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10.

Propositions
accompanying the dissertation
INCREMENTAL SLIDING MODE FLIGHT CONTROL
by

Xuerui WANG

. Contrary to model-based sliding mode control methods, the sensor-based incre-

mental sliding mode control framework proposed in this thesis can simultane-
ously reduce the model dependency and the control/observer gains. (this thesis)

. Part of the system dynamics, external disturbances and the influences of faults

can be captured by the measured or estimated output derivatives. (this thesis)

The incremental sliding mode flight control can help an aircraft resist a wide range
of model uncertainties, atmospheric disturbances, actuator faults, and structural
damages, without requiring fault detection and diagnosis or controller reconfigu-
ration. (this thesis)

. Fast and distributed wing-trailing-edge control surfaces are beneficial to multi-

objective flexible aircraft flight control. (this thesis)

Similar as in control theory, also in everyday life it is true that although finite-
time convergence is more challenging, it is also more appreciated than asymptotic
convergence.

. In meditation, one must fully observe and understand breaths and thoughts be-

fore controlling the mind; analogously, a successful controller cannot be designed
without sufficiently observing and understanding its targeted physical system.

. In our uncertain world, many policies deviate from their original intentions in

practice because the “loop” is not closed, i.e., the feedback from society and the
appropriate policy adaptations are missing.

. The ultimate goal of debate is not to win but to reduce unconscious biases and

create a more complete picture in people’s mind.

In yoga, relaxation is as important as tightening muscles; in scientific work, “clear-
ing the mind” is as important as focusing.

Just as ideal sliding motions cannot be achieved without an ideal actuator, perfect
life (without any flaw) cannot be achieved by mortals, but this should not prevent
us from approaching the “boundary layer” of perfection.

These propositions are regarded as opposable and defendable, and have been
approved as such by the promotor prof. dr. ir. M. Mulder.
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SUMMARY

The swift growth of air traffic volume stresses the importance of flight safety enhance-
ment. Statistical data shows that fly-by-wire technology with automatic flight control
systems can effectively reduce the fatal accident rate of loss of control in-flight. Although
the dynamics of an aircraft are nonlinear and time-varying, it is common practice to de-
sign flight control laws based on local linear time-invariant (LTI) dynamic models, and
apply gain-scheduling method. Here, the flight envelope is divided into many smaller
operating regimes, and LTI model-based controllers are designed and tuned for each of
them. However, this approach is cumbersome and cannot guarantee flight stability and
performance in-between operational points.

In view of the challenges encountered by LTI model-based control, nonlinear con-
trol methods have attracted attention from the flight control community. Nonlinear dy-
namic inversion (NDI) and backstepping (BS) are two frequently used nonlinear con-
trol methods in flight control. These two approaches cancel the nonlinearities in the
closed loop using a nonlinear model of the system. However, mismatches between the
model and real dynamics inevitability exist, especially when an aircraft encounters at-
mospheric disturbances and when sudden actuator faults or even structural damages
occur. To enhance the robustness of model-based nonlinear control methods to model
mismatches, a commonly adopted approach is to augment them with online model
identification. This process, however, is computational intensive and requires sufficient
excitation, which can make an impaired aircraft fly out of the diminished safe flight en-
velope. In consideration of these challenges, the main goal of this thesis is:

To design a stability-guaranteed nonlinear flight control framework with
reduced model dependency and enhanced robustness.

Since this thesis aims at designing a nonlinear control framework, Lyapunov stabil-
ity criteria are adopted. The robustness to model uncertainties, external disturbances,
sudden actuator faults and structural damages are all considered. Incremental nonlin-
ear dynamic inversion (INDI) is a candidate to fulfill this goal. The core idea of INDI is
to feed back angular accelerations and actuator positions to enhance the robustness of
NDI to model mismatches. This idea has been applied to various flight control prob-
lems, and has shown promising effectiveness in rejecting disturbances and tolerating
faults. However, this thesis reveals that existing derivations of INDI, which are based on
the time-scale separation assumption and term omissions, have some limitations. The
cascaded control structure of INDI used in flight control also restricts its applicability to
more general nonlinear systems. More importantly, the stability and robustness anal-
ysis of INDI using transfer functions and the negative definiteness of the frozen-time
eigenvalues are not rigorous, which leads to the first research question of this thesis:

How can the stability of incremental nonlinear dynamic inversion control be
analyzed and expressed?
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To address this question and to remedy the limitations of INDI control, this thesis
first generalizes INDI for nonlinear uncertain systems with arbitrary input-output rel-
ative degrees, without using the time-scale separation assumption or term omissions.
Then the stability of the generalized INDI control is analyzed using Lyapunov methods,
considering the internal dynamics. Moreover, nonlinear system perturbation theory is
adopted to analyze the robustness of INDI control to model uncertainties, external dis-
turbances, and sudden changes in system dynamics. It is found that in the closed-loop
system under INDI control, a perturbation term remains, which includes the influences
of disturbances, dynamic variations, and the control effectiveness estimation errors.

One approach to enhance the robustness of INDI control is to augment it with adap-
tive parameter update laws, which requires to parameterize the perturbations using pre-
defined model structures. This parameterization procedure can be tedious for external
disturbances and dynamic variations remaining in the closed-loop of INDI. Further-
more, in these adaptation laws, the unknown parameters are assumed to be constant
or slowly time-varying, which can become invalid when a sudden fault occurs. In addi-
tion, online parameter updates increase the computational load, which is unfavourable
in flight control.

Another approach to enhance the robustness of INDI is to robustify it by using slid-
ing mode control (SMC). The properties including finite-time convergence and the in-
variance (better than robust) to matched uncertainty have promoted the application of
SMC to many aerospace control problems. Nonetheless, there is a contradiction be-
tween the reduction of model dependency and the reduction of uncertainty in exist-
ing SMC methods. Reducing the model dependency can simplify the implementation
process and reduce the onboard computational load, while reducing the uncertainty
decreases the SMC gains, which is crucial to chattering reduction. These observations
raise the following research question:

How can the contradiction between the reduction of model dependency and
the reduction of uncertainty in sliding mode control be solved?

Through the analysis of INDI control, it is found that a part of the input-output
mapping of a nonlinear system is included in the estimated or directly measured out-
put derivatives. This system information contained in sensor measurements can po-
tentially solve the contradiction in SMC. Therefore, this thesis hybridizes (higher-order)
SMC and sliding mode disturbance observers (SMDO) with the generalized INDI con-
trol for generic multi-input/multi-output nonlinear systems, named incremental sliding
mode control (INDI-SMC). Theoretical analysis shows that this hybrid control frame-
work inherits the advantages and remedies the drawbacks of both approaches. On the
one hand, the incorporation of SMC and SMDO into INDI compensates for the influ-
ences of perturbations and also brings fixed/finite-time convergence property. On the
other hand, by virtue of the sensor-based control structure of INDI, the model depen-
dency and uncertainty are simultaneously reduced in INDI-SMC.

The theoretical developments in INDI and INDI-SMC also help to improve the con-
cept of incremental backstepping (IBS) control. In the literature, IBS is proposed for
second-order systems in the strict-feedback form. The outer-loop design of IBS is the
same as standard model-based backstepping, while the inner-loop IBS design follows
the idea of INDI control. As a consequence, the discussed limitations of INDI also exist
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in IBS control. The closed-loop system using IBS control is also perturbed by uncertain-
ties. These lead to the next research question:

How can the concept of incremental backstepping control be improved and
how can its robustness be enhanced?

In this thesis, IBS is generalized for higher-order nonlinear uncertain systems in the
strict-feedback form, without using the time-scale assumption or term omissions. It is
then proposed to hybrid the generalized IBS with SMC, named incremental backstep-
ping sliding mode control (IBSMC). Theoretical analysis shows that, on the one hand,
IBSMC can compensate for the remaining uncertainty in IBS; on the other hand, as com-
pared to backstepping sliding mode control in the literature, IBSMC can simultaneously
reduce the model dependency and the minimum possible SMC gains. In addition, for
nonlinear systems in the strict-feedback form, the recursive IBSMC design is simpler
than INDI-SMC.

The INDI-SMC framework proposed in this thesis can induce both first- and higher-
order sliding modes. In the literature, higher-order sliding modes can also be achieved
by other control structures. This leads to the last research question of this thesis:

What is the relationship between the INDI-based SMC proposed in this thesis,
the NDI-based SMC, and higher-order SMC with artificially increased relative
degree?

In this thesis, analytical and numerical comparisons are made among these control
structures. All of them can be used to induce higher-order sliding modes in finite time. It
is found that only the estimated control effectiveness matrix is needed by the considered
higher-order (HO) SMC and INDI-SMC, while NDI-SMC has higher model dependency.
Moreover, although the considered HOSMC and INDI-SMC originate from completely
different ideas, their nominal control increments are approximately equivalent if certain
conditions are satisfied. Furthermore, the minimum possible switching gains needed by
the considered HOSMC are approximately equal to those needed by INDI-SMC divided
by the sample interval. Even so, these two control structures result in comparable chat-
tering magnitudes, which are effectively reduced as compared to NDI-SMC.

The two hybrid control frameworks proposed in this thesis, INDI-SMC and IBSMC,
are derived for generic nonlinear uncertain systems. Their effectiveness in flight con-
trol is evaluated by numerical simulations and quadrotor flight tests. When INDI-SMC
and IBSMC are applied to fixed-wing aircraft fault-tolerant control problems, simula-
tions show that a wide range of actuator faults and structural damages can be tolerated,
without using additional fault detection and diagnosis (FDD) or online model identi-
fication. Even though the model dependencies of INDI-SMC and IBSMC are reduced,
they present better robust performance than the NDI-SMC, BSMC, NDI, and BS control
methods. Moreover, the SMC gains required by INDI-SMC and IBSMC are lower than
those of NDI-SMC and BSMC, which mitigates the chattering effect.

To evaluate the effectiveness of the hybrid control in practice, this thesis imple-
ments INDI-SMC driven by a SMDO on a quadrotor. It is found that, in the presence
of model uncertainties, wind disturbances, and actuator faults, INDI-SMC/SMDO has
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better tracking performance than NDI-based SMC/SMDO. Moreover, the sliding mode
control and observer gains needed by INDI-SMC/SMDO are lower, which alleviates the
chattering effect. In addition, the onboard computational load is reduced by INDI-
SMC/SMDO since a wide range of perturbations are passively resisted without adap-
tation, FDD or model identification. Last but not least, the implementation process of
INDI-SMC/SMDO is simplified because of its reduced model dependency and smaller
variations of the resulting uncertainty.

In the past decades, the trend of using composite materials to reduce airplane struc-
tural weight has emerged. This trend also brings challenges to flight control design be-
cause the accompanying increase in structural flexibility reduces the frequency sepa-
ration between structural and rigid-body modes. This has been demonstrated by the
loss of NASA’s Helios Prototype aircraft. The design of highly flexible aircraft becomes a
multidisciplinary problem, where the nonlinearities contributed by structural-, aero-
and flight dynamics need to be considered. Therefore, this thesis proposes an inte-
grated flexible aircraft flight control law based on incremental control. Numerical sim-
ulations show that the proposed control law can regulate rigid-body motions, alleviate
gust loads, reduce the wing root bending moments, and suppress wing elastic modes.
Furthermore, the proposed control law shows enhanced robustness to aerodynamic
model uncertainties and actuator faults by virtue of its sensor-based nature.

In conclusion, guaranteed stability in the Lyapunov sense, reduced model depen-
dency and computational load, reduced control and observer gains, as well as enhanced
robustness to faults and disturbances, make the proposed incremental sliding mode
control and incremental backstepping sliding mode control frameworks promising for
enhancing flight safety in real life. The application of these two hybrid control frame-
works to other nonlinear systems such as hydraulic systems and robotic manipulators
are recommended as future work.
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De snelle groei van het luchtverkeersvolume benadrukt het belang van verbetering van
de vliegveiligheid. Statistische gegevens tonen aan dat fly-by-wire technologie bij au-
tomatische vluchtbesturingssystemen het dodelijke ongevalspercentage van verlies van
controle tijdens de vlucht effectief kan verminderen. Hoewel de dynamica van een vlieg-
tuig niet-lineair is en in de tijd variéerd, is het in de praktijk gebruikelijk om vluchtre-
gelwetten te ontwerpen op basis van lokale lineaire tijdsinvariabele (LTI) dynamische
modellen, en om de gain-schedulingmethode toe te passen. Hier is de vluchtenvelop
verdeeld in vele kleinere besturingsregimes, en zijn controllers gebaseerd op het LTI-
model ontworpen en afgestemd voor elke hiervan. Deze aanpak is echter omslachtig en
kan de vluchtstabiliteit en prestaties tussen operationele punten niet garanderen.

Met het oog op de uitdagingen die worden ondervonden door op LTI-modellen ge-
baseerde besturing, hebben niet-lineaire besturingsmethoden de aandacht getrokken
van de vluchtbesturingsgemeenschap. Niet-lineaire dynamische inversie (NDI) en back-
stepping (BS) zijn twee vaak gebruikte niet-lineaire besturingsmethoden voor vlucht-
controle. Deze twee methodes annuleren de niet-lineariteiten in de closed-loop met een
niet-lineair model van het systeem. Echter bestaan er onvermijdelijk mismatches tus-
sen het model en de werkelijke dynamiek, vooral wanneer een vliegtuig atmosferische
storingen tegenkomt en wanneer plotselinge actuatorfouten of zelfs structurele schade
optreden. Om de robuustheid van modelgebaseerde niet-lineaire besturingsmethoden
naar-model te verbeteren, is een algemeen geaccepteerde aanpak om ze te vergroten
met online modelidentificatie. Dit proces is echter computationeel intensief en vereist
voldoende excitatie, waardoor een beperkt vliegtuig uit de verminderde veilige vlucht-
envelop kan vliegen. Met het oog op deze uitdagingen, is het belangrijkste doel van dit
proefschrift:

Een stabiliteitsgegarandeerde niet-lineair vluchtcontrolekader te ontwer-
pen met verminderde modelafhankelijkheid en verbeterde robuustheid.

Aangezien dit proefschrift is gericht op het ontwerpen van een niet-lineair bestu-
ringskader, zijn de stabiliteitscriteria van Lyapunov aangenomen. De robuustheid-naar-
model onzekerheden, externe verstoringen, plotselinge actuatorfouten en structurele
schade zijn allemaal in beschouwing genomen. Incrementele niet-lineaire dynamische
inversie (INDI) is een kandidaat om dit doel te bereiken. De kerngedachte van INDI
is om hoekversnellingen en actuatorposities terug te koppelen om de robuustheid van
NDI-naar-model mismatches te verbeteren. Dit idee is toegepast op verschillende vlucht-
controleproblemen en heeft veelbelovende resultaten laten zien bij het afwijzen van
storingen en het tolereren van fouten. Dit proefschrift laat echter zien dat bestaande
afwijkingen van IND], die gebaseerd zijn op de time-scale separation aanname en term
omissions, enkele beperkingen hebben. De gecascadeerde controlestructuur van INDI

XV
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gebruikt in vluchtcontrole beperkt ook de toepasbaarheid ervan tot meer algemene niet-
lineaire systemen. Belangrijker nog is dat de stabiliteits- en robuustheidsanalyse van
INDI met behulp van transferfuncties en de negatieve bepaaldheid van de frozen-time
eigenwaarden niet rigoureus zijn, wat leidt tot de eerste onderzoeksvraag van dit proef-
schrift:

Hoe kan de stabiliteit van incrementele niet-lineaire dynamische inversiebe-
sturing worden geanalyseerd en uitgedrukt?

Om deze vraag te beantwoorden en de beperkingen van de INDI-besturing te verhel-
pen, generaliseert dit proefschrift eerst INDI voor niet-lineaire onzekere systemen met
willekeurige relatieve input-output-graden, zonder gebruik te maken van de time-scale
separation aanname of term omissions. Vervolgens wordt de stabiliteit van de gegene-
raliseerde INDI-besturing geanalyseerd met behulp van Lyapunov-methoden, rekening
houdend met de interne dynamiek. Bovendien wordt niet-lineaire systeemverstorings-
theorie gebruikt om de robuustheid van de INDI-besturing-naar-model onzekerheden,
externe verstoringen en plotselinge veranderingen in de systeemdynamiek te analyse-
ren. Het is gebleken dat in het gesloten-lussysteem onder INDI-besturing een versto-
ringsterm overblijft die de invloeden van storingen, dynamische variaties en schattings-
fouten voor de controle-effectiviteit omvat.

Eén benadering om de robuustheid van de INDI-besturing te verbeteren, is om deze
te vergroten met adaptieve parameterupdatewetten, die vereist dat de verstoringen wor-
den geparametreerd met behulp van vooraf gedefinieerde modelstructuren. Deze para-
metreringsprocedure kan tergend zijn voor externe verstoringen en dynamische varia-
ties die overblijven in de closed-loop van INDI. Bovendien worden in deze aanpassings-
wetten de onbekende parameters verondersteld constant te zijn of langzaam in de tijd
te variéren, wat ongeldig kan worden als zich een plotselinge fout voordoet. Bovendien
verhogen online parameterupdates de computationele belasting, wat ongunstig is voor
de vluchtcontrole.

Een andere benadering om de robuustheid van INDI te verbeteren, is om het te
versterken door gebruik te maken van sliding mode controle (SMC). De eigenschap-
pen, waaronder ook eindige-tijdconvergentie en de invariantie (beter dan robuust) voor
bijbehorende onzekerheid, hebben de toepassing van SMC bij vele problemen in de
ruimtevaartcontrole bevorderd. Niettemin is er een tegenspraak tussen de verminde-
ring van modelafhankelijkheid en de vermindering van onzekerheid in bestaande SMC-
methoden. Het verminderen van de modelafhankelijkheid kan het implementatiepro-
ces vereenvoudigen en de computationele belasting aan boord verminderen, terwijl het
verminderen van de onzekerheid de SMC gains verlaagt, wat cruciaal is voor het ver-
minderen van chattering. Deze waarnemingen werpen de volgende onderzoeksvraag

op:

Hoe kan de tegenstelling tussen de vermindering van de modelafhankelijk-
heid en de vermindering van onzekerheid in sliding mode controle worden
opgelost?

Door de analyse van de INDI-besturing is gevonden dat een deel van de input-output
mapping van een niet-lineair systeem is inbegrepen in de geschatte of direct gemeten
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output derivatives. Deze systeeminformatie in sensormetingen kan mogelijk de tegen-
strijdigheid in SMC oplossen. Daarom hybridiseert dit proefschrift SMC- en sliding
mode disturbace observers (SMDO) met de gegeneraliseerde INDI-besturing voor gene-
rieke multi-input / multi-output niet-lineaire systemen, genaamd incrementele sliding
mode controle (INDI-SMC). Theoretische analyse laat zien dat dit hybride besturings-
kader de voordelen overneemt en de nadelen van beide benaderingen verhelpt. Aan de
ene kant compenseert de opname van SMC en SMDO in INDI de invloeden van ver-
storingen en brengt ook vaste/eindige-tijdconvergentie-eigenschappen met zich mee.
Aan de andere kant worden, op grond van de sensorgebaseerde besturingsstructuur van
INDI, de afhankelijkheid van het model en de onzekerheid tegelijkertijd verminderd in
INDI-SMC.

De theoretische ontwikkelingen in INDI en INDI-SMC helpen ook om het concept
van incrementele backstepping (IBS)-besturing te verbeteren. In de literatuur wordt IBS
voorgesteld voor systemen van de tweede orde in de strict-feedback vorm. Het outer-
loop ontwerp van IBS is hetzelfde als standaard, op model gebaseerde backstepping,
terwijl het inner-loop IBS-ontwerp het idee van INDI-besturing volgt. Als gevolg hiervan
zijn de besproken beperkingen van INDI ook aanwezig in IBS-besturing. Het closed-
loopsysteem met IBS-besturing is ook verstoord door onzekerheden. Deze leiden tot de
volgende onderzoeksvraag:

Hoe kan het concept van incrementele backstepping-besturing worden verbe-
terd en hoe kan de robuustheid ervan worden verbeterd?

In dit proefschrift wordt IBS gegeneraliseerd voor hogere-orde, niet-lineaire onze-
kere systemen in de strict-feedback vorm, zonder gebruik te maken van de time-scale
aanname of term omissions. Vervolgens wordt voorgesteld om de gegeneraliseerde IBS
te hybridiseren met SMC, genaamd incrementele backstepping sliding mode controle
(IBSMCQC). Theoretische analyse toont aan dat enerzijds IBSMC kan compenseren voor
de resterende onzekerheid in IBS; anderzijds, in vergelijking met backstepping sliding
mode controle in de literatuur, kan IBSMC tegelijkertijd de modelathankelijkheid en de
minimaal mogelijke SMC-gains verminderen. Voor niet-lineaire systemen in de strict-
feedback vorm is het recursieve IBSMC-ontwerp bovendien eenvoudiger dan INDI-SMC.

Het INDI-SMC-raamwerk dat in dit proefschrift wordt voorgesteld, kan zowel eerste-
als hogere orde sliding modi induceren. In de literatuur kunnen hogere-orde sliding
modes ook worden bereikt door andere besturingsstructuren. Dit leidt tot de laatste
onderzoeksvraag van dit proefschrift:

Wat is de relatie tussen de op INDI gebaseerde SMC zoals voorgesteld in dit
proefschrift, de op NDI gebaseerde SMC, en hogere-orde SMC met een kunst-
matig verhoogde relatieve graad?

In dit proefschrift worden analytische en numerieke vergelijkingen gemaakt tussen
deze besturingsstructuren. Allen kunnen worden gebruikt om hogere orde sliding modi
in eindige tijd te induceren. Het is gebleken dat alleen de geschatte matrix voor de
controle-effectiviteit nodig is voor de hogere orde (HO) SMC en INDI-SMC, terwijl NDI-
SMC een hogere modelafhankelijkheid heeft. Bovendien zijn, hoewel de beschouwde
HOSMC en INDI-SMC hun oorsprong vinden in totaal verschillende ideeén, hun no-
minale besturingsincrementen ongeveer gelijkwaardig als aan bepaalde voorwaarden
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is voldaan. Verder zijn de minimaal mogelijke switching-gains die nodig zijn voor de
beschouwde HOSMC ongeveer gelijk aan die welke nodig zijn voor INDI-SMC gedeeld
door het sample interval. Toch resulteren deze twee besturingsstructuren in vergelijk-
bare chattering groottes, die effectief worden verminderd in vergelijking met NDI-SMC.

De twee hybride besturingskaders voorgesteld in dit proefschrift, INDI-SMC en IBSMC,
zijn afgeleid voor generieke niet-lineaire onzekere systemen. Hun effectiviteit in vlucht-
controle is geévalueerd door numerieke simulaties en quadrotor-vluchttesten. Wan-
neer INDI-SMC en IBSMC worden toegepast op fixed-wing vliegtuig fouttolerante be-
sturingsproblemen, laten simulaties zien dat een groot bereik aan actuatorfouten en
structurele schade kan worden getolereerd, zonder gebruik van aanvullende foutdetec-
tie en diagnose (FDD) of online-modelidentificatie. Hoewel de modelafthankelijkheid
van INDI-SMC en IBSMC wordt verminderd, vertonen ze betere robuustheidsprestaties
dan de NDI-SMC, BSMC, NDI en BS besturingsmethoden. Bovendien zijn de SMC-gains
vereist door INDI-SMC en IBSMC lager dan die van NDI-SMC en BSMC, wat het chatte-
ringeffect verminderd.

Om de effectiviteit van de hybride besturing in de praktijk te evalueren, implemen-
teert dit proefschrift INDI-SMC, aangestuurd door een SMDO op een quadrotor. Het
blijkt dat, in de aanwezigheid van modelonzekerheden, windverstoringen en actuator-
fouten, INDI-SMC/SMDO betere trackingprestaties heeft dan op NDI-gebaseerde SM-
C/SMDO. Bovendien zijn de benodigde observer-gains en sliding mode controle voor
INDI-SMC/SMDO lager, wat het chatteringeffect verlicht. Verder wordt de computa-
tionele belasting aan boord verminderd door INDI-SMC/SMDO, aangezien een groot
bereik aan verstoringen passief wordt weerstaan zonder aanpassing, FDD of modeli-
dentificatie. Ten slotte wordt het implementatieproces van INDI-SMC/SMDO vereen-
voudigd vanwege de verminderde modelafthankelijkheid en kleinere variaties van de re-
sulterende onzekerheid.

In de afgelopen decennia is de trend van het gebruik van composietmaterialen om
het structurele gewicht van vliegtuigen te verminderen in opkomst geweest. Deze trend
brengt ook uitdagingen met zich mee voor het ontwerp van de vluchtcontrole omdat de
bijbehorende toename in structurele flexibiliteit de frequentiescheiding tussen structurele-
enrigid-body modi vermindert. Dit is aangetoond door het verlies van het Helios Prototype-
vliegtuig van de NASA. Het ontwerp van zeer flexibele vliegtuigen wordt een multidis-
ciplinair probleem, waarbij rekening moet worden gehouden met de niet-lineariteiten
door de structurele-, aero- en vluchtdynamiek. Daarom stelt dit proefschrift een ge-
integreerde flexibele vluchtregelwet voor vliegtuigen voor gebaseerd op incrementele
besturing. Numerieke simulaties tonen aan dat de voorgestelde regelwet rigid-body be-
wegingen kan reguleren, last door windvlagen kan verlichten, de vleugelwortel buigmo-
menten kan verminderen en elastische modi van vleugels kan onderdrukken. Boven-
dien vertoont de voorgestelde regelwet een verbeterde robuustheid voor onzekerheden
in aerodynamische modellen en actuatorfouten vanwege zijn sensor-gebaseerde aard.

Kortom, gegarandeerde stabiliteit in de Lyapunov-zin, verminderde modelafthanke-
lijkheid en computationele belasting, verminderde besturings- en observer gains, even-
als verbeterde robuustheid tegen fouten en verstoringen, zorgen ervoor dat de voorge-
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stelde incrementele sliding mode besturing en incrementele backstepping sliding mode
besturingskaders veelbelovend zijn voor het verbeteren van vliegveiligheid in het echte
leven. De toepassing van deze twee hybride besturingskaders op andere niet-lineaire
systemen zoals hydraulische systemen en robotachtige manipulators wordt aanbevolen
als toekomstig werk.
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INTRODUCTION

1.1. THREATS TO FLIGHT SAFETY

Over the past decades, we have witnessed a swift growth of air transport. Statistical data
show that air traffic volume has doubled every 15 years since 1976, and this trend is ex-
pected to continue by Airbus’s global market forecast [1]. The expansion of air transport
not only brings more opportunities to the aviation industry, but also increases the im-
portance of flight safety enhancements.

Using the data of the CAST/ICAO common taxonomy team [2], the causes of aviation
fatalities and fatal accidents from 2008 to 2017 are plotted in Fig. 1.1. It can be seen that
25.5% of the fatal accidents are caused by loss of control in-flight (LOC-I). This category
also contributes to 49.9% of onboard fatalities. LOC-I is generally related to a significant
deviation from the nominal flight envelope, which can be triggered by human behaviors,
aircraft malfunctions, external disturbances, etc. 3, 4].

Continuous efforts have been put into reducing the accident rate caused by LOC-I.
A statistical analysis conducted by Airbus shows that with the help of fly-by-wire (FBW)
technology installed on the fourth generation of civil aircraft, the fatal LOC-I accident
rate has been reduced by 75% as compared to the third generation [1]. FBW technology
omits the complex and heavy mechanical linkage between the pilot and the hydraulic
control system, and makes it possible to enhance flight safety using more advanced
automatic flight control systems (AFCS). For new generations of aircraft, the design of
AFCS is challenged by many factors, including potential actuator faults and structural
damages, atmospheric disturbances, the increase of structural flexibility, and nonlin-
ear dynamics. These factors will be briefly addressed in the following subsections, after
which the thesis goal is stated.

1.1.1. ACTUATOR FAULTS AND STRUCTURAL DAMAGES

Many flight accidents were induced by actuator faults and/or structural damages. On
October 4th, 1992, the pylon of engine no.3 of a Boeing 747-200F (El Al Cargo Flight
LY1862, registration: 4X-AXG) broke, shortly after the takeoff. This structural damage led
toloss of both right wing engines, serious damage to the right wingleading edge, and the
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Figure 1.1: Fatalities occurrence categories for worldwide commercial jet fleets from 2008 to 2017 [2].

complete effectiveness loss of outboard ailerons, outboard flaps, spoilers, as well as the
inner left and outer right elevators. This aircraft crashed and killed four on-board flight
crew and 39 people on the ground [4, 5]. On August 12th 1985, a dome joint of a Boeing
747SR (flight JA8119) broke during flight, which resulted in an explosive decompression.
This led to severe damage on the vertical tail and a complete loss of hydraulics. Using
differential thrust, the pilots stabilized the aircraft for half an hour, but unfortunately,
they did not make it in the end due to crew fatigue [4].

(a) 4X-AXG, photoed on 23th August 1992 at Los (b) The Groeneveen and Klein-Kruitberg complexes
Angeles international Airport, © Torsten Maiwald. after the crash of El Al Flight 1862, © Jos Wiersema.

Figure 1.2: Photos about the crash of El Al Flight 1862.

On March 3rd, 1991, shortly after a Boeing 737-200 (United Airlines flight 585) com-
pleted its turn onto the final approach course, the aircraft rolled steadily to the right and
pitched down until it reached a nearly vertical attitude. This aircraft eventually crashed
near the airport [6]. On September 8th, 1994, a Boeing 737-300 (USAir flight 427) en-
countered a similar accident during its landing phase. This aircraft eventually crashed
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(a) JA8119 at Itami Airport 1984, © Harcmac60. (b) Route of JA8119, © Eluveitie.

Figure 1.3: Pictures of the Boeing 747SR JA8119.

with all 132 people on board killed [7]. The probable cause of these two accidents was
“a loss of control of the airplane resulting from the movement of the rudder surface to its
blowdown limit” (Ref. [7], Page 295).

In some cases, the faulty aircraft is still controllable, and some level of performance
can still be achieved, which is sufficient to allow the pilot to safely land the aircraft. An
investigation showed that the fatal crash of E1 Al Flight 1862 could have been avoided [8].
A few examples where pilots saved the aircraft and passengers are also known. For ex-
ample, on November 22th, 2003, pilots successfully landed the DHL Airbus A300B4-203F
freighter after it was hit by a surface-to-air missile. On April 12th, 1997, during the take-
off of a Lockheed L-1011 aircraft (Delta Air Lines Flight 1080), its left elevator got stuck
in a fully upwards position, which made the aircraft pitch up aggressively and nearly
caused stall. Luckily, L-1011 has an engine on the vertical tail, and by using differential
thrust, the pilots successfully controlled the pitching angle and landed the aircraft [9].

To reduce the accident rate induced by actuator faults and structural damages, many
researchers propose to include a “self-repairing” capability in the flight control system,
which can reduce the workload of pilots and make full use of the remaining control
ability of the faulty aircraft. A closed-loop control system which can tolerate compo-
nent malfunctions, while maintaining stability and desirable performance, is said to be
a fault-tolerant control (FTC) system [4, 10]. A national aeronautics and space adminis-
tration (NASA) experiment shows that FTC systems can indeed help pilots to control an
impaired plane [11, 12]. A bibliographical review of FTC systems can be found in [10].

1.1.2. ATMOSPHERIC DISTURBANCES
Air travel can be very unpleasant and even hazardous due to atmospheric disturbances.
Flying an aircraft in the disturbed atmosphere is like cycling on a rough road, which
causes fatigue in both structure and human beings. The fatigue in structure can lead to
cracks/crushes and even breakages. The passenger ride comfort is compromised, and
injuries can also happen. More importantly, the fatigue of pilots and the reduced aircraft
handling quality can impair the precise control of flight path needed for safe takeoff and
landing, as well as collision avoidance [13, 14].

In history, many flight accidents were directly/indirectly caused by atmospheric dis-
turbances. Twenty-five percent of the 729 accidents reported by the U.S. air carriers from
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(a) Downdraft Wind shear clouds illuminate at (b) NASA artist’s rendering of a microburst, © NASA.
Twilight over the Mojave Desert, © Jessie Eastland.

Figure 1.4: Illustrations for a downdraft windshear and a microburst.

1964 to 1975 are turbulence related [13]. Among these accidents, 115 cases occurred in
convective turbulence and 68 in clear-air turbulence (CAT) [15]. In 1972, CAT accidents
caused about 23 million dollars’ worth of loss to the airlines [15]. One of the critical at-
mospheric disturbance types is wind shear, which refers to the variation of wind over
either horizontal or vertical distances [16]. Twenty-six major civil airplane accidents be-
tween 1964 and 1985 were directly caused or contributed to by wind shear, which led to
620 deaths and 200 injuries [17]. These accidents highlight the importance of designing
an AFCS that can reduce the effects of atmospheric disturbances.

1.1.3. INCREASE OF STRUCTURAL FLEXIBILITY

On December 17th, 1903, the world witnessed the first successful flight of a heavier-
than-air powered aircraft, the Wright Flyer. The lateral control of the Wright Flyer was
achieved by making use of the flexible wing structure. That is, the angle of attack was
changed locally by warping the wing tips [18]. Because of its biplane configuration and
relatively low airspeed (maximum speed: 30 mph (48 km/h)), the Wright Flyer did not
encounter significant detrimental aeroelastic effects [18].

With the development of aircraft propulsion systems, the maximum airspeed record
was constantly broken. At the same time, the wing structures were becoming stiffer
and stiffer to shoulder the increasing wing load and to ensure aeroelastic stability. Roll
control is normally executed by trailing edge ailerons, which are built independently
from the main wing structures. However, stiffer wings lead to a side effect that is very
undesirable in aircraft design, namely the increase in structural weight.

Presently, composite materials bring more opportunities to aircraft structural de-
sign. They can provide structural strength comparable to metallic alloys, but with re-
duced structural weight. The Boeing 787 Dreamliner, the first commercial aircraft con-
structed primarily of composite materials, is designed to be 20% more fuel-efficient than
the Boeing 767 [19]. The use of composite materials also brings challenges, including the
increase of structural flexibility.
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As the wing flexibility increases, the frequency separation between structural and
rigid-body modes becomes smaller. Consequently, the usual separation of flight dy-
namic and aeroelastic analysis becomes less appropriate for gust response predictions
and flight control designs. One famous example is the loss of NASA’s Helios Prototype
Aircraft, shown in Fig. 1.5. This aircraft had a long and slender wing, with aspect ratio
30.9 for enhancing the aerodynamic efficiency [20]. On June 26th, 2003, the Helios Pro-
totype entered moderate air turbulence during a test flight, causing extreme dihedral
and leading to an uncontrollable series of pitch oscillations, which resulted in structural
breakup and crash of the aircraft [20].

Further research discovered that the instability of the phugoid mode during large
dihedral angles was the main reason of the Helios crash [21-23]. Apart from the phugoid
mode, the interaction of the structural and rigid-body modes can also lead to instability
of other conventional flight dynamic modes [22, 24-26]. These emphasize the necessity
of an integrated flight control design for flexible aircraft.

(a) Flight test of Helios on July (b) Helios at high wing dihedral (c) Helios falling toward the Pacific
14, 2001, © NASA prior to structural failure, © NASA Ocean (on June 26, 2003), © NASA

Figure 1.5: Photos of the NASA’s Helios, a solar-and fuel-cell-system-powered unmanned aerial vehicle.

1.1.4. NONLINEAR DYNAMICS

The free-flying dynamics of flexible aircraft are nonlinear time-varying (NLTV) [22, 27].
The nonlinearities are contributed to by flight dynamics, aeroelasticity and the inertial
couplings between them [27]. For the convenience of analysis and design, the structural
vibration dynamics are often described by a series of linear differential equations, and
their inertial couplings with rigid-body dynamics are assumed to be negligible [27, 28].
However, these simplifications become invalid for highly flexible aircraft [24, 29-32],
whose design becomes a multidisciplinary problem involving intrinsically nonlinear
structural, aero-, and flight dynamics [30].

Even for a “rigid” aircraft, its free-flying dynamics are also NLTV. Moreover, when the
angle of attack is high or when the aircraft is in transonic flight, the nonlinearities in
aerodynamics can become influential. In the literature of flight control, it is a common
practice to linearize the NLTV system around an equilibrium point, which results in a
linear time-invariant (LTT) system. Many control methods are designed based on the
LTI model, and the stability of the closed-loop system is analyzed based on the nega-
tive definiteness of the eigenvalues. However, this design approach is only valid in the
neighborhood of the equilibrium point [33]. In order to expand the applicability of LTI
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model-based control, the gain-scheduling method is widely used, where the flight en-
velope is divided into many smaller operating regimes, and LTT model-based control is
designed and tuned for each of them. However, this approach is cumbersome and does
not guarantee stability and performance in between operational points.

The dynamic linearization and the gain-scheduling processes are not needed by
nonlinear control designs. Stability criteria for these designs are normally defined in
the sense of Lyapunov [33]. Since closed-loop stability is of paramount importance in
flight control, it will be included in the research goal of this thesis.

1.2. RESEARCH GOAL

The challenges stated in Sec. 1.1 motivate the main research goal of this thesis:

Research Goal

To design a stability-guaranteed nonlinear flight control framework with re-
duced model dependency and enhanced robustness.

In this thesis, Lyapunov stability criteria are adopted. The robustness to model un-
certainties, external disturbances, sudden actuator faults and structural damages are
considered, whereas the robustness to sensor faults is out of the scope, and readers are
recommended to [10, 34]. Nonlinear control designs with reduced model dependency
can simplify the implementation process and reduce cost. To reduce onboard compu-
tational load, this thesis also aims at tolerating a wide range of perturbations without
using fault detection and diagnosis (FDD) or model identification. Extreme scenarios
where these mechanisms become necessary will be discussed in Chapter 8.

Two nonlinear control methods that are frequently used in flight control are non-
linear dynamic inversion (NDI) and backstepping (BS) [33, 35]. Both NDI and BS are
model-based control methods, which means that their implementation requires a model
of the physical system, and their effectiveness relies on the model accuracy. However,
mismatches between the estimated model and the real system dynamics inevitability
exist. To enhance the robustness of these model-based control methods to model mis-
matches, they are augmented with various robust and adaptive mechanisms [35-41]. In
contrast to these augmentations, incremental control proposes to improve robustness
by fully exploring the sensor measurements.

1.3. INCREMENTAL CONTROL

Incremental control methods include incremental nonlinear dynamic inversion (INDI)
[42] and incremental backstepping (IBS) [43]. IBS is an extension of INDI for second-
order systems in the strict-feedback form. Incremental control methods were proposed
in the aerospace community, and they are referred to as sensor-based approaches.

1.3.1. LITERATURE REVIEW ON INCREMENTAL CONTROL

The idea of INDI can be traced back to the late nineties. In view of the challenges in
NDI control, Smith proposed a “simplified” NDI approach in 1998 [44]. This approach is
based upon manipulations of the flight dynamic equations and assumptions about the
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bandwidth separations. Itis found in [44] that the feedback of rotational (angular) accel-
eration and control surface position can enhance the robustness of NDI to uncertainties
in the mathematical model.

The derivations in [44] are further improved in [45, 46]. By virtue of the feedback
of accelerations and actuator positions, the control method is shown to accommodate
aerodynamic changes without the use of stability derivatives [45, 46]. Moreover, a recon-
figurable control is developed in [46] using the “simplified” NDI along with sensor failure
detection and isolation systems. The aircraft model used in [46] has control redundancy;
thus a weighted least squares method is used to allocate the control command. In [47],
the “simplified” NDI is referred to as an implicit design of NDI, with which a cascaded
aerodynamic angle tracking controller is designed, with its effectiveness demonstrated
by numerical simulations.

Inheriting the idea of feeding back angular accelerometers and actuator positions,
INDI is first proposed in [42]. The sensor-based control idea of INDI is also shared
by [48] and [49]. The derivation of INDI is based on the Taylor series expansion of the
system dynamic model and the “time-scale separation” assumption'. Simulations on
an unmanned aerial vehicle (UAV) model show the insensitivity of this method to aero-
dynamic, center of mass and inertia mismatches [42]. It is also shown in [42] that this
method is sensitive to sensor measurement time delays. Therefore, a linear predictive
filter is proposed in [42] to predict the angular accelerations.

Afterits proposal in [42], INDI has been applied to various aerospace systems. In [50],
INDI is used to control the angular rate of a spacecraft. In [51], INDI is applied to control
the angular rate of an ADS-33 helicopter. The pseudo-control hedging technique [52] is
used along with INDI to handle actuator saturations. In [53], numerical simulations
show that INDI can tolerant aileron and rudder jamming faults without using online
model identification or FDD. Online model identification requires sufficient excitation
and selection of thresholds, which can be tricky in practice [53].

INDI also shows promising robustness against external disturbances. In [54], a gust
load alleviation control is designed using INDI, which shows better performance and ro-
bustness than a linear-quadratic regulator (LQR) control. In [55, 56], it is demonstrated
by quadrotor flight tests in a wind tunnel that INDI has better position tracking per-
formance than a PID controller. Recent research in [57] uses INDI along with the pri-
mary axis principle [58], which achieves controllable high-speed (over 9 m/s) flight of a
quadrotor despite complete loss of a single rotor.

The idea of INDI inspired the proposal of IBS in [43] for second-order nonlinear sys-
tems in strict-feedback form. The outer-loop control design of IBS is the same as the
standard backstepping control. The differences appear in the inner loop, where the sys-
tem dynamics are first rewritten in an incremental form, based on which the control
increment is designed. Because of the feedback of angular accelerations and actuator
positions, numerical simulations using a missile model show that IBS has better robust-
ness against aerodynamic uncertainties than standard backstepping control [43]. This
robustness enhancement is also verified by outdoor flight tests on a hexarotor [59].

1As will be explained in Sec. 1.3.2, this assumption used in INDI control means that the controls can change
significantly faster than the states.
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1.3.2. CHALLENGES IN INCREMENTAL CONTROL
In spite of the effectiveness of incremental control shown in the literature, challenges
and limitations still exist. In this subsection, the derivations of INDI will be briefly re-
viewed. The same derivations are applicable to the inner-loop IBS control. The limita-
tions of incremental control will then be exposed.

INDI control is derived for the following nonlinear system:

i=f(x)+Gx)u, (1.1)

where f:R"” — R", and G is a nonsingular smooth function mapping R” — R"*"™. The
columns of G and f are smooth vector fields. It is further assumed that m = n, and the
output vector is chosen as y = x. For this set-up, the input-output relative degree for
each control channel equals one, and there are no internal dynamics.

Regarding the applications of incremental control in the literature, the internal dy-
namics are normally avoided by using a cascaded control structure [42, 50, 51, 53-56, 59—
67]. However, the stability of cascaded control structures is not easy to prove because of
its dependency on whether there is sufficient time-scale separation between different
control loops. Moreover, for under-actuated systems, such as a quadrotor with com-
plete loss of two or more rotors, considering the internal dynamics becomes important.

Denote the sampling interval as At; then the first step of INDI control or inner-loop
IBS control is to take the first-order Taylor series expansion of Eq. (1.1) around the con-
dition at t — At (denoted by subscript 0) as:

+Mﬂw+Gmm]

X =Xg o

0Ax+GWMAu+RL (1.2)
where Ax and Au represent the state and control increments in one sampling time step
At; Ry represents the higher-order expansion remainder. Although INDI shows effec-
tiveness on external disturbance rejection [54-57, 57] and tolerance to sudden faults [53],
these factors are not modeled in Eq. (1.1), and partial derivatives are also not taken with
respect to the corresponding variables in Eq. (1.2).

The core step of INDI or inner-loop IBS control is the model simplification based
on the so-called “time-scale separation” principle (or assumption). It is noteworthy that
this principle is different from the widely accepted time-scale separation between cas-
caded control loops, which is based on singular perturbation theories. In [42, 50, 51, 53—
56, 59-66, 68, 69], the separation concept used in incremental control is described as fol-
lows: the controls can change significantly faster than the states, i.e., Au > Ax. There-
fore, the state-variation-related term and the higher-order terms can be omitted from
Eq. (1.2), which yields the simplified incremental dynamics:

x:x0+G(x0)Au (1.3)

This simplification is worth some further discussion; because the plant simplifica-
tion is made before introducing the INDI control inputs, this simplification becomes
questionable for unstable plants. Moreover, although the state-variation-related terms
and higher-order terms are not used in INDI control design, they should be kept in the
closed-loop dynamic equations. Generally speaking, these potential issues have been
overlooked in the literature [42, 50, 51, 53-56, 59-66, 68, 69].
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Replacing x by a linear virtual control v, and inverting the dynamics in Eq. (1.3), the
INDI or the inner-loop IBS control increment is designed as:

Au =G (xg) (v — i) (1.4)

This equation defines the control increment Au. The actual control command given
to the actuator equals u# = ugy + Au, where uy is the measured or estimated control input
at the previous time step ¢ — At [42, 70].

Since Eq. (1.4) is independent of the model of f(x), it is concluded in [42, 50, 51, 56,
60, 62] that INDI and IBS are robust to the uncertainties in f(x). However, this conclu-
sion needs further analysis since the omitted terms, which reflect system dynamics, still
remain in the closed-loop dynamics. In [42] and [60], it is shown by using linear trans-
fer functions derived from block diagrams that if actuator dynamics are not considered,
the model uncertainties in G(x) do not affect the closed-loop system, and the dynamics
from v to x become perfectly decoupled integrators. However, stability proofs based on
transfer functions are only valid for LTI systems. Moreover, whereas the assumption of
X* = Xo is made in the block diagram derivations, this is in principle incorrect because
in that case, Au would be zero at all times. Finally, regarding the robustness analysis
in [42, 60], the designed control input (Eq. (1.4)) is substituted into the simplified incre-
mental dynamics Eq. (1.3) instead of the actual dynamics, Eq. (1.2) or Eq. (1.1), so the
effects of the omitted terms are not considered at all.

In [60], the stability and robustness of the closed-loop system under IBS control con-
sidering actuator dynamics are analyzed by formulating the closed-loop system into a
state-space form and testing the frozen-time eigenvalues of the time-varying system
matrix. However, it has been shown in [71-73] that for linear time-varying systems, the
stability criterion based on the negative definiteness of the frozen-time eigenvalues is
neither sufficient nor necessary. The Lyapunov methods and concepts from nonlinear
system perturbation theory are needed for more rigorous stability and robustness anal-
yses of nonlinear time-varying systems.

Although INDI and IBS do not rely on the model of f(x), they do depend on knowl-
edge of the control effectiveness matrix G(x). To improve its robustness against un-
certainties in G(x), INDI is augmented with an online least mean squares adaptive filter
in [62]. Although this approach works in practice, from a theoretical point of view, due to
the separation of control design and model identification, the stability of indirect adap-
tive control in general cannot be guaranteed.

The uncertainties in G(x) are also considered in [61], where the IBS method is aug-
mented with three adaptive parameter update laws: tuning functions, immersion and
invariance, and least-squares. It is shown by numerical simulations that these augmen-
tations yield comparable effectiveness in improving the robustness of IBS to parametric
uncertainties in G(x). For these adaptive augmentations, the uncertainties need to be
parameterized using pre-definied model structures, and the unknown parameters are
assumed to be constant or slowly time-varying [61, 74, 75]. This assumption is likely to
be invalid when a sudden fault occurs [76]. Apart from the uncertainties in G(x), the
uncertainties under incremental control also contain a state-variation-related term and
the high-order terms in Eq. (1.2), as well as the increments of external disturbances [70].
Parameterization for these terms can be tedious due to the difficulties in model struc-
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ture selection. Moreover, the high computational load of online parameter update also
makes these adaptive augmentations less appropriate for FTC problems.
The challenges exposed in this subsection raise two research questions:

Research Question 1: How can the stability of incremental nonlinear dynamic
inversion control be analyzed and expressed?

Research Question 2: How can the concept of incremental backstepping control
be improved and how can its robustness be enhanced?

In view of the limitations of using adaptive augmentations to enhance the robust-
ness of incremental control, a promising approach is to robustify it using sliding mode
control (SMC). As a special case of variable structure control [77], SMC is invariant (bet-
ter than robust) to matched uncertainty [77, 78]. The finite-time, or even fixed-time
convergence property [77, 79-83] can be achieved in the SMC scheme. The uncertainty
parameterization process is also not needed by SMC. In [10], SMC is classified as a pas-
sive FTC approach, i.e., it has the ability to tolerate faults without using fault detection
and diagnosis, or controller reconfiguration. These advantages have promoted the ap-
plication of SMC and sliding mode disturbance observers (SMDO) to many aeronautical
and space vehicle control problems, where they show benefits in reducing cost in pre-
flight design and analysis cycles [84]. To properly define the third research question,
these methods will be reviewed in the next section.

1.4. SLIDING MODE CONTROL AND DISTURBANCE OBSERVER

1.4.1. AEROSPACE APPLICATIONS OF SMC

To deal with significant damage to the airframe and actuators, a first-order SMC with
an asymptotic observer is proposed in [85]. Simulations on an F-18 aircraft model show
that desirable performance can be achieved after a fault occurs, without using FDD [85].
In [86], both actuator and sensor faults of a civil aircraft are considered. For handling the
actuator faults, a first-order SMC is designed, which contains a model-based equivalent
control estimation and a switching term. The sensor faults are reconstructed online
using a sliding model observer. The SMC designed in [86] is augmented by a control
allocation technique in [87], and the entire control scheme was verified on TU Delft’s
research flight simulator SIMONA [4, 86].

In [88], a cascaded reconfigurable sliding mode flight control is designed for an F-16
aircraft. First-order sliding mode is achieved in each loop, using a model-based equiv-
alent control estimation and a boundary-layer approximation for the signum function.
The thickness of the boundary layer is reconfigured to account for actuator dynamics,
deflection limits, and rate limits. Simulation results show that this control can passively
tolerate 50% of rudder and horizontal tail area losses without using online model identi-
fication. A similar SMC design is used along with a control allocation method to control
a reusable launch vehicle in [89], where simulations show that desirable tracking per-
formance can be achieved in the presence of bounded external disturbances and un-
certainties [89]. Similarly, the reconfigurable flight control idea in [88, 89] is applied to
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control a tailless aircraft in [90].

The dynamic sliding manifold, which shows benefits in solving the non-minimum
phase system tracking problems, is adopted for aeronautical and space vehicle control
in [91]. An SMC driven by SMDO framework is designed in [84] with application to a
reusable launch vehicle tracking problem. An integral terminal SMC with gain adapta-
tion is applied to a hypersonic gliding vehicle for tolerating actuator faults and model
uncertainties [92]. A hypersonic vehicle tracking problem, in the presence of matched
and unmatched external disturbances and model uncertainties, is addressed in [93] us-
ing a continuous adaptive higher-order SMC.

1.4.2. CHALLENGES IN SLIDING MODE CONTROL

One of the founders of SMC, V. I. Utkin, pointed out that chattering, which is inher-
ent in sliding motions, is the main obstacle for SMC application [94]. Therefore, in the
past decades, many researchers have dedicated themselves to reducing the influences
of chattering. Since chattering is caused by the discontinuous signum function in SMC,
the most widely used approach to reduce its magnitude is to approximate the signum
function by other continuous functions [33, 35, 88-91, 95-99]. However, these approxi-
mations (and hence compromises) lead to partial loss of robustness [33, 78].

In order to avoid discontinuous control inputs, various higher-order SMC techniques
have been proposed. By artificially increasing the input—output relative degree, the dis-
continuous signum function is “hidden” in the higher-order derivatives of the control
input. Because of the integration process, the final control command becomes contin-
uous. However, as pointed out in [78], this branch of methods, including those designed
using recursive or nested structures [100-102], cannot totally eliminate chattering.

Unlike the idea of SMC, (higher-order) SMDO observes the disturbances and pro-
vides this observation to the control for direct compensation. The relative merits of
using SMDO over SMC have been investigated in [103]. Although the observations pro-
vided by SMDO are always continuous, the filtering process in first-order SMDO, and
the integration process in super-twisting SMDO, can only attenuate instead of totally
rejecting chattering in the observations [84].

Since the amplitude of chattering is proportional to the magnitude of discontinuous
control [94], one of the research focuses in SMC is on adaptation mechanisms for reduc-
ing the discontinuous control gain to its minimum admissible value whilst maintain-
ing the sliding motions and the finite-time convergence property. An SMC adaptation
method is proposed in [94] based on the online evaluations of the equivalent control.
This method requires knowledge of bounds on the uncertainties and their derivatives. It
also calls for the selection of the minimum and maximum allowed adaptive gains. These
are not needed for the dual-layer nested adaptive method [78, 104, 105], which can be
applied to conventional, super-twisting and higher-order sliding mode schemes.

In spite of the variations of gain adaptation methods in the literature, the sufficient
condition for enforcing a sliding motion still requires the switching gain to be larger
than the norm of the uncertainty (for first-order methods), or the corresponding norms
of the uncertainty derivatives (for higher-order methods) [78, 94, 104, 105]. Therefore, a
method that could reduce the uncertainty would be fundamentally beneficial to reduc-
ing the minimum possible sliding mode control/observer gains.
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1.4.3. AWAY TO REDUCE THE UNCERTAINTY IN SMC
Consider a multi-input/multi-output nonlinear system formulated by:

i=fx)+Gx)u+dy, y=h(x), (1.5)

where f:R"” — R"” and h: R” — R™ are smooth vector fields. G is a smooth function
mapping R" — R"*™, whose columns are smooth vector fields. d, € R" represents
the external disturbances. Define the vector relative degree of y with respect to u as
p =[p1,p2, - pmlT. Assume p = Y, pi = n; then by differentiating the output, the
input-output mapping of the system is given by:

yP = a(x)+ Bx)u+d, (1.6)

where a(x) = [ L7 h, L1 ha, .., L™ hiy) T, B(x) €R™ ™, By = Ly, Ly, and d =
(L I, LY hay oy L )T, with L8 Ry, L8, Ly, L8 hy the corresponding Lie
derivatives [33]. Assume %(x) is nonsingular.

For the generic nonlinear system formulated by Eq. (1.5) with input-output map-
ping given by Eq. (1.6), one approach is to design (higher-order) SMC/SMDO completely
independent of the model. In other words, the input-output mapping is written as
¥ = U+ £fe0, Where €gree = a(x) + (B(x) — Du+d is treated as a lumped uncertainty
term. This sliding mode design approach is adopted in [106, 107]. However, for many
physical systems that do not have sufficiently high control authority, this model-free de-
sign approach can be impractical. This is because the resulting uncertainty term &g
could have a large norm and variations, which require sufficiently high SMC/SMDO
gains for enforcing the sliding modes. Severe variations of the uncertainty term also
challenge the online gain adaptation of SMC.

An intuitive approach to reduce the uncertainty is using a preliminary model-based
feedback control term to roughly cancel the nonlinearities and couplings. Regarding the
dynamics given by Eq. (1.6), the nominal model y®) = @&(x) + 2(x)u can be used in the
control design. Design the control in the structure of:

Undis = B (x)(v - &(x)) 1.7)

Substituting Eq. (1.7) into Eq. (1.6) leads to the dynamics y'?) = v+&,4i.s, with g =
(@— @) + (B — B)ung.s + d. In these new dynamics, after the model-based feedback, the
virtual control v only needs to deal with the remaining uncertainty term &pg;.s. With
the help of the nominal models @(x) and %(x), the norm of the remaining uncertainty,
ll€ndi-sll, can be reduced as compared to ||€qee l|. This reduction of uncertainty is benefi-
cial to robust control in general. Regarding sliding mode control and observation, based
on the discussions in Sec. 1.4.2, this uncertainty reduction can reduce the minimum
possible sliding mode control/observer gains.

The control structure given by Eq. (1.7) is widely used in the SMC community. Exam-
ples include first-order SMC [33, 35, 84, 88, 90, 91, 95, 108-112], higher-order SMC [79,
113-115], SMC driven by a first-order SMDO [84, 116, 117], and SMC driven by a higher-
order SMDO [78, 84, 93, 105, 113, 114, 116-118]. Essentially, this control structure is
based on feedback linearization, which is also known as NDI in the aerospace commu-
nity [42, 51, 53].
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For model-based control approaches, the effectiveness of uncertainty reduction de-
pends on the model estimation accuracy. However, for complex systems like an aircraft,
obtaining accurate models is costly and time-consuming. When a sudden fault occurs,
llengi-sll can increase abruptly, which is supported by results in [76, 87, 99, 119]. Conse-
quently, in order to reduce ||€pgj-|l in faulty conditions for gain reduction, online model
identification becomes necessary. This process requires sufficient excitation, which can
aggravate structural vibration and even make the aircraft fly out of the shrunken (be-
cause of the faults) safe flight envelope [120, 121]. Online model identification also re-
quires the selection of model structures and thresholds, which can be tricky in prac-
tice [4, 53]. Control methods with high model dependency also complicate the imple-
mentation process and increase the onboard computational load.

Ideally, one would design a control method which could simultaneously reduce the
model dependency and the resulting uncertainty. These two objectives are contradic-
tory in SMC designs. On one hand, if the model structure in Eq. (1.7) is adopted, then
the reduction of model dependency makes &y,4;.s approach &gee, which indicates an in-
crease in the resulting uncertainty. On the other hand, it can be seen from the formu-
lation of &,4;.s that the reduction of uncertainty requires more accurate model estima-
tions. These observations lead to the third research question of this thesis:

Research Question 3: How can the contradiction between the reduction of
model dependency and the reduction of uncertainty in sliding mode control be
solved?

A possible approach to solve this contradiction is to introduce other sources of sys-
tem information. For example, we can “learn” the characteristics of a system from sen-
sor measurements. This is actually the core idea of incremental control. As presented
in Sec. 1.3.1, the model dependency of NDI and BS can be reduced in the sensor-based
control framework; in spite of their reduced model dependency, INDI and IBS actually
show better robustness to model mismatches as compared to NDI and BS [42, 43].

1.5. RESEARCH APPROACH AND CONTRIBUTIONS

In this section, the main research approach of this thesis will be addressed in Sec. 1.5.1,
then the main contributions will be summarized in Sec. 1.5.2.

1.5.1. RESEARCH APPROACH AND QUESTIONS

As presented in Sec. 1.2, the main goal of this thesis is to design a nonlinear control
framework for uncertain systems. Subsections 1.3.1 and 1.4.1 explained that both in-
cremental control and SMC can deal with model uncertainties, external disturbances
and faults. However, these two branches of methods also have their limitations. In view
of the limitations presented in Sec. 1.3.2, the main body of this thesis will start with
more rigorous analyses for incremental control. Sec. 1.3.2 also showed that incremen-
tal control can potentially be robustified by SMC. Furthermore, it has been revealed in
Sec. 1.4.3 that the sensor-based control structure is promising in solving the contradic-
tion between the reductions of model dependency and the resulting uncertainty in SMC.
These observations inspired the idea to develop a hybrid between SMC and incremental
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control, to inherit the advantages and remedy the drawbacks of both approaches.

The proposed hybrid control framework designs the control increment Au. In the
literature, there are other control structures, including NDI-based SMC (designs u) and
high-order SMC that artificially increases the relative degree by one order (i.e., designs
it). All of these three approaches can induce higher-order sliding modes in finite-time.
Since # approximately equals Au/At when At is sufficiently small, an interesting re-
search question emerges:

Research Question 4: What is the relationship between the INDI-based SMC
proposed in this thesis, the NDI-based SMC, and higher-order SMC with artifi-
cially increased relative degree?

1.5.2. MAIN CONTRIBUTIONS
The main contributions of this thesis can be elaborated from three aspects. First of all,
it contributes to incremental control methods:

CONTRIBUTIONS TO INCREMENTAL CONTROL METHODS
e Generalization of incremental control methods for nonlinear uncertain systems
with arbitrary input—-output relative degrees, without using the time-scale separa-
tion assumption or term omissions.

* Lyapunov-based stability analysis of incremental control methods considering the
internal dynamics.

 Analysis of the robustness of incremental control methods to model uncertain-
ties, external disturbances, sudden changes in system dynamics using nonlinear
system perturbation theory.

* Design of a hybrid control framework that robustifies incremental control meth-
ods, which also brings other beneficial properties, including fixed/finite-time con-
vergence in spite of perturbations.

Second of all, this thesis contributes to sliding mode control. This thesis mainly fo-
cuses on the control structure; thus the contributions listed below are not constrained
by the specific SMC virtual control designs:

CONTRIBUTIONS TO SLIDING MODE CONTROL METHODS
* A solution for the contradiction between the reduction of model dependency and
the reduction of uncertainty in sliding mode control.

* Reduction of the minimum possible (higher-order) sliding mode control/observer
gains in the hybrid framework, which is beneficial to chattering reduction.

e Comparison of three control structures (NDI-based SMC, higher-order SMC with
artificially increased relative degree, and INDI-SMC), which can be used for en-
forcing higher-order sliding modes.
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Generic nonlinear uncertain systems are considered in the control designs and anal-
yses. Therefore, the preceding contributions are applicable to generic nonlinear uncer-
tain systems, not necessarily aerospace systems.

Third of all, this thesis also has contributions in its flight control applications, which
are summarized as follows:

CONTRIBUTIONS TO FLIGHT CONTROL
e Verification by numerical simulations and quadrotor flight tests, that the hybrid
control framework can help aircraft passively tolerate a wide range of model un-
certainties, external disturbances, sudden actuator faults and structural damages.

¢ Design of an INDI-based integrated flight control law for flexible aircraft, which
can control the rigid-body motions, alleviate the gust loads, reduce the wing root
bending moment and suppress the elastic modes.

1.6. OUTLINE OF THE THESIS

The main body of this thesis is based on peer-reviewed journal/conference papers. Each
chapter of the main body can therefore be read independently. At the beginning of each
chapter, there is an introductory paragraph which places the chapter into the context of
the full thesis. Figure 1.6 shows a schematic layout of this thesis, where the main body is
divided into two parts.

Chapter 1:
Introduction 1

Part I: Theory Part II: Applications

- Chapter 7:
Chapter 2: Stability and . .
Robustness of INDI FIexgloem,?cl)rlcraft

!

Chapter 4: Chapter 3: Chapter 6: INDI-
IBSMC <«— |INDI-SMC —— SMC/SMDO
Framework Framework Quadrotor

v
Chapter 5: Relationships
of INDI-SMC, NDI-SMC,
and HOSMC

Chapter 8:

Conclusions

Figure 1.6: Structure of the thesis.

Part I lays emphasis on the theoretical development of the control methods. The
derivations and analyses in Part I are applicable to generic nonlinear uncertain systems,
not necessarily aerospace systems. Part I starts from Chapter 2, which answers Research
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Question 1. It is found in Chapter 2 that an uncertainty term remains in the closed-loop
system under INDI control. The properties of this term and a systematic way of com-
pensating for its influences are dealt with in Chapter 3. To answer Research Question 3,
a novel control framework which hybridizes INDI with (higher-order) sliding mode con-
trollers/observers is proposed in Chapter 3.

Research Question 2 is answered in Chapter 4, where the stability and robustness of
IBS is analyzed. IBS is further hybridized with SMC for robustness enhancement, which
is named IBSMC. Research Question 4 is addressed in Chapter 5, where the proposed
hybrid control framework is compared with NDI-based SMC methods and a class of
higher-order (HO) SMC methods in the literature.

Apart from the theoretical developments, Part I also contains some aerospace ap-
plications. Chapter 2 handles a rigid aircraft gust load alleviation problem using the
reformulated INDI. The control methods proposed in Chapters 3 and 4 are numerically
validated via aircraft attitude command tracking problems in the presence of sudden
actuator faults and structural damages.

PartII places emphasis on flight control applications. In Chapter 6 the effectiveness
of the hybrid control framework proposed in Chapter 3 is verified by flight tests on a
partially damaged quadrotor. INDI is used to design an integrated flight control law for
flexible aircraft in Chapter 7.

Finally, this thesis is closed by Chapter 8, which presents the conclusions, discus-
sions, and recommendations for future work.
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STABILITY ANALYSIS FOR
INCREMENTAL NONLINEAR
DYNAMIC INVERSION CONTROL

The first research question of how to analyze and express the stability of incremental non-
linear dynamic inversion (INDI) control will be addressed in this chapter. As discussed
in Chapter 1, although INDI has shown effectiveness in flight control, its derivations and
analyses have some limitations. Therefore, this chapter will first reformulate INDI for
more general nonlinear systems, without using the time-scale separation assumption or
term omissions. Then the stability and robustness of the reformulated INDI will be an-
alyzed using Lyapunov methods and nonlinear system perturbation theory. Finally, this
chapter will make analytical and numerical comparisons between the reformulated INDI
and the model-based nonlinear dynamic inversion (NDI) control.

This chapter is based on the following article:

Wang, X., van Kampen, E., Chu, Q. P, and Lu, P, “Stability Analysis for Incremental Nonlinear Dynamic
Inversion Control”, Journal of Guidance, Control, and Dynamics, Vol. 42, No. 5, 2019, pp. 1116-1129.
doi:10.2514/1.G003791.
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As asensor-based control method, incremental nonlinear dynamic inversion (INDI)
has been applied to various aerospace systems and shown desirable robust perfor-
mance against aerodynamic model uncertainties. However, its previous derivation
based on the time-scale separation principle has some limitations. There is also a
need for stability and robustness analysis for INDI. Therefore, this chapter reformu-
lates the INDI control law without using the time-scale separation principle and gen-
eralizes it for systems with arbitrary relative degree, with consideration of the inter-
nal dynamics. The stability of the closed-loop system in the presence of external dis-
turbances is analyzed using Lyapunov methods and nonlinear system perturbation
theories. Moreover, the robustness of the closed-loop system against regular and sin-
gular perturbations is analyzed. Finally, this reformulated INDI control law is verified
by a Monte-Carlo simulation for an aircraft command tracking problem in the pres-
ence of external disturbances and model uncertainties.

2.1. INTRODUCTION

ONLINEAR dynamic inversion (NDI) is a nonlinear control approach that cancels the
N system nonlinearity by means of feedback, which results into entirely or partly lin-
earized closed-loop system dynamics, to which conventional linear control techniques
can then be applied [1, 2]. This method is essentially different from the widely used Jaco-
bian linearization around specific operating points in combination with gain-scheduled
linear controllers, whose stability and performance become questionable between op-
erational points. To achieve an exact dynamic cancellation, the NDI control method
requires an accurate knowledge of the nonlinear system dynamics. Such a requirement
is almost impossible to meet in reality due to model simplifications, computational er-
rors and external disturbances. This main drawback of NDI motivated many control
technologies to improve its robustness. One popular approach is combining NDI with
linear robust control techniques such as structural singular value (u) analysis [3, 4] and
JCs synthesis. Although these techniques have brought benefits to regular NDI, not all
the uncertainties are taken into account or some known nonlinear time-varying (NLTV)
dynamics are treated as uncertainties [5]. Therefore, the closed-loop systems can be ei-
ther marginally or overly conservative in performance and stability robustness [5]. There
also exists many attempts on using indirect adaptive control methods to improve the ro-
bustness of NDI [6]. Indirect adaptive control methods, in some form or the other, rely
on on-line identification, which requires on-line excitation and selection of thresholds.
However, the stability of indirect adaptive NDI are not guaranteed [6, 7].

Incremental nonlinear dynamic inversion (INDI) is a sensor-based control method,
which requires less model information in both qualitative and quantitative sense, and
thus improving the system robustness against model uncertainties. The concept of this
method originates from the late nineties and was previously referred to as “simplified
NDI” [8] and “modified NDI” [9]. INDI control has been applied to various aerospace
systems [7, 10-21]. Regarding its applications on aerospace systems, the INDI method
was normally used for the inner-loop angular rate control [7, 10-12, 18-20, 22], where
the relative degree for each control channel equals one. The internal dynamics are then
avoided by using a cascaded control structure, which is a common practice in flight
control system designs [7, 11, 14, 18-20]. However, the stability of cascaded control
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structures is not easy to prove because of its dependency on the time-scale separations
between different control loops. Also, this cascaded control structure is unsuitable for
some problems. For example, it is neither physically meaningful nor practical to sepa-
rate the higher-order aeroelastic dynamics into cascaded loops.

The existing derivations of the INDI control law are based on the so-called time-scale
separation principle, which is actually different from the widely used separations based
on singular perturbation theories. In [7, 10-20], this separation concept was claimed
as: the controls can change significantly faster than the states. The nonlinear dynamic
equations describing the plant dynamics are then simplified into linear incremental dy-
namic equations by omitting state-variation-related terms and higher-order terms in
their Taylor series expansion, based on which the incremental control inputs are de-
signed. This approach is not mathematically rigorous since the plant simplification is
made before introducing the INDI control inputs and thus becomes deficient for un-
stable plants. Moreover, although the state-variation-related terms and higher-order
terms are not used in the INDI controller design, they should be kept in the closed-loop
dynamic equations and remain influencing the closed-loop system stability and perfor-
mance, which is also not the case in the literature.

Furthermore, in spite of the numerically verified robustness of INDI to aerodynamic
model uncertainties [10, 15, 21], and disturbances [13-15, 21], its previous theoretical
stability and robustness proofs have some drawbacks. These previous attempts drew
the stability conclusions based on the linear transfer functions derived from block dia-
grams [10, 13, 14], where inappropriate assumptions are made. The influences of dis-
turbances and uncertainties on the internal dynamics also remain unknown in the liter-
ature.

In this chapter, the INDI control in the literature is reformulated for systems with
arbitrary relative degree, without using the time-scale separation principle. The sta-
bility and robustness of the reformulated INDI is then analyzed using Lyapunov-based
methods. Finally, this reformulated INDI is compared with NDI both analytically and
numerically, considering model uncertainties and external disturbances.

This chapter is structured as follows: Sec. 2.2 reformulates the INDI control law for
three different problems. The stability and robustness issues of INDI are discussed in
Sec. 2.3. The effectiveness of the reformulated INDI is numerically verified in Sec. 2.4.
Main conclusions are presented in Sec. 2.5.

2.2. REFORMULATIONS OF INCREMENTAL NONLINEAR DYNAMIC
INVERSION
In this section, the incremental nonlinear dynamic inversion (INDI) control method

will be reformulated for three problems, namely the input-output linearization, output
tracking and input-to-state linearization in the presence of external disturbances.
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2.2.1. INPUT-OUTPUT LINEARIZATION
Consider a multi-input/multi-output nonlinear system described by

x

y

f@X)+Gx)u
h(x) 2.1)

where f:R" — R"” and h: R" — R” are smooth vector fields. G is a smooth function
mapping R” — R whose columns are smooth vector fields. When p < m, which
means the number of outputs is smaller than the number of inputs, control of this sys-
tem via input-output linearization is an overdetermined problem, where a control al-
location technique is needed. On the other hand, p > m yields an underdetermined
problem. Although a weighted least squares method can be used to solve underdeter-
mined problems, the desired control aims cannot be fully achieved. p = m is assumed
in the following derivations.

Denote the elements of h as h;, i = 1,2,..., m, and the column vectors of the matrix
Gas g;, j=1,2,..,m, then the Lie derivatives [2] of the function h; with respect to the
vector fields f and g; are defined as

k-1 k
oh; oh; g, 0 g, OZph
gfhjzaf, ggjhi:agj’ gfhiZTf, fgjffhlzTg] (2.2)

The relative degree p; for each output channel i is defined as the smallest integer

such that for all x € R", at least one j € {1,2,..., m} satisfies ,%gj,%ﬁi“ h; #0.

Define the vector relative degree [23] of the system as p = [pl,pz,...,pm]T, which
satisfies

m
p=lplhi=) pi<n 2.3)

i=1

then the output dynamics of the system can be represented as

Yo L0 (x) Lo L0 @) L, L0 )
P Lo () Lo LX) Ly, L ()
| = , + ' : u (2.4
v L7 hin () Loy L (1) L, L0 ()
or
yP = ax)+ Bx)u (2.5)

If p = n, then the system given by Eq. (2.1) is full-state feedback linearizable. Other-
wise, there are n—p internal dynamics unobservable from the output y. According to the
Frobenius theorem [24], Vx, € R", there exist smooth functions ¢ (x) = [¢; (x), ..., Pn—p(x)] T
defined in a neighborhood Dy of x. such that

0
%gj(x)zo, Vke(l,2,..,n—-p}, Vjeil,2,.,m} Vxe Dy (2.6)



2.2. REFORMULATIONS OF INCREMENTAL NONLINEAR DYNAMIC INVERSION 33

Also, z = T(x) defined by

T(x)=[T1(x); T2(x)] = [;¢], n=¢p(x), E=1&1;82;..5& ],

& = @, Lphi), . L0 i), i=1,2,,m .7

is a diffeomorphism on the domain Dy [2, 24]. 5 and & are the state vectors for the inter-
nal and external dynamics respectively. Using Egs. (2.5, 2.6, 2.7), the nonlinear system
described by Eq. (2.1) can be transformed into

z

_9%¢
Jom8)=—"f(x) Tl

& = Ad+Blax)+Bxul
y = C:& (2.8)

where A, = diag{A}, B. = diag{B{}, C. = diag{C}}, i = 1,2,..,m, and (A}, B}, C)) is a
canonical form representation of a chain of p; integrators.

Assume det{Z(x)} # 0, otherwise, p = m would still lead to an underdetermined
problem. The nonlinear dynamic inversion (NDI) linearization is designed as u = %8~ (x)
(v—a(x)), where v € R™ is called the pseudo-control input. In the absence of model un-
certainties and disturbances, this linearization results in the closed-loop system

i

n = fo(’];f)
& = A&+B.v
y = CJ& (2.9)

which indicates this closed-loop system has n — p internal dynamics, and m decoupled
channels. The input-output mapping for each channel from v; to y; is a chain of p;
integrators.

NDI linearization however is based on the exact mathematical cancellation of the
nonlinear terms a(x) and 98(x). This is almost impossible in practice due to model
simplifications, computational errors and external disturbances. One method to reduce
the control law model dependency is incremental nonlinear dynamic inversion (INDI),
which will be reformulated here.

Taking the first-order Taylor series expansion of Eq. (2.5) around the condition at
t— At (denoted by the subscript 0) as follows:

(P
yP

a(x)+Bx)u

W|0Ax+%’(xx))Au+Rl (2.10)

where Ax and Au represent the state and control increments in one sampling time step
At. R; in Eq. (2.10) is the expansion remainder, whose Lagrange form is

(p)
Yo Tt

1 0?[a(x) + B(x)ul

B 0%[a(x) + B(x)u]
s 2 02x

0xou
in which (-)|,; means evaluating (-) at a condition where x € (x(f — Af),x(1)), u € (u(t—

A1), u(?)). In Eq. (2.11), Ry is not a function of Au?, since according to Eq. (2.5), y(”) is
linear with respect to u .

R, ) Ax%+2 AxAu
m m

(2.11)
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Design the incremental control input as
Au=B" (x)v -y (2.12)

where y(()p) is measured or estimated. The total control command for the actuator is
u = uy + Au. Substituting Eq. (2.12) into Eq. (2.10) results in the input-output mapping
of y'® = v + 6(z, At), where the perturbation term equals
0 + B
8(z,A0) = M( Ax+Ri| (2.13)
0x 0 x=T"(2)

In the closed-loop system, the values of u and Au have already been substituted into
the right-hand side of Eq. (2.13), thus é(z, At) is only denoted as a function of the states
z and the sampling interval. Using the same diffeomorphism z = T'(x), the closed-loop
system dynamics under INDI linearization are given by

n = fo(’l;{)
E = Al+B.v+8(z,AL)]
y = Ci (2.14)

which are consistent with Eq. (2.9) except for the perturbation term 6(z,At). The in-
fluence of (2, At) on system stability and robustness will be elaborated in Sec. 2.3. Al-
though Eq. (2.9) under NDI control seems to be neat, perturbation terms will appear
when model uncertainties and external disturbances are considered, which will also be
shown in Sec. 2.3. As compared to the conventional NDI control law, the INDI control
method is less sensitive to model mismatches, because «(x) is not used in Eq. (2.12).
On the other hand, this INDI control law needs the measurement or estimation of y(()p )
and the actuator position uy, this is why INDI control is referred to as a sensor-based
approach.

2.2.2. OUTPUT TRACKING

INDI control can also be designed for command tracking problem. Consider the nonlin-
ear plant (Eq. (2.1)) with relative degree p = [p1, 02, ..., 0m] ", which can be transformed
into the internal and external dynamics given by Eq. (2.8), the output tracking problem

requires the output y to asymptotically track a reference signal 7 (£) = [11(£), 2(£), ..., T (D] 7.

(pi
i

Assume r;(1),i = 1,2,...,m and its derivatives up to r )(t) are bounded for all ¢ and

(pi

r; )(t) is piecewise continuous. Denote the reference and the tracking error vectors as

R =R Rz s Bo)y Ri=1rir Dt i=12,m, e=E-2  (2.15)

Using the definitions of the A, and B, matrices, and the formulation of £, it can be
derived that A, % — % = —B.r®, with r® = [r{pl), répz),..., rPm T Therefore, Eq. (2.8)
can be transformed into

= fome+R)

Ace+ AR - + B la(x)+ PB(x)u]
Ace+ B la(x)+Bx)u—rP) (2.16)

Q =
|
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The NDI control for output tracking is designed as
u=2B"'@Wwv-ax +r?) 2.17)

When prefect model cancellation is assumed, this NDI control law results in the
closed-loop system
i1=fo(n,e+R), é=Ace+B.v (2.18)

On the other hand, by using Eq. (2.10), the INDI control for output tracking is de-
signed as
_ -1 () )
Au=B" " (xg)[v Yy +rt] (2.19)

which leads to the closed-loop system as
n=fon,e+R), ée=Ace+B[v+0d(z,Al)] (2.20)

The closed-loop system dynamics given by Eq. (2.14) and Eq. (2.20) are essentially
the same. Only the equilibrium point of z = [1;&] = 0 is shifted to z’ = [;e] = 0, so
similar stability and robustness analyses can be made.

2.2.3. INPUT-TO-STATE LINEARIZATION UNDER DISTURBANCE PERTUR-

BATIONS
Consider a special case of input—output linearization by taking the outputs as y; = h; (x) =
X;—Xix, 1=1,2,..,m, or equally y = H(x — x.), where H is a Boolean selection matrix
and x, is the equilibrium point. This choice of output results in a so-called symmetri-
cal system [23] where all m channels have the same relative degree p; = 1, and the total
relative degree is p = m. When m < n, there are n — m internal dynamics.
Adding the disturbance perturbation d € R" into the nonlinear plant (Eq. (2.1)) as

x fx)+Gx)u+d

y = H(x-x.) (2.21)

Recall Eq. (2.7), since p; = 1, the external states are given by &; = h;(x) = x; — Xjx, i =
1,2,.., m, with dynamics )
y=¢=f&)+G&u+Hd (2.22)

where f:R™ — R™, G:R"™ — R™ " can be calculated by substituting x; = &; + X;x, i =
1,2,...,m into Eq. (2.21). Taking the first-order Taylor series expansion of the external
dynamic equations as

§

F&+GOu+Hd
;@O +6Qu
= £0+—6§

In Eq. (2.23), R] is the expansion remainder which is expressed in its Lagrange form
as follows:

)0 AE+G(E)Au+ HAd + R, (2.23)

1P +GE)ul
2 92&

If & +GEul

r_
Ry = 0&du

( AE + AEAU (2.24)
m m
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in which (\)|,, means evaluating (-) at a condition where & € (§(£ — A1),&(8), u € (u(t—
At),u(t),and d € (d(t—At),d(1)). R isnota function of Au?, Ad?, AéAu, AEAd, which
can be examined using Eq. (2.22).
Design the incremental control law as Au = G! (&o)(v—£&p), the closed-loop external
dynamics are formulated by
E=v+HAd+8E A1) (2.25)

where 6 (&, At) contains the closed-loop values of R} and %ﬁau] |0A£ in Eq. (2.23).
Analogously, using Eq. (2.6), the internal dynamics under disturbance perturbations are
given by

. 0¢ o

= a(f(x) +G(x)u+d)= a(f(x) +d)=f,n,¢d) (2.26)
where f;(,&,d) : R""P xRP xR" — R"P. Choosing ¢ (x,) = 0, then the diffeomorphism
z = T(x) = [n; €] transforms the equilibrium x = x. into the origin point z = [1;&] = 0.

When d = 0, the input-to-state linearized closed-loop system dynamics given by

Egs. (2.25, 2.26) are a special case of Eq. (2.14). It can also be observed from Egs. (2.25, 2.26)
that the disturbance d influences the external dynamics only by its increments Ad while
it directly influencing the internal dynamics. Most external disturbances in real life are
continuous, thus lima;_g ||d|l2 = 0. In other words, when d # 0, 3At,s.t. |Ad|l2 < | d]».
This is another feature of INDI control, that the main part of the disturbance influences
have already been included by previous measurements and compensated by the con-
troller. This control method thus presents improved disturbance rejection ability as ver-
ified by simulations [15, 21] and flight tests [13, 14]. This feature of INDI will be further
analyzed in Sec. 2.3.

2.3. STABILITY AND ROBUSTNESS ANALYSIS

The stability and robustness of the reformulated INDI control will be analyzed in this
section. In the first subsection, the influences of the state-variation-related terms on
closed-loop system stability will be discussed. The second subsection discusses the sys-
tem robustness to regular and singular perturbations.

2.3.1. STABILITY ANALYSIS
In this subsection, the stability of the origin z = 0 of closed-loop system given by Eq. (2.14)
under INDI control will be analyzed. Similar conclusions can be drawn for systems mod-
eled by Eq. (2.20) and Egs. (2.25, 2.26) without disturbances. The closed-loop system un-
der the perturbations of external disturbances and model uncertainties will be analyzed
in subsection 2.3.2. The proofs in this section also assume ideal actuators and perfect
sensing. The actuator dynamics, nonlinear limits of actuators and the sensing issues will
also be discussed in subsection 2.3.2.

Design the pseudo-control v = —K¢& such that A; — B.K is Hurwitz. As a result,
Eq. (2.14) equals

17 f()(nrz)
& = (A.-B:K)&+B6(z,At) 2.27)

where the output equation is dropped since it plays no role in the stabilization problem.
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Remark 1 The term 8(z,At) in Eq. (2.10) or the term 6(&,At) in Eq. (2.23) are directly
omitted in the literature [7, 10-20] by claiming that the Az (or A¢) related term is smaller
than the Au related term when the sampling frequency is high, which is referred to as
the time-scale separation principle (different from the widely used separation principle
based on singular perturbation theory). This statement is not mathematically rigorous
and is especially deficient for unstable nonlinear plants because the plant simplifica-
tions are made before designing the INDI control inputs. Consequently, the simplified
(by omitting terms) incremental dynamic equations fail to adequately model the plant
dynamics. Moreover, although these terms are dropped out for the convenience of con-
troller design, they should be kept in the closed-loop system equations and remain in-
fluencing the stability and performance, which has been overlooked in the literature.

Considering the following system as the nominal system

n = fo(n;g)
3 (Ac - B.K)¢ (2.28)

whose stability has been extensively proved in the literature, and is listed here for com-
pleteness.

Lemma 1 [2] The origin of Eq. (2.28) is asymptotically stable if the origin of 1 = f;(n,0)
is asymptotically stable.

11 = f(n,0) is referred to as the zero dynamics, and the nonlinear system is said to
be minimum phase if its zero dynamics has an asymptotically stable equilibrium point.
The definition of asymptotically stable can be found in Appendix A, Definition 4.

Lemma2 [2] The origin of Eq. (2.28) is globally asymptotically stable if the system 1) =
Fo(m, &) is input-to-state stable.

The definitions of globally asymptotically stable and input-to-state stable can be
found in Appendix A, Definition 4. The proofs for Lemma 1 and Lemma 2 can be found
in [2]. After presenting stability of the nominal system, stability of the perturbed system
given by Eq. (2.27) will be considered.

Assumption 1 The partial derivatives of a(x) and 98(x) with respect to x, up to any order,
are bounded.

Since x is continuously differentiable (Eq. (2.1)), lima;—¢ [|Ax[2> = 0. Recall Eq. (2.13),
under Assumption 1, the norm value of §(z,At) can be reduced by increasing the sam-
pling frequency.

Theorem 1 If|8(z,Af)ll2 < 6, is satisfied for all z € R", and 1) = f(n,&) is input-to-state
stable, then the state z of Eq. (2.27) is globally ultimately bounded by a class £ function
of b¢.

Proof: Choose the candidate Lyapunov function as V(&) = & Tpg&, where P = P >0 s
the solution of the Lyapunov equation P(A; — B.K) + (A, — B.K)TP=—1I, then V(&) is
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positive definite and also satisfies

ar1(l€ll2) = V) < az(li&ll2)
a1(1€12) 2 Amin(PIENS, a2(1€]12) & Amax(P) €113 (2.29)
Amin (P), Amax(P) are the minimum and maximum eigenvalues of the P matrix. a;, a»

belong to the class %, functions (Appendix A, Definition 2). The time derivative of the
candidate Lyapunov function is calculated as

V = &T'PA.-B.K)+(A.—B.K) P1&E+2ETPB . 6(z,AL)
< —l&I5+20&l2 I PB.l25,

2PBcll2bc 4
-6,

with constant 8, € (0,1). Consequently, for V &(fy) € R?, there exists a class £ % func-

tion (Appendix A, Definition 3) f and finite T; = 0 independent of fy such that [|&(#)]|2
satisfies [2]

< -011&15,  VIEl = 16, (2.30)

€O < BUIEED) 2, £ — to), hsVisto+Th
IEDI2 < ay (@2 (uibe), Vizh+Ti21 (2.31)

The preceding equations indicate that the external state & is bounded for all ¢ = £
and is ultimately bounded by I'5, al’l (@2(1106) = V/Amax(P)/ Amin (P) 416 The defi-
nition of ultimate boundedness can be found in Appendix A, Definition 6.

Moreover, by the definition of input-to-state stability (Appendix A, Definition 7),
there exists a class £ £ function By and a class £ function (Appendix A, Definition 2)
Yo such that for V 71(;) € R"~? and bounded input &, the internal state 7 satisfies

In®lz < Bolm(tplla, £ = tg) +yo( sup 1§()l2)

Ly<T<t

BoUm(t) I, t — 1§) +yo(I'5e) (2.32)

In addition, because By belongs to class £ £ functions, then ﬁo(lln(t{))ll 2, b — t(’)) <
0,6,, for some finite T, > 0 and 8, > 0. Hence, the state z satisfies

Iz(Oll2 < 1E@ N2+ 1(Dll2 = (T +02)8 +yo(I8e), VE=to+Ti+To (2.33)

which proves that z(¢) is globally ultimately bounded (Appendix A, Definition 6) by a
class % function of &,. O

Theorem 1 has no restriction on the values of the initial state and the perturbation
bound §,. However, when the internal dynamics ) = f,(1, ) is not input-to-state stable,
but only the origin of the zero dynamics 1) = f,(#,0) is exponentially stable (Appendix A,
Definition 5), then there will be restrictions on both the initial state, and the perturba-
tions. These phenomena are presented in Theorem 2.

Theorem 2 If|6(z,At)ll, < S, is satisfied for all z € R", and the origin of ) = f,(n,0) is
exponentially stable, then there is a neighborhood D, of z = 0 and €* > 0, such that for
every z(0) € D, and . < €*, the state z of Eq. (2.27) is ultimately bounded by a class %
function of 5.
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Proof: According to the converse Lyapunov theorem [2], because the origin of 1 = f,(n,0)
is exponentially stable, there exists a Lyapunov function V,(n) defined in D, = {n €
R"P| Il < ry} that satisfies the inequalities

oV, oV,
cilnlls < V2 < c2limll3, Ty SO = I3, 15 N2 = callmll (2.34)
for some positive constants ¢y, ¢y, ¢3, ¢4. Denote

ai(ml2) 2 ciligl3, abUinlz) 2 calinlls (2.35)

then a}, a), belong to class %, functions. Furthermore, because f, is continuous and
differentiable, there exists a Lipschitz constant L of f, with respect to & such that

1£om&) = Fom0)l2=<LI&l2,  Vinll<ry (2.36)

Choose V, (1) as the candidate Lyapunov function for 1 = f,(n, §), with derivative

. oV, oV;
Vo(p) = %fo(n,0)+W[fo(n,f)—fo(ﬂ,o)]
< —cslnl3+caLinll2 1€l
cyL
= —03(1—93)||11||§, L‘SHZSVHnlIzSFn (2.37)
6363
with constant 63 € (0, 1). Denote
A CGL A
pu=——Csup [E@I2)=0s5(sup [£(T)ll2) (2.38)
303 fysTst fhsTst
then
Vo) = —c3(L-03)Iml3, p<Vinglasrm, Vizi (2.39)

Since the conditions for the external states ¢ are the same as compared to Theorem 1,
Egs. (2.29, 2.30, 2.31) also hold true in this Theorem. From Eq. (2.31), the supremum of
the external state is given by

sup 1E@)Il2 = a7 (az(u18e) (2.40)

Ly<T<t
Take 0 < r < ry; such that D, < Dy, according to the boundedness theories [2], if
p<ay @), Inlgl<ay (@) () 2.41)
then there exists a class £ ¢ function f such that
In@)l2 < BoUmElz, t — ) + ai (@b (W), Vi=1 (2.42)

Eq. (2.41) proposes requirements on both the initial condition and the perturbation
bound. Using Egs. (2.38, 2.40, 2.41), the maximum perturbation that the system can
sustain is given by

Se<e* 2 (L/u)ay (@1 ((1/0s)ay (@) (1)) (2.43)
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From Egs. (2.38, 2.40, 2.42), the normal value of the internal state yields

IA

BoUm(e) 2, £ — tg) + ay (@) 57 (@2 (u16)))
< 060 +0sa M (@ (@i (@a(18e)))),  Vizto+ T+ T3 (2.44)

Im ()12

for some finite T3 > 0 and 8¢ > 0. Hence, state z satisfies

lz(Oll2 = IEDI2+ g2
(I +06)0c +05a (@) (a7 (@2 (116)))), Vizto+Ti+ T3 (2.45)

which proves the z(z) is ultimately bounded by a class .# function of . O

2.3.2. ROBUSTNESS ANALYSIS
DISTURBANCE REJECTION
The INDI control method has promising disturbance rejection ability as has been veri-
fied by both simulations [15, 21] and quad-rotor flight tests [13, 14]. However, there is
a lack of theoretical proof for the stability of the closed-loop system using INDI control
under the perturbation of external disturbances. These issues will be discussed in this
subsection.

Normally, the external disturbances are bounded in real life. Denote

d=sup{ld(D),, deR™, Vi=t (2.46)

which is independent of the sampling interval At. Most external disturbances in real life
are continuous, thus lima;—g |d|l2 = 0. Therefore, for a given sampling rate, the supre-
mum of |Ad||, exists. Denote

de (A1) £ sup{|Ad (D)o, AdERY), Vi=1 (2.47)

As a function of At, d.(At) can be reduced by increasing the sampling frequency.
Recall the system modeled by Egs. (2.25, 2.26), and design the pseudo-control as v =
— K¢ to stabilize the origin z = [1;£] = 0, the closed-loop system is then given by

17 fd(n»{;d)
& = —K&E+HAA+6(EAD (2.48)

Proposition 1 If||6(&, A2 < 5, is satisfied for all& e RP, i) = f ;(n,&, d) is continuously
differentiable and globally Lipschitz in (1,§, d), and the origin of i = f ;(,0,0) is globally
exponentially stable, then the external state & is globally ultimately bounded by a class £
function of 8¢, dg, while the internal state 1 of Eq. (2.48) is globally ultimately bounded
by a class % function ofd,d¢, dk.

Proof: The norm value of the perturbation term in Eq. (2.48) satisfies

IHAd +8&,AD 2 < [HI21Adl2 + 16&, A2 = de + 66 (2.49)
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where || H||, = 1 since H is a Boolean selection matrix. Similar to the proof of Theorem 1,
choose the candidate Lyapunov function as V(&) = € P&, where P = PT > 0 is the solu-
tion of the Lyapunov equation PK + K Tp = I, then the time derivative of V (§) satisfies

20|Plla(Be +de) 4

V<-011&l5, VIl = - £ Uy (B + dg) (2.50)

Therefore, V &(fy) € RP, there exists a class £ £ function f and T, = 0 independent
of £y such that ||&(?) ||, satisfies

€@ < BUEED 2, £ — t0), hsVi<sip+1,
1EDN2 < ai (@2(u2Be +de)), Y it=to+Ty (2.51)

In other words, the external state & is bounded for all ¢ = 7y and ultimately bounded
by Fr =aj Yz (2 (8¢ +d,))), which is a class % function of §, and d,.

On the other hand, perturbations directly act on the internal dynamics. Since the
origin of ) = f;(n,0,0) is globally exponentially stable, Eq. (2.34) is satisfied globally.
Moreover, since 7 = f;(n,¢, d) is continuously differentiable and globally Lipschitz in
(n,¢,d), there exists a global Lipschitz constant L such that

Ifaméd)—f,m,0,002<LUIEI2+1dl2), VYnpeR"" (2.52)

Analogous to the proofs of Theorem 2, Eq. (2.39) is satisfied for V9|, = u’ with y' £
05(sup . 7, <7< (1€ 2 + 1d(7)[12)), and the internal state 7 satisfies

(D2 < BoUIn(to + Ta)ll2, £ — to — Ta) + Osa’” (ag(F§ +d), Vi=zt+Ty (2.53)

without restrictions on the initial values and the bound of disturbances. Due to the at-
tenuation property of

IA

(D)2 [07d + 050} (@) ()] +0sa) " (@) (@) (@2 (2 (be + de)) £ Ty,
Vit = tg+Ty+T5 (2.54)

for some 67 > 0 and finite 75 > 0. The preceding equation indicates that 7 is globally
ultimately bounded by a class % function of d, 5, d;. d

Remark 2 These estimations of the ultimate bounds could be conservative for a given
perturbation term HAd + 6(&,At), because the term 26TPB.6(z, A1) in Eq. (2.30) can
be either positive or negative. Worse-case analyses are done in Eq. (2.30) and Eq. (2.49)
by taking the inequality constraints, which may lead to conservative estimations of the
ultimate bounds. More accurate ultimate bounds of a perturbed nonlinear system can
be obtained via numerical simulations.

The disturbance rejection capability of a control method can be evaluated by the
values of the ultimate bounds under prescribed disturbance perturbations. In view of
Egs. (2.51, 2.54), the ultimate bounds I'¢ and I';, are correlated to:
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1. System dynamics: I'¢ and I'; are functions of d¢. Recall Eq. (2.13), 6. can be
viewed as a gauge for system dynamics. When system dynamics are fast, which
indicates || %;@m"]loll 2 is large, the sampling frequency should be higher to
ensure desired ultimate bounds. This has been verified by many application cases,
for rigid airplane control, normally f; = 100 Hz is enough [7, 12, 15, 18-20], while
fs = 1000 Hz is needed for flexible aircraft control [21]. f; = 512 Hz is used in
Ref. [13, 14] for quadrotor flight control. For the applications on hydraulic sys-
tems, fs = 5000 Hz is desirable for controlling the hydraulic forces [16, 17].

2. Disturbance intensity: This can be seen from the expressions for I'¢, I'; and defi-
nitions of d, d,, that stronger disturbances lead to larger ultimate bounds.

3. K gains: As shown in Egs. (2.51, 2.54), both I'¢ and I';; are monotonically increas-
ing functions of uy. From Eq. (2.50) and the Lyapunov equation, it can be seen
that larger K gains lead to smaller p,, and further resulting in smaller ultimate
bounds. Therefore, increasing K gains is beneficial to releasing the requirement
on sampling frequency. However, K gains are constrained by actuation system
limits, high-gain control would also amplify measurement noise.

4. Sampling frequency: Increasing the sampling frequency can reduce the value of
both d, and §,. As discussed in Sec. 2.2, if d # 0, |Ad||> < ||d|l, when the sam-
pling interval At is sufficiently small. The main part of the disturbances d, can
be included by the measurement of &;, thus only the remaining increment Ad is
perturbing ¢. This is one feature that distinguishes INDI from linear-quadratic
regulator, proportional-integral and NDI control methods, where normally the
disturbances can only be reflected in the measurement of state &, which is an in-
tegration of &,. Consequently, these control methods show inferior disturbance
rejection ability as compared to the INDI method. In practice, the choice of sam-
pling frequency is constrained by the hardware.

5. Internal dynamics: It can be seen that the first term of Eq. (2.54) cannot be re-
duced by increasing the sampling frequency, and is a function of d. This is be-
cause the internal dynamics are uncontrolled by the INDI method. Moreover, be-
ing inspired by Theorem 2, when only the origin of 17 = f;(1,0,0) is ensured to
be exponentially stable or f; is not globally Lipschitz, constraints on both initial
condition and the disturbance intensity need to be imposed. This is presented as
Corollary 1. Therefore, the properties of internal dynamics are important for the
stability and robustness of the system.

Corollary 1 If[6(&,Af) 2 < S, is satisfied for all & € RP, and the origin of i) = f(1,0,0) is
exponentially stable, then there is a neighborhood D, of z =0 and e* > 0, such that for ev-
eryz(0) € D, and (5. + d;) < €*, the external state & in Eq. (2.48) is ultimately bounded by
aclass # function of 5¢, d., while the internal staten in Eq. (2.48) is ultimately bounded
by a class % function ofd,d¢, d.

The proof of Corollary 1 is similar to the proofs of Proposition 1 and Theorem 2.
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ROBUSTNESS TO MODEL UNCERTAINTIES

The model uncertainties considered in this section are classified into the regular pertur-
bations, which are defined in the nonlinear system perturbation theories as the pertur-
bations that do not change the order of the nominal system, such as negligible nonlin-
earities, parametric dispersions and variations [5, 25].

There were few attempts on proving the robustness of the INDI control method to
aerodynamics model uncertainties. In Ref. [10], it was shown by using linear transfer
functions derived from block diagrams that the model mismatches of the control ef-
fectiveness matrix G(x) (or the generalized 98(x)) have no influence on the closed-loop
system. However, the assumption of x = i( is made in the block diagram derivations,
which is incorrect since otherwise there will be no Au term. Moreover, the §(z, At) term
did not show up at all in previous proofs [10, 11, 13]. In view of these reasons, the ro-
bustness of INDI to model uncertainties will be rediscussed here.

Considering the nonlinear system with relative degree p < n transformed into inter-
nal and external dynamics given by Eqs. (2.7, 2.8), the nominal NDI control to stabilize
the system origin is given by

ftagi = B W (V-ax) =B (x)(~KT2(x) - a(x)) (2.55)

which requires the model knowledge of &, %8, T, (defined in Eq. (2.7)). When the control
law is applied using the approximated model as &, %8, T», the control input is given as

tngi = B (6)(—KT(x) — &(x)) 2.56)
which results in a closed-loop system as
17 = fo(ﬂ,f)
& = Ad+Bla®)+BxB " (x)(—KT2x) - &)
[Ack — BAKT2(x)] + Bo(a(x) - &(x) + B (BB (6) - D(-KT2(x) - &(x)

(A.-B:K)¢+B.K(T, - Tz) +B.(ax— &)+ BC(,%’@_I - I)(—KTZ -@)
(A= B:K)é + B gpgi(z) (2.57)

>

where I € R"*™ is an identity matrix. Using Eq. (2.12), the nominal INDI control for
stabilization is given by

Adtingi = B~ (%) (~K T2 (x) - y ") (2.58)
When applied using estimated models, Eq. (2.58) becomes
Attingi = B~ (x0) (K T2 () — y ) (2.59)
and the closed-loop system dynamics are given by

7 = fo@md
§ = (A.—B.K)E+BK(Ty—T2)+B8(2,A0) +B(BB —D(-KT>—y?)
£ (Ac-B(K)& + B gingi(2, A1) (2.60)
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The regularly perturbed closed-loop dynamics given by Eqgs. (2.57, 2.60) are both in
the form of Eq. (2.27). The only difference is the value of the perturbation terms. There-
fore, it is straightforward to derive the corollaries of Theorem 1 and Theorem 2 as:

Corollary 2 Ifllendi/indill2 < Endisindi iS satisfied for allz € R", and ) = f,(n, &) is input-to-
state stable, then the states z of Eq. (2.57) and Eq. (2.60) are globally ultimately bounded
by a class % function of €,q; and &;,qj, respectively.

Corollary 3 Ifllendi/indill2 < Endisindi is satisfied for all z € R", and the origin of ) = f(1,0)
is exponentially stable, then there is a neighborhood D, of z = 0 and €* > 0, such that for
every z(0) € D, and Epgijindi < €*, the states z of Eq. (2.57) and Eq. (2.60) are ultimately
bounded by a class X function of €,q; and Eingi, respectively.

Although the closed-loop dynamics given by Eq. (2.57) and Eq. (2.60) have the same
form, the perturbation terms &,4i(2) and &€j,qi(z, At) have different properties, which
consequently influence the ultimate bounds of the state z. This will be shown as follows:

The first perturbation term K(T»— T5) isidentical in &ndi (Eq. (2.57)) and &iq; (Eq. (2.60)).

For the second perturbation term, since INDI control Au;,q; is based on the measure-
ments or estimations of y((]p ) instead of the dynamic model a(x), the model uncertainty
term @(x)— &(x) in Eq. (2.57) is replaced by é (z, At) (Eq. (2.60)) under INDI control. The
influences of [|6(z,At)|l, can become negligible under sufficiently high sampling fre-
quency, while ||a(x) — &(x)|» is normally large for aerospace systems, mainly because
of the difficulties of modeling the aerodynamics. The last terms of €,4j/inqgi are mainly
caused by the multiplicative uncertainties of the 2 (x) matrix, which were incorrectly
omitted in the previous literature [10, 11, 13, 14]. Recall Eq. (2.59), the last term of &;q;
can be written as

(BB~ D(~KTy—yP) = (BB — DBAwina = (B - B) Atinai 2.61)

. . . A1 .
Since Aujpgj is a control increment, |8 -2 21| Auingill2 can be reduced by increas-
ing the sampling rate. On the contrary, recall Eq. (2.56), the last term of &,,4; equals

(BB —D(-KTs— &) = (BB " — DBung = (B - Bungi 2.62)

which depends on the entire control term u,4; and is independent of A¢. When u,4; # 0,
there exists a At such that || Attjnqill2 < [l tngill2-

In summary, under sufficiently high sampling frequency, the norm of the closed-
loop perturbation terms is smaller under INDI control in the presence of model uncer-
tainties. As a result, according to Corollary 2, when the internal dynamics 7 = f,(n,$)
are input-to-state stable, INDI control will result in smaller ultimate bounds for z. More-
over, when only the origin of 7 = f,(n,0) is exponentially stable, it is easier for systems
under INDI control to fulfill the boundedness condition &4/ingi < €* in Corollary 3.

SENSING AND SINGULAR PERTURBATIONS
Based on preceding analyses, INDI control has shown promising inherent robustness to
disturbances and regular perturbations without using any additional robust or adaptive
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control technique. There are also other sources of perturbations, which increase the or-
der of the system, such as actuator dynamics and higher-order elastic dynamics. These
perturbations are classified into singular perturbations [5, 25]. Consider the singularly
perturbed system model as [2]

x=f(t,x,zp,€), €zp=g,(1x,2p,€) (2.63)

where the perturbed dynamics are decomposed into reduced (slow) and boundary-layer
(fast) dynamics. According to the Tikhonov’s theorem [2], when the null (quasi) equilib-
rium states of both the fast and slow dynamics are exponentially stable, there exists a
constant epax > 0 such that the null equilibrium of the singularly perturbed system is
exponentially stable for all € < epax. This parameter epax > 0 is referred to as the singu-
lar perturbation margin (SPM) in [25], and is equivalent to the phase margin of linear
time-invariant systems in the sense of the bijective function [25].

Regarding the aerospace applications of INDI on angular rate control problems, the
sensing or estimation of angular accelerations is needed [7, 10-14, 18-20]. Angular ac-
celerometers are already available on the market [22], and a commonly used alternative
way to estimate the angular accelerations is to differentiate the filtered angular rate sig-
nals [7, 11-14, 18-20]. Consequently, the estimations are lagged owing to the filtering
process. Ref. [13, 14, 17, 18] propose to synchronize the input signal with the lagged
estimations by imposing the same filter on the input. However, synchronization errors
still exist in practice. Based on the preceding discussions, the system is able to sus-
tain sufficiently small lags caused by filtering and actuator dynamics. This proposes
an interesting research question of enlarging the singular perturbation margin of the
closed-loop system. Possible solutions could be using predictive filters [10] or actuator
compensators [26].

2.4. NUMERICAL VALIDATION

Since there have been extensive applications of INDI on aircraft [10, 15, 18-20], heli-
copter [11], micro air vehicle [13] and spacecraft [12] angular velocity control, this prob-
lem will not be repeated here. The numerical example in this section considers a rigid
aircraft gust load alleviation (GLA) problem, where the vertical velocity is included in
the inner-loop INDI controller. This idea originates from [15], but the old INDI deriva-
tion in [15] also has the blemishes mentioned before. Therefore, this GLA problem will
be resolved here using the reformulated INDI control. Subsection 2.4.1 presents the air-
craft and turbulence models. The INDI flight control is designed in subsection 2.4.2. A
command tracking problem in a turbulence field is considered in subsection 2.4.3. The
robustness of INDI to model uncertainties and external disturbances will be compared
with NDI control in subsection 2.4.4.

2.4.1. AIRCRAFT AND TURBULENCE MODELS
The six-degree-of-freedom rigid aircraft dynamic equations defined in the body frame
are given by

. F
Vi=-oxVi+—, wo=-J"'oxJo+]'M (2.64)
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where V¢ = [V, V), V] T indicates the velocity of the aircraft center of mass (c.m.) rel-
ative to the inertial axis expressed in the body axis, and w = [p, q,7]” represents the
angular velocity. m is the total mass and J is the inertia matrix. F and M are the total
forces and moments, which can be expanded as:

F
M

Fa(Vf,w,Vw) +FT(Vf,5p) +F,lu(Vf,w)u+FG
Ma(Vf;w,Vw)"‘Mau(nyw)u (2.65)

In the preceding equation, u = [6,,6,,04r,0 al]T denotes the elevator, rudder, right
and left aileron deflection angles. F, and M, denote the aerodynamic forces and mo-
ments when u = 0. V, is the wind velocity. F,,u and M, u represent the control forces
and moments generated by the aerodynamic control surfaces. Fr is the thrust, as a
function of throttle §,. F is the gravitational force.

The aircraft model for simulations is set up using the aerodynamic, inertia and ge-
ometric data in [27]. The aerodynamic model is based on the quasi-steady strip the-
ory [27, 28]. This aircraft is abstracted to multiple two dimensional aerodynamic sur-
faces. There are four aerodynamic control surfaces, each of them contains n, strips.
There are also six aerodynamic surfaces, namely the wing, horizontal and vertical tails,
horizontal and vertical lifting surfaces of the fore-fuselage, the engine pylon. Each of
these aerodynamic surfaces contains ny strips. r; denotes the distance vector from the
c.m. to the aerodynamic center of the i-th strip. The local airspeed of the i-th strip
expressed in the body frame is V,; = Vi +w xr; — Vy,;, where V,; is the local wind
velocity [29, 30]. In this chapter, V,; is calculated in real-time by interpolating the spa-
tial turbulence field at the aerodynamic center of the i-th strip, and then transformed
to the body frame. The gust penetration effect [15, 29, 30] is considered since V,,,; de-
pends on the spatial location of the i-th strip. A two dimensional vertical von Kdrman
turbulence field is presented in Fig. 2.1, in which Xg and Yg represent the positions in
the inertial frame. The turbulence velocity is in unit m/s. The turbulence length scale
equals Lg = 762 m, and the variance equals o = 3 m/s. Fig. 2.1 also shows a sketch map
of the aircraft exposed to the turbulence field, the strips on the wing and the horizontal
tail are illustrated.
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Figure 2.1: A 2D von Kérmadn vertical turbulence field with L g=762m, c =3m/s.

For the four control surfaces, the distributed force f, ; on the i-th strip is a function
of V4, ;, uand the local derivatives of lift with respect to u, which is denoted as Cp, ;. The
resultant forces and moments are Fq, u=3; f,, ;, Mg, u=5%;r; x f, ;. For the strips on
the k-th aerodynamic surface, the distributed force f, ; depends on the local airspeed
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V4, and the local aerodynamic coefficients. The resultant forces and moments are F, =

Yifai Ma=2irixf,;

2.4.2. FLIGHT CONTROL DESIGN

Using Eq. (2.65), Eq. (2.64) can be rewritten in the form of x = f(x) + G(x)u + d as:
1

+ [ n Fa

Vil _ [ —oxVi+=(FaVs,w,0) +Fr+Fg)
. = ]71Muu u

® ~J'oxJo+] ' My(Vy,,0)
[ nii(Fa(vf,w,vw)—Fa(vf,w,o» ]
T (Mo (Vy,0,V,) — My (V 5, ,0))

+

(2.66)

where the aerodynamic influences of turbulence are lumped in the disturbance vector
d. Consider an output tracking problem, and choose y = Hx = [V,, p, q, 71T, where H is
a Boolean selection matrix. Based on Eq. (2.5), the vector relative degree of this system
equalsp =1[1,1,1,1] T a(x)= Hf(x), (x) = HG(x). According to Eq. (2.22), the external
states vector & = y. There are also two dimensional internal dynamics in this applica-
tion case. Although the input-to-state stability of the internal dynamics is not easy to
prove, the analysis of the origin stability of f;(n,0,0) is practical. The two dimensional
submanifold for the zero dynamics is given by

Z*={xeR® V,-Vi=p=q=r=0} (2.67)

where V' is the vertical velocity in trim condition. Define A(?) = ?—Wd lp=0, then 7 =0 is
an exponentially stable equilibrium point of f; if and only if it is an exponentially stable
equilibrium point of the linear system 7 = A(#)n [2]. This allows the origin stability of
the zero dynamics to be easily tested via linearization. The origin of %7 = f ;(n,0,0) has
been tested to be exponentially stable for this model.

Actuator dynamics and limits are considered in this validation. Actuators for aerody-
namic control surfaces are modeled as first-order systems with transfer function A(s) =
ngo. The deflection limits of ailerons, elevator and rudder are +35°, +25°, £25°, respec-
tively. The rate limit for ailerons is 100°/s and is 60°/s for elevator and rudder. Constant
throttle §,, is used in the simulations. An additional velocity controller using throttle
can be designed if desired. The simulation frequency (difference from the sampling fre-
quency) is 2000 Hz, which is chosen to be sufficiently high to simulate the property of
the continuous dynamics in real life. Fig. 2.2 illustrates a block diagram of INDI applied
considering actuator dynamics.

2.4.3. COMMAND TRACKING IN A TURBULENCE FIELD

This subsection considers a command tracking problem in the presence of external dis-
turbances. During simulations, the aircraft is flying through the von Karman turbulence
field shown in Fig. 2.1. Symmetrical excitations are assumed in this subsection, namely
the local gust velocities V,; are interpolated using the spatial locations of the right-
hand side strips of the aircraft. V,; of the left-hand side strips are assumed to be sym-
metrical to the right. Asymmetrical excitations will be considered in subsection 2.4.4.
Using the flight controller designed in subsection 2.4.2, and referring to Corollary 1, the
1 and reference tracking error e can then be concluded to be ultimately bounded under
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Figure 2.2: The block diagram for a reference tracking problem applied considering actuator dynamics.

small perturbations. Moreover, the ultimate bounds have been proven to be monoton-
ically decreasing functions of K gains and the sampling frequency in subsection 2.3.2.
The simulations in this subsection will test the fidelity of these conclusions when actu-
ator dynamics and limits are considered.

Set the references for [V, p, r] T to be their trim values [V},0,0] T and the reference
signal for g is designed as a sinusoid signal with amplitude of 1.5°/s and frequency of
1.5 rad/s. The initial errors are e(f = 0) = [0.5 m/s, 0°/s, 2°/s, 0°/s]T. Design the gain
matrix as K = a- I4x4, a > 0. In view of Fig. 2.2, there are three sampling processes in
this control law, namely the measurement of y(()p ), & and the actuator position uy. The
sampling interval At will be varied in the subsequent analyses for testing its influences
on the ultimate bounds.

At=02,a=3

3 s reference

0 2 4 6 8 10
ts]

Figure 2.3: Pitch rate tracking responses.

In view of Fig. 2.3 and Fig. 2.4, the aircraft is able to track the pitch rate command
using all sets of controller parameters. When a = 3, the ultimate bounds for At =0.01 s
are |ey,| = 0.23 m/s, |e4| = 0.30°/s, which degrade into larger ultimate bounds of |ey,| =
0.68 m/s, |e4| = 0.85°/s when the sampling interval increased into At = 0.2 s. Using the
same sampling interval Az = 0.01 s, when the outer loop gains increased from K =314
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Figure 2.4: Tracking error responses for pitch rate and vertical velocity.

to K = 8- 14«4, the closed-loop system responds faster to the errors, which results into
smaller ultimate bounds. The control surface deflections are illustrated by Fig. 2.5.
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Figure 2.5: Control surface deflections.

Fig. 2.6 shows the ultimate bounds of ey, and e, using various controller parameters.
The tested sampling intervals varies from Af = 0.001 s to At = 0.2 s. As can be seen from
Fig. 2.6, in general, for a given gain matrix K = a- I4.4, the ultimate bounds decrease
as the sampling interval decreases. This trend of decrease becomes slower around At =
0.12 s as the contour lines become sparser. Further decreasing the sampling interval
does improve the performance but would impose higher requirements on the hardware.

On the other hand, for a given A¢, as a increases from a = 1 to a = 13, the ultimate
bounds decrease first, reaching a minimum around a = 8, and then show a trend of in-
crease as a further increases. As analyzed before, the ultimate bounds will be smaller for
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Figure 2.6: The influences of sampling interval and outer-loop gains on the ultimate bounds.

larger K gains when ideal actuators are applied. However, since actuators have band-
width, rate and position limits, high-gain control can impose unachievable commands
on actuators, which consequently degrades the performance for a > 8 and potentially
leads to divergence. High-gain control also amplifies the measurement noise in prac-
tice.

In summary, simulation results in this subsection verified the ultimate boundedness
of the states under INDI control, especially when actuator dynamics and limits are con-
sidered. The influences of K gains and At on the ultimate bounds are also verified.

2.4.4. ROBUSTNESS COMPARISONS WITH NONLINEAR DYNAMIC INVERSION

In this subsection, the robustness of the reformulated INDI control will be compared
with nonlinear dynamic inversion (NDI) control, in the presence of asymmetrical tur-
bulence excitations and model uncertainties. Eqs. (2.56, 2.58) formulate the NDI and
INDI control laws when the estimated models are used. Since £ = y = Hx, then T»(x) =
T, (x) = Hxin Egs. (2.56, 2.58). During simulations, the aircraft is gradually flying through
the 2D von Kdrmén turbulence field shown in Fig. 2.1, and the turbulence velocity on
each aerodynamic strip is independently interpolated as V', ;. The references for & =
(Vz,prq,1] T are illustrated in Fig. 2.7. The reference for V, equals its trim value V. The
reference for p is a 3211 signal with magnitude of 5°/s realized by smoothly combined
sigmoid functions. The sigmoid function f(#) = 1/(1 + e~ ') is chosen because of its dif-
ferentiable property up to any order. The reference for g is a smooth realization of a
doublet signal with magnitude of 1.5°/s. The reference for r is 