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1. Introduction. 
Most steel constructions such as cranes, ships, bridges and building frames experience compressive 

loads and are thus susceptible to buckling. Buckling of construction members is usually a very sudden 

process without much warning in advance. Therefore it is important to account for the effect of 

buckling in the design of a construction. 

Buckling analysis can be performed by Finite Element Method(FEM) packages. However, these 

analyses usually cost a lot of engineering time. This because for the analysis to make any sense, it 

must often be done on individual plate fields. This brings a lot of uncertainties about boundary 

conditions into the calculation. Therefore buckling analysis in FEM is very labour intensive and costly. 

A much simpler way to check for buckling is by means of a standard, such as Eurocode 3(EC3). 

Engineers use standards to validate whether the dimensions of a design will be able to resist all loads 

acting on a structure. These standards are made up from mathematical models that describe 

buckling combined with empirical data from real life experiments. The recommendations ensure, 

when followed correctly, that a structure will be strong enough to resist certain applied loads. 

Buckling analysis would become less time consuming when the stress results from an FEM analysis 

can be compared to these standards. However, often there is a discrepancy between FEM results and 

input parameters used in standard recommendations. 

This gap between FEM results and standard input parameters has been researched1. The aim of the 

research was to convert FEM results into design factors that were needed to check for buckling of 

plated structures. Two different standards were chosen for an in-depth analysis. The American 

Bureau of Shipping (ABS) guide for buckling assessment for offshore structures, and Det Norske 

Veritas (DNV) recommended practices for buckling strength of plated structures. These standards for 

offshore and ship building were chosen because of the common use of plated structures in these 

industries. 

This research will make an analysis of the buckling recommendations as presented in EC3. This 

because of the broad use of this standard in construction. In the first part of this research, the theory 

behind recommendations from EC3 will be reviewed. These include beam buckling, plate buckling, 

inelastic buckling and also the effect of shear lag, which can be observed in thin-walled members 

loaded in bending. 

The second part will look at the recommendations in EC3 themselves. Recommendations from two 

volumes will be reviewed. 

 NEN-EN 1993-1-1 Design of steel structures – Part 1-1: General rules and rules for buildings 

 NEN-EN 1993-1-5 Design of steel structures – Part 1-5: Plated structural elements 

The first volume will give recommendations for buckling of columns loaded in compression and 

bending as well as for build-up construction members. The second volume is concerned with 

recommendations for buckling of plated structures. Furthermore, the recommendations are 

presented for the critical length, shear lag an inclusion of imperfections. 

                                                           
1
 Aberkrom, B: Defining parameters for buckling checks of plated structures in finite element software 

packages. Delft, 2014. 
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In the final part a comparison will be made between two different standards for plate buckling. The 

DNV recommended practices have been used in order to evaluate buckling results from finite 

element software packages. In order to safe up on computing and modelling time, FEM models with 

beam elements would be best. However, to deal with transverse stresses, more complicated plate 

elements are required. Since the EC3 recommendations deal with plate buckling without the use of 

transverse stresses, a comparison between the two standards is made. 
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2. Theory Of Buckling 
The buckling recommendations made in EC3 are a combination of mathematical models and factors 

from empirical data. The theory behind the mathematical models are presented in this part. First, 

beam buckling is discussed (2.1),  with the concept of stability, Euler buckling, torsional buckling and 

lateral torsional buckling due to bending forces. Next plate buckling is discussed (2.2). Also the ideas 

behind Inelastic buckling (2.3) and shear lag (2.4) are presented in this part. 

2.1. Beam Buckling 
Beams subjected to compressive loadings have the tendency to deflect laterally. This lateral 

deflection is called buckling. A beam will fail under the influence of compressive loadings when the 

stresses caused by lateral deflection are greater than the materials yield strength. Failure due to 

buckling is often a process without much warning. Therefore it is required to give special attention to 

buckling in the design process of beams and columns. 

This chapter will discuss a couple of theoretical subject concerning buckling. First the stability of a 

beam under influence of compressive loadings will be discussed. The stability will dictate the load 

before a beam will buckle. This load is discussed in Euler buckling. Euler buckling is only concerned 

with elastic buckling. Therefore the subject of inelastic buckling is discussed next. Finally this chapter 

will give a discussion about torsional buckling and warping. 

2.1.1. Stability 

Failure of a beam due to buckling can be a sudden process without warning. A beam transforms from 

a stable equilibrium to an unstable equilibrium with increasing compressive load. The point where 

stable will turn to unstable is called the bifurcation point and is depicted in the following figure. 

 
Figure 2.1 Bifurcation point with a stable path after buckling (left) and an unstable path after buckling (right) 

After this bifurcation point, a new path is followed. This new path determines the failure of a 

member with respect to buckling. The left figure allows for an increase in load after buckling. This 

indicates that despite plastic deformation of a beam, it will not fail completely. The right figure shows 

an unstable path that cannot even resist the critical load. Such a beam will fail completely due to 

buckling. 
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The load that belongs to this tipping point is called the critical load. This critical load can be explained 

by considering the following mechanism. 

 
Figure 2.2 Buckling mechanism represented by two bars and a spring 

The critical load is that load that will bring the disturbing force P in equilibrium with the restoring 

force F. The disturbing force P is related to the external loads acting on the beam while the restoring 

force F is related to the bending stiffness of the beam. 

2.1.2. Euler Buckling 

The Swiss mathematician Leonard Euler was the first to solve the linear buckling problem for ideal 

columns in 1757. The ideal column considered to solve this problems has the following properties. 

- Initially perfectly straight 

- Made of homogeneous material 

- Material behaves linear-elastic 

- External load is applied exactly through the cross section centroid 

- Buckling will occur only in a single plane 

As mentioned under stability, a column will remain stable when internal resistance is greater than 

external compressive forces. The internal resistance is related to bending, where the external 

bending moment is caused by the external load and a small deflection. 

 
Figure 2.3 Internal forces describing Euler buckling 
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This leads to the following differential equation by which this buckling problem can be described. 

 𝑑²𝑣(𝑥)

𝑑𝑥²
+

𝑃

𝐸𝐼
𝑣(𝑥) = 0 (2.1)  

   
Solving this differential equation will provide a set of critical loads belonging to certain buckling 

shapes. The lowest value, belonging to a half sine wave buckling shape, is of interest for buckling 

failure, since this is the lowest value for which a column will fail due to buckling. 

 
𝑃𝑐𝑟 =

𝜋²𝐸𝐼

𝐿²
 (2.2)  

   
The strength of columns is usually represented by stresses. Therefore in column design, the radius of 

gyration is introduced, which is defined as 

 
𝑟 = √𝐼

𝐴⁄  (2.3)  

   
With the radius of gyration, the critical load is transformed into the critical stress. 

 
𝜎𝑐𝑟 =

𝜋²𝐸

(𝐿 𝑟⁄ )²
 (2.4)  

   
The boundary conditions of a column do influence the value of the buckling load. A column that is 

considered to be fixed at both ends is able to resist more load than a column which is pinned at both 

ends. This difference is indicated by the effective column length. 

The effective length is defined as the column length between two points of zero moment. Therefore 

every column can be considered as being pinned at both ends. Other boundary conditions are 

accounted for by introducing the effective length factor K. The value of this factor can be seen for 

different boundary conditions in the following figure. 

PINNED-PINNED FIXED-FIXED FIXED-PINNED FIXED-FIXED FIXED-FREE 

     

𝐾 = 1 𝐾 = 0.5 𝐾 = 0.7 𝐾 = 1 𝐾 = 2 

Figure 2.4 Effective length factor K for different boundary conditions 

The denominator part in the critical stress formula is called the slenderness ratio. 
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𝜆² = (

𝐾𝐿

𝑟
)

2

 (2.5)  

   
This slenderness ratio is most often used to represent a buckling curve. This curve shows critical 

stress for a column with certain slenderness. The Euler Buckling Curve is represented by the red 

dotted line in Figure 2.12 

2.1.3. Torsional Buckling 

It is possible for some thin-walled bars to buckle under the influence of axial compression while its 

longitudinal axis remain straight. This is called torsional buckling. In particular columns with wide 

flanges and short lengths are sensitive to this kind of buckling. 

 
Figure 2.5 Torsional buckling due to compressive load 

Torsional buckling is a process where an axial compression force exceeds the resistance of a columns 

cross section to torsion. This resistance to torsion is build up from two parts. The first being the 

resistance to shear stresses imposed by pure torsion. These shear stresses are proportional to 

change of twist angle over the length of a beam loaded in torsion, factorized by the product of 

shearing modulus of elasticity (G) and the St.Venant torsional constant (J). 

The second part is due to lateral deflection of the flanges. This is also known as warping of the 

stiffener. The lateral deflection increase the torsional moment of the column and is thus proportional 

to the third order change of twist angle over the length of a beam, and factorized with the warping 

rigidity. This rigidity is the product of modulus of elasticity (E) and the warping constant (Cw).  

 

These two parts lead to a differential equation for non-uniform torsion. 

 
𝑇 = 𝑇1 + 𝑇2 = 𝐺𝐽

𝑑𝜑

𝑑𝑧
− 𝐸𝐶𝑤

𝑑³𝜑

𝑑𝑧³
 (2.6)  

   
To link the differential equation for torsion to compression loads in the flanges a pin ended strut 

model is used. Bending moments created by compressive loads about the longitudinal axis represent 

torsion forces on the column. The torque per unit length is expressed as 

 
𝑡𝑧 = −𝜎𝐼0𝐶1

𝑑²𝜑

𝑑𝑧²
 (2.7)  
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Where I0 is the polar moment of inertia of the cross section about the shear centre.  

These two expressions for torsion and torque can made into a differential equation that describes 

the problem of torsional buckling. This differential equation can be solved for different boundary 

condistions 

For a simply supported column, which cannot displace but is free to warp at the ends, the critical 

compressive stress will be 

 
𝜎𝑐𝑟 =

𝐺𝐽

𝐼0
+

𝜋²𝐸𝐶𝑤

𝐼0𝑙²
 (2.8)  

   

 
Figure 2.6 Torsional buckling for simply supported column 

For a build-in column, which cannot displace and is restricted to warp at the ends, the critical 

compressive stress will be 

 
𝜎𝑐𝑟 =

𝐺𝐽

𝐼0
+ 4

𝜋²𝐸𝐶𝑤

𝐼0𝑙²
 (2.9)  

   

 
Figure 2.7 Torsional buckling with warping restricted at one side 

This shows that the torsional strength of a column will increase when the ends are restricted to warp. 

Considering a simply supported column is therefore a conservative choice. 

2.1.4. Lateral Torsional Buckling 

A beam loaded in pure bending can upon reaching a critical value of load buckle laterally. Especially 

for beams without lateral support, and for which the flexural rigidity (against normal beam buckling) 

is larger compared to the lateral bending rigidity. 
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Figure 2.8 Lateral torsional buckling due to bending 

This type of buckling is called lateral torsional buckling. This because, as can be seen in Figure 2.8, 

due to bending, both lateral displacement as well as torsional displacement act simultaneously. 

However, there is no warping of the cross section. 

This type of buckling is due to the difference in stress distributions due to bending. This distribution 

will cause one flange to be loaded in compression while the other flange is loaded in tension. Failure 

will occur because the compression flange fails due to buckling.  

By preventing lateral displacement of the compression flange, the resistance to lateral torsional 

buckling can be increased. 
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2.2. Plate Buckling 
Plate buckling can be regarded as a special case of beam buckling. A plate can be regarded as 

multiple connected beams. When these beams are loaded in compression, they will show the same 

behaviour with regard to buckling than a single beam does. There are however some differences, as 

can be seen in the equation for plate buckling load. 

 
𝑁𝑐𝑟 = 𝐾

𝜋2𝐸𝑡3

12𝑏(1 − 𝜈2)
 (2.10)  

   
First of all, Poisons ratio will cause the beams to expand laterally. These lateral expansions are 

prevented by each neighbouring beam in the multiple beam plate model. This has a strengthening 

effect on the plate since more force is required in order to get the same deformations as for beams. 

Another effect has to do with the plate aspect ratio. Wide plates, with relative low aspect ratios, is 

more resistant against buckling than long plates, with relative high aspect ratios. This effect is 

represented by the buckling coefficient K. This coefficient is determined by the plates aspect ratio 

and the number of half-sine buckling waves. 

 
Figure 2.9 Number of half-waves in a buckled plate 

Figure 2.10 shows the buckling coefficient for a plate simply supported at all four edges. A special 

point can be seen at the aspect ratio of √2. Here the buckled plate will step from a single half sine 

wave buckling form, to a double half sine wave buckling form. Also can be seen that for larger aspect 

ratios, the buckling coefficient will asymptote to 4, which can consequently be regarded as the 

minimum buckling coefficient for such plates.  

 
Figure 2.10 Buckling coefficients for a plate simply supported at all edges (left). Difference between buckling coefficients 
for a plate simply supported on all edges (right blue) and free on one side (right red) 

The buckling coefficient depends on the boundary conditions of a plate loaded in compression. A 

plate which is simply supported on all four sides will have a better buckling coefficient than a plate 
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which has one free edge as can be seen in Figure 2.10. The buckling coefficient is further influenced 

by the way that load is applied. A plate loaded in compression  will yield a different coefficient than a 

plate loaded in bending. 

On more difference between plate and beam buckling is the post buckling stress. Most beams will fail 

completely after the critical compression load is reached. For plates this is different. Plates are 

commonly supported at all four edges. Due to these supports, the plate will not fail completely after 

reaching critical buckling load. After buckling of the middle part of the plate, the edges will be able to 

resist the compression forces until the materials yield strength is reached. This results in a non-

uniform stress distribution as can be seen on the left in Figure 2.11. This non-uniform stress 

distribution can make it rather difficult to further evaluate the plate load bearing capacity. Therefore 

the effective width method is often used. This method assumes that the deformed centre of the 

plate will no longer resist any of the compressive stresses. Instead the stress distribution over the 

entire width is replaced with an equivalent continues stress over an effective width of the plate. This 

is shown on the right side in Figure 2.11 

  
Figure 2.11 The effective width method 
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2.3. Inelastic Buckling 
Columns will buckle when a critical buckling stress is reached. When this stress is in the elastic range 

of the material, it is called elastic buckling. Most long and slender columns will tend to buckle in this 

stress range. However, when a column is short and stocky, the critical buckling stress may be greater 

than the yield stress of the material. In this region the material no longer behaves elastically. 

Therefore buckling of such regions is called inelastic buckling. 

 
Figure 2.12 Inelastic Buckling Curve 

Inelastic buckling of columns is only due to material yielding. Therefore it has a much less predictable 

shape than elastic buckling has.  

 
Figure 2.13 Difference in buckling shape for elastic and inelastic buckling 
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2.4. Shear Lag 
In normal linear elastic analysis, plane sections are assumed to remain in shape after bending. This 

assumption works well for solid columns, however for thin-walled columns, this is not entirely true. 

Bending forces are normally introduced to a column by means of vertical loads, instead of pure 

couple. These vertical loads are transferred by the webs to act on the flanges as bending loads. 

However, they are transferred by shear. Since the connection between web plating and flange has a 

higher capacity to resist these shear forces than the middle of the flange. This results in a non-

uniform stress distribution in the flange plate as can be seen in Figure 2.14.  

 
Figure 2.14 Non-uniform stress distribution in flange plate due to transfer of shear forces by web plate. 

The shear stresses introduced to the flange by the web plates, combined with the bending forces, 

will cause the flange plate to deform. Higher deformations can be seen at the connection between 

web and flange plate than in the middle of the flange. This phenomenon of difference in-plane 

distortion is referred to as shear lag.  

Shear lag is only observed in thin-walled columns where bending forces result from vertical loads. 

Columns loaded in pure bending will not show the shear lag effect. This because the stress 

distribution of a pure bending couple will act directly on the flange plate, instead of being transferred 

by web to flange plate. 

There are a number of variables that influence the magnitude of shear lag. These are, plate aspect 

ratio, distribution of lateral forces, relative proportions of web and flange and stiffener types. 

Generally, beams with very wide flanges and shallow webs (e.g. aircraft wings) are very susceptible 

to shear lag. On box girders, the influence of shear lag is usually very low. 
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3. Buckling Of Steel Structures In Eurocode 3 
As mentioned before, the theory of elastic buckling combined with factors from empirical data is 

transformed into recommendations. The recommendations from EC3 are presented in this part. Two 

standards are used, that both describe recommendations for the design of steel structures. 

 NEN-EN 1993-1-1 Design of steel structures – Part 1-1: General rules and rules for buildings 

 NEN-EN 1993-1-5 Design of steel structures – Part 1-5: Plated structural elements 

The recommendations in EC3 are very general because it is a European standard. Each country 

following the EC3 standard may have its own recommendations for certain variables presented in the 

standard. These are presented in the national annex to the EC3 for each member state. Whenever a 

reverence to a national annex is made in this research, it is to the Dutch national annexes. 

First of all, the differences in cross-section classifications(3.1) is presented,  which will yield different 

results in both column and plate buckling. In the next chapter the recommendations are presented 

for uniform members in compression (3.2). These contain member stability, buckling curve and 

relative slenderness. Following is a description for uniform members loaded in bending (3.3). Next 

are the recommendations for build-up columns (3.4). These columns are still treated as single 

columns instead of regarding the plates individually. Plate buckling in EC3 is discussed in the next 

chapter (3.5). 

Important for the analysis of both column and plate buckling is the critical length (3.6) of the 

member. Therefore it is discussed in a separate chapter. The effects of shear lag (3.7) and 

imperfections (3.8) on buckling strength are also presented. Finally recommendations in Eurocode 3 

for the use of FEM (3.9) are presented as well. 
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3.1. Cross-Section Classification 
Slender columns are more susceptible to local buckling than stocky ones. Slender columns will 

therefore collapse before even the design strength is reached. A cross-section classification is made 

in Eurocode 3 to indicate the influence of local buckling to the cross-sectional resistance and 

rotational capacity. 

A cross-section is classified according to the highest class of its compression parts. 

From NEN-EN 1993-1-1 5.5.2, 

Class 1 Plastic cross-sections. Cross-sections are those  which can form a plastic hinge with the 

rotation capacity required from plastic analysis without reduction of the resistance. 

Class 2 Compact cross-sections. Cross-sections are those which can develop their plastic moment 

resistance, but have limited rotational capacity because of local buckling. 

Class 3 Semi-compact cross-sections. Cross-sections are those in which the stress in the extreme 

compression fibre of the steel member assuming an elastic distribution of stresses can reach the 

yield strength, but local buckling is liable to prevent development of the plastic moment resistance. 

Class 4 Slender cross-sections. Cross-sections are those in which local buckling will occur before the 

attainment of yield stress in one or more parts of the cross section.  

 
Figure 3.1 Different cross-section classes used in Eurocode 3 

As can be seen in Figure 3.1, class 1 cross-sections are able to resist the highest plastic moment (Mp) 

and will collapse after the ultimate strength rotation capacity (φu) is reached. Compact class cross-

sections can fully develop into a plastic hinge, but has not enough rotational capacity to reach the 

materials ultimate strength. The Semi-compact class is unable to fully develop a plastic hinge before 

it will collapse due to local buckling. However the materials yield strength is reached before collapse. 

Class  4 cross-sections are not able to resist the yield strength before failing due to local buckling. 
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Because the first three classes are able to reach yield strength before collapsing a distinction is made 

between these three and class 4. This is represented in Eurocode 3 by the use of the net cross-

sectional area for class 1, 2 and 3 and an effective cross section (which is smaller) for class 4. 

Following is an extract showing the varies ratios for pure compression and pure bending of internal 

compression parts (Figure 3.2) and outstand flanges (Figure 3.3). 

   Compression Bending 

Internal compression 
parts 

Class 1 𝑐/𝑡 ≤ 33 ε 72 ε 

Class 2 𝑐/𝑡 ≤ 38 ε 83 ε 

Class 3 𝑐/𝑡 ≤ 42 ε 124 ε 

Outstand flanges 

Class 1 𝑐/𝑡 ≤ 9 ε  

Class 2 𝑐/𝑡 ≤ 10 ε 

Class 3 𝑐/𝑡 ≤ 14 ε 

     

fy 235 275 355 420 460 

ε 1.00 0.92 0.81 0.75 0.71 
Table 1 Extract from Table 5.2 of NEN-EN 1993-1-1. Width to thickness ratios determining the cross-section class 

 
Figure 3.2 Configurations and parameters of internal compression parts 

 
Figure 3.3 Configuration and parameters of outstand flanges 
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3.2. Uniform Members In Compression 

3.2.1. Member Stability 

Member stability regulations are prescribed for EC3 in the NEN-EN 1993-1-1 Design of steel 

structures. Chapter 6.3 of this part describes the criteria for beam buckling stability. It starts with a 

simple criteria. 

6.46 
𝑁𝐸𝑑

𝑁𝑏,𝑅𝑑
≤1,0 (3.1)  

   
This relation insures that the acting compressive force on a member (NEd) will not exceed the 

buckling resistance belonging to the cross section of that beam (Nb,Rd). 

The buckling resistance Nb,Rd can be calculated for two different situations. The first for class 1, 2 and 

3 cross sections and in the second situation for class 4 cross sections. The difference in cross section 

class will be explained in chapter 3.1,  but the main difference is the use of member cross section. 

For class 1, 2 and 3 cross sections, the cross section (A) has to be used, while for class 4 cross sections 

the cross section is replaced by an effective cross section (Aeff). 

6.47 𝑁𝑏,𝑅𝑑 =
𝜒𝐴𝑓𝑦

𝛾𝑀1
 (3.2)  

   
Besides the cross section and materials yield strength is the reduction factor χ incorporated in the 

beam buckling resistance. This reduction factor is related to a buckling curve and appropriate 

buckling shape. 

The partial factor γM1 relates to the resistance of elements tested for stability. This can be regarded 

as a safety factor and is in most cases by default taken as 1. 

3.2.2. Buckling Curve 

As mentioned above, buckling curves are represented is the buckling check by a reduction factor χ. In 

EC3 there are five different buckling curves that can be used along with the relative slenderness of 

the member, in order to get the proper value for χ. 

These  five different buckling curves are shown in Figure 3.5. Each buckling curve is build up from the 

same equation. 

6.49 𝜒 =
1

𝛷 + √𝛷2 − �̅�²
 (3.3)  

   
The curves are limited to a reduction factor of χ = 1.0. This represents the effect of inelastic buckling 

as described in chapter 0. The difference in buckling curves comes from an imperfection factor α that 

is used in the shape function Φ. 

6.49 𝛷 = 0,5 [1 + 𝛼(𝜆 − 0,2) + 𝜆
2

] (3.4)  

 

The imperfection values used in this shape function to create the buckling curves a0 to d, are shown 

in the following table. 
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Table 2 Imperfection factors used in the shape function Φ to create buckling curves a0 to d. NEN-EN 1993-1-1-6.3.1.2 

 The proper buckling curve can be selected with the aid of Table 6.2 in the EC3. 

 
Figure 3.4 Part of NEN-EN 1993-1-1-6.3.1.2 Table 6.2. Here limitation are given for selecting the proper buckling curve for 
pressed I-beams. The last two columns indicate which ‘best’ buckling curve can be used.  

The last two columns in Figure 3.4 indicate which buckling curve can be used for this type of cross 

section. The difference between the two columns is the material type used. The first column 

represents buckling curves for lower strength steel (S235, S275, S355 and S420). The second column 

represents the buckling curve that can be taken for higher strength steel (S460).  

In order to get the highest allowable compressive force (NEd), the buckling resistance needs to be as 

high as possible. Therefore the reduction factor χ needs to be as high as possible, which requires a 

low imperfection factor α. The best buckling curve therefore is a0, while curve d gives the poorest 

performance.  This effect can be seen again in Figure 3.4. Here tall cross sections (h/b>1,2)  of higher 

strength steel (S460), which have a high bending resistance, follow the ’best’ a0 buckling curve. 

However wide cross sections (h/b<1,2), of lower strength steel (S235) and thick flanges (t>100mm), 

follow the ‘worst’ buckling curve d. 
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Figure 3.5 Buckling curves as represented in NEN-EN 1993-1-1-6.3.1.2 Figure 6.4 

3.2.3. Relative Slenderness 

The reduction factor χ is related by the shape function Φ to the relative slenderness �̅�. Normally the 

slenderness of a member is a ratio between its critical length and radius of gyration. However in EC3 

the material strength is incorporated into the equation as well. Therefore the relative slenderness 

becomes a ratio between the material yield strength and the critical buckling stress. The relative 

slenderness is defined by the following equation. 

6.50 �̅� = √
𝐴𝑓𝑦

𝑁𝑐𝑟
=

𝐿𝑐𝑟

𝑖

1

𝜆1
 (3.5)  

   
Again for cross section classes 1, 2 and 3 the cross section has to be taken as for cross section class 4 

the effective cross section has to be taken.  

This relative slenderness is the normal slenderness, combined with a material factor λ1 that relates 

the elastic modulus, which is the same for all steel materials, to the materials yield strength. 

Transformation from the normal slenderness ratio into the relative slenderness ratio is done with the 

aid of a material factor λ1. 

 
𝑁𝑐𝑟

𝐴
=

𝜋2𝐸

𝜆2
  

 
�̅�2 =

𝐴𝑓𝑦

𝑁𝑐𝑟
=

𝜆2𝑓𝑦

𝜋2𝐸
=

𝐿𝑐𝑟
2

𝑖2

𝑓𝑦

𝜋2𝐸
=

𝐿𝑐𝑟
2

𝑖2

1

𝜆1
2  

 
𝜆1 = 𝜋√

𝐸

𝑓𝑦
 (3.6)  
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The relative slenderness as represented in equation (1.4) is to be used for normal beam buckling. 

That is to say buckling related to the internal bending moment resistance of the cross section. For 

torsional buckling EC3 gives another relative slenderness, �̅�𝑇. 

6.52 �̅�𝑇 = √
𝐴𝑓𝑦

𝑁𝑐𝑟,𝑇𝐹
 (3.7)  

   
As can be seen, the only difference with the relative slenderness for bending is the use of a different 

critical compressive force. This Ncr,TF is the critical elastic torsional buckling force. In EC3 there are no 

equations prescribed to calculate the values of Ncr,TF. In chapter 2.1.3, equations are shown to 

calculate these critical elastic torsional buckling forces. 

The buckling curves show a cut-off point for a relative slenderness value of 0.2. This is because EC3 

considers members with a relative slenderness 0.2 or less to be insensitive to buckling. Such 

members will fail due to yielding of material before buckling will occur. Also for compressive loads 

that are equal or less than 4% of the critical buckling load can buckling be neglected. 



 

 
22 

 

3.3. Uniform Members In Bending 

3.3.1. Member Stability 

Members loaded in bending will normally have a flange loaded in compression and one loaded in 

tension. A flange loaded in tension is, of course, unsusceptible for buckling. Therefore buckling under 

influence of bending is governed by the compression flange. Also a laterally supported member will 

be unable to buckle because the buckling shape will be restricted. 

In EC3, again, a simple criteria is formulated to check for lateral-torsional buckling. 

6.54 
𝑀𝐸𝑑

𝑀𝑏,𝑅𝑑
≤1,0 (3.8)  

   
This ratio prevents the acting major axis bending moment (MEd) from exceeding the design buckling 

resistance moment of the member loaded in bending. As mentioned before, a laterally restraint 

member will not be sensitive to lateral-torsional bending and therefore has not to be checked. The 

same is true for members with certain cross-sections, that are designed to withstand torsion, like 

rectangular hollow sections (RHS), circular hollow sections (CHS) or even fabricated circular tubes 

and square boxes. 

The buckling resistance moment is again calculated for different cross section classes as explained in 

chapter 3.1. 

6.55 𝑀𝑏,𝑅𝑑 =
𝜒𝐿𝑇𝑊𝑦𝑓𝑦

𝛾𝑀1
 (3.9)  

   
The appropriate section modulus Wy depends on the cross section class in the following way. 

Wy = Wpl,y Plastic section modulus Cross section Class 1 and 2 

Wy = Wel,y Elastic section modulus Cross section Class 3 

Wy = Weff,y Effective section modulus Cross section Class 4 

 

3.3.2. Buckling Curve 

The design buckling moment is related to buckling curves by means of reduction factor χLT. EC3 has 

four different buckling curves for lateral-torsional buckling. Each buckling curve is related to the 

relative slenderness of the member by means of an imperfection factor. The four buckling curves for 

lateral-torsional buckling are the curves a, b, c and d in Figure 3.4. 

Generally, the buckling curves are represented by the following equation. 

6.56 
𝜒𝐿𝑇 =

1

𝛷𝐿𝑇 + √𝛷𝐿𝑇
2 − �̅�𝐿𝑇

2

 
(3.10)  

   
This curve is, like the compression member buckling curve limited to  𝜒𝐿𝑇  =  1.0 to represent 

inelastic buckling effects. However, for rolled sections or equivalent welded sections, other buckling 

curves must be used. 
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6.57 
𝜒𝐿𝑇 =

1

𝛷𝐿𝑇 + √𝛷𝐿𝑇
2 − 𝛽�̅�𝐿𝑇

2

 
(3.11)  

   

These curves are not only limited to 𝜒𝐿𝑇  =  1.0, but also to 𝜒𝐿𝑇 = 1 𝜆𝐿𝑇

2
⁄ . The value of β is regulated 

in the National Annex, which is 𝛽 = 0.75 in the Dutch National Annex. 

 
Figure 3.6 Selecting the proper buckling curve for members loaded in bending 

The reduction factor 𝜒𝐿𝑇 can further be modified to account for the fact that the bending moment 

along the member does not need to be constant. By means of a correction factor kc the reduction 

factor is altered to allow for 8 different types of moment distribution. 

 
Figure 3.7 Correction factor to account for different moment distributions 

3.3.3. Relative slenderness 

The relative slenderness of a member used to check for lateral-torsional buckling incorporates the 

strength of the material by means of its yield strength. 
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 𝜆𝐿𝑇 = √
𝑊𝑦𝑓𝑦

𝑀𝑐𝑟
 (3.12)  

   
Here the elastic critical moment for lateral-torsional buckling is included as well. To determine the 

value of Mcr, EC3 refers to the National Annex again. In the Dutch National Annex, a rather large 

section is dedicated to the exact calculation of Mcr. In its most general form, however, the elastic 

critical moment can be calculated in the following way. 

NB.148 𝑀𝑐𝑟 = 𝑘𝑟𝑒𝑑

𝐶

𝐿𝑔
√𝐸𝐼𝑧𝐺𝐼𝑡 (3.13)  

   
The proper value for Wy is again determined by the cross section class, as mentioned earlier. 

The effect of lateral-torsional buckling can be neglected for members with relative slenderness of 

0.4. Also for bending moments equal to or less than 16% of the elastic critical moment, can lateral-

torsional buckling be neglected. 

Members loaded in bending, which do have lateral restraint to the compression flanges, are 

unsusceptible to buckling if the relative slenderness between two consecutive lateral restraints 

satisfies to following criteria. 

6.59 𝜆𝑓 =
𝑘𝑐𝐿𝑐

𝑖𝑓,𝑥𝜆1
≤ 𝜆𝑐,0

𝑀𝑐,𝑅𝑑

𝑀𝑦,𝐸𝑑
 (3.14)  

   
As can be seen in this criteria, a critical length is introduced again. This is the length between lateral 

supports for which no lateral-torsional buckling can occur. More on the critical length used in EC3 is 

discussed in chapter 0.  
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3.4. Build-Up Compression Members 

3.4.1. Build-Up Members 

In EC3 a distinction is made between load bearing members and construction members. The main 

members in a build-up construction are the load bearing chords. These chords are connected by 

means of construction members, which can be lacing or battening. 

 
Figure 3.8 Definition of build-up member with important parameters and parts, Chord (Red), Lacing (Green), Battening 
(Blue) 

The use of lacing or battening to build-up a compression member makes for a discrete structure 

instead of a continue structure. Since it is very labour intensive to perform discretized calculations, 

EC3 presents two conditions that have to be met in order to assume the build-up member to be 

continues. It allows the discrete structure to be smeared out into a single continues member when, 

1. The member is divided by the lacing or battening in equal modules between parallel chords. 

2. The build-up member has at least three of these modules. 



 

 
26 

 

Furthermore, it does not matter whether the chords are solid or build-up themselves. When these 

conditions are met, the build-up member may be considered as a column with an initial imperfection 

of e0, due to the manufacturing of the build-up member. The compression force on the member to 

check for buckling stability (NEd) has to be transformed to act on the chords. This is done by using a 

compression force in the chord, Nch,Ed, that is constructed from the normal compression force along 

with moment MEd at mid span of the build-up member. 

6.69 𝑁𝑐ℎ,𝐸𝑑 = 0.5𝑁𝐸𝑑 +
𝑀𝐸𝑑ℎ0𝐴𝑐ℎ

2𝐼𝑒𝑓𝑓
 (3.15)  

   
With the bending moment MEd being the combination of the compression force NEd acting on the 

imperfection added to an already present bending moment. 

 
𝑀𝐸𝑑 =

𝑁𝐸𝑑𝑒0 + 𝑀𝐸𝑑
′

1 −
𝑁𝐸𝑑
𝑁𝑐𝑟

−
𝑁𝐸𝑑
𝑆𝑣

 (3.16)  

   
In this last equation the shear stiffness of the lacings or battings is included. Next to having enough 

shear stiffness, the lacings or battings have to be checked for their capacity to resist a shear force 

acting in the end panel VEd. 

6.70 𝑉𝐸𝑑 = 𝜋
𝑀𝐸𝑑

𝐿
 (3.17)  

   
As mentioned above, a distinction is made between lacing and battening. This distinction is made 

because of the different way to evaluate the shear stiffness and the effective moment of inertia of 

the build-up member. Next to these differences, EC3 makes recommendations about the 

constructional details for both laced and battened members. 

3.4.2. Laced Compression Members 

Verification for buckling of laced compression members is done with the same check as for normal 

prismatic member buckling, with the exception of the compression force acting on the chord Nch,Ed 

instead of the normal compression force acting on the prismatic member NEd. 

6.71 
𝑁𝑐ℎ,𝐸𝑑

𝑁𝑏,𝑅𝑑
≤ 1.0 (3.18)  

   
The buckling resistance can be calculated in the same way as for prismatic beams, using the same 

buckling curves and relative slenderness. However the one difference for laced members is the use of 

another critical length. This buckling length, Lch, is presented for three different configurations and 

are show in the following figure. 
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Figure 3.9 Critical chord length for laced build-up compression members 

A laced compression member has to follow three construction recommendations. First of all, the 

lacing system of a build-up member has to be arranged in such way that opposite faced lacings are 

“in shadow” of each other (see Figure 3.10 A). Due to this shadowing, there will be no additional 

torsional effects present in the build-up member. 

If, for whatever reason, the opposing faces are mutually opposed instead of “in shadow” (see Figure 

3.10 B), the appropriate torsional effects should be taken into account. 

Finally, tie members, which can be compared to battening, are to be provided at special sections of 

the build-up member. These special sections are, the ends of lacing systems, where the lacing system 

is interrupted, and at the joints with other members. 

 
Figure 3.10 Build-up compression members. A) laced with faces "in shadow". B) laced with mutually opposed faces. 

3.4.3. Battened Compression Members 

A battened compression member is more susceptible to buckling than a laced compression member. 

Because of this, the cords of a build-up member with battening have to be checked for the actual 

moments and forces in end panels and at mid-span according to the following figure. 
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Figure 3.11 Moments and forces acting on a build-up member with battening. NEN-EN 1993-1-1-6.4.3 figure 6.11. 

For battened compression members, again three construction recommendations are presented in 

EC3. First of all, battening is to be provided at each end of a member. Secondly, for members with 

opposing battened faces, the battening should be arranged opposite each other. And finally, 

battening should be provided at locations where loads and/or lateral restraint can be applied. 
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3.5. Buckling of Plated Structures 
Members with cross section classification of 1, 2 and 3 will not fail due to buckling before the 

materials yield strength is reached. However, class 4 members will fail due to local buckling before 

this material limit has been reached. This local buckling is especially of interest for members build-up 

from plated structures. Buckling requirements for these plated structures are found in NEN-EN 1993-

1-5: Plated structural elements. 

This chapter will show the requirements for plate buckling of both stiffened and unstiffened plates. 

Furthermore, interaction between axial force, bending force and transverse force will be discussed. 

Numbers in front of every equation refer to the EC3 equations presented in NEN-EN 1993-1-5 

3.5.1. Member Stability 

The criteria for plated member stability is as a combination of compression and bending moment. 

4.14 

𝑁𝐸𝑑

𝑓𝑦𝐴𝑒𝑓𝑓

𝛾𝑀0

+
𝑀𝐸𝑑 + 𝑁𝐸𝑑𝑒𝑁

𝑓𝑦𝑊𝑒𝑓𝑓

𝛾𝑀0

≤ 1.0 
(3.19)  

   
Instead of the buckling check for uniform members as presented in chapter 3.2,  the requirements 

for plate buckling are not tested against a buckling resistance belonging to a certain cross section. 

The acting compression force and bending moment are tested against the load bearing capacity of an 

effective cross section. 

4.1 𝐴𝑐,𝑒𝑓𝑓 = 𝜌𝐴𝑐  (3.20)  

   
The effective cross section is the alteration of the normal cross section with a reduction factor ρ. This 

reduction of cross section represents the effect of plate buckling, where failure of the middle of the 

plate will not immediately result in plate failure. The plate edges will be able to refrain the entire 

member from buckling. The plate member will fail completely when the edges fail due to yielding. 

This effect can be seen in the following figure. 

 
Figure 3.12 The effect of plate buckling. The black areas of the effective cross section (right) resist the compression load 
acting on the member. The white areas represent part of the plate that has already yielded and is thus unable to resist 
the compressive load. NEN-EN 1993-1-5-4.5 figure 4.4. 

A plate member is able to fail due to buckling in two different ways. First of all, as mentioned above 

due to failure of the plate edges to resist the compressive load. This is referred to as plate buckling 
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and is represented in Figure 3.12 between the stiffeners. For stiffened plates, as can be seen in 

Figure 3.12, the middle part of the plate is reduced. The plate will now fail only when the buckling 

capacity of the stiffener is reached. These stiffeners can be seen as column members. Therefore the 

second form of buckling failure is referred to as column buckling.  

3.5.2. Unstiffened Plates 

The effective cross section for unstiffened plates is determined by factorizing the plate cross section 

with reduction factor ρ. This reduction factor, like with uniform members in compression and 

bending are buckling curves (see FIGURE). As such they are functions of a relative plate slenderness. 

 

𝜆𝑝 = √
𝑓𝑦

𝜎𝑐𝑟
=

𝑏 𝑡⁄

28.4휀√𝑘𝜎

 (3.21)  

   
In these tables the buckling factor for intern compression parts and outward flanges can be 

determined depending on the stress distribution. 

 

 
Figure 3.13 Extract from Table 4.1 NEN-EN 1993-1-5-4.4. Stress distribution over the effective cross section for internal 
compression part loaded in pure compression. Stress ratio ψ determines the buckling factor kσ. 

 
Figure 3.14 Buckling curves for unstiffened plates in pure compression. The red curve represents internal parts of the 
plated member, while green represents the buckling curve for outward flanges. 
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3.5.3. Stiffened Plates 

Stiffened plates will buckle due to a combined effect of plate buckling between the stiffeners and 

column buckling of the stiffeners themselves. Due to this combined effect, an interpolation has to be 

made between the reduction factor for plate buckling ρ, and the reduction factor for column buckling 

χc. 

Also unstiffened plates with small plate ratios 𝑎 𝑏⁄ < 1.0, will fail due to column buckling instead of 

plate buckling. This because the plate edges of such plates are relatively small, and thus have far less 

capacity to resist compression loads after the middle of the plate has buckled. Therefore the entire 

plate will fail after buckling of the middle part of the plate. 

Because column buckling is important for these plate types, the reduction factor for uniform 

members χc, from chapter 3.2, has to be taken into account. However, since class 4 cross sections are 

regarded in this section, a slight different relative plate slenderness is calculated. The difference lies 

in the fact that for plates the Euler critical stress for plates is used instead of the critical stress for 

beams. The proper imperfection factor α (Table 2), that is used in the buckling curve shape function 

is prescribed according to the following table. 

Unstiffened plates α = 0.21  Buckling curve a 

Stiffened plates   

Open cross section stiffener 
𝛼𝑒 = 𝛼 +

0.09

𝑖 𝑒⁄
 

α = 0.34 Buckling curve b 

Closed cross section stiffener α = 0.49 Buckling curve c 
Table 3 Imperfection factors used to establish the proper buckling curve for column buckling 

The imperfection factor for stiffened plates depends on the ratio between stiffener radius of gyration 

and the distance between the centroid of the plate and the neutral axis of the effective column. 

Since this ratio is always greater than zero, the imperfection factor will always be bigger than those 

belonging to buckling curve b or c. As can be seen in Figure 3.5, this will result in a smaller reduction 

factor, which will in turn result in a lower buckling load resistance. In order to get the best result, the 

stiffener 𝑖 𝑒⁄  ratio needs to be increased. This can be done by using larger stiffeners or by using L- 

and T-stiffeners of the same size. 

For the plate buckling effect between stiffeners, the reduction factor for plates ρ is used. However, 

another relative plate slenderness is used as well. To account for the added strength of stiffeners the 

plate is compared with an equivalent orthotropic plate. That is to say that the added area of the 

stiffeners is smeared out over the plate. This results in an increased plate thickness. Therefore, a 

slightly different relative plate slenderness has to be used to obtain the plate reduction factor ρ. 

Both reduction factors (ρ and χc) are interpolated to get the final reduction factor for stiffened plates. 

4.13 𝜌𝑐 = (𝜌 − 𝜒𝑐)𝜉(2 − 𝜉) + 𝜒𝑐 (3.22)  
   
This reduction factor is used in order to get the proper effective cross section. This cross section is 

build-up from the effective plate cross section combined with its stiffeners and added to the edges of 

the plate. 

4.5 𝐴𝑐,𝑒𝑓𝑓 = 𝜌𝑐𝐴𝑐,𝑒𝑓𝑓,𝑙𝑜𝑐 + ∑ 𝑏𝑒𝑑𝑔𝑒,𝑒𝑓𝑓𝑡 (3.23)  
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3.5.4. Transverse Forces 

When a structural member is not only loaded longitudinally, but transversely as well, the lateral 

expansion due to Poisons ratio is restraint. This will increase the stress levels in the member, 

resulting in a lower overall buckling strength. Therefore the effect of transverse forces is regulated in 

EC3 as well. 

Transverse forces in EC3 are considered to be forces, Fs, acting over a certain section of the plate. 

The section length depends upon the stiff bearing on the flange. Three different situations are 

considered. First of all, the transverse force is introduced over an area that is effectively distributed 

over an angle of 45° (Figure 3.15 A). A common example of such a situation is a force being 

transferred by a perpendicular plate being welded to the flange. The second situation is where a 

series of concentrated forces are closely spaced. Here the section of plate that has to be checked is 

the distance from centre-to-centre between the outer loads (Figure 3.15 B). Finally a situation is 

described where the contact surface between applied load and flange plate is at an angle. In such 

situation a contact point is created (Figure 3.15 C). In this case, the length of plate section should be 

taken as zero. 

  

 

A B C 
Figure 3.15 Length of stiff bearing used to determine the effective length over which the transverse load will influence 
the plate buckling strength. NEN-EN 1993-1-5-6.3 figure 6.2. 

The stiff bearing length is used to calculate an effective loaded length of plate (ly), which combined 

with reduction factor (𝜒𝐹), yields the effective length for resistance to transvers forces (Leff). This 

effective length is required for the design resistance. 

6.1 𝐹𝑅𝑑 =
𝑓𝑦𝑤𝐿𝑒𝑓𝑓𝑡𝑤

𝛾𝑀1
 (3.24)  

   
 With the plate yield strength (fyw), plate thickness (tw), and partial factor for member instability 

(γM1=1.0).  

Verification of transverse strength of members is done by the efficiency ratio between acting 

transverse forces and transverse design resistance. 

6.14 휂2 =
𝐹𝐸𝑑

𝐹𝑅𝑑
≤ 1.0 (3.25)  

   

To get the reduction factor for effective length (𝜒𝐹), a plate slenderness is used (𝜆𝐹). 

6.4 𝜆𝐹 = √
𝑙𝑦𝑡𝑤𝑓𝑦𝑤

𝐹𝑐
 (3.26)  
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In which Fc is Euler elastic buckling load for plates (see equation 2.10). As seen in Plate Buckling, there 

are many different buckling coefficients for different plate boundary conditions. In EC3, the buckling 

coefficient (kF), is determined different for unstiffened and longitudinally stiffened plates. For 

unstiffened plates, EC3 considers three different types of load introduction to the plate. 

Type A Type B Type C 

 
 

 

   
Figure 3.16 Different plate buckling coefficients for three types of load introduction to the plate. NEN-EN 1993-1-5-6.1 
figure 6.1. 

Type A is when the introduced force (FS) is transferred through the plate and resisted by shear forces 

on both ends of the plate. Type B is when the introduced force is transferred through the plate 

directly to the other side. Type C is when the introduced force is only resisted by shear forces on one 

side of the plate. 

For stiffened plates, a single more intricate buckling factor is used that considers the plate between 

plate edge and first longitudinal stiffener. This factor is furthermore influenced by the second order 

moment of inertia of the stiffener itself. 

As mentioned at the beginning of this paragraph, the combination of both longitudinal an transverse 

loads will influence the buckling strength of a plate. This is illustrated in EC3 by an interaction 

expression that combines transverse force, bending moment and axial force. 

7.2 휂2 + 0.8휂1 ≤ 1.4 (3.27)  
   
Where 휂2 is the verification expression for transverse loads (equation 3.25), and 휂1 is the verification 

expression for axial forces and bending moments combined (equation 3.19a). 
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3.6. Critical Length 
In order to determine the relative slenderness of a member, its critical length must be determined 

first. According to EC3, the critical length has to be determined according to the National Annex. This 

National Annex allows for different countries to implement their own alternative procedures, values 

and recommendations into EC3. For this study, the Dutch National Annex will be used in order to 

assess the critical length NEN-EN 1993-1-1/NB-Annex C. 

The National Annex presents an evaluation of critical length for four different situations. These are 

prismatic members, spring supported members, crossing members and non-prismatic members. In 

this study the evaluation of buckling length will be limited to prismatic and non-prismatic members, 

however. In other literature, critical length can also be referred to as being the buckling length. In the 

following chapter the terms critical length and buckling length can be used interchangeably. 

3.6.1. Prismatic Members 

For prismatic members, the buckling length is determined for two types of beams. Firstly, beams that 

are part of a non-sway frame and secondly, beams that are part of a sway frame. The difference 

between these two types of frames is shown in Figure 3.17. 

BRACED FRAMES (NON SWAY) UNBRACED FRAMES (SWAY) 

 

 
 

 

Figure 3.17 Non-sway braced frames and Sway unbraced frames 

There are two methods presented in the National Annex to determine the buckling length. The first is 

by regarding the boundary conditions of columns in non-sway and sway frames. 

NON-SWAY NON-SWAY NON-SWAY SWAY SWAY 

PINNED-PINNED FIXED-FIXED FIXED-PINNED FIXED-FIXED FIXED-FREE 

     

𝐿𝑐𝑟 = 𝐿 𝐿𝑐𝑟 =
1

2
𝐿 𝐿𝑐𝑟 =

𝐿

√2
 𝐿𝑐𝑟 = 𝐿 𝐿𝑐𝑟 = 2𝐿 

Table 4 Critical length for columns with different boundary conditions 



 

 
35 

 

In order to use these length values, the boundary conditions have to be right. In reality, boundary 

conditions will be somewhere between the pinned-pinned and fixed-fixed situation. Where the 

pinned-pinned condition will yield very conservative buckling lengths, the fixed-fixed condition might 

yield to high buckling lengths. This will result in buckling failure of members before the calculated 

allowable load is reached. 

Therefore a second method is presented in the National Annex, that takes the stiffness of the 

boundary conditions into account. This method makes use of so-called nomographs. The buckling 

length can be read from these graphs by drawing a line between the flexibility parameters of both 

ends. The flexibility parameters range from zero to infinity. This represents a fixed or pinned 

boundary condition respectively. 

 
Figure 3.18 Nomographs for Non-sway frames (left) and Sway frames (right). NEN-EN 1993-1-1/NB-C.1.2 and C.1.3 

As can be seen in Figure 3.18, bracing a frame has a huge influence on the buckling length of its 

elements. An element in a braced frame has a buckling length that is much less than an element with 

the same flexibility parameters that is part of an unbraced frame. Therefore braced frames can resist 

more compressive forces in its members than unbraced frames. 

3.6.2. Non-Prismatic Members 

Not all members are constructed with constant cross section. These members are referred to as 

being non-prismatic members. Because non-prismatic members have a varying cross section along its 

length, the capacity to resist bending forces varies as well along its length. Therefore members tend 

to buckle earlier at the narrower part of the beam. However, since these parts are most likely at the 
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ends of the beam, the bending forces will be lower than at the middle. This does however influence 

the overall buckling length of the member, which means that the critical length cannot be 

determined with the same method as for prismatic members. 

The National Annex shows that the buckling length has to be taken as the largest of either the entire 

length of the beam, or its effective buckling length. This effective buckling length is a product of the 

members length with a relative buckling length factor. This factor is a function of three different 

parameters. 

The first parameter is a moment of inertia ratio between the narrowest and widest part of the beam. 

Another parameter takes the length of flaring into account. That is to say the length ratio between 

the widest part of the beam and its total length. The third parameter that influences the relative 

buckling length factor is a parameter that describes the change in thickness of the beam. There are 

three different types of thickness changes considered in the National Annex, these are shown in the 

following figure. 

 
Figure 3.19 Representations of non-prismatic members from the Dutch National Annex to Eurocode 3 
NEN-EN 1993-1-1/NB-C.4 

The first member in Figure 3.19 represents a change in thickness in both y and z-direction (n = 4). The 

second shows a change of thickness in only one direction (n = 1 for Iy and n = 3 for Iz), while the third 

member shows a sudden change in thickness (n = 0). 

These three parameters result in five graphs where the proper relative buckling length factor can be 

found by interpolating between the different lines. The graphs represent the different non-prismatic 

members from Figure 3.19 by its n-value. 
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Figure 3.20 Relative buckling length factor graphs from the National Annex to Eurocode 3. NEN-EN 1993-1-1/NB-C.4 

The length and moment of inertia ratios represent a measurement by which a member can be called 

non-prismatic. A member that can be considered to be very non-prismatic will have low ratio values, 

whereas a member with high ratio values will be almost similar to a normal prismatic member. In the 

graphs from Figure 3.20 it can be seen that a member which is highly non prismatic (i.e. very low 

ratio values), will result in a larger buckling length. This means that non-prismatic members are less 

capable to resist buckling than prismatic members. 

3.6.3. Build-Up Compression Members 

The critical length for build-up compression members is regulated both in the National Annex as well 

as in annex BB in the EC3. This latter annex gives very global descriptions for the buckling length of 

build-up members. 

The critical length is related to the system length of a member multiplied by a certain buckling factor. 

This system length for in-plane buckling is the length between two connections (length a in Figure 

3.8). For out-of-plane buckling, the system length is considered to be the length between lateral 

supports. Therefore out-of-plane system length is generally greater than the in-plane system length. 

Generally, the critical length for cord members has to be taken equal to the system length of the 

members. Also for out-of-plane buckling of web members, such as lacing and battening, should this 

length be taken. For critical length for in-plane buckling of I or H section chord members may be 

taken as 0.9L. For out-of-plane buckling of these section chord members a critical length of L should 

be taken. For web members, the critical length may be taken as 0.9L for in-plane-buckling under the 

condition that appropriate end restraint and end fixity is applied. In EC3, appropriate end fixity is 

considered to be at least a 2 bolt connection if bolted. 

For members made of hollow sections, other critical lengths are recommended. For hollow section 

chords, a critical length of 0.9L for both in- and out-of-plane buckling can be used. Web members 

that are bolted to the chords have a critical length equal to the system length L for both in- and out-
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of-plane buckling. For hollow section web members, welded around its perimeter to hollow section 

chords, the critical length may be taken as 0.75L for both in- and out-of-plane buckling. 

The critical lengths presented above are all taken very conservative. In every situation a smaller 

critical length is justified with the proper analysis done. An overview of the default critical lengths is 

presented in the following table. 

 Member type In-plane Out-of-plane 

Chord Members 

General Sections 
 

1.0 Li,ch 1.0 Lo,ch 

I/H Sections 
 

0.9 Li,ch 1.0 Lo,ch 

Hollow Sections 
 

0.9 Li,ch 0.9 Lo,ch 

Web Members 

General Pinned 
Sections 

1.0 Li,web 1.0Lo,web 

General Fixed 
Sections 

0.9 Li,web 1.0 Lo,web 

Bolted Hollow 
Sections 

Li,web Lo,web 

Welded Hollow 
Sections 

0.75 Li,web 0.75 Lo,web 

Table 5 Default critical length for build-up compression members 

 
Figure 3.21 Definition of lengths, as used in Table 5, of a build-up member 

Furthermore, according to the Dutch National Annex, the entire build-up member should be checked 

for buckling according to recommendations for uniform members in compression. The critical length 

that is required to calculate the relative slenderness is given by a combination of system length and 

buckling length due to shear. 

NB.76 𝐿𝑐𝑟 = √𝐿2 +
𝜋2𝐸𝐼𝑒𝑓𝑓

𝑆𝑣
 (3.28)  
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3.7. Shear Lag 
The effect of shear lag will be presented in this chapter. Shear lag, as already mentioned in chapter 0, 

has an influence on the buckling strength. This is also true for class 1 to 3 members. Since NEN-EN 

1993-1-1 refer to the requirements for plated structures to deal with the effect of shear lag, it is 

presented in this chapter. 

Shear stresses cause inconstant stress distributions over the cross section of a member. The effect of 

shear lag is influenced by the width-to-length ratio of a plate. The wider a plates ratio, the less effect 

shear lag has on that plate. In EC3, the effect of shear lag may be neglected for plate width-to-length 

ratios 𝑏0 𝐿𝑒 < 0.02⁄ . 

For greater plate ratio’s, the effect of shear lag is taken into account by transforming the non-

uniform stress over the entire width of the cross section, into a uniform stress over an effective 

width of the cross section (see Figure 3.22). This effective width for shear stress is obtained with a 

factor β. 

3.1 𝑏𝑒𝑓𝑓 = 𝛽𝑏0 (3.29)  
   

 
Figure 3.22 Transformation of actual stress over width b0 to continues stress over effective width beff. For outstand 
flanges, b0 is the entire width of the outstand. For internal flanges, b0 is half the width between web plates. 
NEN-EN 1993-1-5-3.2.1 figure 3.2 

This β factor can be determined by different equations that include the plate width-to-length ratio, 

which is compensated with a factor α0 in order to take longitudinal stiffeners into account. These 

different equations are represented in EC3 by Table 3.1, of which the following figure is an excerpt. 

 
Figure 3.23 Excerpt of Table 3.1 from NEN-EN 1993-1-5-3.1. Equations for β factor in order to take effect of shear lag into 
account. 
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The  difference between sagging and hogging bending can be best explained by Figure 3.24. Sagging 

bending is considered over a length between supports (β1), while hogging bending is considered to 

be over a length along a support(β2). Furthermore is the limit represented in this table for which 

shear lag has to be taken into account. As can be seen for values of 𝜅 ≤ 0.02 the β factor is equal to 

1.0. This represents the effective width for shear lag to be taken as the width of the plate, thus 

neglecting shear lag effects. 

 
Figure 3.24 Effective length for shear lag. Sagging bending can be seen between supports, while hogging bending is seen 
over the supports. NEN-EN 1993-1-5-3.2.1 figure 3.1. 

Also from Figure 3.24 can be seen that the effective length for sagging and hogging bending is 

overlapping. The bottom figure shows the βi factor that has to be taken at certain points along the 

members length. It can be seen that at some points this β factor has to be interpolated between 

hogging and sagging. 

In EC3 the ultimate state shear lag effect can be determined by three different methods. However, 

the Dutch National Annex, recommends the method of elastic-plastic shear lag effects allowing for 

limited plastic strain. This means that the effective cross section as shown in equation (3.20), is 

adapted to fulfil the following equation. 

3.5 𝐴𝑒𝑓𝑓 = 𝐴𝑐,𝑒𝑓𝑓𝛽𝜅 ≥ 𝐴𝑐,𝑒𝑓𝑓𝛽 (3.30)  

   
Here the factors β and κ are taken from table 3.1 which is represented in Figure 3.23. This means that 

the effective cross section that accounts for plate buckling becomes even less when shear lag is taken 

into account. This effective cross section Aeff is used in equation (3.19) for member stability. 
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The above expression for effective cross section with included shear lag effect is only valid for 

compressive loads. However, contrary to plate buckling, shear lag also has effect on plates loaded in 

tension. For these plates, Ac,eff has to be replaced with the gross cross section of a plate.  
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3.8. Imperfections 
Most checks and equations presented in EC3 are derived from theory. The theoretic models for 

elastic buckling imply the use of a perfect member without any imperfections. However, in reality it 

is impossible to achieve such perfect members. Apart from material imperfections that may occur 

during fabrication of a construction member, there are construction imperfections which occur 

during construction. These imperfections result in an additional bending moment. This additional 

bending moment has to be resisted by the same cross section as for a perfect member. Therefore, 

the buckling resistance of a member will become lower when imperfections are taken into account. 

In EC3, imperfections are dealt with in NEN-EN 1993-1-1 chapter 5.3. 

To account for imperfections in EC3, a distinction is made between global and local imperfections. 

Globally, imperfections due to construction occur. Which can be due to lack of fit and minor 

eccentricities in joints. Local imperfections of members can be seen as lack of straightness of a 

member, geometrical imperfections and even residual stresses. Because it is often unknown in which 

direction the imperfections will cause an additional bending moment, the effect has to be taken into 

account in the most unfavourable direction. 

The effect of imperfection in single members is already accounted for in the requirements for 

member stability. However, this is only true for first order analysis. When member stability is 

checked with a second order analysis, the initial bow imperfection has to be taken into account as 

presented below. 

3.8.1. Sway Frames 

For frames in sway mode (Figure 3.17) the imperfections may be determined by considering the 

initial sway imperfections and relative initial local imperfections of members, also referred to as 

initial bow imperfections. 

 
Figure 3.25 Initial sway imperfections and initial bow imperfections for sway frames with the additional forces that 
represent these imperfections. NEN-EN 1993-1-1-5.3.2 figure 5.4. 



 

 
43 

 

The angle accounting for initial sway imperfections is determined by a basic value of φ0=0.005 which 

is factorized in order to take the height of the frame into account and the numbers of load carrying 

columns in a row of the frame. 

5.5 𝜑 = 𝜑0𝛼ℎ𝛼𝑚 (3.31)  
   
The factors αh and αm influence the initial sway angle in such way that the angle will decrease with 

increasing frame height and increasing number of load carrying columns. This is rather logic 

considering the fact that higher frames will be easier to construct in a straight line. This due to the 

fact that the same eccentricity for tall frames will result in a lower sway angle, than for short frames. 

Multiple columns in a frame row will be able to correct each other with respect to their straightness. 

Therefore it will decrease the initial sway angle with increasing number of columns. 

The initial bow imperfection is represented in EC3 by the ratio 𝑒0/𝐿.. Recommendation for the initial 

displacement e0 is given in the Dutch National Annex to be 

NB.20 𝑒0 = 𝛼(𝜆 − 0.2)
𝑀𝑐,𝑅𝑑

𝑁𝑐,𝑅𝑑
 (3.32)  

   
The initial sway angle and initial bow displacement are used to transform the imperfections of frame 

and members into additional forces according to Figure 3.25. The initial sway imperfection influence 

each member in the frame. However, since all members are connected, the additional force need 

only be considered in one direction at a time. 

3.8.2. Non-Sway Frames 

Frames in non-sway mode (Figure 3.17) do not have to take the initial sway mode into account. This 

due to the fact that the additional horizontal force is easily transferred by the horizontal stability 

member. As a result only an initial bow imperfection has to be taken into account. 

5.12 𝑒0 =
𝛼𝑚𝐿

500
 (3.33)  

   
Here the initial displacement is influenced by the number of columns to be restrained. The more 

columns which are restraint, the less the initial bow displacement will be.  The length L is considered 

to be the span of the bracing system as can be seen in Figure 3.26 
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Figure 3.26 Initial bow imperfection of a non-sway frame. The imperfection can be represented as an additional load qb 
over the braced span. NEN-EN 1993-1-1-5.3.3 

The initial bow imperfection can again be modelled as an additional force acting on the supported 

frame. This by means of a distributed force. 

5.13 𝑞𝑑 = ∑ 𝑁𝐸𝑑8
𝑒0 + 𝛿𝑞

𝐿2
 (3.34)  

   
This distributed force is, besides the initial bow imperfection, based on the already acting forces. The 

value of δq is the beam displacement due to initial loads on the frame. However, this displacement 

due to external forces does not have to be included when a second order analysis is made. This due 

to the fact that deformation implied loads will already be included in the analysis. 
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3.9. Recommendations for FEM in EC3 
Guidelines on the use of FEM analysis op plated structures is presented in NEN-EN 1993-1-5 Annex C. 

These guidelines are quite straight forward and is intended for engineers who are experienced in the 

use of FEM. 

First of all, a couple of assumptions are given that influence the choice of FEM analysis. These 

assumptions are presented in the following table. 

 
Table 6 NEN-EN 1993-1-5 Annex C.1 table C.1: Assumptions for FEM analysis 

As can be seen, for buckling analysis, assumptions No. 3 and 4 apply. Buckling can be observed when 

the materials yield limit is reached. Therefore, buckling analysis is within the linear material 

behaviour range. For post-buckling analysis plastic material behaviour becomes important. The 

geometric behaviour, however is non-linear. This is because the buckling curve is presented by half-

sine waves, which are by definition non-linear. 

EC3 gives a couple of guidelines for modelling in a FEM analysis. Because the choice of element types 

and mesh size can influence the test results, recommendations are made to carry out sensitivity 

checks with successively refined mesh, in order to validate the result. Also, boundary conditions for 

supports, interfaces and applied loads should be applied in such way that conservative results are 

obtained. 

Where imperfections are to be included, both geometric and structural imperfections should be 

included simultaneously. The direction of imperfections have to be chosen in such way that the 

lowest resistance is obtained. That is to say that the least favourite combinations of loads and 

imperfections is chosen. The geometric imperfections may be represented by applying equivalent 

geometric imperfections, which are presented in the following figure. 

 
Figure 3.27 Equivalent geometric imperfections. NEN-EN 1993-1-5 Annex C.5 table C.2 combined with figure C.1. 
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Imperfections can be combined by taking one lead imperfections and combining this with the 

accompanying imperfections with reduced values to 70%. This combined imperfection can then be 

applied to the model by applying a fictitious force that results in the proper deformation. 
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4. Plate Buckling In Eurocode3 And DNV 
Most of the recommendations from the previous chapter can be used in order to evaluate a FE 

model with beam elements. However, for the evaluations of plate buckling this is different. For plate 

buckling evaluation, stress in more than one direction needs to be calculated per element. Beam 

elements cannot give these results since they only calculate stress results in one direction. 

Research has been done in order to translate plate stresses into beam stresses. With this translation, 

recommendations from standards can be used to evaluate the FEM results. The recommendations 

used were that of DNV and ABS, which focus on ship and offshore building. 

In this chapter a comparison between the DNV and Eurocode3 recommendations will be made 

regarding buckling of plates. In the first paragraph the differences for unstiffened plates will be 

evaluated for axial compression (4.1.1) and transverse compression of plates (4.1.2). 

The second paragraph will look at the difference between standards for stiffened plates. Here the 

buckling check formulas will be split into an axial compression part (4.2.1) and an bending moment 

part (4.2.2). 

References to relative equations in the standards are put in front of the equations in this chapter. 

They refer to either the Eurocode3 standard or DNV standard. 

 EC3: NEN-EN 1993-1-5 Design of steel structures – Part 1-5: Plated structural elements 

 DNV: DNV-RP-C201 Buckling strength of plated structures 
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4.1. Unstiffened Plates 
In the EC3 recommendations, the buckling check for stiffened and unstiffened plates is the same. The 

difference is only made by the effective cross section that has to be used. The DNV standard deals 

with stiffened and unstiffened plates in different ways. A comparison between the two method 

follows in this paragraph. 

4.1.1. Axial Compression 

The recommendations for unstiffened plate buckling in EC3 are already presented in 3.5.2. The plate 

strength against buckling is tested according to equation (3.19)  

EC3 4.14 

𝑁𝐸𝑑

𝑓𝑦𝐴𝑒𝑓𝑓

𝛾𝑀0

+
𝑀𝐸𝑑 + 𝑁𝐸𝑑𝑒𝑁

𝑓𝑦𝑊𝑒𝑓𝑓

𝛾𝑀0

≤ 1.0 
(3.19)  

   
The recommendations presented in the DNV standards do not consider effect of bending moments 

for unstiffened plates. Any bending moment due to misalignment of the load line and neutral axis of 

the plate is considered to be very small compared to the axial stress. Therefore, for unstiffened 

plates, the bending moment effects are neglected. The test against plate buckling for axially loaded 

plates becomes 

DNV 6.4 

𝜎𝑥,𝑆𝑑

𝑓𝑦𝐶𝑥

𝛾𝑀

≤ 1.0 
(4.1)  

   
The difference between these two tests can be done by comparing the effective surface area 

considered. Since EC3 regards axial forces and DNV axial stresses, the Cx factor in equation (4.1), has 

to be compared with the reduction factor ρ from equation (3.20), that results in the Aeff used in EC3. 

The reduction factors Cx and ρ are, for both internal compression as well as outstand compression 

elements,  in both standards exactly the same. 

 EC3 DNV 

Reduction 
Factor 
Internal 
Elements   

Reduction 
Factor 
Outstand 
Elements   

Plate 
Slenderness 

  
Buckling 
Factor kσ 

Annex A1 Annex A2 

Table 7 Comparison between EC3 and DNV recommendations regarding axial plate buckling. Recommendations in both 
standards are exactly the same. DNV-RP-C201-6.6 and NEN-EN 1993-1-5-4.4. 
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The only difference between the two recommendations is partial material factor used. Here the DNV 

recommendations are more conservative with 𝛾𝑀 = 1.15, as for EC3 𝛾𝑀0 = 1.00. 

4.1.2. Transverse Compression 

Verification for plate buckling due to transverse compression is approached very differently in EC3 

and DNV. In the recommendations by DNV, the plate is considered to be loaded along the long plate 

edge with a certain normal stress as depicted in Figure 4.1. 

 
Figure 4.1 Transversely loaded plates with constant stress (left) and varying stress (right) according to DNV 

For both situations the plate stability is tested according to the following test. 

DNV 6.12 

𝜎𝑦,𝑆𝑑

𝜎𝑦,𝑅

𝛾𝑀

≤ 1.0 
(4.2)  

   
Which is quite similar to the bucking test for axially loaded plates. However, the buckling resistance 

(𝜎𝑦,𝑅) is calculated with a different expression for the effective width.  

DNV 6.6 𝜎𝑦,𝑅 = 𝐶𝑦 ∙ 𝑓𝑦 = [
1.3𝑡

𝑙
√

𝐸

𝑓𝑦
+ 𝜅 (1 −

1.3𝑡

𝑙
√

𝐸

𝑓𝑦
)] 𝑘𝑝 ∙ 𝑓𝑦 (4.3)  

   
The value of κ is determined by the plate slenderness. Although slightly more complicated than the 

effective width factor for axially loaded plates, this equation yields an effective width factor for the 

length of the plate according to the same principle. Buckling strength for a varying transverse stress 

is checked by taking the stress value 𝜎𝑦,𝑆𝑑 at a length 𝑙1 and half plate width, and regarding that 

stress value to be constant over the entire length of the plate. 

In EC3 the transverse compression forces are regarded to be concentrated forces acting on a flange 

plate. This force is transferred through the flange plate thickness into a distributed stress in the web 

plate as can be seen in Figure 4.2. 

The transfer of stress is considered to be over an angle of 45°. When the flange thickness is assumed 

to be half the plate length, the entire edge is loaded with a compressive stress. With this assumption 

the plate will be loaded according to the left picture from Figure 4.1. 

Buckling due to transverse forces is checked by the following equation. 
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EC3 6.14 
휂2 =

𝐹𝐸𝑑

𝑓𝑦𝐿𝑒𝑓𝑓𝑡
𝛾𝑀0

≤ 1.0 
(4.4)  

   

 
Figure 4.2 Transfer of concentrated force from flange plate into web plate 

The effective length (Leff) is a combination of effective load length, which is the length of the plate in 

this instance, and a reduction factor for the effective length (𝜒𝐹). It is this  𝜒𝐹 that should be 

comparable to the reduction factor from DNV (Cy). 

 
Figure 4.3 Reduction factors for transverse plate buckling from DNV (red) and EC3 (blue) 

The graphic shows that the reduction values from the EC3 are about 40% lower than those from the 

DNV recommendations. Even with the partial factors 𝛾𝑀and  𝛾𝑀0taken into account, the difference is 

still about 30%. That would indicate that plates under the EC3 regulations would be able to resist 

about 30% lower stresses. Any small differences due to safety factors can be expected. A discrepancy 

of 30% in strength result would sooner indicate that the comparison cannot be made in this way. 

The large difference in buckling strength between EC3 and DNV indicates that the recommendations 

in EC3 for transverse forces must be taken as intended, i.e. as concentrated forces along the edge of 

the plate instead of compressive stress along the entire length of the plate. 
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4.2.  Stiffened Plates 
In both EC3 and DNV recommendations, plate buckling of stiffened plates is considered to be an 

interaction between beam buckling of the stiffener and connected plate, and plate buckling of the 

plate between stiffeners. The stiffened plate is considered, in both standards, to be between two 

girders, as can be seen in the following figure. 

 
Figure 4.4 Stiffened plate considered to be between girders as presented in DNV (left) and in EC3 (right) 

In EC3 recommendations member verification is given for under the influence of uniaxial and biaxial 

bending. Both expressions are general expressions and should be satisfied along the entire plates 

length. Verification for uniaxial bending members is done with the following equation, which is 

already presented before.  

EC3 4.14 

𝑁𝐸𝑑

𝑓𝑦𝐴𝑒𝑓𝑓

𝛾𝑀0

+
𝑀𝐸𝑑 + 𝑁𝐸𝑑𝑒𝑁

𝑓𝑦𝑊𝑒𝑓𝑓

𝛾𝑀0

≤ 1.0 
(3.19) 

   
In the DNV recommendations for buckling of stiffened plates, verification formulas are presented for 

four different positions. These positions can be seen in [FIGURE INTERACTION POSITIONS] and 

represent different situations. At the girder side 1 and 2 represent positions for buckling checks of 

plate and stiffener, respectively. Position 3 and 4 represent the same checks for buckling at 

midsection. 

 
Figure 4.5 Four positions that have to be checked for buckling in the DNV regulations. DNV-RP-C201 figure 10-1. 

Because buckling is most likely to occur at position 4, the interaction formulas for that position will 

be used to compare with the EC3 recommendation. 

DNV 7.53 
𝑁𝑆𝑑

𝑁𝑘𝑝,𝑅𝑑
+

𝑀2,𝑆𝑑 + 𝑁𝑆𝑑 ∙ 𝑧∗

𝑀𝑝,𝑅𝑑 (1 −
𝑁𝑆𝑑
𝑁𝐸

)
+ 𝑢 ≤ 1.0 (4.5)  

   
 



 

 
52 

 

4.2.1. Axial Compression 

The first part in both verification formulas is the check for buckling against axial compression. The 

following equation is the buckling check for axial compression forces from the EC3 

recommendations. 

 

𝑁𝐸𝑑

𝑓𝑦𝐴𝑒𝑓𝑓

𝛾𝑀0

 
(4.6)  

   
An important factor in the EC3 formula is the effective surface area of the stiffened plate (Aeff).  

 𝐴𝑒𝑓𝑓 = 𝛽𝑢𝑙𝑡 {[(𝜌 − 𝜒𝑐)휁(2 − 휁) + 𝜒𝑐]𝐴𝑐,𝑒𝑓𝑓,𝑙𝑜𝑐 + ∑ 𝑏𝑒𝑑𝑔𝑒,𝑒𝑓𝑓 ∙ 𝑡} (4.7)  

   

 

Figure 4.6 The effective cross sectional area of a stiffened plate, Ac,eff,loc. NEN-EN 1993-1-5-4.5 figure 4.4. 

This reduced cross sectional area takes multiple effects into account such as, shear lag (𝛽𝑢𝑙𝑡), beam 

buckling (𝜒𝑐) and plate buckling (𝜌). What is important to notice, however, is that only axial forces 

are considered (i.e. only forces along the direction of the stiffeners). 

The first part of the validation formula from DNV can be rewritten in the following way. 

 
𝑁𝑆𝑑

𝑓𝑘𝐴𝑒
𝛾𝑀

 (4.8)  

   
This can be compared to the first part from the EC3 formula. Both are ratios between the acting axial 

force and the resistance against buckling, represented by the material yield strength and an effective 

cross section. The difference lies in the way the effective cross section is determined.  

 

𝐴𝑒 = 𝐴𝑠 + 𝑠 ∙ 𝐶𝑥𝑠 ∙ 𝐶𝑦𝑠 ∙ 𝑡 

𝐶𝑦𝑠 = √1 − (
𝜎𝑦,𝑆𝑑

𝜎𝑦,𝑅
)

2

+ 𝑐𝑖 (
𝜎𝑥,𝑆𝑑 ∙ 𝜎𝑦,𝑆𝑑

𝐶𝑥𝑠 ∙ 𝑓𝑦 ∙ 𝜎𝑦,𝑅
) 

(4.9)  

   
In DNV, the effective cross section (Ae) is influenced not only by the axial stress (𝜎𝑥,𝑆𝑑) but also by the 

transverse stress (𝜎𝑦,𝑆𝑑).  
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4.2.2. Bending Moment 

The second part in the buckling check from both standards regards buckling under the influence of all 

bending moments. This includes external bending moments acting on the stiffened plate, bending 

moments introduced through an eccentricity between load line and neutral axis, but also the 

bending moment introduced due to lateral pressure on the plates surface. 

In EC3, the influence of bending moment is split between the misalignment between load line and 

neutral axis, and all other  bending moments. 

 

𝑀𝐸𝑑 + 𝑁𝐸𝑑 ∙ 𝑒𝑁

𝑓𝑦𝑊𝑒𝑓𝑓

𝛾𝑀0

 
(4.10)  

   
The effective elastic section modulus (Weff) is determined under the assumption that the cross 

section is only subjected to bending stresses. Non-effective zones (e.g. due to effective width), are 

excluded when determining the Weff. For Biaxial bending buckling checks, this effective elastic section 

modulus has to be determined about both main axes. 

 
Figure 4.7 Shift of effective cross section centroid from G to G'. Section modulus Weff should be calculated without the 
non-effective zone (3). NEN-EN 1993-1-5-4.3 figure 4.2. 

 Again, in EC3, only axial forces are required for the buckling check. 

In the DNV regulations the buckling check has the following bending moment part. 

 

𝑀2,𝑆𝑑 + 𝑁𝑆𝑑 ∙ 𝑧∗

𝑓𝑦𝑊𝑒

𝛾𝑀
(1 −

𝑁𝑆𝑑
𝑁𝐸

)

 
(4.11)  

   
As can be seen, both DNV and EC3 split the second part of the verification equation into a 

misalignment part (𝑁𝑆𝑑 ∙ 𝑧∗), and an external bending moment part (𝑀2,𝑆𝑑). However, unlike EC3, an 

equation is given in order to calculate the external bending moment. 

 𝑀2,𝑆𝑑 = |
𝑞𝑆𝑑𝑙2

24
| (4.12)  

   
Where the equivalent lateral line load (qSd) is determined by both the external lateral pressure (pSd) 

and the pressure due to buckling under the influence of transverse stress (p0).  
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Figure 4.8 Equivalent lateral line load used in DNV to determine buckling strength of stiffened plates. DNV-RP-C201-7.2 
figure 7-1. 

4.3.  EC3 and FEM 

As seen in the previous two chapters, the big difference between DNV and EC3 standard is the use of 

transverse stresses in the buckling check for both stiffened and unstiffened plates. The EC3 

recommendations do not use these transverse stresses in the buckling analysis. They only use 

stresses introduced by axial and bending forces in one directions. This would make the 

recommendations from EC3 suitable to check FEM beam models for buckling. 

However, the effect of transverse stresses cannot simply be ignored. EC3 checks buckling in the 

direction of the highest stresses. Interaction with concentrated transverse forces is accounted for as 

can be seen in 3.5.4. Using the equations from these recommendations yield a plate strength that is 

much lower compared to the results from DNV requirements. 

Besides the buckling check for plates, EC3 also makes recommendations for the elastic limit of each 

plate. In these checks the transverse stresses are an important factor. Even when for plate buckling 

the transverse stresses can be ignored, for other checks they do become important. Therefore, the 

EC3 recommendations might be used in order to get quick first results, but for more reliable results, 

detailed plate models are still required in order to evaluate a structural design with the aid of finite 

element software 
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6. Annex A1 
EC3 Buckling factor for different stress distributions 
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7. Annex A2 
DNV Buckling factor for different stress distributions 
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8. Annex B 
EC3 Cross Section Classes Limitations 

 



 

 
59 

 

 



 

 
60 

 

 


