization of the Dryden spectrum can be given by

ẋ w = Ag x w +B g n

wgw = C g x w (7.43)

where n is the Gaussian white noise. In view of Fig. 7.3, the gust velocity varies on each
strip. However, for maintaining the observation efficiency, the gust velocities are as-
sumed to be uniformly distributed on the wing wgw and the tail wgH in the observation
process. Also, the gust penetration effect is roughly modeled as a time shift ς from the
wing to the tail in the observation process. In other words, the current gust velocities on
the tail equal the gust velocities on the wing ς seconds ago, i.e. wgH = e−ςs wgw . The pure
time delay e−ςs is approximated using the fifth order Padé approximation in the Laplace
domain, which can be realized in the time domain as

wgH = e−ςs wgw ≈ H(ςs)wgw

ẋς = Aςxς+Bςwgw = Aςxς+BςC g x w , wgH =Cςxς (7.44)

The influences of gust on the elastic modes are modeled as we = E w wgw +E H wgH +
de , with de represents the aircraft and turbulence model errors. Since the rigid states xr

can be directly measured, they are treated as inputs to the elastic state estimation equa-
tion. In summary, the integrated linear model for Kalman filter estimation is written
as 

ẍe

ẋe

ẋ w

ẋς

 =
 Aee E w C g E H Cς

0 Ag 0
0 BςC g Aς




ẋe

xe

x w

xς

+
 B el Aer

0 0
0 0

[
u
xr

]

+
 0

B g

0

n+
 de

0
0


yV = [

C el 0 0
][

ẋe xe x w xς
]T

+[
DV C r

][
u xr

]T +v (7.45)



7.4. SIMULATION RESULTS AND DISCUSSIONS

7

187

which is written in a more compact form as

ẋk f = Ak f xk f +B k f uk f +Gk f n+dk f

yk f = C k f xk f +Dk f uk f +v (7.46)

The measurement noise covariance matrix is Rk f = E {vvT }, which is set based on
the realistic noise level of the sensors. The process noise covariance matrix is chosen
as Qk f = E {Gk f nnT GT

k f }+Qd , where Qd is an additive matrix tuned to account for the

aircraft and turbulence model errors. The effectiveness of this state estimation approach
will be shown in Sec. 7.4.3.

7.4. SIMULATION RESULTS AND DISCUSSIONS
The effectiveness of the proposed controller on gust load alleviation, and its robustness
to model uncertainties and actuator faults will be evaluated in this section. A nonlin-
ear full-order benchmark flexible aircraft validation model is set up using the geometry,
inertia and stiffness data published in [2]. The dynamics of this aircraft have been dis-
cussed in Sec. 7.2. Each side of the wing model contains five bending modes and five tor-
sion modes. The eigenfunctions of a uniform cantilever beam and a uniform clamped-
free shaft are used as the bending shape functionsΦ(rw ) and the torsion shape functions
Ψ(rw ) respectively. The rest of the aircraft components are assumed to be rigid. Differ-
ent from the quasi-steady strip theory used in [2], modified strip theory (Sec. 7.2.2) is
adopted in this chapter. This validation model uses the steady-flow lift curve slope (C SF

Lα
in Eq. (7.13)) provided by [2]. These values are corrected using the Prandtl-Glauert factor
to consider compressibility. The distributed forces on the right and left lifting surfaces
are calculated independently, in which way the lateral flight dynamic modes can be con-
sidered.

All the control surface actuator dynamics are modeled as first-order systems with
time constant 0.02 s. The deflection limits of ailerons, elevator and rudder are±30◦, ±20◦,
±20◦ respectively. The rate limits for ailerons are 100◦/s and are 60◦/s for the elevator
and rudder. The sampling frequency is fs = 1000 Hz for capturing the high frequency
elastic modes. For the load cases considered in this chapter, the variations of the air-
speed are within ±0.2 m/s in the open-loop responses, thus constant throttle is assumed
in the subsequent simulations. A simple proportional-integral-derivative throttle con-
troller can always be used if the airspeed has large deviations.

7.4.1. TRIM AND MODEL ANALYSIS
In order to analyze the couplings between the structural and rigid-body dynamics, a
quasi-rigid aircraft model [2, 29] is set up. This quasi-rigid aircraft assumes infinitely
high wing stiffness, and its kinematic equations are equal to Eq. (7.10). The dynamics
of this quasi-rigid aircraft is described by the first two equations of Eq. (7.9), and all the
elastic motion related terms are set to be zero. The resulting six degrees of freedom equa-
tions become identical to the conventional rigid-aircraft dynamic equations expressed
in the body-fixed frame when O f is coincide with the center of mass. Quasi-steady aero-
dynamics are used by this quasi-rigid aircraft model.

The full-order flexible aircraft model contains 20 elastic modes (10 for each wing),
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and 97 aerodynamic strips, thus referring to Sec. 7.3.2, the total number of states equals
440. As presented in Sec. 7.3.2, a reduced-order nonlinear flexible aircraft model is used
for control design. This model only includes the first 3 structural modes on each wing,
coupled with quasi-steady aerodynamics, thus the total number of states is reduced
to 24. The unsteady aerodynamic effects are viewed as perturbations to the controller
(Sec. 7.3.2). The control designed using the reduced-order model will be implemented
on the full-order model to evaluate its effectiveness.

Using the distributed inertia and stiffness data in [2], the natural frequency of the
first wing elastic mode is 36.4 rad/s, which may not be representative for a very flexible
aircraft. In order to evaluate the genericity of the proposed controller, a more flexible
aircraft model is set up, which reduces the bending and torsion stiffness of the bench-
mark flexible aircraft model by 80%. Consequently, the natural frequency of the first
wing elastic mode becomes 16.34 rad/s (2.6 Hz). The structural damping matrices C uw

and C ψw are assumed to be proportional to the stiffness matrices in [2]. Therefore, these
damping matrices are also reduced by 80% in this more flexible aircraft model.

The quasi-rigid aircraft, the full-order benchmark flexible aircraft, the reduced-order
flexible aircraft, and the flexible with 80% reduced stiffness are all trimmed at a steady
level flight condition, with h∗ = 25,000 ft, VE∗ = 127 m/s, Ma∗ = 0.41. The steady level
flight trim constrains are given by

Ṙ f∗ = [VE∗ 0 0]T , θ f∗ = [0 θ∗ 0]T , V f∗ =C f (θ∗)Ṙ f∗ ,

ω f∗ = 0, α∗ = θ∗, β∗ = 0, s∗ = 0, ηw,∗ = 0 (7.47)

In view of the symmetric characteristic of the steady level flight condition, asymmet-
ric states and control inputs are automatically set to be zero. The trim solutions for the
considered flight condition satisfying Eq. (7.47) are summarized in Table 7.1.

Table 7.1: Trim solutions for four aircraft models.

α∗ [◦] δe∗ [◦] FE∗ [N] q∗ [mm] ξw,∗ [◦]
Quasi-rigid 4.03 −3.71 2809 – –

Full-order Flexible 3.98 −3.61 2782
[−34.96,4.36, [0.114,−0.020,

−0.36, 0.008,
0.01,−0.03]T −0.003,0.002]T

Reduced-order Flexible 3.98 −3.61 2782 [−34.29,3.63]T 0.114
Full-order Flexible with

3.76 −3.23 2675
[−183.41,23.57, [0.588,−0.111,

Reduced Stiffness −2.03, 0.043,
0.07,−0.14]T −0.014,0.009]T

FE∗ and δe∗ in Table 7.1 respectively represents the thrust and elevator deflection
in the trim condition. For the present models, the wing elastic axis is coincide with
the unswept wing beam, thus the bending and torsion modes are decoupled. Also, the
aerodynamic center of the wing is in front of the elastic axis. Consequently, in the trim
condition, the wing is bending upwards with a nose-up torsional angle. Because of this
nose-up twist, α∗ of the flexible aircraft are smaller than that of the quasi-rigid aircraft.
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The trim solutions of the reduced-order and full-order flexible aircraft are close to each
other. Moreover, the flexible aircraft with reduced stiffness has larger deformations than
the benchmark flexible aircraft, which can be seen from the values of q∗ and ξw,∗ in
Table 7.1.

An eigenvalue analysis is performed to show the characteristics of the four models.
Fig. 7.6 compares the poles of the quasi-rigid aircraft, and two flexible aircraft. Due to the
coupling effects, the rigid mode poles of the flexible aircraft deviate from the poles of the
quasi-rigid aircraft. For all the models, there are four poles in the origin for XE ,YE , ZE ,ψ.
The reduced-order model is able to maintain the low frequency characteristics of the
full-order system. As can be seen from Fig. 7.6, the poles of the reduced-order model are
in agreement with that of the full-order model in the low frequency range. The distinc-
tions between these two models increase as frequency increases.
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Figure 7.6: Eigenvalues of the quasi-rigid, full and reduced-order flexible aircraft models.

Fig. 7.7 compares the poles of the quasi-rigid, benchmark flexible and the flexible
aircraft with reduced stiffness. It can be observed that the elastic modes of the flexible
aircraft with 80% reduced stiffness have reduced frequency and higher damping ratio.
For example, as the stiffness reduces, the first bending mode frequency reduces from
42.5 rad/s to 23.1 rad/s, while the damping ratio increases from 0.101 to 0.153. Besides,
the frequency of the first torsion mode reduces from 263 rad/s to 115 rad/s, while the
damping ratio increases from 0.029 to 0.033. As the wing flexibility increases, the cou-
plings between the structural and rigid-body dynamics become more prominent. In
view of the third subplot of Fig. 7.7, the benchmark full-order flexible aircraft has higher
short-period damping ratio than the quasi-rigid aircraft, which coincides with the re-
sults in [41, 42]. When 80% of the wing stiffness is reduced, the pair of complex conju-
gate short-period poles merges to become two real poles. The disappearance of the con-
ventional oscillatory short period mode caused by the wing flexibility was also reported
in [5, 43, 44]. The dominant pitching pole of the more flexible aircraft is -0.783, which is
expected to move to the unstable region as the wing stiffness further reduces [44]. The
reduction of wing stiffness also induces an unstable phugoid mode, which is observed
from the fourth subplot of Fig. 7.7. This phenomenon is in agreement with the results
in [5, 43, 45]. In addition, the lateral flight dynamic modes are also influenced by the
wing flexibility. These couplings between the rigid-body and structural dynamics high-
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light the necessity of an intergrated controller, which can simultaneously consider the
aeroelastic and flight dynamic control objectives.
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Figure 7.7: Eigenvalues of the quasi-rigid, full-order flexible aircraft, and a flexible aircraft with 80% reduced
stiffness.

7.4.2. VALIDATION OF THE MODEL SIMPLIFICATION
According to the analysis in Sec. 7.3.2, the Kr , Wr , Ur , Yr terms in Eq. (7.30) are less
influential in one incremental time step, thus they are viewed as perturbations by the
controller. To validate this process, the values of the terms in Eq. (7.30) will be numeri-
cally compared in this subsection.

The benchmark flexible aircraft is initially trimmed in a steady level flight condition.
1◦ step elevator δe , rudder δr , symmetric δas and asymmetric δaa aileron deflection
commands are separately given to the aircraft. In one incremental time step ∆t = 0.001
s, the norm value of the terms in Eq. (7.30) are shown in Fig. 7.8. For clarity, only the
terms in the translational, rotational, and the right wing vibration equations are shown
in the figure. The left wing vibrations are exactly symmetrical or asymmetrical to the
right wing.
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Figure 7.8: Norm value of the terms in Eq. (7.30) in one incremental time step.

It can be seen from Fig. 7.8 that the elevator (δe blue circles) and rudder (δr red cross)
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deflections directly lead to translational and rotational acceleration variations, because
‖Ku‖ and ‖Wu‖ are at least two orders of magnitude larger than ‖Kr ‖,‖Ke‖,‖Kde‖,‖Wr ‖,
‖We‖,‖Wde‖. δe and δa do not directly influence the generalized elastic forces Q and
Θ, thus ‖Uu‖ = ‖Yu‖ = 0. Even so, the elevator and rudder deflections indirectly excite
bending and torsion motions due to the coupling effects, as ‖Uq‖,‖Us‖,‖Ur ‖,‖Ue‖,‖Ude‖,
‖Yξ‖,‖Yη‖,‖Yr ‖,‖Ye‖,‖Yde‖ are nonzero.

The symmetric aileron (δas green asterisks) deflections directly lead to translational
(‖Ku‖), bending (‖Uu‖) and torsion (‖Yu‖) accelerations, as well as small pitching ac-
celerations (‖Wu‖). The u related terms are about 40, 4, 40 times larger than the xe and
ẋe related terms in the translational, rotational, bending equations respectively. ‖Yξ‖
is comparable with ‖Yu‖ because the wing torsion modes have higher frequency and
smaller damping ratio than the bending modes (Fig. 7.6). Nevertheless, under δas de-
flections, ‖Kr ‖,‖Wr ‖,‖Ur ‖,‖Yr ‖ are at least two orders of magnitude smaller than the
remaining terms.

The term values under the asymmetric aileron (δaa purple diamonds) excitation
show similar phenomena as under δas excitation. Namely, the xe and ẋe related terms
have comparable variations as compared to the u related terms, while ‖Kr ‖,‖Wr ‖,‖Ur ‖,‖Yr ‖
are at least two orders of magnitude smaller than the remaining terms. The simulation
results in this subsection further verify the feasibility of viewing Kr , Wr , Ur , Yr as per-
turbations in the control design process (Sec. 7.3.2).

7.4.3. STATE ESTIMATION RESULTS AND DISCUSSIONS

The method presented in Sec. 7.3.3 will be used to estimate the elastic states xe and ẋe

while the flexible aircraft flying through a 2D von Kármán turbulence field (Fig. 7.3). The
parameters of the turbulence field are Lg = 762 m, σ= 1.5 m/s. The measurement noise
v is modeled as white noise with standard deviation of 0.03 m/s2. The turbulence pa-
rameters used by the Dryden model are Lg = 800 m, σ = 1.8 m/s, which are chosen to
be different from the actual turbulence field for including the parametric uncertainties.
As mentioned in Sec. 7.3.3, these uncertain parameters can be modeled as random walk
and be estimated online. In this research, by tuning the process noise covariance ma-
trix Qk f , the Kalman filter already shows satisfactory results without directly estimating
these uncertain parameters.

Fig. 7.9 illustrates the real and estimated deformation velocities of the first, second
bending modes and the first torsion mode. As can be seen from Figs. 7.9 and 7.10, the
Kalman filter online estimation converges within 0.02 s. The estimation errors are all
within the posterior estimate standard deviation boundary.

The deformation accelerations ẍe can be reconstructed from linear accelerometer
measurements. As an alternative, ẍe can also be obtained by passing ẋe through a
“washout” filter: sω2

n/(s2 +2ζnωn s +ω2
n). The estimation results of the deformation ac-

celerations are shown in Fig. 7.11, where only small disagreements between the real and
estimated values present. Fig. 7.12 shows the estimated generalized elastic displace-
ments xe . Different from the elastic velocity and acceleration estimations, perceptible
errors present in the displacement estimations. The reason behind this can be revealed
by Eq. (7.41), in which the accelerometer measurements are less correlated with xe . The

only term in Eq. (7.41) that contains xe is Φ̃q
T

C w ω̇ f , whose z component is almost zero
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Figure 7.9: Real and estimated deformation velocities.

0 0.5 1 1.5 2 2.5 3
-10

0

10

e
s

1

 [
m

m
/s

]

Error Upper error STD Lower error STD

0 0.5 1 1.5 2 2.5 3
-5

0

5

e
s

2

 [
m

m
/s

]

0 0.5 1 1.5 2 2.5 3

t [s]

-0.05

0

0.05

e
1

 [
ra

d
/s

]

Figure 7.10: Deformation velocity estimation errors.



7.4. SIMULATION RESULTS AND DISCUSSIONS

7

193

under small deformations. As a consequence, the estimation of xe has to depend more
on the linearized reduced-order model, which is different from the nonlinear full-order
dynamics. Nevertheless, it will be shown in Sec. 7.4.4 that these estimation errors can be
tolerated by the INDI control.
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Figure 7.12: Real and estimated deformations.

7.4.4. INDI GLA SIMULATION RESULTS AND DISCUSSIONS
In this subsection, the INDI GLA control law derived in Sec. 7.3.2 will be validated by the
benchmark full-order nonlinear flexible aircraft model. This aircraft flies through both
a continuous turbulence field (Fig. 7.3) and a discrete gust field (Fig. 7.4). The deviation
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of the vertical load factor from its nominal value ñz = nz −nz∗ , and the derivation of the
wing root bending moment M̃r = Mr −Mr∗ are chosen as two performance metrics.

Figs. 7.13-7.17 illustrate the dynamic responses of the flexible aircraft flying through
a von Kármán turbulence field (Fig. 7.3), in which “Open” means responses without con-
trol. “INDI” means the closed-loop responses of the system under INDI GLA control,
where the states and their derivatives are assumed to be available. “KF” refers to the
closed-loop system responses, when the estimated elastic states and their derivatives
are used by the controller. The root mean square (rms) value as well as the peaks of ñz

and M̃r are summarized in Table 7.2. It can be seen from Fig. 7.13 and Table 7.2 that the
proposed INDI GLA controller effectively alleviates both the vertical load and the wing
root bending moment. Because of the unsteady aerodynamic effects, the load responses
in Fig. 7.13 are smoother than the results in [38] where quasi-steady aerodynamics are
used. INDI is able to tolerate the state estimation errors (Sec. 7.4.3) since the closed-loop
responses using the estimated states only have small deteriorations as compared to the
ideal case.
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Figure 7.13: Vertical load factor and wing root bending moment responses under turbulence excitation.

Table 7.2: The maximum and rms values of the load deviations under turbulence excitation.

max(ñz ) [g] σ̂(ñz ) [g] max(M̃r ) [N·m] σ̂(M̃r ) [N·m]
Open 0.186 0.0616 1.80×104 6.04×103

INDI 0.072 (61.3%) 0.0386 (37.4%) 1.63×103 (90.9%) 815 (86.5%)
KF 0.074 (60.1%) 0.0392 (36.4%) 2.71×103 (84.9% ) 1.08 ×103 (82.2%)

Fig. 7.15 shows the responses of the generalized elastic displacements, namely the
first bending qr1 , second bending qr2 , and the first torsion ξr1 modes of the right wing.
For this flexible aircraft configuration, only one set of aileron is available on the wing,
which aims at wing bending and torsion modes suppression, vertical load control and
roll rate control at the same time. However, according to the controllability analysis, this
configuration is unable to achieve a decoupled control for all its missions. For example,
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in the presence of an upwash gust, the wing lift increases, which results in load incre-
ment, upward bending and nose-up torsion of the wing as can be seen in Figs. 7.18-7.20.
The symmetric up deflections of ailerons would alleviate the wing load and the bend-
ing deformation, but would degrade the torsion deformation because the aerodynamic
center of the aileron is behind the wing elastic axis. Since the torsion stiffness is nor-
mally larger than the bending stiffness, the vertical load and bending mode control are
weighted heavier in Eq. (7.39). Consequently, as shown in Fig. 7.14, the bending modes
of the flexible wing are successfully suppressed, while the torsion deformations have
reasonable increments. There are a couple of ways to improve the torsion responses.
The fundamental solution would be adding control surfaces (e.g. inboard ailerons, flap-
erons, spoilers, etc.) to achieve a synergetic control with the outboard ailerons. Novel
control surfaces like the variable camber continuous trailing edge flap (VCCTEF) devel-
oped in NASA Ames [9, 11] are beneficial to elastic wing controls. It is noteworthy that
from the control design point of view, increasing the number of control surfaces only ex-
pands the dimension of the B e matrix (Eq. (7.33)). Stiffening the wing box or increasing
the control weights on the torsion motion are also possible approaches.
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Figure 7.14: Generalized displacements under turbulence excitation.

The wing-tip bending and torsion deformations are illustrated in Fig. 7.15. When
using the INDI control, the rms of ztip−ztip∗ is reduced by 72.6% while rms (φtip,r−φtip,r*)
is increases by 33% owing to the lack of control surface numbers. Moreover, the rms of
pitch rate is suppressed from 0.37 deg/s to 0.07 deg/s. The control inputs are illustrated
in Fig. 7.17, where the left aileron deflections δal equal the right δar in the symmetric
turbulence field.

The dynamic responses of the flexible aircraft in a symmetric “1 − cos” gust field
(Fig. 7.4) are illustrated in Figs. 7.18-7.21. As shown in Fig. 7.18 and Table 7.3. The ver-
tical load factor and wing root bending moment are alleviated by over 36% and 86% re-
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Figure 7.15: Wing-tip bending and torsion deformations under turbulence excitation.
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spectively. In the presence of upwash gusts, the ailerons deflect upward symmetrically
to alleviate the wing load as shown in Fig. 7.22. Analogous to the responses under tur-
bulence excitations, the bending modes are suppressed while the torsion modes have
acceptable increments in this gust field, as shown in Fig. 7.19 and Fig. 7.20. In view of
Fig. 7.21, the peak of pitch rate q is reduced by 82.7%.
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Figure 7.18: Vertical load factor and wing root bending moment responses under gust excitation.

Table 7.3: The maximum and rms values of the load deviations under gust excitation.

max(ñz ) [g] σ̂(ñz ) [g ] max(M̃r ) [N·m] σ̂(M̃r ) [N·m]
Open 0.362 0.113 3.67×104 1.10×104

INDI 0.231 (36.2%) 0.070 (38.1%) 5.10×103 (86.1%) 1.50×103 (86.4%)

7.4.5. VALIDATION BY A MORE FLEXIBLE AIRCRAFT MODEL
As discussed in Sec. 7.4.1, the benchmark aircraft may not be representative for a very
flexible aircraft, thus a more flexible aircraft model which reduces the stiffness of the
benchmark aircraft by 80% is also used to validate the proposed controller. It has been
shown in Fig. 7.7 that the increase of flexibility changes both the rigid-body and elas-
tic modes of the benchmark flexible aircraft. The normal control design routine for
this more flexible aircraft would be: 1) build a nonlinear reduced-order flexible aircraft
model; 2) identify the Ae and B e matrices in Eq. (7.39); 3) re-tune the control param-
eters K p in Eq. (7.38). In view of the analyses in Sec. 7.3.1, the INDI control is robust
to model mismatches by virtue of its sensor-based nature. Therefore, to simplify the
implementation process and to assess the robustness of this control, the controller de-
signed for the benchmark aircraft is directly applied to this more flexible aircraft model
without modifying the Ae , B e , K p matrices. During simulations, this more flexible air-
craft flies through the 2D turbulence filed shown in Fig. 7.3 for ten seconds. The results
are presented in Figs. 7.23-7.27, in which “MF" represents “More Flexible”. As illustrated
in Fig. 7.23, in spite of the model mismatches and the nonoptimal control gains, the



7

198 FLEXIBLE AIRCRAFT GLA WITH INDI

0 2 4 6 8 10
q

r1
 [

m
m

]
-50

-40

-30

0 2 4 6 8 10

q
r2

 [
m

m
]

3

4

5

6

t [s]

0 2 4 6 8 10

ξ
r1

 [
°
]

0.1

0.2

Open-loop INDI

Figure 7.19: Generalized displacements under gust excitation.
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maximum value of nz −nz∗ is still reduced by 36.8%. Moreover, the maximum and rms
values of the wing root bending moment deviations are respectively reduced by 84.7%
and 78.3%. The performance of this control can be further improved by using more ac-
curate Ae , B e matrices and optimizing the control gains.
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Figure 7.23: Load responses of a more flexible aircraft under turbulence excitation.

The generalized displacements and the wing-tip deformations are shown in Figs. 7.24
and 7.25. When compared to the open-loop responses of the benchmark flexible aircraft
(Figs. 7.14 and 7.15), this more flexible aircraft has higher vibration magnitude and re-
duced vibration frequency in the turbulence field. Fig. 7.25 shows that the wing-tip of
this more flexible aircraft bends up by 551 mm in the trim condition, and oscillates in
the range of [−606,−508] mm under turbulence excitations. The INDI control can re-
duce the rms of ztip − ztip∗ by 70.3%. The pitch rate magnitude of this more flexible air-
craft doubles the value of the benchmark aircraft (Fig. 7.16). When INDI is applied, the
magnitude of q is reduced from 2.5 deg/s to 0.5 deg/s. The control surface deflections
are illustrated in Fig. 7.27.
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Figure 7.24: Generalized displacements of the more flexible aircraft.
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Figure 7.25: Wing-tip bending and torsion deformations of the more flexible aircraft.
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Figure 7.27: Control inputs using INDI.

7.4.6. TOLERANCE TO ACTUATOR FAULTS

The INDI control can passively tolerate actuator sudden faults provided GḠ
−1

remains
diagonally dominant in the post-fault condition [28, 46]. In practice, the tolerance of the
control to actuator faults is also constrained by the rate and position limits of the actu-
ators. In this subsection, a command-filtered actuator compensator is used to handle
the actuator nonlinear constrains. The core idea of this technique is that the command
given to the actuator is passed through a command filter first, which considers the non-
linear constrains and bandwidth of the actuator. When the actuator limits are reached,
instead of enforcing the actuator to follow the physically unachievable command, an ac-
tuator compensator can guarantee the output of the command filter being tracked. For
more details of this technique, readers are recommended to [47]. The pseudo-control
hedging (PCH) technique can also be used to deal with actuator constrains [48, 49].
Real-world flight tests have demonstrated the applicability of the combination of PCH
and INDI [24].

This subsection will test the robustness of the proposed INDI GLA control to actuator
partial loss of effectiveness. When an actuator fault occurs, the circulatory and noncir-
culatory aerodynamic coefficients related to control deflections in Eqs. (7.12, 7.15) are
scaled. However, the control is not aware of the fault, and still uses the B e matrix esti-
mated in the nominal case.

Fig. 7.28 shows the load responses of the benchmark flexible aircraft with partial loss
of control effectiveness. The labelσ∆Mr is an abbreviation for the rms value of Mr −Mr∗ .
During simulations, this aircraft flies through the turbulence field shown in Fig. 7.3 for
ten seconds, and all the considered actuator faults occur at t = 0 s. As shown in Fig. 7.28,
without changing any control parameter, this controller is able to passively tolerate both
ailerons simultaneously lose 50% of their effectiveness. When the fault percentage is
larger than 50%, the effectiveness of the control is limited by the rate constrains of the
ailerons. The command-filtered actuator compensator can still guarantee the stability,
while the load alleviation performance inevitably decreases with the increase of fault
severity.

Apart form load alleviation, a more important mission of the elevator is to trim the
aircraft. As shown in Table 7.1, the elevator trim angle δe∗ is nonzero in the considered
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flight condition. As a consequence, when the elevator partially loses its effectiveness, its
deflection angle should increase timely to re-trim the aircraft. It can be observed from
Fig. 7.28 that this controller can passively tolerate up to 80% of the elevator effectiveness
loss. For more severe cases, the position limit of the elevator is reached, and a re-trim
becomes physically impossible.
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Figure 7.28: rms values of the load deviations in the presence of actuator effectiveness loss.

A more comprehensive fault case is illustrated in Fig. 7.29, where the elevator sud-
denly loses half of its effectiveness at t = 1 s, following which 50% of the right aileron
effectiveness is also lost at t = 3 s. This asymmetrical fault case challenges the lateral
re-trim ability of this controller. The same as claimed before, neither the model nor the
control parameter is modified after the faults occur. In view of Fig. 7.29, after the el-
evator fault occurs, the mean value of δe doubles in 0.5 second to re-trim the aircraft.
The deflection angle of the right (δar ) and left (δal ) ailerons are equal before t = 3 s (the
positive sign is defined as: right aileron deflects downwards, and left upwards). After
t = 3 s, the magnitude of δar increases to compensate for its effectiveness loss. The lat-
eral states p and r are hardly influenced by the faults. As compared to the open-loop
responses (Figs. 7.13 and 7.16), the rms of q and Mr −Mr∗ are respectively reduced by
80.6% and 86.4% in spite of the faults.

7.4.7. ROBUSTNESS TO AERODYNAMIC MODEL UNCERTAINTIES

As analyzed in Sec. 7.3.1, the INDI control is designed via a sensor-based approach,
namely a part of the dynamic model is replaced by sensor measurements, which im-
proves the robustness of this controller to model mismatches. Regarding flight control,
a large proportion of the model mismatches is caused by the difficulties in estimating
the aerodynamic coefficients. In view of this, the robustness of the proposed INDI GLA
control law to aerodynamic model uncertainties will be evaluated in this subsection.

The flexible aircraft model used in this chapter contains k lifting surfaces, namely
the fuselage ( f u), engine pylon (p), wings (w), horizontal tail (ht ) and vertical tail (v t ).
Each aircraft component is divided into nk strips and steady-flow lift curve slope of each
strip (C SF

Lα
in Eq. (7.13)) adopts the tabular data in [2]. In this subsection, this model is

augmented by the uncertain parameters ∆C SF
Lα

for robustness validations. It is remark-
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Figure 7.29: Half of the elevator and the right aileron effectiveness are successively lost at t = 1 s, and t = 3 s.

able that for the wings and tails, the incorporation of ∆C SF
Lα

also changes the control

effectiveness because C c,δ
L is a function of C SF

Lα
(Eq. (7.15)). A Monte Carlo simulation

containing one thousand uncertain aerodynamic models is conducted, where ∆C SF
Lα

is
modeled by

∆C SF
Lαk , {∆C SF

Lαk ∈R|∆C SF
Lαk = N (0,σ2

k )}, σk = ρk

nk

i=nk∑
i=1

C SF
Lαi

, k = f u, p, w,ht , v t . (7.48)

For each lifting surface k, the mean value of the uncertainty is zero and the stan-
dard deviation σk is chosen as ρk times the average C SF

Lα
of this lifting surface. The

perturbation range is chosen as ρht = ρv t = 0.3, ρ f u = ρp = 0.2, ρw = 0.1. As shown
in Fig. 7.30, among all the 1000 samples, the median value of the vertical load factor
derivation nz −nz∗ under INDI GLA control is 0.0435 g, which is alleviated by 29.4% as
compared to the open-loop value 0.0616 g (Table 7.2). The interquartile range of nz−nz∗
is only 0.015 g. Moreover, the rms of the wing root bending moment deviations using
INDI GLA control is lower than the open-loop value 6405 N·m for all the tested sam-
ples. The few larger rms of load variations are caused by dramatic wing lift coefficient
perturbations and long-term actuator saturations. This Monte Carlo simulation further
verifies the robustness of the proposed controller to aerodynamic model uncertainties.

7.5. CONCLUSIONS
In this chapter, an incremental nonlinear dynamic inversion (INDI) gust load alleviation
(GLA) control law is designed for flexible aircraft. A high-order flexible aircraft validation
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Figure 7.30: Box plot of a Monte Carlo simulation of the closed-loop system subjects to model uncertainties.

model is set up, which considers unsteady aerodynamics and encompasses both inertia
and aerodynamic couplings between rigid-body and structural dynamics. This flexible
aircraft model is compared with a quasi-rigid aircraft model from the perspective of the
trim and eigenvalue solutions. The coupling effects lead to different trim solutions for
these two models, and also distinguish the rigid-body modes of the flexible aircraft from
the modes of the quasi-rigid aircraft. As the wing stiffness reduces, the coupling effects
become more prominent. The phugoid mode becomes unstable if the wing stiffness is
reduced by 80%.

In order to simplify the implementation process and reduce the on-board computa-
tional load, a reduced-order model is used for control and observer designs. By virtue
of its sensor-based nature, INDI only needs part of the reduced-order model informa-
tion. INDI can guarantee the globally ultimate boundedness of the tracking errors in the
presence of bounded perturbations (Proposition 4). Due to the lack of control surfaces,
the weighted-least squares method is used along with INDI to make trade-offs among
different control objectives. It is shown that the elastic states and their derivatives can
be observed from accelerometer measurements using a Kalman filter along with a Padé
approximation for modelling the pure time delay.

Time domain simulations of a full-order flexible aircraft model flying through vari-
ous 2D spatial turbulence and gust fields verify that the proposed INDI GLA controller
can effectively regulate the rigid-body motions, alleviate the gust loads, reduce the wing
root bending moment, and suppress the wing bending modes. The INDI GLA control
designed for the benchmark flexible aircraft also shows effectiveness on another more
flexible aircraft model without control parameter adjustment. The robustness of the
proposed controller is also verified in faulty conditions. It can tolerate sudden actuator
faults without using any additional fault detection/estimation method, unless a re-trim
becomes physically unachievable. Moreover, a Monte Carlo study demonstrates the ro-
bustness of the proposed controller to aerodynamic model uncertainties. In conclu-
sion, less model dependency, easy implementation, reduced computational cost, and
robustness to external disturbances, sudden faults and model uncertainties, make the
proposed INDI control law promising for alleviating the gust loads of flexible aircraft in
real life.
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8
CONCLUSIONS AND

RECOMMENDATIONS

This dissertation has been dedicated to enhancing flight safety through advanced auto-
matic flight control systems. At the beginning of this dissertation, some challenges in
flight control design were posed: actuator faults and structural damages, atmospheric
disturbances, increase of structural flexibility, and the nonlinear dynamics. In view of
these challenges, the main research goal was proposed as:

Research Goal

To design a stability-guaranteed nonlinear flight control framework with re-
duced model dependency and enhanced robustness.

To achieve this research goal, four research questions were raised in Chapter 1. These
questions have been addressed in the four chapters of Part I, and their answers will be
presented in Sec. 8.1.1. The theories and methods developed in Part I have shown ef-
fectiveness on solving various flight control problems in Part I and Part II. The main
findings and conclusions through implementations will be summarized in Sec. 8.1.2.
Moreover, the final conclusions will be drawn in Sec. 8.1.3. Finally, the limitations of this
thesis and recommendations for future work will be presented in Sec. 8.2.

8.1. CONCLUSIONS

8.1.1. ANSWERS TO RESEARCH QUESTIONS

Two promising methods to control uncertain nonlinear systems: incremental control
and sliding mode control (SMC) were reviewed in Sec. 1.3.1 and Sec. 1.4.1. However,
as has been exposed in Sec. 1.3.2 and Sec. 1.4.2, these two approaches also have their
limitations. In view of these limitations, three research questions were proposed:
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Research Question 1: How can the stability of incremental nonlinear dynamic
inversion control be analyzed and expressed?

This research question is addressed in Chapter 2, where incremental nonlinear dy-
namic inversion (INDI) control is first generalized for uncertain nonlinear systems with
arbitrary input–output relative degree. The new derivations in Chapter 2 do not need
the time-scale separation assumption or term omissions.

It is then found in Chapter 2 that even in the absence of model uncertainties and
external disturbances, perturbations still remain in the closed-loop system under INDI
control. These perturbations contain a state-variation-related term and higher-order
terms of the first-order Taylor series expansion of system dynamics. It is shown that,
if the partial derivatives of system dynamics with respect to state, up to any order, are
bounded, the norm value of the entire perturbation term can be reduced by increasing
the sampling frequency.

Moreover, it is proven in Chapter 2 that, if the internal dynamics are input-to-state
stable, the state under INDI control is globally ultimately bounded by a class K func-
tion of the perturbation bound. Input-to-state stable is a relatively strict condition. If
only the origin of the zero dynamics is exponentially stable, then the closed-loop sys-
tem under INDI control is only locally ultimately bounded by a class K function of the
perturbation bound. “Locally” means that not only the initial state should be in the
neighborhood of the origin, the bound of the perturbation should also be sufficiently
small.

Furthermore, in the presence of external disturbances, it is proven that under INDI
control, the internal states are directly perturbed by the disturbances, whereas the ex-
ternal states are only perturbed by the increments of the disturbances. By virtue of the
sensor-based nature of INDI, the main influences of external disturbances are included
in the measurements/estimations of the output derivatives.

Finally, INDI control is shown to be more robust to regular perturbations than non-
linear dynamic inversion (NDI) control, without using any additional robust or adaptive
techniques. A certain region of singular perturbations can also be resisted by INDI.

Chapter 2 shows that a part of the input–output mapping of a nonlinear system is in-
cluded in the estimated or measured output derivatives. This system information con-
tained in sensor measurements can be used to solve the third research question:

Research Question 3: How can the contradiction between the reduction of
model dependency and the reduction of uncertainty in sliding mode control be
solved?

It has been demonstrated in Chapter 2 that in spite of its reduced model dependency,
INDI has better robustness against regular perturbations than NDI. Nevertheless, the
properties of the regular-perturbation-induced uncertainty term εindi remain unknown
in Chapter 2. In view of this, Chapter 3 shows that a diagonally dominant structure of
BB̄−1 (the real control effectiveness matrix multiplied with the inverse of its estima-
tion) and a sufficiently high sampling frequency are needed for the boundedness of
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εindi. The sufficient conditions for the boundedness of εindi are less strict than those
of the regular-perturbation-induced uncertainty term εndi in NDI control. Numerical
simulations show that εndi can become unbounded in severe damage cases, especially
when the actuators have position and rate limits. Furthermore, under the same regular
perturbation circumstance, there exists a sampling frequency which makes the upper
bound of εindi smaller than that of εndi.

The reduced model dependency and the smaller bound of εindi make INDI a promis-
ing substitution of NDI in (higher-order) SMC and sliding mode disturbance observer
(SMDO) designs. The hybridization of INDI with SMC/SMDO inherits the advantages
and remedies the drawbacks of both approaches. The incorporation of SMC/SMDO
into INDI not only robustifies INDI, but also brings fixed/finite-time convergence. The
design of SMC/SMDO using the sensor-based control structure of INDI allows the hy-
brid control to passively resist a wide range of perturbations with lower sliding mode
control/observer gains. Simulation results verify that the model dependency and the
resulting uncertainty can be simultaneously reduced in the hybrid control framework.

The developments in Chapters 2 and 3 help to answer the second research question:

Research Question 2: How can the concept of incremental backstepping control
be improved and how can its robustness be enhanced?

In Chapter 4, IBS control is generalized for higher-order nonlinear uncertain systems
in the strict-feedback form, without using the time-scale assumption or term omissions.
Then it is found that in the presence of regular perturbations, the system under IBS con-
trol is perturbed by an uncertainty term εibs. This term is in a similar form as εindi. Anal-
ogous to the proofs in Chapter 3, the boundedness conditions for εibs are presented in
Chapter 4. It is also shown that there exists a sampling frequency which ensures that εibs

has a smaller upper bound than the uncertainty term under backstepping control (εbs).
The smaller upper bound of εibs motivated the hybridization of the reformulated IBS
with SMC, named IBSMC. The robustness of IBS is enhanced in the hybrid framework,
because the SMC virtual control can compensate for the influences of εibs. Further-
more, as compared to backstepping sliding mode control in the literature, the proposed
IBSMC framework can simultaneously reduce the model dependency and the minimum
possible SMC gains. In addition, for nonlinear systems in the strict-feedback form, the
recursive IBSMC design is simpler than INDI-SMC (which depends on the input–output
mapping) proposed in Chapter 3.

The INDI-SMC framework proposed in Chapter 3 can induce both first- and higher-
order sliding modes. In the literature, higher-order sliding modes can also be achieved
by other control structures. This leads to the last research question of this thesis:

Research Question 4: What is the relationship between the INDI-based SMC
proposed in this thesis, the NDI-based SMC, and higher-order SMC with artifi-
cially increased relative degree?
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In Chapter 5, analytical and numerical comparisons are made among INDI-SMC,
NDI-SMC, and HOSMC which artificially increases the relative degree by one order. All
of them can be used to induce higher-order sliding modes in finite time. It is found that
only the estimated control effectiveness matrix is needed by the considered HOSMC
and INDI-SMC, while NDI-SMC has higher model dependency. The implementation of
INDI-SMC requires the measurements/estimations of the output derivatives, while the
considered HOSMC uses the numerically differentiated output derivatives as well as the
higher-order derivatives of the tracking commands.

Furthermore, although the considered HOSMC and INDI-SMC originate from com-
pletely different ideas, their nominal control increments are found to be approximately
equivalent if the sampling interval ∆t is sufficiently small, and if their control parame-
ters satisfy certain conditions (presented in Sec. 5.3.1). Once these conditions are sat-
isfied, the considered HOSMC and INDI-SMC lead to similar transient responses and
control performance.

In the presence of external disturbances and model uncertainties, different closed-
loop uncertainty terms appear, namely εndi-s , εindi-s and εho-s . It is found in Chapter 5
that once the sliding modes are enforced, εho-s (t )∆t ≈ εindi-s (t ), and also ε̇ho-s (t )∆t ≈
ε̇indi-s (t ). As a consequence, for maintaining the sliding modes, the minimum possible
gains required by the considered HOSMC approximately equal those needed by INDI-
SMC divided by∆t . Although the switching gains needed by the considered HOSMC are
several orders of magnitude higher than those of INDI-SMC, these two control struc-
tures lead to comparable chattering magnitudes, which are effectively reduced as com-
pared to NDI-SMC.

8.1.2. IMPLEMENTATION FINDINGS AND CONCLUSIONS

The main findings through applying the theories developed in Part I to flight control will
be summarized in this subsection.

In Chapter 2, the generalized INDI control is used to drive a rigid aircraft to track ref-
erences in various spacial turbulence fields. As compared to NDI control, better tracking
performance is achieved by the generalized INDI control. Moreover, the influences of
sampling interval and virtual control gains on the ultimate bounds are verified. Finally,
a Monte-Carlo simulation shows that the generalized INDI control is less sensitive to
external disturbances and model uncertainties than NDI control.

In Chapter 3, INDI-SMC is used to solve aircraft fault-tolerant control problems. Nu-
merical simulations confirm that INDI-SMC has better performance over NDI, INDI and
NDI-SMC, in the presence of sudden actuator faults and structural damages. A wide
range of perturbations can be passively tolerated by INDI-SMC, without using online
model identification or fault detection and diagnosis (FDD). Moreover, the minimum
possible gains needed by INDI-SMC are lower than those of NDI-SMC, which is bene-
ficial to chattering reduction. Similar conclusions are also drew in Chapter 4 where, in
spite of its reduced model dependency and reduced gains, IBSMC enhances the track-
ing performance of an aircraft in the presence of model uncertainties, sudden actuator
faults and structural damages.

In Chapter 6, the SMC hybridized with incremental control framework is validated
by quadrotor flight tests. The derivations in Chapter 3 are also improved by explicitly
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considering sudden (discontinuous in time) faults and external disturbances. It is veri-
fied in Chapter 6 that in the presence of model uncertainties, actuator faults and exter-
nal disturbances, there exists a sampling frequency such that the upper bound of εindi

is smaller than that of εndi, both before and after a fault occurs. Chapter 6 also shows
that the main influences of faults can be included in the output derivatives, thus εindi

still varies around zero after a fault occurs. Last but not least, εindi has smaller variations
in different fault cases, while εndi is more fault-case dependent and even has abrupt
changes when a sudden fault occurs.

Both simulations and real-world flight tests demonstrate that these beneficial prop-
erties of INDI-SMC allow a quadrotor to passively resist a wide range of perturbations
with lower and fixed control/observer gains. By contrast, the gains used by the model-
based SMC/SMDO design are higher and must be adapted or manually adjusted in dif-
ferent scenarios. The implementation process of INDI-SMC is also simplified because
of its reduced model dependency and smaller uncertainty variations. In addition, the
onboard computational load of INDI-SMC is reduced in the considered scenarios since
online model identification and dynamic parameter update laws are not used.

In Chapter 7, a model analysis demonstrates the influences of structural flexibility
on rigid-body modes. For the considered aircraft model, as its wing stiffness reduces,
the pair of complex conjugate short-period poles merges to become two real poles; the
phugoid mode also moves to the unstable region. These phenomena further verify the
necessity of an integrated flight control design for flexible aircraft.

An INDI-based integrated flight control is designed for flexible aircraft in Chapter 7.
Time domain simulations of a full-order flexible aircraft model flying through various
two-dimensional spatial turbulence and gust fields verify that the proposed INDI con-
troller can effectively regulate rigid-body motions, alleviate gust loads, reduce the wing
root bending moment, and suppress the wing elastic modes.

8.1.3. FINAL CONCLUSIONS
In conclusion, the incremental sliding mode control framework and the incremental
backstepping sliding mode control framework proposed in this thesis:

1. have guaranteed stability in the Lyapunov sense;
2. have reduced model dependency as compared to NDI, BS, NDI-SMC and BSMC;
3. have lower computational load than ABS and MRAC;
4. have reduced sliding mode control and observer gains, which is beneficial to chat-

tering reduction; and
5. have enhanced robustness to model uncertainties, external disturbances, sudden

actuator faults and structural damages.

These benefits can reduce the cost in aircraft design and certification cycles. Al-
though the two hybrid control frameworks are developed with the goal of enhancing avi-
ation safety, they are also applicable to generic nonlinear uncertain systems, including
robotic manipulators, hydraulic systems, etc. Moreover, this thesis builds a bridge be-
tween the flight control community and the sliding mode control community, which can
open-up cooperation and opportunities. More importantly, we believe the proposed
control frameworks can reduce the loss of control in-flight accident rate in reality, and
boost a widespread usage of flying robots.
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8.2. LIMITATIONS AND RECOMMENDATIONS
The limitations of this thesis and recommendations for future work will be discussed
from three aspects:

INCREMENTAL CONTROL

Regarding the influences of external disturbances on INDI, only the symmetrical sys-
tem is considered in Chapter 2. For more general systems, not only the external dis-
turbances d , but also the higher-order derivatives of d will appear in the input–output
mapping. Therefore, the robustness analysis for more general systems should consider
other issues, including the differentiability and smoothness of d , the boundedness of
the higher-order derivatives of d , etc. These are recommended as future work.

As shown in [1–4], phase margin is only applicable to stability analysis of linear time-
invariant systems. To analyze the robustness of nonlinear time-varying systems against
singular perturbations (actuator dynamics, sensor dynamics, higher-order elastic dy-
namics, etc.), more advanced theories including singular perturbation margin (SPM)
[2, 3] are needed. Since the SPM theory is still under development, the discussions in
Chapter 2 have some limitations. Using more advanced mathematical tools to analyze
the robustness of INDI against singular perturbations is a valuable research direction.

After analyzing the stability margin of a nonlinear system against singular perturba-
tions, it is interesting to find approaches to enlarge the SPM. An initial thought would
be to include some “predictive” feature in the closed-loop, such as using a predictive
filter [5]. This research direction is also recommended.

Because the core idea of incremental control is to replace a part of the model by sen-
sor measurements, this control approach is inevitably more sensitive to sensing issues,
such as sensor dynamics, transport delay, measurement noise, etc. Although real-world
implementations have demonstrated the effectiveness of incremental control even in
the presence of these issues [6–9], a more rigorous theoretical analysis using advanced
stability criteria for the robustness of incremental control to these issues is needed.

The stability and robustness analyses presented in Chapter 2, and the analyses for
the uncertainty term εindi in Chapters 3 and 6 can also help to analyze other incremental-
model-based control approaches, including incremental approximate dynamic program-
ming [10], incremental model-based heuristic dynamic programming [11], etc. These
are recommended as future work.

FLEXIBLE AIRCRAFT CONTROL

Although more emphases of Chapter 7 are put on the control design, the flexible air-
craft model used in Chapter 7 can be improved. First of all, the bending and torsion
stiffness of the benchmark flexible aircraft model are reduced by 80% for the validations
in Chapter 7. More realistic flexible aircraft data can increase the reliability of the pro-
posed controller. Moreover, strip theory has higher fidelity on high-aspect-ratio aircraft.
For the aircraft model used in Chapter 7, strip theory is not the best choice. More im-
portantly, due to the lack of control surfaces, the weighted-least squares method is used
along with INDI to make trade-offs among different control objectives. Therefore, the
effectiveness of the proposed controller can be improved if more control surfaces are
available. More advanced trailing edge design concepts including the variable camber
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continuous trailing edge flap (VCCTEF) proposed in NASA Ames [12–14] and the Smart
X concept proposed in TU Delft are recommended.

Although only INDI is applied to flexible aircraft flight control in this thesis, INDI-
SMC and IBSMC can also be used. These hybrid control methods further robustify the
incremental control, as verified in Chapters 3 and 4.

INCREMENTAL SLIDING MODE CONTROL

This thesis has shown that the hybridization of incremental control and SMC can pas-
sively tolerate a wide range of faults and disturbances. “Passive” means that neither FDD
nor controller reconfiguration is needed [15]. However, in some extreme cases, these
mechanisms become necessary. This can be explained using Theorem 3 in Chapter 3, in
which one of the sufficient conditions for the boundedness of εindi is ‖I −BB̄−1‖ ≤ b̄ <
1. If this condition becomes invalid because of faults, FDD and controller reconfigura-
tion become necessary. This is not only applicable to INDI-SMC, but also holds for any
robust control that takes the boundedness of uncertainty as a pre-condition.

One illuminative example is quadrotor flight control where tracking of three decou-
pled attitude angles can be achieved by a healthy quadrotor (Chapter 6), while only a
reduced attitude control can be achieved by a quadrotor with complete loss of a single
rotor [9]. The switching of control strategies when one or more rotors are completely
lost needs the incorporation of FDD. Nevertheless, the circumstances that require FDD
and controller reconfiguration are reduced with the help of INDI-SMC. Therefore, the
false alarm rate of FDD and the onboard computational load can be reduced; the design
and implementation processes can be simplified as well. These will be addressed in a
following publication of the author.

It has been shown in Chapter 6 that a wide range of perturbations can be tolerated
by INDI-SMC with lower and fixed control/observer gains, while the gains needed by
NDI-SMC are higher and must be adapted or manually adjusted in different fault cases.
Although using fixed gains can reduce the onboard computational load (Chapter 6), in
theory the SMC gains can only be reduced to their minimum possible values when gain
adaptations are used. Even so, because of the lower bound and smaller variations of
εindi (Chapter 6), the gain adaptation rate is supposed to be reduced by INDI-SMC. The
verification of this deduction is recommended as future work.

Since incremental control utilizes the previous sample to reduce the remaining per-
turbation, it is meaningful to derive and analyze the control algorithms purely in discrete
time. The discrete-time sliding mode control has been addressed in [16, 17] for sampled-
data linear systems with matched uncertainties. The idea of estimating the disturbances
using one-step delayed sample in incremental control is also adopted by [16, 17]. A
recently submitted paper [18] generalizes the methods in [16, 17] to linear sampled-
data multi-input/output systems with matched uncertainties. It can also enhance the
sliding accuracy while alleviating possible high-gain control effort. However, stability-
guaranteed sliding mode control design for sampled-data nonlinear systems with both
matched and unmatched uncertainties remains challenging, where advanced mathe-
matically tools such as Taylor-Lie series discretization [19] or the Adomian decomposi-
tion [20] are needed.

Finally, the theories in Part I are developed for generic nonlinear uncertain systems,
it is therefore suggested to apply them to other physical systems.
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A
DEFINITIONS USED IN NONLINEAR

CONTROL THEORY

In this thesis, some definitions in nonlinear control theory are frequently used. For read-
ers’ convenience, they are summarized in this appendix. All the definitions are tran-
scribed from Chapter 4 of Hassan K Khalil’s book: “Nonlinear Systems” [1].

Definition 2 A continuous function α: [0, a) → [0,∞) is said to belong to class K if it is
strictly increasing and α(0) = 0. It is said to belong to class K∞ if a =∞ and α(r ) →∞ as
r →∞.

Definition 3 A continuous function β : [0, a)× [0,∞) → [0,∞) is said to belong to class
K L if, for each fixed s, the mapping β(r, s) belongs to class K with respect to r and, for
each fixed r , the mapping β(r, s) is decreasing with respect to s and β(r, s) → 0 as s →∞.

For the system
ẋ = f (t , x) (A.1)

where f : [0,∞)×D → Rn is piecewise continuous in t and locally Lipschitz in x on
[0,∞)×D , and D ⊂R is a domain that contains the origin x = 0.

Definition 4 The equilibrium point x = 0 of (A.1) is

• stable if, for each ε> 0, there is δ= δ(ε, t0) > 0 such that

‖x(t0)‖ < δ⇒‖x(t )‖ < ε, ∀t ≥ t0 ≥ 0 (A.2)

• uniformly stable if, for each ε> 0, there is δ= δ(ε) > 0, independent of t0, such that
(A.2) is satisfied.

• asymptotically stable if it is stable and there is a positive constant c = c(t0) such that
x(t ) → 0 as t →∞, for all ‖x(t0)‖ < c.

219



A

220 REFERENCES

• uniformly asymptotically stable if it is uniformly stable and there is a positive con-
stant c, independent of t0, such that for all ‖x(t0)‖ < c, x(t ) → 0 as t →∞, uniformly
in t0; that is, for each η> 0, there is T = T (η) > 0 such that

‖x(t )‖ < η, ∀t ≥ t0 +T (η), ∀‖x(t0)‖ < c (A.3)

• globally uniformly asymptotically stable if it is uniformly stable, δ(ε) can be chosen
to satisfy limε→∞δ(ε) =∞, and for each pair of positive numbers η and c, there is
T = T (η,c) > 0 such that

‖x(t )‖ < η, ∀t ≥ t0 +T (η,c), ∀‖x(t0)‖ < c (A.4)

Definition 5 The equilibrium point x = 0 of (A.1) is exponentially stable if there exist pos-
itive constants c,k, and λ such that

‖x(t )‖ ≤ k‖x(t0)‖e−λ(t−t0), ∀‖x(t0)‖ < c (A.5)

and globally exponentially stable if (A.5) is satisfied for any initial state x(t0).

Definition 6 The solutions of (A.1) are

• uniformly bounded if there exists a positive constant c, independent of t0 ≥ 0, and
for every a ∈ (0,c), there is β=β(a) > 0, independent of t0, such that

‖x(t0)‖ ≤ a ⇒‖x(t )‖ ≤β, ∀t ≥ t0 (A.6)

• globally uniformly bounded if (A.6) holds for arbitrarily large a.

• uniformly ultimately bounded with ultimate bound b if there exist positive constant
b and c, independent of t0 ≥ 0, and for every a ∈ (0,c), there is T = T (a,b) ≥ 0,
independent of t0, such that

‖x(t0)‖ ≤ a ⇒‖x(t )‖ ≤ b, ∀t ≥ t0 +T (A.7)

• globally uniformly ultimately bounded if (A.7) holds for arbitrarily large a.

It is noteworthy that for autonomous systems, the word “uniformly” can be dropped,
since the solution only depends on t − t0.

Consider the system
ẋ = f (t , x,u) (A.8)

where f : [0,∞)×Rn ×Rm → Rn is piecewise continuous in t and locally Lipschitz in x
and u. The input u(t ) is a piecewise continuous, bounded function of t for all t ≥ 0.

Definition 7 The system (A.8) is said to be input-to-state stable if there exist a class K L

function β and a class K function γ such that for any initial state x(t0) and any bounded
input u(t ), the solution x(t ) exists for all t ≥ t0 and satisfies

‖x(t )‖ ≤β(‖x(t0)‖, t − t0)+γ
(

sup
t0≤τ≤t

‖u(τ)‖
)

(A.9)
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