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SUMMARY

It is difficult to envision an industrial application where turbulent flows interacting
with solid walls do not play a critical role. While understanding these flows at low
speeds is already challenging, the complexity increases significantly when the flow speed
exceeds the speed of sound or when heat transfer through the walls is intense. These
so-called compressible flows are at the core of many engineering applications including
aerospace vehicles, combustors, high-speed propulsion systems, gas turbines and other
power-generating technologies. Understanding the physics governing these flows is
essential for developing accurate predictive models, which in turn enable the improved
design of engineering systems.

Compressible wall-bounded turbulent flows involve two distinct effects: those related
to heat transfer, commonly referred to as variable-property effects, and those arising from
density changes of fluid elements in response to changes in pressure, termed intrinsic
compressibility (IC) effects. While the former can occur across all flow speeds, the latter
becomes significant only at high Mach numbers. In the past, variable-property effects
have been extensively studied; in contrast, the influence of intrinsic compressibility has
received limited attention. This gap is largely attributed to Morkovin’s hypothesis, which
asserts that IC effects can be neglected in wall-bounded flows under certain conditions.

The present work revisits this assumption and directly addresses the question posed
by Otto Zeman in 1993: “are the (intrinsic) compressibility effects significant in reality,
and can they be isolated in experiments and verified?” To isolate such effects, we perform
direct numerical simulations (DNS) of fully developed high-Mach-number channel
flows, in which the energy equation is augmented with an external heat source to
maintain approximately constant mean thermophysical properties, thereby eliminating
variable-property effects.

This thesis is divided in two parts. The first part uses these tailored flow
cases to investigate the physics associated with IC effects. We demonstrate that
IC effects significantly influence various turbulence statistics—an influence previously
misattributed to variable-property effects. The underlying mechanism is as follows:
pressure-induced expansions and contractions of the near-wall fluid oppose sweeps
and ejections, leading to a weakening of quasi-streamwise vortices. The weakened
vortices reduce the energy transferred from the streamwise to the wall-normal velocity
components, thereby modulating turbulence statistics.

The second part builds on these insights to develop scaling laws and predictive
models applicable to a wide range of channel flows and zero-pressure-gradient boundary
layers. Specifically, we derive scaling laws for wall pressure fluctuations, the peak
of streamwise turbulent stress, and the mean velocity profile—accounting for both
variable-property and intrinsic compressibility effects. The mean velocity scaling is then
further exploited to derive predictive models that estimate skin friction and heat transfer
coefficients, and to propose compressibility corrections for Reynolds-averaged Navier-
Stokes (RANS) turbulence models. These corrected models demonstrate significantly

xi
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improved accuracy over the state-of-the-art and hold strong potential for enhancing the
modeling of complex, real-world engineering systems.



SAMENVATTING

Het is moeilijk om een industriële toepassing voor te stellen waarbij turbulente
stromingen die in contact staan met vaste wanden geen cruciale rol spelen. Hoewel
het uitdagend is om deze stroming bij lage snelheden te beschrijven, neemt de
complexiteit aanzienlijk toe wanneer de stroomsnelheid de geluidssnelheid overschrijdt
of wanneer warmteoverdracht door de wanden intens is. Zulke comprimeerbare
stromingen vormen de kern van vele technische toepassingen, waaronder lucht- en
ruimtevaartuigen, verbrandingskamers, hogesnelheidsaandrijfsystemen, gasturbines en
andere energieopwekkende technologieën. Inzicht in de fysica die deze stromingen
beheerst is essentieel voor het ontwikkelen van nauwkeurige voorspellende modellen,
die op hun beurt een verbeterd ontwerp van technische systemen mogelijk maken.

Comprimeerbare wandgebonden turbulente stromingen bevatten twee afzonderlijke
effecten: effecten gerelateerd aan warmteoverdracht, algemeen aangeduid als variabele-
eigenschappen effecten, en effecten die voortkomen uit dichtheidsveranderingen van
fluidelementen als reactie op drukveranderingen, aangeduid als intrinsieke compri-
meerbaarheidseffecten (IC effecten). Terwijl het eerste effect bij alle stroomsnelheden
kan optreden, wordt het tweede effect significant alleen bij hoge Mach-getallen. In
het verleden zijn variabele-eigenschappen effecten uitgebreid bestudeerd; daarentegen
heeft de invloed van intrinsieke comprimeerbaarheid tot nu toe beperkte aandacht
gekregen. Deze kloof wordt grotendeels toegeschreven aan de hypothese van Morkovin,
die stelt dat IC effecten onder bepaalde omstandigheden kunnen worden verwaarloosd
in wandgebonden stromingen.

Dit werk heroverweegt deze veronderstelling en behandelt direct de vraag die Otto
Zeman in 1993 stelde:“are the (intrinsic) compressibility effects significant in reality,
and can they be isolated in experiments and verified?” (Vertaalt: Zijn de (intrinsieke)
comprimeerbaarheidseffecten in werkelijkheid significant, en kunnen ze geïsoleerd en
geverifieerd worden met experimenten?) Om dergelijke effecten te isoleren, voeren we
directe numerieke simulaties (DNS) uit van volledig ontwikkelde kanaalstromingen bij
hoge Mach-getallen, waarbij de energievergelijking wordt uitgebreid met een externe
warmtebron om de gemiddelde thermofysische eigenschappen ongeveer constant te
houden, waardoor variabele-eigenschappen effecten worden geëlimineerd.

Dit proefschrift is opgedeeld in twee delen. Het eerste deel maakt gebruik
van deze speciaal aangepaste stromingsgevallen om de fysica gerelateerd aan IC
effecten te onderzoeken. We tonen aan dat IC effecten de turbulentiestatistieken
significant beïnvloeden—een invloed die eerder ten onrechte werd toegeschreven
aan variabele-eigenschappen effecten. Het onderliggende mechanisme is als volgt:
drukgeïnduceerde uitzettingen en contracties van het vlakbij-de-wand fluïdum werken in
tegen sweeps en ejections, waardoor quasi-stroomgerichte wervelstructuren verzwakken.
De verzwakte vortexen verminderen de energieoverdracht van de stroomlijnrichting naar
de wandnormale snelheidscomponenten, waardoor de turbulentiestatistieken worden
veranderd.

xiii
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Het tweede deel bouwt voort op deze inzichten om schaalwetten en voorspellende
modellen te ontwikkelen die toepasbaar zijn op een breed scala aan kanaalstromingen
en grenslagen zonder drukgradiënt. We leiden de schaalwetten af voor wanddruk-
fluctuaties, de piek van de turbulente spanning in stroomrichting, en het gemiddelde
snelheidsprofiel—rekening houdend met zowel variabele-eigenschappen als intrinsieke
comprimeerbaarheids effecten. De schaal van het gemiddelde snelheidsprofiel wordt
vervolgens verder benut om voorspellende modellen af te leiden die wrijvingscoëffi-
ciënten en warmteoverdrachtscoëfficiënten schatten, en om compressiecorrecties voor
Reynolds-averaged Navier-Stokes (RANS) turbulentie-modellen voor te stellen. Deze
gecorrigeerde modellen tonen aanzienlijk verbeterde nauwkeurigheid ten opzichte van
de huidige stand van de techniek en bieden een sterk potentieel voor de verbetering van
de modellering van complexe, realistische technische systemen.



1
INTRODUCTION

“...it is precisely the ability of numerical techniques to simulate
‘impossible’ physics that makes them a tool of choice in unravelling the
physics of complex systems.”

— Javier Jiménez and Alfredo Pinelli

1
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2 1. INTRODUCTION

e

Figure 1.1: Visualizations of three hypersonic flows from Candler (2019): (a) the NASA X-15 rocket plane,
(b) a generic lifting hypersonic body, and (c) the Mars Science Laboratory (MSL) capsule at Mars entry
conditions.

Compressible wall-bounded turbulent flows1,2,3 are at the core of many engineering
applications such as aerospace vehicles, combustion processes, high-speed propulsion
systems, applications involving supercritical4 flows, gas turbines and other power-
generating systems.

Figure 1.1 illustrates three hypersonic5 flows from Candler (2019). Subfigure (a)
shows the piloted hypersonic X-15 plane developed by NASA and its collaborators in
the 1960s, which holds the unofficial speed record of about 2 km/s (Mach 6.7) (Jenkins,
2000). Shortly after achieving this milestone, the X-15 crashed due to extreme thermal
loads that led to partial melting of its surface—highlighting the complexities and risks

1Compressible flows are traditionally defined as those in which the fluid density varies due to changes
in pressure (compression or expansion) and/or temperature (heating or cooling). Such flows may
occur at both low as well as high Mach numbers, where the Mach number is defined as M a =U /c,
with U representing a characteristic flow velocity and c the characteristic speed of sound. A detailed
classification of the effects associated with compressible flows is shown in figure 1.3.

2Wall-bounded flows are those that occur in the vicinity of solid walls. Internal flows, such as those in
pipes or ducts (channels), and external flows, such as those over flat plates, can all be identified as
wall-bounded flows.

3Turbulent flows are those in which fluid elements undergo random and irregular motions, which
makes a deterministic approach to the problem impossible, thereby relying on statictical methods
(Tennekes and Lumley, 1972) . This flow regime typically occurs at high Reynolds numbers, defined
as Re =UL /ν, where U and L are characteristic velocity and length scales, and ν is the kinematic
viscosity of the fluid. For a more detailed discussion on turbulence, the reader is referred to Pope
(2001) or Tennekes and Lumley (1972), among many other textbooks on this subject.

4Supercritical flows are those that occur at high temperatures and pressures, above the critical point of
the fluid. In this thermodynamic region, the fluid undergoes a smooth transition from a liquid-like to a
gas-like behaviour, thereby depicting strong changes in its thermophysical properties.

5Flows with speeds greater than five times the speed of sound (Mach number > 5) are classified as
‘hypersonic’ flows. Those with Mach number below 5 and above 1 are termed ‘supersonic’, and those
below 1 are labelled ‘subsonic’.
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Figure 1.2: A Reynolds-averaged Navier-Stokes (RANS) simulation of a radial inflow turbine operating
with an organic fluid at Mach 3 (reproduced from Pecnik and Hasan (2026), originally adapted from
Otero Rodriguez et al. (2021)) .

involved in such flights. Subfigure (b) shows a generic lifting hypersonic body, while
subfigure (c) shows the space exploration vehicle ‘MSL’ (Mars Science Laboratory) flying
at a hypersonic speed of 6 km/s (Candler, 2019), which was designed to carry a large rover
(> 800 kg) to the surface of Mars (Edquist et al., 2007). Subfigures (b) and (c) correspond
to computational fluid dynamics (CFD) simulations, and the contours therein represent
the temperature field at the symmetry plane. In the past few decades, with the advent of
sophisticated numerical and innovative measuring techniques, substantial progress has
been made in understanding hypersonic flows. However, many key aspects still remain
elusive, such as shock-boundary layer interactions, high-temperature dissociation effects,
laminar to turbulent transition, turbulence modeling, and ablation of surfaces (Leyva,
2017). Understanding these aspects is essential in making routine hypersonic flights
within and beyond Earth’s atmosphere an achievable reality.

Figure 1.2 illustrates another application where compressible flows play a key
role—turbines—specifically, a radial turbine designed for an organic Rankine cycle
(ORC) system (Otero Rodriguez et al., 2021). ORC systems are power generation units
operating on the Rankine cycle but with an organic fluid (e.g. alkanes, alcohols,
hydrofluorocarbons, etc.) as the working medium instead of steam. The working
fluid can be selected based on the heat source temperature and other factors, making
ORC systems possibly the most flexible in terms of capacity and operating temperature
(Colonna et al., 2015). This flexibility enables them to effectively harness low-grade heat
sources such as geothermal reservoirs, biomass combustion, solar energy, waste heat
from industrial processes and so on. While the selection of working fluid adds flexibility,
it also influences the design of the turbomachines used in an ORC system. For instance,
expanding organic vapors in turbines can attain very high supersonic Mach numbers due
to low values of the sound speed, and thus, special care is required in their fluid-dynamic
design (Colonna et al., 2015). These challenges become even more pronounced when
the working fluid operates in the supercritical region, where thermophysical properties
can vary significantly.

In these applications, one of the key phenomena that is not yet fully understood is
the behavior of fully developed turbulence near solid walls at high Mach numbers and
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4 1. INTRODUCTION

under strong heat transfer conditions. Turbulence in the near-wall region plays a central
role in determining the viscous drag and surface heating experienced by such systems,
thereby directly influencing their performance and efficiency. To predict these quantities
accurately, our objective is to develop novel scaling laws and turbulence modeling
techniques. However, in order to achieve this goal, it is first necessary to understand the
underlying physics.

1.1. CLASSIFICATION OF COMPRESSIBILITY EFFECTS
Turbulence in compressible flows involves effects related to heat transfer—also termed as
variable-property effects—and intrinsic compressibility (hereby IC) effects—also termed
as ‘true’ compressibility effects (Smits and Dussauge, 2006), ‘genuine’ compressibility
effects (Yu et al., 2019), or simply ‘compressibility’ effects (Lele, 1994). These effects are
summarized in figure 1.3.

Heat transfer is in turn responsible for two main effects. First, it is associated with
mean temperature variations, and hence variations in the mean density and viscosity.
Second, it can cause fluctuations in fluid volume (or density) as a result of a change
in entropy (Livescu, 2020). Mean property variations further influence the traditional
definitions of the friction velocity and viscous length scales (discussed later), and they
are also responsible for the property fluctuations generated as a result of solenoidal
passive mixing. On the other hand, intrinsic compressibility effects are associated
with changes in fluid volume in response to changes in pressure (Lele, 1994). While
variable-property effects can be relevant at any (even zero) Mach number, IC effects only
become important at high Mach numbers.

To better understand these effects, let us note the thermodynamic identity relating
density (ρ), pressure (p) and entropy (s) for ideal gas flows (Gatski and Bonnet, 2013):

− 1

ρ
dρ = 1

cp
d s − 1

ρc2
d p, (1.1)

where cp is the specific heat capacity at constant pressure, and c = √
(∂p/∂ρ)s is the

definition of the speed of sound, which is equal to
√
γRT for ideal gases, where T is the

temperature, R the specific gas constant and γ the ratio of specific heat capacities. Note
that for ideal gases ρc2 = γp.

This thermodynamic relation generalized for a fluid in motion reads (Lele, 1994;
Gatski and Bonnet, 2013)

− 1

ρ

Dρ

Dt
= 1

cp

Ds

Dt
− 1

ρc2

Dp

Dt
, (1.2)

where D/Dt = ∂/∂t +u j∂/∂x j represents material derivative, the left hand side represents
changes in volume (v = 1/ρ) per unit volume of a fluid material element, and the right
hand side represents the sources responsible for this change—entropy and pressure6.
Note that the left hand side of this equation—also referred to as the dilatation ‘d ’—is
equal to the divergence of velocity

d =− 1

ρ

Dρ

Dt
= ∂ui

∂xi
, (1.3)

6Interestingly, these entropic and isentropic volume changes are analogous to the entropic and acoustic
modes, as per Kovasznay’s decomposition (Kovasznay, 1953).
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Figure 1.3: Schematic overview of compressibility effects in wall-bounded turbulence (adapted from
Pecnik and Hasan (2026)).
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as per the continuity equation.
Rewriting the first term on the right-hand-side of equation (1.2) in the form of the

mechanisms through which entropy of a fluid element can change—i.e., heat conduction
and viscous dissipation (and other externally added heat sources, if present)—, we get

− 1

ρ

Dρ

Dt
= 1

ρcp T

(
Φ− ∂q j

∂x j

)
︸ ︷︷ ︸
block 1.2 in Fig. 1.3

− 1

ρc2

Dp

Dt︸ ︷︷ ︸
block 2 in Fig. 1.3

, (1.4)

where Φ represents the heat sources in the domain, and q j = −λ∂T /∂x j represents
Fourier’s heat conduction formula, where λ is the thermal conductivity coefficient.

Equation (1.4) mathematically represents the following picture: imagine a fluid parcel
moving through a domain. In its journey it receives heat from the surrounding, or
rejects heat to it. In this process, the entropy of the parcel changes, causing its volume
to change. Similarly, in its journey if it encounters a change in pressure, its volume
changes. Such volume changes would influence the flow field around the parcel, thereby
influencing the flow dynamics, leading to effects highlighted in blocks 1.2 and 2 of
figure 1.3. In fact, in chapter 3, we present such a mechanistic picture in which the
pressure-induced volume change of a fluid parcel modifies the flow field in such a way
that it weakens the vortical structures.

In 1962, Morkovin postulated that, for non-hypersonic flows, the effects associated
with the volume changes of fluid material elements (blocks 1.2 and 2 in figure 1.3;
equation 1.2), are small, such that only mean property variations and its influence on
the velocity and length scales (item 1.1.1 in block 1 of figure 1.3) remain important.
This hypothesis is commonly referred to as Morkovin’s hypothesis (Morkovin, 1962;
Bradshaw, 1977; Coleman et al., 1995; Smits and Dussauge, 2006)—a cornerstone in
the theory of compressible turbulence. Some years later, Bradshaw (1977) performed a
detailed study on this hypothesis and provided an engineering estimate as to when the
hypothesis should hold. According to Bradshaw, Morkovin’s postulate may be true in
flows where the root-mean-square (r.m.s.) of the density fluctuation is below 10% of the
mean density (ρr ms/ρ̄ < 0.1).

To better understand this condition, let us represent density fluctuations in wall-
bounded flows in terms of entropy and pressure based on the ideal gas equation of state
as (Lele, 1994)

ρ′

ρ̄
=− s′

cp︸︷︷︸
ρ′s

+ p ′

ρ̄c̄2︸︷︷︸
ρ′i s

+ . . . , (1.5)

where overbar signifies mean quantities, primes represent fluctuations, and the
superscripts ‘s’ and ‘i s’ indicate entropic and isentropic fluctuations, respectively. (The
three dots on the right hand side signify other higher order terms resulting from the
non-linearity of the equation of state.) The term −s′/cp represents density fluctuations
arising from two distinct mechanisms: (1) fluctuations generated when a fluid material
element undergoes a change in volume due to entropy change (equation 1.2); and (2)
fluctuations induced when a fluid material element moves in the wall-normal direction
across mean density and entropy gradients (i.e., passive mixing). The latter are related
to the mean gradients as ρ′ ∼ η∂ρ̄/∂y and s′ ∼ η∂s̄/∂y (Lele, 1994), where η is the
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Lagrangian displacement in the wall-normal direction—also referred to as the ‘mixing
length’. On the other hand, p ′/(ρ̄c̄2) mainly represents density fluctuations that are
generated when a fluid material element undergoes a volume change due to change in
pressure (equation 1.2); the contribution by passive mixing being negligible in boundary
layers, where p̄ is approximately constant.

In compressible wall-bounded flows, passive mixing—embedded in the term
s′/cp —generates the majority of the total density fluctuations (Lele, 1994; Coleman et al.,
1995). In other words, the density r.m.s.—as proposed by Bradshaw—is not a rigorous
measure of density fluctuations that are generated when a fluid parcel undergoes a
change in its volume due to change in entropy or pressure. Consequently, it is not
an appropriate indicator of the effects assumed to be small according to Morkovin’s
conjecture (Coleman et al., 1995), namely blocks 1.2 and 2 in figure 1.3. The effects
related to passive mixing (item 1.1.2 in block 1 of figure 1.3) are implicitly neglected in
Morkovin’s hypothesis (Coleman et al., 1995), since it does not account for the spatial
gradients of mean properties (Bradshaw, 1977) that are necessary in the passive mixing
mechanism.

As just noted, p ′/(ρ̄c̄2) quantifies changes in volume of fluid material elements in
response to changes in pressure. Thus, it is a direct measure of intrinsic compressibility
effects (block 2). In light of this, Coleman et al. (1995) suggested that, consistent
with the original conjecture, pr ms/(ρ̄c̄2) (or pr ms/p̄), along with the total temperature
r.m.s. scaled by its mean7, would be a better evaluator of Morkovin’s hypothesis, than
Bradshaw’s ρr ms/ρ̄. To our knowledge, there is no engineering estimate for these
fluctuations such as the one for density.

1.1.1. VARIABLE-PROPERTY EFFECTS
If Morkovin’s hypothesis holds, then only mean property variations are needed to
describe turbulence dynamics. Although this assertion is rather vague (Smits and
Dussauge, 2006), it leads to a powerful implication: the same scaling laws8 and models
developed for incompressible flows could be applied to compressible flows, provided
that mean property variations are appropriately accounted for. Before proceeding with
this idea, let us first review the state-of-the-art in scaling incompressible flows.

THE CLASSICAL SCALING FRAMEWORK

In incompressible flows, the ‘classical’ scaling framework—based on the friction velocity
and viscous length scales, defined as

uτ =
√
τw

ρw
, δv = µw

ρw uτ
, (1.6)

where τw is the wall shear stress, and ρw , µw represent the fluid density and viscosity at
the wall (the subscript w indicates wall values)—is popularly utilized to develop scaling
laws. To follow the subsequent discussion better, refer to the structure of a turbulent
boundary layer in figure 1.4.

7The reasoning behind why the total temperature r.m.s. serves as an indicator for the validity of the
hypothesis remains unclear (Lele, 1994).

8Scaling laws describe how a turbulence quantity should be non-dimensonalized such that it collapses
onto one master curve, independent of the flow conditions.
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Figure 1.4: A schematic showing the different regions and the appropriate velocity and length scales
in an incompressible turbulent boundary layer (adapted from Larsson and Pirozzoli (2026)). A similar
schematic for compressible flows is shown in chapter 6 (figure 6.1). Here, y+ = y/δv and δ+ = δ/δv ,
where y represents the wall-normal coordinate and δ is the boundary layer thickness. ū denotes the
mean velocity in the streamwise direction. Note that both the y/δ and y+ axes are logarithmic.

The classical paradigm advocates the use of δv as the characteristic length scale
in the inner layer of a boundary layer, and the use of δ—defined as the thickness of
the boundary layer9—as the appropriate scale in the outer layer. Consequently, in the
overlap region, the two length scales are equivalent, meaning either of the two can be
used there. The inner and outer layers share a common velocity scale uτ, leading to a
logarithmic region between them (Marusic et al., 2010). These scales and their regions of
validity are schematically depicted in figure 1.4. In the past, various turbulent quantities
have been scaled following the classical framework, with varying degree of success in
achieving a consistent collapse. See table 7.1 for some examples. Note that classical
scaling will be denoted using a superscript ‘+’ for the inner layer and ‘⊕’ for the outer
layer.

Among all, the best collapse is achieved for mean velocity profiles. Specifically,
the mean velocity ū scaled by uτ (i.e., ū+ = u/uτ), when plotted as a function of the
wall-normal distance y normalized by δv (i.e., y+ = y/δv ), results in a universal collapse
in the inner layer, independent of the Reynolds number (Lee and Moser, 2015). This
scaling of the mean velocity in the inner layer is commonly referred to as the law of the
wall—a cornerstone in the theory of fluid dynamics (Bradshaw and Huang, 1995).

The law of the wall has played a significant role in shaping the field of turbulence
modeling. From the simplest mixing-length models to the more complex ones, where
transport equations need to be solved (such as the k-ε and k-ω family of models),
essentially all models are calibrated to reproduce this law. These turbulence models
then drive Reynolds-averaged Navier-Stokes (RANS) simulations10—an indispensable
predictive tool for industries. Beyond RANS, these turbulence models are also at the
core of high-fidelity numerical simulations, namely, wall-modeled large eddy simulations
(WMLES), in which the viscous sublayer and buffer layer are solved using a RANS
simulation that provides the wall shear stress and heat flux as an input to the
LES (Larsson et al., 2016; Bose and Park, 2018). With rapid advances in computational
resources and numerical techniques, WMLES has made major leaps in the CFD domain.

9The thickness of the boundary layer is arbitrarily defined to be the distance from the wall where the
mean flow velocity is equal to 99% of the free-stream velocity (Pope, 2001).

10The reader is referred to the textbook by Wilcox et al. (2006) for the fundamentals on RANS modeling.
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For instance, recently, this tool was applied to simulate a landing aircraft at an affordable
cost (Goc et al., 2021), marking the readiness of WMLES for industrial deployment.

Moreover, even experimentalists have benefitted from this law, particularly, in
estimating wall shear stress without needing to measure extremely close to the wall.

Unlike mean velocity, classical scaling applied to other statistical quantities in the
inner layer, such as the streamwise Reynolds stress, does not lead to a collapse, but
rather depicts a Reynolds number dependence. For instance, the inner-scaled peak of the
streamwise Reynolds stress increases as a logarithmic (Marusic et al., 2017; Samie et al.,
2018) or a power-law (Chen and Sreenivasan, 2021, 2022; Monkewitz, 2022) function of
the Reynolds number, due to interactions between the inner and outer layers.

THE SEMI-LOCAL SCALING FRAMEWORK

In the past, several scaling laws have been proposed for compressible flows, by simply
accounting for mean property variations in the incompressible scaling laws (Morkovin’s
hypothesis). The first key contribution in accounting for variable-property effects is
attributed to Van Driest (1951), who incorporated mean density variations in the mean
shear formulation such that

dū

d y
=

√
τw /ρ̄

κy
, (1.7)

where u is the streamwise velocity, τw the wall shear stress, ρ the fluid density, and κ

the von Kármán constant. Equation (1.7) led to two major outcomes: (1) the Van Driest
mean velocity transformation11 (Van Driest, 1956a; Danberg, 1964) given as

Ū+
V D =

∫ ū+

0

√
ρ̄

ρw
dū+, (1.8)

and (2) the Van Driest skin-friction theory (Van Driest, 1956b; Hopkins and Inouye, 1971).
These scaling breakthroughs are still widely used, despite their known shortcomings
(Bradshaw, 1977; Huang and Coleman, 1994; Trettel and Larsson, 2016; Patel et al., 2016a;
Griffin et al., 2021; Kumar and Larsson, 2022; Hasan et al., 2024b).

Another key contribution is attributed to Morkovin (1962) who proposed scaling the
turbulent shear stress with ρ̄/ρw such that

�u′′v ′′∗ = ρ̄

ρw

�u′′v ′′

u2
τ

(1.9)

collapses with the incompressible distributions. Here, the tilde denotes density-weighted
(Favre) averaging, and the double primes denote fluctuations from Favre average. The
contributions of Van Driest and Morkovin can be consolidated by interpreting their
corrections as if they were to change the definition of the friction velocity scale from uτ to
u∗
τ =

√
τw /ρ̄ (termed ‘semi-local’ friction velocity scale12), such that equations (1.7), (1.8),

and (1.9) can be rewritten as

dū

d y
= u∗

τ

κy
, Ū+

V D =
∫ ū

0

1

u∗
τ

dū, �u′′v ′′∗ =
�u′′v ′′

u∗2
τ

. (1.10)

11A mean velocity transformation is a scaling law which, when plotted as a function of an appropriately
scaled wall distance, collapses onto the incompressible law of the wall.

12The friction velocity scale is termed ‘semi-local’ instead of ‘local’ because the total shear stress in its
definition is still taken at the wall.
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Similarly, efforts to account for mean density and viscosity variations in the definition
of the viscous length scale were made since the 1950s (Lobb et al., 1955), giving rise
to the well-known semi-local wall-normal coordinate y∗ = y/δ∗v (where δ∗v = µ̄/(ρ̄u∗

τ ) is
the semi-local viscous length scale). Much later, the companion papers by Huang et al.
(1995) and Coleman et al. (1995) performed a comprehensive analysis where they showed
that turbulence quantities show a much better collapse when reported as a function of
y∗ rather than y+. Another major consequence of using the semi-local wall coordinate
is reflected in mean velocity scaling. The ‘semi-local’ velocity transformation, derived
independently by Trettel and Larsson (2016) using high-Mach-number channel flows
and by Patel et al. (2016a) using low-Mach-number variable-property flows, extends the
Van Driest transformation by accounting for variations in the semi-local viscous length
scale. This transformation (also known as the TL transformation) can be written as

ū∗ = Ū+
T L =

∫ ū

0

(
1− y

δ∗v

dδ∗v
d y

)
1

u∗
τ

dū︸ ︷︷ ︸
dŪ+

V D

. (1.11)

As we will see in chapter 5, because this transformation accounts only for variable-
property effects, it is strictly applicable to low-Mach-number flows—such as those
considered by Patel et al. (2016a).

These studies form the basis of the semi-local scaling framework, according to which,
the friction velocity and viscous length scales are defined using mean properties as

u∗
τ =

√
τw

ρ̄
, δ∗v = µ̄

ρ̄u∗
τ

. (1.12)

Analogous to incompressible flows, in chapter 6, we find that compressible flows are
also governed by two distinct length scales: δ∗v in the inner layer and δ in the outer
layer. These two layers share a common velocity scale u∗

τ , leading to a logarithmic
region between them (figure 6.1). Some examples of inner- and outer-layer semi-locally
scaled quantities are provided in table 7.1. Note that semi-local scaling in the outer
layer, namely using u∗

τ and δ as characteristics scales, is also referred to as Van Driest
scaling. Also note that semi-local scaling will be denoted using a superscript ‘∗’ for the
inner layer and ‘~’ for the outer layer.

As outlined above, the law of the wall for incompressible flows plays a foundational
role in turbulence modeling. Thus, considerable effort has been devoted to establishing
an analogous law for compressible flows (Zhang et al., 2012), which would then directly
benefit both mixing-length models (chapter 6) and transport-equation-based turbulence
models (chapter 7).

Several mean velocity scalings in compressible flows have been derived based on
the semi-local scaling framework—for instance, the Van Driest and the semi-local
transformations just discussed. The Van Driest transformation has proven to be effective
in adiabatic flows, however, its accuracy reduces in flows with heat transfer at the
wall (Bradshaw, 1977; Huang and Coleman, 1994; Trettel and Larsson, 2016; Patel et al.,
2016a; Griffin et al., 2021). This is also clear from figure 1.5(a), which plots the Van
Driest transformed profiles as a function of y+ = y/δv for a wide range of channel flow
and boundary layer cases described in the caption (and also in table 2.3). As seen, the
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Figure 1.5: The mean velocity profiles after (a) Van Driest (VD), (b) semi-local (TL), and (c) GFM
transformations for the channel flow and boundary layer cases described later in table 2.3. These cases
include adiabatic and diabatic air-like ideal-gas channels and boundary layers, as well as ideal-gas
channels and boundary layers with non-air-like viscosity behaviour—where the dynamic viscosity does
not follow air-like laws such as a power-law, µ̄/µw = (T̄ /Tw )0.75, or Sutherland’s law, but instead follows a
non-conventional behavior, for e.g., µ̄/µw = (T̄ /Tw )−0.5—, and non-ideal-fluid cases such as supercritical
flows. The conventional air-like cases are denoted using gray lines, and the remaining non-conventional
cases are represented using colored lines, where the line color corresponds to the color of the symbols
associated with each respective author; see table 2.3. The dashed black lines correspond to the
incompressible law of the wall.

collapse is poor, especially in the viscous sublayer and the buffer layer. This is because
the Van Driest transformation does not account for changes in the viscous length scale
(δ∗v ), which can vary significantly, especially in diabatic flows. In fact, since viscosity (or
δ∗v ) variations are not accounted for, Van Driest’s transformation is best applied in the
outer layer as a function of y/δ (Fernholz and Finley, 1980); see also chapter 6.

The semi-local velocity transformation (ū∗) extends the Van Driest transformation
by accounting for δ∗v variations. When plotted as a function of the semi-locally scaled
wall-normal coordinate y∗ = y/δ∗v , ū∗ collapses onto the incompressible law of the wall
for low-Mach number (Patel et al., 2016a) and high-Mach number (Trettel and Larsson,
2016) channel flows. However, this transformation loses accuracy for high-Mach number
boundary layers (Patel et al., 2016a; Trettel and Larsson, 2016; Griffin et al., 2021).
Figure 1.5(b) plots this transformation for a range of channel flow and boundary layer
cases described in the caption. While we see an improvement with respect to the
VD transformation in the viscous sublayer and buffer layer—since δ∗v variations are
accounted for—the profiles in the log-layer are still inaccurate depicting an upward shift
with respect to the incompressible law of the wall.

Zhang et al. (2018) suspected this shift in the semi-local profiles to be an effect
caused by the wake region on the inner layer. This naturally leads to the question
of why a similar wake effect is absent in incompressible flows. On the other hand,
Griffin et al. (2021) argued that, in the region where the semi-local transformation fails,
i.e. the log-layer, the viscous shear stress (whose integration leads to the semi-local

velocity profiles, i.e., ū∗ = ∫ y∗
0 (µ̄dū/d y)/τw d y∗) is close to zero, such that even small

differences in the absolute stress values can lead to unbounded percent errors. In
other words, high relative errors in the viscous shear stress might explain why the
velocity profiles do not collapse. However, such an argument related to high relative
error questions the robustness of the incompressible law of the wall itself, which is
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also based on the universality of the viscous shear stress in the entire inner layer, i.e.,

ū+ = ∫ y+
0 (µw dū/d y)/τw d y+ (Bradshaw and Huang, 1995).

Several other mean velocity transformations have been proposed in the literature,
to further improve the Van Driest (Zhang et al., 2012) and semi-local transformations
(Volpiani et al., 2020b; Griffin et al., 2021; Lee et al., 2023). Of these, the one proposed by
Griffin et al. (2021) (hereafter GFM) is widely used and has shown promising results for
ideal gas air flows. Figure 1.5(c) presents the GFM transformation for a range of channel
flow and boundary layer cases described in the caption (see also table 2.3). While the
results improve for the air-like ideal-gas conventional cases (gray lines), they deteriorate
for ideal-gas cases with a non-air-like viscosity behavior and for non-ideal-gas cases such
as those involving supercritical fluids (colored lines). A similar behavior for non-ideal-gas
flows was observed by Bai et al. (2022). The reader is referred to chapter 5 for further
details on the reduced accuracy of GFM scaling in non-conventional flows.

Among the various transformations listed above, the semi-local transformation shows
a better overall performance over a wide range of cases (figure 1.5b; see also Bai et al.
(2022) for comparisons with other transformations not shown in figure 1.5). Yet, a
convincing explanation for why it fails in the logarithmic region of high-Mach-number
flows is missing.

Similar shortcoming in achieving a universal collapse under the semi-local framework
is also observed for other turbulence quantities—for instance, the streamwise Reynolds
stress. Specifically, it has been reported in the literature that the peak of semi-locally-
scaled streamwise Reynolds stress is higher in compressible flows than in incompressible
flows, despite having similar Reynolds numbers (Gatski and Erlebacher, 2002; Pirozzoli
et al., 2004; Foysi et al., 2004; Duan et al., 2010; Modesti and Pirozzoli, 2016; Zhang et al.,
2018; Cogo et al., 2022, 2023).

Therefore, an important question arises: could such failures in achieving a
universal collapse be due to effects that are consistently neglected under Morkovin’s
hypothesis—most importantly, intrinsic compressibility effects? In order to address
this question, it is first necessary to review the literature on IC effects.

1.1.2. INTRINSIC COMPRESSIBILITY EFFECTS

Compared to the vast literature available on variable-property effects in low-Mach (Patel
et al., 2015, 2016a, 2017; Pecnik and Patel, 2017; Modesti and Pirozzoli, 2024) and
high-Mach number flows (Van Driest, 1951; Morkovin, 1962; Huang et al., 1995; Coleman
et al., 1995; Maeder et al., 2001; Morinishi et al., 2004; Foysi et al., 2004; Duan et al.,
2010, 2011; Modesti and Pirozzoli, 2016; Zhang et al., 2018; Cogo et al., 2022; Zhang
et al., 2022; Wenzel et al., 2022; Cogo et al., 2023), less studies have focused on intrinsic
compressibility effects, possibly due to the belief that Morkovin’s hypothesis holds even
for hypersonic flows (Duan et al., 2011; Zhang et al., 2018).

Recently, significant progress has been made towards understanding IC effects,
particularly attributed to the series of publications by Yu and co-workers (Yu et al., 2019,
2020; Yu and Xu, 2021), who analysed these effects in channel flows through direct
numerical simulations (DNS). They performed a Helmholtz decomposition of the velocity
field (see Appendix A) and mainly focused on dilatational motions and their direct
contribution to several turbulence statistics. Their main observations were: (1) intrinsic
compressibility effects, if present, are likely concentrated in the near-wall region, where
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the wall-normal dilatational velocity field exceeds the solenoidal counterpart; (2) the
correlation between the solenoidal streamwise and the dilatational wall normal velocity
is negative and can constitute up to 10% of the total shear stress; (3) this negative
correlation was attributed to the opposition of sweeps near the wall by dilatational
motions; and (4) the dilatation field (and thus the dilatational velocity) exhibits a
travelling wave-packet-like structure, whose origin is yet unknown (see also Tang et al.,
2020; Gerolymos and Vallet, 2023; Yu et al., 2024).

The aforementioned studies mainly focus on the direct IC effects—those that are
reflected directly in the dilatational component of velocity. However, it is so far unclear
how important are the indirect IC effects—those that are observed in the solenoidal
(vortical) component of velocity. This is particularly important to study, since any IC
effect on the mean velocity or the streamwise Reynolds stress (as noted above), which
are largely solenoidal13, must be an indirect effect.

Studying indirect IC effects on the solenoidal component of velocity is challenging,
since variable-property effects mainly reside in this component. Thus, it would
be impossible to differentiate whether an effect on the vortical velocity field is a
variable-property effect or an intrinsic compressibility one. In order to study these
effects without any variable-property influence, we would need to perform tailored
“unphysical” simulations that would in principle isolate IC effects. There are two ways
prescribed in the literature to achieve this. One, attributed to Lele (1994), who advocates
simulating low-Mach-number flows having similar mean property distributions as in a
high-Mach-number flow. Upon comparing the two flows, one can isolate effects that
occur only at high Mach numbers, i.e. IC effects. Another method is attributed to
Coleman et al. (1995) who advocate nullifying variable-property effects, such that IC
effects are isolated. They introduce a source term in their DNS of channel flows, which
balances the heat generated due to viscous heating, thereby achieving flows at high
Mach numbers but with approximately constant mean properties. Here, we follow the
latter approach which is simpler compared to Lele’s, since achieving a low-Mach flow
with properties matching a high-Mach one is challenging14. We will discuss Coleman’s
approach further in chapter 2.

1.2. OBJECTIVES
In this work, we aim to study intrinsic compressibility (IC) effects whose impact has
often been overlooked or incorrectly attributed to mean property variations. The primary
challenge in investigating these effects lies in distinguishing them from variable-property
effects. In this thesis, we simulate tailored cases at high Mach numbers, with
approximately constant mean properties, whereby IC effects are isolated. Having
isolated these effects, the first part of this thesis focuses on understanding the physics
associated with IC effects. Building upon the physical insights gained from the tailored,
non-physical cases, the second part of this thesis develops novel scaling laws and
turbulence model corrections that are applicable to a wide range of conventional cases
reported in the literature. Specifically, our objectives are:

13The Reynolds stresses are mainly contributed by solenoidal velocity fluctuations (Yu et al., 2019).
14One would need to prescribe heat sources in the energy equation of a low-Mach-number flow which

results in mean property distributions as in a high-Mach-number flow. The procedure described in
section 2.2 could be used to generate such heat source distributions.
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1. To perform tailored direct numerical simulations that isolate IC effects (chapter 2).

2. To study the influence of IC effects on the mean velocity profiles, and to explain
the observed influence using various turbulence statistics (chapter 3).

3. To investigate the physical mechanism through which these effects modulate the
near-wall vortical dynamics (chapter 3).

4. To account for IC and variable-property effects in the scaling of turbulence
statistics such as the wall-pressure r.m.s. and the peak of streamwise Reynolds
stress (chapter 4).

5. To derive a mean velocity scaling (transformation) incorporating these effects
(chapter 5).

6. To improve the existing turbulence modeling techniques based on the proposed
mean velocity scaling. Specifically:

(a) To predict full mean velocity and temperature profiles, and skin-friction and
heat transfer coefficients in turbulent boundary layers (chapter 6).

(b) To derive compressibility corrections for turbulence models accounting for
both variable-property and IC effects (chapter 7).

Objectives 2 and 3 are addressed in the first part of this thesis, whereas objectives 4 to 6
are addressed in the second part.

1.3. OUTLINE
Following this introduction, the thesis is structured as follows.

Chapter 2 presents the setup used for simulating high-Mach-number constant-
property (CP) channel flows, along with specific non-conventional variable-property
cases. It also lists several zero-pressure-gradient boundary layer and channel flow cases
from the literature, which are used to test the scaling laws and models developed in this
work.

Part I: Theory

Chapter 3, using the CP cases described in chapter 2, analyzes the influence of IC
effects on the mean velocity profiles. It then examines key turbulence statistics—such as
turbulent stresses, pressure-strain correlation, and coherent structures—and attributes
the changes in mean velocity profiles to the weakening of quasi-streamwise vortices.
Finally, based on the insights from incompressible turbulence, it explains the physical
mechanism responsible for this weakening.

Part II: Scaling laws and predictive models

Chapter 4 presents a framework for incorporating IC effects, alongside variable-property
effects, into the development of scaling laws for turbulence statistics such as the
wall-pressure r.m.s. and the streamwise Reynolds stress peak.
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Chapter 5, based on the CP cases, assesses whether the log-law shift observed in the
semi-local transformation (figure 1.5b) is due to IC effects. Consequently, it proposes a
velocity transformation which accounts for these effects, in addition to variable-property
effects.

The following two chapters build upon the proposed velocity transformation to improve
the state-of-the-art turbulence predictive techniques. Specifically:

Chapter 6 utilizes a mixing-length eddy-viscosity model, together with an outer-layer
wake function to derive a mean shear equation that is valid in the entire boundary layer.
This equation—coupled with a temperature-velocity relation—predicts full mean velocity
and temperature profiles, and skin-friction and heat transfer coefficients in high-speed
turbulent boundary layers.

Chapter 7 proposes a novel approach to derive compressibility corrections through
which any incompressible turbulence model can be extended for compressible flows.

Chapter 8 provides concluding remarks and an outlook for future studies.





2
COMPUTATIONAL APPROACH AND CASE

DESCRIPTION

Parts of this chapter have been published as:
Hasan, A. M., Costa, P., Larsson, J., Pirozzoli, S., and Pecnik, R. (2025). Intrinsic compressibility effects in
near-wall turbulence. Journal of Fluid Mechanics, 1006:A14.

17
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In order to investigate turbulence in high-speed wall-bounded flows, we perform
direct numerical simulations (DNS) by solving the compressible Navier-Stokes equations
in conservative form, given as

∂ρ

∂t
+ ∂ρui

∂xi
= 0,

∂ρui

∂t
+ ∂ρui u j

∂x j
=− ∂p

∂xi
+ ∂τi j

∂x j
+ f δi 1,

∂ρE

∂t
+ ∂ρu j E

∂x j
=−∂pu j

∂x j
− ∂q j

∂x j
+ ∂τi j ui

∂x j
+ f u1 +Φ.

(2.1)

The viscous stress tensor and the heat flux vector are given as

τi j =µ
(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
, q j =−λ ∂T

∂x j
, (2.2)

where ui is the velocity component in the i th direction, and where i = 1,2,3 corresponds
to the streamwise (x), wall-normal (y) and spanwise (z) directions, respectively. ρ is the
density, p the pressure, E = cv T +ui ui /2 the total energy per unit mass, µ the viscosity, λ
the thermal conductivity and Pr =µcp /λ the Prandtl number. cp and cv indicate specific
heats at constant pressure and constant volume, respectively. f is a uniform body force
that is adjusted in time to maintain a constant total mass flux in periodic flows (e.g., a
fully developed turbulent channel or pipe). Φ is a source term that can be adjusted to
achieve desired variations in mean temperature and fluid properties.

We perform DNS of fully developed channel flows by solving (2.1) using a high-order
finite-difference code STREAmS (Bernardini et al., 2021). The domain is periodic in the
streamwise and spanwise directions, while at the walls an isothermal boundary condition
is used for temperature, and a zero normal gradient is specified for pressure.

The fluid used in the simulations is modeled as a calorically perfect ideal gas
(constant specific heat capacities, cp and cv ) with the specific heat ratio, γ= cp /cv of
1.4. The fluid is assumed to have an air-like Prandtl number of 0.7 which is constant
in the domain, and the viscosity is assumed to either follow an air-like (Sutherland, or
exponential (T̄ /Tw )0.75) or a non-air-like (exponential (T̄ /Tw )−0.5) behaviour.

2.1. CONSTANT-PROPERTY CASES
As outlined in chapter 1, herein we attempt to remove mean property gradients to isolate
intrinsic compressibility effects. For that purpose, we follow the approach presented by
Coleman et al. (1995), whereby the energy equation is augmented with a source term

Φ=−τi j
∂ui

∂x j
(2.3)

that counteracts the effects of viscous dissipation. Consequently, the mean internal
energy remains approximately uniform across the entire domain. For an ideal gas,
this implies that the mean temperature is also approximately constant, which, when
combined with a uniform mean pressure, leads to a nearly uniform mean density.
Furthermore, the mean dynamic viscosity and mean thermal conductivity are also
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Case name Mb Mcl Mτ Reτ Reτc Line colour
Mach 0.3 0.3 0.34 0.0162 556 556
Mach 2.28 2.28 2.59 0.1185 546 539
Mach 3 3.0 3.37 0.1526 547 527
Mach 4 4.0 4.47 0.1968 544 513

Table 2.1: Description of the constant-property high-Mach-number cases simulated in this thesis.
Mb =Ub/

√
γRTw is the bulk Mach number, Mcl =Uc /

√
γRTc is the channel centreline Mach number

and Mτ = uτ/
√
γRTw is the wall friction Mach number. Reτ = ρw uτh/µw is the friction Reynolds number

based on the channel half-height h and Reτc corresponds to the value of the semi-local friction Reynolds
number (Re∗τ = ρ̄u∗

τh/µ̄) at the channel centre.

uniform. However, it is important to note that the simulations still permit fluctuations of
these properties—primarily along isentropes, as we will see below.

Using this approach, four cases with increasing Mach numbers are simulated, as
presented in table 2.1. These simulations are performed using an air-like power law for
viscosity with an exponent of 0.75. Since the four cases have similar Reτ values, we use
the same grid for all simulations. The computational grid consists of nx = 1280, ny = 480
and nz = 384 points for a domain of size Lx = 10h, Ly = 2h and Lz = 3h, where h is the
channel half-height. This gives a near-wall resolution of ∆x+ = 4.3 and ∆z+ = 4.3. The
grid in the wall-normal direction is stretched in such a way that y+ ≤ 1 is achieved for
the first grid point.

Figure 2.1 shows the mean density, viscosity, and semi-local Reynolds number
profiles for the four cases introduced in table 2.1. The figure also shows the profiles of
a conventional boundary layer at a free-stream Mach number of 14, taken from Zhang
et al. (2018). Compared to the conventional M∞ = 14 boundary layer case, our cases
show little to no variation in mean properties. This implies that mean heat transfer
effects are indeed negligible in the present cases.

To determine whether other heat transfer effects associated with changes in fluid
volume as a result of changes in entropy are important, we compute density fluctuations
using the isentropic relation

ρi s
r ms

ρ̄
≈ 1

γ

pr ms

p̄
, (2.4)

and compare it with the density fluctuations obtained from DNS in figure 2.2(a). With
the exception of the viscous sublayer, the two distributions appear to collapse, which
implies that other heat transfer effects are also negligible in the present cases. Hence,
any deviations from incompressible flows observed in these cases should be attributed
to intrinsic compressibility effects.

Figure 2.2(a) also shows the total and isentropic density fluctuations for the M∞ = 14
flow case computed by Zhang et al. (2018). As can be seen, the total density fluctuations
are much higher than the isentropic ones in the buffer layer and beyond. This suggests
that a significant portion of the density fluctuations is also caused by heat transfer
effects, such as passive mixing across mean density gradients or heat-induced volume
changes, corroborating that both heat transfer and intrinsic compressibility effects are
important for the M∞ = 14 case. Interestingly, our highest Mach number case (Mach 4)
and Zhang’s M∞ = 14 boundary layer have similar isentropic density r.m.s. (or similar
pressure r.m.s.). Given that the pressure r.m.s. scaled by mean pressure is an effective
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Figure 2.1: Wall-normal distributions of (a) density ρ, (b) viscosity µ, and (c) the semi-local friction
Reynolds number Re∗τ = ρ̄u∗

τh/µ̄ for the cases described in table 2.1. The blue lines represent the
M∞ = 14 case of Zhang et al. (2018). These quantities are plotted as a function of the wall-normal
coordinate scaled by the channel half-height for the channel flow cases, and by the boundary layer
thickness (δ) for the M∞ = 14 boundary layer case.
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Figure 2.2: Wall-normal distributions of (a) the root-mean-square (r.m.s.) of the total (solid) and isentropic

(dashed) density fluctuations (equation 2.4); (b) the turbulence Mach number Mt =
p

2k/
√
γRT̄ ; and (c)

the semi-local friction Mach number M∗
τ = u∗

τ /
√
γRT̄ for the cases described in table 2.1. The blue lines

represent the M∞ = 14 case of Zhang et al. (2018).

measure of intrinsic compressibility effects (Coleman et al., 1995, see also chapter 1), we
can expect that these effects are of comparable magnitude for our Mach 4 case and the
conventional M∞ = 14 boundary layer.

In addition to the pressure r.m.s., intrinsic compressibility effects can also be
quantified in terms of Mach numbers. Figure 2.2(b) shows the turbulence Mach number,
defined as Mt = ( �u′′

i u′′
i /γRT̄ )1/2, where the denominator is the local speed of sound for

ideal gases. Three out of four cases are above the threshold of Mt = 0.3, above which
intrinsic compressibility effects are considered important (Smits and Dussauge, 2006).
Due to the inhomogeneous nature of wall-bounded flows, Mt is not constant throughout
the domain, becoming zero at the wall where the pressure and density r.m.s. are the
strongest as shown in figure 2.2(a).

Other parameters have been proposed in the literature as a better measure of
intrinsic compressibility effects in wall-bounded flows, most prominently the friction
Mach number Mτ = uτ/

√
γRTw (Bradshaw, 1977; Smits and Dussauge, 2006, also refer

to chapter 5). When defined in terms of local properties, one obtains the semi-local
friction Mach number

M∗
τ = u∗

τ/
√
γRT̄ . (2.5)
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Case name Mb Mcl Mτ Reτ Reτc Line type
BL-like 1.73 2.8 0.100 495 1285
Mach 2.28 non-air-like 2.28 1.8 0.111 559 558
Mach 4 non-air-like 4 3.1 0.185 567 562
Mach 2.28 heat-source 2.28 1.88 0.104 801 360

Table 2.2: Description of the variable-property cases simulated in this thesis. Details corresponding to
each column are provided in table 2.1.

Figure 2.2(c) shows the distribution of M∗
τ for the four CP cases and the Mach 14 case of

Zhang et al. (2018). In contrast to Mt , the distribution of M∗
τ is nearly constant and equal

to the wall value, Mτ, for both constant- and variable-property flows. This constant
distribution is because in these flows T̄ /Tw ≈ ρw /ρ̄ (ideal gas assumption) such that

M∗
τ = u∗

τ√
γRT̄

= uτ
√
ρw /ρ̄√
γRT̄

≈ uτ
√

T̄ /Tw√
γRT̄

= uτ√
γRTw

= Mτ. (2.6)

Since M∗
τ is uniform, its wall value Mτ can be directly used in developing scaling laws

(see chapters 5 and 4)
It is interesting to note from figure 2.2(b) and (c) that the profiles of Mt and M∗

τ are
equivalent for both the Mach 4 CP case and the conventional M∞ = 14 case, similar to
the isentropic density r.m.s. shown in figure 2.2(a).

2.2. VARIABLE-PROPERTY CASES
In addition to the constant-property compressible cases, we have also simulated three
types of variable-property cases as presented in table 2.2. Similar to the CP cases,
these cases are non-conventional or tailored, since they are simulated with external heat
sources with an intention to achieve desired mean property profiles.

The first case is termed ‘BL-like’ since in this case, the heat source added is such that
the mean property profiles in a channel flow resembles that of a boundary layer. The
appropriate heat source to simulate such a case is obtained as follows:

1. Select a boundary layer whose property profiles are to be replicated.

2. Interpolate the mean property profiles of this case on to a channel flow mesh
(y/δ→ y/h).

3. Using these interpolated property profiles, solve the semi-locally scaled RANS
equations in a channel flow (see chapter 7) to obtain the eddy viscosity µt .

4. Using this µt along with the turbulent Prandtl number Prt = 0.9, compute a heat
source Ψ as

Ψ= d

d y

[(
µ̄cp

Pr
+ µt cp

Prt

)
dT̄

d y

]
,

where the thermophysical properties (µ̄, cp , Pr ) and the mean temperature (T̄ ) are
taken from the DNS of the boundary layer to be replicated.
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Figure 2.3: Wall-normal distributions of (a) density ρ, (b) viscosity µ, and (c) the semi-local friction
Reynolds number Re∗τ = ρ̄u∗

τh/µ̄ for the cases described in table 2.2. The blue lines represent the
M∞ = 2.5 case of Zhang et al. (2018). These quantities are plotted as a function of the wall-normal
coordinate scaled by the channel half-height for the channel flow cases, and by boundary layer thickness
(δ) for the M∞ = 2.5 boundary layer case.

5. Set up a DNS simulation with Φ=Ψ−τi j∂ui /∂x j as the extenal heat source in the
energy equation. Subtracting the aerodynamic heating term is important to get the
desired temperature profile.

Using this procedure, we replicated the M∞ = 2.5 air-like case of Zhang et al. (2018). The
property profiles for the tailored channel case, along with the boundary layer case are
plotted in figure 2.3. As seen, the profiles in the channel flow case (short-dashed red
lines) closely follow those in the boundary layer (solid blue lines), thereby validating our
approach.

The primary motivation for simulating this case was to test the hypothesis that
the log-law shift observed under the semi-local transformation in boundary layers
(figure 1.5b) arises from the influence of the wake region (Zhang et al., 2018)—an effect
typically absent in channel flows. However, our findings show that the velocity profile of
the BL-like channel flow case depicts a similar log-law shift as the replicated boundary
layer (not shown), thereby disproving this hypothesis (see also chapter 5).

In the second set of cases (non-air-like), the viscosity law is adjusted such that the
local Reynolds number (Re∗

τ ) is approximately constant in the domain (Patel et al., 2015).
Specifically, instead of following the air-like viscosity law of (T̄ /Tw )0.75, these cases follow
(T̄ /Tw )−0.5. Figure 2.3 shows the corresponding property profiles for these cases (see
dotted and long-dashed red lines). As seen from subfigure (c), the semi-local Reynolds
number is almost uniform for these cases.

The primary objective of simulating these cases is to assess the robustness of the
mean velocity scaling developed in chapter 5 with respect to variations in the viscosity
law. Specifically, the aim is to verify that the proposed scaling remains valid irrespective
of the underlying viscosity-temperature relationship—a criterion not satisfied by several
state-of-the-art velocity transformations (Volpiani et al., 2020a; Griffin et al., 2021).

The final case in table 2.2 corresponds to an ideal-gas flow with an air-like viscosity
law, but with arbitrary heat sources added to the energy equation. The resulting property
profiles are shown in figure 2.3 (solid red lines). The primary objective of this case is to
demonstrate the robustness of the mean velocity scaling with respect to non-physical,
arbitrarily imposed heat sources.

In addition to the cases presented above, this thesis will also utilize the data provided
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by several authors in the literature. Table 2.3 provides an overview of all the cases
referenced in this thesis, along with the chapters in which they are used. A visual
summary of these cases is presented in figure 2.4.
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Figure 2.4: A visual representation of the cases described in table 2.3.





3
IC EFFECTS IN NEAR-WALL TURBULENCE:

PHYSICAL MECHANISM

In this chapter, we assess intrinsic compressibility (IC) effects using constant-property
compressible (CP) cases that are specifically designed to isolate such effects. These cases
reveal that IC effects yield a significant upward shift in the logarithmic mean velocity
profile (similar to that observed in figure 1.5b) that can be attributed to the reduction in
the turbulent shear stress. This reduction stems from the weakening of the near-wall
quasi-streamwise vortices. We in turn attribute this weakening to the spontaneous
opposition of sweeps and ejections from the near-wall expansions and contractions of
the fluid, and provide a theoretical explanation for this mechanism. Our results also
demonstrate that intrinsic compressibility effects play a crucial role in the increase in
inner-scaled streamwise turbulence intensity in compressible flows, as compared to
incompressible flows, which was previously regarded to be an effect of mean property
variations alone.

The contents of this chapter have been published as:
Hasan, A. M., Costa, P., Larsson, J., Pirozzoli, S., and Pecnik, R. (2025). Intrinsic compressibility effects in
near-wall turbulence. Journal of Fluid Mechanics, 1006:A14.
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3.1. INTRODUCTION
Understanding the impact of compressibility effects on turbulent flow is crucial for a
wide range of engineering applications, as it influences the performance and efficiency
of aerospace vehicles, gas turbines, combustion processes, and high-speed propulsion
systems. As outlined in chapter 1, compressibility effects in wall-bounded turbulent
flows can be classified into two main branches. The first involves effects related to heat
transfer, often referred to as variable-property effects. The second branch is associated
with changes in fluid volume in response to changes in pressure, also termed intrinsic
compressibility (IC) effects. While variable-property effects can be significant at any, or
even at zero, Mach number, intrinsic compressibility effects become important only at
high Mach numbers.

In 1962, Morkovin postulated that intrinsic compressibility effects (among other
effects; see chapter 1) are insignificant, and that only mean fluid property variations
matter for compressible flows. If this hypothesis holds, then turbulence statistics
in compressible flows can be collapsed onto their incompressible counterparts by
simply accounting for mean property variations. This powerful implication of the
hypothesis has led many compressible flow studies to focus mainly on variable-property
effects (Van Driest, 1951; Morkovin, 1962; Huang et al., 1995; Coleman et al., 1995;
Maeder et al., 2001; Morinishi et al., 2004; Foysi et al., 2004; Duan et al., 2010, 2011; Patel
et al., 2015, 2016a; Modesti and Pirozzoli, 2016; Patel et al., 2017; Pecnik and Patel, 2017;
Zhang et al., 2018; Cogo et al., 2022; Zhang et al., 2022; Wenzel et al., 2022; Cogo et al.,
2023; Modesti and Pirozzoli, 2024). Compared to the vast literature on variable-property
effects, the studies focused on IC effects are limited, possibly due to the belief that
Morkovin’s hypothesis holds even in the hypersonic regime (Duan et al., 2011; Zhang
et al., 2018).

Recently, evidence on the importance of intrinsic (or ‘genuine’) compressibility
effects in wall-bounded flows has been provided in a series of publications by Yu and
co-workers (Yu et al., 2019, 2020; Yu and Xu, 2021), who analysed these effects in
channel flows through direct numerical simulations (DNS). They performed a Helmholtz
decomposition of the velocity field and mainly focused on dilatational motions and
their direct contribution to several turbulence statistics. Their key findings (summarized
in chapter 1, but reiterated here for convenience) are: (1) intrinsic compressibility
effects, if present, are likely concentrated in the near-wall region, where the wall-normal
dilatational velocity field exceeds the solenoidal counterpart; (2) the correlation between
the solenoidal streamwise and the dilatational wall normal velocity is negative and can
constitute up to 10% of the total shear stress; (3) this negative correlation was attributed
to the opposition of sweeps near the wall by dilatational motions; and (4) the dilatation
field (and thus the dilatational velocity) exhibits a travelling wave-packet-like structure,
whose origin is yet unknown (see also Tang et al., 2020; Gerolymos and Vallet, 2023; Yu
et al., 2024).

These studies mainly focus on the direct IC effects—those that are reflected directly
in the dilatational component of velocity. However, the significance of the indirect
IC effects—those observed in the solenoidal (vortical) component—remains unclear. It
is important to quantify these effects to determine whether the log-law shift in the
mean velocity profiles (figure 1.5b), and the higher peak of streamwise Reynolds stress
in compressible flows compared to incompressible flows—discussed in chapter 1—are
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caused by IC effects. Any such influence must be indirect, since both quantities are
mainly constituted by the solenoidal component of velocity1.

In this chapter, we will focus mainly on the indirect effects of intrinsic compressibility.
We use our tailored constant-property cases (CP) described in table 2.1, whereby IC
effects are isolated. With these cases, we first analyse the influence of these effects
on the mean velocity profiles. Then, we look into various fundamental statistics of
turbulence such as turbulent stresses, pressure-strain correlation, and into coherent
structures, eventually tracing back the change in mean velocity profiles to the weakening
of quasi-streamwise vortices. Subsequently, with the help of what is known from the
incompressible turbulence literature, we provide a theoretical explanation as to why the
vortices weaken.

3.2. INTRINSIC COMPRESSIBILITY EFFECTS ON TURBULENCE

STATISTICS
In this section, we first present IC effects on the mean velocity profiles. Next, we relate
the IC-induced changes in mean velocity to corresponding variations in turbulent shear
stress and wall-normal turbulent stress. Finally, we explain the variations in wall-normal
stress by analyzing the energy transfer from the streamwise to the other components.
Unless otherwise stated, all quantities will be presented in their semi-locally scaled form.
Nevertheless, since the CP cases have approximately constant mean properties, there is
no major difference between the classical wall scaling (denoted by the superscript ‘+’)
and the semi-local scaling (denoted by the superscript ‘∗’).

3.2.1. LOG-LAW SHIFT IN THE MEAN VELOCITY PROFILES
Figure 3.1(a) shows the mean velocity profiles for the four CP cases. The velocity profile
for the low-Mach number case (Mb = 0.3) collapses with the incompressible law of the
wall. However, as the Mach number increases, a clear increase in the log-law intercept
is observed. Due to roughly constant mean properties and negligible fluctuations
generated by heat transfer (as discussed in chapter 2), the log-law shift can be solely
attributed to intrinsic compressibility effects, which contradicts Morkovin’s hypothesis.

Interestingly, a similar log-law shift was also oberved in the semi-locally transformed
mean velocity profiles of the variable property cases (figure 1.5b). Analyzing whether the
shift in those cases is also due to IC effects is the focus of chapter 5. Here, we continue
to discuss the physics behind the observed log-law shift in figure 3.1(a).

3.2.2. OUTWARD SHIFT IN VISCOUS AND TURBULENT SHEAR STRESSES
In the inner layer of parallel (or quasi-parallel) shear flows, integration of the mean
streamwise momentum equation implies that the sum of viscous and turbulent shear
stresses is equal to the total shear stress, given as

µ

(
∂u

∂y
+ ∂v

∂x

)
−ρu′′v ′′ = τtot , (3.1)

1The mean velocity is largely solenoidal since the mean dilatation is negligible in wall-bounded flows.
The streamwise Reynolds stress is also mainly contributed by the solenoidal velocity fluctuations (Yu
et al., 2019), as also seen in section 3.2.6.
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Figure 3.1: (a) The semi-locally-transformed mean velocity profiles (equations 1.11, 3.3), and (b) the
viscous and turbulent shear stresses for the CP cases described in table 2.1. Since property variations
are absent in these cases, the transformed velocity is equivalent to ū+.

where τtot ≈ τw in zero-pressure-gradient boundary layers, whereas it decreases linearly
with the wall distance in channel flows. Neglecting terms due to viscosity fluctuations
and normalizing equation (3.1) by τw , we get for the latter case

µ̄

µw

dū+

d y+ − �u′′v ′′∗ ≈ 1− y

h
, (3.2)

where h is the channel half-height.
Integrating the viscous shear stress yields the semi-locally-transformed mean velocity

profile (Trettel and Larsson, 2016; Patel et al., 2016a) as

ū∗ =
∫ y∗

0

µ̄

µw

dū+

d y+ d y∗. (3.3)

Based on equation (3.3), an upward shift in the mean velocity profile (figure 3.1a)
corresponds to an equivalent upward shift (or increase) in the viscous shear stress. This
is evident from figure 3.1(b). Since the total shear stress is universal for the four flow
cases under inspection, an increase in the viscous shear stress directly implies a decrease
in the turbulent shear stress. Indeed, figure 3.1(b) shows that the turbulent shear stress
reduces with increasing Mach number. In other words, the log-law shift observed in
figure 3.1(a) is a consequence of the modified damping of the turbulent shear stress.

3.2.3. OUTWARD SHIFT IN WALL-NORMAL REYNOLDS STRESS: CHANGE IN

TURBULENCE ANISOTROPY
The outward shift in the turbulent shear stress corresponds to an outward shift in
the wall-normal turbulent stress, because wall-normal motions directly contribute to
turbulent shear stress by transporting momentum across the mean shear (Townsend,
1961; Deshpande et al., 2021). This is also reflected in the turbulent shear stress budget,
whose production is controlled by the wall-normal turbulent stress (Pope, 2001).

Figure 3.2(b) shows profiles of the wall-normal turbulent stress. A clear outward shift
is evident, which is consistent with the observed outward shift in the turbulent shear
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ũ
′′ ku
′′ k∗ /

2

(d)

Figure 3.2: Wall-normal distributions of (a) streamwise, (b) wall-normal and (c) spanwise turbulent
stresses, and (d) the turbulent kinetic energy (TKE) for the cases described in table 2.1.
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stress. Now, the decrease in the wall-normal stress can either be due to less energy
being received from the streamwise component (inter-component energy transfer), or
due to an overall reduction of the turbulent kinetic energy (TKE). In order to clarify this,
we report the streamwise and the spanwise turbulent stresses, along with the turbulent
kinetic energy in panels (a), (c) and (d) of figure 3.2, respectively.

Figure 3.2(a) shows that the streamwise turbulent stress becomes stronger with
increasing Mach number. The increase in the peak streamwise turbulence intensity in
compressible flows, compared to incompressible flows at similar Reynolds numbers, has
also been observed in several other studies (Gatski and Erlebacher, 2002; Pirozzoli et al.,
2004; Foysi et al., 2004; Duan et al., 2010; Modesti and Pirozzoli, 2016; Zhang et al., 2018;
Trettel, 2019; Cogo et al., 2022, 2023). However, these studies did not explicitly assess
whether intrinsic compressibility effects play a role in peak strengthening. In fact, the
higher peak observed in the M∞ = 14 boundary layer was attributed to variable-property
effects by Zhang et al. (2018). Our results instead demonstrate unambiguously that
intrinsic compressibility effects play a central role in the strengthening of streamwise
turbulence intensity, since our flow cases are essentially free of variable-property effects.
Refer to chapter 4 for more details on the scaling of the peak streamwise turbulence
intensity.

Similar to the wall-normal stress, the spanwise turbulent stress also decreases with
increasing Mach number, shown in figure 3.2(c). The increase in the streamwise
stress and the decrease in the wall-normal and spanwise stresses imply suppression
of inter-component energy transfer with increasing Mach number. However, before
discussing this in more detail in subsection 3.2.5, we take a slight detour and note
that the increase in the streamwise turbulent stress is much more pronounced than the
decrease in the other two components, which essentially results in an increase in the
turbulent kinetic energy with Mach number as shown in figure 3.2(d). This suggests that,
in addition to the change in intercomponent energy transfer, there is also a change in
the production of �u′′u′′∗. We discuss this in more detail in the next subsection, where we
present the budget of the streamwise turbulent stress, and provide a phenomenological
explanation for the increase in �u′′u′′∗.

3.2.4. INCREASE IN THE STREAMWISE TURBULENCE INTENSITY
In order to explain the increase in the streamwise turbulent stress and hence in the
turbulent kinetic energy, we consider the streamwise turbulent stress budget for a
fully-developed compressible channel flow:

P11 +ε11 +T ν
11 +T u

11 +Π11 +C11 = 0, (3.4)

where

P11 =−2ρu′′v ′′∂ũ

∂y
, ε11 =−2τ′1 j

∂u′′

∂x j
,

T ν
11 = 2

∂

∂y

(
τ′12u′′

)
, T u

11 =− ∂

∂y

(
ρu′′u′′v ′′

)
,

Π11 = 2p ′∂u′

∂x
, C11 = 2u′′∂τ̄12

∂y
. (3.5)
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Figure 3.3: Wall-normal distributions of (a) the streamwise turbulent stress budget (see equation 3.4)
scaled in semi-local units, and (b) the sum of viscous and turbulent fluxes obtained upon integrating
the semi-locally scaled viscous and turbulent diffusion terms (see equation 3.8), for the cases described
in table 2.1.

The distributions of the production, viscous and turbulent diffusion terms, and the
sum of dissipation and pressure-strain correlation, are shown in figure 3.3, scaled by
ρ̄u∗

τ
3/µ̄. The compressibility term C11 is omitted because of its negligible magnitude.

Three observations can be made. First, there is an outward shift in P∗
11 with increasing

Mach number. Since the production term in scaled form is simply the product of the
turbulent and viscous shear stresses, its outward shift is explained by the corresponding
shift in the shear stresses in figure 3.1(b) as follows. Assuming that the total stress is
approximately equal to τw , such that the sum of the scaled stresses is unity, one can
substitute the viscous shear by the turbulent shear stress in P11 to obtain (Pope, 2001)

P∗
11 ≈−2 �u′′v ′′∗

(
1+ �u′′v ′′∗

)
= 2

(
−�u′′v ′′∗

)
−2

(
−�u′′v ′′∗

)2
. (3.6)

Taking the derivative of P∗
11 with respect to the turbulent shear stress yields

dP∗
11

d
(
−�u′′v ′′∗

) ≈ 2− 4
(
−�u′′v ′′∗

)
. (3.7)

Between the wall and the location where −�u′′v ′′∗ is equal to 0.5 the derivative is positive,
while it is negative above this location. On the other hand, from figure 3.1(b), we
observe that the rate of change of the turbulent shear stress with the Mach number, i.e.
∂(−�u′′v ′′∗)/∂Mb , at a fixed y∗ is negative. Combining these two observations, we can
conclude that the rate of change of production of the streamwise turbulent stress with
the Mach number, i.e. ∂P∗

11/∂Mb , is negative close to the wall and becomes positive
away from it, resulting in an effective outward shift.

Second, except very close to the wall, the sum of the two sink terms in the budget
of the streamwise turbulent stress (3.4), namely ε∗11 and Π∗

11, show a weak Mach number
dependence. Interestingly, the TKE dissipation (2ε∗k = ε∗11 + ε∗22 + ε∗33), reported with grey
dashed lines in figure 3.3, also shows marginal dependence on the Mach number. This
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is consistent with the observation made in chapter 5 regarding the universality of the
local Kolmogorov length scale. The universality of ε∗11 +Π∗

11 and ε∗k are related as follows.
Any Mach-number-dependent reduction in Π∗

11 would imply that less energy is being
received by the lateral turbulent stresses, and hence, less TKE is being dissipated through
the terms ε∗22+ε∗33. This suggests that the Mach-number-dependence of Π∗

11 and ε∗22+ε∗33
is linked, such that the universality of ε∗11 +Π∗

11 is connected with the universality of the
TKE dissipation.

Third, above y∗ ≈ 12, the production term is higher at higher Mach numbers, which
combined with the observation that the total sink ε∗11 +Π∗

11 is universal, implies more
negative values of the diffusion term. This means that the surplus production is
transported away from the buffer layer towards the wall. For further insight, figure 3.3(b)
shows the sum of the viscous and turbulent fluxes obtained by integrating the transport
terms as

Φ∗
11 =

∫ y∗

0

(
T ν∗

11 +T u∗
11

)
d y∗, (3.8)

such that positive values signify that energy is transported towards the wall, and negative
values signify the opposite. As one can observe, the flux is positive close to the wall
and increases with the Mach number. This implies that more energy is being carried
towards the wall at higher Mach numbers. Between the wall and the peak location of the
streamwise turbulence intensity, the total flux is mainly controlled by the viscous flux,
which can be approximated as d �u′′u′′∗/d y∗. Thus, a higher positive flux at increasing
Mach numbers implies a higher gradient of the streamwise turbulent stress, which
results in a higher peak value upon integration.

The strengthening of the streamwise velocity fluctuations can also be explained based
on a phenomenological mixing-length model. The semi-locally scaled streamwise stress
can be written as (

u′u′∗
)1/2 ∼ `∗ dū∗

d y∗ , (3.9)

where `∗ is the mixing length scaled by δ∗v , and dū∗/d y∗ is the semi-locally scaled
mean velocity gradient. Note that the streamwise stress is written in the Reynolds
averaged form, since we observe that the peak of both Reynolds and Favre averaged
stresses increases alike (not shown), and therefore the error incurred by excluding
density fluctuations from equation (3.9) is small. The mixing length is determined as

`∗ ∼
√

v ′v ′∗T (Durbin, 1991), where T ∼ k∗/ε∗. For the present cases this definition of
mixing length yields universal distributions across the Mach number range (not shown).
This is because the velocity with which a fluid parcel travels reduces with increasing
Mach number. However, the time scale over which it retains its streamwise momentum
increases with the Mach number (due to higher TKE and almost universal dissipation),
thus effectively travelling the same distance. Due to the universality of the mixing length,
equation (3.9) implies that the increase in mean shear observed in figure 3.1 is directly
responsible for an increase in the peak streamwise turbulence intensity. Interestingly, an
increase in the mean shear was also found to be responsible for higher production in the
buffer layer (see figure 3.3) that formed the basis of our explanation above, making the
phenomenological model consistent.
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Figure 3.4: Wall-normal distributions of the streamwise pressure-strain correlation (−Π11) scaled by the
production term (P11) for (a) Mach 2.28, (b) Mach 3 and (c) Mach 4 cases described in table 2.1,
compared to the Mach 0.3 case.

3.2.5. REDUCED INTER-COMPONENT ENERGY TRANSFER
The strengthening of the streamwise turbulent stress and the weakening of the other
two components, as observed in figures 3.2(a) - (c), imply an increase in turbulence
anisotropy, which was also previously observed in several studies on compressible
wall-bounded flows (Foysi et al., 2004; Duan et al., 2010; Zhang et al., 2018; Cogo et al.,
2022, 2023), mainly regarded as a variable-property effect.

From turbulence theory, one can argue that the change in turbulence anisotropy is
due to reduced inter-component energy transfer. Since the negative of the streamwise
pressure-strain correlation (−Π11 =−2 p ′∂u′′/∂x) is a measure of the energy transferred
from the streamwise turbulent stress to the cross-stream components, we expect it to
decrease with increasing Mach number for our cases. To verify this, figure 3.4 shows
−Π11 scaled by the TKE production (Duan et al., 2010; Patel et al., 2015; Cogo et al.,
2023), for (a) Mach 2.28, (b) Mach 3 and (c) Mach 4 cases, compared to the Mach 0.3
case. The figure clearly corroborates our claims. We further note that Π11 scaled by
semi-local units (ρ̄u∗3

τ /δ∗v ) also reduces for the three high-Mach-number cases compared
to the Mach 0.3 case (not shown).

3.2.6. IDENTIFYING DIRECT AND INDIRECT EFFECTS OF INTRINSIC COM-
PRESSIBILITY

So far we have observed strong intrinsic compressibility effects on various turbulence
statistics. Are these strong effects due to a direct contribution from the dilatational
motions or due to IC effects on the solenoidal motions? To answer this, we apply
Helmholtz decomposition to the velocity field obtained from DNS to isolate the
solenoidal (divergence-free) and dilatational (curl-free) parts, namely

u′′
i = us

i
′′+ud

i
′′

. (3.10)

Appendix A reports details on how the decomposition is actually performed. Following
Yu et al. (2019), the turbulent stresses are then split as

�u′′
i u′′

j

∗ = âus
i
′′us

j
′′∗+ãud

i
′′

us
j
′′∗+ãus

j
′′ud

j
′′∗+ ãud

i
′′

ud
j
′′∗

. (3.11)

The terms involving dilatational motions are absent in incompressible flows, and thus
any contribution from them is regarded as a direct effect. However, the first term
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Figure 3.5: Wall-normal distributions of the total and solenoidal (a) streamwise, (b) wall-normal and (c)
spanwise turbulent stresses as per equation (3.11), for the cases described in table 2.1. Inset: profiles of

the terms ãvd ′′vd ′′∗ (dotted) and 2 âv s ′′vd ′′∗ (dash-dotted).

on the right-hand side is also present in incompressible flows. Thus, any effect of
compressibility on this term will be regarded as an indirect effect.

Figure 3.5 shows the first term on the right-hand side of equation (3.11), associated
with solenoidal velocity fluctuations, for the normal turbulent stresses. They are seen to
almost overlap with the total turbulent stresses, which is shown in grey. This implies
that any change in the total stresses as a function of the Mach number is reflected
in their respective solenoidal components, and thus intrinsic compressibility effects on
turbulence statistics are mainly indirect. The collapse of the total and solenoidal stresses
also implies that the correlations involving ud

i
′′

are small. However, there are some

exceptions, particularly the terms ãvd ′′vd ′′∗ and âv s ′′vd ′′∗, that can have large contributions
in the near-wall region as shown in the inset of figure 3.5(b). Negative values ofâv s ′′vd ′′∗ physically represent opposition of solenoidal motions (sweeps/ejections) from
dilatational wall-normal velocity. This opposition was first observed by Yu et al. (2019),
and plays a key role in the forthcoming discussion.

3.3. WEAKENING OF THE QUASI-STREAMWISE VORTICES

Quasi-streamwise vortices play an important role in transferring energy from the
streamwise to the wall-normal and spanwise components (Jeong et al., 1997). Thus,
any reduction in this inter-component energy transfer (see figure 3.4), and hence any
weakening of the wall-normal and spanwise velocity fluctuations (see figure 3.2) is directly
related to the weakening of those vortices. To verify this claim, the root-mean-square of
the streamwise vorticity is shown in figure 3.6(a). This quantity indeed decreases with
increasing Mach number, implying weakening of the quasi-streamwise vortices. Note
that the decrease in the root-mean-square of the streamwise vorticity could also be
associated with a reduced population of the quasi-streamwise vortices, rather than their
reduced strength. By visualizing them using the normalized swirling strength parameter
(Wu and Christensen, 2006), it becomes clear that the population of these vortices at
any given instant is similar across all Mach numbers (not shown). In contrast to the
streamwise vorticity, the root-mean-square of the wall-normal and spanwise vorticity
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Figure 3.6: Wall-normal distributions of the root-mean-square of (a) streamwise, (b) wall-normal, and (c)
spanwise vorticity fluctuations, scaled by u∗

τ /δ∗v , for the cases described in table 2.1.

shows a weak Mach number dependence, as seen in figure 3.6(b) and (c).
Choi et al. (1994) showed that active opposition of sweeps and ejections is effective

in weakening the quasi-streamwise vortices. As noted in §3.2.6, a similar opposition also
occurs spontaneously in compressible flows, in which solenoidal motions like sweeps
and ejections are opposed by wall-normal dilatational motions.

To explain the physical origin of near-wall opposition of sweeps and ejections,
and hence the weakening of the quasi-streamwise vortices, we perform a conditional
averaging procedure that identifies shear layers. Shear layers are in fact inherently
associated with quasi-streamwise vortices, being formed as a consequence of sweeps
and ejections initiated by those vortical structures (Jeong et al., 1997). To educe shear
layers, we rely on the variable interval space averaging (VISA) technique introduced
by Kim (1985), which is the spatial counterpart of the variable interval time averaging
(VITA) technique developed by Blackwelder and Kaplan (1976). Since only the solenoidal
motions carry the imprint of incompressible turbulent structures, like shear layers, the
VISA detection criterion is directly applied to the solenoidal velocity field.

3.3.1. STEPS TO PERFORM VARIABLE INTERVAL SPACE AVERAGING
In this conditional average technique, strong sweep and ejection events resulting in a
shear layer are said to occur when the short-space variance, given by

var(x, z, t ) = 1

L

∫ L
2

− L
2

[us ′′(x + s, yr e f , z, t )]2 ds −
(

1

L

∫ L
2

− L
2

us ′′(x + s, yr e f , z, t )ds

)2

, (3.12)

exceeds K [us
r ms(yr e f )]2, where K is the threshold level. Here, yr e f is the location of the

reference x − z plane where the detection criteria is applied, and L is the size of the
averaging window, representative of the length scale of the shear layer identified by this
technique (Johansson et al., 1987). Following Johansson et al. (1991), we take K = 1,
y∗

r e f ≈ 15, and L∗ ≈ 200. To analyse the sensitivity of the results with respect to these
parameters, we varied each one individually and assessed its impact on the correlation
shown in figure 3.12(a) (not presented here). The correlation remains almost unaffected
when K is increased from 1 to 1.2 or when L∗ is increased from 200 to 240. However,
when y∗

r e f is increased from 15 to 20, we observe that the peak of the correlation shifts
outward, and there is a slight increase in the peak value. Despite these differences, the
results remain qualitatively similar and the conclusions made from them still hold.
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Figure 3.7: (Top) x∗− z∗ contour plot of the instantaneous solenoidal streamwise velocity fluctuations
at y∗

r e f ≈ 15 for the Mach 2.28 case. Boundaries of patches where the short-space variance exceeds the

Reynolds averaged value (see equation 3.13) are overlaid on the contour plot. Additionally, the location
inside each patch where the short-space variance is locally maximum is also displayed by a black circle
or a grey square for acceleration and deceleration events, respectively. (Bottom) Instantaneous solenoidal
streamwise velocity fluctuation along the horizontal line indicated in the top plot. The black circle is
the same point as in the top plot. The short-space variance (equation 3.12) is also shown using a grey
dashed line.

Having computed the short-space variance at the reference plane, a condition
variable C is set to non-zero values in regions where the variance exceeds the threshold,
and zero otherwise. The assigned non-zero value is 1 for acceleration events and -1 for
deceleration events. Mathematically, this is written as

C(x, z, t ) =



1, for var > K [us
r ms(yr e f )]2 and

∂us ′′

∂x
< 0

−1, for var > K [us
r ms(yr e f )]2 and

∂us ′′

∂x
> 0

0, otherwise,

(3.13)

where ∂us ′′/∂x < 0 implies ∂us ′′/∂t > 0 and vice-versa, as per Taylor’s hypothesis. This
will result in patches on the reference x − z plane with values of 1 and -1 as shown in
figure 3.7. Within these patches, the location where the short-space variance is locally
maximum is also shown. Let the coordinates of these locations be denoted by (xo , zo).
These coordinates, detected at y∗ ≈ 15, will form the basis around which conditional
averaging is performed at all wall-normal locations.

With the detected VISA locations, the conditional average of any variable Ψ is then
given as:

〈Ψ〉 (ξ, y,ζ) = 1

N

N f∑
f =1

Ne∑
n=1

Ψ(xn
o +ξ, y, zn

o +ζ, t f ), (3.14)
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where ξ and ζ are the streamwise and spanwise displacements with respect to the
reference or detected locations (xo , zo), and they vary from −Lx/2 to Lx/2 and −Lz/2
to Lz/2, respectively. The inner sum is over the number of detected events (Ne ) in a
particular snapshot f (at time instant t f ), whereas the outer sum is over the number of
snapshots (N f ), such that the global sum of the detected events over all the snapshots is
N .

Note that equation (3.14) leads to a conditional average from which phase jitter is
yet to be removed (Johansson et al., 1987). The concept of phase-jitter is explained
with an example as follows. It is known that an acceleration VISA event detected at the
location (xo , y+ ≈ 15, zo) corresponds to a wall pressure peak directly underneath, i.e. at
(xo , y+ ≈ 0, zo). However, there can be a small and random phase lag or lead. This means
that in reality, the pressure peak may occur at a location that is randomly shifted in the
streamwise-spanwise direction with respect to the detected location, i.e. it may occur at
(xo +∆x , y+ ≈ 0, zo +∆z). This misalignment leads to a reduction in the magnitude of the
pressure peak obtained after conditional averaging.

To fix this issue, we employ a cross-correlation technique (Johansson et al., 1987)
that is described using the above example as follows. We first compute the conditional
average of wall pressure as usual without fixing the phase-jitter issue. We then
cross-correlate this conditionally averaged wall pressure plane with the instantaneous
wall pressure plane using the Fourier transform. Having done this, we should obtain a
x − z plane of correlation coefficients on the wall that displays a local maximum close to
but not necessarily at the point of detection, i.e. (xo , zo). This maximum implies that the
conditionally averaged wall pressure profile has its imprint in the instantaneous plane
around the detection location. The shift between the detection location (xo , zo) and the
local maximum around (xo , zo) gives the amount of phase lag or lead in the streamwise
and spanwise directions, i.e. ∆x and ∆y discussed above. In order to remove the phase
lag or lead, we compute a new conditional average by shifting the instantaneous planes
by this ∆x and ∆y around the detection points, thereby aligning them. Mathematically,
equation (3.14) is modified for wall pressure as

〈p ′〉 (ξ,0,ζ) = 1

N

N f∑
f =1

Ne∑
n=1

p ′(xn
o +∆n

x +ξ, 0, zn
o +∆n

z +ζ, t f ). (3.15)

Now, the same procedure described for pressure at the wall can be repeated for
pressure at any wall-normal location. Doing this results in ∆x and ∆y that depend on
y for each detected event. With this, equation (3.15) can be rewritten for the entire
pressure field as

〈p ′〉 (ξ, y,ζ) = 1

N

N f∑
f =1

Ne∑
n=1

p ′(xn
o +∆n

x (y)+ξ, y, zn
o +∆n

z (y)+ζ, t f ). (3.16)

Although this gives more control on the alignment of three-dimensional conditionally
averaged structures, it may result in a conditionally averaged profile that may not be
very smooth in the wall-normal direction, such that layering is observed (some layering
can be seen in figure 3.9).

In the phase-jitter removal procedure, events for which the required shift is greater
than approximately 40 viscous lengths in the streamwise or spanwise directions are
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Figure 3.8: Contours of the solenoidal pressure along the ξ∗− y∗ plane at ζ∗ = 0 after (top row)
equation (3.14) (no alignment), and after (bottom row) equation (3.16) (first alignment iteration). The
left, middle and right columns correspond to the Mach 2.28, 3 and 4 cases in table 2.1, respectively.

excluded from the averaging procedure, and the total number of detected events (N ) is
reduced accordingly. Since the applied shifts are wall-normal dependent, the excluded
number of events would also be wall-normal dependent.

Figure 3.8 shows the ξ∗− y∗ pressure contours taken at the centre of the shear
layer, i.e. at ζ∗ = 0, after no alignment (equation 3.14) and after one iteration of
alignment (equation 3.16). As seen, the pressure contours remain qualitatively similar in
both the cases, however, the magnitude after one iteration of alignment has increased
substantially.

The conditionally averaged profile obtained from equation (3.16) can be cross-
correlated again with the instantaneous field, and the procedure above can be repeated
to further improve the alignment. However, as noted in Johansson et al. (1987), and also
verified for our cases, the maximum jitter is eliminated in the first iteration. Thus, the
results presented next are obtained after one iteration.

3.3.2. RESULTS FROM THE VARIABLE INTERVAL SPACE AVERAGING TECHNIQUE
Figure 3.9 shows the conditionally averaged ξ∗−y∗ planes, at ζ∗ = 0, of various quantities
for the Mach 2.28, 3 and 4 cases, only considering acceleration events. A similar plot
with deceleration events is not shown since they are much less frequent (Johansson
et al., 1987).

The first row in figure 3.9 shows the contours of the conditionally averaged solenoidal
streamwise velocity fluctuations 〈us ′′〉∗, which clearly represent a shear layer. The second
row of the plot shows the contours of the conditionally averaged solenoidal wall-normal
velocity fluctuations 〈v s ′′〉∗. Positive streamwise velocity fluctuations are associated
with negative wall-normal fluctuations, resulting in a sweep event. Similarly, negative
streamwise fluctuations are associated with positive wall-normal velocity, resulting in an
ejection event. For greater clarity, we also show streamlines constructed using 〈us ′′〉∗
and 〈v s ′′〉∗, with their thickness being proportional to the local magnitude of 〈v s ′′〉∗.

Similar to the velocity field, we also split pressure into solenoidal and dilatational
parts, namely

p ′ = p s ′+pd ′
. (3.17)

Unlike the Helmholtz decomposition for velocities, this splitting is not unique. In this
work, we adhere to the definition of solenoidal pressure given for homogeneous flows by
Ristorcelli (1997); Jagannathan and Donzis (2016); Wang et al. (2017), which we extend
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Figure 3.9: Conditionally averaged quantities, based on VISA applied to streamwise velocity fluctuations
at y∗ ≈ 15, for the Mach 2.28 (left column), Mach 3 (centre column), and Mach 4 (right column) cases in
table 2.1. The ξ∗− y∗ planes are taken at the centre of the shear layer (ζ∗ = 0). The velocity contours
(first, second and fifth rows) are scaled by the semi-local friction velocity u∗

τ , the pressure contours (third
row) are scaled by τw , and the dilatation contours (fourth row) are scaled by u∗

τ /δ∗v . The overlaying
streamlines are constructed using 〈us ′′〉∗ and 〈v s ′′〉∗, and their thickness is scaled by the magnitude of
〈v s ′′〉∗. The solid black line indicates y∗ ≈ 15 and the dashed black line indicates ξ∗ = 0.
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to inhomogeneous flows as follows:

∂2p s ′

∂xi∂xi
=−

∂(ρus
i
′′us

j
′′−ρus

i
′′us

j
′′)

∂xi∂x j
−2ρ

dũ

d y

∂v s ′′

∂x
. (3.18)

This part of the pressure field is also referred to as pseudo-pressure (Ristorcelli, 1997), as
it propagates with the flow speed. Looking at the source terms on the right-hand side
of equation (3.18), the solenoidal pressure can be interpreted as being generated from
vortices and shear layers, similar to incompressible flows (Bradshaw and Koh, 1981).

The third row of figure 3.9 shows the conditionally averaged solenoidal pressure as
per equation (3.18). Clearly, the pressure maxima occur approximately in between the
high-velocity regions, which suggests a phase shift between velocity and pressure. To
shed further light on this point, in figure 3.10 we plot the wall-normal velocity at y∗ ≈ 15,
and the solenoidal pressure at the wall as a function of the streamwise coordinate (ξ∗).
Since the wall pressure is mainly contributed by the buffer-layer eddies (Kim, 1989;
Johansson et al., 1987; Kim and Hussain, 1993; Luhar et al., 2014), its convection velocity
is comparable with the speed of the buffer-layer coherent structures (Kim and Hussain,
1993). Using this information and Taylor’s hypothesis, one can transform the spatial
axis in figure 3.10 to a temporal axis (τ) by taking the mean velocity at y∗ ≈ 15 as the
propagation velocity. Reading figure 3.10 using the temporal axis (axis on the top), we
note that the high negative sweep velocity corresponds to a high negative rate of change
of the wall pressure, and likewise for the ejection velocity, i.e.,

∂〈p s
w
′〉∗

∂τ∗
∼ 〈v s ′′〉∗ . (3.19)

Similar observations were made by Johansson et al. (1987), using the VITA technique, and
by Luhar et al. (2014), using the resolvent analysis. Other interesting observations can
be made from figure 3.10. First, the magnitude of the conditionally averaged streamwise
fluctuations increases, whereas the magnitude of the conditionally averaged wall-normal
fluctuations decreases with increasing Mach number, as also seen in the first two rows
of figure 3.9. This is consistent with the strengthening of the streamwise and weakening
of the wall-normal turbulent stresses observed in figure 3.5. Second, the wall pressure
maximum shifts upstream with increasing Mach number, as also seen in the third row of
figure 3.9. While we know that such shift is attributed to the Mach number dependence
of the solenoidal motions that contribute to the source terms in equation (3.18), at the
moment we cannot provide a detailed explanation for this and leave it for future studies.

After establishing the relation between the solenoidal wall-normal velocity and the
rate of change of the solenoidal pressure in equation (3.19), we continue in our attempt
to relate the solenoidal and the dilatational velocity fields. For that purpose, we
first isolate the dilatation generated from the solenoidal pressure—also referred to as
‘pseudo-sound’ dilatation (superscript ps) in the literature (Ristorcelli, 1997; Wang et al.,
2017)—, as follows

d ps ≈ −1

γp̄

(
∂p s ′

∂t
+u j

∂p s ′

∂x j

)
. (3.20)

Pseudo-sound dilatation represents the volume changes of fluid elements caused by
pressure changes associated with solenoidal turbulent structures such as vortices and
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Figure 3.10: Conditionally averaged profiles of solenoidal streamwise and wall-normal velocities at
y∗ ≈ 15, and wall pressure as a function of space (ξ∗, at ζ∗=0; bottom-axis) and time (τ∗ = τ/(u∗

τ /δ∗v );
top-axis), for (a) Mach 2.28, (b) Mach 3 and (c) Mach 4 cases in table 2.1.

Case name Mbw Mτ (d ps
w )∗r ms (vd

p )∗r ms (vd ,ps
p )∗r ms (vd ,nps

p )∗r ms

Mach 2.28 2.28 0.1185 0.0096 0.066 0.047 0.059
Mach 3 3 0.1526 0.0160 0.153 0.078 0.140
Mach 4 4 0.1968 0.0311 0.332 0.150 0.323

b 2.42 3.1 2.37 3.3

Table 3.1: Root-mean-square (r.m.s.) of the pseudo-sound dilatation at the wall and the peak r.m.s.
value of the total, pseudo-sound and non-pseudo-sound wall-normal dilatational velocities. ‘b’ is the
exponent obtained from power-law fitting (aM b

τ ) of the data.

shear layers. Normalization by the wall shear stress yields

d ps ≈ −τw

γp̄

(
∂p s ′∗

∂t
+u j

∂p s ′∗

∂x j

)
, (3.21)

where the factor τw /(γp̄) is equal to the square of the semi-local friction Mach number
for ideal gas flows. Using M∗

τ ≈ Mτ (see equation (2.6) and figure 2.2), we then rewrite
equation (3.21) as

d ps ≈−M 2
τ

(
∂p s ′∗

∂t
+u j

∂p s ′∗

∂x j

)
. (3.22)

According to the pseudo-sound theory (Ristorcelli, 1997), the inner-scaled solenoidal
pressure is assumed to be unaffected by compressibility effects. Thus, from
equation (3.22), one would expect d ps to increase with the square of the friction Mach
number. However, as noted in the discussion following figure 3.10, the solenoidal
motions change as a function of the Mach number, thereby affecting the solenoidal
pressure as per equation (3.18). This suggests that d ps could increase with an exponent
that is close to two but not necessarily equal to two. To assess the correct scaling,
in table 3.1 we report the root-mean-square of d ps at the wall. Data fitting yields
d ps ∼ M 2.42

τ , hence close to what was suggested by equation (3.22).
Continuing on our path to relate solenoidal and dilatational motions, close to the

wall we can write

d ps
w

∗ ≈−M 2
τ

∂p s
w
′∗

∂t∗
, (3.23)
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where d ps
w

∗ = d ps
w /(u∗

τ/δ∗v ). This equation, when conditionally averaged and combined
with equation (3.19), leads to

〈d ps
w 〉∗ ∼−M 2

τ 〈v s ′′〉∗ . (3.24)

Using this result, we expect positive dilatation events (expansions) to be mainly
associated with sweeps and negative dilatation events (compressions) to be associated
with ejections. The fourth row in figure 3.9 shows the contours of conditionally averaged
pseudo-sound dilatation defined in equation (3.22). Consistent with our expectation,
positive dilatation is indeed found to be associated with sweeps and negative dilatation
with ejections, and its magnitude increases with the Mach number.

Having related the pseudo-sound dilatation and the solenoidal velocity in equa-
tion (3.24), the next step is to introduce the pseudo-sound dilatational velocity
as

∂2φps

∂x j∂x j
= d ps ,

vd ,ps = ∂φps

∂y
,

(3.25)

where φps is the scalar potential. Note that this equation is similar to equa-
tions (A.2) and (A.3) used to solve for the total dilatational velocity, as reported in
Appendix A. Based on equation (3.25), one would expect vd ,ps to increase with the Mach
number at a similar rate as d ps . Power-law fitting of the data reported in table 3.1 indeed
yields vd ,ps ∼ M 2.37

τ , hence close to what was found for d ps .
Equation (3.25) stipulates that the conditionally averaged pseudo-sound dilatational

velocity in the buffer layer should be proportional to and in phase with the dilatation at
the wall. Thus, we can write

〈vd ,ps〉∗ ∼ 〈d ps
w 〉∗ . (3.26)

Using equation (3.26) and (3.24) we can finally develop a relation between the solenoidal
and the pseudo-sound dilatational velocity, namely

〈vd ,ps〉∗ ∼−M 2
τ 〈v s ′′〉∗ . (3.27)

In our opinion, this relation is quite meaningful as it theoretically supports near-wall
opposition of sweeps and ejections by dilatational motions. Moreover, it suggests that
the opposition effect should approximately increase with the square of Mτ.

In order to verify this, the final row in figure 3.9 reports the conditionally averaged
contours of the pseudo-sound wall-normal dilatational velocity given in equation (3.25).
As suggested from equation (3.26), the contours of vd ,ps appear to be in phase with those
of d ps . Thus, consistent with the observations made for the pseudo-sound dilatation, the
wall-normal dilatational velocity is positive during sweeps and negative during ejections,
and its magnitude increases with the Mach number. This opposition is also clearly seen
in figure 3.11, which shows the conditionally averaged profiles of v s ′′ and vd ,ps at y∗ ≈ 15.
Additionally, in figures 3.9 and 3.11 we note that the pseudo-sound dilatational velocity
contour (or profile) shifts upstream (leftward) with increasing Mach number. This is due
to the upstream shift in the pressure contour mentioned above. Interestingly (as also
pointed out by a reviewer), if the vd ,ps profile continues to shift upstream with increasing
Mach number, then at sufficiently high Mach numbers the dilatational velocity could
become approximately in-phase with the solenoidal velocity, thereby assisting sweeps
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Figure 3.11: Conditionally averaged profiles of solenoidal and pseudo-sound dilatational wall-normal
velocities at y∗ ≈ 15 as a function of ξ∗ (at ζ∗=0) for (a) Mach 2.28, (b) Mach 3 and (c) Mach 4 cases in
table 2.1.
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Figure 3.12: (a) Conditionally averaged and integrated (equation 3.28) correlations between solenoidal
and dilatational velocities. (b) Conditionally averaged pseudo-sound correlation coefficient (C ps ) as
defined in equation (3.29).

and ejections rather than opposing them. Investigating whether this trend persists at
higher Mach numbers is beyond the scope of this work and is left for future studies.

To further quantify the opposition effect, we analyse the conditionally averaged
correlation between solenoidal and pseudo-sound dilatational wall-normal velocity, i.e.
〈v s ′′vd ,ps〉. The correlation is integrated over a window of 300 viscous units in the
streamwise direction and 40 viscous units in the spanwise direction (Johansson et al.,
1991), at each wall-normal location as

〈v s ′′vd ,ps〉ξζ (y∗) =
∫ 20

ζ∗=−20

∫ 150

ξ∗=−150
〈v s ′′vd ,ps〉 (ξ∗, y∗,ζ∗)dξ∗dζ∗. (3.28)

The integrated correlation, scaled by the squared semi-local friction velocity, is reported
in figure 3.12(a) with dashed lines. Figure 3.12(b) shows the pseudo-sound correlation
coefficient defined as

C ps = 〈v s ′′vd ,ps〉ξζ√
〈v s ′′v s ′′〉ξζ 〈vd ,ps vd ,ps〉ξζ

. (3.29)
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Figure 3.13: Opposition of sweeps and ejections by wall-normal pseudo-sound dilatational velocity
in the context of quasi-streamwise vortices. The shaded three-dimensional isosurfaces represent
quasi-streamwise vortices identified by applying the Q-criterion to the conditionally averaged velocity
field. Their shadows are also plotted on the wall below, showing that the vortices are inclined and
tilted. Underneath the vortices, the contours of solenoidal wall pressure are shown. The transparent
planes mark regions of high rate of change of wall pressure and hence high wall-normal pseudo-sound
dilatational velocity 〈vd ,ps〉∗ (see discussion related to equations 3.19 - 3.27). The arrows between the
vortices indicate 〈vd ,ps〉∗ as a function of ξ∗ at ζ∗ = 0 and y∗ ≈ 20. Note that the line along which
the arrows are plotted is slightly shifted away from the wall for better visibility. Insets: contours of
pseudo-sound dilatation 〈d ps〉∗ along the transparent planes, overlaid with the streamlines generated
by quasi-streamwise vortices. These streamlines are constructed using the wall-normal and spanwise
solenoidal velocities, i.e. 〈v s〉∗ and 〈w s〉∗, with their thickness being proportional to the magnitude of
the local planar velocity. 〈vd ,ps〉∗ at y∗ ≈ 15 and y∗ ≈ 25 is also shown using arrows in the left and right
planes, respectively. These wall-normal locations correspond to the maximum value of 〈vd ,ps〉∗ in those
planes. The red and blue colours in the contour plots indicate positive and negative values, respectively.
An interactive version of this figure can be accessed here.

https://fluid-dynamics-of-energy-systems-team.github.io/IntrinsicCompressPlot/
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Figure 3.14: Instantaneous x∗− z∗ planes at y∗ ≈ 11 of (top) the non-pseudo-sound and (bottom) the
pseudo-sound wall-normal dilatational velocities (see the text for definitions) scaled by their respective
root-mean-squares for the Mach 3 case in table 2.1. Note that, for clarity, the colour bar is adjusted
such that structures stronger than 1.33 times the root-mean-square value are highlighted.

The correlation and its coefficient are negative as expected. The magnitude of the
correlation increases approximately with the square of Mach number, as expected.
However, the correlation coefficient almost collapses across all Mach numbers.

The association of the opposition effect with the quasi-streamwise vortices is
visualised in figure 3.13 for the Mach 2.28 case, all other cases being qualitatively
similar. Indeed, the figure insets illustrate that sweeps and ejections initiated by
quasi-streamwise vortices are opposed by the near-wall pseudo-sound dilatational
velocity, thereby resulting in their weakening.

3.3.3. ROLE OF NON-PSEUDO-SOUND DILATATIONAL VELOCITY IN NEAR-
WALL OPPOSITION

So far we have looked into the pseudo-sound dilatational velocity and provided an
explanation for why they are out-of-phase with respect to the solenoidal motions.
However, from table 3.1, we see that the peak root-mean-square value of vd ,ps is
much smaller than that of the total dilatational velocity. Hence, a large portion of
the dilatational velocity and its correlation (if any) with the solenoidal velocity is still
unexplained. To address this point, figure 3.12(a) shows the integrated correlation
between solenoidal and total dilatational velocities, i.e. 〈v s ′′vd 〉∗ξζ, denoted by solid grey
lines. Except very close to the wall, the total and pseudo-sound correlations almost
overlap. This implies that the contribution from the remaining portion of the dilatational
velocity, referred to as the ‘non-pseudo-sound’ component and given by

vd ,nps = vd − vd ,ps , (3.30)

is small. In other words, despite being stronger in magnitude than the pseudo-sound
component, the non-pseudo-sound dilatational velocity does not play an important role
in opposing sweeps and ejections.



3

48 3. IC EFFECTS IN NEAR-WALL TURBULENCE: PHYSICAL MECHANISM

Before concluding, we would like to comment on the travelling wave-packet-like
structures, first identified by Yu et al. (2019) and later studied in Yu et al. (2020); Yu and
Xu (2021); Tang et al. (2020); Gerolymos and Vallet (2023); Yu et al. (2024). Figure 3.14
shows the x∗− z∗ plane with the instantaneous contours of the pseudo-sound and
non-pseudo-sound dilatational velocity at y∗ ≈ 11, for the Mach 3 case in table 2.1.
The wave-packet structures are predominantly present in the non-pseudo-sound
component, whereas the pseudo-sound component shows a spotty structure similar to
that observed for the streamwise gradient of wall pressure in incompressible flows (Kim,
1989). Combining the observation above that the non-pseudo-sound component hardly
contributes to the opposition effect, and that the wave-packet-like structures are present
mainly in this component, one can argue that these structures do not play an important
role in opposing sweeps and ejections.

3.4. SUMMARY
In this chapter, we have attempted to provide an explanation for the underlying
mechanism through which intrinsic compressibility effects modulate the near-wall
dynamics of turbulence. To rigorously assess these effects, we analyse four DNS cases
of fully developed high-Mach-number channel flows with approximately constant mean
properties, whereby intrinsic compressibility effects are isolated. Our findings, sketched
as a flow chart in figure 3.15, are summarised as follows.

First, we have decomposed the velocity field into solenoidal and dilatational parts
and educed shear layers by applying conditional averaging to the solenoidal component.
We have noticed that there exists a streamwise phase shift between the buffer-layer
sweeps and ejections that form shear layers, and the associated ‘solenoidal’ wall pressure.
Equivalent observations were made for incompressible flows by Johansson et al. (1987)
and Luhar et al. (2014). By using Taylor’s hypothesis, this streamwise shift in phase can
be interpreted as a phase shift in time, such that regions of high positive rate of change
of wall pressure correspond to regions of high positive wall-normal velocity. Similarly,
regions of high negative rate of change of wall pressure correspond to the regions of high
negative wall-normal velocity. Close to the wall, the high rate of change of the solenoidal
pressure results in large dilatation values with an opposite sign (also referred to as
pseudo-sound dilatation), which upon integration results in a wall-normal dilatational
velocity that inherently opposes sweeps and ejections. Since sweeps and ejections are
initiated by quasi-streamwise vortices, their opposition directly affects the evolution of
those vortices, causing their weakening. This is schematically depicted in figure 3.13.

Interestingly, we also found that the remaining portion of the dilatational velocity
(also referred to as the non-pseudo-sound component) does not play an important role
in the opposition mechanism. Moreover, we have observed that the majority of the
travelling wave-packet-like structures, recently discovered in the literature, are present in
this non-pseudo-sound component.

The weakening of quasi-streamwise vortices directly hinders the energy transfer from
the streamwise velocity component to the other two components, resulting in an outward
shift (reduction) in the wall-normal turbulent stress with increasing Mach number. Since
the wall-normal motions actively contribute to the transport of momentum across mean
shear, thereby generating turbulent shear stress, the outward shift in the wall-normal
turbulent stress results in a corresponding outward shift in the turbulent shear stress.



3.4. SUMMARY

3

49

Opposition
due to

dilatation
(Figs. 3.9 -

3.13)

Weakening
of the

quasi-stream-
wise vortices

(Fig. 3.6)

Reduction
of the

pressure-strain
correlation
(Fig. 3.4)

Weakening
of the

wall-normal
turbulent stress
(Figs. 3.2, 3.5)

Outward shift
in the

turbulent
shear stress
(Fig. 3.1)

Outward shift
in the
ρu′′u′′

production
(Fig. 3.3)

Strengthening
of the

streamwise
intensity

(Figs. 3.2, 3.5)

Outward shift
in the

viscous
shear stress
(Fig. 3.1)

Upward shift
in the

logarithmic
velocity profile

(Fig. 3.1)

Jeong et al.
(1997)

Production
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Figure 3.15: A graphical summary of the findings presented in this chapter. Note that the arrows are
meant to indicate the chain of arguments made in this chapter, not relations of causality.
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This reduction in the turbulent shear stress is in turn responsible for an upward shift in
the logarithmic mean velocity profile.

A longstanding question in the compressible flow community is why the inner-scaled
streamwise turbulent stress is higher in compressible flows than in incompressible
flows, with similar Reynolds numbers. In this respect, our results suggest that intrinsic
compressibility effects play a central role. Specifically, the increase in the peak value is a
consequence of the outward shift in the turbulent and viscous shear stresses, since their
product yields the production of the streamwise turbulent stress. This implies that the
near-wall opposition mechanism outlined above is also responsible for the strengthening
of the streamwise turbulence intensity. See chapter 4 for more details on the scaling of
this quantity.

Some questions related to the findings made in this chapter remain unanswered
as of yet. First, why do the solenoidal pressure maxima, and hence the pseudo-
sound dilatational velocity contours, shift upstream with increasing Mach number (see
figures 3.9 - 3.11), and would this trend continue at higher Mach numbers? Second,
what is the Mach number scaling of the turbulence statistics presented in the chapter?
Third, why is the dissipation of turbulent kinetic energy, and thus the small scales of
turbulence, not affected by intrinsic compressibility effects (see section 3.2.4)? A spectral
analysis of the velocity field could shed more light on this important issue.



4
SCALING OF WALL PRESSURE AND THE

STREAMWISE TURBULENCE INTENSITY PEAK

Having verified that the contribution of intrinsic compressibility (IC) effects to various
turbulence statistics is significant, this chapter proposes a framework for developing
scaling laws for such statistics, accounting for both IC and variable-property effects.
We particularly focus on the wall-pressure root-mean-square (r.m.s.) and the peak
of streamwise turbulence intensity. To develop scaling laws for these quantities, we
express them as an expansion series in powers of an appropriately defined Mach
number. The leading-order term is represented using the scaling relations developed
for incompressible flows, but with an effective Reynolds number. Higher-order terms
capture IC effects and are modeled as constant coefficients, calibrated using flow cases
specifically designed to isolate these effects (i.e., the ‘CP’ cases described in table 2.1).
The resulting scaling relations are shown to be accurate for a wide range of turbulent
channel flows and boundary layers.

The contents of this chapter are under review in Journal of Fluid Mechanics as:
Hasan, A. M., Costa, P., Larsson, J., and Pecnik, R. (2025). Scaling of wall pressure and the streamwise
turbulence intensity peak in compressible wall flows. arXiv preprint no. 2505.07407.
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4.1. INTRODUCTION
Wall-pressure fluctuations significantly impact the structural integrity of surfaces as well
as the noise they emit (Bull, 1996). Their accurate prediction is vital for engineering
applications, particularly in high-speed flows where such fluctuations become more
intense and pose greater design challenges. As a result, the scaling behavior of
wall-pressure fluctuations in compressible flows has been an active area of research for
several decades (Laganelli et al., 1983; Bernardini and Pirozzoli, 2011; Ritos et al., 2019;
Zhang et al., 2022; Gerolymos and Vallet, 2023; Wan et al., 2024).

Among the different Reynolds stresses, studying the scaling behavior of the streamwise
turbulence intensity peak has garnered the most attention in the incompressible flow
community (see, e.g., Marusic et al., 2017; Chen and Sreenivasan, 2021; Smits et al., 2021;
Monkewitz, 2022). However, in contrast to wall pressure, relatively few studies have
examined the scaling of the peak intensity in compressible flows.

In incompressible flows, both wall-pressure and the peak of streamwise intensity do
not collapse under wall scaling (i.e., scaled using the friction velocity uτ and the viscous
length scale δv ), but rather increase with the friction Reynolds number Reτ. Recently,
with high Reynolds number experimental and numerical data, various semi-empirical
scaling laws have been proposed to capture this increase with Reτ. There are particularly
two schools of thought behind these scaling laws. One according to Townsend’s attached
eddy model, which advocates that the wall pressure and the peak streamwise turbulence
intensity increase indefinitely as a logarithmic function of Reτ (Marusic et al., 2017;
Panton et al., 2017; Samie et al., 2018; Smits et al., 2021). As per this approach, scaling
laws for wall-pressure r.m.s. (Panton et al., 2017) and the peak of streamwise turbulence
intensity (Samie et al., 2018) are given as

p+
w,r ms =

√
−9.18+2.24 log(Reτ) for channels and pipes,

p+
w,r ms =

√
−8.96+2.42 log(Reτ) for boundary layers,

(4.1)

and
u′u′+

p = 3.54+0.646 log(Reτ) for channels, pipes and boundary layers. (4.2)

The other approach corresponds to the power-law theory developed by Chen and
Sreenivasan (2021) which argues that at infinitely high Reτ, both wall pressure and the
peak intensity (among other quantities) should asymptote to a constant value. Examples
of scaling laws of wall-pressure r.m.s. and the peak intensity as per this theory are (Chen
and Sreenivasan, 2022)

p+
w,r ms =4.4−10.5Re−1/4

τ for channels and pipes,

p+
w,r ms =4.5−9.70Re−1/4

τ for boundary layers,
(4.3)

and
u′u′+

p = 11.5−19.3Re−1/4
τ for channels, pipes and boundary layers, (4.4)

respectively. The power-law increase of the peak intensity was recently supported by the
high Reynolds number pipe flow DNS (Reτ ≈ 12000) of Pirozzoli (2024). While the debate
between these two theories is still ongoing, the focus of this chapter is to extend these
scaling theories to variable-property and compressible flows, where other parameters
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such as the free-stream Mach number M∞ and the wall cooling ratio Tw /Tr
1 (where Tw

and Tr correspond to the wall and adiabatic temperatures, respectively) also become
important.

Kistler and Chen (1963) performed the first measurement of wall pressure fluctuations
underneath supersonic (free-stream Mach number M∞ ≤ 5) boundary layers, followed
by other experimental studies summarized in figure 1 of Beresh et al. (2011). Based on
such experimental datasets, Laganelli et al. (1983) developed an engineering model for
wall-pressure scaled with the free-stream dynamic pressure as

pr ms,w /q∞ = (pr ms,w /q∞)i nc[
0.5+ (Tw /Tr )

(
0.5+0.09M 2∞

)+0.04M 2∞
]φ , (4.5)

where q∞ = 0.5ρ∞U 2∞ (subscript ‘∞’ implies free-stream values), (pr ms,w /q∞)i nc = 0.006
implies normalized pressure r.m.s. in incompressible boundary layers, and φ = 0.64.
The experimental measurements used to tune Laganelli’s model were found to exhibit
significant scatter, largely due to their high sensitivity to the measurement sensors
(Beresh et al., 2011), thereby raising concerns about the model’s accuracy. This high level
of scatter also hindered the development of more accurate models (Beresh et al., 2011).

Bernardini and Pirozzoli (2011) reported one of the earliest wall-pressure r.m.s. data
using direct numerical simulations (DNS). They found that for their supersonic adiabatic
boundary layers (wall cooling ratio Tw /Tr = 1), pw,r ms scaled by τw (p+

w,r ms) collapses
for data at similar Reτ. However, a strong Mach number effect was seen if pw,r ms was
scaled by q∞, suggesting the inner layer scale (τw ) to better characterize wall-pressure.
Similarly, Duan et al. (2016) observed a weak Mach number effect on p+

w,r ms for their
quasi-adiabatic (Tw /Tr = 0.76) boundary layer at hypersonic Mach number (M∞ = 5.86).
However, Zhang et al. (2017) observed that at the same M∞, p+

w,r ms substantially
increases when the wall is strongly cooled, i.e., Tw /Tr = 0.25. More recently, Zhang et al.
(2022) observed that p+

w,r ms decreases with wall cooling at sub- and supersonic Mach
numbers, but increases with wall cooling at hypersonic Mach numbers M∞ > 5. They
subsequently re-tuned the constants in Laganelli’s model, namely (pr ms,w /q∞)i nc = 0.01
and φ= 0.75, to better fit their data. More recently, the same group (Wan et al., 2024)
proposed another scaling model for p+

w,r ms as a function of the free-stream Mach number
for adiabatic boundary layers. However, this model does not account for changes in Reτ
and Tw /Tr .

Like boundary layers, several DNS studies were performed to study wall pressure
and its scaling in fully developed channel flows. Yu et al. (2020) decomposed the
pressure field into a rapid, slow, viscous and compressible part, and observed that the
compressible pressure increases strongly with the bulk Mach number. This pressure
component was associated with the travelling wave-packet-like structures, first observed
in Yu et al. (2019), and later studied in (Tang et al., 2020; Zhang et al., 2022; Gerolymos
and Vallet, 2023; Yu et al., 2024). Based on this increase in the compressible pressure,
they proposed a scaling fit for the wall-pressure variance (p+

r ms,w )2 as

(p+
r ms,w )2(Mbb ) = (p+

r ms,w )2(0)+0.143M 2
bb

, (4.6)

1Note that other wall-cooling parameters—such as the diabatic parameter Θ= (Tw −T∞)/(Tr −T∞) (Zhang
et al., 2014; Cogo et al., 2023), where T∞ is the free-stream temperature, and the Eckert number
Ec = (γ−1)M 2∞T∞/(Tr −Tw ) (Wenzel et al., 2022)—have been found to be more effective in quantifying
wall-cooling effects than Tw /Tr .
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where Mbb =Ub/cb (where Ub is the bulk mean velocity and cb is the speed of sound
based on bulk temperature). However, this fit was proposed based on their dataset at
similar Reτ of 500, and thus it does not account for any Reynolds number effect. Yu et al.
(2022) later modified this model to be a function of the friction Mach number Mτ. More
recently, Gerolymos and Vallet (2023), using their comprehensive dataset of compressible
channel flows with varying Reynolds number and centreline Mach number, proposed a
scaling law for p+

r ms,w , which reads

p+
r ms,w =

(
4.4−10.5Re−1/4

τ‡

)(
1+0.020M 2

c

1+0.011M 2
c

)(
1+0.020

(
Tr

Tw
−1

))
(4.7)

where Reτ‡ is the minimum value of the semi-local friction Reynolds number Re∗
τ

(defined as ρ̄u∗
τh/µ̄, where ρ̄ and µ̄ imply mean density and viscosity, and u∗

τ =
√
τw /ρ̄

is the semi-local friction velocity) in the domain, and Mc = Uc /cc is the centreline
Mach number (where Uc is the centreline mean velocity and cc is the centreline speed
of sound). Interestingly, the first factor on the right-hand-side is the same as the
incompressible fit in (4.3), except that Reτ is replaced with Reτ‡ .

The wall-pressure scaling laws proposed for boundary layers, like the ones in
Laganelli et al. (1983) and Wan et al. (2024), have not been generalized to other class
of flows, like channel and pipe flows. Moreover, the model of Gerolymos and Vallet
(2023), which was originally tested for channel flows, when applied to boundary layers
by modifying the first factor in (4.7) according to (4.3) and replacing Mc with M∞ leads
to significant errors at high Mach numbers (see section 4.3). Clearly, a universally
applicable and accurate scaling law is lacking.

Compared to wall-pressure fluctuations, less work has been done to study the
scaling behavior of peak streamwise turbulence intensity in compressible flows. For
variable-property channel flow cases at zero Mach number, Patel et al. (2015) observed
that the peak of inner-scaled streamwise turbulence intensity can be higher or lower
than a corresponding incompresible flow at similar Reτ, depending on the distribution
of the semi-local Reynolds number Re∗

τ . Specifically, the peak intensity is higher if Re∗
τ

decreases away from the wall and lower if it increases.
For flows at non-zero Mach numbers, the peak value is found to be higher than

a corresponding incompressible flow at similar Reτ, independent of the distribution of
Re∗

τ (Gatski and Erlebacher, 2002; Pirozzoli et al., 2004; Foysi et al., 2004; Duan et al.,
2010; Modesti and Pirozzoli, 2016; Zhang et al., 2018; Trettel, 2019; Cogo et al., 2022,
2023). In the previous chapter, we concluded that the higher value of the peak is due to
intrinsic compressibility effects. However, a formal scaling law which accounts for these
effects is missing.

In this chapter, we develop scaling laws for wall-pressure r.m.s. and the peak
of streamwise turbulence intensity that account for compressibility effects—variable-
property and intrinsic compressibility (see chapter 1)—and are applicable to both
channel/pipe flows and boundary layers. To develop such scaling laws, we express
wall-pressure r.m.s. and the peak intensity as an expansion series in powers of an
appropriately defined Mach number (Ristorcelli, 1997). The leading-order term in this
series accounts for Reynolds number and variable-property effects, and is represented
by using the same scaling laws as developed for incompressible flows (Chen and
Sreenivasan, 2022), however, with an effective value of the semi-local friction Reynolds
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number, instead of the wall-based Reτ. The higher-order terms mainly account
for intrinsic compressibility effects, and are modeled using the constant-property
high-Mach-number cases described in table 2.1, which are designed to isolate these
effects.

4.2. APPROACH
For compressible homogeneous flows, Ristorcelli (1997) expressed the compressible flow
quantities such as pressure, density, and velocity in the form of an expansion series as
follows:

p ′

P
= ε2

[
p ′

1

ρ∞U 2
+ε2 p ′

2

ρ∞U 2
+ε4 p ′

3

ρ∞U 2
+ . . . ,

ρ′

ρ∞
= ε2

[
ρ′

1

ρ∞
+ε2 ρ

′
2

ρ∞
+ε4 ρ

′
3

ρ∞
+ . . . ,

u′
i

U
= u′

0i

U
+ε2

[
u′

1i

U
+ε2 u′

2i

U
+ε4 u′

3i

U
+ . . . ,

(4.8)

where P is the thermodynamic scale of pressure, U is the velocity scale, ρ∞ is the
reference background density, ε2 = ρ∞U 2/P is the ratio of the hydrodynamic scale of
pressure to the thermodynamic scale, and the subscripts ‘0, 1, 2, 3’ signify the order of
the variables. These expansions, when substituted in the Navier-Stokes equations and
the terms with similar powers of ε are grouped, we get a set of zeroth order (proportional
to ε0), first order (proportional to ε2) and higher order governing equations. The zeroth
order set of equations solves for the incompressible velocity u′

0i and pressure p ′
1 fields2,

whereas the higher order equations solve for the higher order fields.
It is worth noting that, in these expansions, Ristorcelli (1997) assumed the

thermodynamic scale of pressure to be the reference background pressure P∞, and
the velocity scale to be (2k/3)1/2, where k is the turbulent kinetic energy defined as

k = u′
i u′

i /2. This gives ε2 = ρ∞(2k/3)/P∞, which is equal to γM 2
t for ideal gas flows,

where γ is the ratio of specific heats and Mt = (2k/3)1/2/c∞, with c∞ being the reference
speed of sound.

Let us now extend Ristorcelli’s approach to compressible wall-bounded flows,
however, with some notable differences. For homogeneous flows, Ristorcelli (1997)
represented the compressible flow field as a sum of an incompressible field and
higher order fields, with the latter capturing effects that arise only at finite Mach
numbers. In the same spirit, we represent a compressible wall-bounded flow field
as a sum of a variable-property zero-Mach-number field—having the same Reynolds
number and mean property distributions as the compressible flow—and higher order
fields representative of finite-Mach-number effects. Such an expansion ensures that
the zeroth-order term in the expansion series comprises of variable-property and
Reynolds number effects, such that the higher order terms primarily represent intrinsic
compressibility effects which occur only at finite Mach numbers.

Some other differences are listed as follows. Since the base (zeroth order) state
about which the expansion series is built, represents a zero-Mach-number flow with

2Note that since the pressure term in the Navier-Stokes equation, upon appropriate non-
dimensionalization, is multiplied with ε−2, a first order pressure p ′

1 acts as the incompressible pressure
to satisfy a meaningful balance between velocity and pressure terms (Ristorcelli, 1997).
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mean property variations, the reference density ρ∞ and c∞ in Ristorcelli’s work should
be replaced with the mean density ρ̄ and the mean speed of sound c̄, respectively.
Additionally, the semi-local friction velocity scale u∗

τ becomes the relevant scale
in compressible wall-bounded flows, instead of (2k/3)1/2. Lastly, we choose the
thermodynamic pressure scale to be ρ̄c̄2 rather than p̄, for the following reason. The
isentropic density fluctuations are related to pressure fluctuations through the relation
(also see equation 2.4)

(ρ′)i s

ρ̄
≈ p ′

ρ̄c̄2
. (4.9)

This implies that the density fluctuations depend on ρ̄c̄2. Since intrinsic compressibility
effects are, by definition, related to isentropic density fluctuations, it is natural that
the parameter characterizing these effects—namely, ε—also depends on ρ̄c̄2. Taking
P = ρ̄c̄2, along with ρ̄u∗

τ
2 as the hydrodynamic pressure scale, we get

ε2 = ρ̄u∗
τ

2

ρ̄c̄2
= M∗

τ
2. (4.10)

By accounting for these differences, we get the expansion series for pressure
fluctuations in wall-bounded flows (analogous to equation 4.8 for homogeneous flows)
as

p ′

ρ̄c̄2
= M∗

τ
2
[

p ′
1

ρ̄u∗
τ

2 +M∗
τ

2 p ′
2

ρ̄u∗
τ

2 +M∗
τ

4 p ′
3

ρ̄u∗
τ

2 + . . . . (4.11)

Now, noting that ρ̄u∗
τ

2 = τw , we can write an equation for pressure fluctuations scaled
by the hydrodynamic scale as

p ′

τw
= p ′

1

τw
+M∗

τ
2 p ′

2

τw
+M∗

τ
4 p ′

3

τw
+ . . . . (4.12)

By writing this equation at the wall, squaring it, and averaging, we get the equation
for wall-pressure variance, scaled by τ2

w as

p ′p ′+
w = p ′

1p ′
1

+
w +M∗

τ
2
[

2p ′
1p ′

2

+
w +M∗

τ
2(p ′

2p ′
2

+
w +2p ′

1p ′
3

+
w )+ . . . , (4.13)

where the first term on the right-hand-side signifies wall-pressure variance in a
zero-Mach-number variable-property flow.

At this point, it is important to note that not only the leading-order correlation,
but also other higher-order correlations on the right-hand side are mainly influenced
by Reynolds number and variable-property effects. This is justified as follows. From
the analysis of Ristorcelli (1997), we note that the first-order equations—governing the
evolution of first-order velocity, second-order density, and second-order pressure (u′

i 1,
ρ′

2, and p ′
2)—depend explicitly on the leading-order (incompressible) variables: u′

i 0,
ρ′

1, and p ′
1. For wall-bounded flows, this implies that these higher-order variables

(u′
i 1, ρ′

2, p ′
2) are indirectly affected by Reynolds number and variable-property effects,

through their dependence on the incompressible solution. Similarly, even higher-order
quantities, such as u′

i 2, ρ′
3, p ′

3, are primarily influenced by these effects through their
dependence on lower-order variables. These higher-order quantities are not explicitly
affected by intrinsic compressibility effects since there is no Mach number or ε in the set
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of governing equations (Ristorcelli, 1997, see equations (23)–(26) therein); instead, such
effects are embedded in the parameter ε, by which these variables are multiplied in the
expansion series.

Given this understanding, we model the correlations in equation (4.13) as a sum of
a constant and a function which depends on Reynolds number and variable-property
effects, inspired from the relations proposed for incompressible flows (4.3). For instance,

p ′
1p ′

1

+
w = c0,p + f0,p ,

where c0,p is a constant, f0,p is an unknown function, and the subscript ‘0, p’ signifies
the leading order term for pressure. Representing all other higher order correlations also
in a similar form and substituting them in equation (4.13), we get

p ′p ′+
w = c0,p + f0,p︸ ︷︷ ︸

Re & VP

+M∗
τ

2c1,p +M∗
τ

4c2,p + . . .︸ ︷︷ ︸
IC

+M∗
τ

2 f1,p +M∗
τ

4 f2,p + . . .︸ ︷︷ ︸
coupling Re, VP, IC

, (4.14)

where ‘Re’ denotes contribution by Reynolds number effects, ‘VP’ variable-property
effects and ‘IC’ intrinsic compressibility effects. The right-most expression under the
brace highlights coupling between these effects.

Here, we postulate that the coupling effects are small, and can be neglected. We test
this hypothesis aposteriori based on the available data. From this simplification, we get

p ′p ′+
w ≈ c0,p + f0,p︸ ︷︷ ︸

Re & VP

+M∗
τ

2c1,p +M∗
τ

4c2,p + . . .︸ ︷︷ ︸
IC

. (4.15)

Following a similar approach for the inner-scaled peak streamwise turbulence
intensity, namely, �u′′u′′∗

p = ρu′′u′′/τw , we get

�u′′u′′∗
p ≈ c0,u + f0,u︸ ︷︷ ︸

Re & VP

+M∗
τ

2c1,u +M∗
τ

4c2,u + . . . ,︸ ︷︷ ︸
IC

(4.16)

where c0,u , c1,u , etc. are constants, analogous to c0,p , c1,p for wall-pressure above. Here,

c0,u + f0,u represents the leading order correlation �u′′
0 u′′

0

∗
p .

Before proceding, we note that for ideal gas cases, the semi-local friction Mach
number is approximately constant in the domain and equal to its wall value (see
chapter 2). Also, for the non-ideal cases that will be analysed here (Sciacovelli et al.,
2017), M∗

τ is approximately constant. This nature of M∗
τ makes it an even more appealing

parameter for developing scaling laws. Hereafter, we assume

M∗
τ ≈ Mτ. (4.17)

In the following subsections, we will model the unknown functions f0,p and f0,u , and
determine the constants in equations (4.15) and (4.16).

4.2.1. VARIABLE-PROPERTY EFFECTS
Patel et al. (2015) showed that both semi-locally-scaled wall-pressure and the streamwise
peak (along with other quantities) are similar for flows with similar distributions of
Re∗

τ , independent of the distribution of ρ̄ and µ̄. Through this they confirmed
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Figure 4.1: Semi-locally scaled streamwise turbulent peak intensity, i.e., �u′′u′′∗
p = ρu′′u′′

p /τw as a function
of (a) Reτ and (b) Re∗τ taken at the peak location (y∗ = 15), for the low-Mach-number variable-property
cases of Modesti and Pirozzoli (2024) listed in table 2.3. The black curve corresponds to the fit proposed
in Chen and Sreenivasan (2022) for incompressible flows. Filled symbols correspond to the cases with
increasing Re∗τ away from the wall, whereas unfilled symbols correspond to those with decreasing Re∗τ .

that variable-property effects simply change the local Reynolds number of the flow,
conjectured earlier in Morkovin (1962) and Spina et al. (1994). Consequently, a natural

choice to model p ′
1p ′

1

+
w = c0,p + f0,p and �u′′

0 u′′
0

∗
p = c0,u + f0,u would be to use the scaling

relations developed for incompressible flows, however, with an effective value of Re∗
τ , in

place of Reτ.

It is well established in the incompressible flow literature that the dominant
contribution to wall pressure arises from the source terms in the buffer layer (Kim, 1989;
Kim and Hussain, 1993). In light of this, we propose that Re∗

τ computed in the buffer
layer, say at y∗ = 15, should be used for scaling wall-pressure.

For the peak intensity, the choice is not as straightforward as it was for wall-pressure
r.m.s. One obvious choice is to compute the Reynolds number at the peak location itself
(y∗ ≈ 15). Another choice is to use the wall Reτ. The motivation for the latter choice
comes from the analysis of Bradshaw (1967), who argued that the increase in the peak
intensity with Reτ for incompressible flows is directly associated with the large-scale
fluctuations in wall shear stress. This is also mathematically supported by the Taylor

series expansion of u′u′+ at the wall (Chen and Sreenivasan, 2021; Smits et al., 2021),
where the leading order term represents fluctuations in wall shear stress.

To assess the correct Reynolds number that accounts for variable-property effects
on wall-shear-stress fluctuations, and hence, the peak intensity, we analyse the
low-Mach-number variable-property cases of Modesti and Pirozzoli (2024). These cases
are essentially free of intrinsic compressibility effects, and hence, they are ideal cases
to quantify variable-property effects. For these cases, we have computed the wall shear
stress fluctuations using the interpolation technique in Smits et al. (2021), and we
observed that these fluctuations scale with Reτ, and approximately follow the relation in
Chen and Sreenivasan (2021), i.e., 0.25−0.42Re−1/4

τ (not shown). Following the discussion
presented above, this implies that the peak intensity should also scale with Reτ. This
is verified in figure 4.1, which shows the semi-locally scaled peak intensity �u′′u′′∗

p as a



4.2. APPROACH

4

59

Quantity φ c0,φ f0,φ c1,φ c2,φ

Channels and Pipes

p ′p ′+
w 19.36 −92.4

[
Re∗τ (y∗ = 15)

]−1/4 +110.25
[
Re∗τ (y∗ = 15)

]−1/2 2.4 8312.5�u′′u′′∗
p 11.5 −19.3Re−1/4

τ 78.9 199.3
Boundary layers

p ′p ′+
w 20.25 −87.3

[
Re∗τ (y∗ = 15)

]−1/4 +94.09
[
Re∗τ (y∗ = 15)

]−1/2 2.4 8312.5�u′′u′′∗
p 11.5 −19.3Re−1/4

τ 78.9 199.3

Table 4.1: The constants and functions in equations (4.15) and (4.16), i.e., φ= c0,φ+ f0,φ+c1,φM 2
τ +c2,φM 4

τ

(neglecting higher order terms). The constant c0,φ and the function f0,φ are taken from
equations (4.3) and (4.4) (Chen and Sreenivasan, 2022), as discussed in section 4.2.1. The constants c1,φ

and c2,φ are calibrated based on the constant-property cases, as discussed in section 4.2.2.

function of (a) Reτ and (b) Re∗
τ taken at the peak location, i.e., Re∗

τ (y∗ = 15). Clearly, the
spread in the data with respect to the fit from Chen and Sreenivasan (2022) is lower for
Reτ than for Re∗

τ (y∗ = 15). Note that since these cases are at negligible Mach numbers,
their peak intensity is a direct measure of the leading order term in the expansion series,

i.e., �u′′
0 u′′

0

∗
p .

Even though Reτ is a better choice than the Reynolds number at the peak location,
there is still some spread in the data around the curve fit (see figure 4.1(a)). We denote
the cases with increasing Re∗

τ away from the wall using filled symbols, and the ones
with decreasing Re∗

τ using unfilled symbols. As seen, the cases with decreasing Re∗
τ

away from the wall are shifted upwards with respect to the fit, the rightmost case (at
Reτ = 3200) being the only exception. Whereas, the cases with increasing Re∗

τ are shifted
downwards. This is consistent with the observations made in Patel et al. (2015), also
outlined in the introduction. Such effects associated with the gradients in the Reynolds
number are small for the cases considered, and will be neglected here.

Finally, with these choices of the Reynolds numbers, we model the leading order
terms in equations (4.15) and (4.16) as described in table 4.1.

4.2.2. INTRINSIC COMPRESSIBILITY EFFECTS

In this section, we determine the higher order constants in equations (4.15) and (4.16)
using our constant-property high-Mach-number cases reported in table 2.1.

Let us first focus on wall-pressure r.m.s. To obtain the constants, we first subtract

the variable-property contribution (c0,φ+ f0,φ; see table 4.1) from the total p ′p ′+
w taken

from the DNS. Next, we plot this difference—which signifes the contribution by intrinsic
compressibility effects—as a function of the expansion parameter ε= Mτ in figure 4.2(a)
for the four constant-property cases (denoted by red stars). Fitting a curve of the form
M 2
τc1,p +M 4

τc2,p (neglecting higher order terms) to these cases, we obtain c1,p = 2.4 and
c2,p = 8312.5; see figure 4.2(a) (black curve)

Figure 4.2(a) also plots the intrinsic compressibility contribution for several boundary
layer and channel flow cases in the literature as listed in table 2.3. Despite the fact that
these cases are at different Reynolds numbers, and possess different distributions of
mean properties, majority of the cases follow the curve fit set by the constant property
cases quite well. This corroborates the assumption we made regarding neglecting the
coupling terms in section 4.2.

However, there are some exceptions. First, for the boundary layer cases of Huang
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Figure 4.2: Contribution by intrinsic compressibility effects to (a) wall-pressure variance and (b) the
peak streamwise turbulence intensity as a function of Mτ for the cases described in table 2.3. The
black curve in (a) and (b) corresponds to c1,φM 2

τ + c2,φM 4
τ , where c1,φ and c2,φ are reported in table 4.1,

and φ represents wall-pressure r.m.s. or the peak intensity. These coefficients are calibrated using the
constant-property cases in table 2.3 (red stars). The gray curve in (a) corresponds to c1,p M 2

τ + c2,p M 4
τ ,

where the coefficients c1,p = −66.9 and c2,p = 13148.7 are obtained using the conventional turbulent
boundary layer cases listed in table 2.3. (Insets) The insets report intrinsic compressibility contribution
as a function of

√
τw /p̄. The gray symbols signify ideal gas air cases for which

√
τw /p̄ =p

1.4Mτ, and the
colored symbols represent the dense gas cases of Sciacovelli et al. (2017). Note that low-Reynolds-number
cases (i.e., the cases where the semi-local Reynolds number Re∗τ falls below 300 anywhere in the domain)
are excluded.

et al. (2022), represented by green plus, the deviation from the curve fit is quite high.
This could be possibly due to the simplifications we made in the analysis. It is also
possible that the intrinsic compressibility contribution to wall-pressure r.m.s. differs
in boundary layers compared to channels. Thus, the coefficients (c1,p and c2,p ) tuned
based on the constant-property channels (CP) might not be accurate for boundary
layers. Refining these coefficients for boundary layers would require constant-property
high-Mach-number boundary-layer simulations, which is deferred to future work.
Nevertheless, in figure 4.2(a), we show the gray curve obtained using the conventional
turbulent boundary layer cases listed in table 2.3. As expected, this curve aligns more
closely with the green plus symbols.

Second, the dense gas cases of Sciacovelli et al. (2017) at high Mach numbers depict
extremely high wall-pressure fluctuations. This is due to the proximity of these cases
to the Widom line (the curve that marks the maximum of the specific heat at constant
pressure, above the critical point). In this region, small pressure fluctuations can cause
large density fluctuations, which in turn intensify pressure fluctuations through the
source terms. Such an effect is due to the complexity of the equation of state, and is thus
not accounted for in the present scaling model.

Repeating the same analysis for the peak of streamwise turbulence intensity, we get
c1,u = 78.9 and c2,u = 199.3. Figure 4.2(b) shows the intrinsic compressibility contribution
towards the peak intensity for the constant- and variable-property cases listed in
table 2.3, along with the curve fit with tuned constants. Clearly, majority of the cases
follow the curve, corroborating that the coupling effects are small.

The insets in figure 4.2 show the intrinsic compressibility contributions to the
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wall-pressure r.m.s. and the peak intensity as functions of
√
τw /p̄—the form that ε

would take if p̄ were chosen as the thermodynamic pressure scale. For the ideal gas
air cases (shown in gray symbols),

√
τw /p̄ quantifies intrinsic compressibility effects as

effectively as Mτ (main figure 4.2, discussed earlier), since
√
τw /p̄ ≈ γMτ, with γ= 1.4

for these cases. However, for the dense gas cases of Sciacovelli et al. (2017) (shown in
colored symbols), the characterization of intrinsic compressibility effects deteriorates for
both wall-pressure and the peak when

√
τw /p̄ is used instead of Mτ. These observations

support our choice made in section 4.2 of using ρ̄c̄2 as the relevant thermodynamic
scale of pressure rather than p̄. This is further supported by the observation that, for
the dense gas cases, the upward shift in the logarithmic mean velocity profiles due to
intrinsic compressibility effects is well quantified in terms of Mτ (see in the inset of
figure 5.1a), instead of

√
τw /p̄.

Finally, it is interesting to note that for wall pressure, most of the intrinsic
compressibility contribution comes from the quartic term M 4

τc2,p , while the same for the
peak intensity stems from the quadratic term M 2

τc1,u . This is evident in figure 4.2, where
the fitted curve appears quartic in panel (a) and quadratic in panel (b).

For wall pressure, the increase with Mach number has been attributed to the presence
of travelling wave-packet-like structures in the pressure field (Yu et al., 2022; Zhang et al.,
2022). These structures have been extensively studied in the literature (Yu et al., 2019;
Tang et al., 2020; Gerolymos and Vallet, 2023; Yu et al., 2024), although the physical
mechanism underlying their genesis is still unclear. In chapter 3, we reported that
the component of dilatational velocity (also termed non-pseudo-sound) associated with
these wave-packet-like structures increases with M 3.3

τ , close to a quartic dependence.
This likely explains the quartic increase in wall pressure observed in figure 4.2(a).

For the streamwise turbulence intensity, chapter 3 concluded that the peak value
increases due to the opposition of vortical motions by near-wall dilatational velocities.
Specifically, this interaction modifies the turbulent shear stress, which in turn affects
the production of streamwise turbulence intensity, thereby altering its peak value. This
opposition mechanism scales with M 2

τ , thereby explaining the quadratic increase in the
peak intensity.

4.3. THE FINAL SCALING RELATIONS
By combining the functions and constants obtained from sections 4.2.1 and 4.2.2, we get
the final scaling relations for the wall-pressure r.m.s. and the peak streamwise turbulence
intensity, as reported in table 4.1.

Using these relations, we estimate the wall-pressure r.m.s. and the peak intensity, and
compare the estimation with respect to the DNS. The error in the estimation is defined
as

εφ = φDN S −φmodel

φDN S
, (4.18)

where φ corresponds to wall-pressure r.m.s. or the peak intensity. We also compute the
root-mean-square (RMS) error across all cases as

RMS =
√

1

N

∑
ε2
φ, (4.19)

where N is the total number of cases.
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Figure 4.3: The error in the estimation of (top row) wall-pressure r.m.s. and (bottom row) the peak of
streamwise turbulence intensity as a function of Mτ for the cases described in table 2.3. The errors
are defined using equation (4.18). The different columns correspond to different Reynolds number
definitions used while computing f0,φ in table 4.1. The shaded areas represent an error margin of
+/-10%. Note that low-Reynolds-number cases (i.e., the cases where the semi-local Reynolds number
Re∗τ falls below 300 anywhere in the domain) are excluded.

Figure 4.3 presents εφ for (top row) the wall-pressure r.m.s. and (bottom row)
the peak streamwise turbulence intensity, for the cases listed in table 2.3. (Note that
the dense-gas cases are excluded from wall-pressure error estimations, to maintain
reasonable axis limits). The different columns correspond to different Reynolds number
definitions used while computing f0,φ in table 4.1. Clearly, the errors associated with the
Reynolds number choices made in section 4.2.1—namely, Re∗

τ (y∗ = 15) for wall-pressure
fluctuations and Reτ for the peak intensity—are relatively low when compared to those
from other Reynolds number definitions, on average across all cases (compare their RMS
values). Furthermore, with these Reynolds number choices, a majority of the cases lie
within the +/-10% error band.

Comparison with existing models—Table 4.2 reports the maximum absolute error
and the root-mean-square (RMS) error in predicting the wall-pressure r.m.s. using
various models from the literature. The errors reported in table 4.2 are computed by
applying each model to the type of flow (channel or boundary layer) for which it was
originally developed. For example, the models by Laganelli et al. (1983); Ritos et al.
(2019); Zhang et al. (2022); Wan et al. (2024) are applied exclusively to conventional
air-like boundary layers. In contrast, the model by Gerolymos and Vallet (2023) is applied
to both conventional channels and boundary layers, as listed in table 2.3. The present
model is tested on a broader set of flows, including conventional channels and boundary
layers, as well as the four constant-property cases reported in table 2.1.

As seen, the Laganelli family of models (Laganelli et al., 1983; Ritos et al., 2019;
Zhang et al., 2022) yield relatively high error values, with an RMS error exceeding
12%. The model proposed by Wan et al. (2024) achieves better accuracy, with an RMS
error of 9.4%, despite not explicitly accounting for Reynolds number or wall-cooling
effects. Among the models available in the literature, the best performance is observed
for the model by Gerolymos and Vallet (2023), which achieves an RMS error of 7.2%.
However, this value is still high, primarily due to significant errors incurred in predicting
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Laganelli et al.
(1983)†

Ritos et al.
(2019)†

Zhang et al.
(2022)†

G&V
(2023)‡

Wan et al.
(2024)† Present?

Max abs error[%] 39 34.3 41.9 15.7 18.3 15.6
RMS[%] 29 12.4 13.3 6.9 9.5 4.6

Table 4.2: The maximum absolute error (L∞ norm) and the RMS error (L2 norm; equation 4.19) for
various wall-pressure r.m.s. models available in the literature. The models marked with ‘†’ have been
applied exclusively to conventional (ideal-gas air) boundary layers reported in table 2.3, for which they
were originally developed. The model marked with ‘‡’ has been tested on both conventional channels
and boundary layers. Finally, the present model marked by ‘?’ has been applied to a broader set of
flows, including conventional channels and boundary layers, as well as the four constant-property cases
reported in table 2.1. Note that G&V stands for Gerolymos and Vallet (2023).

high-Mach-number boundary layers. The present model shows improved performance
over existing approaches, with the lowest RMS error of 4.7%.

Finally, for the streamwise turbulence intensity peak, using the proposed relation
results in a maximum absolute error of 6.8% and an RMS error of 2.8%. These values
could not be compared to those obtained from other models in the literature, as, to the
best of our knowledge, there are currently no models available that predict this quantity
in compressible flows.

4.4. SUMMARY
In this chapter, we have proposed scaling models for the wall-pressure root-mean-square
(r.m.s.) and the peak of streamwise turbulence intensity that are applicable to both
channels and boundary layers. These models were developed by expressing the
aforementioned quantities as an expansion series in terms of the friction Mach number,
Mτ. The first term in this series accounts for Reynolds number and variable-property
effects, whereas the higher-order terms primarily capture intrinsic compressibility effects.

To model the leading order term, we used the same expressions as proposed
for incompressible flows, however, we replace Reτ in them with an effective value
of the semi-local Reynolds number which incorporates variable-property effects. For
wall-pressure r.m.s., this value was found to be the Reynolds number defined in the
buffer layer (at y∗ = 15), whereas for the peak streamwise intensity, we found the effective
value to be the wall Reτ.

We model the higher-order correlations in the series as constants, whose values
are found based on our constant-property high-Mach-number cases—described in
table 2.1—representative of intrinsic compressibility effects. Modeling these correlations
as simple constants implies that any coupling between Reynolds number, variable-
property and intrinsic compressibility effects is small—an assumption which was verified
aposteriori using the available data.

The final scaling models demonstrate high accuracy, with predictions for majority of
the cases falling within a +/-10% error margin. The proposed model for wall-pressure
r.m.s. outperforms those available in the literature. A similar comparative analysis could
not be performed for the peak streamwise turbulence intensity, as no prior models exist
for this quantity in compressible flows.

Finally, an additional key finding has been noted: based on the dense gas
(non-ideal) cases of Sciacovelli et al. (2017), we confirm that ρ̄c̄2 is a more appropriate
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thermodynamic pressure scale than the mean pressure p̄, supporting the choice of
expressing the expansion series in terms of Mτ. Future work should extend the proposed
scaling approach to other turbulence quantities, and explore the role of higher-order
terms and coupling effects relevant at Mach numbers beyond those considered here.



5
INCORPORATING IC EFFECTS IN VELOCITY

TRANSFORMATIONS

In this chapter, by quantifying the log-law shift in terms of an appropriately defined
Mach number, we assess whether the shift observed in the semi-local transformation
for the variable-property cases (figure 1.5b) is also due to intrinsic compressibility (IC)
effects—similar to the constant-property (CP) cases (figure 3.1a). Consequently, we derive
a transformation that accounts for both variable-property and intrinsic compressibility
effects, the latter being the key improvement over the current state-of-the-art. The
importance of intrinsic compressibility effects contradicts the renowned Morkovin’s
hypothesis.

The contents of this chapter have been published as:
Hasan, A. M., Larsson, J., Pirozzoli, S., and Pecnik, R. (2023). Incorporating intrinsic compressibility effects
in velocity transformations for wall-bounded turbulent flows. Physical Review Fluids, 8(11):L112601.
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5.1. INTRODUCTION
The law of the wall for incompressible turbulent flows is one of the cornerstones of
fluid dynamics (Bradshaw and Huang, 1995). Such a universal law is still missing
for compressible flows, because the interplay of thermodynamics and hydrodynamics
leads to significantly richer flow physics and even more intricate phenomena in
turbulence. Efforts have long been devoted to find a transformation that reduces the
mean velocity profile of compressible wall-bounded flows to that of incompressible,
constant-property flows (Zhang et al., 2012). Such a transformation can assist in
extending the incompressible modeling techniques to compressible flows, eventually
enabling better flow and heat transfer predictions for a range of applications.

The history of velocity transformations dates back to the 1950s, when Van Driest
(1951) (hereafter VD) proposed a correction to the incompressible law of the wall,
accounting for mean density variations in the friction velocity scale. This transformation
reads:

Ū+
V D =

∫ ū+

0

√
ρ̄

ρw
dū+, (5.1)

where uτ =
√
τw /ρw , u∗

τ =
√
τw /ρ̄, ρw corresponds to density at the wall, and ρ̄ signifies

local mean density. Subsequently, Zhang et al. (2012) proposed a transformation that
improves the collapse in the wake region of compressible boundary layers. However,
both transformations were developed for adiabatic boundary layers, and as such, they
fail for diabatic flows (see figure 1.5a).

In 2016, Trettel and Larsson (2016) formally derived an alternative to the VD
transformation, suggesting that the semi-local wall coordinate, previously defined on
intuitive grounds by Huang et al. (1995), is the correct scaling to account for changes in
the viscous length scale. Their transformation reads:

Ū+
T L =

∫ ū+

0

√
ρ̄

ρw

[
1+ 1

2

1

ρ̄

d ρ̄

d y
y − 1

µ̄

d µ̄

d y
y

]
dū+, (5.2)

where µ̄ is the mean viscosity.
Patel et al. (2016a), by studying the effect of variable density and viscosity on

turbulence in channel flows at the zero Mach number limit, found that the primary
influence of variable properties on the velocity transformation can be effectively
characterized by the semi-local Reynolds number Re∗

τ = ρ̄u∗
τh/µ̄ (where h is the

channel half-height). Consequently, they developed a velocity transformation, which is
mathematically equivalent to Ū+

T L , as

ū∗ =
∫ ū+

0

(
1+ y

Re∗
τ

dRe∗
τ

d y

)√
ρ̄

ρw
dū+. (5.3)

By noting that Re∗
τ = h/δ∗v , where δ∗v = µ̄/(ρ̄u∗

τ ) is the semi-local viscous length scale, and√
ρ̄/ρw = uτ/u∗

τ , we express this equation as

ū∗ = Ū+
T L =

∫ ū+

0

(
1− y

δ∗v

dδ∗v
d y

)
uτ
u∗
τ

dū+︸ ︷︷ ︸
dŪ+

V D

. (5.4)
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Despite being accurate for channel flows, these transformations (also known as the ‘TL’
or ‘semi-local’ transformation) are inaccurate for high-speed boundary layers (Trettel
and Larsson, 2016; Patel et al., 2016a; Zhang et al., 2018; Griffin et al., 2021; Hirai et al.,
2021), typically yielding higher log-law intercept as compared to incompressible flows
(see figure 1.5b).

Recently, Griffin et al. (2021) (hereafter GFM) derived a new transformation based on
the universality of the ratio of production and dissipation, and a stress-based blending
function. They argued that, in the log-layer, the ratio of TKE production—scaled

using a mix of classical and semi-local frameworks, namely P ‡ = ρu′′v ′′+dũ+/d y∗—to
the classically scaled dissipation ε+ (per unit volume1) is universal. Furthermore,

assuming that ε+/µ̄+ (where µ̄+ = µ̄/µw ) and ρu′′v ′′+ are also universal in the log-layer
of compressible flows, they proposed a universal mean shear formulation as

Seq = P ‡

ε+
ε+

µ̄+
1

ρu′′v ′′+
= 1

µ̄+
dũ+

d y∗ = 1

(µ̄+)2

d y+

d y∗︸ ︷︷ ︸
fGF M

µ̄+ dũ+

d y+︸ ︷︷ ︸
dũ∗/d y∗

, (5.5)

where dũ∗/d y∗ corresponds to the Favre-averaged semi-local mean shear whose
integration would lead to ũ∗ (similar to equation (5.4), except that the velocity is
Favre-averaged), and fGF M corresponds to the factor which primarily differentiates
between the GFM and semi-local transformations. The final transformation is obtained
by blending equation (5.5) in the log-layer with dũ∗/d y∗ in the viscous sublayer, using
a suitable blending function. The GFM transformation improves the collapse of the
velocity profile for air-like compressible boundary layers, however, it is inaccurate for
ideal gas flows with non-air-like viscosity laws, and for flows with fluids at supercritical
pressures (figure 1.5c; see also Bai et al., 2022).

Volpiani et al. (2020b) proposed a data-driven transformation which also improves
the results for compressible boundary layers, although not rooted in physical principles.
The lack of a universal, physics-driven compressibility transformation for turbulent
wall-bounded flows sets up the motivation for this chapter.

All transformations outlined above rely on the implicit assumption that intrinsic
compressibility effects are insignificant, and that only mean fluid property variations
matter for this problem (Morkovin’s hypothesis; see chapter 1). However, in chapter 3,
we observed that IC effects can also play a key role in influencing the mean velocity
profiles.

Objectives.—The first objective of this chapter is to assess whether the log-law shift
observed in the semi-local transformation for high-speed boundary layers is an intrinsic
compressibility effect, and the second objective is to derive a transformation that
accounts for these effects.

5.2. INTRINSIC COMPRESSIBILITY EFFECTS ON MEAN VELOCITY
Figure 5.1(a), similar to figure 3.1(a), shows the mean velocity profiles for the four CP
cases. It also shows the velocity profile for the incompressible case of Moser et al.
(1999) at a similar Reynolds number. As we concluded in chapter 3, these cases depict

1ε+ = ε/(ρw u3
τ/δv ), where uτ and δv are defined in equation (1.6).
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Figure 5.1: (a) Mean velocity profiles in constant-property (CP) compressible channel flows,
after the semi-local transformation (Trettel and Larsson, 2016; Patel et al., 2016a) defined as
dū∗ = (

1− y/δ∗v dδ∗v /d y
)√

ρ̄/ρw dū+ (since property variations are absent in these cases, the transformed
velocity is equivalent to ū+). (Inset): Log-law constant C∗ (5.6) as a function of Mτ. Symbols are as
in table 2.3. The dashed line shows a fit for the constant-property cases, whereas the gray shaded
area indicates an error bar of +/-5%. Note that low-Reynolds-number cases (i.e., the cases where the
semi-local Reynolds number Re∗τ falls below 300 anywhere in the domain) are excluded. (b) Turbulent
shear stress for the constant-property compressible cases. (Inset): Kolmogorov length scale, scaled by
the semi-local viscous length scale δ∗v . The black symbols represent the incompressible case of Moser
et al. (1999), in both (a) and (b).

an upward shift in the logarithmic portion of the mean velocity profiles attributable to
intrinsic compressibility effects.

To determine whether the log-law shift observed in the semi-local transformation for
high-speed flows (figure 1.5b) is also due to IC effects—similar to the CP cases—it is first
necessary to quantify this shift and plot it as a function of a suitable parameter that
appropriately characterizes these effects.

5.2.1. THE APPROPRIATE PARAMETER TO QUANTIFY IC EFFECTS

In chapter 4, by taking τw as the appropriate hydrodynamic scale of pressure, and
ρ̄c̄2 as the suitable thermodynamic scale, we found that the semi-local friction Mach
number—defined as M∗

τ = u∗
τ/c̄, with c̄ being the local speed of sound—is an appropriate

parameter to quantify IC effects. Moreover, by noting that the distribution of M∗
τ is

approximately constant in the domain for both CP as well as variable-property ideal gas
cases (figure 2.2), we assumed M∗

τ ≈ Mτ. Finally, we substantiated these arguments by
showing that IC effects on the wall-pressure r.m.s. and the peak of streamwise Reynolds
stress accurately scale with Mτ.

Support for Mτ is also found in the literature. From dimensional analysis in the near-
wall region of compressible boundary layers, Bradshaw (1977) deduced uτ =

√
τw /ρw to

be the relevant velocity scale, and cw =√
γRTw as the relevant sound speed, respectively.

Thus, Mτ = uτ/cw was identified as the most suitable Mach number, as also supported
by Smits and Dussauge (2006). Moreover, Yu et al. (2022) observed that intrinsic
compressibility effects on the wall-shear-stress and wall-pressure fluctuations accurately
scale with Mτ.
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5.2.2. QUANTIFYING THE LOG-LAW SHIFT
We quantify the log-law shift as

C∗ = 1

y∗
2 − y∗

1

∫ y∗
2

y∗
1

(
ū∗− 1

0.41
ln y∗

)
d y∗, (5.6)

where y∗
1 and y∗

2 determine the limits of the logarithmic region. We take y∗
1 ≈ 50 and y∗

2
as the value corresponding to y/h ≈ 0.1 or y/δ≈ 0.1, where h is the channel half-height
and δ is the boundary layer thickness. If y∗

2 correponding to y/δ≈ 0.1 (or y/h ≈ 0.1) is
less than 60, then we take y∗

2 ≈ 70 to obtain a sufficient window of integration.
The inset in figure 5.1(a) shows C∗ as a function of the friction Mach number Mτ for

the four CP cases, and for several compressible ideal gas channel flows and boundary
layers available in the literature. The trend line in the inset of figure 5.1(a) is obtained
by considering the CP cases only, hence it is a measure of the log-law shift due to
intrinsic compressibility alone. Interestingly, the majority of the other cases follow the
trend line, suggesting that the increase in the log-law intercept for those cases is also
due to intrinsic compressibility effects. Deviations from the common trend can be
attributed to effects other than those directly related to mean property variations (within
the assumptions of the semi-local scaling theory) and intrinsic compressibility, as briefly
discussed towards the end of this chapter (and also in chapter 8 and Appendix B). Note
that non-negligible scatter is also observed in incompressible flows (Nagib and Chauhan,
2008), which suggests that the precise determination of the log-law constant is sensitive
to numerical/experimental uncertainties.

As discussed in chapter 3, the log-law shift in the mean velocity profiles stems from
a corresponding outward shift (or reduction) in the turbulent shear stress profiles. This
outward shift for the CP cases is also shown here in figure 5.1(b). To account for this
shift, we drop the universality assumption of the turbulent shear stress, made in Trettel
and Larsson (2016) and Patel et al. (2016a), and derive a mean velocity transformation
accounting for intrinsic compressibility effects.

5.3. DERIVATION OF THE MEAN VELOCITY TRANSFORMATION
In the inner layer of parallel (or quasi-parallel) shear flows, integration of the mean
momentum equation implies that the sum of viscous and turbulent shear stresses is
equal to the total shear stress, given as

µ̄
dū

d y
−ρu′′v ′′ ≈ τtot , (5.7)

where τtot ≈ τw in boundary layers and it varies linearly in channel flows. Note that
terms due to viscosity fluctuations are neglected. Normalizing equation (5.7) by τw and
using the definitions of u∗

τ and δ∗v , we get the non-dimensional form as

δ∗v
u∗
τ

dū

d y︸ ︷︷ ︸
dū∗/d y∗

+r+
uv ≈ τ+tot , (5.8)

where r+
uv =−ρu′′v ′′/τw and τ+tot = τtot /τw . Next, following Trettel and Larsson (2016),

we assume universality of the total shear stress and equate equation (5.8) with its
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incompressible counterpart to get

dŪ+

dY + +R+
uv = δ∗v

u∗
τ

dū

d y
+ r+

uv , (5.9)

where Ū+ = Ū /uτ and Y + = Y /δv denote the non-dimensional velocity and wall-normal
coordinate of an incompressible flow, that constitute the universal law of the wall.

Introducing the definition of the eddy viscosity for incompressible flows (superscript
‘i ’) as µi

t /µw = R+
uv /(dŪ+/dY +), and similarly for compressible flows (superscript ‘c’) as

µc
t /µ̄= r+

uv /([δ∗v /u∗
τ ]dū/d y), equation (5.9) can be written as(

1+µi
t /µw

)(
dŪ+

dY +

)
= (

1+µc
t /µ̄

)(δ∗v
u∗
τ

dū

d y

)
, (5.10)

which upon rearrangement yields

dŪ+

dū+ =
(

1+µc
t /µ̄

1+µi
t /µw

)
δ∗v
δv

dY +

d y+
uτ
u∗
τ

. (5.11)

Equation (5.11) offers a very general eddy-viscosity-based framework for deriving
compressibility transformations for wall-bounded flows that satisfy equation (5.7). This
equation in dimensional form is similar to that proposed in Iyer et al. (2019), where it is
employed to deduce an eddy viscosity model, provided a velocity transformation kernel
is known (see also Yang and Lv (2018)).

In order to fully define the velocity transformation, a relationship between Y + and
y+ shall be established. Assuming that the turbulent shear stress is universal in the inner
layer, Trettel and Larsson (2016) deduced that Y + = (δv /δ∗v )y+ = y∗. However, as seen
in figure 5.1(b), the turbulent shear stress is not universal in the presence of intrinsic
compressibility effects, hence the question of whether or not Y + = y∗ still holds has to be
reassessed. Indeed, Y /δv = y/δ∗v implies that δ∗v is the proper length scale for small-scale
turbulence and viscous effects in compressible flows, just like δv in incompressible flows.
This was first proposed by Huang et al. (1995) and later verified for a range of turbulence
statistics by Patel et al. (2015). The inset of figure 5.1(b) shows the distribution of the
Kolmogorov length scale (i.e., a measure of small turbulent scales) non-dimensionalized
by δ∗v (Patel et al., 2016a) for the four CP cases and the incompressible case of Moser
et al. (1999) at a similar Reynolds number. The nearly universal distribution throughout
the inner layer, despite non-universality of the turbulent shear stress, implies that δ∗v is
still an appropriate measure of small-scale turbulence, thereby supporting the validity of
Y + = y∗ also in the presence of intrinsic compressibility effects.

Exploiting the coordinate transformation Y + = y∗, and using

d y∗/d y+ = (
1− y∗ dδ∗v /d y

)
δv /δ∗v ,

we obtain the final proposed velocity transformation kernel from equation (5.11) as

dŪ+

dū+ =
(

1+µc
t /µ̄

1+µi
t /µw

)
︸ ︷︷ ︸

3

(
1− y

δ∗v

dδ∗v
d y

)
︸ ︷︷ ︸

2

uτ
u∗
τ︸︷︷︸

1

. (5.12)

Equation (5.12) embodies a sequence of velocity transformations, as outlined below:
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• Factor 1 is the correction proposed by Van Driest (1951) to account for the change
in the friction velocity scale from uτ =

√
τw /ρw to u∗

τ = √
τw /ρ̄. It can also be

written as
√
ρ̄/ρw .

• Factor 2 is the correction proposed in Trettel and Larsson (2016) and Patel et al.
(2016a) to account for the change in the viscous length scale from δv to δ∗v . Factors
1 and 2 combined form the semi-local transformation kernel (5.4). These factors
account for the effects of mean property variations on the velocity transformation.

• Factor 3 is the proposed correction which accounts for additional physics beyond
those captured by the semi-local transformation.

In order to obtain a closed form of the transformation, the eddy viscosities µi
t and

µc
t must be prescribed. Out of the many possible eddy viscosity models, we consider

the Johnson-King (JK) model (Johnson and King, 1985) to achieve an explicit expression
of the transformation. The JK model is built on Van Driest’s mixing-length arguments
in the logarithmic region (Van Driest, 1951), with a damping function (Van Driest,
1956a) to reproduce the correct near-wall behaviour. The eddy viscosity is defined as
µi

t =
p
τwρwκY [1−exp(−Y +/A+)]2. The set of constants κ= 0.41, A+ = 17 is commonly

used (Iyer and Malik, 2019), and yields an incompressible log-law intercept 5.2. Similarly,
for compressible flows, µc

t =
√
τw ρ̄κy[1− exp(−y∗/A+)]2, with the damping function

defined based on the the semi-local wall distance (y∗) to account for mean property
variations (Patel et al., 2016b; Yang and Lv, 2018). As outlined previously, intrinsic
compressibility effects modulate the near-wall damping of turbulence, causing the
turbulent shear stress to shift outwards (figure 5.1b). Thus, we modify the damping
constant to depend on Mτ, such that the compressible eddy viscosity model reads

µc
t =

√
τw ρ̄κy

[
1−exp

( −y∗

A++ f (Mτ)

)]2

︸ ︷︷ ︸
D(y∗,Mτ)

. (5.13)

The increase in the effective damping constant (A++ f (Mτ)) in equation (5.13),
implies that the eddy viscosity (and hence, turbulent shear stress) shifts outwards, with
subsequent increase of the log-law intercept (C∗). In fact, it can be readily checked that
C∗ grows linearly with the damping constant. Since the log-law intercept also depends
linearly on Mτ (see inset of figure 5.1a), we argue that the corrective term f (Mτ) should
be linear. Here, we use f (Mτ) = 19.3 Mτ to reproduce the linear curve-fit presented in
figure 5.1(a).

Writing eddy viscosities in the non-dimensional form as µi
t /µw = κY +D(Y +,0)

and µc
t /µ̄ = κy∗D(y∗, Mτ), and replacing Y + by y∗ in µi

t /µw yields the final velocity
transformation

Ū+ =
∫ ū+

0

(
1+κy∗D(y∗, Mτ)

1+κy∗D(y∗,0)

)(
1− y

δ∗v

dδ∗v
d y

)√
ρ̄

ρw
dū+. (5.14)

5.4. RESULTS AND DISCUSSION
This transformation is tested and compared to the semi-local (or TL) and GFM
transformations in figure 5.2 for 70 boundary layer and channel flow cases reported
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Figure 5.2: Assessment of the semi-local, GFM and proposed transformations for 65 ideal-gas and 5
non-ideal-fluid cases reported in table 2.3. Line colors correspond to the color of the symbols in
table 2.3. The top row corresponds to the four ‘CP’ cases. The centre row represents the ‘conventional’,
‘Tb-controlled’, and ‘BL-like’ cases shown in table 2.3. The latter two types are combined with
conventional cases since they have property profiles similar to conventional boundary layers, but in
a channel flow setting. The last row represents the non-conventional cases, namely, the ‘non-air-like’,
‘dense-gas’, ‘supercritical’, and ‘heat-source’ cases in table 2.3. (Insets): Percent error (ε) in the velocity
transformation computed with respect to the incompressible reference (Lee and Moser, 2015), as
described in Griffin et al. (2021). Note that the insets in the third row have larger axis limits. Symbols
are as in table 2.3. Shaded region indicates an error bar of +/-3%. As in figure 5.1, low-Reynolds-number
cases are excluded.
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in table 2.3. We compare the transformations for three broad groups of cases. The
first row corresponds to the CP cases, where only intrinsic compressibility effects
play an important role. The second row represents the conventional ideal-gas air-like
cases, which includes ‘conventional’, ‘Tb-controlled’, and ‘BL-like’ case types reported
in table 2.3. The latter two types are combined with conventional cases since they
have property profiles similar to conventional boundary layers, but in a channel flow
setting. The last row represents the non-conventional cases, namely, the ‘non-air-like’,
‘dense-gas’, ‘supercritical’, and ‘heat-source’ cases reported in table 2.3.

The three transformations are equivalent in the viscous sublayer for all types of
cases. This equivalence occurs because the GFM transformation, through its blending
function, reduces to the semi-local transformation in this region. Similarly, the current
transformation naturally simplifies to the semi-local form near the wall, as µt ≈ 0 and
factor 3 in equation (5.12) reduces to unity.

Let us now compare the transformations in the buffer and log layers. For the CP
cases (first row), both the semi-local and GFM transformations remain ineffective, as
they rely solely on mean property variations, which are approximately constant in these
flows. In contrast, the proposed transformation successfully collapses the profiles—as
expected—since it is tuned based on these cases.

For the conventional ideal-gas, air-like cases (second row), the log-law shift in
the semi-local transformation is clearly evident. While the GFM transformation does
not exhibit this selective upward shift, it still results in noticeable spread within
the logarithmic region. The proposed transformation, on the other hand, effectively
eliminates the log-law shift observed in the semi-local transformation, and demonstrates
the least spread for the cases considered herein.

For the non-conventional cases (third row), the semi-local transformation shows a
similar upward log-law shift as observed for the conventional cases above (second row).
The GFM transformation, on the other hand, shows reduced accuracy for these type of
flows. Among the three transformations, the proposed transformation offers a better
collapse of the profiles for the non-conventional cases presented herein.

The possible reason why the GFM transformation works for ideal gas cases with
air-like viscosity laws (second row), but fails for ideal gas cases with non-air-like viscosity
laws and for non-ideal flows (third row), is explained as follows: Figure 5.3 (top row)
plots ε+/µ̄+, P ‡/ε+ and their product as a function of y∗ for the ideal gas air-like
boundary layers of Cogo et al. (2023), covering free-stream Mach numbers from 2 to 6
(yellow lines). The black lines show the corresponding quantities for an incompressible
boundary layer of Jiménez et al. (2010) at Reτ ≈ 450. Contrary to the assumptions made
by GFM, both the dissipation rate, ε‡ = ε+/µ̄+ (top row; left), and the ratio P ‡/ε+ (top row;
centre), clearly vary with Mach number. However, their product depicts a much better
collapse (top row; right). These observations suggest that the Mach-number-dependent
variations in ε+/µ̄+ and P ‡/ε+ cancel each other out for ideal gas air-like flows, such

that the mean shear, Seq = (P ‡/ε+)(ε+/µ̄+)(1/ρu′′v ′′+), becomes a universal function of
y∗, resulting in accurate transformed profiles. This balance appears to be disrupted in
non-air-like or non-ideal (e.g., supercritical) flows, leading to a deterioration in accuracy.

It is still unclear why the quantities ε+/µ̄+ and P ‡/ε+ fail to collapse in figure 5.3 (top
row). The quantity ε+/µ̄+ was assumed to be universal in GFM’s framework following the
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Figure 5.3: Top row: (left) TKE dissipation rate ε+/µ̄+, (centre) the ratio P ‡/ε+ and (right) their product,
for the air-like ideal gas boundary layers of Cogo et al. (2023), with free-stream Mach numbers ranging
from 2 to 6 (yellow lines); see table 2.3. Bottom row: the semi-locally consistent counterparts of the
quantities plotted in the top row, namely, (left) ε∗ = µ̄+ε+, (centre) the ratio P∗/ε∗ (=P/ε) and (right)
their product. The black lines indicate the corresponding quantities for the incompressible case from
Jiménez et al. (2010), at a similar friction Reynolds number (Reτ ≈ 450) as the compressible cases in
Cogo et al. (2023).

work of Guarini et al. (2000); Lagha et al. (2011); Zhang et al. (2012)2. However, in those
studies, this assumption was made only for adiabatic boundary layers, and as a function
of y+, not y∗. Extending the same to diabatic flows, by simply replacing y+ with y∗

may require further assessment—especially in the light of evidence that the semi-locally
scaled dissipation rate, namely ε∗ = µ̄+ε+, is a universal function of y∗ in the log-layer
(Patel et al., 2016a; Modesti and Pirozzoli, 2016; Zhang et al., 2018; Cogo et al., 2023)3,
rather than ε+/µ̄+. Figure 5.3 also confirms this for the ideal-gas air-like boundary layers
of Cogo et al. (2023); compare the top (GFM scaled) and bottom (semi-locally scaled)
rows in the left column.

The quantity P ‡/ε+ fails to be Mach-number-invariant because the production and
dissipation in this ratio are scaled differently (one with a mix of classical and semi-local
scales, and the other with classical scales). Different scalings imply that P ‡/ε+ differs
from the ratio constructed using dimensional quantities P/ε4. This implies that if P ‡/ε+

is Mach-number-invariant, then the ratio P/ε must vary with Mach number, which
violates the equilibrium assumption (P/ε≈ 1). However, upon comparing the top and
bottom rows in the centre column of figure 5.3, it becomes clear that it is P/ε, rather
than P ‡/ε+, that remains nearly Mach-number-invariant, upholding the equilibrium

2Zhang et al. (2012) made the assumption regarding the universality of ε+/µ̄+, based on the collapse
of vorticity r.m.s. reported in Guarini et al. (2000) and Lagha et al. (2011). The two are related as:

ε+/µ̄+ ≈ω′
iω

′
i

+
.

3In some of these studies, the semi-locally scaled vorticity r.m.s. is plotted, which, in principle, is similar
to the dissipation rate.

4P ‡/ε+ 6= P/ε, unlike if the production and dissipation were scaled similarly, for instance, classically
P+/ε+ = P/ε, or semi-locally P∗/ε∗ = P/ε.
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assumption in the log-layer.
Finally, note that for all the transformations, the spread is larger in the outer part of

boundary layers and channels, which is arguably beyond their scope, all being focused
on the inner, constant-stress layer.

Limitations of the proposed transformation.—Despite the improved accuracy, the
proposed transformation is only as accurate as the assumptions made in its derivation.
For instance, the transformation might be inaccurate for cases where equation (5.7) does
not hold, such as in supercritical boundary layers where large density fluctuations induce
a near-wall convective flux in the stress balance equation (Kawai, 2019). Also, we have
assumed that variable-property effects are limited to factors 1 and 2 in equation (5.12),
and that these effects do not contribute to the non-universality of the turbulent shear
stress (factor 3 in equation 5.12). However, this is not always the case, as suggested by
the scatter in the log-law intercept with respect to the fitted curve in figure 5.1(a), which
is eventually reflected in the new transformation (see figure 5.2). We suspect cancellation
between these unaccounted variable-property effects and intrinsic compressibility effects
to be the reason why the semi-local transformation was found to be very accurate for
ideal-gas compressible channel flows (Trettel and Larsson, 2016), but not for boundary
layers. This hypothesis is further discussed in Appendix B. Incorporating these additional
physics is the next step for future studies aimed at developing an even more general
transformation. Lastly, it is important to note that for ideal gas cases, the semi-local
friction Mach number (M∗

τ ) is roughly constant in the wall-normal direction and is equal
to Mτ (figure 2.2), however, for cases in which M∗

τ varies significantly in the domain, Mτ

may not be the most suitable parameter.

5.5. IMPLICATIONS ON TURBULENCE MODELING
The eddy viscosity with modified damping function (equation 5.13) can be interpreted
as a compressibility-corrected wall model for large eddy simulations (LES), which can
be implemented in current codes by simply changing the damping function. Moreover,
the modified eddy viscosity can be leveraged to improve the drag and heat transfer
predictive theories as discussed in chapter 6. Last, the proposed transformation can also
help developing Reynolds averaged Navier–Stokes (RANS) turbulence models sensitized
to compressibility effects as discussed further in chapter 7.

5.6. SUMMARY
To summarize, the log-law shift observed in the semi-local transformation for the
conventional cases (figure 1.5b) can be primarily attributed to the non-universality of the
turbulent shear stress caused by intrinsic compressibility effects. We ascertain this based
on our tailored constant-property compressible cases, in which the only dominant effect
is due to intrinsic compressibility. Taking Mτ as the most suitable parameter to quantify
these effects, we propose a new transformation that effectively removes the log-law shift.
The proposed transformation accounts for the changes in friction velocity and viscous
length scales due to variations in mean properties, and for intrinsic compressibility
effects. Thus, it applies to a wide variety of cases.

In future, it would be interesting to analyse whether the transformation can be
derived using an expansion series approach discussed in chapter 4.





6
ESTIMATING MEAN PROFILES AND FLUXES

USING INNER/OUTER-LAYER SCALINGS

In this chapter, using a mixing-length eddy-viscosity formulation (equation 5.13) in the
inner layer and Coles’ law of the wake in the outer layer, we develop a methodology
that predicts mean velocity and temperature profiles, as well as the skin-friction and
heat transfer coefficients in zero-pressure-gradient high-speed boundary layers. While
the eddy-viscosity is consistent with the transformation proposed in chapter 5, the Coles
wake relation follows Van Driest scaling. The methodology is modular in the sense that
it can be applied using other eddy-viscosity definitions and wake models, and it is also
applicable to channel/pipe flows.

The contents of this chapter have been published as:
Hasan, A. M., Larsson, J., Pirozzoli, S., and Pecnik, R. (2024). Estimating mean profiles and fluxes in
high-speed turbulent boundary layers using inner/outer-layer scalings. AIAA Journal, 62(2):848–853.
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6.1. INTRODUCTION
Accurately predicting drag and heat transfer for compressible high-speed flows is of
utmost importance for a range of engineering applications. A common approach is to
use a compressible velocity scaling law (transformation), that inverse transforms the
velocity profile of an incompressible flow, coupled with a temperature-velocity relation.
Current methods (Huang et al., 1993; Kumar and Larsson, 2022) typically assume a
single velocity scaling law, overlooking the different scaling characteristics of the inner
and outer layers. In this chapter, we use distinct scalings for these two regions and
model the velocity profile for compressible boundary layers using a classic eddy viscosity
expression combined with a defect law. The inner-layer velocity profile is modeled using
the mixing-length eddy viscosity presented in chapter 5, which incorporates variable-
property effects through semi-local scaling, and accounts for intrinsic compressibility
effects by adjusting the near-wall damping function. The outer-layer profile is modeled
after Coles’ law of the wake (Coles, 1956), scaled according to the Van Driest scaling. The
result is an analytical expression for the mean shear valid in the entire boundary layer,
which combined with the temperature-velocity relationship from Zhang et al. (2014),
provides predictions of mean velocity and temperature profiles at high accuracy. Using
these profiles, drag and heat-transfer coefficients are evaluated with an accuracy of
+/-4% and +/-8%, respectively, for a wide range of zero-pressure-gradient compressible
turbulent boundary layers up to Mach numbers of 14.

6.2. PROPOSED METHOD
The velocity profile of a turbulent boundary layer is composed of two parts: (1) the law
of the wall in the inner layer, and (2) the velocity defect law in the outer layer. Using an
eddy viscosity model for the inner layer and Coles’ law of the wake for the outer layer,
the mean shear for incompressible flows can be expressed as

dūi nc

d y
= uτ
δv

1

1+µt /µw
+ uτ
δ

Π

κ
π sin

(
π

y

δ

)
, (6.1)

where the first term on the right-hand side can be readily obtained by integrating the
mean momentum equation (stress balance) of equilibrium flows, while the second term
is the derivative of the Coles’ wake function (Chauhan et al., 2007). Here, µt denotes the
eddy viscosity, µw the viscosity at the wall, uτ and δv the friction velocity and viscous
length scales defined in equation (1.6), Π the Coles wake parameter, κ the von Kármán
constant, y the wall-normal coordinate, and δ the boundary layer thickness. Modeling
µt using simple inner-layer mixing-length models would lead to a linear profile close to
the wall, developing into a logarithmic profile which extends to the outer layer where it
is added to the wake component, as desired.

In compressible flows, the stress balance equation in the inner layer leads to the
mean shear given by dū/d y = (u∗

τ/δ∗v )/(1+µt /µ̄) (see chapter 5). Here, µ̄ is the mean
viscosity, and u∗

τ and δ∗v represent the semi-local friction velocity and viscous length
scales defined in equation (1.12). For the wake region, following Van Driest’s scaling, uτ
is replaced with u∗

τ to account for mean density variations, while maintaining the same
outer-layer length scale, δ (Smits and Dussauge, 2006). With these changes, the mean
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Figure 6.1: A schematic showing the different regions and the appropriate velocity and length scales in a
compressible turbulent boundary layer (similar to figure 1.4, but for compressible flows). Here, y∗ = y/δ∗v
and δ∗ = δ/δ∗v , where y represents the wall-normal coordinate and δ is the boundary layer thickness.
Note that both the y/δ and y∗ axes are logarithmic.

shear for compressible flows reads

dū

d y
= u∗

τ

δ∗v

1

1+µt /µ̄
+ u∗

τ

δ

Π

κ
π sin

(
π

y

δ

)
. (6.2)

Now, modeling µt /µ̄ based on the Johnson-King (JK) mixing-length eddy viscosity model
(Johnson and King, 1985), corrected for variable property and intrinsic compressibility
effects (equation 5.13), we get

dū

d y
= u∗

τ

δ∗v

1

1+κy∗D(y∗, Mτ)
+ u∗

τ

δ

Π

κ
π sin

(
π

y

δ

)
. (6.3)

Equation (6.3) provides several useful insights. Analogous to an incompressible flow,
the mean velocity in a compressible flow is controlled by two distinct length scales,
δ∗v and δ, characteristic of the inner and outer layers, respectively. The two layers are
connected by a common velocity scale u∗

τ (the semi-local friction velocity), leading to
a logarithmic law in the overlap region. These scales and their regions of validity are
depicted schematically in figure 6.1.

Moreover, in the logarithmic layer and beyond, the first term on the right-hand side
reduces to

√
τw /ρ̄/(κy) (where τw is the wall shear stress and ρ̄ is the mean density),

which is consistent with Van Driest’s original arguments (Van Driest, 1951) . It is crucial
to satisfy this condition, otherwise the logarithmic profile extending to the outer layer
would not obey Van Driest’s scaling, while the wake component to which it is added
would. This condition is naturally satisfied here since our transformation, on which the
eddy-viscosity is based, is consistent with the Van Driest transformation in the log-layer.
One way to check this consistency is to compute the transformed diagnostic function
Y +dŪ+/dY + and checking whether it is equal to y+dŪ+

V D /d y+. Taking Y + = y∗, and
dŪ+ from equation (5.14), one can readily verify this. However, other transformations,
such as the ones proposed by Volpiani et al. (2020b) and Griffin et al. (2021), do
not satisfy this property. Thus, implementation of the proposed method with those
transformations may require additional steps as further discussed in section 6.3.

The near-wall damping function in equation (6.3) is given by

D(y∗, Mτ) =
[

1−exp

( −y∗

A++ f (Mτ)

)]2

, (6.4)
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where Mτ = uτ/
√
γRTw is the friction Mach number, with Tw as the wall temperature.

The value of A+ differs based on the choice of the von Kármán constant κ, such that the
log-law intercept is reproduced for that κ (Nagib and Chauhan, 2008). With κ= 0.41, the
value of A+ = 17 gives a log-law intercept of 5.2 (Iyer and Malik, 2019), whereas, with
κ= 0.384, A+ = 15.22 gives a log-law intercept of 4.17. The additive term f (Mτ) accounts
for intrinsic compressibility effects. In chapter 5, we proposed f (Mτ) = 19.3Mτ, which is
independent of the chosen value of κ.

The second term on the right-hand side of equation (6.3) is the wake term accounting
for mean density variations, where Coles’ wake parameter Π depends on the Reynolds
number, as discussed in the subsection below. It is important to note that Π also
depends on pressure gradient (Coles, 1956), however, the focus of the current analysis is
limited to zero-pressure-gradient turbulent boundary layers.

6.2.1. CHARACTERIZING LOW-REYNOLDS-NUMBER EFFECTS ON THE WAKE

PARAMETER
For incompressible boundary layers, Coles’ wake parameter is known to strongly depend
on Reθ at low Reynolds numbers (Coles, 1962; Fernholz and Finley, 1996; Cebeci and
Smith, 1974). For compressible boundary layers, the ambiguity of the optimal Reynolds
number definition poses a challenge to characterize the wake parameter. Fernholz
and Finley (1980), mainly using experimental data at that time, observed that the
momentum-thickness Reynolds number with viscosity at the wall (Reδ2 = ρ∞u∞θ/µw ,
where θ represents the momentum thickness, and the subscript ‘∞’ signifies free-stream
values) is the suitable definition to scale Π. On the other hand, Wenzel et al. (2018)
observed that the wake parameter scales with Reθ (= ρ∞u∞θ/µ∞) for their direct
numerical simulations (DNS) at moderate Mach numbers (M∞ ≤ 2.5), consistent with the
expectation that Π (being defined at the boundary layer edge) should scale with Reynolds
number based on the free-stream properties (Smits and Dussauge, 2006; Cebeci and
Smith, 1974). Yet, there is no clear consensus on which definition is relevant in scaling
Π, especially for high-Mach-number flows where Reδ2 and Reθ are quite different from
each other. Given the recent availability of hypersonic DNS, we revisit the question of
which Reynolds number best describes the wake parameter.

First, we evaluate Π for several incompressible and compressible DNS cases from the
literature and then report it as a function of different definitions of the Reynolds number,
searching for the definition yielding the least spread of the data points. For incompressible
flows, the wake strength can be determined as Π = 0.5κ

(
Ū+(y = δ)− (1/κ) ln(δ+)−C

)
,

where C is the log-law intercept for the chosen κ. For compressible flows, the wake
strength is based on the VD transformed velocity (Fernholz and Finley, 1980; Smits
and Dussauge, 2006) as Π = 0.5κ

(
Ū+

vd (y = δ)− (Ū+
vd )l og (y = δ)

)
, where Ū+

vd is obtained

from the DNS data. The reference log law (Ū+
vd )log , unlike for incompressible flows,

cannot be computed as (1/κ) ln(y+)+Cvd , because Cvd is found to be non-universal for
diabatic compressible boundary layers (Bradshaw, 1977; Trettel and Larsson, 2016); see
also figure 1.5(a). Hence, (Ū+

vd )log can be obtained either by fitting a logarithmic curve
to Ū+

vd (Fernholz and Finley, 1980), or by inverse transforming the incompressible law of
the wall. Here, we follow the latter approach by using the compressibility transformation
discussed in chapter 5.

The value of the von Kármán constant κ plays a crucial role in estimating Π. Spalart
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(1988) noted that a strong consensus on κ is needed to accurately estimate Π. However,
such a consensus is yet missing (Monkewitz and Nagib, 2023). Nagib and Chauhan
(2008) showed that κ = 0.384 is a suitable choice for incompressible boundary layers,
verified to be true also for channels (Lee and Moser, 2015) and pipes (Pirozzoli et al.,
2021). However, due to historical reasons and wide acceptance of κ = 0.41, we will
proceed with this value. The same procedure can straightforwardly be repeated with a
different value of κ.

Figure 6.2 shows the wake parameter for 24 compressible and 19 incompressible
boundary layer flows, as a function of (a) Reδ2 , (b) Reθ, (c) Reδ∗ (= ρ∞u∞δ∗/µ∞, where
δ∗ is the displacement thickness) and (d) Re∗

τ∞ (i.e., the semi-local Reynolds number
Re∗

τ = ρ̄u∗
τδ/µ̄ computed using free-stream properties). The spread in the data points

is found to be quite large for all the definitions, as Π is the difference of two relatively
large quantities, namely Ū+

vd and (Ū+
vd )log at the boundary layer edge, as outlined above.

Note that even incompressible boundary layers are not devoid of this scatter (Spalart,
1988; Fernholz and Finley, 1996). Figure 6.2(a) shows the presence of two distinct
branches, hence Reδ2 does not seem to be suitable to characterize Π, unlike reported
in previous literature (Fernholz and Finley, 1980; Huang et al., 1993). Among the four
definitions of Reynolds number, Reθ seems to show the least spread, further confirming
the conclusions in Wenzel et al. (2018). Figure 6.2(b) also reports several functional forms
of Π= f (Reθ). Use of the modified Kármán-Schoenherr friction formula (Nagib et al.,
2007) for indirect evaluation of Π, does not show saturation at high Reynolds numbers
as observed in Coles (1962) for incompressible flows. The Cebeci-Smith (hereafter CS)
relation (Cebeci and Smith, 1974) underpredicts Π, but reproduces saturation at high
Reynolds numbers. Wenzel et al. (2018) modified the CS relation with a higher saturation
value of Π (0.66) and fit it to the DNS data of Schlatter et al. (2009) and Schlatter and
Örlü (2010). Here, we propose a relation similar to that proposed by (Cebeci and Smith,
1974), but fitted to the more recent incompressible DNS data of Jiménez et al. (2010)
and Sillero et al. (2013), in which particular care was exercised to guarantee that the
numerical boundary layers are in a fully developed state. Those data support similar
behavior as CS in the low-Re regime, but with a higher saturation value, resulting in the
relation

Π= 0.69
[
1−exp(−0.243

p
z −0.15 z)

]
, where z = Reθ/425−1. (6.5)

We also note that some high-Reynolds-number cases have higher value of the wake
parameter than that predicted by equation (6.5). This could be due to the previously
noted high data scatter, or to inaccuracies arising from application of the Van Driest
transformation to the wake velocity profile, or both. Regardless, these differences are
tolerable for the scope of the present chapter, as the results are not highly sensitive to
the precise value of the wake parameter (see section 6.3).

The inset in figure 6.2(b) compares the skin-friction curve computed using
equation (6.5) with the modified Kármán-Schoenherr skin-friction formula (Nagib et al.,
2007). The distance between the two curves is large at low Reynolds numbers, but less so
at higher Reynolds numbers. As expected, the incompressible DNS data of Jiménez et al.
(2010) and Sillero et al. (2013) follow the friction curve computed using equation (6.5).
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Figure 6.2: The wake parameter Π computed using the DNS data and plotted as a function of (a) Reδ2

(b) Reθ (c) Reδ∗ and (d) Re∗τ∞ for 19 incompressible (Schlatter et al., 2009; Schlatter and Örlü, 2010;
Jiménez et al., 2010; Sillero et al., 2013) and 24 compressible (Zhang et al., 2018; Bernardini and Pirozzoli,
2011; Cogo et al., 2022; Ceci et al., 2022, A. Ceci, private communication) turbulent boundary layers
reported in table 2.3.
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6.2.2. IMPLEMENTATION OF THE PROPOSED METHOD
For convenience of implementation, equation (6.3) can also be expressed in terms of the
dimensional quantities τw , µ̄ and ρ̄ as

dū

d y
= τw

µ̄+√
τw ρ̄κyD(y∗, Mτ)︸ ︷︷ ︸

µt

+
√
τw /ρ̄

δ

Π

κ
π sin

(
π

y

δ

)
, (6.6)

where µt is the dimensional form of the compressibility-corrected Johnson-King eddy
viscosity model, which can be readily used in turbulence modeling, for instance, as a
wall-model in large eddy simulations (LES).

Note that other eddy viscosity models can also be used in deriving the mean shear
equation, for example, Prandtl’s mixing-length model. The mean shear equation using
Prandtl’s mixing-length model is

dū

d y
= 2τw

µ̄+
√
µ̄2 + [2

√
τw ρ̄κyD(y∗, Mτ)]2

+
√
τw /ρ̄

δ

Π

κ
π sin

(
π

y

δ

)
, (6.7)

where D(y∗, Mτ) is the damping function corrected for intrinsic compressibility effects
as D(y∗, Mτ) = 1−exp

(−y∗/(A++39Mτ)
)

, with A+ = 25.53 (or 26) for κ= 0.41, and where
the additive term 39Mτ is obtained following similar steps as for the Johnson-King model
(see chapter 5).

In this chapter, the results will be presented using equation (6.6). This equation
covers the entire boundary layer, and it can be integrated in conjunction with a suitable
temperature model such as the one proposed by Zhang et al. (2014), which is given as

T̄

Tw
= 1+ Tr −Tw

Tw

[
(1− s Pr )

(
ū

u∞

)2

+ s Pr

(
ū

u∞

)]
+ T∞−Tr

Tw

(
ū

u∞

)2

, (6.8)

where s Pr = 0.8, Tr /T∞ = 1+0.5r (γ−1)M 2∞, and r = Pr 1/3, with Tr denoting the adiabatic
temperature, r the recovery factor and Pr the molecular Prandtl number. Moreover, a
suitable viscosity law (e.g., power or Sutherland’s law), and the ideal gas equation of
state ρ̄/ρw = Tw /T̄ have to be used to compute mean viscosity and density profiles,
respectively. The inputs that need to be provided are the Reynolds number (Reθ),
free-stream Mach number (M∞ = u∞/

√
γRT∞), wall cooling/heating parameter (Tw /Tr )

and (optionally) the dimensional wall or free-stream temperature for Sutherland’s law. It
is important to note that equation (6.8), and all solver inputs are based on the quantities
in the free-stream, and not at the boundary layer edge. For more insights on the solver,
please refer to the source code available on GitHub (Pecnik and Hasan, 2023).

6.3. RESULTS
Figure 6.3 shows the predicted velocity and temperature profiles for a selection of high
Mach number cases. As can be seen, the DNS and the predicted profiles are in good
agreement, thus corroborating our methodology. The insets in figure 6.3 show the
error in the predicted skin-friction and heat-transfer coefficients for 28 compressible
cases from the literature. For most cases, the friction coefficient, c f = 2τw /(ρ∞u2∞), is
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predicted with +/−4% accuracy, with a maximum error of -5.3%. The prediction of
the heat-transfer coefficient, ch = qw /(cpρ∞u∞(Tw −Tr )), where qw is the wall heat flux,
shows a slightly larger error compared to c f , potentially due to additional inaccuracies
arising from the temperature-velocity relation. In most cases, ch is predicted with
+/−8% accuracy, with a maximum error of 10.3%.

To assess the sensitivity of the predictions with respect to the relation used for the
wake parameter, we recomputed the results using our method, but instead of using
equation (6.5) to estimate Π, we employed the relation proposed by Wenzel et al. (2018).
The maximum error in the c f prediction changed from -5.3% to -6.08%, with most of
the cases within error bounds of +/−5%. For the ch prediction, there was an increase in
the maximum error from 10.3% to 11.4%, with most of the cases within error bounds of
+/−8%.

The proposed method is modular as it can also be applied using other velocity
transformations as building blocks (Griffin et al., 2021; Volpiani et al., 2020b). For
instance, one can use an eddy viscosity derived from the GFM transformation in
equation (6.2). One can also skip the intermediate step of deriving an eddy viscosity
from a transformation and directly use inverse transformations to predict mean velocity
profiles (Huang et al., 1993; Kumar and Larsson, 2022). However, in place of using
a single transformation for the entire boundary layer, as done previously, we rather
advocate the use of distinct transformations for the inner and outer layers. Considering
the reference incompressible velocity profile as being made up of the sum of an inner
part (Ū+

i nn) and of a wake correction (Ū+
w ake ), we separately inverse transform the related

velocity increments to yield

dū+ =T −1
i nndŪ+

i nn +T −1
out dŪ+

w ake , (6.9)

where Ti nn and Tout denote the inner- and outer-layer velocity transformation kernels,
respectively.

The two approaches, i.e., the one adopted in section 6.2 and the one based on inverse
transformations are equivalent as evident from the subsequent discussion. Starting from
equation (6.9), and using the transformation kernel presented in chapter 5 for Ti nn and
the Van Driest (Van Driest, 1951) kernel for Tout , we get

dū+ = f −1
3 f −1

2 f −1
1 dŪ+

i nn + f −1
1 dŪ+

w ake , (6.10)

where the factors f1, f2, and f3 are given by

f1 =
√

ρ̄

ρw
, f2 =

(
1− y

δ∗v

dδ∗v
d y

)
, f3 =

(
1+κy∗D(y∗, Mτ)

1+κY +D(Y +,0)

)
, (6.11)

and the damping function, D(y∗, Mτ), is as per equation (6.4). Here, Y denotes the wall-
normal coordinate for the incompressible flow. In equation (6.10), dŪ+

i nn is modeled using
the Johnson-King eddy viscosity model as dY +/[1+κY +D(Y +,0)], which after integration,
recovers the incompressible law of the wall, and dŪ+

w ake = (Π/κ)sin(πY /∆)πd(Y /∆) is
the derivative of the Coles’ wake function, where ∆ denotes δ99 of an incompressible
flow. Inserting the expressions for dŪ+

i nn , dŪ+
w ake in equation (6.10), we get

dū+ = f −1
3 f −1

2 f −1
1

dY +

1+κY +D(Y +,0)
+ f −1

1
Π

κ
π sin

(
π

Y

∆

)
d

(
Y

∆

)
. (6.12)
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Similar to the use of distinct velocity transformations in the inner and outer layers,
it is essential to employ separate coordinate transformations for these regions as
well. In the inner layer, the transformation Y + = y∗, as discussed in chapter 5, is
appropriate, whereas in the outer layer we use Y /∆= y/δ. Now, using the inner- and
outer-layer coordinate transformations, and using d y∗/d y = f2/δ∗v , uτ = u∗

τ f1, we get the
dimensional form of the mean-velocity gradient as in equation (6.3).

Before proceeding, we note that applying the inverse-transformation-based approach
with the transformations of Volpiani et al. (2020b) and Griffin et al. (2021) requires a
minor modification, so as to ensure that the logarithmic profile extending to the outer
layer is consistent with Van Driest’s scaling (as outlined in section 6.2). For these
transformations, we modify equation (6.9) as follows:

Y + ≤ 50 : dū+ =T −1
i nndŪ+

i nn +T −1
vd dŪ+

w ake ,

Y + > 50 : dū+ =T −1
vd dŪ+

i nn +T −1
vd dŪ+

w ake ,
(6.13)

where Ti nn and Tvd denote the inner-layer and Van Driest transformation kernels,
respectively, and Y + is the transformed coordinate. The value of 50 is taken arbitrarily as
a start of the logarithmic region.

Figure 6.4 compares c f from the proposed approach with that from the modular
approach of Kumar and Larsson (2022), both with different inner-layer transformations.
Additionally, the figure includes results obtained with the method of Huang et al. (1993)
using the VD transformation, and the widely recognized Van Driest II skin-friction
formula (Van Driest, 1956b; Hopkins and Inouye, 1971). Figure 6.4 also shows the
root-mean-square error, determined as

RMS =
√

1

N

∑
ε2

c f
, (6.14)

where N is the total number of DNS cases considered.
The Van Driest II formula and the method of Huang et al. have similar RMS

errors of about 6%1, which is not surprising as both of them are built on Van Driest’s
mixing-length arguments. The errors are systematically positive for a majority of the
cases, and increase with higher Mach number and stronger wall cooling. The source
of this error mainly resides in the inaccuracy of the VD velocity transformation in
the near-wall region for diabatic flows. To eliminate this shortcoming, Kumar and
Larsson (2022) developed a modular methodology, which is quite accurate when the
transformation of Volpiani et al. (2020b) is used, but is less accurate if other velocity
transformations are implemented. This inaccuracy is because the outer-layer velocity
profile is also inverse transformed according to the inner-layer transformation. In the
current approach, the velocity profile is instead inverse transformed using two distinct
transformations, which take into account the different scaling properties of the inner and
outer layers, thus reducing the RMS error with respect to Kumar and Larsson’s modular
method for all the transformations tested herein. The error using the proposed approach
with the semi-local (or TL) transformation is positive for all the cases, attributed to the
log-law shift inherent in that transformation. This shift was effectively removed in our
transformation (chapter 5), thereby yielding an RMS error of 2.66%, which is the lowest
among all approaches.

1Huang et al.’s method with the more accurate temperature velocity relation in Zhang et al. (2014) leads
to an RMS error of 12%, suggesting error cancellation while using the less accurate Walz’s relation.
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Figure 6.3: Predicted velocity (top) and temperature (bottom) profiles (solid grey lines) compared to DNS
(solid colored lines) for the following cases reported in table 2.3: (left to right) M∞ = 13.64, Tw /Tr = 0.18
(Zhang et al., 2018); M∞ = 4, Tw /Tr = 1 (Bernardini and Pirozzoli, 2011); M∞ = 7.87, Tw /Tr = 0.48
(A. Ceci, private communication); M∞ = 5.84, Tw /Tr = 0.25 (Ceci et al., 2022); M∞ = 5.86, Tw /Tr = 0.76
(Cogo et al., 2022). The line colors match the color of the symbols for the respective authors reported in
table 2.3. For clarity, the velocity and temperature profiles for different cases are shifted by one decade
along the abscissa. The colored vertical lines on the abscissa signify y+ = 100 for each case, with their
colors matching the corresponding cases. (Insets): Percent error in skin-friction (top) and heat-transfer
(bottom) predictions for 26 compressible turbulent boundary layers listed in table 2.3 (Zhang et al., 2018;
Bernardini and Pirozzoli, 2011; Huang et al., 2022; Cogo et al., 2022; Ceci et al., 2022, A. Ceci, private
communication), as well as for two additional cases from Huang et al. (2022) that are not reported in
table 2.3 due to unavailability of data files. The error is computed as εc f = (c f − cDN S

f )/cDN S
f ×100 and

likewise for εch . Symbols are as in table 2.3. The filled symbols correspond to the cases whose velocity
and temperature profiles are plotted.
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Figure 6.4: Error in skin-friction prediction using the proposed approach compared to different
state-of-the-art approaches. The letters on the X-axis denote the velocity transformation used for that
approach. HLPP, GFM, VIPL, TL, and VD stand for the transformations proposed in chapter 5, Griffin
et al. (2021), Volpiani et al. (2020b), Trettel and Larsson (2016), and Van Driest (1951), respectively. The
numbers are RMS values computed as outlined in the text. Symbols are as in table 2.3. The shaded
region shows an error bar of +/-5%. Note that inputs for all the methods are based on properties in the
free-stream instead of at the edge of the boundary layer.

6.4. SUMMARY
We have derived an expression for the mean-velocity gradient in high-speed boundary
layers (equation 6.6) that uses distinct mean velocity scalings in the inner (chapter 5)
and outer (Van Driest) layers, thus covering the entire boundary layer. The Coles’
wake parameter in this expression is determined using an adjusted Cebeci and Smith
relation (equation 6.5), with Reθ found to be the most suitable parameter to characterize
low-Reynolds-number effects on Π. This method allows remarkably accurate predictions
of the mean velocity and temperature profiles, leading to estimates of the friction
and heat-transfer coefficients which are within +/−4% and +/−8% of the DNS data,
respectively. When compared with other skin-friction prediction methods in the
literature, our approach yields the lowest RMS error of 2.66%.

The methodology presented here promises straightforward application to other
classes of wall-bounded flows like channels and pipes, upon change of the temperature-
velocity relation (e.g. Song et al., 2022), and using different values of the wake parameter
Π (Nagib and Chauhan, 2008). Also, the method is modular in the sense that it can be
used with other temperature models and equations of state.





7
COMPRESSIBILITY CORRECTIONS FOR

TURBULENCE MODELS

In this chapter, we introduce a novel approach to derive compressibility corrections
for Reynolds-averaged Navier-Stokes (RANS) models. Using this approach, we derive
variable-property corrections for wall-bounded flows that take into account the distinct
scaling characteristics of the inner and outer layers, extending the earlier work of
Otero Rodriguez et al. (2018). We also propose modifying the eddy viscosity to account
for changes in the near-wall damping of turbulence due to intrinsic compressibility
effects. The resulting corrections are consistent with our velocity transformation
(chapter 5) in the inner layer and the Van Driest velocity transformation in the outer
layer. Furthermore, we address some important aspects related to the modeling of
the energy equation, primarily focusing on the turbulent Prandtl number and the
modeling of the source terms. Compared to the existing state-of-the-art compressibility
corrections, the present corrections, combined with accurate modeling of the energy
equation, lead to a significant improvement in the results for a wide range of turbulent
boundary layers and channel flows.

The contents of this chapter have been published as:
Hasan, A. M., Elias, A. J., Menter, F., and Pecnik, R. (2025). Variable-property and intrinsic compressibility
corrections for turbulence models using near-wall scaling theories. Journal of Fluid Mechanics, 1019:A8.
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7.1. INTRODUCTION
Accurate modeling of turbulent compressible flows is crucial for a wide range of
engineering applications. In particular, turbulence determines skin friction and heat
transfer, and consequently the performance and efficiency of heat exchangers, aerospace
vehicles, gas turbines, combustion processes, and high-speed propulsion systems. In
order to capture the complex turbulence phenomena associated with these flows,
standard turbulence models (developed for incompressible flows) must be modified.
Such modifications are termed as ‘compressibility corrections’ in the literature.

The earliest compressibility corrections for compressible boundary layers were
inspired from the turbulence modeling of shear layers. These corrections focus on
incorporating direct intrinsic compressibility terms, such as pressure dilatation and
dilatational dissipation, into the turbulent kinetic energy equation. For instance, Zeman
(1990) proposed a dilatational dissipation model for high-speed free shear flows, which
was later extended to wall-bounded flows by Zeman (1993). Although dilatational
dissipation is typically negligible for wall-bounded flows (Huang et al., 1995; Zhang
et al., 2018; Sciacovelli et al., 2024), applying Zeman’s model still improves the results,
as it adds just the right amount of extra dissipation to reduce the eddy viscosity,
especially important in cooled-wall boundary layers (Rumsey, 2010). In other words, the
improvement occurs for the wrong reasons and the model does not capture the correct
physical mechanisms. This motivates the need for more physics-based compressibility
corrections. To achieve this, it is important to first understand and characterize the
underlying physics.

As outlined in chapter 1, compressibility effects in wall-bounded turbulent flows
can be classified into two main branches. The first involves effects related to heat
transfer, often referred to as variable-property effects. The second branch is associated
with changes in fluid volume in response to changes in pressure, also termed intrinsic
compressibility effects. While variable-property effects can be significant at any, or
even at zero, Mach numbers, intrinsic compressibility effects become important only
at high Mach numbers. Therefore, it is crucial that compressibility corrections are
developed with a clear distinction of these mechanisms and that they remain consistent
with the relevant physics—whether concerning heat transfer (variable-property effects)
or intrinsic compressibility. This can be ensured by deriving separate compressibility
corrections from scaling theories associated with these effects.

For flows at non-hypersonic Mach numbers, Morkovin’s hypothesis suggests that
intrinsic compressibility effects are small, and only mean property (density and viscosity)
variations are important to describe the turbulence dynamics (Smits and Dussauge, 2006).
Because of these variations in mean properties, the classical scaling framework—which
advocates using conventional definitions of friction velocity and viscous length scales,
with density and viscosity taken at the wall (see equation 1.6)—becomes inaccurate for
developing scaling laws. This led to the development of the semi-local scaling framework
(Van Driest, 1951; Morkovin, 1962; Huang et al., 1995; Coleman et al., 1995; Patel et al.,
2015; Trettel and Larsson, 2016; Patel et al., 2016a), where the friction velocity and
viscous length scales are defined using local density and viscosity, as

u∗
τ =

√
τw

ρ̄
, δ∗v = µ̄

ρ̄u∗
τ

, (7.1)
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with τw the wall shear stress, and ρ̄ and µ̄ the mean local density and viscosity that vary
in the wall-normal direction; see also chapter 1.

Several compressible scaling laws in literature are based on these modified scales.
For instance, the popular Van Driest velocity transformation accounts for changes in the
friction velocity scale as

Ū+
V D =

∫ ū+

0

√
ρ̄

ρw
dū+ =

∫ ū+

0

uτ
u∗
τ

dū+, (7.2)

where ū+ = ū/uτ represents the classically scaled mean velocity, with uτ =
√
τw /ρw the

wall-based friction velocity scale. This transformation, when plotted as a function of
y+ = y/δv (where δv = µw /(ρw uτ) represents the classical viscous length scale), leads
to a collapse on to the incompressible law of the wall for adiabatic flows, however, its
accuracy deteriorates for diabatic flows (figure 1.5a; see also Bradshaw, 1977; Huang and
Coleman, 1994; Trettel and Larsson, 2016; Patel et al., 2016a; Griffin et al., 2021). This
is because the Van Driest transformation does not account for changes in the viscous
length scale, which can vary significantly in diabatic flows but remains nearly constant
in adiabatic flows close to the wall.

Subsequently, Trettel and Larsson (2016) and Patel et al. (2016a) independently
derived the semi-local velocity transformation, which is an extension to the Van Driest
velocity transformation accounting for variations in the semi-local viscous length scale.
This transformation (also known as the TL transformation) can be written as

ū∗ = Ū+
T L =

∫ ū+

0

(
1− y

δ∗v

dδ∗v
d y

)
uτ
u∗
τ

dū+. (7.3)

When plotted as a function of the semi-locally scaled wall-normal coordinate y∗ = y/δ∗v ,
ū∗ collapses on to the incompressible law of the wall for low-Mach number (Patel
et al., 2016a) and moderate-Mach number (Trettel and Larsson, 2016) channel flows.
However, this transformation loses accuracy for high-Mach number boundary layers
(figure 1.5b; see also Patel et al., 2016a; Trettel and Larsson, 2016; Griffin et al., 2021),
where Morkovin’s hypothesis fails and intrinsic compressibility effects can no longer be
neglected.

At high Mach numbers, intrinsic compressibility effects modify the near-wall damping
of turbulent shear stress, leading to an upward shift in the semi-locally transformed mean
velocity profile (chapters 3 and 5). By adjusting the damping function of a mixing-length
turbulence model, in chapter 5, we proposed an extension to the semi-local velocity
transformation, given as

Ū+
HLPP =

∫ ū+

0

(
1+κy∗D(y∗, Mτ)

1+κy∗D(y∗,0)

)(
1− y

δ∗v

dδ∗v
d y

)
uτ
u∗
τ

dū+. (7.4)

Here, the damping function is given as

D(y∗, Mτ) =
[

1−exp

( −y∗

A++ f (Mτ)

)]2

, (7.5)

with f (Mτ) = 19.3Mτ, where Mτ = uτ/cw is the friction Mach number and cw is the speed
of sound based on wall properties. This transformation, when plotted as a function of
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y∗, collapses on to the incompressible law of the wall for a wide variety of high- and
low-speed turbulent flows including (but not limited to) adiabatic and cooled boundary
layers, adiabatic and cooled channels, supercritical flows, and flows with non-air-like
viscosity laws (figure 5.2).

These compressible scaling laws can provide guidelines for developing compressibility
corrections for turbulence models. For instance, Huang et al. (1994) demonstrated that to
achieve the correct slope of the Van Driest scaled mean velocity profile in the logarithmic
layer, the model constants must be functions of the mean density gradients. Later, Catris
and Aupoix (2000) argued that the density dependence of the model constants can be
eliminated by modifying the turbulent diffusion term in the turbulence model equations.
Consequently, they modified the diffusion terms of several turbulence models, and found
that the correct slope of 1/κ in the Van Driest transformed mean velocity profile was
obtained.

A formal approach to deriving compressibility corrections from scaling laws was
provided by Pecnik and Patel (2017). They first scaled the mean momentum and
continuity equations using u∗

τ as the velocity scale and channel half-height h as the length
scale. From these, they derived a semi-locally scaled turbulence kinetic energy (TKE)
equation and, by analogy, formulated a corresponding semi-locally scaled dissipation
equation. By rewriting these equations in the dimensional form, Otero Rodriguez et al.
(2018) analytically derived variable-property corrections for several turbulence models
and noted that these corrections only modify the diffusion terms. Interestingly, this
modification closely resembles the compressibility corrections proposed by Catris and
Aupoix (2000). The key difference is that in Otero Rodriguez et al. (2018), the correction
applies to the entire diffusion term (both molecular and turbulent), whereas in Catris
and Aupoix (2000), only the turbulent diffusion is corrected. Additionally, the derivation
in Otero Rodriguez et al. (2018) results in a slightly different form for the diffusion of
turbulent kinetic energy. Despite these differences, both approaches yield very similar
results.

The compressibility corrections of Catris and Aupoix (2000) and Otero Rodriguez
et al. (2018) (hereafter abbreviated as ‘CA/OPDP’ based on the last names of the authors)
both give results consistent with the Van Driest transformation, since they are essentially
based on u∗

τ and h as the relevant velocity and length scales. However, this makes
the CA/OPDP corrections valid only in the outer layer, as they do not account for
variations in the viscous length scale δ∗v in the inner layer. Despite this limitation, the
results obtained with the CA/OPDP corrections are still accurate, even for diabatic flows,
where the viscous length scales can vary significantly. This is because the variations
in the viscous length scale are taken into account differently. Specifically: in the k-ε
model by using y∗ instead of y+ in the damping functions; in the Spalart-Allmaras
model through the damping function fv1 that uses a semi-locally consistent parameter
χ= ν̌/ν̄= ν̌/(u∗

τδ
∗
v ); in the v2− f model with the length scale Lt that switches from k1.5/ε

(where k is the TKE and ε is its dissipation rate) to the Kolmogorov length scale η in the
vicinity of the wall which is proportional to δ∗v (Patel et al., 2016a). However, this indirect
accounting of the variations in the viscous length scale is not robust, and would fail for
turbulence models without damping functions, for instance, the k-ω SST model (Menter,
1993), as observed in Catris and Aupoix (2000) and Otero Rodriguez et al. (2018). Thus,
compressibility corrections that account for viscous length scale variations directly in the
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model equations are needed.

At high Mach numbers, corrections based solely on mean property variations are
insufficient, as intrinsic compressibility effects also play an important role. These effects
modify the near-wall damping of turbulent shear stress, causing it to shift outwards with
increasing Mach number (see chapters 3 and 5). From a turbulence modeling standpoint,
this implies that the eddy viscosity formulation needs to be augmented with a damping
function which accounts for this outward shift in the turbulent shear stress as a function
of Mach number. In fact, the velocity transformation derived in chapter 5 is based on
such a modification of the damping function for a mixing-length model (equations 5.13
and 7.5). Similar modifications are also needed for other turbulence models.

In addition to the compressibility corrections discussed earlier, accurate modeling of
the energy equation is essential for estimating thermophysical properties, such as density
and viscosity, which are critical for solving the turbulence model equations accurately.
There are two key aspects of the energy equation modeling: (1) accurate estimation of the
eddy-conductivity (analogue of eddy viscosity) and (2) accurate modeling of the source
terms. For high-speed flows, the eddy-conductivity is often estimated using a constant
turbulent Prandtl number (Prt ) of 0.9 (Wilcox et al., 2006). However, this constant-Prt

assumption has been questioned in various recent papers, especially close to the wall
(Huang et al., 2022; Griffin et al., 2023; Chen et al., 2024). The source terms, on the other
hand, require modeling of the viscous and turbulent diffusion of the mean and turbulent
kinetic energy. Using the direct numerical simulation (DNS) data of turbulent channel
flows, Huang et al. (2023) argued that the viscous and turbulent diffusion of the TKE is
negligible. On the contrary, using the DNS data of turbulent boundary layers, Cheng
and Fu (2024) showed that only the third-order correlation (turbulent diffusion of TKE)
is negligible, while the viscous diffusion term remains important.

In light of these points, the aim of this chapter is threefold: (1) to properly account
for changes in the viscous length scale in the inner layer directly within the turbulence
model equations, thereby enabling more accurate predictions in flows with heat transfer
at low as well as high Mach numbers; (2) to further enhance the model by incorporating
intrinsic compressibility effects, allowing for improved predictions for high Mach number
flows; and (3) to correctly model the energy equation by including the viscous and
turbulent diffusion of TKE, leading to better predictions of the temperature profile for
high-speed turbulent boundary layers and channel flows. This chapter is written with
a particular emphasis on the k-ω SST model (Menter, 1993). However, the proposed
approach can be extended to other models such as the Spalart and Allmaras (1992)
model (see section 7.9), k-ε models, and the v2 − f model (Durbin, 1991).

7.2. VARIABLE-PROPERTY CORRECTIONS

7.2.1. INNER LAYER

From several studies in the past decades (Morkovin, 1962; Coleman et al., 1995; Huang
et al., 1995; Patel et al., 2015; Trettel and Larsson, 2016; Modesti and Pirozzoli, 2016;
Patel et al., 2017; Zhang et al., 2018), it has been shown that turbulence quantities,
when semi-locally scaled (i.e. using u∗

τ and δ∗v as the relevant velocity and length
scales, respectively), collapse well onto their respective incompressible counterparts
when plotted as a function of the semi-local coordinate y∗. Some of these quantities, in
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their classically and semi-locally scaled form are listed in table 7.1 (‘Inner layer’).
Similarly, we argue that if the individual variables collapse when semi-locally scaled,

then their model equations written in the semi-locally scaled form must be analogous to
those written in the classically scaled form for incompressible flows. Here, we enforce
a strict analogy by replacing the individual variables in a classically scaled equation by
their semi-locally scaled counterparts.

Let us start by writing the modelled turbulent kinetic energy equation in the inner
layer of a canonical incompressible constant-property flow. Neglecting advection terms,
the equation reduces to a simple balance between production, dissipation and diffusion
of turbulent kinetic energy as

µt

(
dū

d y

)2

−β?ρw kω+ d

d y

[(
µw +σkµt

) dk

d y

]
= 0, (7.6)

where µt is the eddy viscosity, ū the mean velocity, k the turbulent kinetic energy, ω the
specific dissipation rate, ρw , µw the density and viscosity at the wall, and β?, σk the SST
model constants.

Rewriting this equation using the non-dimensional form of the variables, as given in
table 7.1 (‘Inner layer’), leads to

µ+
t

(
dū+

d y+

)2

−β?k+ω++ d

d y+

[(
1+σkµ

+
t

) dk+

d y+

]
= 0, (7.7)

where the superscript ‘+’ denotes the classical wall-based scaling. Now we replace all
classically scaled variables with their semi-locally scaled counterparts (refer table 7.1),
which gives

µ∗
t

(
dū∗

d y∗

)2

−β?k∗ω∗+ d

d y∗

[(
1+σkµ

∗
t

) dk∗

d y∗

]
= 0, (7.8)

where the superscript ‘∗’ denotes semi-local scaling. Rewriting equation (7.8) using the
dimensional form of the variables (see table 7.1), we get

µt

µ̄

(
δ∗v
u∗
τ

)2 (
dū

d y

)2

−β? k

u∗
τ

2

ω

u∗
τ/δ∗v

+ d

d(y/δ∗v )

[(
1+σk

µt

µ̄

)
d(k/u∗

τ
2)

d(y/δ∗v )

]
= 0. (7.9)

Using the definitions of u∗
τ and δ∗v from equation (1.12), we get

µt

µ̄

µ̄2

τ2
w

(
dū

d y

)2

−β? ρ̄

τw
k
µ̄

τw
ω+ d

d(y
√
τw ρ̄/µ̄)

[(
1+σk

µt

µ̄

)
d(ρ̄k/τw )

d(y
√
τw ρ̄/µ̄)

]
= 0. (7.10)

Dividing the equation by µ̄/τ2
w gives

µt

(
dū

d y

)2

−β?ρ̄kω+ 1

µ̄

d

d(y
√
ρ̄/µ̄)

[(
µ̄+σkµt

) 1

µ̄

d(ρ̄k)

d(y
√
ρ̄/µ̄)

]
= 0. (7.11)

Applying the chain rule to the diffusion term, we get

µt

(
dū

d y

)2

−β?ρ̄kω+ 1

µ̄

d y

d(y
√
ρ̄/µ̄)

d

d y

[(
µ̄+σkµt

) 1

µ̄

d y

d(y
√
ρ̄/µ̄)

d(ρ̄k)

d y

]
= 0, (7.12)
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Quantity Incompressible (classical) Compressible (semi-local)

Inner layer

Wall distance y+ = y/δv y∗ = y/δ∗v
Mean shear dū+/d y+ = (δv /uτ)dū/d y dū∗/d y∗ = (δ∗v /u∗

τ )dū/d y

TKE k+ = k/u2
τ k∗ = k/u∗

τ
2

Turb. diss. ε+ = ε/(uτ3/δv ) ε∗ = ε/(u∗
τ

3/δ∗v )

Spec. turb. diss. ω+ =ω/(uτ/δv ) ω∗ =ω/(u∗
τ/δ∗v )

Eddy visc. µ+
t =µt /(ρw uτδv ) =µt /µw µ∗

t =µt /(ρ̄u∗
τδ

∗
v ) =µt /µ̄

Dyn. visc. µ+ =µw /(ρw uτδv ) =µw /µw= 1 µ̄∗ = µ̄/(ρ̄u∗
τδ

∗
v ) = µ̄/µ̄= 1

Outer layer

Wall distance y⊕ = y/δ y~ = y/δ

Mean shear dū⊕/d y⊕ = (δ/uτ)dū/d y dū~/d y~ = (δ/u∗
τ )dū/d y

TKE k⊕ = k/u2
τ k~ = k/u∗

τ
2

Turb. diss. ε⊕ = ε/(uτ3/δ) ε~ = ε/(u∗
τ

3/δ)

Spec. turb. diss. ω⊕ =ω/(uτ/δ) ω~ =ω/(u∗
τ/δ)

Eddy visc. µ⊕
t =µt /(ρw uτδ) = (µt /µw )/Reτ

µ~t = µt /(ρ̄u∗
τδ) =

(µt /µ̄)/Re∗
τ

Dyn. visc. µ⊕ =µw /(ρw uτδ) = 1/Reτ µ̄~ = µ̄/(ρ̄u∗
τδ) = 1/Re∗

τ

Table 7.1: An example of quantities that are classically (superscripts ‘+’ and ‘⊕’ for the inner and outer
layers, respectively) and semi-locally scaled (superscripts ‘∗’ and ‘~’ for the inner and outer layers,
respectively). As indicated in chapter 1, classical scaling uses the length scale δv in the inner layer, and δ

in the outer layer, with the velocity scale uτ in the entire boundary layer. Analogously, semi-local scaling
uses δ∗v in the inner layer, and δ in the outer layer, with u∗

τ in the entire boundary layer; see chapter 6.
Reτ = ρw uτδ/µw is the friction Reynolds number, and Re∗τ = ρ̄u∗

τδ/µ̄ is its semi-local counterpart (Foysi
et al., 2004; Patel et al., 2015). k indicates the turbulent kinetic energy (TKE), ε the TKE dissipation
rate (per unit mass), and ω the specific turbulent dissipation rate, defined as ε/k. Note that ū∗ in
dū∗/d y∗ represents the semi-locally transformed mean velocity, as defined in (7.3). Also note that ū~

in dū~/d y~ represents the Van Driest transformed mean velocity, as defined in (7.2).

where d(y
√
ρ̄/µ̄)/d y represents the stretching of the wall-normal coordinate due to

variable density and viscosity. Note that y in y
√
ρ̄/µ̄ corresponds to the distance from

the closest wall. However, y represents this distance only when the origin of the y-axis is
located on the wall. To make the equations invariant to the choice of the origin of y-axis,
i.e., to ensure Galilean invariance, we propose to replace y with `, where ` represents
the distance from the closest wall.

Finally, introducing a stretching variable Sy , defined as

Sy =
(

d
(
`
√
ρ̄/µ̄

)
d y

)−1

=
(√

ρ̄

µ̄
+` d

(√
ρ̄/µ̄

)
d y

)−1

, (7.13)

we get

µt

(
dū

d y

)2

−β?ρ̄kω+ Sy

µ̄

d

d y

[(
µ̄+σkµt

) Sy

µ̄

d(ρ̄k)

d y

]
= 0. (7.14)



7

96 7. COMPRESSIBILITY CORRECTIONS FOR TURBULENCE MODELS

0 10 20 30
y∗

0

2

4

6

8

µ
t/
µ̄

(a) Baseline

0 10 20 30
y∗

(b) CA/OPDP

0 10 20 30
y∗

(c) Present

Figure 7.1: Wall-normal distributions of µt /µ̄ computed using the k-ω SST model with (a) no corrections,
(b) CA/OPDP corrections, and (c) present corrections for the zero-pressure-gradient turbulent boundary
layers listed in table 2.3. The black lines represent the constant-property case of Sillero et al. (2013) at
Reτ = 1437. For details about the implementation, refer section 7.6.

Comparing equation (7.14) with a standard TKE equation for compressible flows, one
can note that the present compressibility corrections only modify the modeling of the
diffusion term, just as in the CA/OPDP corrections. It is important to note that since
we enforce a strict analogy, these corrections modify the modeling of the total diffusion
term, not just the turbulent diffusion term.

For the ease of implementation in existing computational fluid dynamic solvers,
these compressibility modifications can be reformulated in the form of a source term
(Φin

k ; where the superscript ‘in’ represents inner layer) as follows:

µt

(
dū

d y

)2

−β?ρ̄kω+ d

d y

[(
µ̄+σkµt

) dk

d y

]
+Φin

k = 0, (7.15)

where the other terms except Φin
k represent the standard TKE equation in the inner layer.

Φin
k can then be written as

Φin
k = Sy

µ̄

d

d y

[(
µ̄+σkµt

) Sy

µ̄

d(ρ̄k)

d y

]
− d

d y

[(
µ̄+σkµt

) dk

d y

]
. (7.16)

Φin
k = 0 for cases with constant mean properties, while Φin

k is consistent with the
CA/OPDP corrections for cases where δ∗v remains uniform in the inner layer.

Repeating the same procedure for the ω model equation, we obtain

Φin
ω = ρ̄Sy

µ̄2

d

d y

[(
µ̄+σωµt

) Sy

µ̄

d(µ̄ω)

d y

]
− d

d y

[(
µ̄+σωµt

) dω

d y

]
. (7.17)

The standard k-ω SST model equations along with the source terms defined in
equations (7.16) and (7.17) represent the proposed compressibility corrections in the
inner layer.

Figure 7.1 shows µt /µ̄ obtained with the k-ω SST model with (a) no corrections,
with (b) CA/OPDP corrections, and with (c) the present corrections for numerous
compressible turbulent boundary layers (represented by gray lines) from the literature
(see section 7.6 for details on the implementation and table 2.3 for details on the cases).
The black lines in the figure show an incompressible case of Sillero et al. (2013) at
Reτ = 1437. The collapse on to a single curve in figure 7.1(c) clearly shows that the
present corrections are consistent with the semi-local scaling framework.
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7.2.2. OUTER LAYER
In the outer layer, the appropriate length scale is δ (boundary layer thickness; equivalent
to h for channels) instead of δ∗v . Thus, the corrections discussed so far, which are based
on δ∗v , are not valid there. To obtain valid compressibility corrections in the outer layer,
one may follow the same approach as in the previous section, but using u∗

τ and δ as the
relevant scales.

In the following, we derive the outer-layer corrections based on the logarithmic
region. These corrections are then extended to the defect layer under the assumption
that the advection terms remain unaffected by variable-property corrections. This
approach was also employed in Catris and Aupoix (2000).

We start by writing the the modeled turbulent kinetic energy equation in the
logarithmic region of a canonical incompressible constant-property flow as

µt

(
dū

d y

)2

−β?ρw kω+ d

d y

[(
µw +σkµt

) dk

d y

]
= 0. (7.18)

(Note that we do not drop the diffusion term in the log region, since it may become
relevant in the defect layer where the derived corrections will be extended. Also, the
viscous diffusion term, despite being irrelevant in the outer layer is retained for the sake
of completeness).

Rewriting this equation using the non-dimensional form of the variables, as given in
table 7.1 (‘Outer layer’), leads to

µ⊕
t

(
dū⊕

d y⊕

)2

−β?k⊕ω⊕+ d

d y⊕

[(
1+σkµ

⊕
t

) dk⊕

d y⊕

]
= 0, (7.19)

where the superscript ‘⊕’ denotes the classical scaling in the outer layer. Now, following
section 7.2.1, we replace all classically scaled variables with their semi-locally scaled
counterparts (refer table 7.1), which gives

µ~t

(
dū~

d y~

)2

−β?k~ω~+ d

d y~

[(
1+σkµ

~
t

) dk~

d y~

]
= 0, (7.20)

where the superscript ‘~’ denotes semi-local scaling in the outer layer. Rewriting
equation (7.20) using the dimensional form of the variables (see table 7.1), we get

µt

ρ̄u∗
τδ

(
δ

u∗
τ

)2 (
dū

d y

)2

−β? k

u∗
τ

2

ω

u∗
τ/δ

+ d

d(y/δ)

[(
µ̄

ρ̄u∗
τδ

+σk
µt

ρ̄u∗
τδ

)
d(k/u∗

τ
2)

d(y/δ)

]
= 0. (7.21)

Now, using the definition of u∗
τ from equation (1.12), we get

µt√
τw ρ̄

δ

τw /ρ̄

(
dū

d y

)2

−β? ρ̄

τw
k

δ√
τw /ρ̄

ω+ d

d(y/δ)

[(
µ̄√
τw ρ̄δ

+σk
µt√
τw ρ̄δ

)
d(ρ̄k/τw )

d(y/δ)

]
= 0,

(7.22)
which when divided by

√
ρ̄δ/τ1.5

w gives

µt

(
dū

d y

)2

−β?ρ̄kω+ 1√
ρ̄

d

d y

[(
µ̄+σkµt

) 1√
ρ̄

d(ρ̄k)

d y

]
= 0. (7.23)



7

98 7. COMPRESSIBILITY CORRECTIONS FOR TURBULENCE MODELS

Note that these corrections are identical to the ones proposed by Otero Rodriguez et al.
(2018) for the entire boundary layer.

Now, as done in section 7.2.1, we express these corrections in the form of a source
term as

Φout
k = 1√

ρ̄

∂

∂y

[(
µ̄+σkµt

) 1√
ρ̄

∂(ρ̄k)

∂y

]
− ∂

∂y

[(
µ̄+σkµt

) ∂k

∂y

]
. (7.24)

Note that partial derivatives are used because derivatives in the wall-parallel directions
are non-zero in the outer layer.

Repeating the same procedure for the ω equation, we get

Φout
ω = ∂

∂y

[(
µ̄+σωµt

) 1√
ρ̄

∂(
√
ρ̄ω)

∂y

]
− ∂

∂y

[(
µ̄+σωµt

) ∂ω
∂y

]
. (7.25)

These source terms are blended with their inner-layer counterparts and then used in the
full k and ω transport equations as discussed in section 7.3.

Note that in the SST model, the transport equation for ω includes a cross-diffusion
term, given by

C Dkω = 2(1−F1)
ρ̄σω2

ω

∂k

∂y

∂ω

∂y
, (7.26)

where F1 is a blending function introduced by Menter (1993) to smoothly transition
between the k-ω and k-ε models. This term is primarily active in the outer region of a
boundary layer, where F1 → 0.

Previous studies (Catris and Aupoix, 2000; Otero Rodriguez et al., 2018) have employed
the conventional form of this term (7.26) in their computations. However, we argue that
because the cross-diffusion term originates from the diffusion term—and given that our
proposed corrections target the diffusion term—it is necessary to modify this term for
consistency.

Following the same approach as described earlier, the variable-property-corrected
cross-diffusion term is given by

C Dkω = 2(1−F1)
σω2√
ρ̄ω

∂ρ̄k

∂y

∂
√
ρ̄ω

∂y
. (7.27)

Finally, as previously done, we express the corrections on the C D term in the form of a
source term as

ΦC D = 2(1−F1)
σω2√
ρ̄ω

∂ρ̄k

∂y

∂
√
ρ̄ω

∂y︸ ︷︷ ︸
variable-property-corrected

−2(1−F1)
ρ̄σω2

ω

∂k

∂y

∂ω

∂y︸ ︷︷ ︸
conventional

. (7.28)

7.3. PROPOSED VARIABLE-PROPERTY CORRECTIONS FOR THE EN-
TIRE BOUNDARY LAYER

Implementing different corrections for the inner and outer layers requires switching
between the two forms or blending them with suitable functions. This is essential to
preserve the distinct scaling characteristics of these two regions, as demonstrated in
chapter 6 using mixing-length models.
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To obtain corrections valid in the entire boundary layer, we propose to blend the
inner- (equations 7.16 & 7.17) and outer-layer (equations 7.24 & 7.25) forms using a
suitable damping function F as

Φk =FΦin
k + (1−F )Φout

k , (7.29)

Φω =FΦin
ω + (1−F )Φout

ω , (7.30)

where F transitions from unity in the viscous sublayer to zero in the outer layer. In
this chapter, we use SST model’s F1 as the appropriate blending function; however, other
options could be more suitable, whose discussion is deferred to a future study.

With these corrections, the k and ω transport equations in an SST model are modified
as:

ρ̄
Dk

Dt
= Conventional TKE terms+Φk , (7.31)

ρ̄
Dω

Dt
= Conventional ω terms+Φω+ΦC D . (7.32)

Lastly, three important points are worth noting. First, only the wall-normal
component of the diffusion term in equations (7.16), (7.17), (7.24) and (7.25) is modified;
the wall-parallel components remain unchanged. This is because semi-local scaling,
and thus the corrections derived from it, are concerned with variations only along the
wall-normal direction. However, applying these corrections also in the wall-parallel
directions should not influence the results, since mean property gradients along those
directions are comparatively negligible. The formulation of the corrections in cases
where the wall-normal direction does not align with the coordinate axis (for e.g. flow
over an inclined wall) is discussed in Appendix C. Second, as expected, the proposed
corrections vanish in the free-stream region, where the mean properties remain constant.
Third, in free-shear flows, these corrections—especially the outer-layer ones—would
have minimal impact, leading to little improvement over an uncorrected model (Aupoix,
2004). The inner-layer corrections are irrelevant in such flows due to negligible viscous
effects.

7.4. INTRINSIC COMPRESSIBILITY CORRECTIONS
The semi-local scaling approach presented in the previous section accounts for effects
associated with mean density and viscosity variations. However, at higher Mach
numbers, in addition to variable property effects, intrinsic compressibility effects also
play an important role. These compressibility effects modify the near-wall damping of
turbulence, particularly in the buffer layer, resulting in an outward shift in the eddy
viscosity profile, and an upward shift in the logarithmic portion of the semi-locally (or
TL) transformed mean velocity profile (refer chapters 5 and 3).

To account for this outward shift in the eddy viscosity, in chapter 5, we modified the
Van Driest damping function in a mixing length model (equations 5.13 and 7.5) as

µt = ρ̄u∗
τκyD(y∗,0)

D(y∗, Mτ)

D(y∗,0)︸ ︷︷ ︸
D i c

, (7.33)
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where ρ̄u∗
τκyD(y∗,0) is the semi-local eddy viscosity that accounts for mean property

variations alone, and D i c is the change in damping caused due to intrinsic compressibility
effects. Note that D i c is mainly active in the buffer layer and approaches unity in the
log-layer and beyond.

Similarly, we propose for the SST model, to multiply the eddy viscosity with a
damping function that captures the outward shift due to intrinsic compressibility effects
as

µt = a1ρ̄k

max(a1ω,F2Ω)︸ ︷︷ ︸
conventional µt

(D i c )sst, (7.34)

where the constant a1 = 0.31, and Ω= dū/d y for canonical flows (Menter, 1993). The
damping function in this equation is defined as

(D i c )sst = D(Rt , Mt )

D(Rt ,0)
, (7.35)

with

D(Rt , Mt ) =
[

1−exp

( −Rt

K + f (Mt )

)]2

, (7.36)

where Mt =
p

2k/c̄ (c̄ being the local speed of sound) is the turbulence Mach number,
and Rt = ρ̄k/(µ̄ω) is the turbulence Reynolds number. The constant K controls the
region in which the damping function (D i c )sst is active (analogous to A+ in equation 7.5).
To apply the modifications mainly in the buffer layer, we choose K = 3.5.

The function f (Mt ) controls how the eddy viscosity decreases (or shifts outward) with
increasing Mach number, analogous to the function f (Mτ) in equation (7.5). The first
step in obtaining the function f (Mt ) is to determine the value of K in equation (7.36).
We set K = 3.5 based on the value of Rt for the SST model at y∗ ≈ 17. The value y∗ = 17
corresponds to A+ in the mixing-length damping function, as described in equation (7.5).

Next, we treat f (Mt ) to be uniform in the domain (constant) and gradually increase
its value from 0 in the denominator of equation (7.36). Simultaneously, we solve the
inner-layer equations discussed in section 7.6.1, where the eddy viscosity formulation is
multiplied with the damping function given in equation (7.36). For these calculations,
we focus solely on the damping function and assume T̄ /Tw = 1 (no variable-property
effects), meaning we do not solve the energy equation. Additionally, we assume a specific
Reynolds number, Reτ = 750, and verify that the final form of f (Mt ) is not significantly
influenced by the choice of Reτ.

From the predicted velocity profiles, we compute the log-law intercept C and observe
how it changes with variations in f (Mt ). For the SST model, the log-law intercept C is
non-linearly related to f (Mt ) through the expression:

C −5.2 = 12 f (Mt )1.3. (7.37)

It is known from chapter 5 that C is a linear function of the friction Mach number
Mτ:

C −5.2 = 7.18Mτ. (7.38)

Combining equations (7.37) and (7.38), we obtain:

f (Mt )1.3 = 7.18

12
Mτ. (7.39)
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Using DNS data from over 30 cases in the literature, we note that there exists a linear
relationship between Mτ and the maximum value of Mt , given by M max

t ≈ 3.33Mτ (not
shown). Substituting this relationship into equation (7.39), we derive:

f (Mt )1.3 ≈ 7.18

12×3.33
M max

t ,

which simplifies to:
f (Mt ) ≈ 0.27

(
M max

t

)0.77 . (7.40)

The constant 0.27 in equation (7.40) is based on the DNS-derived relationship
between Mτ and M max

t . However, the k-ω SST model predicts values of k, and hence,
M max

t that differ from those obtained from DNS. Moreover, M max
t is a single value,

whereas we seek a relationship that depends on the local Mt , which varies throughout
the domain. To address these issues, we retain the functional form of equation (7.40) but
replace M max

t with the local Mt . We then adjust the constant 0.27 until the relationship
C −5.2 = 7.18Mτ is accurately reproduced by the SST model. This process yields:

f (Mt ) ≈ 0.39M 0.77
t . (7.41)

The same approach can be used to formulate and tune f (Mt ) for other turbulence
models.

7.5. MODELING THE ENERGY EQUATION
We now turn our attention to the accurate modeling of the energy equation, which
provides the density, viscosity, and other thermo-physical properties essential for solving
the turbulence model equations discussed in the previous sections.

The total energy equation in the inner layer of canonical wall-bounded flows can be
written as

d

d y

(
−q̄y − ρ̄�v ′′h′′

)
+ d

d y

(
ũτ̄x y − ũρ̄�u′′v ′′

)
+ d

d y

(
u′′

i τ
′
i j −

1

2
ρ̄ãv ′′u′′

i u′′
i

)
−d p̄

d x
ũ = 0, (7.42)

where qy is the molecular heat flux in the wall-normal direction, v the wall normal
velocity, h the enthalpy, and τi j the viscous shear stress. The first term on the left
hand side represents molecular and turbulent diffusion of enthalpy, the second term
represents molecular and turbulent diffusion of mean kinetic energy, and the third term
represents molecular and turbulent diffusion of turbulent kinetic energy. The last term
represents the work done by the mean pressure gradient in the streamwise direction. For
fully developed channel flows, d p̄/d x =−τw /h, and for zero-pressure-gradient boundary
layers, d p̄/d x = 0.

We can simplify the second term on the left hand side as

d

d y

(
ũτ̄x y − ũρ̄�u′′v ′′

)
= τtot

dũ

d y
+ ũ

dτtot

d y
, (7.43)

where τtot = τ̄x y − ρ̄�u′′v ′′. For fully developed channel flows, we can write dτtot /d y =
−τw /h = d p̄/d x, and for ZPG boundary layers dτtot /d y = 0 in the inner layer. Taking
these simplifications into account, we get

d

d y

(
−q̄y − ρ̄�v ′′h′′

)
+ (τ̄x y − ρ̄�u′′v ′′)

dũ

d y
+ d

d y

(
u′′

i τ
′
i j −

1

2
ρ̄ãv ′′u′′

i u′′
i

)
= 0. (7.44)
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The terms in equation (7.44) are modeled as follows (Wilcox et al., 2006):

− d q̄y

d y
= d

d y

(
µ̄cp

Pr

dT̄

d y

)
, −d ρ̄�v ′′h′′

d y
= d

d y

(
µt cp

Prt

dT̄

d y

)
, (7.45)

τx y
dũ

d y
= µ̄

(
dũ

d y

)2

, −ρ̄�u′′v ′′ dũ

d y
=µt

(
dũ

d y

)2

, (7.46)

where Prt is the turbulent Prandtl number. The last term on the left hand side
in equation (7.44) represents the total diffusion of TKE, which is modeled as (see
section 7.2.1, equation 7.14)

d

d y

(
u′′

i τ
′
i j −

1

2
ρ̄ãv ′′u′′

i u′′
i

)
= Sy

µ̄

d

d y

[(
µ̄+σkµt

) Sy

µ̄

d(ρ̄k)

d y

]
. (7.47)

With these modeled terms, equation (7.44) can be written as

d

d y

([
µ̄cp

Pr
+ µt cp

Prt

]
dT̄

d y

)
=−(

µ̄+µt
)(dũ

d y

)2

− Sy

µ̄

d

d y

[(
µ̄+σkµt

) Sy

µ̄

d(ρ̄k)

d y

]
. (7.48)

In the inner layer, the total diffusion of TKE (last term in equation 7.48) is balanced by
its production and dissipation (see equation 7.14), such that

Sy

µ̄

d

d y

[(
µ̄+σkµt

) Sy

µ̄

d(ρ̄k)

d y

]
=−µt

(
dū

d y

)2

+ ρ̄ε. (7.49)

Using this relation to substitute the total diffusion of TKE in (7.48), we get

d

d y

([
µ̄cp

Pr
+ µt cp

Prt

]
dT̄

d y

)
=−(

µ̄+µt
)(dũ

d y

)2

+µt

(
dũ

d y

)2

− ρ̄ε, (7.50)

which further simplifies to

d

d y

([
µ̄cp

Pr
+ µt cp

Prt

]
dT̄

d y

)
=− µ̄

(
dũ

d y

)2

− ρ̄ε︸ ︷︷ ︸
Φe

, (7.51)

where Φe represents the source term in this equation.
Commonly, the TKE dissipation term in (7.51) is assumed to be equal to

the production term in the entire domain, i.e., ρ̄ε ≈ µt (dū/d y)2, thereby implying
equilibrium (Larsson et al., 2016; Bose and Park, 2018; Huang et al., 2023). However, this
assumption breaks down near the wall and is responsible for inaccuracies in predicting
the temperature peak in high-speed, cooled-wall boundary layers (see section 7.7). This
implies that accurate modeling of ε is essential for accurate temperature predictions.

Another possible source of error in the energy equation (7.51) is the turbulent Prandtl
number, which is often assumed to be a constant and equal to 0.9 (Wilcox et al., 2006).
However, it is well-known that for cooled-wall boundary layers Prt is not a constant but
rather varies substantially in the near-wall region. Furthermore, at the location of the
temperature peak, Prt is undefined (Griffin et al., 2023; Chen et al., 2024). In section 7.7,
we will briefly analyse the sensitivity of our results with respect to different values of Prt .
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7.6. IMPLEMENTATION

The proposed corrections primarily differ from the CA/OPDP corrections within the
inner layer, while they remain identical in the outer layer. Consequently, for a meaningful
comparison between the two approaches, it suffices to focus on solving the inner layer.
This also allows us to gauge the effectiveness of the proposed inner-layer corrections
without any potential influence from the outer layer.

In this section, we present the implementation of the proposed corrections for simple
canonical flows that can be modeled as one-dimensional problems, such as the inner
layer of zero-pressure-gradient (ZPG) boundary layers and fully developed channel flows.
In these flows, mainly the effect of Φin

k , Φin
ω , and the damping function D i c

sst is tested.
Subsequently, in section 7.8, we test the full corrections, i.e., Φin

k and Φin
ω in the inner

layer, blended with Φout
k and Φout

ω in the outer layer (equations 7.29 and 7.30), together

with the damping function D i c
sst and the correction for the cross-diffusion term ΦC D .

7.6.1. ZERO-PRESSURE-GRADIENT BOUNDARY LAYERS

To solve the inner layer of boundary layers, we follow the methodology outlined in
section 4.6.3 of Wilcox et al. (2006) for incompressible flows. This approach involves
solving the integrated streamwise momentum equation, also known as the total stress
balance equation, in conjunction with one-dimensional turbulence model equations to
determine the inner-layer velocity profile in a turbulent boundary layer. In this work, we
extend this framework to compressible flows.

For compressible boundary layers, the inner-layer velocity and temperature profiles
are obtained by solving the integrated forms of the momentum and energy equations,
given as

dū

d y
= τw

µ̄+µt
, and

cp

(
µ̄

Pr
+ µt

Prt

)
dT̄

d y
=− µw cp

Pr

(
dT̄

d y

)
w
−

∫ y

0
Φe d y,

(7.52)

respectively. These equations are solved in a domain spanning from y = 0 to y = 0.2δ,
where y = 0.2δ is arbitrarily taken to be the edge of the inner layer. (Note that a higher
value of the edge of the inner layer is chosen (y/δ= 0.2) than that shown in figure 1.4
(y/δ= 0.1), mainly because some of the cases tested in this chapter are at low Reynolds
numbers, such that y/δ = 0.1 would correspond to the buffer or just the start of the
log-layer).

The dynamic viscosity µ̄ in (7.52) is computed using Sutherland’s law, the mean
density is obtained as ρ̄/ρw = Tw /T̄ , and the Prandtl number Pr is equal to 0.72. The
first term on the right-hand-side of the energy equation, scaled by wall-based quantities
(ρw uτcp Tw ), corresponds to the non-dimensional wall heat flux Bq .

The eddy viscosity µt in (7.52) is computed by solving the one-dimensional SST model
(without advection terms), analogous to the one-dimensional k-ω model described in
Wilcox et al. (2006) (see equation 4.184). This model is solved with the source terms Φin

k
and Φin

ω described in equations (7.16) and (7.17), along with the standard eddy viscosity
formulation being multiplied by (D i c )sst (7.35). The boundary conditions for the SST
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model are defined as

k = 0, ω= 60µ̄

β1ρ̄(∆y)2 at y = 0, and

k = u∗
τ

2√
β?

, ω= u∗
τ√

β?κy
at y = 0.2δ,

(7.53)

where ∆y is the distance to the next grid point away from the wall. The first row of
eq. (7.53) corresponds to the wall boundary condition described in Menter (1993), and
the second row corresponds to the log-layer asymptotic solution for k and ω as described
in Wilcox et al. (2006) (see equation 4.185), but adapted to compressible flows.

The turbulent Prandtl number Prt in (7.52) is assumed to be a constant and equal
to 0.9. However, to show the sensitivity of the results with respect to the constant Prt

assumption, we will also compute some of the results with Prt from DNS and then
compare them with Prt = 0.9.

Lastly, the source term Φe in (7.52) was defined in equation (7.51) as

Φe = µ̄(dū/d y)2 + ρ̄ε. (7.54)

As discussed earlier, a common way to model the TKE dissipation rate is to assume it to
be equal to the production term (ρ̄ε=µt (dū/d y)2), such that the source term becomes

Φe,1 = µ̄(dū/d y)2 +µt (dū/d y)2, (7.55)

where ‘1’ in the subscript corresponds to the first type of approximation that we will use
in this chapter. This approximation is inaccurate near the wall, since close to the wall
the production term tends to zero, whereas the dissipation term is finite and balances
the total diffusion of TKE.

Therefore, we seek a more accurate representation of ε. One way is to use the TKE
dissipation rate estimated by the model itself, which in the case of SST is equal to
εsst = β?kω. However, just like the production term, εsst also approaches zero at the
wall, as k → 0 while ω remains finite (see wall-boundary conditions in equation 7.53).
Consequently, using ε from the SST model would yield results similar to those obtained
with Φe,1. To address this inherent limitation, we follow the approach of Rahman et al.
(2012) and model the dissipation rate as

εeff =
√
ε2

sst +ε2
w , (7.56)

where εw ensures non-zero dissipation rate at the wall, given by εw = 2Aε(µ̄/ρ̄)(dū/d y)2,
with Aε = 0.09 (Rahman et al., 2012), and where εeff represents the effective dissipation
rate. With this, the second approximation of Φe that we will use in this chapter is given
as

Φe,2 = µ̄(dū/d y)2 + ρ̄εeff. (7.57)

We solve the equations listed above iteratively until convergence; see Hasan et al.
(2024a) for more details on the solver.
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7.6.2. FULLY DEVELOPED CHANNEL FLOWS

For channel flows, instead of solving only for the inner layer, we solve for the entire
domain (spanning from y = 0 to y = 2h, h being the channel half-height). However, we
do not switch to the outer-layer compressibility corrections, but consistently use the
inner-layer corrections in the entire domain. This is because the velocity profile in the
outer layer of channel flows closely follows the logarithmic profile of the inner layer,
meaning the error introduced by not solving the outer layer with the correct corrections
is minimal.

For fully developed channel flows, we solve the momentum and energy equations,
given as

d

d y

[(
µ̄+µt

) dū

d y

]
=−τw

h
,

d

d y

([
µ̄cp

Pr
+ µt cp

Prt

]
dT̄

d y

)
=−Φe , (7.58)

where µ̄ is computed using a power-law (T̄ /Tw )n with an exponent of 0.75 for high-Mach
number flows and 0.7 for the low-Mach number cases. The mean density is computed
as ρ̄/ρw = Tw /T̄ , and the Prandtl number Pr is assumed to be a constant and equal
to 0.72 for the high-Mach-number cases, and is defined as Pr = (T̄ /Tw )0.7 for the
low-Mach-number cases. The different choices for µ̄ and Pr are consistent with those
used in the respective DNSs of these cases.

The eddy viscosity µt in (7.58) is obtained by solving the one-dimensional SST model
with the proposed corrections (similar to ZPG boundary layers discussed above), along
with the wall boundary conditions (k = 0 and ω= 60µ̄/[β1ρ̄(∆y)2]) imposed on the two
walls located at y = 0 and y = 2h.

The turbulent Prandtl number (Prt ) in equation (7.58) is assumed to be constant,
with Prt = 0.9 for high-Mach-number channel flows, similar to ZPG boundary layers,
and Prt = 1 for low-Mach-number flows. The higher value for the low-Mach-number
cases is based on the results of Patel et al. (2017), where Prt is reported to be close to 1,
or even slightly higher for these cases. This is likely due to the strong similarity between
momentum and energy equations in these flows.

The source term Φe in (7.58) for high-Mach-number channel flows can be
approximated as Φe,1 or Φe,2, similar to ZPG boundary layers. In contrast, for
low-Mach-number flows, the dissipation of mean and turbulent kinetic energy does not
contribute to the right-hand side of equation (7.58). This can be explained as follows:
Φe,1 (or Φe,2) scales with ρr U

3/L , where ρr is a reference density scale, and U and L

are relevant velocity and length scales, respectively. On the other hand, the left-hand side
of the energy equation (7.58) scales with ρr U cp,r Tr /L , where cp,r and Tr are reference
scales for cp and T̄ , respectively. The ratio of these scales corresponds to an Eckert
number, defined as U 2/(cp,r Tr ) which is proportional to the square of the Mach number.
For flows at low (or zero) Mach numbers, this ratio tends to zero which explains why Φe,1

and Φe,2 are ineffective in equation (7.58). Thus, in those flows, temperature and hence
property variations are created by adding a user-defined heat source which is uniform in
the domain. For the two low-Mach-number gas-like cases considered here, this external
heat source is equal to 17.55(µw cp /Prw )Tw /h (Patel et al., 2015) and 75(µw cp /Prw )Tw /h
(Pecnik and Patel, 2017).

All the equations described above are solved in their wall-scaled form. For more
details on the solver, refer the jupyter notebook (Hasan et al., 2024a).
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7.7. RESULTS
We now present the results obtained from our inner-layer compressibility correc-
tions (equations 7.16, 7.17 and 7.35) and compare them with those obtained using the
state-of-the-art CA/OPDP corrections (Catris and Aupoix, 2000; Pecnik and Patel, 2017;
Otero Rodriguez et al., 2018), which correspond to the outer-layer corrections presented
in equations (7.24) and (7.25). We also present results computed using the baseline
model without any corrections.

These results are presented for 39 ZPG boundary layers and 11 channel flows
described in table 2.3, and visually represented in figure 2.4. Note that for ZPG boundary
layers, the results are presented only in the inner layer. For results covering the entire
boundary layer, refer to section 7.8.

7.7.1. ZERO-PRESSURE-GRADIENT BOUNDARY LAYERS
Out of the 39 cases, five cases with increasing wall cooling are selected and their velocity
and temperature profiles are shown in figure 7.2(a) and (b), respectively. The different
line types correspond to the results obtained with different compressibility corrections
and with different modeling approximations in the energy equation, as shown in the
legend. They are summarized as follows. (1) The grey dotted lines correspond to the
results obtained with the baseline SST model (without any compressibility corrections),
along with Φe,1 in the energy equation. (2) The grey short-dashed lines represent the
results computed with the state-of-the-art CA/OPDP compressibility corrections, with
Φe,1 in the energy equation. (3) The grey long-dashed lines signify the results when the
inner-layer corrections described in equations (7.16), (7.17) and (7.35) are used, along
with Φe,1 in the energy equation. (4) Finally, the solid grey lines depict the results
obtained using the present inner-layer corrections, but with Φe,2 in the energy equation.
All of these results are computed with Prt = 0.9.

Let us first focus on the grey dotted lines. With increasing wall cooling (see
cases from left to right), the velocity profiles computed using the baseline model shift
downwards relative to the DNS (solid colored lines), while the temperature profiles are
over-predicted.

When the CA/OPDP corrections are applied (see short-dashed lines), the results
remain largely similar to the baseline model (also observed previously in Catris and
Aupoix (2000); Rumsey (2010) and Otero Rodriguez et al. (2018)), with slight deterioration
observed in some cases. To further improve the accuracy, it becomes important to
account for the variations in the viscous length scale (δ∗v ) in the inner layer. Moreover,
the cases in figure 7.2 also correspond to higher Mach numbers, and thus, it also
becomes important to account for intrinsic compressibility effects.

Upon applying the present corrections (see long-dashed lines), which account for
δ∗v variations and intrinsic compressibility effects, the results for both velocity and
temperature substantially improve with respect to the baseline and CA/OPDP corrections.
However, the temperature profiles are still inaccurate compared to the DNS, mainly for
the strongly-cooled cases.

This inaccuracy in the temperature profiles can be resolved by replacing Φe,1 in the
energy equation with Φe,2 (grey solid lines). Clearly, the temperature profiles with Φe,2

are more accurate, particularly in capturing the peak temperature. This highlights the
importance of accurately estimating the source terms in the energy equation for accurate
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Figure 7.2: Computed mean velocity (a) and temperature (b) profiles compared to the DNS (colored
solid lines) for the following boundary layers with increasing wall-cooling: (left to right) M∞ = 7.87,
Tw /Tr = 0.48 (A. Ceci, private communication); M∞ = 6, Tw /Tr = 0.35 (Cogo et al., 2023); M∞ = 5.84,
Tw /Tr = 0.25 (Zhang et al., 2018); M∞ = 10.9, Tw /Tr = 0.2 (Huang et al., 2022); M∞ = 13.64, Tw /Tr = 0.18
(Zhang et al., 2018). The line colors match the color of the symbols for the respective authors reported
in table 2.3. Refer to the legend for line types. ‘Baseline’ stands for the SST model without corrections,
‘CA/OPDP’ stands for the compressibility corrections proposed in Catris and Aupoix (2000); Pecnik and
Patel (2017); Otero Rodriguez et al. (2018), ‘Present’ stands for the corrections proposed in this chapter
(equations 7.16, 7.17 and 7.35). For clarity, the velocity and temperature profiles for different cases are
shifted by one decade along the abscissa. The colored vertical lines on the abscissa signify y+ = 100 for
each case, with their colors matching the corresponding cases.
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Figure 7.3: The HLPP-transformed (7.4) mean velocity profiles as a function of the semi-local coordinate
y∗, for the (left) M∞ = 10.9, Tw /Tr = 0.2 (Huang et al., 2022) and (right) M∞ = 13.64, Tw /Tr = 0.18 (Zhang
et al., 2018) cases described in table 2.3. These cases correspond to the fourth and fifth cases from left
in figure 7.2. The colored lines correspond to DNS, whereas the grey solid lines correspond to that
estimated from the SST model with the present corrections, along with Φe,2 in the energy equation.
The dash-dotted black lines correspond to that estimated from the SST model for an incompressible
(constant-property) case at similar Reτ as the respective compressible cases described above. Note that
the DNS profiles are plotted only until y/δ= 0.2 (edge of the inner layer) for clarity.

temperature estimations in high-speed boundary layers.
While the temperature profiles improve, the velocity profiles slightly deteriorate when

Φe,2 is used as the source term. This is explained as follows. The present corrections
(equations 7.16, 7.17 and 7.35) make the SST model results consistent with the proposed
transformation (7.4)—also termed as the ‘HLPP’ transformation. In other words, the
velocity profiles estimated by the corrected model, upon HLPP transformation, would
collapse on to the velocity profile estimated by the model for an incompressible flow.
Figure 7.3 shows the HLPP-transformed profiles for the fourth and fifth cases (from
left) in figure 7.2. Clearly, the solid grey lines that correspond to the corrected model
collapse on to the black dash-dotted lines that represent the SST model prediction for
incompressible flows. However, these lines are shifted downwards with respect to the
DNS (depicted by solid colored lines). Such a downward-shifted model profile, when
inverse transformed with accurate mean properties would result in ū+ which is also
under-predicted with respect to the DNS. This is what we observed in figure 7.2 for
these cases (compare solid grey and colored lines). On the contrary, with Φe,1, due to
inaccurate temperature, and hence, property profiles, there are error cancellations which
results in more accurate ū+ observed in figure 7.2 (compare long-dashed grey and solid
colored lines).

Next, we quantify the error in the velocity and temperature profiles in terms of the
inner-layer edge values, namely

εφ =

∣∣∣φy=0.2δ−φDN S
y=0.2δ

∣∣∣
φDN S

y=0.2δ

×100, (7.59)

where φ could either be ū+ or T̄ /Tw . Such an error definition represents the integrated
or cumulative error in solving equation (7.52) across the entire domain. In other words,
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Figure 7.4: Percent error in velocity (top row) and temperature (bottom row) predictions for 39
compressible turbulent boundary layers from the literature as shown in table 2.3. The error is computed
using equation (7.59). Symbols are as in table 2.3. The filled symbols correspond to the cases whose
velocity and temperature profiles are plotted in figure 7.2. The gray horizontal lines in the inset indicate
errors of 0% and 5% for velocity, and 0% and 10% for temperature.

it quantifies the overall accumulation of errors in key quantities such as µt , which is
particularly relevant to the present study as our corrections directly impact µt .

Figure 7.4 presents the error in velocity and temperature for the 39 boundary layer
cases listed in table 2.3. The titles of the subfigures correspond to various modeling
corrections discussed earlier. With the baseline model (first column), consistent with
the observations made in figure 7.2, the errors in both velocity and temperature are
significantly high reaching approximately 15% and 40%, respectively. When the CA/OPDP
corrections are applied (second column), these errors remain similar or even slightly
increase in some cases.

With the implementation of the present inner-layer corrections (third column), the
errors in both velocity and temperature reduce significantly, falling within approximately
5% and 15%, respectively. Finally, when the source term Φe,1 is replaced with Φe,2

(fourth column), the velocity errors slightly increase (as explained above), whereas the
temperature errors improve across all cases except those of Ceci et al. (2022). This
discrepancy may be due to minor inaccuracies in the wall-cooling parameter (Bq ) for
these cases, which serves as an input to the solver (Hasan et al., 2024a).

SENSITIVITY OF THE RESULTS TO Prt

The results discussed so far were obtained using a constant turbulent Prandtl number,
Prt = 0.9, throughout the domain. In this section, we assess the sensitivity of the
results to Prt by comparing temperature profiles computed with Prt from DNS to those
obtained with Prt = 0.9. We continue using the present corrections, with Φe,2 in the
energy equation, and focus on the Mach 6 and 14 cases from Zhang et al. (2018) (third
and fifth cases from the left in figure 7.2), as DNS data for Prt is available for them.

Figure 7.5 (top row) compares the DNS-based Prt (solid colored lines) with Prt = 0.9
(solid grey lines) for the Mach 6 (left) and Mach 14 (right) cases mentioned above.
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Figure 7.5: The turbulent Prandtl number (Prt ; top row) and temperature profiles (bottom row) for the
M∞ = 5.84, Tw /Tr = 0.25 (left) and M∞ = 13.64, Tw /Tr = 0.18 (right) cases of Zhang et al. (2018). These
cases correspond to the third and fifth profiles in figure 7.2. The solid colored lines represent the Prt and
T̄ /Tw profiles extracted from the DNS. The solid grey lines correspond to the constant approximation
Prt = 0.9 in the top row and the resulting temperature profiles computed using this approximation in
the bottom row. Finally, the dash-dotted black lines depict the DNS-based Prt interpolated onto the
solver’s mesh in the top row, and the corresponding temperature results obtained using this interpolated
profile in the bottom row.
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The difference is significant in the near-wall region (y∗ < 15), but the profiles converge
further away from the wall. To incorporate this DNS-based Prt into our computations,
we interpolate it onto the mesh used by our solver. The interpolated values closely
match the DNS profiles, as seen from the dash-dotted black lines in figure 7.5 (top row).

Using these interpolated Prt values, we recompute the temperature profiles and
present them in figure 7.5 (bottom row) with dash-dotted black lines. These results
are nearly identical to those obtained with Prt = 0.9 (solid grey lines), suggesting that
Prt = 0.9 is a reasonable approximation for the ideal-gas, air-like cases considered here.

The nearly identical results can be explained as follows. In the near-wall region, the
molecular diffusion of energy dominates the turbulent diffusion. As a result, despite
the significant mismatch between the DNS-based Prt and Prt = 0.9 in this region, the
temperature profiles remain largely unaffected. Further away from the wall, where
turbulent diffusion becomes significant, the DNS-based Prt closely aligns with Prt = 0.9,
leading to similar temperature predictions. These findings contradict previous studies
(Chen et al., 2024), which state that the near-wall variations in the turbulent Prandtl
number are the primary cause of errors in temperature predictions for high-speed flows.

7.7.2. FULLY DEVELOPED CHANNEL FLOWS

Figure 7.6 shows the (a) mean velocity and (b) temperature profiles for two low-Mach
(red) and two high-Mach-number turbulent channel flows (blue) described in the figure
caption. The line types in the legend are similar to those discussed earlier for boundary
layers, except that here Φe,1 and Φe,2 are only applicable to the high-Mach-number
cases. For the low-Mach-number cases, the source term is a user-defined constant (see
section 7.6).

Low-Mach-number cases – Let us first focus on the two low-Mach-number cases
(first and second cases from the left). While using the baseline model (grey dotted lines),
both the velocity and temperature profiles are under-predicted compared to the DNS.

Similar under-predictions are also observed when the CA/OPDP corrections are
applied (see grey short-dashed lines). This inaccuracy originates from the fact that
CA/OPDP corrections are based on Van Driest’s scaling, which becomes inaccurate for
strongly-cooled flows.

The grey long-dashed and the grey solid lines correspond to the results where the
CA/OPDP corrections are replaced by the proposed variable-property corrections which
account for variations in the viscous length scale (see equations 7.16 and 7.17). These
lines are equivalent for the low-Mach-number cases, and thus, only the grey solid lines
are visible. This is because the main difference between these lines is in the source term
(Φe,1 and Φe,2). For the low-Mach cases, these source terms are zero, since the Mach
number is zero.

Comparing the grey solid lines with the grey dotted and grey short-dashed lines, we
note a substantial improvement for both velocity and temperature. This highlights the
importance of accounting for viscous length scale variations in the model equations.

High-Mach-number cases – Next, we look at the last two cases from the left,
corresponding to the compressible turbulent channel flows. Similar to the low-Mach-
number cases, the velocity and temperature profiles are under-predicted while using
the baseline model with no corrections (see grey dotted lines) as well as while using
the CA/OPDP corrections (see grey short-dashed lines). The results improve when
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Figure 7.6: Computed mean velocity (a) and temperature (b) profiles compared to the DNS (colored
solid lines) for the following turbulent channel flows: (left to right) Mb = 0, Reτ = 395 (gas-like case of
Patel et al. (2015)); Mb = 0, Reτ = 950 (gas-like case of Pecnik and Patel (2017)); Mb = 3, Reτ = 1876 and
Mb = 4, Reτ = 1017 (compressible cases of Trettel and Larsson (2016)). The line colors match the color of
the symbols for the respective authors reported in table 2.3. The line types in the legend are explained
in the caption of figure 7.2. Note that Φe,1 and Φe,2 only apply to the high-Mach number cases. For
the low-Mach cases, the source term is a user-defined constant, as noted in section 7.6. For clarity,
the velocity and temperature profiles for different cases are shifted by two decades along the abscissa.
The colored vertical lines on the abscissa signify y+ = 100 for each case, with their colors matching the
corresponding cases.
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Figure 7.7: The HLPP-transformed (7.4) mean velocity profiles as a function of the semi-local coordinate
y∗, for the (left) Mb = 3, Reτ = 1876 and (right) Mb = 4, Reτ = 1017 cases of Trettel and Larsson (2016)
described in table 2.3. These cases correspond to the third and fourth cases from left in figure 7.6.
The colored lines correspond to DNS, whereas the grey solid lines correspond to that estimated from
the SST model with the present corrections, along with Φe,2 in the energy equation. The dash-dotted
black lines correspond to that estimated from the SST model for an incompressible (constant-property)
case at similar Re∗τc

(semi-local Reynolds number computed using channel centreline properties as
Re∗τc

= ρ̄c u∗
τc

h/µ̄c ) as the respective compressible cases described above.

the proposed corrections are used, as indicated by grey long-dashed lines, however,
the velocity and temperature profiles are now over-predicted compared to the DNS.
Changing the source term in the energy equation from Φe,1 to Φe,2 (grey solid lines) leads
to little improvement, with the over-prediction largely unchanged.

The possible reason for this over-prediction is discussed next. We have observed
that HLPP-transformed DNS mean velocity profiles for compressible channel flows are
shifted downwards in the logarithmic region compared to the incompressible law of the
wall (see Appendix B). This trend is also observed in figure 7.7 for the Mach 3 case (left).
However, for the Mach 4 case (right), such a downward shift is not evident, likely due to
its low Reynolds number. (Specifically, the local Reynolds number in this case decreases
from 1017 at the wall to below 250 at y∗ ≈ 15, continuing to drop further away from the
wall).

On the other hand, the transformed profiles predicted by the SST model slightly
overshoot relative to the law of the wall, especially in the logarithmic region and beyond
(y∗ > 30). As a result, these model profiles are consistently higher than the DNS in
these regions, such that when inverse-transformed, the estimated ū+ is also higher. The
higher ū+ directly influences the energy equation via the source terms Φe,1 and Φe,2,
thereby leading to an over-prediction in temperature profiles. This, in turn, influences
ū+ through mean properties, further intensifying the over-prediction.

Interestingly, when we break this coupling between velocity and temperature by using
temperature from the DNS in our computations, we observe that the over-prediction in
ū+ is significantly reduced (not shown) suggesting that the coupling between energy and
momentum equations plays an important role in the higher ū+ and T̄ /Tw values.

Finally, we quantify the errors (εφ) in the computed velocity and temperature profiles
using equation (7.59), but now φ is taken at the channel centreline (φy=h).
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Figure 7.8: Percent error in velocity (top row) and temperature (bottom row) predictions for 11 turbulent
channel flows from the literature as shown in table 2.3. The error is computed using equation (7.59).
Symbols are as in table 2.3. The filled symbols correspond to the cases whose velocity and temperature
profiles are plotted in figure 7.6. The gray horizontal lines in the inset indicate errors of 0% and 5% for
velocity, and 0% and 10% for temperature.

Figure 7.6 shows the errors in the velocity profiles (εu) for two low-Mach-number
and nine high-Mach-number channel flow cases listed in table 2.3. Like in figure 7.4,
the titles of the subfigures correspond to various modeling corrections discussed earlier.
The errors using the baseline model with no corrections (first column) and with the
CA/OPDP corrections (second column) remain similar, with the errors for velocity and
temperature reaching up to approximately 25% and 30%, respectively.

With our corrections (third and fourth columns), the errors in both velocity and
temperature are significantly reduced, falling within approximately 10% and 15%,
respectively. Furthermore, the errors remain similar for both Φe,1 and Φe,2, suggesting
lower sensitivity of the channel flow results to the choice of the source term.

7.8. TESTING THE PROPOSED CORRECTIONS ON A FULL BOUND-
ARY LAYER

In the previous sections, we discussed the implementation and results for the inner layer
of ZPG boundary layers and channel flows, that can be modeled using one-dimensional
equations. However, it is so far unclear how the proposed corrections perform in a
two-dimensional boundary layer simulation, where the outer layer is also solved for.

To address this point, we performed a flat plate boundary layer simulation for
the M∞ = 10.9, Tw /Tr = 0.2 case of Huang et al. (2022), using Ansys Fluent. The
computational domain spans 1.5 m in the streamwise direction and 0.2 m in the
wall-normal direction, discretized using a structured mesh consisting of 1600 cells along
the streamwise direction and 300 cells in the wall-normal direction. The mesh is
stretched in the wall-normal direction such that the first grid point lies within one
viscous wall unit from the wall. With this mesh, we achieve a resolution of about
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∆x+ ≈ 97 and ∆y+
min ≈ 0.014 at the streamwise location whose profiles are shown in

figure 7.9. This resolution is finer than that adopted in Danis and Durbin (2022) for the
same case.

A velocity-inlet boundary condition is applied at the inlet, prescribing a constant
streamwise velocity of 1778.4 m/s, pressure of 1966.1 Pa, and temperature of 64.4 K. At the
wall, a no-slip boundary condition is imposed along with a constant wall temperature of
300 K. A pressure far-field boundary condition is specified at the top boundary, with the
pressure and temperature set to 1966.1 Pa and 64.4 K, matching their respective values at
the inlet. At the outlet, a pressure-outlet boundary condition is used, prescribing the
pressure to be equal to the free-stream pressure, and the backflow temperature is set
to 300 K. Note that the free-stream temperature specified in the DNS is 66.5 K; here,
we slightly reduce this value to account for the temperature jump across the oblique
shockwave originating from the leading-edge, such that the post-shock temperature is
approximately 66.5 K. (The pressure also changes across the shockwave; however, the
ratio of its post-shock value to the wall value remains unchanged. In contrast, because
the wall temperature is fixed, the corresponding ratio for temperature is affected. This,
in turn, alters the density ratio and ultimately influences the computed skin friction and
heat transfer coefficients in figure 7.10.) With these boundary conditions, we perform the
simulations using Fluent’s density based solver. Further details on the simulation setup
(for instance, the case file) can be found on our GitHub repository (Hasan et al., 2024a).

To implement the proposed corrections in Fluent, we use user-defined functions
(UDFs). In these UDFs, we compute the source terms Φk , Φω and ΦC D and add them
on the right-hand-side of the conventional SST model as indicated in equations (7.31)
and (7.32). We also redefine the eddy-viscosity as in equation (7.34). The reader is
referred to our GitHub repository (Hasan et al., 2024a) for more details on the UDFs used
to generate the results shown below.

To obtain the mean temperature profile, we solve the full energy equation:

∂
[
ρ̄(e + ũi ũi +k)

]
∂t

+ ∂
[
ρ̄ũ j (h + ũi ũi +k)

]
∂x j

= ∂

∂x j

[(
µ̄cp

Pr
+ µt cp

Prt

)
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∂
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ũi

(
2
(
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)
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∂
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µ̄+σkµt

) ∂k

∂x j

]
+Φk︸ ︷︷ ︸

variable-property-corrected (section 7.2.1)

, (7.60)

where e and h are the internal energy and enthalpy per unit mass, and Si j is the strain
rate tensor. (Refer to section 7.5 for a discussion on the energy equation in the inner
layer.) Adding Φk to the conventional equation implies that the viscous and turbulent
diffusion of TKE are modeled after accounting for variable property effects, consistent
with the diffusion term in the TKE transport equation (see section 7.2.1).

Note that in Fluent, TKE is not included in the definition of total energy, and
its diffusion does not appear in the energy equation. Therefore, to correctly solve
equation (7.60), it is necessary to add the TKE transport term ρ̄Dk/Dt to the left-hand
side of the energy equation and the TKE diffusion term to the right-hand side. We
achieve this in Fluent by introducing a source term on the right-hand side of the energy
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equation, equal to the TKE diffusion term minus ρ̄Dk/Dt . This term is effectively equal
to −Pk + ρ̄ ε, where Pk denotes the production of TKE. For further details, refer to the
UDF provided in Hasan et al. (2024a).

In the inner layer, equation (7.60) reduces to equation (7.48). Interestingly, with
k taken from the SST model, solving equation (7.60) in the inner layer is equivalent
to solving equation (7.52) with Φe = µ̄(dū/d y)2 + ρ̄εsst. However, as discussed above
equation (7.56), solving such an equation in the inner layer would lead to inaccuracies
in predicting the mean temperature, since εsst tends to zero at the wall, instead of a
non-zero value. Thus, there, we proposed replacing εsst with εeff (7.56), or in other words,
we proposed adding a source term, namely, ρ̄εeff − ρ̄εsst to µ̄(dū/d y)2 + ρ̄εsst, such that
effectively we arrive at Φe,2 (7.57).

In the same spirit, to include the effects of εw in the two-dimensional solver, one
needs to add a source term equal to ρ̄εeff−ρ̄εsst on the right-hand-side of equation (7.60).
However, including such a source term does not lead to any improvement in the
temperature profile (not shown), unlike what one would expect based on the one-
dimensional results, where including the effects of εw improved the temperature profiles
(see gray solid lines in figure 7.2b). This is explained as follows: In the one-dimensional
solver (7.52), the wall heat flux (first term on the right hand side) is fixed and provided
as a boundary condition. Thus, any increase in Φe resulting from adding the source
term ρ̄εeff − ρ̄εsst would directly reduce the conductive heat flux, thereby reducing the
temperature peak. Contrastingly, in the two-dimensional solver, the wall temperature is
fixed, and the heat flux is allowed to vary. Now, since the integral of the added source
term from the wall to the free-stream at a particular streamwise location is non-zero,
it directly results in higher wall heat flux, rather than a lower conductive flux close to
the wall. Thus, the temperature profile does not improve. Providing an accurate source
term using the SST model, without erroneously adding to the wall heat flux, still remains
unclear. Nevertheless, here, we provide the results using equation (7.60), i.e., without
accounting for the influence of εw .

Figure 7.9 shows the mean velocity (left) and temperature (right) profiles for the
M∞ = 10.9 case described above. These profiles are extracted from the streamwise
location where the friction Reynolds number matches the DNS value, i.e., Reτ ≈ 774.
The solid colored lines represent the DNS profiles, while the dotted gray lines depict
the predictions from the conventional SST model. The solid gray lines show the results
obtained using the corrected SST model equations (7.31) and (7.32), along with the
modified eddy viscosity (7.34). The solid black lines correspond to the results obtained
after solving the one-dimensional equations with the present inner-layer corrections and
with Φe = µ̄(dū/d y)2 + ρ̄εsst (see section 7.6.1). This Φe is consistent with equation (7.60)
in the inner layer, as discussed earlier.

As seen in figure 7.9, including the proposed corrections significantly improves the
velocity profile compared to the one obtained with the baseline SST model (compare the
dotted and solid gray lines). This improvement mainly originates from the inner-layer
corrections. We confirmed this by setting Φout

k , Φout
ω and ΦC D equal to zero in our

simulations, such that we solve the baseline model in the outer layer. The resulting
profiles were similar to those obtained when the outer-layer corrections were included.
In contrast to the velocity, the temperature profiles remain largely unchanged.

Figure 7.9 also shows that, in the inner layer, the velocity and temperature profiles
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Figure 7.9: Computed full mean velocity (left) and temperature (right) profiles compared to the DNS
(colored solid lines) for the following turbulent boundary layer: M∞ = 10.9, Tw /Tr = 0.2 Reτ = 774 (Huang
et al., 2022). Refer to the legend for line types. ‘Baseline’ represents the SST model without corrections,
while ‘Present’ signifies the corrections proposed in this chapter (equations 7.29, 7.30, 7.28 and 7.35).
Note that, in contrast with figure 7.2, where only the inner layer was solved, here both the baseline
and present results are obtained by solving the entire boundary layer. Also note that these results
are computed with (7.60) as the energy equation, except that for the baseline case Φk = 0. The
solid black lines correspond to the profiles obtained after solving the inner-layer equations (7.52) with
Φe = µ̄(dū/d y)2 + ρ̄εsst.

computed using Fluent (gray solid line) collapses well on to the respective profiles
computed using the one-dimensional approach discussed earlier (black solid lines). Note
that in Fluent, the molecular Prandtl number for air is close to 0.74, and the turbulent
Prandtl number is assumed to be 0.85. Thus, to be consistent, the one-dimensional
results are also computed with these Pr and Prt values.

Finally, in figure 7.10, we present the distribution of the skin-friction (c f =
τw /[0.5ρ∞U 2∞]) and heat transfer (ch = qw /[ρ∞U∞cp (Tr −Tw )]) coefficients along the
plate, as a function of Reτ. The filled symbols represent the DNS data of Huang et al.
(2022), and the black vertical lines represent an error margin of +/-5%. Clearly, the c f

and ch predictions obtained from the corrected SST model are closer to the DNS values
than those obtained from the conventional model (compare the dotted and solid gray
lines).

7.9. THE PROPOSED CORRECTIONS FOR THE SPALART-ALLMARAS

(SA) MODEL

Before summarizing, we briefly report the variable-property and intrinsic compressibility
corrections for the SA model (Spalart and Allmaras, 1992), and present only the main
results for the inner layer of boundary layers.

Following the same approach as described in section 7.2.1 for the inner layer and in
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Figure 7.10: The skin-friction (left) and heat transfer coefficients (right) compared to the DNS (symbols)
for the M∞ = 10.9, Tw /Tr = 0.2 turbulent boundary layer of Huang et al. (2022). The dotted and
solid gray lines correspond to the quantities obtained with the uncorrected and corrected SST models,
respectively. The black vertical lines indicate an error margin of +/-5%. Note that in the right subfigure,
the y-axis has been scaled by a factor of 1.1, corresponding to the assumed value of the ratio 2ch/c f .

section 7.2.2 for the outer layer, but now applied to the SA model, we obtain
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(7.61)

in the inner layer, and
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(7.62)

in the outer layer. Φν̌ in these equations represents the source term that needs to be
added to a conventional SA model for appropriate accounting of the variable-property
effects, and cb2 and cb3 are the model constants. Note that the outer layer corrections
are similar to the ones proposed in Catris and Aupoix (2000) and Otero Rodriguez et al.
(2018). Also note that in these derivations we use ν̌+ = ν̌/(uτδv ) and ν̌∗ = ν̌/(u∗

τδ
∗
v ) in the

inner layer, and ν̌⊕ = ν̌/(uτδ) and ν̌~ = ν̌/(u∗
τδ) in the outer layer.

To account for intrinsic compressibility effects, similar to the SST model, we propose
multiplying the eddy viscosity formulation with a damping function defined as

(D i c )SA = D(Rt , Mt )

D(Rt ,0)
, (7.63)

with

D(Rt , Mt ) =
[

1−exp

( −Rt

K + f (Mt )

)]2

, (7.64)
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Figure 7.11: Computed mean velocity (a) and temperature (b) profiles compared to the DNS (colored
solid lines) for the following boundary layers with increasing wall-cooling: (left to right) M∞ = 7.87,
Tw /Tr = 0.48 (A. Ceci, private communication); M∞ = 6, Tw /Tr = 0.35 (Cogo et al., 2023); M∞ = 5.84,
Tw /Tr = 0.25 (Zhang et al., 2018); M∞ = 10.9, Tw /Tr = 0.2 (Huang et al., 2022); M∞ = 13.64, Tw /Tr = 0.18
(Zhang et al., 2018). Refer to the legend for line types. ‘Baseline’ stands for the SA model without
corrections, ‘CA/OPDP’ stands for the compressibility corrections proposed in Catris and Aupoix (2000);
Pecnik and Patel (2017); Otero Rodriguez et al. (2018), ‘Present’ stands for the corrections proposed in
this chapter (equations 7.61 and 7.63). For clarity, the velocity and temperature profiles for different
cases are shifted by one decade along the abscissa. The colored vertical lines on the abscissa signify
y+ = 100 for each case, with their colors matching the corresponding cases.
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where K = 7.5, f (Mt ) = 7.3Mt (tuned following a similar procedure as described in
section 7.4), Rt = ν̌/(µ̄/ρ̄), and Mt =

√
(1/0.3)ν̌dū/d y/c̄ (Barone et al., 2024).

To depict the performance of the proposed corrections compared to the state-of-the-
art approaches, we will present the results only for the inner layer of boundary layers.
To obtain them we follow the implementation described in section 7.6.1 but now with
µt obtained from the SA model. At the wall, we use ν̌ = 0, whereas at y/δ = 0.2, we
implement the mixing-length solution for ν̌ as

ν̌= u∗
τκy at y = 0.2δ. (7.65)

Lastly, to produce results with a more accurate model for the source term (Φe,2), we
define the effective dissipation rate as in equation (7.56), but with εSA instead of εsst.
To obtain the dissipation rate estimated by the SA model, we adapt the formulation
proposed by Rahman et al. (2012), as

εSA = (µt dū/d y)2/a2
1

µ̄+ µ̄t /a2
1

, (7.66)

where a1 = 0.3 is a constant which corresponds to the ratio of the turbulent shear stress
and TKE in the log layer (Huang et al., 1994). As desired, εSA approaches µt (dū/d y)2 in
the logarithmic region and beyond. Refer the provided jupyter-notebook (Hasan et al.,
2024a) for more details on the implementation of the SA model.

Figure 7.11 shows the (a) mean velocity and (b) temperature profiles for the five
cases shown in figure 7.2. Different line types correspond to different modeling
approximations, as discussed earlier in section 7.7.

Similar to the SST model, the results with the baseline model (without corrections)
and those with the CA/OPDP (outer-layer, equation 7.62) corrections are nearly identical
(compare the grey dotted and grey short-dashed lines; in some cases they overlap, making
them difficult to distinguish). With these approaches, the mean velocity profiles are quite
accurately estimated, whereas the temperature profiles are consistently over-estimated.
The accuracy of ū+ can be partially attributed to the semi-local consistency of the
baseline model itself (see section 7.1). However, the high accuracy observed despite not
accounting for intrinsic compressibility effects (7.63) is likely due to error cancellations
resulting from the inaccuracies in the temperature profiles.

With the proposed corrections in equations (7.61) and (7.63) (long-dashed grey
lines), both the temperature and velocity profiles show slight improvement, however, the
temperature profiles remain over-estimated, particularly near the peak in strongly cooled
boundary layers. The over-estimation of the peak temperature is eliminated, when Φe,1 is
replaced with Φe,2 (solid grey lines). Despite this improvement, the temperature profiles
with Φe,2 appear to be shifted towards the wall compared to the DNS, resulting in an
under-estimation beyond the peak location.

7.10. SUMMARY
We have presented a novel approach to derive compressibility corrections for turbulence
models. Using this approach, we have derived variable-property corrections that take
into account the different scaling characteristics of the inner and outer layers. In
addition, we have formulated corrections that account for the change in near-wall
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damping of turbulence due to intrinsic compressibility effects. We have also tested
different approximations for the source terms in the energy equation, as well as the
assumption of a constant turbulent Prandtl number (Prt ). Our findings, based on the
k-ω SST model, are summarized below.

The proposed corrections when compared with the baseline model (with no
corrections) and with the state-of-the-art CA/OPDP corrections (Catris and Aupoix, 2000;
Pecnik and Patel, 2017; Otero Rodriguez et al., 2018) produce significantly more accurate
results for both turbulent boundary layers and channel flows.

In the context of temperature prediction, we highlighted the importance of accurately
modeling the source term in the energy equation. When combined with the proposed
compressibility corrections, these source terms substantially improve the accuracy of the
peak temperature in cooled-wall turbulent boundary layers.

Another key factor in temperature prediction is the turbulent Prandtl number (Prt ).
By comparing two temperature profile predictions – one using a constant Prt of 0.9 and
the other using a Prt distribution obtained from existing DNS data – we find the results
to be nearly identical (tested for a M∞ = 6 and M∞ = 14 boundary layer). This suggests
that a constant Prt of 0.9 is a reasonable approximation, contradicting previous studies
that identify the inaccuracies in the turbulent Prandtl number to be the primary source
of error.

Finally, we tested the proposed inner- and outer-layer corrections across the entire
boundary layer using Ansys Fluent. Compared to the baseline model, the corrections
significantly improve the accuracy of the mean velocity profile. However, the temperature
profile remains largely unchanged. Moreover, the corrections also improve the accuracy
of the predicted skin friction and heat transfer coefficients.

We recommend the following for future studies. (1) The formulation of the corrections
in cases where the wall-normal direction does not align with the coordinate axis (see
Appendix C) should be tested. (2) The performance of the proposed variable-property
corrections should be tested in flows involving complex geometries, especially where the
determination of the wall-normal direction is challenging (e.g. flows near corners). (3)
Also, the efficacy of the damping function (7.35) in more complex flow configurations
must be tested. (4) The possibility of adding an external heat source term to the
full energy equation (7.60), without erroneously adding to the wall heat flux, must
be explored. (5) Using the same approach as presented in this chapter for the SST
model, the compressibility corrections for other turbulence models should be derived
and tested. In section 7.9, we present and test the corrections for the Spalart-Allmaras
(SA) model. (6) For the SA model, improved alternatives for the TKE dissipation rate
are needed to achieve even more accurate temperature profile predictions. It should
also be tested whether such alternatives could improve temperature predictions using
mixing-length models, for example in wall-modeled large eddy simulations (WMLES).
(7) The influence of including Φk in the energy equation (7.60) should be explored using
a turbulence model which predicts non-zero TKE diffusion and dissipation values at the
wall (e.g. v2- f model (Durbin, 1991)).
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In this thesis, we have devised four DNS cases of fully developed high-Mach-number
channel flows with approximately constant mean properties (CP), whereby intrinsic
compressibility effects are isolated. Based on these cases, we attempt to provide
an explanation for the underlying mechanism through which intrinsic compressibility
effects modulate the near-wall dynamics of turbulence. Building on this, we propose
several scaling laws and turbulence model corrections which have been tested across a
wide range of channel flow and boundary layer cases reported in the literature. Our key
findings are as follows.

Part I: Theory

• The mean velocity profiles of the CP cases depict an upward log-law shift
attributable to IC effects. This log-law shift can be primarily linked to an outward
shift (or reduction) in the turbulent shear stress. This outward shift corresponds
to a similar shift in the wall-normal Reynolds stress, as wall-normal motions
drive momentum transport across mean shear, thereby generating turbulent
shear stress. This shift in the wall-normal stress stems from reduced energy
transfer from the streamwise to the other components, indicating weakening
of the quasi-streamwise vortices that facilitate this transfer (Jeong et al., 1997)
(chapter 3).

• To explain the weakening of quasi-streamwise vortices, we have decomposed the
velocity field into solenoidal and dilatational parts and educed shear layers by
applying conditional averaging (variable-interval space averaging) to the solenoidal
field. We have noticed a streamwise phase shift between the buffer-layer sweeps
and ejections that form shear layers, and the associated ‘solenoidal’ wall pressure.
By invoking Taylor’s hypothesis, this streamwise phase shift can be interpreted
as a phase shift in time, such that regions of high positive (or negative) rate
of change of wall pressure correspond to regions of high positive (or negative)
wall-normal velocity, suggesting that the two are in-phase. Moreover, close to the
wall, the high rate of change of solenoidal pressure leads to large dilatation values
(also referred to as pseudo-sound dilatation) of opposite sign, such that they are
out-of-phase. From these observations, it follows that the near-wall dilatation
is essentially out-of-phase with respect to the wall-normal motions, or in other
words, the near-wall expansions and contractions of the fluid inherently oppose
the buffer-layer sweeps and ejections. Since these coherent motions are initiated
by quasi-streamwise vortices, their opposition directly affects the evolution of those
vortices, causing their weakening. This is schematically depicted in figure 3.13
(chapter 3).

• The remaining portion of dilatation (also referred to as the non-pseudo-sound
component) does not play an important role in this opposition mechanism.
Interestingly, the majority of the travelling wave-packet-like structures, recently
discovered in the literature, are present in the non-pseudo-sound component of
dilatation (chapter 3).

• The intrinsic-compressibility-induced outward shift in the turbulent shear stress
is also responsible for higher peak values of the streamwise Reynolds stress in
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compressible flows compared to incompressible flows (chapter 3).

Part II: Scaling laws and predictive models

• By expressing the streamwise Reynolds stress in the form of an expansion
series in terms of Mτ, we proposed a scaling relation for its peak value. A
similar scaling relation was also developed for the wall-pressure root-mean-square.
In these relations, the leading order term accounts for Reynolds number and
variable-property effects, and is modeled using incompressible relations but with
an effective Reynolds number. For the peak streamwise intensity, the effective
Reynolds number is the conventional friction Reynolds number, while for wall
pressure, it is the semi-local friction Reynolds number defined using buffer-layer
mean properties. Higher order terms capture intrinsic compressibility effects and
are modeled as constant coefficients, calibrated based on the CP cases. These
scaling relations demonstrate high accuracy, with predictions for the majority of
the cases falling within a +/-10% error margin (chapter 4).

• The log-law shift observed in the semi-local transformation for high-speed flows is
also caused by intrinsic compressibility effects. Taking friction Mach number Mτ as
the most suitable parameter to quantify these effects, we propose a transformation
that effectively removes the log-law shift. This transformation accounts for the
changes in friction velocity and viscous length scales due to variations in mean
properties, and for intrinsic compressibility effects. Thus, it applies to a wide
variety of cases (chapter 5).

• We have derived an expression for the mean-velocity gradient in high-speed
zero-pressure-gradient boundary layers that uses distinct mean velocity scalings
in the inner (proposed) and outer (Van Driest) layers, thus covering the entire
boundary layer. Using this expression we accurately predict mean velocity and
temperature profiles, leading to estimation of the skin-friction and heat-transfer
coefficients which are within +/−4% and +/−8% of the DNS data (chapter 6).

• We have presented a novel approach to derive compressibility corrections for
RANS turbulence models, which are consistent with the proposed transformation in
the inner layer and the Van Driest transformation in the outer layer. The proposed
corrections produce significantly more accurate results for both turbulent
boundary layers and channel flows, when compared to the state-of-the-art
approaches (chapter 7).

• In the context of temperature predictions, we highlighted the importance of
accurately modeling the source term in the energy equation. When combined
with the proposed compressibility corrections, these source terms substantially
improve the accuracy of the peak temperature in cooled-wall turbulent boundary
layers (chapter 7).

• By comparing two temperature profile predictions – one using a constant turbulent
Prandtl number Prt of 0.9 and the other using a Prt distribution obtained from
existing DNS data – we find the results to be nearly identical. This suggests
that a constant turbulent Prandtl number of 0.9 is a reasonable approximation,
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contradicting previous studies that identify the inaccuracies in Prt to be the
primary source of error (chapter 7).

8.1. FUTURE RECOMMENDATIONS
In the following, we list some recommendations for future work. We also discuss
potential solutions where applicable.

8.1.1. COUPLING BETWEEN VARIABLE-PROPERTY AND IC EFFECTS

In chapter 4, we assumed the coupling between variable-property and intrinsic
compressibility effects to be small while developing scaling laws for wall-pressure
r.m.s. and the peak streamwise turbulence intensity. There, we calibrated the variable
property contribution to the scaling laws using the low-Mach cases of Modesti and
Pirozzoli (2024)—where IC effects are negligible—and the IC contribution using the CP
cases—where variable-property effects are negligible. Then, assuming small coupling
effects, we tested the developed scaling relations in flows where both of these effects
were simultaneously present.

We followed a similar recipe in chapter 5, where we calibrated the increase in the
log-law intercept with the friction Mach number using the CP cases (figure 5.1a), and
then tested the calibration in flows where both variable-property and IC effects were
present, assuming small coupling effects.

In high-Mach-number flows with strong heat transfer, these coupling effects may
grow important, which should be tested in future studies. To isolate and study these
effects, one can follow the approach suggested by Lele (1994), which involves contrasting
a high-Mach-number simulation with a low-Mach-number counterpart that shares the
same Reynolds number and mean property profiles as the high-Mach case. The
algorithm described in section 2.2 can be utilised to simulate such a low-Mach-number
flow.

8.1.2. COUPLING BETWEEN REYNOLDS NUMBER AND IC EFFECTS

In chapter 4, we also assumed the coupling between Reynolds number and intrinsic
compressibility effects to be small while developing scaling laws for wall-pressure
r.m.s. and the peak streamwise turbulence intensity. However, the cases that were
used to verify this assumption were at low-to-moderate Reynolds numbers. Whether
a similar assumption would hold at high Reynolds numbers is unknown. Moreover,
how the opposition mechanism discussed in chapter 3 gets affected at high Reynolds
numbers remains an open question. In future, simulations of constant-property
high-Mach-number channel flows at a range of Reynolds numbers should be conducted
to study any potential influences of Reynolds number on IC effects.

8.1.3. VARIABLE-PROPERTY EFFECTS BEYOND SEMI-LOCAL SCALING

Throughout this thesis, we adhered to semi-local scaling to account for variable-property
effects, which advocates that these effects primarily influence the definiton of viscous
length (δ∗v ) and friction velocity (u∗

τ ) scales (1.12). However, this framework implicitly
assumes that the fractional change in u∗

τ and δ∗v across an eddy (or in other words,
the fractional change in density and viscosity across an eddy) is negligible. A similar
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assumption is implied under Morkovin’s hypothesis (Bradshaw, 1977). To understand the
implications when such fractional changes become important, we refer to the analysis
in Pecnik and Patel (2017).

Those authors scaled the continuity and momentum equations using u∗
τ and outer-

layer length scale h (channel half-height), and then consequently derived a semi-locally
scaled TKE equation. That equation had terms analogous to an incompressible TKE
equation, plus some additional terms that depend on the mean density gradient d ρ̄/d y ,
which arose as a consequence of moving u∗

τ across wall-normal derivatives (d/d y).
Particularly, those terms depend on the factor

dy = h

2ρ̄

d ρ̄

d y
,

which can be written in terms of u∗
τ as

dy =− h

u∗
τ

du∗
τ

d y
.

Here, dy can also be inferred as the fractional change of u∗
τ across an eddy of width h

(outer-layer length scale).
In the inner layer, if one repeats the same analysis as Pecnik and Patel (2017) but

using the inner-layer length scale δ∗v , instead of h (and neglecting advection terms),
then one would arrive at a TKE equation that is analogous to incompressible flows, plus
additional terms that depend on factors such as

y

δ∗v

dδ∗v
d y

,
δ∗v
u∗
τ

du∗
τ

d y
.

The first factor signifies the fractional change in δ∗v across an eddy of width y1, whereas
the second term signifies the fractional change in u∗

τ across an eddy of width δ∗v . When
the fractional changes in these quantities across eddies become important, the additional
terms in the TKE equation that depend on them may also become important, thereby
weakening the analogy between incompressible and compressible TKE equations in the
inner layer (an assumption invoked in chapter 7). Such a breakdown of analogy between
incompressible and compressible flows highlights a failure of semi-local scaling.

These effects that depend on the fractional changes of δ∗v and u∗
τ can become

important in flows with very strong heat transfer at the walls (such as those at very high
Mach numbers), or in non-ideal flows close to the Widom line, where the thermophysical
properties change tremendously. In fact, some effects observed in moderately cooled
flows can also be attributed to such fractional changes that are beyond the scope of
semi-local scaling. For instance, the apparent spread in the log-law constant discussed
in chapter 5 and in Appendix B, and the spread in the streamwise velocity peak reported
in figure 4.1.

Future studies should focus on studying these effects in more detail, for instance,
by analyzing the full semi-locally scaled TKE equation with the additional terms. Such
an analysis may shed light on which parameter best describes such fractional-change
effects, whose knowledge can then be accounted semi-empirically in the eddy-viscosity
formulations to propose even better velocity transformations (see Appendix B).

1Note that this factor is also seen in the velocity transformation kernel (5.12).
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8.1.4. EFFECT OF PRESSURE GRADIENT
Throughout this thesis, the focus has been on equilibrium flows, such as channel flows
and zero-pressure-gradient boundary layers. However, certain aspects of the proposed
scaling laws and turbulence models are expected to be influenced under non-equilibrium
conditions. For instance, it is well-known from the literature that adverse pressure
gradients strongly modify the wake region in incompressible flows (Coles, 1956; Monty
et al., 2011). In the present context, this suggests that Π in equation (6.7) varies not only
with the Reynolds number but also with the imposed pressure gradient.

In the future, it would be interesting to investigate other such influences of non-zero
pressure gradients in compressible flows, for instance, the role of ‘history effects’ (Bobke
et al., 2017; Chen et al., 2025).

Apart from these more general recommendations, we refer the reader to some
specific recommendations provided in the summary section of chapters 3–7.



A
HELMHOLTZ DECOMPOSITION OF THE

VELOCITY FIELD

The Helmholtz decomposition in compressible flows is the representation of the velocity
field as the sum of divergence-free ‘solenoidal’ and curl-free ‘dilatational’ components.
This is mathematically written as

ui = us
i +ud

i , (A.1)

where superscripts ‘s’ and ‘d ’ stand for solenoidal and dilatational components. This
equation is similar to equation (3.10) in the main text, the only difference being that
there the decomposition was written explicitly for the fluctuating velocity field.

The dilatational component is computed as the gradient of a scalar potential φ,
namely

ud
i = ∂φ

∂xi
, (A.2)

where φ is obtained by solving a Poisson equation as

∂2φ

∂x j∂x j
= ∂ui

∂xi
. (A.3)

Equation (A.3) is solved using a second-order accurate FFT-based Poisson solver (see
Costa (2018) for example) with periodic boundary conditions in the streamwise and
spanwise directions, and no-penetration boundary condition ∂φ/∂y = 0 (or vd = 0) at the
wall. Note that with these boundary conditions, no-slip is not satisfied at the wall, that
is ud and w d are not equal to zero. While seemingly counter-intuitive at first glance, this
is not unphysical, as pointed out in Sharma and Girimaji (2023).

Likewise, the solenoidal component can be obtained using the vorticity field as
described in Yu et al. (2019) and Sharma and Girimaji (2023). However, here we will
make use of the fact that the total velocity field is available from the direct numerical
simulation. Thus, the solenoidal field is simply computed using equation (A.1) as

us
i = ui −ud

i . (A.4)
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B
UNACCOUNTED VARIABLE-PROPERTY

EFFECTS ON THE MEAN VELOCITY PROFILES

Let us rewrite the transformation kernel derived in chapter 5 (equation 5.12) as

dŪ+

dū+ =
(

1+µc
t /µ̄

1+µi
t /µw

)
︸ ︷︷ ︸

3

(
1− y

δ∗v

dδ∗v
d y

)
︸ ︷︷ ︸

2

uτ
u∗
τ︸︷︷︸

1

. (B.1)

There, we assumed that variable-property effects are confined to factors 1 and 2 in
equation (B.1), and that they do not influence the non-universality of the turbulent shear
stress (i.e., factor 3 in equation B.1), which is attributed solely to IC effects. Based on
this assumption, we modeled the non-universality of the eddy-viscosity in (B.1) only as a
function of the friction Mach number Mτ as

dŪ+

dū+ =
(

1+κy∗D(y∗, Mτ)

1+κy∗D(y∗,0)

)(
1− y

δ∗v

dδ∗v
d y

)
uτ
u∗
τ

, (B.2)

where

D(y∗, Mτ) =
[

1−exp

( −y∗

A++19.3 Mτ

)]2

.

The validity of this assumption can be assessed from figure B.1, which shows the
log-law constant resulting from the proposed transformation (referred to as ‘HLPP’
as in the literature) for the low-Mach-number variable-property cases of Modesti and
Pirozzoli (2024) and the compressible channel flow cases of Trettel and Larsson (2016)
(low-Reynolds-number cases are excluded); see table 2.3.

Let us first focus on the low-Mach-number cases, for which the friction Mach number
is approximately zero, such that the proposed and the semi-local transformations are
equivalent, i.e., factor 3 ≈ 1. As shown in figure B.1, the log-law constant for these
cases is not universal; instead, it depicts a clear dependence on the temperature profile,
particularly on the centreline-to-wall temperature ratio (Tc /Tw ). This observation implies
that factors 1 and 2 do not fully account for variable-property effects, and that the
turbulent shear stress is non-universal even in flows where IC effects are absent. This
influence of variable mean properties, not captured by factors 1 and 2, are referred to as
‘unaccounted’ variable property effects.
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Figure B.1: The log-law constant resulting from the proposed transformation for the low-Mach-number
variable-property channel flow cases of Modesti and Pirozzoli (2024) (triangles), and the compressible
channel flow cases of Trettel and Larsson (2016) (inverted triangles). The computed constants are plotted
as a function of the centreline-to-wall temperature ratio Tc /Tw . Note that low-Reynolds-number cases
(i.e., the cases where the semi-local Reynolds number Re∗τ falls below 300 anywhere in the domain) are
excluded.

A similar trend with Tc /Tw is also observed for the compressible cases of Trettel
and Larsson (2016). The fact that the these cases, upon accounting for intrinsic
compressibility effects under the proposed transformation, also depict a similar trend
as the low-Mach cases suggests that they are also affected by unaccounted variable-
property effects. In fact, we hypothesize that the cancellation between these unaccounted
effects—which induce a downward shift in the log-law constant—and IC effects—that
cause an upward shift—is the reason why the semi-local transformation depcited a net
zero shift in the log-law constant for those cases (see Trettel and Larsson (2016)).

In future, a more universal transformation would require that these unaccounted
variable-property effects are somehow accounted for in the eddy-viscosity definition, for
instance, by modifying the damping constant A+ to be a function of a parameter that
adequately gauges these effects. Note that Tc /Tw was used here primarily to show a
trend for ideal gas air-like cases with monotonic temperature profiles. However, a better
parameter which gauges these effects over a wide range of cases would be something
that is defined in terms of the gradients of u∗

τ and δ∗v (see also the discussion in
section 8.1.3).



C
FORMULATION OF THE COMPRESSIBILITY

CORRECTIONS IN A GENERAL COORDINATE

SYSTEM

In section 7.2, we derived the corrections for the case in which the wall-normal direction
was aligned with the y-axis. For arbitrary wall orientations, the source terms must be
modified. In such flows, we need to include the following source term in the inner layer:

Φin
k = Sn

µ̄

∂

∂n

[
µeff

Sn

µ̄

∂(ρ̄k)

∂n

]
− ∂

∂n

[
µeff

∂k

∂n

]
, (C.1)

where n is the wall-normal coordinate and µeff = µ̄+σkµt , and where

Sn =
(
∂
(
`
√
ρ̄/µ̄

)
∂n

)−1

=
(√

ρ̄

µ̄
+` ∂

(√
ρ̄/µ̄

)
∂n

)−1

. (C.2)

To further simplify this term, we note that the conventional diffusion term is coordinate
independent. For a two-dimensional system, this implies that

∂

∂n

[
µeff

∂k

∂n

]
+ ∂

∂t

[
µeff

∂k

∂t

]
= ∂

∂x

[
µeff

∂k

∂x

]
+ ∂

∂y

[
µeff

∂k

∂y

]
, (C.3)

where t is the wall-parallel direction, and where x and y are the generic cartesian
coordinates. Close to the wall, the diffusion term is mainly dominated by the wall-normal
component. Thus, one could neglect the second term on the left-hand side to get

∂

∂n

[
µeff

∂k

∂n

]
≈ ∂

∂x j

[
µeff

∂k

∂x j

]
. (C.4)

Similarly, we can write

∂

∂n

[
µeff

Sn

µ̄

∂(ρ̄k)

∂n

]
≈ ∂

∂x j

[
µeff

Sn

µ̄

∂(ρ̄k)

∂x j

]
, (C.5)

where µeffSn/µ̄ is the total diffusion coefficient, and ρ̄k is the diffused quantity.

133



134
C. FORMULATION OF THE COMPRESSIBILITY CORRECTIONS IN A GENERAL COORDINATE

SYSTEM

Replacing the wall normal diffusion terms in equation (C.1) using equations (C.4)
and (C.5), we get

Φin
k = Sn

µ̄

∂

∂x j

[
µeff

Sn

µ̄

∂(ρ̄k)

∂x j

]
− ∂

∂x j

[
µeff

∂k

∂x j

]
, (C.6)

where Sn can be expressed using the general coordinate system as

Sn =
(√

ρ̄

µ̄
+`n j

∂
(√

ρ̄/µ̄
)

∂x j

)−1

, (C.7)

where n j represents a unit vector in the wall-normal direction. One could follow a
similar approach to derive Φin

ω .
In the outer layer, we propose applying the corrections equivalently in all the

directions. For instance,

Φout
k = 1√

ρ̄

∂

∂x j

[
µeff

1√
ρ̄

∂(ρ̄k)

∂x j

]
− ∂

∂x j

[
µeff

∂k

∂x j

]
, (C.8)

and similarly for Φout
ω and ΦC D .
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