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Scattering of Obliquely Incident
Waves by an Impedance Cylinder with
Inhomogeneous Bianisotropic Coating

Bernhard JakobyMember, IEEE

Abstract—A propagator matrix approach for cylindrical struc- Further references on known numerical and analytical ap-
tures is applied to solve scattering problems featuring inhomo- proaches dealing with wave propagation and scattering in

geneous bianisotropic media. The involved propagator matrix, chirg| media can be found in the above cited papers, as well
which describes the relation between the transverse fields at - . . ’
as in monographs on this topic (e.g., [7], [8]).

the two boundaries of an inhomogeneous cylindrical layer, is ’ X I | / . .
obtained by utilizing Fourier series expansions for fields as well Here, we will consider general bianisotropic megila, V\_/h|Ch
as material parameter functions. The presented formalism is introduces further degrees of freedom and contains simpler

capable of analyzing the scattering of plane waves which are media as special cases. Apart from the coverage of general
obliquely incident on an impedance cylinder that is covered pianisotropic media, the emphasis lies on the consideration
with an inhomogeneous bianisotropic layer. We provide typical f inh ities in th lar directi f th lindri
examples showing the applicability of the method. Ol Inhomogenel I§S In . lf.' angular '"?C ion of the cylindri-
cal structure, which still is a challenging problem even for
simpler media, while inhomogeneities in radial direction have
been thoroughly treated in the form of stratified structures.
|. INTRODUCTION In this paper, we adopt a method similar to one that we

successfully used for guided wave problems related to these

{\ilotnhlosf Cecl)géggtrjrg:nnve\:/t?cpsrszggﬁig ) spg?ﬁﬁhgggaiz ia:?nudl%_rnd of structures [9]. By employing a spectral expansion of
9 g by P YiNAelids and material parameter functions in angular direction,

(characterized by impedance boundary conditions) that fea? '8ropagator matrix relating the transverse field components

tures an inhomogeneous bianisotropic coating. The consider the bounding surfaces of an inhomogeneous cylindrical

type of |n.homogene|ty_|ncludes 'aFer?‘" |.e.,_angulgr, as W‘%\yer can be constructed. In principle, this propagator matrix
as radial inhomogeneities of the bianisotropic coating. LS . . .
. is infinite dimensional but can be truncated for numerical

In the last few years, known numerical approaches for . . .
: . : : . e\aaluatlons. By means of this propagator matrix the boundary
isotropic media problems have been generalized and modified ...

. - ) : : .__conditions at the center conductor can be transformed to the
to include bi-isotropic (chiral) and special types of bian: : . L
. ) . L Iaafer-free space interface, which allows the determination of
isotropic media as well. Special interest has been devo?| : N

. N . e scattered fields due to an incident plane wave.

to the scattering by cylindrical objects, see, e.g., [1]-[6].
In [1] scattering from multilayered chiral cylinders with a
center conductor is considered, in [2] scattering by a chiral
cylinder embedded in another chiral medium is investigated,We assume harmonic time-dependergg(;jwt) and con-
and in [3] oblique scattering by cylindrically stratified chiraktitutive equations in the Tellegen form [10]
'me'dla is treated using a chgln maFrlx method. Obllqugly D=c.E+¢-H 1)
incident waves are also considered in [4], where scattering = =
by a homogeneous bi-isotropic cylinder is investigated, and B=(-E+p-H 2
[5] deals with conductors which are eccentrically coate\%h
with chiroplasma cylinders. The backscattering from curve% bianisotropic material behavior at frequersy In the
metallic surfaces coated with chiral layers has been conside% Fliowin we wFi)II frequently use cviindrical cgordinZ\te
in [6]. The coating of scatterers with chiral media gaineé)ith g_ ] q _ y \)//Ve consider structjzsz as
attention due to the additional degree of freedom in tHEI! & = TCOS¢, y = rsing.

material parameters, which allows to influence the scatteriﬁgOWn n Fig. 1. The impedance core filing up the region
behavior. r-< 71 IS covered by a layer of thickness — r;. This

layer is inhomogeneous where the material parameters are
functions of the lateral position described by and . A

Manuscript received July 3, 1995; revised September 11, 1996. This w&?!@‘_”e wave is obliquely incident 'n_ some direction cha_rac-
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Index Terms—Electromagnetic scattering.
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direction of incident expansions (5) into (3) leads to an infinite dimensional matrix

wave (wave vector) equation in terms of the spectral field components [9]
. . O«
L-f=—f 6
, Lf=_ 6)
wheref = [Ey,E.,Hy, H.]T andEy = [..., Ey _1, Eypo,
FE41,...]% denotes an infinite dimensional vector containing
impedance the Fourier series coefficient&, ,(n = —oo,...,o0) of
cylinder - - ’ >
E4 and similarly for £,, H,, and H.. Note that these
vectors must not be confused with the “physical” field vectors

inhomogeneous

=%
/

Fig. 1. Principal geometry and direction of incident wave.

(printed in bold face). For numerical treatment, these infinite
dimensional vectors have to be truncated by setting their
Fourier coefficients with index»| > N to zero. The effects
of the truncation and numerical convergence, with respect to
the truncation parametédy¥, were discussed in [9].

Integration of the differential equation (6) yields the prop-
agator matrixP for a given cylindrical layer with inner and
outer radiusr; andr,, respectively

£(r2) = P(ra,r1) - £(r1). (7

The integration of (6) can be performed numerically by
subdividing the layer intd. sublayers being so thin that is

in z direction the scattered fields must obey thdependence assumed to be constant with respect teithin each sublayer

exp(—jko cosbpz).

A. Determination of the Propagator Matrix P(ry, r) = H [£+£(7‘1 + nAr)Ar] (8)

n=it—

In this section, we will give a brief outline of the derivation _ ) )
of the propagator matrix for the inhomogeneous layer withotiere. I denotes the unit matrix andr = r, —r/L is the
repeating various details which are given in our previous wokRickness of a sublayer.
[9]. Writing Maxwell's equations for a general bianisotropic
medium in cylindrical coordinates, the components of the B. Calculation of the Scattered Fields

field vectors can be eliminated to arrive at A relation between the transverse components of the scat-
. 7] ¢ 3) tered field solutions in free space can be obtained by employ-
=7 9 ing a common solution Ansatz where thecomponents of
with f = [E,, E., Hy, H.]7 (the superscripf’ denotes trans- the scattered Spectral_fields are set proportionﬂi@(k,,@)_
position) and Here, k. = kosinfy is the radial wavenumber anéf,
denotes Hankel's function of second kind and ordewhich
L :é<7,7 137 3@%#%5%@1) (4) was chosen to fulfill the radiation condition at infinity. The
= —\ rdp 9z ordern corresponds to theth Fourier coefficients of the fields,

where ey, i, &w, and g stand for ther, ¢ dependent i..e., Ejyn a}nd I—ij (the super;criptg indicate the scattered
elements of the material parameter tensors in cylindricé$lds). Using Maxwell's equations, the spectfatomponents
coordinates £,1 = r, ¢, 7). The explicit form of the operator a r = 72 can then be expressed in terms of the spectral

matrix £ is given in Appendix A (see also [9]). components
Due to the known form of the: dependence for the Es (r2) B (r2)
. . . . . P,n\"2 _ zm\'2 9
fields, derivatives with respect te can simply be replaced |:gs (7,2)} -4, |:g5 (7,2)} )
by —jk. = —jkocosfy. Next, by considering that field e #n
components and material parameters mustbperiodic with Where
respect top, we can expand these quantities as Fourier seriel% _ [Fun Fion
' o ' =n | Foin Faon
b(r, ¢, z) = e IH=* Z W (r, k2)e ™ (5a) _ nkq cos 6 iwonnk HP (kyrz)
ne—oo . i P, JWHORy H,(f)(kr’?) (10)
°o TR, HP (kera) _ ko cosfy :
- 7 Jw&‘ok‘r @ P
g(rid) =Y Gnlr)e™m? (5b) HD (k) >
== ere,H;” denotes the derivative df;”/ with respect to its
n=-o0 Here, B\ d he derivative d7.> with resp i

where ¢y stands for any transverse field component and argument.
denotes any of the scalar functions occurring4n which Next, we express the obliquely incident plane wave in terms
depend upon material parameters only. Substitution of tbécylindrical waves. Here, we distinguish between two cases:
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material I: &, = 4.213(1 — j8), #r = 1.5(1 — j8)

&= —(=—50.565 (1— 78)/eoro

0.25m 6=0.1

radius

material II: &, — 4.916, 1, = 1.5

€= —( = —j1.695 \/eozmo

d
e ) o7 E(L = 1900)

-50 L 1 1 d
0 45 90 135 180 ¢ (d®)

Fig. 2. Polarized and depolarized bistatic echowidths of a two-layer chiral cylinder for an incident TE wave. Comparision of our result (lines) with
that of [1, Fig. 3] (points).

1) the incident electric field vectdE® lies in the “incidence

plane” defined by the vectols, andz (TM case) and 2) the

dual case where the incident magnetic field ved®rlies in 0
that plane (TE case). Hence, we define

Eiry = E[— cos 8y cos(¢ — po)t

. . material II 120°
+ cos Bp sin(¢ — ¢o)d + sinfpz]e 7R T  (11)

in terms of polar coordinateg{ denotes the scalar amplitude,
t, ¢,z are the unit coordinate vectors), and similarly, ..
Expanding the exponential as [11]

e—jko.r _ Z j—an(kTT)e—jn(qS—ng)e—jkg cosbpz (12)

n=—oo

material 1

yields, together with Maxwell’s equations, the following repre- URERRRRR
sentation of the TM transverse components in terms of Fourier

series Fig. 3. Cross section corresponding to the results in Figs. 4 and 5 (material
data for materials | and Il are given in text).

% i —jko cos Bz — COS 90
E¢,TM = Elehocosto knr sin 0 . )
- 0 0 where J,, denotes ordinary Bessel's function of orderand
% i~ nd,, (ko o—In(6—¢0) 13 the prime m@cates derivative with respect to its argl_Jment.
n:z—:ooj (Fe) (13) The expressions for the TE components can be obtained by
‘ o ko substitutingE < H, ji0 — —¢o in the above formulas. From
HY oy = Efe/hoces QOZ,.— these series, the vectafsdescribing the incident field can be
- Jwho readily set up.
% Z G (k) e im(@=d0) (14) To solve for the scattered field, we consider the total field

atr = 7o

n=—0o0

£ (ry) +£2(rp) = P(ro,r1) - £(r1) a7)

E;,TM — Eipdkocosboz o) 6o Z j_njn(/fﬂ’) (15) . .
n=Teo where we used (7). The subvectoB (E_, H,, and H)

‘ of £5(r») are not independent from each other since the
H.ry=0 (16) components can be expressed in terms of Al@mponents
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as given in (9). Furthermore, an interrelation of the subvectomhere the contributior1E§|2/sin2 8o, which represents the
of f‘(rl) is given by introducing TE/TM surface impedanceg’-field intensity in the scattering plane accounts for the
characterizing the center conductor [12] polarized part, While|E§5|2 (&£-field intensity perpendicular
E.(r) Ey(r1) to the scattering plane) represents the depolarized part for
Zrm = — , ZTE = — . (18) an incident TM-polarized wave [13]. A similar consideration
Hy(r1) H(r1) for the scattered magnetic field can be performed for the TE
By considering these relations, the following linear system 6Bse. By using asymptotic expansions for Hankel functions
equations can be established from (17): we can express the scattered far fields in terms of the Fourier
coefficients of the transverse fields gt which leads to the

23 2 p24 21
P+ ZrvP 244 - ZTE£41 -1 0 following expressions for the TM bistatic echo widths:
P® 4 ZpP® P ZreP 0 -I
P13+ZTMP12 P~ ZpgP!! —F' -F2 A $ B () 2
PB Lz P2 PH_z.opdl _Fl _F22 TM( 4\ — ‘ Zn ing—ind
r -_i: T™E = TEL I K oy ( ko sin® Bo| E|2 n;m Hr(f)(/fﬂé)
Hy(r)] | E:(r2) (25)
A AN 00 [7s 2
}:»Isz(”) = i{f(m) (19) oTM(g) = 4w’ pid i H: p(r2) jreine
€§(7’2) Ey(r2) %d kg sin 6o B2 = H,(LQ)(I{,,TQ)
2t d | F ) (26)

Here, the matrice®™ [dimension(2N +1) x (2N +1)] are  \yhere the subscripts and d refer to “polarized” and “depo-
submatrices of the propagator matrix for the |nh0mogeneopé$lzed " respectively. The corresponding expressionsr

layer and ¢TF can be obtained by formally substituting. ,

P pi?2 p¥® pi H.,,E' — H' 1o — €o in the above formulas.
5 522 523 524

P(ry, 1) = ;31 §32 533 §34 (20)
Su P pib pu I1. NUMERICAL RESULTS

= = = First, the method has been checked by reproducing results
and the matriceE"™ represent diagonal matrices being set ufor special cases from [13] (perfectly conducting wire covered
by matrix elementsy,, ,, given in (10); the matrix elements with homogeneous dielectric layer, normal as well as oblique

of F'™ read incidence) and [1] (perfectly conducting wire, homogeneously
- covered with two layers of lossy chiral material, normal

Flm — {Fzm,i; LIJ (21) incidence) that yielded very good agreements. For the latter

" 0; i # ] example we show a comparison of results in Fig. 2. Our result

was obtained with truncation paramefér= 13 andL = 1900
sublayers that account for the considerable electrical thickness
of the structure at 300 MHz. The results agree very well except
for 1% in the region below about-20 dB. However, by

. L . increasing the parametdr further, improved agreement can
C. Calculation of the Bistatic Scattering Widths be achieved in this region also (see result for= 7500).

In the far field the scattered fields are local plane waves, i.e.,In the following, we present sample results for a perfectly
E® and H* are perpendicular to the direction of propagatiomslectrically conducting (PEC) wire (i.eZrr = Zrm = 0),
which is described by the wave vectlr = ko(cos6pz + that is covered by a homogeneous layer and a truncated
sinfot). Hence, ther components in the far field can besecond layer, which represents a discontinuous inhomogeneity
expressed in terms of the components in direction ¢. The cross section is shown in Fig. 3, the radii

s o s s are given bykgr; =1, kor; = 1.5, andkgre = 1.7, wherek
By = —EZ cotbo, Hy = —HZ cot fo. (22) is th% free-sypace wavenumber at the considered frequency.

Thus, we can solve for the spectralcomponents of the
scattered fields at = r,; the relatedy components then can
be easily obtained by (9).

The bistatic echo widtlr is defined as [13] The inner homogeneous layer is made up of lossy chiral ma-
B . B H* . { terial withe = (3 — j0.003)eq, & = po,& = —¢ = j0.6, /o100

o =27 hm R~ _or hm R—_— (23) (material I) while the outer, truncated layer consists of uniaxial
BB H'H™ bianisotropic material withe = (I — 22)e, + 22¢. and

where R = r/sinf, denotes the far-field distance from theaccordingly fory, £, and¢, wheree; = 5eq,e. = 6eq, it =
scatterer along the “ray path” of the scattered wave (thuw, - = 4p0,& = —( = —j0.8\/Eomo and &, = —(. =
asterisk denotes the complex conjugate). Usualli divided —;0.9./€ozi0 (material Il). In the following, we will compare
in a polarized part and a depolarized part. With (22), we havesults for these layer materials (labelbd for short) and
. 9 9 2, . , corresponding “ordinary” materials (labeledn-b) which are
E-E™ = |E|"+|E)|" +|E3|” = |EZ|/sin® o + |E3|"  obtained by setting thé and ¢ parameters for material 1 and
(24) 1l to zero.
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Fig. 4. Bistatic echo widths for normal TM incidence; polarized and depolarized parts for #melnon-bicase (no depolarization occurs in the later case).

In the calculations, it was found thdt = 200 sublayers the direction of the incident wave. Note that this rotation
and N = 10 for the truncation parameter (corresponding taffects not only geometrical boundaries but generally also
2N + 1 = 21 considered space harmonics) ensured numerigal)anisotropic material tensors. In our case, however, the
convergence. We consider scattering of a TM wave for normiainisotropy is uniaxial with respect g which is not affected
incidence ¢, =90C°, Fig. 4) and oblique incidence witfy, = by 180 rotations around axes perpendicularztoHence, the
18 (Fig. 5). lack of symmetry in the cas¢, = 90° is essentially caused

Due to the angular inhomogeneity of the structure, tHey the truncated top layer.
scattering behavior depends on the incidence aggleln In the case of oblique incidence, no such symmetry is
our calculations, three angles are assumedp, = 0°, 90°, observed for any of the three incidence angigsfor the
and 180. For normal incidence, the curves for the casds case. However, for)y = 0° and 180 symmetries occur
¢o = 0° and 180 are symmetric with respect t¢ = 0° for the non-bi case (see Fig. 5). Hence, the lack of such
and 180, while no corresponding symmetry can be observesymmetries in the case of oblique incidence is essentially
for the casepg = 90°. Generally, a sufficient condition for caused by the presence of bianisotropic media. A derivation
such a symmetry is that the structure under consideratiofisufficient conditions for these symmetries is discussed in

transforms into itself after performing a 18@otation around Appendix B.
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Fig. 5. Bistatic echo widths for normal TM incidencé, (= 18°); polarized and depolarized parts for theand non-bi case.

Apart from introducing asymmetry in the scattering widtlions of the material parameters with the coordinatean be
plots, we further note that the bianisotropic character of theeated in exactly the same manner. However, since we are
media introduces significant depolarized contributions even féealing with a Fourier method with respect to to the angular
normal incidence (in contrast to tm®n-bicase, which yields coordinates, the case of discontinuous material parameters
no depolarized fields for normal incidence, see Fig. 4). Thigpresents a good numerical test case, since, compared to an
has also been found for chiral (reciprocal bi-isotropic) medrxample with continuous parameters, a high number of spatial
(see, e.g., [1] and Fig. 2). In the case of oblique incidence, \armonics has to be expected to obtain numerical convergence.
have depolarized scattered fields for thieas well as for the
non-bi case, however, the curves are quite different in shape IV. SUMMARY

in some regions (see, e.g., the curves §gr= 180" in the  |n this contribution an approach for the solution of scattering
region aroundp = 0°). This, again, indicates the influence obroblems involving inhomogeneous cylindrical structures has
the “bi” behavior on the depolarized scattered fields. been presented. The method is based upon the numerical
The chosen example of a partial coating represents a simglalculation of the propagator matrix for an inhomogeneous
practically realizable, geometry featuring a layer with anguldayer which is performed in the spectral domain where field
inhomogeneity. Of course, problems with continuous variguantities as well as material parameter functions are expanded
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in Fourier series with respect to. This yields an infinite di- = _Srrhee Grr(s — &2) (50)
mensional propagator matrix, which is truncated for numerical d, dr

calculation. The latter is then used to set up a linear systefry

of equations for the Fourier coefficients of scattered fields

due to an obliquely incident plane wave. The method has dr = Epppirr — ErrGrr (51)
been checked by comparison with previously obtained results

for cylindrical structures involving homogeneous layers of = 19 L 19 ) (52)
(bi)isotropic media, which are included as special cases in our Jwr 9¢’ T jwoz

method. A sample result has illustrated a typical applicatiqfote that operators occurring in the numerator of fractions do
of the method and depolarization, and asymmetries in thgt act on the denominatat...

scattered field response due to the presence of bianisotropic

media have been discussed. APPENDIX B

SYMMETRIES IN ) 4(¢))
APPENDIX A

To discuss the appearance of symmetries in
THE MATRIX OPERATOR £ PP Yy ahe(s)

characteristics a bit more in detail, let us briefly investigate
Considering the material parameter tensors in cylindrichbw the sufficient conditions mentioned in Section Il can
coordinates(r, ¢, z), the 4 x 4 matrix operatorL in (3) is be derived. For the following considerations, a rectangular
given by - coordinate framer,y, » is best suited.
1 Let us first discuss the case of normal incidence. Assume
Li1==Cp— — +(0p — Cr)A— p2rB (27) that a plane wave traveling i@ direction is incident on a
Juwr structure characterized by material parameter tens@rsy),

L21 = (o + (0= + Cpr) A+ pigr B (28)  Ju(w,), &(x,y), and ((x,y) (we consider no inhomogeneity
L31 =€+ e A+ (9 +Er)B (29) with respect toz). Assume, further, that the solution of this
L1 = —€4pp — egr A+ (0, — &40 )B (30) scattgring problem is knqwn, and let us denote. the solution
L12 = =Coo + (0 = Gr)C — oy D (31) functions for the field variables by small letters, i.e.,
['22 = Cqbz + (az + C¢1)C + N¢1d (32) EOé = Ca(.’L', Y, 2)7 Hoé = ha(.’ll', Y, Z) (53)
L3y = €2z +e0C + (05 + &) D (33) with o = =, y, and ». Next, we introduce new independent
Ly = —e4. — €6:rC + (02 — &yr) D (34) variablesy = —y andz’ = —z into the source-free Maxwell’'s
L13=—pizp 4 (05 — () E — oy F (35) ;aquations, bLll]:c keep consitde(ing the fielt(jj c??pon?rzgs in the
. ramex, y, z. If our geometry is composed of biaxial (diago-
La3 = pop+ (% + o) Bt ol (36) nally) bianisotropic media that fulfill the symmetry properties
L3z = zd T . Z’I’E 0, zr F 37
=G m gy P Gk el D) () = i, —) (54)
Laz = =Loo = eor B+ (0. = Lon) (38)  \yherei — x,y,~ andz stands fore, i1, £, and(, it can easily
Lis=—pizz + (9o = G )G — por H (39) be shown that the set
['24 = Nqbz + (az + Cqb?)G + u¢7H (40) Eac = —6;;(.’13’, y/7 z/) = —6;;(.’13’, -1, —z) 55
['34 = SZZ + EZ”G + (845 + SZ”)H (41) Hac == —hw(xa y/7 Z/) = _hw(xv —-Y, _Z) ( a)
['44 = _quz - 5451*G + (az - £¢1)H (42)
E,=¢, 7/7“/211 y gy TR
where o y/ 7,) e, =4, %) (55b)
Hz/ = hl/(xvy ) R ) = hu(xv Y, _Z)
_ 51’¢N1‘1’ Srr(az - Cu;b) 43 i .
A=-——T—- 7 (43) (with v = v, 2) formally represents a solution of the source-
! ! free field equations as well. Our incident wave featurestno
_ 51‘¢C1’1‘ 51‘1’(az - 1’q5) . _
B= d + 4 (44) component and constaptz components i = const planes,
T T 5 and is thus compatible with both solutions (53) and (55).
C = _SEratr §rr(=0p = Cr2) (45) Assuming that the corresponding solution for the scattered
dy dy fields is unique, the solution for the scattered field must also be
D= ErzGrr n err(=0g — Gr2) (46) consistent with (53) and (55), and we thus obtain the following
d d symmetry conditions for the field components:
R R (47) Ey(2,,2) = ~Ea(x, —y,~7) (562)
) _T _ Hw(xvyvz) = —Hx(.’IZ', —y,—Z)
F— _Errtrg CTT( 9 57‘45) (48)

d, d,
G o trsbrn | o0 = &) “9) E,(z,y,2) = Ey(z, —y,—2) (56b)
dr dr HV(xvyvz) :HV(xv_yv _Z)
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wherer = y, z. This means that the axis represents a mirror discussions, and Prof. F. Seifert, Vienna University of Tech-
axis for the Poynting vecto8 = E x H*. Since we have nology, Austria, for his continuous encouragement.

no field variation in thez direction, (56a) and (56b) means
that the scattered power in some directipis the same as in
direction—¢, where¢ denotes the angle with respect to the 0
axis (azimuth). This explains the symmetries fgr= 0° and
18 in the normal incidence case observed in Fig. 4 for the
bi as well as thenon-bi case. [2]
In the case of oblique incidence, the above approach fails
since the incident wave is not compatible with (53) and (55)3!
Alternatively we can tackle the problem as follows. Let us
assume that the incident wave vector lies in the plane and
consider the TM case, where the incident electric field vectd!
lies in thex, z plane as well (orthogonal to the direction of
propagation, of course). For the TE case dual consideration®
apply. If we again assume that the solution (53) of the problem
is known and introduce a new independent variafjle- —y, (g
one eventually finds in a similar manner as above that the s%t

Eac = Cx(-’L', Y, 2)7

E, = —ey(aj, -y, %) (8]
E. = Gz(xv -Y, Z) (57a)

9]
HW = _hx(-%" _y7 Z)
Hy =hy(z, -y, 2) (10]
H, =—-h.(z,—-y,2) (57b) [11]

is also a solution of the source-free Maxwell's equation§1',2]
provided that 1) the geometry consists of biaXiaidinary” [13]
anisotropicmedia and 2) the material parameter tensors fulfill
(54) with n = £, . It is important to note that this approach
fails for bi-media Similarly, as above, the incident plane
wave is compatible with (57) and (53), which means that
the scattered fields also have to be consistent with (57) and
(53). This means that the, z plane is a mirror plane for the
Poynting vector and, thus, the scattered power is the same in
directions characterized by azimuthal anglesand —¢. Of
course, this approach can also be used to show the symmu
properties for the normal incidence case, which is a spec
case of the oblique incidence case, but since it works f
“ordinary” media only, we do not obtain any conclusions fo
the bi case.

Again, we note that both considerations yield sufficier
conditions, only. However, in our numerical sample calcif]
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