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The Taming of the Rew

A Type Theory with Computational Assumptions

JESPER COCKX, TU Delft, Netherlands

NICOLAS TABAREAU, Inria, France
THÉO WINTERHALTER, Inria, France

Dependently typed programming languages and proof assistants such as Agda and Coq rely on computation

to automatically simplify expressions during type checking. To overcome the lack of certain programming
primitives or logical principles in those systems, it is common to appeal to axioms to postulate their existence.
However, one can only postulate the bare existence of an axiom, not its computational behaviour. Instead,
users are forced to postulate equality proofs and appeal to them explicitly to simplify expressions, making
axioms dramatically more complicated to work with than built-in primitives. On the other hand, the equality
reflection rule from extensional type theory solves these problems by collapsing computation and equality, at
the cost of having no practical type checking algorithm.

This paper introduces Rewriting Type Theory (RTT), a type theory where it is possible to add computational
assumptions in the form of rewrite rules. Rewrite rules go beyond the computational capabilities of intensional
type theory, but in contrast to extensional type theory, they are applied automatically so type checking does not
require input from the user. To ensure type soundness of RTTÐas well as effective type checkingÐwe provide
a framework where confluence of user-defined rewrite rules can be checked modularly and automatically, and
where adding new rewrite rules is guaranteed to preserve subject reduction. The properties of RTT have been
formally verified using the MetaCoq framework and an implementation of rewrite rules is already available
in the Agda proof assistant.

CCS Concepts: • Theory of computation→ Type theory.

Additional Key Words and Phrases: type theory, dependent types, rewriting theory, confluence, termination
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1 INTRODUCTION

At the heart of every dependently typed programming language or proof assistant, such as
Agda [Agda Development Team 2020] and Coq [Coq Development Team 2016], lies a core type
theory, such as Martin-Löf type theory (MLTT) [Martin-Löf 1975] or the calculus of inductive con-
structions (CIC) [Paulin-Mohring 2015]. To prove theorems that are based on additional properties
that are not provable in the considered type theory, the logic or programming principles of those
type theories can be extended on the fly with axioms, which technically corresponds to introducing
new variables in the context. The working mathematician or computer scientist is familiar with
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the fact that such additional axioms may turn the underlying theory into an inconsistent one, but
traditionally consider the gain in expressiveness to be worth it.
However, being able to assume only logical axioms has a severe limitation, because axioms are

computational black boxes. For instance, to add a higher inductive type (HIT) [Univalent Founda-
tions Program 2013] to a proof assistant it is not sufficient to postulate its existence and elimination
principle; one also needs its elimination principle to compute on constructors. The standard
workaround is to replace computation by propositional equality, but this dramatically complicates
working with the eliminator as one now has to appeal to the computation law explicitly every
time it is used. In addition, in homotopy type theory these postulated equalities require additional
equalities to ensure coherence, leading to the situation known as ‘coherence hell’.
Thus one may wonder why it is not possible to extend the computational content ofMLTT or

CIC by postulating new computational rules, just as it is possible to postulate new axioms. The
reason is that adding arbitrary computational rules in the theory has a much stronger impact
than adding axioms. It may break not only consistency or canonicity, but also decidability of type
checking and even subject reduction, thus leading to an unpredictable theory that can no longer
be considered as a typed programming language. As we discuss in Sect. 3, computation rules may
even break subject reduction without breaking consistency.
This paper proposes RTT, the first dependent type theory that can be extended with rewrite

rules, with a modular and decidable syntactic check that guarantees subject reduction and par-
tial decidability of type checkingÐand this without relying on weak or strong normalization of
the resulting rewrite system. This is achieved by having a clear syntactical guideline of which
rewrite rules can be added to the system, together with a confluence check based on the triangle
property [Terese 2003] which is stronger than mere confluence and does not require termination.
An implementation of RTT with the check of the triangle property is already available in the

Agda proof assistant. Furthermore, the correctness of our approach has been formalized1 in the
Coq proof assistant, using theMetaCoq project [Sozeau et al. 2020], which is a necessary step to
get a trusted extension of a proof assistant. In all the lemmas that have been formalized, we refer to
the Coq formalization using [file.v/lemma] to indicate the file in which the lemma has been proven
and the exact name of the lemma. Actually, the setting of the formalization is more general than
the theory exposed in the paper as it extends the whole theory of Coq, but we prefer to keep the
presentation of the theory as simple as possible to focus on the essentials of the framework.
Let us be explicit upfront that we do not claim any novelty on the generality of the criterion

that we use, as it corresponds to an extension of the standard Tait-Martin Löf criterion on parallel
reduction [Barendregt 1984; Takahashi 1995] to rewrite rules. Neither do we pretend to be more
general than results on higher-order rewriting as found for example in the work by van Oostrom
[1994a]. The novelty of our work lies rather in the definition of a decidable and modular criterion
in a dependently typed setting (where reduction and typing are intricate), thus leading to a type
theory that can be implemented inside a proof assistant. Besides, our framework does not rely on
termination, which allows us to treat termination just like consistency: a property that may not be
valid anymore in the presence of postulated rewrite rules, but is not necessary to get a usable proof
assistant, except to guarantee totality of the type checking algorithm.

Outline of the paper. We start by demonstrating in Sect. 2 the usefulness of rewrite rules by means
of various examples. In Sect. 3 we analyse various reasons for rewrite rules to break subject reduction,
most notably by breaking confluence of reduction. Then we explain in Sect. 4 a modular and
checkable criterion for guaranteeing confluence in a type theory with computational assumptions.
The formal part of the paper begins in Sect. 5 with the presentation of RTT, an extension of the

1https://github.com/TheoWinterhalter/template-coq/tree/rewrite-rules
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Predicative Calculus of Cumulative Inductive Constructions (PCUIC) with user-declared rewrite
rules. In Sect. 6 we then present the main metatheoretical properties of RTT, assuming that the
triangle criterion holds: subject reduction, consistency, and (semi-)decidability of type checking. We
further describe an algorithm to check that the triangle criterion indeed holds for a given rewrite
system, as well as our implementation of rewrite rules for the Agda system, in Sect. 7. Finally, we
discuss related work in Sect. 8, future work in Sect. 9, and conclude the paper in Sect. 10.

2 REWRITE RULES FOR TYPE THEORY IN ACTION

Before presenting the theoretical contribution of this paperÐa type theory with computational
assumptionsÐwe exemplify how it can be used in practice to emulate parallel reduction, define
general fixpoints, postulate new kinds of inductive types, or extend the language with exceptions.
These examples demonstrate the two main use cases of rewrite rules: improving the computational
behaviour of definitions by turning propositional equalities into computation rules (Sect. 2.1 and
Sect. 2.2) and extending the theory with new features that would otherwise be impossible to define
(Sect. 2.3, Sect. 2.4, and Sect. 2.5).

2.1 Emulating Parallel Reduction

There are several ways of defining the addition of natural numbers in Agda or Coq, but none of
them satisfy together the laws

plus (sucm) n ⇝ suc (plusm n)

plusm (suc n) ⇝ suc (plusm n)

Such a function can be postulated using the following block of rewrite rules:

postulate rewrite block PlusN where
axiom

[
plus : N→ N→ N

rewrite



plus zero ?n _ n

plus ?n zero _ n

plus (suc ?m) ?n _ suc (plusm n)

plus ?m (suc ?n) _ suc (plusm n)

The name PlusN of the rewrite block is just there for convenience but cannot be referenced directly.
The first square bracket in the syntax of a rewrite block gathers all the axioms of the block, while
the second one gathers the rewrite rules.
In this situation, it is perhaps not immediately obvious that the rewrite system is confluent, as

there is overlap between the left-hand sides of the rewrite rules. However, this rewrite system
in fact satisfies the property of strong confluence: for any term of the form plus u v that can be
rewritten to two different terms w1 and w2 in a single step, we can always find another term w

such that bothw1 andw2 can be rewritten tow , again in a single step. It is a standard result from
rewriting theory that this is enough to conclude (global) confluence of the system.

2.2 Fixpoints: Beyond the Guard Condition

In Coq or Agda, the definition of fixpoints is guarded by a syntactic condition which ensures that
the function is terminating. However, this condition, which roughly amounts to checking that
recursive calls are done on syntactic subterms, is often too restrictive. For instance, consider the

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 60. Publication date: January 2021.
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naive definition of a divide predicate:

divide : N→ N→ □

dividem zero = ⊤

divide zero (suc n) = ⊥

divide (sucm) (suc n) = (m ≤ n) & (divide (sucm) (n -m))

This definition is rejected because the recursive call divide (sucm) (n -m) is not done on a subterm
of suc m and suc n. However, it is possible to define the function divide using an accessibility
predicate. This justifies the definition propositionally. Hence it is justified to add the definition of
the function using rewrite rules, without any risk with respect to termination:

postulate rewrite block Divide where
axiom

[
divide : N→ N→ □

rewrite



dividem zero _ ⊤

divide zero (suc n) _ ⊥

divide (sucm) (suc n) _ (m ≤ n) & (divide (sucm) (n -m))

This is one instance of a general principle: if we can define a certain function and prove an
equation about it propositionally then it is fine to add that as a rewrite rule. Other examples of this
principle can be found in the work of Allais et al. [2013].

2.3 Non-Strictly Positive Inductive Types

As explained in the introduction, using rewrite rules, it becomes possible to postulate the existence
of inductive types that do not exist in the original theory. Although postulating the existence of
negative inductive types, e.g., the untyped lambda calculus, directly leads to an inconsistent theory,
the situation is less clear for positive inductive types not respecting the strict positivity condition. It
is known since the work of Coquand and Paulin [1988] that positive inductive types in presence of
an impredicativite universe Prop may lead to inconsistency, as it is the case for the inductive type

data P : □ where
introP : ((P → Prop) → Prop) → P

But if the inductive definition does not involve an impredicative universe, it is believed that adding
the positive inductive type to the type theory is safe, as it is already the case for system F. For
instance, consider the following example originally due to Hofmann [1993] that can be used to
solve the breadth-first traversal problem, with a constructor that makes use of something that looks
like a continuation, or a coroutine:

postulate rewrite block Coroutine where

axiom



Cor : □

Over : Cor
Next : ((Cor → list N) → list N) → Cor
elimCor : (P : Cor → □) → (POver : P Over) →

(PNext : ∀f , P (Next f )) → (c : Cor) → P c

rewrite

[
elimCor ?P ?POver ?PNext (Over) _ POver

elimCor ?P ?POver ?PNext (Next f ) _ PNext f

This inductive type is not strictly positive because Cor occurs (positively) on the left of an arrow.
Although there is no general argument for termination of the elimination principle, Berger et al.
[2019] have shown that the breadth-first traversal algorithm defined by Hofmann using this non-
strictly positive inductive type actually terminates.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 60. Publication date: January 2021.
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2.4 Higher Inductive Types

In the same way, it is possible to postulate the existence of higher inductive types (HITs) (or also
higher inductive-inductive types and higher inductive-recursive types) in the theory. For instance,
it is possible to define the HIT S1 of the circle with the following record:

postulate rewrite block Circle where

axiom



S1 : □

base : S1

loop : base = base
elimS1 : (P : S1 → □)(b : P base)(l : (loop # b) = b)(x : S1) → P x

elimS1loop : (P : S1 → □)(b : P base)(l : (loop # b) = b)
→ apD (elimS1 P b l) loop = loop

rewrite
[
elimS1 ?P ?b ?l base _ b

In the definition above, e # t denotes the transport of t by an equality proof e and

apD : {A : □}{B : A → □}(f : ∀x ,Bx){x y : A}(p : x = y) → p # (f x) = f y

is the dependent version of the functoriality of functions.
It is not possible to define a version of S1 where the propositional equality elimS1loop is definitional

because apD is a function and not a rigid pattern.2

2.5 Exceptional Type Theory

Exceptional Type Theory [Pédrot and Tabareau 2018] is an extension of MLTT with call-by-name
exceptions. This extension is justified through a syntactic translation intoMLTT itself. However,
to be useful in practice, it is better to have a direct presentation of the source theory, as described
by Pédrot et al. [2019] with a raise operator. In RTT, raise can be postulated together with its
behaviour on inductive types: matching on an exception raises an exception in the return predicate.

postulate rewrite block Exception where

axiom

[
E : □

raise : (A : □) → E→ A

rewrite

[
elimN ?P ?P0 ?PS (raise N ?e) _ raise (P (raise N e)) e

elimB ?P ?Ptrue ?Pfalse (raise B ?e) _ raise (P (raise B e)) e

Here we define a particular behaviour of the already existing elimination principle when the
matched symbol is raise, which is to our knowledge a novel possibility of our system.

However, to recover the weak canonicity result proven by Pédrot and Tabareau [2018], we would
need to add a rewrite rule to avoid a stuck exception in a dependent product.

raise ((x : ?A) → ?B) ?e _ λ (x : A). raise B e .

Unfortunately, such a rule is not yet covered by our framework as it involves a matching on the
binder (x : ?A) → ?B which requires some limited form of higher-order matching. For the moment,
we need to postulate this as a propositional equality instead.3

2This is possible in the current Agda implementation, by adding a rewrite rule to apD [Cockx 2020]. However, in our
framework this would require to define apD in the same block as elimS1, which is usually not possible.
3In the Agda implementation, this rule can be declared and is accepted by the confluence checker. However, it falls beyond
the type theory covered in this paper.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 60. Publication date: January 2021.



60:6 Jesper Cockx, Nicolas Tabareau, and Théo Winterhalter

3 THE NEED FOR SYNTACTIC RESTRICTIONS AND CONFLUENCE

To motivate the need for syntactic restrictions on the kind of rewrite rules that can be written, as
well as the need for confluence of the resulting rewriting system, let us now review some seemingly
harmless well-typed rewrite rules which break subject reduction and thus the very meaning of
dependently typed programs.
Note that the examples in this section are not necessarily meant to be realistic, but rather to

showcase the different corner cases that need to be excluded in order to build a system that is
usable in practice.

Breaking subject reduction by rewriting type constructors. Equality between endofunctions on
natural numbers and functions from natural numbers to booleans

(N→ N) = (N→ B)

is admissible in type theory. Suppose now that one wants to add it as a definitional rewrite rule

(N→ N) _ (N→ B)

in the theory. Then, the term (λ (x : N). x) 0 has type B because λ (x : N). x has typeN→ B. Indeed
λ (x : N). x has type N→ N which is convertible to N→ B. However, (λ (x : N). x) 0 reduces to 0

after β-reduction, which does not have type B because N is not convertible to B. Subject reduction
is not valid anymore. The problem is not specific to the considered equality, nor to the fact that it
is just admissible but not provable. Indeed, consider the following derivable equality on vectors
exploiting the commutativity of addition

(Vec A (n +m) → Vec A (n +m)) = (Vec A (n +m) → Vec A (m + n))

where A : □ and n,m : N. Turning this equality into a rewrite rule would lead to the exact same
issue: if v : Vec A (n +m) then (λ (x : Vec A (n +m)). x) v has type Vec A (m + n), and reduces to
v : Vec A (n +m), but these two types are not convertible.

These two examples show that rewrite rules may break injectivity of Π types (also known as
product compatibility), which is a crucial lemma in most proofs of subject reduction.

łTurning a consistent (even derivable) equality into a rewrite rule may break subject reduction.ž

Breaking subject reduction by rewriting already defined symbols. Let Box A be a record type with
a single field:4

record Box (A : □) : □ where
constructor box
field unbox : A

Thus, unbox : Box A → A satisfies the reduction unbox (box x)⇝ x . Now, if we add a rewrite
rule Box N_ Box B, then we have unbox (box 0) : B but this term again reduces to 0, which does
not have type B.

This example exploits the fact that unboxA (boxB x)⇝ x even whenA , B. Here Agda implicitly
assumes that Box is injective w.r.t. definitional equality, enforcing the necessary conversion by
typing. However, this assumption no longer holds when one adds the rewrite rule Box N_ Box B.
If Agda were to check that the types A and B match in the reduction rule for unbox (as we would
do if it is declared as a rewrite rule), evaluation would be stuck but subject reduction would be
preserved.

łRewrite rules on existing symbols may break basic assumptions of type theory.ž

4In the following, we use Agda syntax to present our examples although what we say is not specific to Agda and is valid in
any proof assistant based on MLTT or CIC.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 60. Publication date: January 2021.
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Breaking subject reduction by breaking confluence. One direct solution to the problems described
above is to forbid rewriting of type constructors such as→ and Box. However, it is easy to simulate
the same conversion by postulating an auxiliary type A : □ with rewrite rules

A _ (N→ N) and A _ (N→ B).

Then, N→ N becomes convertible to N→ B and the term (λ (x : N). x) 0 still has type B. Here,
the symbol that is rewritten is fresh and there seems to be no natural syntactic restriction that
would forbid it. However, the resulting rewriting system is obviously not confluent, and this is
the reason subject reduction is broken. Somehow, by defining those two rewrite rules, we have
simulated a new conversion rule between N→ N and N→ B. We conclude that a purely syntactic
restriction on rewrite rules can never be enough to ensure subject reduction if one does not also
have confluence.

łConfluence is needed for subject reduction.ž

From these examples, we deduce the following requirements:

• Rewrite rules should only rewrite applications of ‘fresh’ (i.e., postulated) symbols, not pre-
existing symbols like→ or Box.

• The rewriting system defined by the rewrite rules together with the standard reduction rules
of type theory should be confluent.

From these natural restrictions, we derive injectivity of type constructors and hence re-establish
subject reduction.

By-block rewrite rules. We want to accept a rewrite rule only if it is defined on a fresh symbol, but
at the same time we also want to define several rewrite rules on the same set of symbols. To resolve
this tension, we allow rewrite rules to be defined by blocks. This allows us to check confluence
of all rewrite rules defined in the block. Rewrite rules in the rewrite block can thus only rewrite
symbols that were declared in the same block. For instance, we can define the inductive type of
natural numbers as

postulate rewrite block natural_numbers where

axiom



N : □

zero : N
suc : N → N
elim : (P : N → □)(P0 : P zero)(PS : ∀n, P n → P (suc n))(n : N) → P n

rewrite

[
elim ?P ?P0 ?PS zero _ P0
elim ?P ?P0 ?PS (suc ?n) _ PS (elim P P0 PS n)

About termination. In the examples we have considered so far, we have not taken termination
into account. This is because we treat termination just like consistency: a property that may no
longer hold in the presence of postulates. Indeed, the absence of confluence or subject reduction
leads to a notion of conversion that is not (efficiently) implementable. One may still implement
a partial conversion checker, but this would miss certain cases where the terms are actually
convertible, which would lead the typechecker to behave in unpredictable ways in practice. In
contrast, removing the requirement that rewrite rules are terminating only means the algorithm
for checking conversion may no longer be total. However, whenever it does return a result, it is
always correct, as we show in Sect. 6.5.

łTermination of reduction is not a critical property ofMLTT or CIC.ž

The main reason why Agda and Coq enforce termination through the guard condition is because
defining new functions as fixed points leads not only to non-termination of reduction but also

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 60. Publication date: January 2021.
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inconsistency of the theory. For instance, let us consider the minimal example of a non-terminating
function that allows us to inhabit ⊥ with a trivial loop:

loop : ⊥

loop = loop

When checking this, Agda complains about the

problematic calls : loop.

And indeed, accepting loop as a valid fixpoint would create a trivial proof of ⊥.
In contrast, an inconsistent rewrite rule remains in the context as a witness for inconsistency, in

the same way as the axiom absurd : ⊥ remains in the context. For example, translating the previous
non-terminating fixpoint loop to the setting of rewrite rules, we get the following rewrite block:

postulate rewrite block Loop where
axiom

[
loop : ⊥

rewrite
[
loop _ loop

This block is obviously and explicitly inconsistent, even when the rewrite rule is omitted. The lesson
from this is that the issue is not non-termination per se, but rather that non-terminating functions
may introduce new canonical values in the theory, which should instead appear as additional
assumptions in the context.

On the other hand, adding a non-terminating but consistent rewrite rule only breaks termination
but not consistency. In Sect. 6.4 we show that if every postulated rewrite block has an instantiationś
consisting of a witness for each axiom and a propositional equality proof for each rewrite ruleśthen
RTT with those rewrite blocks is consistent. This is the case even for non-terminating rewrite rules.
In conclusion, from the lens of RTT we see the termination check as a way to simultaneously

introduce a fresh axiom with some rewrite rules and at the same time provide an instantiation for
it by proving it is total, thus avoiding the need to introduce new assumptions in the context.

4 THE TRIANGLE PROPERTY: CHECKING CONFLUENCE MODULARLY

The previous section shows that confluence of the added postulated rewrite rules is necessary
to guarantee both type preservation and practicality of type checking. In this work, we seek a
modular and decidable check for confluence, that does not rely on termination. This restricts the
kind of examples that can be dealt with in the system, but in return it gives us a theory that is
implementable and usable in practice.

4.1 Enforcing Confluence through the Triangle Property

It is well known that in absence of termination, local confluence is not enough to ensure global
confluence. In his study of untyped higher-order rewrite rules, van Oostrom [1994a] has introduced
the notion of decreasing diagrams, which has recently been used in the setting of the Dedukti proof
assistant [Ferey and Jouannaud 2019]. However, it is not clear how to design an automatic tool to
detect confluence of a set of rewrite rules using such a technique.
In this paper, we instead rely on a well-known and simpler technique originally introduced by

Tait and Martin-Löf [Barendregt 1984], which shows that the notion of parallel reduction in untyped
λ-calculus satisfies a much stronger property than local confluence, namely the triangle property.

Parallel reduction. Parallel reduction is a variant of one-step reduction that allows to reduce
all existing redexes at the same time in parallel. It induces a relation that is larger than one-step
reduction, but smaller than its reflexive transitive closure.

⇝ ⊆ ⇛ ⊆ ⇝
∗ (1)

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 60. Publication date: January 2021.
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(a) The triangle property.
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(b) The triangle property implies global confluence.

Fig. 1. A visual representation of Definition 4.1 (left) and Lemma 4.2 (right).

Therefore, confluence of parallel reduction is equivalent to confluence of one-step reduction.

The triangle property in MLTT and CIC. Crucially for the proof of confluence, parallel reduction
for untyped lambda calculus satisfies the property that there is an optimal reduced term ρ(t) for
every term t (Smolka [2015] provides a detailed exposition of this). This term is defined as a fixpoint
on the syntax, performing as many reduction as possible during its traversal. The fact that it is
optimal is expressed by the following triangle property (see also Fig. 1a).

Definition 4.1 (Triangle property). Parallel reduction of a rewriting system satisfies the triangle
property when for every term t , we have t ⇛ ρ(t), and for every u such that t ⇛ u, we also have
u ⇛ ρ(t).

The main interest of parallel reduction lies in the fact that its confluence implies confluence of
the rewriting system. For a terminating rewriting system, it also automatically provides a strategy
to compute normal forms by iterating the function ρ.

Lemma 4.2 (Confluence of Parallel Reduction). [PCUICParallelReductionConfluence.v/
pred1_diamond] When parallel reduction satisfies the triangle property, then the rewrite system is

globally confluent.

Proof. Parallel reduction is confluent in exactly one step, by using the triangle property twice
(Fig. 1b). Confluence of the rewrite system for one-step reduction then follows from Equation 1. □

The triangle property holds for λΠ, the restriction of Martin-Löf type theory to its functional part.
But it also works for its extension to inductive types, pattern-matching, fixpoints and cofixpoints.
This has for instance been formally proven for CIC in theMetaCoq project [Sozeau et al. 2019].

The triangle property in RTT. The approach for confluence we take for RTT is to admit a new set of
rewrite rules only when it satisfies the triangle property and is orthogonal to all previously declared
rewrite rules. This way, the resulting rewriting system can be shown to be always confluent.

The triangle property of a given set of rewrite rules can be automatically checked by choosing a
specific function ρ (for example by maximally applying rewrite rules in a given order) and then
analysing all critical pairs w.r.t. parallel reduction. In Sect. 7 we describe a general algorithm; here
we restrict ourselves to an example.

Example 4.3. Consider a rewrite system with symbols 0, suc, and +, and rules 0 + n _ n,
m + 0 _ m, (sucm) + n _ suc (m + n), andm + (sucn) _ suc (m + n). We define ρ(u) as follows:

• If u matches one of the rewrite rules, we apply the first rule that matches and apply ρ

recursively to each subterm in a variable position (i.e. the positions where variables occur on
the left-hand side of the rewrite rule).

• If u does not match any of the rewrite rules, we apply ρ to each subterm recursively.
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However, with this definition of ρ, the triangle property is not satisfied: we have ρ((sucm) +

(sucn)) = suc (m+(sucn)), but we also have (sucm)+(sucn)⇛ suc ((sucm)+n) ⇛̸ suc (m+(sucn)).
To satisfy the triangle property, we extend the rewrite system with an additional ‘parallel rewrite
rule’ (sucm) + (sucn) _ suc (suc (m + n)).

4.2 Modularity of Confluence

To avoid having to re-check previously declared rewrite rules when adding new rewrite rules,
confluence needs to be modular : confluence of each individual block of rewrite rules should imply
confluence of the combined system. Following the work of Van Oostrom [van Oostrom 1994b,
Theorem 3.1.54], this leads us to restrict the rewrite rules to be left-linear and rewrite blocks to
be two-by-two orthogonal. Linearity (or more precisely left-linearity) of a rewrite rule means that
each pattern variable occurs at most once in the left-hand side of the rewrite rule. Meanwhile,
orthogonality of rewrite blocks means that a term cannot be an instance of the left-hand sides of
two rewrite rules from two different blocks.

Orthogonality is easily obtained by asking that each block of rewrite rules only rewrites patterns
introduced in the same block. To see why non-linearity breaks modularity of confluence, consider
the classic example [Appel et al. 2010, Counterexample 2.2]:

postulate rewrite block NonLinearRule where
axiom

[
f : N→ N→ N

rewrite

[
f ?X ?X _ true
f ?X (S ?X ) _ false

Adding this system to CIC is confluent, because there is no critical pair. However, if one additionally
postulates the existence of an infinite integer

postulate rewrite block Omega where
axiom

[
ω : N

rewrite
[
ω _ S ω

then we have f ω (S ω)⇝ false but also f ω (S ω)⇝ f (S ω) (S ω)⇝ true and hence the system
is non-confluent, even though the two systems are orthogonal.

Although full non-linearity cannot be accepted, we can still allow a weaker form of non-linearity.
Indeed, consider the definition of the Martin-Löf identity type, with elimination principle elimId:

postulate rewrite block IdentityType where

axiom



Id : (A : □) → A → A → □

refl : (A : □) → (x : A) → Id A x x

elimId : (A : □) → (x : A) → (P : (y : A) → (Id A x y) → □) →

(t : P x (refl A x)) → (y : A) → (e : Id A x y) → P y e

rewrite
[
elimId ?A ?x ?P ?Pr ef l ?y (refl ?A′ ?x ′) _ Pr ef l

Here, the left hand side is well-typed only when ?A is convertible to ?A′ and when ?x , ?y and ?x ′

are all convertible. So the rewrite rule is equivalent to the non-linear rule

elimId ?A ?x ?P ?Pr ef l ?x (refl ?A ?x) _ Pr ef l

However, this does not have to be checked when applying the rewrite rule since it is enforced by
typing.
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A,B, t ,u . . . ::= □ℓ universe at level ℓ
| x variable
| f symbol
| Π (x : A). B dependent product type
| λ (x : A). t λ-abstraction
| t u application
| N natural numbers
| zero zero
| suc t successor
| elim P P0 PS n natural number induction
| Σ (x : A). B dependent sum type
| (t ,u) pair construction
| π1 t first projection
| π2 t second projection

p,q . . . ::= ?x | c | N | zero | suc p | (p,q) pattern
F . . . ::= ⋄ p | π1 ⋄ | π2 ⋄ | elim p p0 pS ⋄ pattern frame
S ::= • | F,S (pattern) frame stack

Fig. 2. Term syntax and frames of RTT

5 A TYPE THEORYWITH COMPUTATIONAL ASSUMPTIONS

In this section, we give a formal description of Rewriting Type Theory (RTT) as an extension of the
Predicative Calculus of Cumulative Inductive Constructions (PCUIC) as formalized in MetaCoq. For
reasons of presentation, we omit some parts of PCUIC such as inductive datatypes other than N,
(co)fixpoints, and cumulativity. Our formalization adds rewrite rules to the full version of PCUIC.
We use boxes to mark pieces of new syntax where they are first introduced.

5.1 Syntax, Scope, and Substitution

The syntax for RTT is described in Figure 2. The usual dependent λ-calculus is present with type
annotation for the domain of a λ-abstraction. The natural numbers N come with their unary
representation and induction principle. There is a notion of symbols which represent new symbols
introduced by a rewrite block (see below).

We define variable scope and substitutions as usual. Given a substitution σ , we write σ (x)

for the value assigned to the variable x by σ , and uσ for the application of σ to the term u. In
particular we have xσ = σ (x). We implicitly assume uniqueness of identifiers: names are merely

there to increase legibility but variables can be thought of as de Bruijn indices. We write [x := u]

for the substitution replacing xi by ui for each index i . As a shorthand, we write t[x := u] for
single-variable substitution, and we abuse the notation by writing [Γ := u] for [x := u] if Γ := x : A.

We write FV(t) for the set of free variables of term t . We define scopes of substitutions

σ ∈ Γ ֒→ ∆ by saying that σ ∈ Γ ֒→ ∆ whenever dom(σ ) = Γ and ∀x ∈ Γ, FV(σ (x)) ⊆ ∆.

Given σ ∈ Ξ ֒→ ∆ and ξ ∈ ∆ ֒→ Γ we define the composition σ · ξ that maps x ∈ Ξ to (xσ )ξ .
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R ⊢ u ⇝ v Reduction of terms.

R ⊢ (λ (x : A). t) u ⇝ t[x := u] R ⊢ elim P P0 PS zero⇝ P0

R ⊢ elim P P0 PS (suc n)⇝ PS n (elim P P0 PS n) R ⊢ π1 (t ,u)⇝ t R ⊢ π2 (t ,u)⇝ u

[f : A | R] ∈ R ∆⋉ ⟨fi | S⟩ _ t ∈ R σ : ∆ ֒→ Γ

R ⊢ eval (fi | S)σ ⇝ tσ

Fig. 3. Definition of the reduction (congruence rules omitted)

5.2 Patterns, Rewrite Rules, and Signatures

Patterns. Patterns (also defined in Fig. 2) represent a subset of term syntax thatmainly corresponds
to constructor forms (except for λ-abstraction), i.e., variables, symbols, inductive types (here N) and
constructors of inductive types (here zero and suc) and of pairs are patterns. The syntax for patterns
does not include λ-abstractions or Π-types. Allowing these as patterns would lead to a possible
extension of our theory to higher-order rewriting. Higher-order rewriting is already implemented
in Agda, but its formalization is still work in progress so we leave it as the subject for future work.

Frame Stacks. A (pattern) frame stack is a list of pattern frames, which corresponds to the
destructors of the syntax (application, projections and elimination) with a hole on the scrutinee
(the matched term of the destructor) and when other arguments are patterns (see Fig. 2).

Rewrite Rules. A rewrite rule is of the form ∆⋉ ⟨fi | S⟩ _ t where ∆ is the context of pattern

variables, fi is the head symbol which should be one of the symbols declared in the same rewrite
block, S is a frame stack, and t is the right-hand side of the rewrite rule.

Signatures. Reduction and typing of RTT are parametrized over a global signature R that declares
new symbols and rewrite rules on them. A signature consists of a sequence of rewrite blocks B of

the form [f : A | R] , where fi : Ai are freshly declared symbols and R are rewrite rules on these

symbols.

5.3 Reduction and Conversion

We define a judgement R ⊢ u ⇝ v corresponding to full reduction in Fig. 3. Since reduction
makes use of the rewrite rules, it is defined relative to a signature R. The only rule that differs from
standard type theory is the one for applying a rewrite rule. It is used when a symbol fi declared in
the signature is applied to a stack that is an instance of the pattern stack of one of the rewrite rules
declared in the same block as fi . Rewrite rules only apply when the stack matches the patterns on
the nose, but this is not an issue since we allow full reduction in all subterms.
The reduction of a rewrite rule makes use of the application of a term t to a stack pattern S

which is written as eval (t | S) and is defined as eval (t | •) = t on the empty stack and otherwise:

eval (t | ⋄ u,S) = eval (t u | S) eval (t | π1 ⋄,S) = eval (π1 t | S)
eval (t | elim P P0 PS ⋄,S) = eval (elim P P0 PS t | S) eval (t | π2 ⋄,S) = eval (π2 t | S)
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R ⊢ Γ Context formation.

R ⊢ •

R; Γ ⊢ A

R ⊢ Γ,x : A

R; Γ ⊢ t : A Typing.

(x : A) ∈ Γ R ⊢ Γ

R; Γ ⊢ x : A

(f : A) ∈ R

R; Γ ⊢ f : A

R; Γ ⊢ t : A R ⊢ A = B R; Γ ⊢ B : □ℓ

R; Γ ⊢ t : B

R ⊢ Γ

R; Γ ⊢ □ℓ : □ℓ+1

R; Γ ⊢ A : □ℓ1 R; Γ,x : A ⊢ B : □ℓ2

R; Γ ⊢ Π (x : A). B : □max (ℓ1, ℓ2)

R; Γ,x : A ⊢ t : B

R; Γ ⊢ λ (x : A). t : Π (x : A). B

R; Γ ⊢ t : Π (x : A). B R; Γ ⊢ u : A

R; Γ ⊢ t u : B[x := u]

R ⊢ Γ

R; Γ ⊢ N : □0

R ⊢ Γ

R; Γ ⊢ zero : N

R; Γ ⊢ n : N

R; Γ ⊢ suc n : N

R; Γ ⊢ P : N→ □ℓ

R; Γ ⊢ P0 : P zero R; Γ ⊢ PS : Π (n : N). P n → P (suc n) R; Γ ⊢ t : N

R; Γ ⊢ elim P P0 PS t : P t

R; Γ ⊢ A : □ℓ1 R; Γ,x : A ⊢ B : □ℓ2

R; Γ ⊢ Σ (x : A). B : □max (ℓ1, ℓ2)

R; Γ ⊢ t : A R; Γ ⊢ u : B[x := t]

R; Γ ⊢ t ,u : Σ (x : A). B

R; Γ ⊢ t : Σ (x : A). B

R; Γ ⊢ π1 t : A

R; Γ ⊢ t : Σ (x : A). B

R; Γ ⊢ π2 t : B[x := π1 t]

Fig. 4. Typing judgments for RTT.

Many-step reduction R ⊢ u ⇝⋆ v is defined as the reflexive transitive closure of the reduction
relation R ⊢ u ⇝ v . Since reduction can reduce subterms in any position, we define conversion

R ⊢ u = v as the symmetric and transitive closure of many-step reduction. This implies that
conversion depends on the signature R.

5.4 Typing and Signature Validity

The typing rules of the system are described in Fig. 4. We introduce the judgements R; Γ ⊢ t : A

stating term t has type A in signature R and context Γ and R ⊢ Γ stating Γ is a well-formed
context. The typing rules are the standard typing rules of type theory. The only difference lies in
the definition of the conversion rule, which depends on the rewrite rules in the signature. We refer
the reader to [Sozeau et al. 2020] for an explanation of the typing rules.

Signature validity. Although the definition of the typing system does not require anything on
the signature R, the metatheory of RTT can only be stated in a setting where the rewrite blocks
are all valid, which ensures for instance that rewrite rules preserve typing.
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Γ | x̄ ⊢ p Pattern validity. (Pattern variables are required to occur linearly)

Γ | x ⊢ x

f ∈ Γ

Γ | • ⊢ f Γ | • ⊢ N Γ | • ⊢ zero

Γ | x̄ ⊢ p

Γ | x̄ ⊢ suc p

Γ | x̄1 ⊢ p Γ | x̄2 ⊢ q

Γ | x̄1, x̄2 ⊢ (p,q)

Γ | x̄ ⊢ S Frame stack validity.

Γ | x̄1 ⊢ p Γ | x̄2 ⊢ S

Γ | x̄1, x̄2 ⊢ ⋄ p :: S

Γ | x̄ ⊢ S

Γ | x̄ ⊢ π1 ⋄ :: S

Γ | x̄ ⊢ S

Γ | x̄ ⊢ π2 ⋄ :: S

Γ | x̄1 ⊢ P Γ | x̄2 ⊢ P0 Γ | x̄3 ⊢ PS Γ | x̄4 ⊢ S

Γ | x̄1, x̄2, x̄3, x̄4 ⊢ elim P P0 PS ⋄ :: S

R; Γ ⊢ Ξ⋉ ⟨fi | S⟩ _ v Rewrite rule validity.

fi : A ∈ Γ

Γrig | Ξ ⊢ S ∀∆. ∀T . ∀(σ : Ξ ֒→ Γ∆). R; Γ∆ ⊢ eval (fi | S)σ : T =⇒ R; Γ∆ ⊢ vσ : T

R; Γ ⊢ Ξ⋉ ⟨fi | S⟩ _ v

R ⊢ B Rewrite block validity.

R; • ⊢ f : A ∀R ∈ R. R; f : A ⊢ R

R ⊢ [f : A | R]

⊢ R Signature validity.

⊢ •

⊢ R R ⊢ B

⊢ R,B

Fig. 5. Rules for validity of patterns, frame stacks, rewrite rules, rewrite blocks, and whole signatures.

The rules for validity of signatures, rewrite rules, and patterns are given in Fig. 5. ⊢ R checks
the validity of a complete signature by checking the validity of each individual rewrite block with

R ⊢ B , where the type of the fresh symbols can depend on symbols from previous rewrite blocks.

R; Γ ⊢ Ξ⋉ ⟨fi | S⟩ _ v certifies the validity of a rewrite rule where Γ is the context of symbols

of the rewrite block, and Γrig its restriction to symbols which are not the head symbol of a rewrite
rule. It makes sure that the head symbol of the rewrite rule is one of the symbols declared in the
same rewrite block, that the patterns are well-formed, and that the rule preserves typing [Blanqui
2005]. To ensure rewrite rules preserve typing even in an open context, it allows the context to be
extended with an arbitrary telescope ∆. This restriction is strictly more liberal than requiring that

the left- and right-hand side can both be typed at the same type. Γ | x̄ ⊢ p and Γ | x̄ ⊢ S finally

assert the well-formedness of a pattern (resp. pattern stack) with symbols Γ and pattern variables x̄ .
In particular, they ensure that all pattern variables are used linearly.

Example 5.1. In Fig. 6 we write down the example from Sect. 2.3 as a rewrite block in the formal
syntax of RTT. This example assumes the presence of the inductive type list in the theory, which
can be introduced in a similar way to N. We also make use of the → syntax for non-dependent
function types.
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[ Cor : □
, Over : Cor
, Next : ((Cor → list N) → list N) → Cor
, elimCor : Π (P : Cor → □). Π (POver : P Over).

Π (PNext : Π (f : (Cor → list N) → list N). P (Next f )). Π (c : Cor). P c

, •

| (P : Cor → □, POver : P Over, PNext : Π (f : (Cor → list N) → list N). P (Next f ), •)
⋉ ⟨elimCor | ⋄ ?P ,⋄ ?POver,⋄ ?PNext,⋄Over, •⟩ _ POver

, (P : Cor → □, POver : P Over, PNext : Π (f : (Cor → list N) → list N). P (Next f ),
f : (Cor → list N) → list N, •)
⋉ ⟨elimCor | ⋄ ?P ,⋄ ?POver,⋄ ?PNext,⋄ (Next f ), •⟩ _ PNext f

, • ]

Fig. 6. The example of Sect. 2.3 in the formal syntax of RTT.

6 METATHEORY OF RTT

In this section, we present our approach to modular confluence of RTT. The correctness of our
results has been formalized in the Coq proof assistant, using theMetaCoq project [Sozeau et al.
2020]. TheMetaCoq project provides a solid basis for our work as confluence and subject reduction
have already been formalized for PCUIC [Sozeau et al. 2019]. Therefore, our work can be seen as the
search for a modular and decidable criterion to guarantee that the proof of confluence and subject
reduction for PCUIC can be lifted to RTT. Compared to what has been presented in Section 5,
our formalization of RTT features general inductive types and co-inductive types, a cumulative
hierarchy of predicative universes, an impredicative universe and a let-in construct.

6.1 Parallel Reduction and the Triangle Criterion

Parallel reduction of RTT is defined in Fig. 7. Note that⇛ is closed under substitution. In fact, we
even have the stronger property that it is closed in one step in the following sense:

Lemma 6.1. [PCUICParallelReductionConfluence.v/substitution_pred1] Let u be a term and σ a

substitution. If R ⊢ u ⇛ v and R ⊢ xσ ⇛ xσ ′ for each x ∈ dom(σ ), then R ⊢ uσ ⇛ vσ ′.

Proof. By induction on the derivation of R ⊢ u ⇛ v . In the base case where u is a variable x ,
the only possible reduction is R ⊢ x ⇛ x hence R ⊢ xσ ⇛ xσ ′ follows by assumption. □

Both property 1 (⇝ ⊆⇛ ⊆⇝⋆) and Lemma 4.2 are valid in this setting.
We now want to state a criterion on R to ensure that the RTT satisfies the triangle property. The

first step is to give a more concrete description of the function ρ. To this end, we assume given a
fixed order ≻ on the set of rewrite rules and define from it a specific function ρ≻ .

Definition 6.2. Let (R,≻) be a set of rewrite rules with a total order ≻. We define the function ρ≻

on the set of all terms of RTT as follows:

• If u matches a left-hand side of a rewrite rule in R, let ∆⋉ l _ r be the first rule for which
the left-hand side matches (w.r.t. to ≻) and let σ be the resulting substitution, i.e. u = lσ . We
define a new substitution σ ′ inductively by xσ ′ := ρ≻(xσ ) for every variable x ∈ dom(σ ).
We then define ρ≻(u) := rσ ′.

• If u = (λ (x : A). t) t ′, then ρ≻(u) = ρ≻(t)[x := ρ≻(t
′)].

• If u = elim P P0 PS zero, then ρ≻(u) = ρ≻(P0).
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R ⊢ u ⇛ v Parallel reduction of terms. (R omitted unless relevant)

t ⇛ t

t ⇛ t ′ u ⇛ u ′

(λ (x : A). t) u ⇛ t ′[x := u ′]

P0 ⇛ P ′
0

elim P P0 PS zero⇛ P ′
0

n ⇛ n′ P ⇛ P ′ P0 ⇛ P ′
0 PS ⇛ P ′

S

elim P P0 PS (suc n)⇛ P ′
S n

′ (elim P ′ P ′
0 P

′
S n

′)

t ⇛ t ′

π1 (t ,u)⇛ t ′

u ⇛ u ′

π1 (t ,u)⇛ u ′

[f : A | R] ∈ R ∆⋉ ⟨fi | S⟩ _ t ∈ R σ : ∆ ֒→ Γ ∀x ∈ ∆. xσ ⇛ xσ ′

R ⊢ eval (fi | S)σ ⇛ tσ ′

A⇛ A′ B ⇛ B′

Π (x : A). B ⇛ Π (x : A′). B′

t ⇛ t ′

λ (x : A). t ⇛ λ (x : A). t ′
t ⇛ t ′ u ⇛ u ′

t u ⇛ t ′ u ′

t ⇛ t ′

suc t ⇛ suc t ′
t ⇛ t ′ u ⇛ u ′

t ,u ⇛ t ′,u ′

A⇛ A′ B ⇛ B′

Σ (x : A). B ⇛ Σ (x : A′). B′

P ⇛ P ′ P0 ⇛ P ′
0 Ps ⇛ P ′

s t ⇛ t ′

elim P P0 Ps t ⇛ elim P ′ P ′
0 P

′
s t

′

Fig. 7. Definition of parallel reduction.

• If u = elim P P0 PS (suc n), then ρ≻(u) = ρ≻(PS ) ρ≻(n) (elim ρ≻(P) ρ≻(P0) ρ≻(PS ) ρ≻(n)).
• Otherwise, we define ρ≻(u) by applying ρ to every direct subterm of u. For example, if
u = u1 u2 then ρ≻(u) := ρ≻(u1) ρ≻(u2).

Note that the definition of the function ρ≻ is well-founded even for non-terminating rewrite rules.
Intuitively, it maximally unfolds all redexes that are visible immediately, but not any additional
redexes created by unfolding some part of the term. Hence ρ≻(u) is the maximal one-step parallel
reduction of u.
We now define the triangle criterion that is at the heart of the modular confluence of RTT.

Definition 6.3 (triangle criterion). (R,≻) satisfies the triangle criterion when:

(1) For every term u such that there is a rewrite rule ∆⋉ l _ r in R and a pattern substitution
σ such that u = lσ , if ∆′

⋉ l ′ _ r ′ is the first rule that matches u with substitution τ in R

(u = l ′τ ), then
rσ ⇛ r ′(ρ≻τ ).

(2) Also, for every pair of rewrite rules ∆ ⋉ l _ r and ∆
′
⋉ l ′ _ r ′ in R, for every pattern

substitution σ and τ and for every stack pattern S, eval (l | S)σ = l ′τ implies S = •.

The first condition says that the triangle property holds individually for every instance of a
left-hand side of each rule of the rewrite block. The second condition is more technical and is here
to avoid situations where two rewrite rules have apparently no critical pair because the shapes
of the pattern stacks are different. For instance, it prevents the situation where a symbol f has
two rewrite rules of different arities f x _ λ (y : A). a and f x y _ b with a , b. Here the first
condition trivially holds, but only because the critical pair is łhiddenž. Indeed, changing the first
rule with the (up-to η) equivalent rule f x y _ a now breaks the first condition.
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6.2 Confluence and Subject Reduction

Theorem 6.4 (Confluence). [PCUICConfluence.v/red_confluence] If there exists an order ≻ on

R such that (R,≻) satisfies the triangle criterion, then RTT is confluent.

Proof. Using the triangle criterion, we can show that parallel reduction satisfies the triangle
property, and conclude by Theorem 4.2. □

For the rest of the section, we assume that there exists an order ≻ on R such that (R,≻) satisfies
the triangle criterion.

Lemma 6.5 (Injectivity of Π-types). [PCUICConversion.v/cumul_Prod_inv] If R ⊢ Π (x :

A). B = Π (x : A′). B′ then R ⊢ A = A′ and R ⊢ B = B′.

Proof. We remark that any conversion can be proven without transitivity. Using confluence
of the reduction, we conclude that conversion corresponds to first reducing both sides and then
applying reflexivity or a congruence rule. We conclude because Π-types have no reduction rule. □

Note that in our more general setting with inductive types, the injectivity of inductive types can
be formulated and proven in the same way. We can now turn to subject reduction.

Lemma 6.6 (Subject Reduction). [PCUICSR.v/subject_reduction] If R; Γ ⊢ t : A and t ⇝ u then

R; Γ ⊢ u : A.

Proof. By case analysis on the reduction. If it is a rewrite rule, then the property holds by
validity of the rewrite rule. If it is a β reduction, then we have (λ (x : A). t) u ⇝ t[x := u] and
R; Γ ⊢ (λ (x : A). t) u : T . By inversion of typing, we know that R; Γ ⊢ λ (x : A). t : Π (x : C). D

and R; Γ ⊢ u : C and R ⊢ D[x := u] = T . Using inversion again, we get R; Γ,x : A ⊢ t : B and
R; Γ ⊢ Π(x : A).B = Π(x : C).D. We conclude that R; Γ ⊢ t[x := u] : D[x := u] using that A = C

and B = D by Lemma 6.5. (A similar argument holds for pattern-matching on inductive types.) □

6.3 Modularity of the Triangle Criterion

For RTT to be tractable and usable in practice, we need an additional modularity property of the
triangle criterion that guarantees, e.g., that importing a new library that makes use of rewrite
rules cannot break confluence because of bad interaction with already imported libraries. Also for
efficiency reasons, modularity allows to check the triangle criterion locally without taking all the
already introduced rewrite rules into account, which is necessary for the system to scale up.

Theorem 6.7 (Modularity of the triangle criterion). [PCUICParallelReductionConflu-
ence.v/triangle_rules_weakening] Let R be a rewriting signature and ≻ an order on it. If the triangle

criterion holds for each individual rewrite block [f : A | R] ∈ R, then it also holds for R.

6.4 Consistency

Until now, we have looked at the computational properties of the system. But as we are dealing with
an extension ofMLTT, we also expect logical properties. The most important one is consistency. In
general, a rewrite block may contain symbols of a type that is otherwise uninhabited, so declaring
a rewrite block does not necessarily preserve consistency, in the same way as introducing axioms
may break consistency. However, if we can provide an instantiation of the rewrite block that
satisfies each of the rewrite rules propositionally, then we can ensure consistency. More precisely,
an instantiation of a rewrite block [f : A | R] is a pair (ū, ē) such that:

• For each fi , we have ⊢ ui : Ai [fj := uj ]

• For each Ri = (Ξ⋉ ⟨fj | S⟩ _ v) ∈ R, we have ⊢ ei : eval (fj | S)σ = vσ with σ = [fk := uk ].
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In particular, each ui and ei must be typable in an empty signature (and empty context). This
restriction is only required to avoid the presence of absurd assumptions in the context; it has
nothing to do with the definition of rewrite blocks in the system which can very well depend on
previously declared rewrite blocks.

Lemma 6.8 (Consistency). [This lemma has not been formalized] Let R be a signature such that

each rewrite block in R can be instantiated. Then there is no closed term t such that ⊢ t : Π (X : □ℓ). X .

Proof. The proof goes by defining a translation from RTT to an extensional type theory (ETT).
Each symbol declared in R is translated to its corresponding term in the instantiation of its block,
and each application of a rewrite rule is translated to an application of the reflection rule with
the propositional equality provided by the instantiation. The rest of the translation is simply the
identity. We thus directly deduce consistency of RTT from consistency of ETT. □

For instance, in the case of the parallel plus function (Section 2.1), the consistency of the theory
directly follow from the fact that each rewrite rule already holds propositionally for the standard
plus function. This lemma also has an interesting application. It allows us to give one specific
implementation of a signature and prove certain equalities about it that are exposed as rewrite rules
instead of the computation rules one would normally get. For example, we can give an efficient
binary implementation of natural numbers but hide their implementation from the user, and instead
expose the simpler computation rules that one would get from a unary implementation.

6.5 Decidability of Type-Checking

As for consistency, the addition of rewrite rules to the system may also break decidability of type
checking. We focus here on the algorithm to decide conversion as it is the only place where type
checking differs from the regular algorithm for CIC.
To ensure type checking remains decidable, the most obvious requirement is to ask that the

rewrite system induced by a rewrite context R is weakly normalising. This is because confluence
implies the uniqueness of normal forms, and thus conversion can be decided by syntactically
comparing normal forms. As rewrite rules only modify conversion with respect to CIC, the same
argument for the decidability of type-checking for CIC applies to RTT.
What is perhaps less obvious is that, even in the absence of normalisation, the usual algorithm

for deciding type checking for CIC by comparing the weak-head normal forms still makes sense. To
make this statement precise, we assume for a given signature R the existence of a (partial) function
whnfR on terms that satisfies the following properties for all terms u where it is defined:

(1) R ⊢ u ⇝⋆ whnfR(u).
(2) If R ⊢ whnfR(u)⇝

⋆ v for some term v , then whnfR(u) and v have the same top-level term
constructor, and R ⊢ u ′ ⇝⋆ v ′ for each pair of corresponding direct subterms u ′ and v ′.

The second property gives us for example that if whnfR(u) = u1 u2, then v is also an application
v1 v2, and we have R ⊢ u1 ⇝

⋆ v1 and R ⊢ u2 ⇝
⋆ v2. The definition of a concrete function whnfR

is out of scope of this paper, but the interested reader can find a detailed example in [Cockx 2020].

Algorithm 6.9 (Algorithmic Conversion). Assume we have a (partial) function whnfR sat-

isfying properties (1) and (2) defined above. Then algorithmic conversion for a signature R is given

by the following procedure. Given two terms u and v , it first compares syntactically the two terms. If

they are the same, it answers true. Otherwise, it computes whnfR(u) and whnfR(v). If the top-level

term constructors of whnfR(u) and whnfR(v) are different, it answers false. Otherwise, it tests for the

conversion of all corresponding pairs of direct subterms of whnfR(u) and whnfR(v) recursively.
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Theorem 6.10. [This lemma has not been formalized] Let R be a valid signature in RTT that

satisfies the triangle criterion. If algorithmic conversion terminates on inputs u and v , then its answer

is true if and only if R ⊢ u = v .

Proof. Assume the algorithm terminates when given inputsu andvÐi.e. whnfR(u) and whnfR(v)
are defined, as are all the recursive calls to whnfR made by the algorithm. The proof proceeds by
induction on the number of calls to whnfR made by the algorithm. If two terms are syntactically
equal, then they are obviously convertible. Otherwise, if the top-level term constructors of their
their weak head normal forms are different, then by property (2) of whnfR , they can never be
reduced to the same term, hence they are not convertible by confluence of reduction. On the other
hand, if their weak-head normal forms have the same top-level term constructors, then they are
convertible if and only if their direct subterms are convertible. So by the inductive hypothesis, the
result of the algorithm is true if and only if R ⊢ whnfR(u) = whnfR(v). By property (1) of whnfR ,
we have that R ⊢ u = v if and only if R ⊢ whnfR(u) = whnfR(v), thus finishing the proof. □

The partial correctness property is interesting because it ensures that RTT is still usable in
practice, even when the system is not normalizing: when the system provides an answer, the
answer is correct and subjection reduction is preserved. This is in contrast to extensional type
theory which has no practical type checking algorithm.

7 CONFLUENCE CHECKING AND Agda IMPLEMENTATION

To guarantee the metatheoretical properties in the previous section, confluence of reduction is
crucial. In particular, confluence is important for the practical feasibility of type checking: if a term
has more than one normal form, we lose the ability to check conversion by reducing both sides to
normal form. Hence we check that any set of rewrite rules given by the user satisfies the triangle
criterion (Definition 6.3). In this section, we provide an algorithm that checks the triangle criterion.
We also discuss how we integrate rewrite rules in the Agda proof assistant and implement the
triangle criterion in this setting.

7.1 Checking the Triangle Criterion

Consider a set of rewrite rules R for which we want to check that the triangle property holds by
using the triangle criterion (Definition 6.3). The problem with this criterion is that it quantifies over
all possible terms u, so checking all of them would take a long time indeed. Instead, we only check
that it holds for all the left-hand sides of the rewrite rules. For this check to be sufficient, we may
have to add some auxiliary rewrite rules that are only important for this check. For example, when
there are two rewrite rulesm + 0 _ m and 0 + n _ n we require an additional rule 0 + 0 _ 0.

In general, we require that the set of left-hand sides of the rewrite rules is closed under unification,
i.e. if two patterns in C overlap, then their most general unifier must be in C as well.

Definition 7.1. Amost general unifier of two patterns p and q is a substitution σ such that pσ = qσ ,
and moreover every other substitution τ with pτ = qτ is of the form τ = σ · υ.

Definition 7.2. Let (C,≻) be an ordered set of patterns.We say that (C,≻) is closed under unification
if for every pair of patterns p,q ∈ C such that p unifies with q with most general unifier σ , we also
have pσ ∈ C , and pσ ≻ p.

We now state the main theorem used by our algorithm for checking the triangle criterion.

Theorem 7.3. Let R be a rewriting signature and let C be the set of left-hand sides of the rules

in R. Let further ≻ be a total order on C and assume that (C,≻) is closed under unification. Assume

further that for every pair of rewrite rules ∆ ⋉ ⟨f | S⟩ _ r and ∆ ⋉ ⟨f | S′⟩ _ r ′ with the same
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head symbol f , the stacks S and S′ have the same length. If for every rewrite rule ∆ ⋉ p _ r ∈ R

and every parallel reduction step R ⊢ p ⇛ u we have R ⊢ u ⇛ r , then (R,≻) satisfies the triangle

criterion (Definition 6.3).

Proof. First, from the condition that two rewrite rules with the same head symbols have pattern
stacks of the same length, the second requirement of the triangle criterion follows immediately: if
the pattern stacks have the same length, adding anything extra to one of them can never make
them equal. Now consider a term u and a rewrite rule ∆ ⋉ l _ r in R such that u = lθ for some
substitution θ and let ∆′

⋉p _ r ′ be the first rule that matches with substitution σ , i.e. u = pσ . Let
v = rθ , then we have to prove that R ⊢ v ⇛ r ′σ ′ where xσ ′

= ρ≻(xσ ) for each x ∈ dom(σ ). Since
C is closed under unification and lθ = pσ , there exists some q ∈ C such that q ≻ l , q ≻ p, q is an
instance of both l and p, and u matches q. However, p is the first pattern in C matched by u so we
must have q = p. In particular, p is an instance of l , say p = lτ . Then we have lθ = u = pσ = lτσ ,
hence θ = τ · σ . Now since R ⊢ p = lτ ⇛ rτ , by assumption of the theorem we have R ⊢ rτ ⇛ r ′.
Hence we also have R ⊢ v = rθ = rτσ ⇛ r ′σ ′, as we wanted to prove. □

For any given term u, the set of terms v such that u ⇛ v is finite and can be computed by
exhaustively applying all the rules. Hence we can use the above theorem for our algorithm for
checking the triangle criterion.

Algorithm 7.4. We check the triangle criterion for a given rewrite block R = [f : A | R] as follows.

• First, we set some fixed order ≻ on the rewrite rules inR. This order should ensure more specialized

rewrite rules are bigger, i.e. if ∆⋉ p _ u and ∆⋉ q _ v are two rewrite rules in R and q = pσ

then we should have q ≻ p. Otherwise the choice of order is arbitrary (e.g. the order in which the

rules were declared).

• Following that, we check for each symbol f declared in R that all rewrite rules have the same

arity, i.e. the pattern stacks of the rewrite rules with head symbol f all have the same length.

• Next, we check that the set of left-hand sides is closed under unification by computing for each

pair of patterns ∆⋉ p _ u and ∆′
⋉ q _ v in R the most general unifier5 σ = MGU(p,q) and

(if it exists) checking that pσ is a left-hand side of a rewrite rule in R (up to α-conversion). If

there is no such rule, we extend R with the auxiliary rewrite rule ∆′′
⋉ pσ _ uσ (where ∆′′ is

the context of pattern variables of pσ ).

• Finally, for each rewrite rule ∆⋉ p _ r in R we exhaustively enumerate all possible reduction

steps R ⊢ p ⇛ w and check that there is a subsequent step R ⊢ w ⇛ r .

The extra rules added by the above algorithm are always instances of existing rewrite rules and
thus need not be considered by the reduction algorithm; they are only required while checking the
triangle property.

Example 7.5 (Revisiting Example 4.3). Consider the rewrite signature R with symbols 0, suc, and
+, and four rewrite rules (1) 0 + ?n _ n, (2) ?m + 0 _ m, (3) (suc ?m) + ?n _ suc (m + n), and (4)
?m + suc ?n _ suc (m + n). Here the set of left-hand sides is not closed under unification, so the
algorithm extends it with four more rules (5) 0 + 0 _ 0, (6) 0 + (suc ?n) _ sucn, (7) suc ?m + 0 _

sucm, and (8) (suc ?m)+ (suc ?n) _ suc (m+ (sucn)). However, now the third step of the algorithm
fails since R ⊢ (sucm) + (sucn)⇛ suc ((sucm) + n) but R ⊬ suc ((sucm) + n)⇛ suc (m + (sucn)).

To ensure this rewrite system is accepted, it has to be extended with the additional rule (suc ?m)+

(suc ?n) _ suc (suc (m+n)). With this extra rule, we have ρ≻((sucm)+(sucn)) = suc (suc (m+n)) so
we have both R ⊢ suc (m+(sucn)⇛ suc (suc (m+n)) and R ⊢ suc ((sucm)+n)⇛ suc (suc (m+n)),
thus making the final check succeed.

5Since our patterns are first-order, unification is decidable.
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It would be possible to improve the algorithm by extending step 3 to compute the normal form
w = NF(pσ ) and extend the rewrite system with the new rule pσ _ w , turning the algorithm
from a mere check into a full completion algorithm. This would make the parallel definition of + be
accepted without adding the extra rule for sucm + sucn. However, it would also introduce new
risks of non-termination. Hence we refrain from adding this step to the algorithm for now.

The requirement that all rewrite rules for a symbol have the same arity is more restrictive than
strictly necessary. For example, we could allow rules with different arities if they clearly do not
overlap, such as f 0 _ λ (x : A). a and f (suc n) y _ b. However, this does not seem particularly
useful in our current setting so we opted to keep the criterion of Theorem 7.3 as simple as possible.

For the final step of the algorithm, one may wonder whether it is possible to check instead that
ρC (w) = r . The following example shows that this is not the case in general.

Example 7.6. Consider the rewrite system R with four symbols a, b, c , d , and rewrite rules a _ c ,
a _ b, b _ d , b _ c , and c _ d . This system satisfies the triangle criterion with ρ(a) = c , ρ(b) = d ,
ρ(c) = d , and ρ(d) = d . We have R ⊢ a ⇛ b and R ⊢ b ⇛ c = ρ(a), but ρ(b) = d , c .

From this example, we conclude that it is not a good idea to replace the check that R ⊢ w ⇛ r

with a check that ρC (w) = r , as this would lead to the check to fail where it should not.

7.2 Rewrite Rules Matching on Symbols

The type theory formalized in this paper has a strict separation between symbols that act as the
head symbol of a rewrite rule and those acting as rigid symbols in a pattern. However, in the Agda
implementation there is no such separation: a symbol can serve both roles in different rules or
even in the same one. For example, one may make f into an idempotent operation by declaring a
rewrite rule f (f x) _ f x .
In this more general setting, to check the triangle criterion for a set of rewrite rules R, it is not

sufficient anymore to check if two left-hand sides overlap at the root position: we also need to
consider when one pattern overlaps with a subpattern of another pattern. To make this notion
more formal, we introduce the notion of a position in a pattern. Basically, a position is a path in the
syntax tree of a pattern. More formally, a position l is a finite sequence of natural numbers. The

subpattern (or sub-frame) at a given position in a pattern, written p |l , is defined as follows:

p |• := p

⟨f | S⟩|0::l := S|l
(suc p)|0::l := p |l
(p,q)|0::l := p |l
(p,q)|1::l := q |l

F,S|0::l := F|l
F,S|1::l := S|l
(⋄ p)|0::l := p |l
(elim P P0 PS ⋄)|0::l := P |l
(elim P P0 PS ⋄)|1::l := P0 |l
(elim P P0 PS ⋄)|2::l := PS |l

We define replacement at a given position p[q]l meaning p where the subpattern at position l

is replaced by the pattern q. We then update Definition 7.2 as follows:

Definition 7.7 (Updated version of Definition 7.2). Let (C,≻) be an ordered set of patterns. We say
that (C,≻) is closed under unification if for every pair of patterns p,q ∈ C and every position l such
that p |l unifies with q with most general unifier σ , we also have pσ ∈ C , and pσ ≻ p.

With this updated definition of closure under unification, the second step of the algorithm also
has to be updated. Now we compute for every pair of rules ∆⋉ p _ u and ∆

′
⋉ q _ v in R and

for every position l in p the most general unifier σ = MGU(p |l ,q) and (if it exists) check that pσ
is the left-hand side of another rule. With this change, our algorithm for checking the triangle
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criterion can again be used to enforce that the triangle property holds. However, a full formal proof
of correctness as we did in the simpler setting is beyond the scope of this paper.
In general, adding auxiliary rules to R in the second step of the algorithm may now fail to

terminate. For example, consider a rewrite system with two symbols s and p and two rewrite rules
s (p x) _ x and p (s x) _ x . There is no finite set C that includes s (p x) and p (s x) that is closed
under unification. Even if it does terminate, we then also have to pick right-hand sides for each of
these patterns, for which there may be more than one choice. In the implementation for Agda, we
avoid this potential for non-termination and non-determinism by refusing to automatically add
new rewrite rules. Instead, Agda reports an error and ask the user to manually add a rewrite rule
with left-hand side pσ to resolve the ambiguity between the two rewrite rules.

One may ask if it is necessary to also consider non-maximal reduction steps R ⊢ p ⇛ w in the
final step of the algorithm. The following example shows that it is indeed necessary in general.

Example 7.8. Consider a rewrite systemR with symbols f , a,b, and c , and rewrite rules f a a _ c ,
f b b _ c , and a _ b. This rewrite system does not satisfy the triangle property because
R ⊢ f a a ⇛ f a b, but R ⊬ f a b ⇛ c . However, if we only considered the possible maximal

reductions of f a a, we would only consider the case for f b b and not for f a b and f b a, which
would lead us to wrongly conclude that the triangle property is satisfied.

7.3 Agda Implementation

We have implemented user-defined rewrite rules as an extension to the Agda language [Agda
Development Team 2020]. With this extension, the user can turn a (global) equality proof or
postulate of the form p : Γ → f p ≡ v (where ≡ is Agda’s built-in equality type) into a rewrite rule
by means of a {-# REWRITE p #-} pragma. With this pragma, Agda automatically reduces every
instance of f p to the corresponding instance of v during reduction. For example, one can turn the
standard definition of + into the parallel version by providing two proofs (k : N) → k + zero ≡ k

and (k l : N) → k + (suc l) ≡ suc (k + l) and using them as rewrite rules.
Since each rewrite rule must be proven (or postulated) to hold as a propositional equality, all

the rewrite rules in Agda automatically have an instantiation (see Sect. 6.4). Thus rewrite rules on
their own cannot break the consistency of Agda; all unproven assumptions are made explicit as
postulate’s.
To ensure subject reduction is preserved, the implementation provides an optional confluence

check, that can be enabled with the {-# OPTIONS --confluence-check #-} pragma. When en-
abled, Agda checks that the declared rewrite rules satisfy the conditions of the triangle criterion
(Definition 6.3).6 For checking that the set of left-hand sides is closed under unification, we rely on
Agda’s existing unification algorithm that is used for constraint solving [Abel and Pientka 2011].

Although the type theory presented in this paper requires axioms and rewrite rules to be declared
in blocks, the implementation in Agda is more flexible while ensuring that the correct grouping in
blocks can be done behind the scenes. In a typical use case of rewrite rules, the user would first
define a function using regular means (i.e. pattern matching), then prove certain equalities about
the function, and finally register these equalities as rewrite rules. The confluence checker will then
take into account both the ‘native’ rewrite rules implicit in the definition by pattern matching, and
the explicitly declared rewrite rules.

The Agda typechecker always performs definitional equality checking by computing the weak-
head normal form of both sides of the equation (unless they are syntactically equal), which we
have not changed for our prototype implementation. This strategy has bad performance in some

6In Agda 2.6.1 the confluence check is based on the standard criterion of joinability of critical pairs that only ensures local
confluence. In Agda 2.6.2 this has been replaced with the triangle criterion described in this paper.
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cases, but this is a general limitation of Agda and not specific to our implementation. A Coq
implementation of rewrite rules can take advantage of Coq’s optimisation heuristics, and be more
careful to only unfold definitions when required.

The implementation of rewrite rules in Agda goes beyond the type theory described in this paper
in several ways [Cockx 2020]:

• As noted before, it allows the same symbol to be used as both the head symbol of a rewrite
rule and a rigid symbol in the pattern of a rewrite rule.

• It allows higher-order rules that can match on λ-abstractions, Π-types, and bound variables.
• It allows non-linear patterns and a (restricted) kind of conditional rewrite rules.

Rewrite rules also interact with several other features of Agda such as η-equality for functions
and record types, definitional proof irrelevance [Gilbert et al. 2019], metavariables, universe poly-
morphism, and parametrized modules. The presence of η-equality in particular means we can omit
the requirement that all rewrite rules with the same head symbol have the same arity. Instead, the
algorithm for checking that the set of left-hand sides is closed under unification uses η-expansion
to ensure stacks have the same shape before attempting to unify them.
These features go beyond the scope of our current work, which focuses instead on a solid and

formalized core type theory with rewrite rules. Although we have not yet proven that our results
in this paper hold in the more general setting of Agda, we conjecture that the proofs carry over
without fundamental issues if we restrict it to linear and non-conditional rewrite rules.

8 RELATED WORK

Compared to existing work on rewriting theory, the main novelty of our framework is the need
to consider the interaction between the rewrite rules and the type checking algorithm, and in
particular to prevent new rewrite rules from breaking type checking and subject reduction. In this
section, we compare our work with other attempts at extending type theory with rewrite rules,
and also discuss confluence checking of rewriting systems more generally.

8.1 Rewrite Rules in Type Theory

Combining rewrite systems and type systems stems from the work by Tannen [1988], extending
simply typed lambda-calculus with higher-order rewrite rules. This idea was taken to dependent
type theory by Barbanera et al. [1997]. They extend the Calculus of Constructions with first- and
higher-order rewrite rules, provided the higher-order rules do not introduce any critical pairs.
Their proof of subject reduction relies on first proving strong normalization (without relying on
confluence). In particular, their proof that β-reduction is type-preserving is greatly complicated by
the fact that they can not assume injectivity of Π-types.
Walukiewicz-Chrzaszcz [2003] (section 4.2) proves subject reduction for another variant of the

Calculus of Constructions with a more general notion of higher-order rewrite rules. Their proof
that β-reduction is type-preserving is essentially the same as the one by Barbanera et al. [1997].
In later work the authors also study completeness and consistency of this system [Walukiewicz-
Chrzaszcz and Chrzaszcz 2006], and discuss how to extend Coq with rewrite rules [Chrzaszcz and
Walukiewicz-Chrzaszcz 2007].

The Calculus of Algebraic Constructions [Blanqui 2005] is another extension of the Calculus
of Constructions with a restricted form of higher-order rewrite rules. It also provides criteria for
checking subject reduction and strong normalization. Once again, the proof that β-reduction is
type-preserving is based on the same idea as Barbanera et al. [1997].

The Open Calculus of Constructions [Stehr 2005a,b] combines the Calculus of Constructions with
conditional rewrite rules and membership equational logic. However, it is based on a set-theoretic
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semantics and can thus not be used in other settings. Regarding the question of subject reduction,
the author notes the following: łSince computation with non-well-typed terms can be semantically
justified, there is in particular no need for a syntactic notion of subject reduction in our treatment.ž
CoqMT and CoqMTU [Barras et al. 2011; Jouannaud and Strub 2017; Strub 2010] continue

the work on adding (first-order) rewrite rules to the Calculus of Inductive Constructions and
integrate it into the Coq proof assistant. In addition, they also handle non-directed equalities such
as commutativity laws. The authors provide proofs of subject reduction, strong normalization,
logical consistency, and dedicability of type-checking. The proof of subject reduction relies on
the existence of a function norm that normalizes the algebraic parts of a term according to the
theory under consideration. This means CoqMT only deals with decidable first-order theories.
Unfortunately, the implementation (available at https://github.com/strub/coqmt) has not been
integrated in Coq itself and is no longer maintained.
Dedukti [Assaf and Burel 2015; Boespflug et al. 2012; Cousineau and Dowek 2007; Saillard

2015] is an implementation of λΠ-modulo, a logical framework with dependent types and user-
defined higher-order rewrite rules. In contrast, our work focuses on adding rewrite rules to an
existing type theory and the interactions between rewrite rules and other features such as inductive
types and a universe hierarchy. Dedukti also provides the possibility to use external tools for
checking confluence and termination of rewrite rules. Our focus in this paper is complementary:
our formalization gives a precise statement of what properties need to be checked to ensure subject
reduction of the whole type theory.
Blanqui [2020] shows how to lift the usual restriction that both sides of a rewrite rule should

be well-typed and have the same type, instead checking that well-typedness of the left-hand side
of a rewrite rule implies well-typedness of the right-hand side. The algorithm first collects all the
constraints that are required for the LHS to be well-typed, and uses Knuth-Bendix completion to
turn these rules into a confluent rewrite system that is used for checking the RHS. Our theory
already allows rewrite rules that satisfy this more general criterion, and we expect it could also be
added to our implementation for Agda.

8.2 Confluence Checking

When dealing with potentially non-terminating rewrite systems, the simplest criterion for conflu-
ence is the complete absence of critical pairs, i.e., non-ambiguity. For left-linear rewrite systems, this
criterion is sufficient to conclude confluence. This criterion is actually enough to prove confluence
of several examples in this paper, in particular the ones in Sect. 2.2, Sect. 2.3, Sect. 2.4, and Sect. 2.5.
Another simple but useful confluence criterion is strong confluence, i.e., each critical pair v1 f

u ⇝ v2 can be joined as v1 ⇝ w f⋆ v2 with a single step on the left (and symmetrically, also as
v1 ⇝

⋆ w f v2). This method is sufficient to prove confluence of the parallel plus in Sect. 2.1.
Apart from strong confluence, there are several more powerful confluence criteria for first-order

rewrite systems, most prominently those based on the decreasing diagrams method [van Oostrom
1994a]. The main challenge for applying this method is the need to order the rewrite rules in some
well-founded way (see also the work by Felgenhauer and van Oostrom [2013] and Liu [2016]).

A more permissive version of this criterion is that the rewrite system should be development

closed [van Oostrom 1995]. This criterion requires that each critical pair (v1,v2) can be joined as
v1 ↠ v2, where a development step u ↠ v is defined as the congruence closure of the rule

∀x . xσ ↠ xσ ′

lσ ↓β↠ rσ ′ ↓β

where l _ r is a rewrite rule and ↓β denotes β-normalization.
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The recent work by Ferey and Jouannaud [2019] on checking confluence of higher-order rewrite
systems is based on the decreasing diagrams approach by van Oostrom [1994a] and applies it to the
Dedukti system. Like our approach, the authors focus on first proving confluence for the untyped
system and using this to prove type preservation and strong normalization. However, the main
theorem requires the rewrite rules to be terminating on the set of pure λ-terms, while our criterion
does not require any form of termination.
Regarding modularity of confluence, the main result is the one by Van Oostrom [van Oostrom

1994b, Theorem 3.1.54]. He shows that combining two left-linear higher-order rewrite systems is
confluent if the systems are individually confluent and weakly orthogonal (i.e., all critical pairs
between them are trivial). However, as we mentioned before this result does not apply directly to
our setting because of the presence of inductive types.

9 EXTENSIONS AND FUTURE WORK

Checking Termination. To ensure that our type theory enjoys not just subject reduction but
also decidable type checking, we would like to check termination of rewrite rules. There are
several existing techniques that could be applied to our setting. Barbanera et al. [1997] apply the
general schema by Jouannaud and Okada [1991] to a dependently typed language. Later, it is
also used by Blanqui [2005] to prove termination of rewrite rules in the Calculus of Algebraic
Constructions. The Higher-order recursive path ordering (HORPO) by Jouannaud and Rubio [1999]
is used by Walukiewicz-Chrzaszcz [2003] to check termination of rewrite rules in type theory.
The computability path ordering (CPO) [Blanqui et al. 2008], an improved version of HORPO, is
a general and purely syntactic approach to proving termination. It has been extended to handle
dependent types by Jouannaud and Li [2015]. The size-change termination principle [Lee et al.
2001] has been extended to dependently typed rewriting systems by Blanqui [2004, 2018] and has
recently been implemented in the SizeChangeTool [Genestier 2019] to check termination of rewrite
rules in Dedukti.
As for confluence, termination is not just a property of the rewrite rules themselves but of the

whole system, including inductive types and the universe hierarchy. Thus the main challenge
in proving termination is to integrate a specific criterion for termination of rewrite rules (e.g.
size-change termination) with a general proof of strong normalisation of type theory. One such
proof of strong normalization is given by Abel et al. [2018]. A possible direction forward would be
to extend this proof to a type theory with rewrite rules.

Allowing more General Patterns. In this paper we extend PCUIC with first-order rewrite rules
with linear patterns and a strict separation between function-like symbols and constructor-like
symbols. We could extend the pattern language in several ways to allow more general rewrite rules.
We can allow higher-order patterns that match against binders such as Π-types and λ-terms. Inside
the body of a binder, bound variables can also act as rigid symbols that can be matched against,
enabling rewrite rules such asmap (λ (x : A). x) l _ l . In addition, we could allow pattern variables
inside a binder to be applied to a subset of all bound variables rather than all of them. For example,
this would allow the rule subst (λ (_ : □). A) p x _ x . However, this requires checking freeness
of variables during matching. We could allow non-linear patterns by checking conversion during
matching. However, this would mean confluence is no longer modular in general, so we would
need a new criterion. All of these extensions to the pattern syntax have been implemented in our
implementation for Agda, so it would be interesting to also support them in our formalization.

Combining Rewrite Rules with a Type-Directed Equational Theory. Many type theories include
equational laws other than β- and ι reduction in their notion of conversion. For example, Agda
includes at least the following equational laws: (i) η-equality for functions and record types. (ii)
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Proof-irrelevance for types in the Prop universe [Gilbert et al. 2019]. (iii) Equational laws for
universe levels such asm ⊔ n = n ⊔m and lsuc (m ⊔ n) = lsucm ⊔ lsuc n. These equational laws
are taken into account by our implementation in Agda, but they are not yet considered in our
formalization. Adding η-equality for functions to MetaCoq is currently work in progress.

Abstracting over Rewrite Rules. An important limitation of our current work is that it is possible to
introduce new computational assumptions, but not to discharge them (except on the meta-level as
we do in Sect. 6.4). In theory, it should be possible to design a language construct that abstracts over
a rewrite rule in the context, similarly to how a lambda abstracts over a value. Such a construct that
allows abstraction over computational assumptions and discharging those assumptions when they
hold definitionally would have interesting applications when working with abstract structures in
dependent type theory. However, doing this naively leads to several problems, in particular it leads
to a loss of decidable type checking since łbeing a linear patternž is not stable under substitution.
A better approach would be to not abstract over individual rewrite rules but instead abstract

simultaneously over a set of values and a set of rewrite rules on these values. This leads us to a
notion of ‘rewrite record type’ consisting of a number of fields plus a number of rewrite rules with
these fields as symbols. To construct an element of a rewrite record type, the given fields should
satisfy all the rewrite rules definitionally. This solves the problem from before, but there is still the
question whether the resulting system satisfies confluence. There is now a critical pair between
each rewrite rule and the primitive computation rule for the projection corresponding to the head
symbol. Moreover, checking confluence is complicated by the fact that most rewrite rules in this
approach are non-linear in the value of the record type itself. How to overcome these problems
and provide a practical notion of a ‘rewrite record type’ is something we would like to work on in
the future.

10 CONCLUSION

Since its very beginning, the evolution of dependent type theory has swayed back and forth between
the practical decidability of intensional type theory and the expressive power of extensional type
theory. Adding rewrite rules to type theory combines some of the strengths of both into a single
system. This has lead to a long history of attempts at integrating rewrite rules into type theory,
each one with its own subtly different aims, restrictions, and guarantees. Yet despite the great
promise of rewriting in type theory and major breakthroughs in the field, the fact remains that
the practical use of rewrite rules in type-theoretic proof assistants at the time of writing is still
limited. A likely explanation is that both dependent type theory and rewriting theory by themselves
are complex theories that are difficult to implement correctly, so their combination pushes the
complexity beyond what can be reasonably verified by hand.
This shows the need for a type theory with rewrite rules that is rigorously formalized yet

powerful enough to serve as the core for a real proof assistant, which is what we do in this paper.
Compared to previous work, we do not have the most general possible notion of rewriting or the
most powerful criteria for checking confluence and termination. However, what we do provide
is (i) a combination of Coq’s core calculus PCUIC with general user-defined rewrite rules, (ii) a
formalization of this theory showing important metatheoretical properties, in particular confluence
and subject reduction, and (iii) an implementation of rewrite rules in Agda that combines rewrite
rules with all of Agda’s other complex features and that includes a practical criterion for ensuring
metatheoretical properties hold.
We believe our work raises the bar for future research on the areas of both formalization and

practically usable implementation, and will ultimately lead to the power of rewrite rules being
widely usable in our dependently typed programming languages and proof assistants.
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