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Heart disease - already a leading cause of death in industrialized societies - is be-
coming more and more prevalent as society ages. With this increase, improvements
in diagnosis and monitoring of heart disease are necessary. Current state-of-the-
art cardiac assessment techniques are invasive and too strenuous for heart disease
patients. Therefore, there is a need for a noninvasive, fast, and mobile cardiac eval-
uation method. We propose the use of personalized lumped parameter models to
simulate the circulatory system, so that left ventricular pressure can be estimated
from left ventricular volume as acquired with 3D ultrasound imaging. Subsequently,
the estimated pressure and the imaged left ventricular volume can be used to recon-
struct pressure-volume loops, which are significantly indicative of cardiac health. As
ultrasound is fast, not strenuous, and can be applied from the bedside, this method
is suitable for critical care patients.

Contributions

• The left ventricular pressure and volume can be
estimated with noninvasive inputs.

• Aortic pressure can be reproduced with a lumped
parameter model and a minimal input dataset con-
sisting of diastolic blood pressure (DBP) and sys-
tolic blood pressure (SBP).

• Machine learning techniques confirmed a corre-
lation between vascular properties and patients’
BMI, age, and gender, and show promise as a non-
invasive parameter personalization method.
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Chapter 1

Introduction

Valvular heart disease is predominant in developed societies. With a prevalence of
2.5%, it is one of the leading causes of death in these parts of the world[28, 50].
Aortic stenosis (AS) is a major contributor to this number, with 0.2-1.3% prevalence
in the population group aged under 65, and 2.5-9.8% in people over 75 years old[27,
28, 50, 51]. Notably, it accounts for almost half of all valvular heart disease in patients
over 75 years old[28], making it the most common cause of severe heart disease in
elderly patients[25]. As the world population ages, valvular heart disease prevalence
is expected to increase considerably[69, 50]. As a consequence, the number of AS
patients over 75 years old is estimated to double in the next 50 years[28].

As it becomes even more prevalent, improvements should be made in the di-
agnosis and monitoring of valvular heart disease, in order to improve prognosis.
Evaluation of cardiac function is critical in cardiology in many settings, including the
intensive care unit (ICU), the operation room (OR), and from any bedside. Cur-
rently available techniques for evaluation require highly invasive methods, such as
the catheterization of major vessels, which is often combined with complex medical
imaging techniques[24, 19]. These imaging techniques, including MRI and nuclear
heart scans, are unsuitable for critical care patients, as they cannot be performed
from the beside and are too strenuous. Since many patients with valvular heart
disease are critical care patients, this presents an issue. There is a need for a non-
invasive, quick, and bedside-suitable evaluation system for cardiac function.

Ultrasound is an imaging technique that is not strenuous for patients and can be
used anywhere, including the ICU, OR, and bedside[24]. As it provides information
on the geometry of the heart, it could be a good starting point to developing such an
evaluation system. For example, left-ventricular volume can be extracted from ultra-
sound images, from which aortic flow can be obtained. These are important cardiac
parameters. A model should then be developed that simulates the circulatory sys-
tem, so that cardiac function can be assessed with these measures as inputs.

The first step in developing such a model, is determining which cardiac measure-
ments are most informative of cardiac function, so that the model can be designed to
output these measurements. In appendix A we find that the goal of our model should
be to reconstruct left ventricular (LV) pressure-volume (PV) loops (figure A.1,2,3), as
they provide much information regarding left ventricular function, which can be use-
ful in a diagnostic or monitoring context. LV pressure and volume are currently not
computed in real-time clinically, as their construction typically requires invasive meth-
ods. Noninvasive estimation of PV relations has been studied previously[13, 62, 36],
showcasing its feasibility. If a model could be developed that simulates the circula-
tory system, this would allow estimation of LV pressure from aortic flow recordings
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acquired through 3D ultrasound imaging of the left ventricle. Then LV PV loops with
exclusively noninvasive inputs could be constructed in real-time, which would be of
great benefit to existing heart disease diagnosis and treatment protocols, as more
accurate diagnoses could be made in a shorter time frame.

Since vascular properties can vary greatly between patients, a lot of attention
should be dedicated to making such a model patient-specific. Throughout this the-
sis we will develop and evaluate the performance of a patient-specific model that
provides a method to reliably assess cardiac function, with exclusively noninvasive
cardiac measurements as inputs.



3

Chapter 2

Methods

Study design In this proof of concept study, we go about testing our model in two
phases. The first phase is concerned with testing how well the model can approxi-
mate aortic pressure, when the three degrees of freedom in its parameters can be
fully optimized to best fit the known aortic pressure, which is acquired invasively with
pressure catheters. After confirming that the model is indeed fit to simulate aortic
pressure, the next phase includes verifying that the model is useful for estimating
aortic pressure, when only offered noninvasive inputs. To demonstrate the feasibility
of reconstructing the LV PV loop entirely noninvasively, we validate the outcome of
our model against the best fit that the model produced in phase one, as this is the
best output that could be reasonably expected. The study protocol was approved by
the Philips Internal Committee for Biomedical Ethics (ICBE) and was acknowledged
as a non- Medical Research Involving Human Subjects Act (niet-WMO) study by the
Medical Ethics Review Committee (METC) of the Catharina Hospital Eindhoven.

Data acquisition Ground truth data for model validation was acquired in the catheter
laboratory of the Catharina Hospital Eindhoven, Netherlands during transcatheter
aortic valve implantation (TAVI) procedures. The design of the acquisition setup is
schematically shown in supp. figure 1[1]. An Epiq 7G 1.5 convex C5-1 ultrasound
probe (Philips Healthcare, Bothell, WA, USA) was used to acquire 3D (full volume
HVRQ mode) ultrasound images of the LV during ten consecutive beats. Invasive ar-
terial (P1), aortic (P2), and LV pressure (also P2, when the catheter is extended from
the aorta into the LV) were measured with a catheter during TAVI. Datex-Ohmeda S/5
Collect software was used for data extraction from the GE Carescape B650 Monitor.

Patients 14 patients were included in the data acquisition phase, of which 8 were
male and 6 were female, with an average age of 75.6 ± 8.51 years (mean ± STD).
They were all patients of the Catharina Hospital Eindhoven who were scheduled for
TAVI. Four patients were excluded because either the state of their left ventricle did
not allow ultrasound imaging of sufficient quality, or they did not display a regular
sinus rhythm.

Data alignment As data was acquired from and stored in different machines (supp.
figure 1), their time stamps were not synchronized. To align the data, the ECG
signal was stored in all data storage locations and used as an alignment tool. For
alignment, the signals were transformed into a more comparable format by finding
the intervals between the R waves. The R-R intervals of a short ECG signal from the
ultrasound are then slid across the R-R intervals of a longer ECG signal which was
measured during the entire procedure, to maximize the R-R interval similarity. The
minimal value of a cost function reveals the real lag between the two ECG signals
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(figure 1D). Furthermore, when a 3D ultrasound image was made, the time was
noted. These times were used as a reference point to verify that the ECG signals
were aligned correctly.

Data pre-processing To accurately extract the local optima that represent the R
peaks in the ECG signals, the lower frequencies were filtered (high-pass Butter-
worth filter, cutoff frequency 1 Hz), to allow the R peaks to have a more consistent
height. Furthermore, the invasively acquired pressure data were pre-processed, as
preliminary results revealed that the systolic blood pressure values of the pressure
curves modulated with the frequency of the ventilation (figure 1D). To eliminate this
effect, pressure was averaged over multiple beats.

Cardiac quantification Left ventricular volumes were calculated by processing trans-
esophageal echocardiographic (TEE) images with cardiovascular ultrasound quan-
tification software (TOMTEC Arena, TOMTEC Imagin Systems GmbH). For this pur-
pose, the 4D Left Ventricle Analysis application was used and anatomical landmarks
were indicated manually in three different views (figure 1B). These are then auto-
matically integrated to form a smooth 3D representation of the left ventricle, of which
the boundaries could be manually adjusted if necessary. Reiterating this process for
each beat in the image results in an LV volume waveform for ten consecutive beats.
Due to the limited quality of TEE images, there is some error introduced into the
cardiac quantification. Beat-to-beat and inter-patient differences in image resolution
result in varying reproducibility of the cardiac quantification analysis (supp. figure 2).
Also, the limited time resolution of TEE (∼13-20 Hz) caused data alignment issues
in some cases, which was grounds for exclusion of these data sets.

Model development and personalization A three-element Windkessel model (fig-
ure 2B) was chosen as the most suitable model to simulate the circulatory system
(see appendix C for reasoning). It takes aortic flow as input and outputs an estimate
of aortic pressure. The model was used to derive the differential equations that de-
scribe the circulatory system (see appendix B). Aortic pressure was then estimated
by solving these equations with non-stiff differential equation solver ode45 (MATLAB,
MathWorks).

Model input
Aortic flow is defined as the derivative of the LV volume waveform, so this can be
extracted from the ultrasound images. However, because the acquisition rate of the
Epiq 7G is quite low, some physiological characteristics of the volume waveform are
lost, including the isovolumetric phases. To reincorporate these features into the
volume waveform, we make use of optimization. We assume that the aortic flow
should look like an asymmetric half-sine wave given by equation 2.1, and we know
that the integral of aortic flow equals the volume waveform. Therefore, we find the
optimal extent of asymmetry by fitting the integral of asymmetric half-sines to the
volume waveform, where the coefficient of asymmetry m ranges from 0.1 to 0.95, in
step sizes of 0.05. Maximal aortic flow is found by dividing the area of the half-sine
with amplitude 1 mL/s (that was fit to the volume waveform) by the stroke volume,
which can be taken from the volume waveform. The model input is then found by
multiplying the fit asymmetrical half-sine by the maximal aortic flow.

Qaortic = Qaortic,max ∗ sin(π ∗ (tm)) (2.1)
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Personalization of the model parameters
For all patients, patient-specific model parameters were found by optimizing (least
squares) the model output to best fit the invasively measured aortic pressure curve.
The parameters are constrained to physiologically plausible values (R = 0.1 - 2.5, Z
= 0.01 - 2.5, C = 0.2 - 2.5). However, to test if the model is still reliable when fed ex-
clusively noninvasive inputs, two noninvasive parameter estimation techniques were
investigated. The first method involved minimizing the aortic pressure curve that
the model is fitted to, to only diastolic and systolic blood pressure (DBP & SBP).
The parameter values were then, once again, found by optimizing them with least
squares to fit DBP and SBP. Subsequently, the difference between the maximum of
the model output and SBP was subtracted, to place more emphasis on estimating
the correct SBP value. In the alternative method, patient-specific model parameters
were estimated with a nearest neighbors inspired machine learning algorithm. This
estimates a patient’s parameters by averaging the known parameters of patients that
most likely have similar vascular properties as the new patient, weighted by the like-
lihood of vascular similarity. This likelihood was calculated by taking the following
patient information into consideration: Age, BMI, and gender. The training group
consisted of the all the patients whose parameter values were found by optimizing
the model output to fit the invasively measured pressure data. The measure of sim-
ilarity was normalized to expected population values for age and BMI. Only patients
who were within a certain similarity range defined by radius R from the patient whose
parameters were being estimated, were included in the weighted average. R ranged
between 0.01 and 0.2.

LV PV loop reconstruction The LV PV loop is found by plotting the LV volume on
the x-axis and the estimated aortic pressure on the y-axis.

LV pressure
Since aortic pressure only approximates LV pressure during systole, the model out-
put outside of this phase is not used for PV loop reconstruction. The PV loop is then
completed with vertical line segments following the assumption of a great pressure
drop or rise during isovolumetric phases. The diastolic filling segment of the pres-
sure curve is outside of the scope of this work, so the PV loop is extended until the
x-axis.

LV volume
The LV volume used in reconstructing the PV loop is the integral of the aortic flow
curve that was found by optimizing an asymmetric half-sine to the raw LV volume
data taken from the ultrasound images, as described in the model input section.

Model validation & Statistics To validate the use of the 3EWK model to simulate
the circulatory system in general, we compare its output to invasively measured
aortic pressure, when its parameters are optimally fitted to these same data. Since
only the pressure during the systolic phase is used for PV loop reconstruction, the
rest of the curve is excluded from this comparison. We quantify the performance
of the model through the mean average error of the model output during systole,
combined with the Spearman correlation of the model output and the measured
data. To validate subsequent parameter estimation methods, a similar approach
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is implemented. However, in this case the model output is not compared to the
invasively measured aortic pressure, but to the optimally fitted model output, as this
is the best performance that could be reasonably expected from the model.
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Figure 1. Experimental setup for data acquisition
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A The acquisition setup. (Figure adapted from [1]). Ultrasound images were taken via the esophagus (TEE). Aortic and 
femoral pressure were measured with pressure catheters in their respective arteries. Before and after placement of a new 
aortic valve, the catheter in the aorta is moved into the LV, providing a short measurement of LV pressure. B The ultrasound 
images are processed with cardiac quantification software (TOMTEC Arena, 4D Left Ventricle Analysis). The boundaries 
shown in green lines in four different views are integrated to form a 3D representation of the LV volume over 10 beats. The 
boundaries can be adjusted separately for each beat. C An example of the measured signals for one beat (raw data). Aortic 
pressure is given in fuchsia and LV volume is given in blue. D An example of the use of ECG signals for synchronization of 
two time series. The large ECG recording that is measured throughout the procedure continuously (and is saved into S/5 
Collect) is shown in black, whereas the short ECG recording that is taken in parallel with the ultrasound image is given in 
green. We see that the R peaks of these signals are aligned, showcasing their synchronicity. The point of synchronization 
indicates the lag that was found between the two measurements. Above the ECG signals, aortic pressure is given in fuchsia. 
We see that the local maxima of the aortic pressure modulate with a sine wave. 

We propose the use of the three-element Windkessel (3EWK) model to simulate
the circulatory system (figure 2B, for reasoning see Appendix C). This model is a
lumped parameter model: a type of model that decomposes a physiological system
into elementary physical components that follow established physical laws, so their
relationships can be expressed by simple mathematical equations. In our case, the
circulatory system is modelled as an electric circuit. This circuit includes a current
source, which simulates the heart pumping blood into the system, where blood flow
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is modelled as current; a resistor, which simulates the resistance to blood flow largely
due to the capillaries; a capacitor, which represents the elasticity or compliance of
the vessels; and an impedance, which models the afterload that the LV must over-
come during a contraction. As a result of the circuit topology of the analogue electric
circuit that follows from this, the governing differential equations of the model can be
derived (appendix B), which can be solved to estimate the aortic pressure.

Since the objective of this study is to reconstruct PV loops, the aim of using a
model is to estimate LV pressure, whereas the 3EWK model is only suitable to es-
timate aortic pressure. However, during systole, aortic pressure approximates LV
pressure (figure 2A), so that the model output during this phase can be used to re-
construct PV loops, whereas the bottom boundary of the PV loop is outside of the
scope of this work (supp. figure 1A).

Validation is a critical step in model development. The performance of a model
of the circulatory system must be determined by comparing its output to true, mea-
sured data. Since the objective of developing a personalized model of the circulatory
system is to provide a reliable noninvasive cardiac assessment method based on the
pressure and volume in the LV, an experimental setup was designed so that these
signals could be obtained for validation (figure 1A). In particular, aortic pressure
should be acquired, as this is the desired output of the model. Transcatheter aortic
valve implantation (TAVI) procedures provide an opportunity to collect these data.
During TAVI procedures, the aortic and arterial pressure is continuously measured
with pressure catheters inserted in the proximal aorta and femoral artery, respec-
tively. Furthermore, as patients are generally anesthetized, a transesophageal echo
(TEE) probe can be inserted to image the LV (figure 1A,B). With the use of cardiac
quantification software (figure 1B), LV volume can be extracted from these ultrasound
images (figure 1C). In this case, 3D ultrasound images were taken of 10 consecutive
beats at a time. To ensure that the separate signals were aligned in time, the ECG
signal that was stored in the ultrasound image was compared to the ECG signal that
was measured continuously during the entire procedure were synchronized (figure
1D).

Aortic flow - equal to the change in LV volume over time - is extracted from the
ultrasound images and fed to the 3EWK model as input (figure 2C). Subsequently,
the model parameters are fit to the invasively measured aortic pressure data, using a
least squares approach. We see that the 3EWK is indeed suitable for modelling the
circulatory system, and can output an accurate estimation of aortic pressure, when
fed aortic flow as input (figure 2D,E,G,H). Averaged over all patients, pre-TAVI, the
model could predict aortic pressure with 4.6 mmHg accuracy (Spearman correlation
= 0.9720), and post-TAVI, the average output error became 3.3 mmHg (Spearman
correlation = 0.9548) (figure 2F,I). These discrepancies between measured data and
modelled pressure are likely a result of TEE having a relatively poor time resolution
(∼13-20 Hz), so that the volume and pressure curves are not exactly aligned in some
cases.

We also found that the model has large adaptability (supp. figure 4), meaning that
it is suitable for use in a large range of physiological states. For example, in one case,
a patient was given adrenaline post-TAVI, resulting in a steep rise in blood pressure.
Since one of our model assumptions is that parameters R, Z, and C are constant,
the rise in stroke volume due to the adrenaline - which is reflected in the ultrasound
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image - should account for this pressure change in the model. Indeed, the model
could represent this behavior, as the optimal fit follows the raw data faithfully during
systole (supp. figure 3B). The optimal parameter values changed by a conservative
10.6%, which is likely a result of the uncertainty introduced by the quality of TEE
imaging (supp. figure 2).
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Figure 2. The three-element Windkessel model is suitable for modelling aortic pressure
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Parameter estimation with a minimized pressure data set

No relevant meaning can be inferred from the model that we have been discussing
if it does not represent patient-specific physiology. As such, the determination of the
parameters of the 3EWK model must be reiterated for each individual patient. In
the above section, patient-specific model parameters were found by fitting the model
output to the invasively obtained real aortic pressure. However, to allow clinical
applicability, the parameters must be estimated with noninvasive methods, as the
pressure curve is not known for patients who need to be diagnosed or monitored in
the clinic.

While noninvasive arterial blood pressure estimation methods reconstructing the
entire arterial pressure waveform are generally insufficiently reliable[57], there are
many noninvasive techniques that do show a promising accuracy in estimating dias-
tolic (DBP) and systolic blood pressure (SBP) [18, 14]. Methods include a wide range
of techniques, such as vascular unloading with finger cuffs, for example, the Finapres
NOVA (Finapres Medical Systems) and ClearSight (Edwards Lifesciences)[2]. Other
methods rely on photoplethysmography[77, 34, 52], Doppler imaging[22], heart sound
analysis[30], and ballistocardiography[78]. Micro-scale wearable devices have also
been developed widely, mostly based on piezoelectric-induced sensors measuring
pulse transit time (PTT) [43, 60, 35], where some are assisted by machine learning
techniques [26, 34]. Of course, let us not forget the most widely implemented nonin-
vasive arterial blood pressure estimation method: Oscillometric blood pressure mon-
itoring with a cuff on the upper arm [53, 46]. This last method is well integrated into
hospital procedures globally, making it an excellent source of input that we could
make use of in our model. Therefore, we investigated whether the 3EWK model
could still provide an accurate estimation of the aortic pressure curve during aortic
flow, when the data it fits its parameters to is minimized to just DBP and SBP.

In figure 3 we see that the aortic pressure can indeed be estimated accurately
with just this minimal data set, which only includes information that can be measured
noninvasively. Both before and after TAVI, this estimation method was successful in
all patients. On average, when only the minimal data set was fed to the model,
the output displayed an error of 0.80 mmHg (Spearman correlation = 0.9996) pre-
TAVI, and an error of 1.6 mmHg (Spearman correlation = 0.9950) post-TAVI, when
compared to the optimal fit of the 3EWK to invasively measured aortic pressure
(figure 3F).

Parameter estimation through machine learning

Still there is much debate over the reliability of the noninvasive DBP and SBP estima-
tion methods mentioned above[79, 67, 72]. Therefore, we developed an alternative
parameter estimation method, which is independent from any pressure measure-
ments, be it noninvasive or invasive. To achieve this, machine learning techniques
were implemented. The patients for which the true pressure curve is known - and
for which the model parameters can be found with the aforementioned techniques -
function as a training group on which we learn a model that predicts the parameter
values for future patients. A nearest neighbors-inspired algorithm was developed,
which determines the probable vascular similarity between the sample group pa-
tients and a new patient (figure 4, panel A & B). This method relies on the fact
that vascular properties and patient properties - such as their age[76, 40, 39, 31],
BMI[63, 73, 29, 47], and gender[64, 42, 4, 45, 15] - are related, which has been
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A & C An example from one patient of aortic pressure estimated with the noninvasive minimal data set, pre-TAVI (A) and 
post-TAVI (C). This estimate (yellow) is compared to the output of the 3EWK model (dark blue) when it is optimally fit to the 
invasively measured pressure data. B & D The performance of the 3EWK using the minimal data set compared to the optimal 
fit is summarized for all patients. The mean average pressure estimate using DBP and SBP is shown in yellow, and the 
optimal fit is shown in dark blue. F Pre-TAVI, the average model error is 1.5 mmHg, post-TAVI, the error is 4.1 mmHg. E the
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timing of DBP and SBP in the pressure curve is shown.

widely described in literature. A sum of the sample patients’ known parameters,
weighted by their similarity to the new patient, was then used to estimate the aortic
pressure curve. In figure 4 we see that this method estimated the aortic pressure
curve with relatively poor accuracy. Since the sample sizes used in this study are
low for machine learning standards, this is to be expected. Strikingly, though, we see
that the stricter the algorithm becomes in determining probable vascular similarity,
the lower the error becomes (figure 4, panel D & F). This decrease in model error
is only valid until the inclusion radius becomes so small that very few (here, one or
two) patients are included in the weighted average, resulting in an unreliable predic-
tion. This indicates the merit of this technique, but also confirms the need for larger
training groups.
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A An illustration of a simple form of nearest neighbors classification. The question mark denotes an unclassified data point. 
The grey circle indicates the radius within which neighboring data points are taken into account for the unknown data 
point’s classification. Within this circle, the majority of the data points are dark blue, so the question mark will also be 
labeled dark blue. B An illustration of the implemented parameter estimation technique which is inspired by nearest 
neighbors classification. Here, the data points represent the patients of which the optimal model parameters have been 
estimated by fitting the model to invasively measured pressure data. Each patient is given a location in a space spanned 
by their properties (age, BMI, gender). To estimate a new patient’s model parameters, the patients within radius R from 
them are taken into account. A weighted average of their parameter values, where the weights are determined by the 
Euclidean distance to the patient in question, is used to find an estimate of the new patient’s model parameters. C & D An 
example of the output of the 3EWK with nearest-neighbors estimated parameter values, with inclusion radius R = 0.05. 
Both examples perform poorly, which is to be expected because of the low sample group size. However, we see that the 
average output error becomes lower when the inclusion radius becomes smaller (E & F). This indicates that - up to a 
certain point - the technique becomes more reliable when the measure of similarity becomes stricter. When R becomes too 
small, too few patients are included in the average, resulting in a loss of performance.
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Discussion

We have developed and tested a new cardiac evaluation method that is noninvasive,
fast, and can be applied in many settings, such as the ICU, the OR, and from the
bedside. For this purpose, a model of the circulatory system was developed that can
be used to accurately estimate LV pressure and volume, so as to allow LV PV loop
reconstruction with exclusively noninvasive inputs extracted from ultrasound images.
Ultrasound - which can be used in many settings, including at the bedside - allows
for real-time noninvasive imaging of the LV. In combination with TOMTEC Arena car-
diac quantification software, the LV volume can be retrieved from these images and
used as an input for the aforementioned circulatory model, which in turn outputs an
estimate of aortic pressure. We have shown that this method is successful, enabling
cardiac function evaluation to be faster and more widely implementable, improving
heart disease diagnosis and monitoring, which in turn improves overall prognosis.
We saw that the aortic pressure curve could be reconstructed using only DBP and
SBP as data points to fit the parameters of our model to, showing promise as a
noninvasive parameter estimation method (mean error = 0.80 mmHg pre-TAVI and
1.6 mmHg post-TAVI, with respective Spearman correlations 0.9996 and 0.9950).
Furthermore, we saw that machine learning techniques based on the correlation be-
tween patient information (age, BMI, gender) and vascular properties (compliance,
resistance, impedance) can be implemented as an alternative noninvasive param-
eter estimation method, but more data is necessary to further develop and validate
this technique.

Improvements in diagnosis and monitoring of heart disease are necessary - espe-
cially taking into account that we are currently living in an aging society, where heart
disease will only become more common as life expectancy rises [69, 50, 28]. Be-
sides offering a solution to the obvious health risks associated with an increased
need for heart disease detection, a fast, cheap, and noninvasive cardiac evaluation
system could also play a big role in preventing socioeconomic consequences of a
rise in the prevalence of heart disease. Socioeconomic status has been shown to be
an accurate predictor of cardiac health[17, 23, 58], as a result of biological, behav-
ioral, and psychosocial characteristics of population groups with different levels of
income, education, and access to healthcare, in developed societies[58, 17]. Even
more, since clinical treatment of heart disease is expensive and prolonged, it can be
a larger financial burden on population groups with a lower socioeconomic status.
Because heart disease often occurs in middle aged people who are in a prime wage
earning phase of life, this leaves families without unmissable income, when patients
become temporarily or permanently unfit for employment. If a cheaper - and there-
fore more accessible - technique became the state-of-the-art cardiac assessment
method, this disparity could be considerably minimized through early diagnosis and
prevention.
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LV PV loops - which are informative of contractility, LV size, ventricular-arterial inter-
action, chamber stiffness, stroke work, and more - are clinically applied to diagnose
valvular diseases, such as aortic or mitral stenosis and regurgitation[21, 41]. Other
heart diseases that can be diagnosed with LV PV loops include dilated and restrictive
cardiomyopathy [68, 70], which would typically require catheterization. However, the
applications for a noninvasive cardiac evaluation method are not limited to diseases
that mostly occur in elderly patients. By eliminating the need for catheterization to
estimate aortic blood pressure, we have created a diagnosis and monitoring method
that is suitable for patients who are too fragile for invasive blood pressure measure-
ments, such as infants. For example, catheterization is conventionally used to di-
agnose and post-operatively monitor congenital heart disease, while an accurate,
noninvasive diagnosis method could result in shorter hospital stays and reduced
mortality [37]. The cardiac evaluation method we propose could even open up the
possibility of diagnosing congenital heart disease in fetuses, as the feasibility of au-
tomatic segmentation of the fetal heart from ultrasound images has been shown
previously [3, 8]. Furthermore, this method is suitable to be included in routine med-
ical controls, so could also be useful in detecting heart diseases such as childhood
aortic stenosis, which is currently often only discovered coincidentally after treatment
of other cardiac comorbidities [49].

Another benefit to the cardiac evaluation method we describe here, is its speed.
Reconstructing LV PV loops with ultrasound can be done in real-time, and could
therefore improve the diagnosis of cardiac diseases where timing is critical. For ex-
ample, type I and II aortic dissection are typically diagnosed with TEE, computed
tomography (CT), and a magnetic resonance angiography, but would benefit from
a faster diagnosis method[16]. Our method could be implemented to measure any
significant discrepancy between aortic pressure and blood pressure in more distal
arteries (measured by for example a Finapres or ClearSight), which could indicate
dissection. Especially post aortic replacement surgery, noninvasive aortic pressure
monitoring is important[16]. Since the method involves no radiation, long term expo-
sure is a possibility.

Unfortunately, the ultrasound systems used to image with TEE and TTE are cum-
bersome and require a physician to operate them, which means they are suboptimal
for long term continuous monitoring. For diagnosis purposes, patients can, for ex-
ample, be advised to wear a Holter monitor for 24 hours or more, to observe what
changes in the ECG during physical activity, sleep, and other behaviors. These pa-
tients need to go about their day-to-day life, which is not possible with TEE and TTE.
However, ultrasound has been previously successfully designed into light-weight,
wearable electronics. A wearable ultrasound patch has been developed, that can
measure central blood pressure from proximal arteries, such as the carotid[71]. Its
design can withstand stretch (up to 60% strains [71]), showing that wearable ultra-
sound patches are reliable during motion. This indicates that ultrasound could also
be used to monitor LV PV loops during cardiac stress tests. The use of a wireless
ultrasound based cardiac evaluation method for continuous monitoring instead of a
Holter monitor, provides more information on cardiac health and also involves less
behavioral limitations for patients that are being monitored. Still, designing an ul-
trasound patch for the purpose of imaging the left ventricle would require efforts in
developing an adequate power source, as the patch would involve a much larger ar-
ray of transducers than a patch measuring more superficial arterial blood pressure,
requiring more energy for its operations. Other concerns relate to secure wireless
communication between the patch and an external receiver.
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While such a novel cardiac evaluation model seems promising, there are some po-
tential limitations that should be kept in mind. First of all, 3D TEE - which was used
to image the LV - has a low acquisition rate. This low timing resolution results in
some features of the LV volume curve being lost. Despite our efforts to counteract
this (as described in the methods, section model development and personalization),
it can cause problems in the alignment with other signals, such as the pressure data.
Secondly, TEE produces images are relatively noisy in comparison to, for example,
TTE. This could introduce an error in the LV volume measurements that function as
input for the circulatory model. If it were the case that the error which is introduced
into the model as a result of the use of TEE was constant, then the expected noise
could be quantified and accounted for. However, the quality of ultrasound images
varies considerably from patient to patient (supp. figure 2) as a result of differences
in anatomy. This can cause the accuracy and reproducibility of the measurement of
LV volume - and subsequently the aortic flow rate that is calculated from this - to vary
greatly between patients.

Besides variable patient anatomy, the operator of the TEE probe and the data an-
alyst who determines whether the semi-automatically detected boundaries in the
cardiac quantification are correct, both introduce additional variability into the data.
This unpredictable quality makes it difficult to account for some constant, expected
error in the measurement. On the contrary, a wearable ultrasound patch would not
be prone to variations in noise caused by the probe operator. Furthermore, making
use of software that completely automatically extracts LV volume from 3D ultrasound
images, would eliminate the variable error introduced by data analysts performing
semi-manual segmentation. At the moment, TTE is more compatible with automatic
cardiac quantification software, while TEE requires some manual boundary adjust-
ment. Clinical use of TEE as input for our model is unlikely, as it typically requires
patients to be generally anesthetized, so use of TTE is more practical. If a wearable
ultrasound patch could produce images of a similar quality as TTE, this could possi-
bly also be compatible with automatic quantification software.

In any case, a constant imaging method must be chosen. Particularly, parameter
estimation relies on the consistent use of one imaging method, be it TEE, TTE, or a
wearable ultrasound patch. Especially parameter estimation using machine learning
requires the collection of a training data base where the data was acquired with one
imaging method, otherwise the parameter values cannot be translated to other pa-
tients, due to the differences in image noise. Even though reconstructing the aortic
pressure curve using only a minimized data set consisting of DBP and SBP to fit the
curve to, seems like a promising method, this requires noninvasive estimation of DBP
and SBP. Estimation methods for this purpose exist, but their reliability is question-
able [79, 67, 72]. Therefore, a completely noninvasive parameter estimation method
such as the machine learning technique we described would be preferable, stress-
ing the need for a consistent imaging technique. Another limitation to using machine
learning for parameter estimation is the homogeneity of the training data base that
we used. These data are exclusively measured from TAVI patients, who typically are
elderly and unhealthy[54, 48]. For a nearest neighbors inspired technique to work,
the training data base should consist of a more diverse group of patients.

Despite these issues, a model allowing the reconstruction of LV PV loop is a promis-
ing solution to the shortcomings of current cardiac assessment techniques. It allows
for noninvasive and fast diagnosis and continuous monitoring of heart disease in all
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settings, including the bedside of critical care patients. This means that it could sub-
stantially change heart disease treatment protocols, which is necessary in a world
with an aging population.
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Supplementary figures
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A The pre- and post-TAVI PV loops of one patient show us that the TAVI procedure results in a larger stroke volume, as is expected. 
However, there is little change in pressure. B Boxplots summarizing the change in stroke volume and mean pressure for all patients 
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with the optimally fit 3EWK model. 
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Appendix A

Optimal measures for cardiac
evaluation

A.0.1 Conventional (invasive) measurements for peri-operative cardiac
monitoring

Since William Harvey’s discovery of the circulation of blood through the vascular
system in 1628, hemodynamics have been a vast information source of patients’
cardiac health. However, difficulty with the availability of pressure and flow mea-
surements presented this field with great challenges. Several methods, such as
cardiac catheterization, have been developed since then, giving us access to these
measurements and opening up a new opportunity to quantify cardiac properties and
monitor changes in cardiac health. As these techniques are invasive, they are met
with quite some challenges in regards to clinical implementation. Other attempts
have recently been made which present noninvasive ways of measuring cardiac pa-
rameters[13, 36, 6], which could be useful in developing a more noninvasive cardiac
evaluation set-up. Still, in both invasive and noninvasive methods, there is some
consensus on which cardiac parameters are most informative of cardiac function.

Measures of cardiac function

Stroke volume and cardiac output First of all, stroke volume (SV) is used as a
measure of cardiac health, providing information about preload, afterload, and con-
tractility. It is defined as the amount of blood that is ejected by the heart in one
heartbeat:

SV [mL] = ESV [mL]− EDV [mL] (A.1)

Where:
ESV [mL]: is the end-systolic volume.

EDV [mL]: is the end-diastolic volume.
In diseased hearts, SV is sensitive to changes in afterload, which is not the case for
healthy hearts.
Cardiac output (CO) is the total blood volume ejected by the left ventricle in a specific
period of time:

CO [mL/S] = SV [mL] · HR [1/S] (A.2)

Where:
HR [1/S]: is the heart rate.

CO portrays similar information as SV, but is more often used as a measure of how
well nutrients are transported throughout the body.
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Ejection fraction Next, ejection fraction (EF) is widely used as an indicator of car-
diac contractility. However, as it is quantified as the portion of the end diastolic
volume that leaves the left ventricle after each contraction, EF is sensitive to after-
load and heart size. This makes it an unreliable indicator of contractility, but rather,
it offers more of an integrated measure of contractility, ventricular-arterial coupling,
and ventricle size[7, 38].

EF [−] = EDV [mL]/SV [mL] (A.3)

dP/dtmax Furthermore, the maximal rate of pressure change during isovolumic con-
traction (dP/dtmax) is also used as a measure of contractility. However, it is sensitive
to cardiac filling, and can underestimate contractility when heart rate rises, making it
a sub-optimal measure.

Pressure-volume (PV) loops Where EF and dP/dtmax have shortcomings due to
their sensitivity to preload, afterload, heart rate, and remodeling, there are quantities
independent from these factors that can be derived from the relationship between left
ventricular pressure and volume. Pressure-volume loops can be constructed from
this interaction, and from their shape we can compute the end systolic pressure-
volume relationship (ESPVR) and the end diastolic pressure-volume relationship
(EDPVR). As we see in figure A.1, the ESPVR is established by connecting the end-
systolic points, whereas EDPVR is its diastolic analogue. ESPVR gives a meaningful
indication of contractile function. On the other hand, EDPVR is the most important
indicator of passive ventricular properties, as information from the diastolic phase
gives us a clear idea of the preload that results from specific LV pressures, telling
us a lot about chamber geometry. Therefore, both ESPVR and EDPVR are impor-
tant measures to be considered peri-operatively when assessing ventricular function.

While the EDPVR is nonlinear, the ESPVR is fairly linear and can be charac-
terized by its slope - the left ventricular end-systolic elastance (Ees, see figure A.2),
described by:

Ees [mmHg/mL] = ESP [mmHg]/(ESV [mL]− V0 [mL]) (A.4)

Ees gives a measure of the chamber stiffness at the end of systole, which provides
information on the sensitivity of systolic pressure to vascular loading [32].

Besides ESPVR, EDVPR, and Ees, arterial elastance (Ea) has been considered
of importance in characterizing ventricular-arterial interaction (figure A.2). Ea is the
negative slope if the line between the end-systolic pressure (ESP) and the end-
diastolic volume (EDV), quantified as:

Ea [mmHg/mL] = ESP [mmHg]/SV [mL] (A.5)

Ventricular-arterial coupling is then shown by the ratio Ea/Ees, which has been
seen to be associated with prognosis in chronic heart failure[38]:

Ea/Ees [−] =
ESV − V0

SV
(A.6)
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FIGURE A.1: Pressure-volume loops [10]

Ees, Ea, ESPVR, EDPVR, and other parameters that can be obtained from PV
loops have been established to be meaningful indicators of left ventricular perfor-
mance and intrinsic properties[55, 56, 65, 66]. For example, LV size (V0), which is a
reliable indicator of prognosis in heart failure, can be extracted from the PV loop by
finding the intercept of the ESPVR with the x-axis where LV pressure is 0 mmHg[38].
Also, the mechanical work done by the left ventricle, composed of stroke work and
elastic potential energy, can be inferred from the area covered by the PV loop (figure
A.3). However, obtaining both ESPVR and EDPVR involves varying cardiac load,
which is highly invasive.

Some methods have been proposed for estimating ESPVR and Ees without load-
ing interventions[61, 13, 62, 36]. These so-called single-beat estimation methods
consider the relationship between LV pressure, volume, and elastance, making use
of the left ventricle’s elastic structure that shows predictable patterns in stiffening
and relaxation throughout a cardiac cycle. Similar to what we see in equation A.4
and A.5, elastance can be seen as the ratio between left ventricular pressure and
volume, and can be tracked over time. The time-varying elastance variable (E(t))
is defined as the following transformation between pressure and volume[66, 56, 61,
13]:

P(t) = E(t) · [V(t)− V0] (A.7)
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FIGURE A.2: PV loop showing aterial elastance Ea [38]

FIGURE A.3: Mechanical work done by left ventricle [12].

When normalized by maximum amplitude and time to peak amplitude, the elas-
tance curve has a typical waveform (figure A.4). The normalized elastance curve is
consistent regardless of contractile state, heart rate, and cardiac loading conditions,
such as end-diastolic volume or aortic pressure[65, 66]. Furthermore, it upholds
for patients with different types of myocardial disease[61]. The consistency of this
waveform has been questioned by studies that say the linear behavior of the ESPVR
does not hold up for extreme LV loading conditions[33, 11, 5, 9]. However, such
loading conditions are unlikely to occur in live human patients, as the loading condi-
tions are constrained here. Therefore we can still assume load-independence of the
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FIGURE A.4: Normalization of time-varying elastance waveform [59]

elastance curve[61].

Single-beat methods provide a reliable way of avoiding needing loading-interventions
in order to find ESPVR and EDPVR. However, constructing PV loops still requires in-
vasive methods, as LV pressure and volume must be measured through catheteriza-
tion. Some attempts to reconstruct PV loops with exclusively noninvasive measure-
ments have been made[13, 62, 36]. These estimation methods only require various
combinations of arm-cuff arterial pressures, echo-Doppler cardiography, electrocar-
diography, sphygmometry, and radionucleotide ventriculography.
A similar non-invasive single-beat approach has been presented for estimation of
the EDPVR[36], making use of Doppler-echocardiography, radionuclide ventriculog-
raphy, and magnetic resonance imaging.

We conclude that PV loops provide meaningful indicators of cardiac health and
passive properties of the left ventricle. Contrary to other common cardiac perfor-
mance indicators, PV loops are not sensitive to preload, afterload, heart rate, or
remodeling. Furthermore, they can clearly indicate many cardiac diseases, such as
dilated or restrictive cardiomyopathy, left ventricular hypertrophy, and valvular dis-
eases, such as stenosis or regurgitation. However, if PV loops are to be imple-
mented in diagnosis and monitoring of heart disease, a method must be developed
with which PV loops can be reconstructed noninvasively.
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Appendix B

Derivation of governing equations
for Windkessel models

B.1 Three-element Windkessel

The electric circuit analog of the three-element Windkessel is shown in figure B.1

FIGURE B.1: Three-element Windkessel model electric circuit analog

The definition of capacitance is:

C =
dV(t)
dPc(t)

(B.1)

dPc(t)
dt

=
dV(t)

C
(B.2)

dPc(t)
dt

=
1
C

dV(t)
dt

(B.3)

C
dPc(t)

dt
= Qin(t)− Qout(t) (B.4)

As a result of the circuit topology, we define Qin and Qout as:

Qin(t) =
P(t)− Pc(t)

Zc
and Qout(t) =

Pc(t)− Pd(t)
R

(B.5)

Then if follows that:

C
dPc(t)

dt
=

P(t)− Pc(t)
Zc

− Pc(t)− Pd(t)
R

(B.6)
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Since Pd(t) = 0:

C
dPc(t)

dt
=

P(t)− Pc(t)
Zc

− Pc(t)
R

(B.7)

From the circuit topology we know that:

Pc(t) = P(t)− ZcQin(t) (B.8)

If we combine equations B.7 and B.8:

C
d
dt
(P(t)− ZcQin(t)) =

P(t)− (P(t)− ZcQin(t))
Zc

− P(t)− ZcQin(t)
R

(B.9)

C
dP(t)

dt
− CZc

dQin(t)
dt

=
P(t)
Zc

− P(t)
Zc

+
ZcQin

Zc
− P(t)

R
+

ZcQin(t)
R

(B.10)

C
dP(t)

dt
+

P(t)
R

= (1 +
Zc

R
)

dQin(t)
dt

(B.11)

B.2 Four-element Windkessel

The electric circuit analog of the four-element Windkessel model is shown in figure
B.2

FIGURE B.2: Four-element Windkessel model electric circuit analog

If we start with the definition of the rate of pressure change in time given in
equation B.4, and - given the circuit topology - we define Qin and Qout as:

Qin(t) =
P(t)− Pc(t)− L dQin(t)

dt
Zc

and Qout =
Pc

R
(B.12)

Then we can combine equations B.4 and B.12:

C
dPc(t)

dt
=

P(t)− Pc(t)− L dQin(t)
dt

Zc
− Pc

R
(B.13)

It follows from the circuit topology that we can express Pc(t) in terms of P(t) as:

Pc(t) = P(t)− ZcQin(t)− L
dQin(t)

dt
(B.14)
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Then we can combine equations B.13 and B.14:

C
d
dt
(P(t)− ZcQin(t)− L

dQin(t)
dt

) =
P(t)− (P(t)− ZcQin(t)− L dQin(t)

dt )− L dQin(t)
dt

Z

−
P(t)− ZcQin(t)− L dQin(t)

dt
R

(B.15)

C
dP(t)

dt
+

P(t)
R

= (1 +
Zc

R
)Qin(t) + (

L
R
+

C
Zc

)
dQin(t)

dt
+ CL

d2Qin(t)
dt2 (B.16)
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Appendix C

Model development

Model development

A model is a simplified representation of reality, that provides an opportunity to study
a process ex vivo, without ethical constraints, in order to gain a better understanding
of its workings. Studying the circulatory system noninvasively requires a model,
as some values cannot be obtained, but must be predicted. Numerous types of
models describing the cardiovascular system have been developed, ranging from
lumped parameter models or zero-dimensional (0D) models suitable for modelling
circulation, one-dimensional (1D) models that are appropriate for simulating blood
pressure and flow, to three-dimensional (3D) models capable of modelling interaction
of fluid with cardiovascular structures, such as cardiac diseases.

In this work, our aim is to model measures such as pressure, volume, and flows at
the entrance of the vascular system (in the left ventricle and around the aortic valve),
and not complex local changes of pressure and flow, nor interactions of fluids and
cardiac structures. Lumped parameter models provide a pressure-flow relation that
is sufficient for our needs. Therefore, we focus mainly on zero-dimensional lumped
parameter models.

Lumped parameter (0D) models

Lumped parameter models decompose physiological systems into elementary phys-
ical components that follow established physical laws, so their relationships can be
expressed by simple mathematical equations. As more knowledge was gained of the
cardiovascular system, such mathematical descriptions of it became more accurate.

Anatomical components of the circulation system can be modelled by analog
electric circuit elements, each element representing a different circulatory compo-
nent. To this extent, the heart pumping blood throughout the systemic system is
seen as a current source providing flow. Pressure differences are seen as voltages,
and volume is seen as charge. The vasculature is then represented by lumped pa-
rameters; a resistor, which simulates the resistance to blood flow largely due to the
capillaries; a capacitor, which represents the elasticity or compliance of the vessels;
impedance, which models the afterload that the left ventricle must overcome during
a contraction; and an inductor, which incorporates the inertance of the blood mass
that is propelled by the pumping force of the heart. Modelling the circulatory system
as an electric circuit gives us the opportunity to simulate blood pressure dynamics.
The combination of electric components used depends on which type of model is
implemented.



32 Appendix C. Model development

Two-element Windkessel model Historically, it was thought that peripheral resis-
tance of the vascular system was the main determinant of blood pressure. How-
ever, Hales (1735) noticed that, during a heartbeat, arterial pressure varies due to
changes in arterial compliance as a result of the elastic response of arteries to vol-
ume being pumped through by the left ventricle. When this became clear, arterial
compliance was also acknowledged as an important contributor to blood pressure.
In the 1800s, the similarity between the large arteries and the Windkessel of a fire
engine was proposed (figure C.1). Later on, in 1899, the first Windkessel model
of the cardiovascular system was formulated[20], describing the pressure-flow rela-
tionship at the entrance of the vascular system. It includes the peripheral resistance
and arterial compliance as the two main determinants of the system and is therefore
named the two-element Windkessel model (figure C.2).

FIGURE C.1: Windkessel model of the circulation system [74]

The governing equations of the two-element Windkessel model are as follows[44]:

The continuity equation shows us that the inflow of blood into the aterial system
at the aortic valve equals the outflow of blood from the aterial system into the venous
system.

dV(t)
dt

= Qin(t)− Qout(t) (C.1)

Compliance of the aterial system is defined as the rate of volume change due to a
pressure change:

C =
dV(t)
dP(t)

(C.2)

The pressure drop over the resistance of the arterial system gives an indication of
the blood flow into the venous system:

Qout(t) =
P(t)

R
(C.3)

Where resistance is given by R.
Combining equations C.1, C.2, and C.3, gives us:

C
dP(t)

dt
+

P(t)
R

= Qin(t) (C.4)
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FIGURE C.2: Equivalent circuits of the circulation system [74]

Note that this is the case for systole, whereas during diastole, there is no flow into
the arterial system. This means that Qin is zero, so:

C
dP(t)

dt
+

P(t)
R

= 0 (C.5)

Three-element Windkessel model Fourier analysis showing input impedance later
revealed that the two-element Windkessel model poorly described the pressure-flow
relation at high frequencies, as occur during systole[75]. At these frequencies, the
modulus of the impedance approaches zero and its phase becomes -90◦, while in
reality, the modulus of the arterial system’s input impedance approaches a plateau
value and the phase becomes approximately zero[74]. To account for this effect at
high frequencies, a third component was proposed in the three-element Windkessel
model. Here, the characteristic impedance of the proximal aorta that models the
afterload that the left ventricle must overcome, is added to the electric circuit analog
(figure C.2), which equals the plateau value that was seen before at high frequencies:

Z =
vρ

A
(C.6)

Where:
Z: is the characteristic impedance of the proximal aorta
v: is the blood wave speed
ρ: is the blood density
A: is the cross-sectional area of the proximal aorta

In the frequency domain, the impedance of the complete three-element Wind-
kessel simply is given by the addition of the two-element Windkessel input impedance
with the characteristic impedance of the proximal aorta, as these are connected in
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series:
Zinput = Zc +

R
1 + jωRC

(C.7)

In the time domain the governing equation (derivation shown in appendix B) then
becomes:

P(t)
R

+ C
dP(t)

dt
= (1 +

Zc

R
)Qin(t) + ZcC

dQin(t)
dt

(C.8)

Four-element Windkessel model As can be seen in figure C.2, the characteristic
impedance of the proximal aorta is represented by a resistor. This is logical as they
share the same dimensions. However, in reality it is not an actual resistor, which
creates some problems in the lower frequencies, where the impedance is highest.
In the three-element Windkessel model, total resistance becomes:

Rtotal = Rperipheral + Z (C.9)

This leads to errors when the impedance is high. Fortunately, when compared to
total peripheral resistance, the value of impedance of the proximal aorta is only ap-
proximately 5-7% of its size, so the errors are only small. Still, a fourth component
has been proposed to correct for this.

An inductor can be added (figure C.2), which represents the total arterial in-
ertance. As the characteristic impedance of the proximal aorta already takes the
inertance of the proximal aorta into account, this addition largely affects the lower
frequencies. The total arterial inertance is calculated by adding the inertances of all
the arteries, but it is difficult to estimate its value. This is the main reason why three-
element Windkessel models are often preferred over four-element Windkessels.

The input impedance in the frequency domain of the four-element Windkessel
electric circuit analog where an inductor is added in parallel with the characteristic
impendance of the proximal aorta (figure C.2) is then:

Zinput =
jωLZc

Zc + jωL
+

R
1 + jωRC

(C.10)

The time domain governing equation (derivation in appendix B) is given by:

C
dP(t)

dt
+

P(t)
R

= (1 +
Zc

R
)Qin(t) + (

L
R
+ CZc)

dQin(t)
dt

+ CL
d2Qin(t)

dt2 (C.11)

Comparison of Windkessel models All types of Windkessel models have their
merits and their faults. For example, the two-element Windkessel model has few pa-
rameters that must be estimated, which makes the required computations simpler.
However, it performs poorly for high frequency input and does not describe distal
pressures well, as wave propagation effects are not considered in this model. To this
extent, it assumes that pressure rises simultaneously in the whole arterial system,
even though this is not the case. Therefore, the pressure waveform prediction for
distal arteries is inaccurate.

While the three-element Windkessel model does attempt to incorporate wave
propagation effects, its biggest drawback is that it overestimates the total resistance,
which causes poor performance at low frequencies.

The four-element Windkessel does account for this, and it shows the best fit to
measured pressure waveforms. However, the inertance parameter L is difficult to
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estimate, which is a drawback. Also, the complexity of the model means that its
parameter estimation will require a lot of computation and time. Depending on the
application of the model, long computation time might outweigh the benefits of a bet-
ter performance. As this is the case in our application, a three-element Windkessel
model will suffice.

Two-element WK Three-element WK Four-element WK
Pdiast RC-time RC-time RC-time

Total waveshape Poor Good Good
Impedance Poor at high freq. Small error at low freq. Good at all freq.
Compliance Good Overestimation Accurate

Inertance NA NA Difficult
Pmean/ f lowmean Resistance Resistance + charact. imp. Resistance

TABLE C.1: Comparison of Windkessel models [74]
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