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Abstract

Allseas Engineering B.V. is an offshore contractor, focussed on offshore pipeline installation. Since the late
80’s, Allseas has been working on the design and construction of the Pioneering Spirit, a heavy lift vessel
designed for the single-lift installation and removal of offshore topsides. From 2019, it is scheduled to be able
to single-lift install or remove jackets with the jacket lift system.

The jacket lift system is located at the aft of the vessel and consists of two 170 meter tilting lift beams, hinged
around the stern. During a jacket removal, the jacket is cut-off at the bottom, hoisted from the tip of the
beams, partially rotated, and then tilted inboard. In between the hoisting and tilting is the transition phase.
At the interface between jacket and the tilting lift beams, jacket support structures are located. In this thesis,
the behaviour of the free-hanging of the jacket and the loads on these support structures due to the mating
with the jacket are researched.

Jacket removal operations will take place in open sea and are thus subjected to environmental actions. The
jacket, suspended from the tip of the beams, is excited due to fluid acceleration and velocity causing inertia
forces and predominantly drag forces on the slender members of the jacket, as well as the excitation of
the vessel through the suspension point. These motions are calculated with two different approaches. A
direct-time domain model is developed of the jacket as submerged pendulum. To accelerate model simulations,
the jacket is modelled as one single cylinder with different equivalent diameters to account for the total of
drag and inertia. The second model is a full geometrical time-domain model simulation in AQWA.

In the design sea state, simulations showed that the most probable maximum momentum of the jacket due
to environmental excitation is 4.5 · 106 kg m/s, and the motions of the centre of gravity of the jacket are all
within a range of 1 meter, for the single and double pendulum and the full model. The influence of the
environmental actions on motions of the structure is concluded to be small. This suggest that that jacket
mating loads are governed by the tilting velocity of the tilting lift beams and the motion of its tip. The jacket
mating simulations are done in the full AQWA model approach.

Fenders are modelled to absorb energy during the jacket mating. A sensitivity analysis showed that the
parameters that have most influence on the mating phase characteristics are the tilting velocity and the
stiffness of the fender. From still water conditions it seems that by increasing or decreasing the tilting velocity,
this can affect the number of re-bounces and the maximum deflection. With increasing sea state, the duration
and intensity of the mating phase increases. The fender deflection will increase for increasing significant
wave height. The wave period does not have an significant influence on the maximum fender force. The
amount of re-bounces reduces significantly for higher damping coefficients, while its influence on maximum
deflection decreases.

The maximum force on the jacket support structures caused by the static gravitational force by the jacket
once it is fully tilted, is approximately 10 times higher than the maximum occurring force exerted on one of
the fenders. Therefore, this static gravitational force is critical for the design of the jacket support structure,
not the force caused by the mating.
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Nomenclature

Abbreviations

COG Centre of Gravity
COR Coefficient of Restitution
DNV-RP Det Norske Veritas - Recommended Practice
DOF Degree of Freedom
FD Frequency Domain
HOF Hang-off Frame
GEA Guaranteed Energy Absorption
JLS Jacket Lift System
JONSWAP Joint North Sea Wave Project
MSWL Mean Sea Water Level
PM Pierson-Moskowicz
PS Pioneering Spirit
RAO Response Amplitude Operator
RK Runge Kutta
SB Starboard
TD Time Domain
TLB Tilting Lift Beam
TLS Topside Lift System

Symbols

Symbol Unit Description

θT LB rad tilting angle of TLB
Hs m significant wave height
Tz s Zero-mean wave crossing period
Tp s Peak period
µ deg wave direction
θ rad single pendulum angle
θ̇ rad/s single pendulum angular velocity
L Lagrangian multiplier
ωn rad/s natural frequency
θ1 rad upper angle wrt y-axis double pendulum
θ2 rad lower angle wrt y-axis double pendulum
σ standard deviation
ρ kg/m3 density
Cm inertia coefficient
Cd drag coefficient
ζ m wave amplitude
ω rad/s wave frequency
α linearisation factor
αTLB m/s tilting velocity of TLB tip
η m surface elevation
ε phase
e∗ coefficient of restitution
ν m2/s kinematic viscosity
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Conventions

Global Coordinate System
The global coordinate system of the Pioneering Spirit is defined as follows (figure 1):

• X-axis (from aft perpendicular) in longitudinal vessel direction pointing forward.
• Y-axis (from centreline) in transverse vessel direction pointing portside
• Z-axis (from bottom line) in vertical direction pointing upward

Figure 1: Global vessel coordinate system

Vessel Motion Coordinate System
The vessel motions are defined relative to the Centre of Gravity (CoG) of the vessel. Surge, Sway and Heave
are translational motions. Roll, Pitch and Yaw are rotational motions (figure 2)

Figure 2: Vessel motion coordinate system
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1
Introduction

This chapter introduces this thesis’ subject to the reader. This thesis is made within the innovations department
of Allseas Engineering BV Delft, from now on called Allseas.This chapter starts with a brief introduction into
the company and the concerned vessel for this thesis. This is followed with an introduction in the research
question, the corresponding sub questions and the research methodology.

1.0.1. Allseas
Allseas is an offshore contractor, focused on offshore pipeline installation, heavy lift and sub sea construction.
It was founded in 1985 by Edward Heerema, who still is in charge of the company. Allseas has over 2500
employees, and its history is marked by many technical novelties, which is made possible by their relatively
large innovation department. It is one of the first companies to use Dynamic Positioning during pipe laying,
which is regarded as a major cost and time improvement in offshore pipe laying industry. Allseas’ main
expertise has been offshore pipe laying since the establishment of the company, though as of 2015, it added
heavy lift to its portfolio with the completion of the Pioneering Spirit (formerly the Pieter Schelte).

1.0.2. Pioneering Spirit
The Pioneering Spirit (PS) is a twin-hulled multi-purpose vessel that is 382 m long and 124 wide, making
it one of the largest construction vessels built. It was delivered in 2015. With its large dimensions and its
unconventionally fork-shaped hull, it has some unique functionalities. Most significant is that it can remove
and install a topside in a single lift, while actively compensating for vessel and wave motions. It has proven
the functionality of this Topside Lifting System (TLS) in May 2017 with the successful removal of the 24.000
tonnes Brent Delta topside in the North Sea, and in June 2018 with the successful installation of the 22.000
tonnes Johan Sverdrup topside (figure 1.1). In addition, the PS is used for pipe laying in deep water, when it
is not used for topside lifting.

Figure 1.1: Pioneering Spirit with Johan Sverdrup topside (2018)

1



2 1. Introduction

1.0.3. Jacket Lift System
After the proven concept of TLS, one of the new challenges for the PS, scheduled for around 2019, is the
removal of a jacket or tower1 using the Jacket Lifting System (JLS) The OSPAR Convention ([1], annex III)
of 1992 states guidelines and rules on the protection and elimination of pollution from offshore sources
in the North-East Atlantic. Herein is stated that the contracting parties shall require the use best available
techniques and best environmental practice during installation, operational lifetime and decommissioning.
Allseas is aiming to meet this demand with the construction of the JLS.

Figure 1.2: Layout of typical offshore structure

The main two components of the JLS system are the Tilting Lift Beams (TLBs). These 170 meter beams are
hinged at the aft of the vessel, rotating around the y-axis. The tip of the TLBs are attached to the derrick hoist
system, a system of cables, sheaves and winches that allow the TLBs to rotate. The tip of the Tilting lift beam
is connected with a system of sheaves and hoisting wires, with a jacket that is to be decommissioned. By
means of underwater cutting devices, the jacket is cut-off near the sea bottom. By continuously hoisting the
jacket and the derrick hoist system, the jacket is lifted and rotated by varying winching velocity of aft and
front side hoisting cables that are connected to the jacket. By winching in the derrick hoist system, the jacket
mates with the jacket support structures, or ‘grillages’. Consequently it is levered it on the aft deck of the PS.
After that, the jacket will be transferred to shore, by means of barge or directly. Vice versa, the installation of
a jacket is also possible. In upended position, the JLS can also be used as a multi-purpose crane. In figure 1.3
is a schematic overview of a jacket removal procedure is given.

Figure 1.3: Schematic view of how the JLS works

1from here on there will only be referred to jackets, while in general both tower and jackets can be meant
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For this thesis, the JLS jacket removal procedure can be separated in three different phases:

• Lifting phase. This phase starts when the jacket is hoisted and tilted so that the inclination of the jacket
matches the inclination of the TLBs. The phase end when the the jacket starts to make contact with the
TLBs.

• Transition phase. During this this phase, also referred to as jacket mating phase, the TLBs are rotated
inwards, causing the jacket to make intial contact. The impact loads during these loads are the jacket
mating loads. This phase end when this contact is continuous.

• Tilting phase. After there is continuous contact with the TLBs, the jacket is tilted further on the aft of
the deck. More supports on the TLB for the jacket are activated

A more extensive description of the JLS is given in chapter 2.

Currently, the JLS system is in advanced design state. Most components are designed and built in-house by
Allseas.

1.1. Subject Definition
Several dynamic models were made for the initial lift phase [2], of the JLS, when the jacket would detach from
the sea bottom. Now, a more extensive analysis of the transition phase of the JLS is desired for the design of
the jacket support structures.
The motivation for this thesis is to improve structural design for the JLS system during jacket removal, in
particular during the transition phase. The mating of the two large structures, even with small velocity, can
cause large forces, if the interface is not well designed. If the energy is not well absorbed, high impact forces
can occur, which are among the most severe sources of vibration in vessels [3].

1.1.1. Research question and scope
To clarify the aim of this thesis, a research question is formulated. This is:

What are the key influences on the dynamic behaviour of the jacket mating loads on the Pioneering Spirit
during the transition phase.

This research question is divided several sub-questions:

• How can both bodies, i.e. the jacket and the vessel, be described dynamically?

• How are these bodies coupled and how can this combined system be approximated by a model?

• How can the jacket mating loads be approximated, when the jacket makes contact with the vessel?

• What are the most important external influences on the jacket lift system and how can these be integrated??

The focus of this research is only the transition phase. This excludes all operations prior to jacket mating, i.e.
the attachment of the hoisting wires, cutting of the jacket legs and pre-tensioning the wires. All operations
after the jacket has made continuous contact with the TLBs are also excluded. That includes the in-board
tilting, skidding-in the jacket until is lying on the aft the vessel and sea fastening.

1.1.2. Research methodology
This research focuses on studying the dynamic behaviour of multiple bodies in irregular sea states, varying
parameters to investigate which parameters have the most influence. Numerical and analytical methods will
be used to determine worst case motions and therefore required energy absorption on relevant structures.
If these can be accurately estimated, or conservative at least, structure damage can be prevented. Results of
this report can be taken into account in the design of the interface between jacket and vessel. The research
methodology is schematically given in figure 1.4.

A schematic overview of the proposed methodology is given in figure 1.4.
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2D MatLab
Double Pendulum
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Figure 1.4: Research methodology

As mentioned , the jacket lift system is advanced design state, but has not yet been built. Also, there have
not been conducted scale model tests yet of this system. This is very expensive and time-consuming. One
alternative for real scale model testing is an CFD simulation, which also cost a lot of computational power,
time and money. Therefore, this thesis aims to provide a alternative model, so the behaviour of the system
can be predicted. This will be done by making a model in MatLab and using ANSYS AQWA 2.

• MatLab The system is modelled in a analytical model, to make system behaviour and the influence
due to system parameters easier and quicker to investigate. The focus of this model will be mainly to
accurately predict motions of the jacket. It will be built up from scratch and all the relevant physics and
corresponding assumptions will be elaborated in subsequent chapters.

• Ansys AQWA. This is an existing engineering toolbox to research the effect of wave, wind and current
effect on floating marine structures. It can calculate complex hydrodynamic analyses and motions
responses. It simulates linearized hydrodynamic fluid wave laoding on rigid bodies, by using diffraction
and radiation theory on large bodies, and Morison equations on slender structures. It will be used to
verify the previous mentioned MatLab model and to model impact as fenders

2from now on referred to as only AQWA



2
Equipment and boundary conditions

In this chapter, the structures, systems and procedures are described, that are relevant to start designing a
model. At the end of this chapter, also the environmental and geometrical load cases that will used are given
and explained.

2.1. Vessel
The Pioneering Spirit (PS) is the largest vessel in Allseas’ fleet. Its main deck stretches 382 meters long and 124
wide and it is designed for the removal or installation of offshore platform with a single lift. It is self propelled
by 12 thrusters; 3 in each bow and 6 at the aft.

Figure 2.1: Pioneering Spirit in JLS configuration

The main dimensions of the vessel can be found in table 2.1

Item Value Unit

Length hull overall 382 [m]
Length between perpendiculars 370 [m]
Breadth moulded 124 [m]
Max depth 30 [m]
Draught, transit 11.5 [m]
Draught, pipelay 8.5 [m]
Draught, operational 17-22 [m]

Table 2.1: General dimension Pioneering Spirit

X [m] Y[m] Z[m]

CoG PS 182.38 3.92 22.71

5



6 2. Equipment and boundary conditions

2.2. Jacket Lift System
The Jacket Lift Systems’ two most important components are the Tilting Lift Beams (TLBs). Their length
stretch 170 meters, and they have a mean cut section of around 140m2. Both identical beams are hinged
around the aft of the deck, at the Hang-Off Frame (HOF). These structures serve as hinge as well it houses a
sheaves arrangement for the main hoist system.
A schematic overview of the JLS and all relevant parts can be seen in figure 2.2

ame

TLB Tip

Hoist point

Main hoist system

Jacket CoG

Leg cut-off

Sea bed

Figure 2.2: Schematic overview of Jacket Lift System

The removal of jacket is divided in several steps, which are described below [4].

1. Offshore preparations

• Jacket preparations; installation of the connection tool on the jacket top.

• Jacket leg cutting just above the seabed

• Select appropriate weather window.

2. TLB Outboard tilting

• By using the ppend system the TLBs are initially tilted, followed by tilting under heavy ballast in
combination with ballast tanks, to an maximum angle of angle of 150◦

3. Jacket inboard lifting
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• Vessel positioning

• Hoisting block connection to the jacket top

• Apply pre-tension while ballasting PS to even keel position

• Vertical lift. Base case is vertical lift; however, a tilted lift can also be executed if desired due to
soil suction or complex jacket geometry. Lifting with predetermined time interval to flush jacket
members. Heading change optional if desired.

• During lift operations, the vessel is continuously ballasted, to even the keel trim.

• Continuously measure CoG jacket with hoisting system and check structural integrity of jacket.
During the hoisting the jacket is rotated by varying the winching velocity of the cables connected
to the rear side of the jacket wrt the front side cables.

• Mate jacket with tilting lift beams at the jacket support structures, the so called jacket transition
phase

• Skidded lift, alternating push-pull operations.

• Inboard tilting

4. Prepare for transport

• Inboard skidding to transport position

• Secure jacket to vessel deck

• Retrieval hoisting blocks

The centre of gravity of one TLB is defined with respect to HOF, at an inclination of 0 degrees. Therefore, to
obtain the correct COG, the coordinates are multiplied by a linearised rotation matrix R, where θT LB is the
pitch rotation at the HOF, and consequently these coordinates are translated to to global coordinate system.

R =
[

cosθ −sinθ
sinθ cosθ

]
(2.1)

X [m] Y[m] Z[m]

CoG PS 182.38 3.92 22.71
CoG TLB Tip (SB) -45.02 0 8.52

Table 2.2: TLB Centre of Gravity

During jacket lift operations, the following conditions apply:

Item Value Unit

Draught 17 [m]
Max heel 1 [◦]
Max trim 1 [◦]

Table 2.3: Lift operations conditions

2.3. Jacket
Several design jackets are identified for the design of the JLS, that fulfil several functional requirements for
decommissioning. The selection of these jackets is not within the scope of this thesis.
The gross weight of a jacket is divided in several subcategories:

• Primary steelwork All main structural items that contribute to the structures’ integrity. Corrosion is
not included.

• Secondary steelwork The weight of all components that do not contribute to the structure’s integrity,
such as ladders, walkways, caissons, conductor guide frames, stiffeners, etc.
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• Piles and Grout The through-leg and skirt piles are a considerable part of the total weight. However,
since jackets to-be-decommissioned are cut off above these base, these are not taken into account in
the decommissioning load cases.

• Marine growth Submerged piles have an increased diameter due to marine growth. In case of slender
member, this should be accounted for. The thickness depends on location and depth.

• Entrapped water Many of the jacket members are flooded. During hoisting, this entrapped water is
assumed to have enough time to escape in order to not affect the hoisting operation.

Figure 2.3: Location of jacket in North Sea

From the design jackets, the Marathon Brae Bravo jacket is chosen as main design jacket, since its net removal
weight is the highest of the design jackets [5]. The dimensions of the Brae jacket can be seen in figure 2.4,
where the yellow sphere indicates the centre of gravity at [0,0,55]. In figure 2.4, the centre of the coordinate
system is at the lowest Z-coordinate, in the centre of the X-Y plane. Due to lack of detailed structural data
of most of the jackets, an other stick model of an other jacket (Forties jacket) is scaled to fit the Brae jackets’
dimensions. The influence of this scaling is verified in a later chapter.
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Item Value Unit

Gross total weight a 25.005 [tonnes]
Net total weight 16.664 [tonnes]
Net removal weight 14.218 [tonnes]
Depth at location 99 [m]
Max height 146 [m]
Height above MSL 19 [m]

Figure 2.4: Jacket Properties

aincluding part below cut

2.4. Load cases
Multiple load cases are determined, for which environmental or geometrical parameters vary. Simulation
with these load cases help to understand which parameters have a significant influence on the JLS system.
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2.4.1. Environmental load cases
The design load case of environmental parameters is based on the operational limits of the Pioneering Spirit.
These parameters are given in table 2.4.

Parameter Symbol [unit] Operational Limit Explanation

Significant wave height Hs [m] 2.5 Mean wave height of the highest 1/3 waves
Wave period Tz [s] 5.7 Time to complete one cycle of wave
Wave direction wrt vessel µ [deg] 0 (stern) Positive wave angel is counter-clockwise around ship
Current velocity uc [m/s] 0.5 -
Spectrum type - PM Pierson Moskowitz wave spectrum

Table 2.4: Operational limit JLS

The Pierson Moskowicz spectrum is used as standard wave spectrum, because the energy in the sea state
is more evenly distributed over the frequencies, while for the JONSWAP it is more concentrated around the
peak period. This is more preferable in this model because the (yet) unknown natural frequencies have higher
probability of being excited and therefore identified. Also, the design jacket is located in open sea, as can be
seen in figure 2.3.
The design case presented in table 2.4 is load case 2. Other environmental load cases are defined in table 2.5.
The values are based on the operational limits of the Pioneering Spirit Topside Lift System.

Load case Based on operational limit of Hs [m] Tz [s] Current velocity uc [m/s] Spectrum

1 Transfer 1 4.5 0.5 PM
2 Installation 2.5 5.7 0.5 PM
3 Transport (no heading control) 6 8.5 0.5 PM
4 Transport (w heading control) 10 10 0.5 PM

Table 2.5: Environmental load cases

2.4.2. Geometrical load cases
The following geometrical parameters are taken into account in simulating the model:

• Fender stiffness. The design linear stiffness is 5 ·105 kN/m.

• Fender damping. The design damping coefficient is 0.01 .

• Tilting velocity. The velocity at which the beams are tilted. This tilting is actuated by the the derrick
hoist cable arrangement. The design velocity is 0.01 m/s of pulling the hoist wire. This equals approximately
9 ·10−5 rad/s of rotational velocity of the tilting beam





3
Literature review

In this chapter, a literature and theory study is briefly described for all relevant aspects to model the Jacket
Lift System.

3.1. Frequency Domain
When the jacket is suspended from the JLS, it shows characteristics with a suspended pendulum from a
moving pivot. First, a frequency domain (FD) analysis is done, by assuming small angles for undamped
pendulums.

3.1.1. Single pendulum

θ

L

zTLB

Morison

g

Figure 3.1: Pendulum model

The pendulum consists of a mass m is suspended from a ceiling with a massless rod, with length L. There
is only one degree of freedom; the angle of θ with respect to the vertical axis. The pendulum is subjected
to a gravitational acceleration of g = 9.81 m

s2 . The jacket is suspended from a pivot point, on which imposed
motions are applied. For the frequency analysis, the pendulum is assumed umdamped by fluid interaction
(represented with blue arrows with ‘Morison’ ).
To calculate the equation of motion, first the position vector is determined. Its derivative in time gives the
velocity vector

x = X +L sinθ (3.1)

z = Z +L cosθ (3.2)

ẋ = Ẋ +Lθ̇cosθ (3.3)

ż = Ż −Lθ̇ sinθ (3.4)

11
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The equation of motion will be derived using the Largangian approach. First the kinetic energy and potential
energy are defined. The kinetic energy is found as:

T = 1

2
M v2 = 1

2
M(ẋ2 + ż2) (3.5)

= 1

2
M(Ẋ 2 + Ż 2 +L2θ̇2 +2Lθ̇(Ẋ cosθ− Ż sinθ)) (3.6)

The potential energy is

V = mg · z = mg (Z +L cosθ) (3.7)

The Lagrangian is:

L = T −V (3.8)

L = 1

2
mL2θ̇2 +mLθ̇(Ẋ cosθ− Ż sinθ)+ 1

2
m(Ẋ 2 + Ż 2)−mg L cosθ−mg Z (3.9)

Lagranges equation is now solved:

d

d t

∂L

∂θ̇
− ∂L

∂θ
= 0 (3.10)

mL2θ̈+mL(g − Z̈ )sinθ+mLẌ cosθ = 0 (3.11)

From equation 3.11 it can be deducted that for the undamped pendulum, if the pivot is moving, only it’s
acceleration has influence on the pendulums motion. In case we assume small angles, the equation of motion
can be approximated with:

mL2θ̈+mg (L− Z̈ )sinθ+mLẌ = 0 (3.12)

θ̈ = g (L− Z̈ )

L
sinθ+ 1

L
Ẍ (3.13)

where the pendulums natural frequencyωn is found as the square root of the spring term as in equation 3.14.
This only holds of Ẍ = 0 and Ÿ = 0.

ωn =
√

g − Z̈

L
(3.14)

3.1.2. Double pendulum
The system will also be modelled as double pendulum as in figure 4.1. The equation of motion of the 2 DoF
double pendulum is separated in two masses; the jacket and the hoisting block.

θ1

L1

zTLB

Morison

g

L2

θ2

M1

M2

Figure 3.2: Double Pendulum model
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The kinetic energy of the system is:

T = 1

2
M1L2

1θ̇1
2 + 1

2
M2(L2

1θ̇1
2 +L2

2θ̇2
2 +2L1L2θ1θ2 cos(θ2 −θ1)) (3.15)

The potential energy of the system is:

V =M1L1g (1−cosθ1)+M2g {L1(1−cosθ1)+L2(1−cosθ2)} (3.16)

=g {(M1 +M2)L1(1−cosθ1)+M2L2(1−cosθ2)} (3.17)

The Lagrian of the system becomes:

L =T −V (3.18)

=1

2
M1L2

1θ̇1
2 + 1

2
M2(L2

1θ̇1
2 +L2

2θ̇2
2 +2L1L2θ1θ2 cos(θ2 −θ1)− g {(M1 +M2)L1(1−cosθ)+M2L2(1−cosθ)}

(3.19)

This equation of motion has to linearised assuming small angle approximation in order to conduct a frequency
analysis:

sinθ ≈ θ (3.20)

cosθ ≈ 1 (3.21)

In matrix form the equation of motion becomes:

[
(M1 +M2)L2

1 M2L1L2

M2L1L2 M2L2
2

](
θ̈1

θ̈2

)
+

[
(M1 +M2)L1g 0

0 M2L2g

](
θ1

θ2

)
=

(
0
0

)
(3.22)

Which can be rewritten and shortened to:

MMM θ̈+KKKθ = 0 (3.23)

θ̈+M−1KM−1KM−1Kθ = θ̈+AAAθ = 0 (3.24)

where

A = M−1K = 1

M2L2
2(M1 +M2)L2

1 − (M2L1L2)2

[
M2L2

2 −M2L1L2

−M2L1L2 (M1 +M2)L2
1

][
(M1 +M2)L1g 0

0 M2L2g

]
(3.25)

In the case of jacket attached to the TLB, the mass of the jacket is significantly larger than that of the hoisting
block (m j acket << mhoi stbl ock ). According to Kwiatkowski [6], and increase of mass of the lower member of
the pendulum has a reducing influence of the vibration amplitude.

3.2. Time Domain
The forces governing the jacket motions are expected to behave non-linear and non-continuous, due to the
non-linear drag and impact phenomena, among others. Therefore, a frequency domain simulation is not
sufficient, as that assumes a steady state form of the response. As a consequence, a direct time domain
simulation (TD) is considered. All non-linearities can be included in this approach. In short, the differential
equations following from Newton’s second law are integrated in the time domain, using a proper numerical
method. The advantage is that it is possible to incorporate all non-linearities in the equation of motion.
However, all input time records must be given and generated provided, such a the incoming wave records.
However, since the generated wave records is generated, one cannot be certain of its validity. Additionally,
the obtained simulation time series must be post-processed. Interpreting the results is difficult, since a
hypothetical input record is used and one can not be certain it is a valid input. How the post processing
is done is elaborated later this chapter.
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One of the most popular and effective numerical methods for a time domain simulation is the fourth-order
Runge-Kutta (RK) method [7]. It will be used in this thesis. The RK method is a single step process to
numerically solve an initial value problem of a ordinary differential equation in the form of equation 3.26.

y ′ = f (t , y) (3.26)

y(t0) = y0

Equation 3.26 can be rewritten in its equivalent integral form:

y(t ) = y(t )+
∫ x

xn

f (tn , yn)d x n = 0,1,2, ... (3.27)

In turn, since equation 3.27 is continuous and we are searching for a discrete solution, the equation is approximated
by Euler’s equation [8]:

yn+1 = yn + f (tn , yn) ·∆t y(t0) = y0 (3.28)

Equation 3.28 is an ordinary differential equation, whilst the equation that has to be solved is a 2nd order
differential equation. In order to solve this system in the time domain, the 2nd order differential equation is
rewritten into a system of 2 ordinary differential equations, the state-space representation.

x1 = θ (3.29)

x2 = θ̇ (3.30)

ẋ1 = θ̇ = x2 (3.31)

ẋ2 = θ̈ (3.32)

Consequently, the fourth-order Runge-Kutta is used to solve the system, of which only the initial conditions

are known: x0 = [
x1(0) x2(0)

]T = [
0 0]. These initial values corresponds to the starting position.

In state-space representation, this becomes:

tn+1 = tn +∆t (3.33)

x1,n+1 = x1,n +x2,n ·∆t (3.34)

x2,n+1 = x2,n − {ẋ2} ·∆t (3.35)

In equation 3.35, the term {ẋ2} is the equation of motion of the 2nd order differential equation as function of
x1 and x2.

The initial conditions for the time domain simulation can be manually set to values above (x0 = [
0 0

]
).

However, by using a nonlinear equation solver, the equilibrium point of the equation of motion (in state-space
configuration) can be iteratively determined:

F (x0) =
[

0
0

]
(3.36)

From this equilibrium point, a time record is created. The interpretation of a time domain simulation is done
by using a statistical analysis, briefly described in chapter 3.2.3.

3.2.1. Single Pendulum
As explained in previous sections, if small angles can not be assumed, and/or the pendulum experiences
non linear effect such as quadtratic drag. The equation of motion of the single pendulum can be left in its
non-linear state, and by moving all terms that do not have an 2nd order derivative to the right hand side, the
equation can be used in a time domain simulation. In that case, the equation becomes:

θ̈ = 1

−L (cos(θ))2 m −L (sin(θ))2 m
2L cos(θ)sin(θ)mθ̇2 + sin(θ) g m −Fmor,x cos(θ)−Fmor,z sin(θ)

−cos(θ)ux(t)− sin(θ)uz(t) (3.37)



3.2. Time Domain 15

where Fmor are the Morison force components. These are obtained by an instantaneous force integration
over the structure.How this is done exactly will be explained later in this chapter.

Fmor (t ) =
Fmor,x

Fmor,y

Fmor,z

= fn(θ, θ̇, θ̈, t ) (3.38)

Since this function includes a second derivative in time in the right hand side of the equation, the rotational
acceleration of the previous time step is used in the time domain solver (equation 3.39). It is assumed that
this has a negligible innfluence for this thesis. However

Fmor (tn+1) = fn(θn , θ̇n , θ̈n−1, tn) (3.39)

3.2.2. Double Pendulum
The equation of motion of the double pendulum in state space representation is quite more work to derive.
Therefore, use is made of Maple, a symobolic computing package by MapleSoft. The equation of motion,
without any form of linearisation, becomes:

θ̈1 = 1

−L1 (cos(θ1−θ2))2 m2 +L1m1 +L1 m2
·−L1 sin(θ1 −θ2)cos(θ1 −θ2)m2 θ̇

2
1 −L2 cos(θ1 −θ2)sin(2θ2)

m2 θ̇
2
2 +L2 sin(θ1 +θ2)m2 θ̇

2
2 +cos(θ1 −θ2)sin(θ2) g m2 −Fmorx cos(θ2)cos(θ1 −θ2)−Fmorz sin(θ2)cos(θ1 −θ2)

− sin(θ1) g m1 − sin(θ1) g m2 +Fmorx cos(θ1)+Fmorz sin(θ1)+ sin(θ1)uz(t)+cos(θ1)ux(t) (3.40)

θ̈2 = 1

L2
2m2 m1 −L2

2 (cos(θ1−θ2))2 m2
2 +L2

2m2
2
−L2

2 sin(θ1 +θ2)cos(θ1 −θ2)m2
2ω2

2

+L1 L2 m2 θ̇
2
1 sin(θ1 −θ2)m1 +L1 L2 m2

2θ̇2
1 sin(θ1 −θ2)+L2

2m2 θ̇
2
2 sin(2θ2)

m1 +L2
2m2

2θ̇2
2 sin(2θ2)+L2 sin(θ1)cos(θ1 −θ2) g m1 m2 +L2 sin(θ1)cos(θ1 −θ2) g m2

2

−Fmorx L2 cos(θ1)cos(θ1 −θ2)m2 −Fmorz L2 sin(θ1)cos(θ1−θ2)m2 −L2 sin(θ1)cos(θ1 −θ2)m2 uz(t)

−L2 cos(θ1)cos(θ1 −θ2)m2 ux(t)−L2 sin(θ2) g m2 m1 −L2 sin(θ2) g m2
2 +Fmorx L2 cos(θ2)m1

+Fmorx L2 cos(θ2)m2 +Fmorz L2 sin(θ2)m1 +Fmorz L2 sin(θ2)m2 −M (cos(θ1 −θ2))2 m2 +Mm1 +Mm2 (3.41)

In the equations of motions of the single and double pendulum, a time-dependent terms are present (ux(t )
and uz(t )). This follow from a pre obtained time record of the tip motion. More on this will be explained in
chapter 3.4.

3.2.3. Time Domain Post-processing
To draw information conclusions from a time series, descriptive statistical analyses are conducted. After all,
if the simulation includes random wave (phases), consecutive identical simulations will never be exactly the
same due to this randomness, but also due to numerical discrepancies.
Responses from irregular sea states with a Gaussian distributed wave height in combination with narrow
banded response spectrum, obey Rayleigh distributed [9] wave amplitudes (Ra(ω)). Only short term predictions
are considered. From an given or simulated time series, first the the standard deviation, σ, is calculated with
equation 3.42. This standard deviation squared approximates the area underneath the response spectrum,
also the 0th moment of response spectrum (equation 3.45 and 3.46).

σ=
√√√√ 1

N −1

N∑
n=1

(Ra −µ)2 (3.42)

σ2 ≈ m0R (3.43)

m0R can be used in predicting what the significant amplitude, maximum amplitude and what the probability
is the amplitude exceeds a certain value. Since the response obeys a Rayleigh distribution, the probability
density function of equation 3.44 can be used.
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f (Ra) = Ra

σ2
R

·e
− R2

a
2σ2

R (3.44)

where:

|HRζ(ω)| = Ra(ω)

Sζ(ω)
(3.45)

SRζ = |HRζ(ω)|2 ·Sζ(ω) (3.46)

The equation of the maximum motion is bases on the statistical occurrence of once every 1000 oscillations,
f (Ra) = P {Ra > Ra,max } = 1

1000

rr1/3 = 2σ (3.47)

xmax = 1.86 x1/3 (3.48)

3.3. Morison forces
When considering vessel motions, it is assumed that the vessel is a large rigid body with respect to the
incoming waves. However, to calculate the forces on a slender body, with members that are significantly
smaller than the incoming waves, i.e. d

λ < 0.1 to 0.2 where d is the characteristic diameter of the structrure
and λ the wavelength, an other approach is used. In the derivation of these forces, it is assumed that the
ambient fluid motions are not affected by the presence of the structure and that there are no diffracted waves
[10]. In other words, the structure is ‘transparent’.
Consistent with Newton’s second law, forces result in acceleration. So there must be a force driving the
acceleration of the fluid, caused by pressure gradient along an hypothetical cylinder. Now for such small
member, a pressure integration in conducted along the surface. This results in a inertial force. From experiments,
it is observed that there is also a force present that is related to the squared velocity at the member, a drag
force.
This approach was first introduced by Morison [11]:

Fmor i son(t ) = FIner t i a +FDr ag = ρπ
4

CM D2 · u̇(t )+ 1

2
ρCD ·u(t )|u(t )| (3.49)

• F (t ) = excitation force [N]

• ρ = water density [kg /m3]

• Cm = inertia coefficient (-)

• D = cylinder diameter [m]

• u̇(t ) = particle flow accelartion (m/s2)

• CD = drag coefficient (-)

• u(t ) = particle flow velocity [m/s]

All members of the jacket are considered to be perfectly round shaped, therefore eliminating the effect of a
lift force [12].

3.3.1. Morison force integration over a structure
A jacket consist of at finite number of members, Nm . When fixed to the seabed (i.e. it is unable to move wrt
to the earth), with an regular incoming wave, the Morison forces, for example in X-direction, are calculated
with equation 3.50. Here is assumed that the drag and inertia coefficient and the diameter remain constant
over the length.

dF = 1

2
ρDCD |u f |(u f )+ π

4
ρD2CM u̇ f (3.50)

The motions of the jacket included gives equation 3.51.
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dF = 1

2
ρDCD |u f −us |(u f −us )+ π

4
ρD2CM u̇ f −

π

4
ρD2Ca u̇s (3.51)

In equation 3.51, the subscript f and s denote the fluid and structure motions, respectively. The total force
on the member is obtained by integrating over the length of the member, as can be seen in equation 3.52 -
3.54.

Fx =
∫ Le+dL

Le

{
1

2
ρDCD |u f x −usx |(u f x −usx )+ π

4
ρCM u̇ f x −

π

4
ρCa u̇sx

}
d x (3.52)

Fy =
∫ Le+dL

Le

{
1

2
ρDCD |u f y −us y |(u f x −us y )+ π

4
ρCM u̇ f y −

π

4
ρCa u̇s y

}
d y (3.53)

Fz =
∫ Le+dL

Le

{
1

2
ρDCD |u f z −usz |(u f x −usz )+ π

4
ρCM u̇ f z −

π

4
ρCa u̇sz

}
d z (3.54)

where u f x and u̇ f x are the fluid velocity and acceleration, derived form potential flow [13] from the incoming
wave respectively:

Φ=Φw (3.55)

and than:

u f x = ∂Φ

∂x
= ζaω ·ekz cos(kx −ωt )+ux,cur r ent (3.56)

u̇ f x = ∂Φ

∂x

d

d t
= ζaω

2ekz sin(kx −ωt ) (3.57)

In equations 3.52 - 3.54, usx and u̇sx , represent the velocity and acceleration of the fluid wrt to the ‘fixed’
structure, which is equivalent the inverse of the motion of the structure wrt still water.

3.3.2. Wheeler stretching
The fluid velocity and wave height that is calculated above the mean water level should be extrapolated to
the instantaneous change wave height. The most widely used is Wheeler stretching, as in figure 3.3. The holds
that instead of extrapolating the exponential term (ekz ) to above mean water level, the vertical coordinate is
stretched according to 3.58, where zs is the original coordinate, η is the free surface elevation and d is the
depth.

z = zs −η
1+η/d

(3.58)

Constant velocity

     extension

eler stretching

ar profile for -d < z < 0

d

Ϛ(t)

z

O

Figure 3.3: Wheeler stretching

Note that F and u, from equations 3.52 - 3.54, are the 6 DoF force and motion vectors of a single member. For
a entire jacket, this force is summarized over the all the members (equation 3.59).

F j acket =
Nm∑
n=1

Fmor,n (3.59)
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3.3.3. Vector calculations
To calculate the total forces and moments on a space truss such as jacket, each member is considered separately.
The total force is obtained by integrating the force along its length. The jacket that is used for simulations is
a stick figure (see figure 2.4) . The nodes, or intersections between jacket members, are defined by their end
points. The stick figure states that the external and internal forces exerted on the beams, act on the centroid of
the member. The velocity and acceleration vectors are for most cases member not parallel or perpendicular
to the jacket member, while only the velocity and acceleration component that is perpendicular to the jacket
member causes a force.

U

Û U⊥

w

F

z y

x

Figure 3.4: Vector representation of single
jacket member

F

z y

x

r

CoG

Figure 3.5: Resulting moment around CoG

The fluid kinematics, i.e. velocity and acceleration of the fluid in X,Y and Z direction can be calculated with
potential wave theory [13], at every location at every instance (equation 3.56 and 3.57). According to Journée
et al [13], the force, Fc , will act in the direction of Up of course; this is perpendicular to the cylinder axis and
in the plane defined by the cylinder axis and the approaching velocity vector, u’. So the jacket member will be
considered as vector w̄ . The velocity component perpendicular to w̄ can found by subtracting the orthogonal
projection of the velocity on the jacket member vector w̄ from the velocity vector itself [14]:

u⊥ = u − û (3.60)

The orthogonal projection of the velocity on the jacket member w , û, is found with:

û = u ·n

n ·n
n (3.61)

where n is the unit vector parallel to w :

n = w

|w | (3.62)

The above calculation also works for the acceleration. The force vector F can be calculated with u⊥ and u̇⊥
with equations 3.52 - 3.53. This force vector than has a X, Y and Z component. For the total forces on the
jacket, these the forces can be summarized from all separate jacket members. To obtain the moment on the
jacket generated by the single jacket member, the cross product must be applied of the force F and the arm r
from the CoG to the arm where the force is applied:

MCoG = F × r (3.63)

3.4. Wave record generation
A time record for the tip motion should be provided. This will be generated using predetermined wave
spectra. Based on the parameter given in the design load case of table 2.4, an incoming wave data can be
generated, The wave height is based on airy wave theory [12]. Irregular random waves, such as a real sea
state, is the summation of different frequency components of the wave spectrum.

η(t ) =
N∑

n=1
Ak coskn x −ωn t +εn (3.64)
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As mentioned in chapter 2, a Pierson-Moskowicz spectrum will be used over JONSWAP spectrum. The curve
of a PM spectrum is described in equation 3.65.

SP M (ω) = 173 ·HS
2

T1
4 ·ω−5exp

{
−692

T1
4 ω

−4
}

(3.65)

The spectrum is shown in graph 3.6 for a range of 0 ≤ ω < 2 with a frequency step of ∆ω = 0.0054 [rad/s].
A time series constructed from this spectrum , with a constant frequency interval, would have repeating
duration of 1200s, as calculated in equation 3.66.

Dr ep = 2π

∆ω
= 1200s (3.66)
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Figure 3.6: Pierson Moskowicz Spectrum

3.4.1. Phase lag
The motion of the two structures are excited by incoming waves. For both structures, the motions are translated
to the motion of the CoG. However, since there is a distance between the two CoGs, there exist a phase lag
between the exciting wave forces. In addition, this phase lag is different per wave frequency component for
irregular waves.

Wave direction
Δx 

µ

ΔL 

Figure 3.7: Phase lag difference

To calculate this lag ∆ε(ω), first the distance between the two CoG must be determined, an consequently the
distance between two waves perpendicular to the wave direction with equation 3.67.

∆L =∆x ·cosµ (3.67)

The phase lag is calculated with equation 3.68.

εpl = k(ω) ·∆L (3.68)

where wave number k is found from the dispersion relation (equation 3.69). Since this equation is non-linear,
is has to be solved iteratively.

ω2 = k · g · tanhk ·h (3.69)
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The phase lag from the due to location of the jacket wrt the CoG of the vessel is substituted in equation 3.64,
therefore obtain equation 3.70.

η(t ) =
N∑

k=1
Ak cosωk t +εk +εpl (3.70)

With equation 3.70 and the wave spectrum from equation 3.6, a time series of wave height at the CoG can be
constructed. The phases εk are random at each frequency, for the interval 0 < εk < 2π. The amplitudes are
calculated with equation 3.71. To maintain a consistent input during the simulation, the vector of random
phases is generated once, and consequently kept constant. This gives the a wave height time series in figure
3.8.

Ak = ζa =
√

2 ·Sζ(P M)(ω) ·∆ω (3.71)
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Figure 3.8: Time series wave height used for research

The motion of a floating vessel are described in 6 degrees of freedom; that is three translational (surge, sway,
heave) and three rotational (roll, pitch, and yaw) DoFs. All these motions are relative to the vessel’s centre
of gravity. When the motions of and about the CoG are known, it is possible to determine the motion at any
point P on the floating body. How the response of this theoretical point P is calculated below.
For a certain point P (xb , yb , zb) on the structure. For equation 3.37, the acceleration of the TLB tip is required.
The angles of rotation are assumed to be small, therefore they can be linearised:

si n(φ) ≈φ (3.72)

cos(φ) ≈ 1 (3.73)

This gives the following translated motion of point P

xP = x − ybψ+ zbθ (3.74)

yP = y +xbψ− zbθ (3.75)

zP = z −xbθ+ ybφ (3.76)

3.5. Impact
Impact is the a primary cause of impulsive motions in structures, and they impose a sudden redistribution
of momentum in the concerned bodies. It is a force applied for a short period, exciting the structures in all
frequencies, being potentially harmfull. Therefore, in marine environment, fenders are used to absorb the
kinetic energy and reduce impact force on the structures by extending to time of contact and therefore the
change in momentum. The common way to obtain design loads on structures and fendering systems is to
estimate the amount of kinetic energy of the approaching structure [15].

p =
∫ tc

0
F (t )d t (3.77)

where

p = normal impulse for compression (3.78)

F (t ) = compression or impact force (3.79)

tc = time at end of compression (3.80)
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This can be simplified to:

p = mv (3.81)

∆p = F∆t = m∆v (3.82)

Where F = Faverage is the impact force and F∆t the impulse, that equals the change in momentum (∆p). When
the moving body has to be stopped by impact, the change in momentum is a fixed quantity. The impacting
force, found with equation 3.82, can be decreased by extending the time of the collision, i.e. increasing ∆t . A
similar approach is to look at the work-energy relation:

F s = 1

2
mv2 (3.83)

Where s is the distance travalled by the body in contact. By increasing the distance of collision, the impact
force can be reduced.
Impact consist of three periods:

• No contact. Both structures are not in contact.

• The approach period Also called the compression phase. Its start is indicated with t0 untill tc . Both
structures are in contact. After the colliding bodies first touch, the contact forces rises and kinetic
energy of relative motion is transformed into potential (elastic) energy.

• The restitution period.From tc until t f . The structures depart from each other. The elastic energy
stored during compression generates the force that drives the bodies apart. If the impact is perfectly
elastic, the restitution period and approach period at symmetrical.

(a) Classical impact process [16] (b) Bouncing ball from [17]

Figure 3.9: Impact mechanisms

A sketch of the approach and restitution period can be seen in figure 3.9a. After contact, the normal component
of the force F has an impulse p which equals the area under the curve in figure 3.9a, as in equation 3.77.
According to Stronge [18], there is no way of obtaining the compression length, δ, directly without detailed
information about the compliance of the colliding bodies. Therefore a numerical simulation is needed.

A possible measure for the amount of energy absorbed during the collision is to calculate the coefficient of
restitution e∗. This is calculated with equation 3.84

e∗= p f −pc

pc
= v f

v0
(3.84)

Impact between multiple mechanical bodies is often modelled with a spring - damper system [19]. A similar
phenomenon in marine industry, is the impact between fenders and vessels, or between a jetty and a ship
during berthing [20]. How this impact is modelled, and than in particular the transition between contact and
no contact is discussed in this chapter. In literature, multiple theories of this transition are used. According
to A.Jönsson et al [19], a combination of the existing theories provides the most reliable outcome.
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In impact mechanics, in particular the rigid body impact mechanics, there are two types of viscoelastic
collision models, that describe the contact force arising from the compression of colliding bodies, the Kelvin-Voight
and Maxwell model [18]. In figure 3.10 can be seen that both models consist of a damper and a spring, where
the first is in series and the second is parallel. The Kelvin-Voight (left) will be used in this thesis.

k

d

d k

Figure 3.10: Impact of a body and fender

In mathematical terms:

Fc =
{

F f ender at contact
0 at no contact

(3.85)

Where the force element is a linear elastic spring, parallel with a viscous damper. This gives:

F f ender = c(ẋs1 − ẋs2)+k(xs1 −xs2) (3.86)

Here, s1 and s2 denote the two structures.

The transition between contact and non-contact is subjected to several implications. Two different transition
conditions are considered, and a third 1, which is a combination of the first two. The first condition is the
relative distance (indicated with A). When considering only the distance between both structures is indicator
between contact and no contact (i.e., xs1−xs2 = 0 at impact), it fails to see true transition, because the relative
velocity is larger than 0 (i.e., ẋs1 − ẋs2 6= 0). The other option as indicator (B) used in literature [21] states that
for both start and end of contact, the contact force is zero:

F f ender = 0 (3.87)

This ensures that there wil never be a adhesion force and that the contact force is continuous. However, in
this transition, the relative velocity is larger than zero at every start of contact, which implies that there is the
force is active before the distance is zero, which could influence the body dynamics.
A combination of the theories mentioned above will be used (C); at the start of every contact, the transition
condition is dependent on the relative distance. At every transition from contact to non-contact, the contact
force being equal to zero is the transition condition. In other terms:

xs1 −xs2 = 0 contact to non-contact
F f ender = 0 non-contact to contact

(3.88)

3.6. Fenders
The the offshore industry marine fenders are used to prevent large impacts. Marine fenders are equipment
that come in a large variety of shapes, materials and working principle. Their task is to prevent vessels from
colliding with jetties, structures or other ships. They do so by absorbing the kinetic energy in combination
with a low reaction force so that the colliding structures are not damaged. The berthing of a vessel is a
complex phenomenon, as the forces on the fender are affected by many factors [22], such as location of
impact, geometry and rigidity of the ship, mechanical properties of the fenders, speed and angle of approach
and environmental actions such as waves, wind and current.
For ship to ship operations, usually pneumatic fenders (figure 3.11) are used, due to the property that it has
low a low reaction force for a low deflection. They have an excellent energy absorption and load deflection.
Therefore, characteristics of such fenders are used to model the interface between the jacket and PS

1In the research mentioned above [19], there is another transition condition. It is based on condition C, but it also takes into account the
phenomenon of the relaxation of the spring/damper. However, this phenomenon is neglected as is its expected that impact frequency
is low enough for the spring-damper system to recover
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Figure 3.11: Yokohoma pneumatic fender

Some typical characteristics can be seen in appendix B. From these figures, a typical fender stiffness of is
extracted that will be used.





4
Model Design

This chapter described how the models used for the JLS are built up. Relevant assumptions and calculations
are described in subsequent sections.

4.1. MatLab model
The system is modelled in the 2D X-Z plane. A sketch of the system can be seen in figure 4.1. Two bodies
can be identified, the vessel and the jacket. The vessel consist of the hull and the tilting lift beam, rigidly
connected the the hull. The jacket is connected at the top of the TLB with hoisting cables, so that it pivots
around the TLB tip. Both the vessel and the jacket are initially for this research restricted to move in only
the X-Z plane, so that the Y direction (surge and roll and yaw) is locked. Both models are subjected to an
incoming wave at µ = 0 because it is expected that the jacket motion relative to the PS will show the largest
fluctuations.

Figure 4.1: Simplified sketch of model

Two models of the suspended jacket will be modelled. The first will be considered as a swinging pendulum,
whose pivot point is subjected to the imposed motion of the vessel. The a simplified representation can be
seen in figure 4.1. Important assumptions that will be elaborated in this chapter are:

• The motion of the jacket does not significantly influence the motion of the vessel. Therefore, the motion
imposed motion of the TLB can be calculated independently in advance.

• The hoisting cable configuration can be modelled as an inextensible rod

25
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The assumptions will be more elaborated in this chapter. In table 4.1 the dimensions of both pendulum
models are given.

Double Pendulum Single Pendulum

Dimension Description Dimension Description

L1 67.5 Length hoisting cables [m] L 154.5 Length tip to jacket CoG [m]
L2 87 Length top jacket - CoG [m] M 14055 Total mass [tonnes]
M1 107 Mass hoisting wires [tonnes]
M2 13948 Mass jacket [tonnes]

Table 4.1: Pendulum dimensions

When the values from table 4.1 are substituted in matrix A from the double pendulum (equation 3.25), this
becomes:

A =
[

19.090 −18.945
−14.811 24.605

]
(4.1)

The eigenvalues, or undamped natural frequencies, are calculated of this system with the values from table
4.1

λ1 = 4.871rad/s (4.2)

λ2 = 38.82rad/s (4.3)

(4.4)

The corresponding mode shapes are:

(
θ1

θ2

)
λ=λ1

= 1

4.871
= 0.2053 (4.5)

and

(
θ1

θ2

)
λ=λ2

= 1

38.82
= 0.0258 (4.6)

4.1.1. Vessel Motion

To investigate the effect of the jacket furthermore, first the Response Amplitude Operators are computed with
Ansys AQWA. The resulting RAOs can be found in figure 4.6. For more details on the Ansys AQWA model, see
chapter 4.1.1.
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Figure 4.2: Response Amplitude Operator of the PS

As mentioned in chapter 3, motion of the pivot point of the pendulum models equals the motion of the TLB
tip. When equation 3.74 is applied on the wave train from figure 3.8, this results in the heave motion of figure
4.3 and 4.4 for load case 2 (table 2.5) for 200 seconds.
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Figure 4.3: Heave motion of different positions
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Figure 4.4: Heave acceleration of different positions

4.1.2. Motion influences of jacket
When the jacket is attached to the TLB, and suspended from the tip, the vessel motions will be influenced
by the jacket motions. However, the question is whether these motions are significant. Though this question
could be a research on itself, a preliminary check is conducted to estimate the effect, namely by the comparison
of structures’ masses.
For different operational modes of the PS, the ballasting is adjusted and therewith the draft. So for the
mentioned calculation, the weight from the PS is at a draft of 17 meters. This is less draft for actual JLS
operation. However, this has a positive effect on the result, since the ratio would increase for a larger draft
(and thus larger mass). The ratio is calculated to be 2.1%.
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r = mjacket

mvessel
= 14.000 tonnes

682.100 tonnes
≈ 2.1% (4.7)

To provide additional insight into the effect of the jacket on the vessel motions, two point masses are added
at the end of both TLB tips, rigidly connected to tip of the TLBs. Both masses have a magnitude of 7 ·107kg .
Together they are equal to the submerged weight of the jacket. During the jacket lifting, the vessel is ballasted
to even the keel trim. Thus, in order to maintain a moment equilibrium around the Y-axis in the model,
another point mass is added (see figure 4.2), which is calculated with equation 4.8 to be equal to 4.86 ·106kg .

CoG x

y

X Y Z Mass [kg]

Point mass TLB 1 -45.33 -28.5 135.65 7E+06
Point mass TLB 2 -45.33 28.5 135.65 7E+06
Point mass PS 215.39 0 0.513 2.9E+06

Table 4.2: Point mass locations

2 ·mp,T LB · rx,CoG−T LB = mp,PS · rx,CoG−Xmp
(4.8)

The new equivalent RAOs are calculated of the vessel, and consequently for each DoF and each frequency,
the equivalent RAO’s is substracted from the other (equation 4.9)

δRAO(ω, i ) = RAOi (ω)−RAOi ,eq(ω) for i = 1−6 (4.9)
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Figure 4.6: Difference RAOs of the PS

When compared to the RAOs in figure 4.6, it can be observed that these point masses do not have a large
influence on the RAOs, especially for an incoming wave of µ= 0. Therefore, it is assumed that the motion of
the suspension point can be imposed with a previous generated motion time series.

4.1.3. Cable properties
In the equation of motion 3.37, the rod is assumed to be inextensible. In reality, the hoisting configuration has
a certain stiffness. All of the wires, sheaving, hoisting length can be combined to a equivalent wire stiffness.
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To determine whether the assumption of the inextensible rod is valid, the system is compared to a simple
mass- spring system of figure 4.7. The stiffness is equal to twice the equivalent stiffness of the main hoist
system (since is it connected to two beams),which is calculated to be 7.7 ·107 N

m [2].The weight of the jacket is
the submerged weight. The natural frequency is calculated in equation 4.10. It should be noted that though
the system is preloaded, this does not affect the natural frequency [7].This value is significantly higher than
the frequency of incoming waves. Therefore, the effect of the extensibility of the cable is neglected in the
equation of motion.

ωn =
√

keq

msubmer g ed
≈

√
7.7 ·107

1.4 ·107 = 2.3rad/s (4.10)

msub

keq

Figure 4.7: Mass Spring system

4.1.4. Inertia coefficient

In equation 3.49 there are two yet unknown constants CM and CD , the inertia and drag coefficient respectively.
By theoretical derivation, CM is equal to 2 [13], as it takes into account two, in theory equal, phenomena;
the Froude Krilov force due to the undisturbed flow at the cylinder wall location, and the force due to the
disturbance of the flow. However, by experimenting, it is found that the force due to the disturbance of the
flow, is less than 1. This difference is taken into account by means of a the coefficient Ca , the ‘added mass’
coefficient.

So, the inertia coefficient is defined as:

CM = 1+Ca (4.11)

Where 0 < Ca < 1 For small structure members, this value is usually assumed to be Ca = 0.2 (DNV standard
RP-C205, article 6.9.1.3). This results in a total inertia coefficient of:

CM = 1.2 (4.12)

4.1.5. Drag coefficient

For normal flow, the drag coefficient CD depends on the Reynolds number, the structure’s roughness with
respect to the diameter (∆) and the fluid viscosity. As the drag force will be expressed in terms of a relative
velocity, a single drag coefficient will be sufficient for all cylinders [12]. This value is obtained with figure 4.8
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Figure 4.8: Drag coefficient [12]

The roughness is obtained with equation 4.13

∆= k

D
(4.13)

k is the roughness height, which is averaged from the known data for members covered in marine growth
[12], is equal to 1 ·10−2 and the average diameter of the jacket is 0.925 m
The Reynolds number, a dimensionless ratio between the inertial and viscous forces in a flow, is calculated
with equation 4.14

Re = U D

ν
(4.14)

Where:

U = mean fluid velocity [m/s]

D = average diameter [m]

ν= kinematic viscosity fluid [m2/s]

The kinematic viscosity of seawater is 1.35 ·10−6 at a temperature of 10◦C [12]. The mean fluid velocity needs
to be estimated. The current velocity, as presented in table 2.4, is 0.5 m/s, is added with a contribution of
wave velocity. At the free surface, this orbital velocity is Ufs,orbital = ζaω = 1.3m/s. Due to the decay of this
velocity with depth, the average wave velocity is estimated as 2

3Ufs, orbital, which is U = 0.5+0.87 = 1.3m/s.
This gives:

∆= 0.1081

Re = 8.9 ·105

From figure 4.14 the drag coefficient can be estimated:

CD ≈ 1.08 (4.15)

4.1.6. Inertia and drag dominance
The Morison equation is applicable on members with a diameter to wavelength ratio that is smaller D

λ < 0.2.
When this condition is met, the ratio between drag and inertia forces can be estimated with the Keulegan-Carpenter
number [23]:

KC = uaT

D
= 2π

xa

D
(4.16)

From Journée et al [13], several regions can be distinguished:
• Inertia dominance (KC < 3)



4.2. Jacket representation 31

• Linearized drag Conservative, cross term in neglected (3 < KC < 15)

• Full Morison equation (15 < KC < 45)

• Drag dominance(KC > 45)

4.2. Jacket representation
The jacket described in chapter 2 consist of 572 different members (table 2.4). During a time domain simulation,
for each member the force is calculated 3 times, namely due to its own motions, due to the environmental
forces, and the due to the cross product (in case of drag (chapter 3.2.2.)). This force consists of drag and
inertia. To summarize, at each time step approximately 572×3×2 ≈ 3432 computations are done. Especially
during fast varying motions, when the variable time step is made small for the ODE solver, the simulation
requires much computational effort. Therefore in this chapter, approaches are considered to decrease computational
effort and increase simulation speed, without losing essential accuracy.

To compare the following approaches with each other, a force profile of the jacket is computed as can be seen
in figure 4.9.
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Figure 4.9: Force profile on jacket

• The blue graphs represent the drag force and the red graphs the inertial forces per meter depth. The
left blue and red graph is the force at that specific depth. The right blue and red figure is the integral
of the force per meter depth , starting from the top of the jacket downwards (referred to as sum plot).
From these sum plot, it can be seen that the total drag force increases per meter depth, which is due to
the uniform current applied on the jacket. The inertial forces stay constant after a certain depth, due to
the exponential decay of the fluid accelerations.

• The total drag force in for this case is Fdr ag ≈ 0.75 kN and Fi ner t i a ≈ 2700 N for Hs = 2.5m,ucurrent = 0.5
m/s and Tz = 5.7

4.2.1. Equivalent Stick Model

The first approach to decrease computational power is to use the equivalent stick-model developed by Dubbers
et al [24]. A graphical representation can be found in figure 4.10. Different stick ranges (R) are defined
wrt to the SWL. For each of these stick ranges, an equivalent drag (Dde (R)) and inertia diameter (Di e (R))
is calculated. This is done as follows: (from [24])
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Figure 4.10: Graphical representation of equivalent stick-model method [24]

1. For each single member, the ∆x, ∆y and ∆z are defined, and to which boundary it contributes, and
what height of this range is (E0 = zu − zl ).

2. The following interim values are calculated:

p =∆y2 +∆z2 (4.17)

Li j =
√
∆x2 +p (4.18)

q = pD

Li j E0
(4.19)

3. The equivalent drag and inertia diameter is than calculated:

Dde = q

p
p

Li j
(4.20)

D2
i e = qD (4.21)

4. Finally, this calculation is repeated for each member, where the new equivalent diameter is added to
the the the value of the considered equivalent diameter per range

When the same regular wave as in 4.9 is applied on the equivalent stick model, the force profile of figure 4.11
is obtained for t = 0.
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Figure 4.11: Force profile on equivalent jacket

• The drag force shows the same profile . The total drag is almost equal to the drag of the fully defined
jacket model. However, the inertia deviates from the original model. This is attributed to the fact that
there is no spacial variation in the equivalent stick model, while that variation is present in the original



4.3. AQWA model 33

model. In other words, due to the fact that the new model is located with a constant x and y coordinate,
the inertia force at each member (or range) is in the same direction. In the original model, inertial force
could cancel eachother out due to their spacing relative to each other.

• The drag is dominant for the total force on the jacket. The inertial force deviate from the original model,
however, these force are not significant.

4.2.2. Equivalent Cylinder
To run multiple simulations, the equivalent stick model showed be still requires much computionational
effort. Therefore, the equivalent stick-model is simplified to one single cylinder, with a equivalent drag and
inertia diameter. The equivalent diameters are than scaled until the total force on the cylinder equals that of
the fully defined jacket. That is with Dde = 23 m and Di e = 3.2 m.
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Figure 4.12: Force profile on single cylinder representation of jacket

4.3. AQWA model
Simultaneously with the pendulum approach, a model is developed in AQWA. For the first stages of the
simulation AQWA-LINE is used. AQWA-LINE is the 3-D diffraction and radiation analysis program for wave
force and structure response calculations, and can also be used for hydrostatic analysis. It performs analyses
in the frequency domain and it assumes and ideal fluid, irrotational and incompressible.
A mesh of the PS is generated at a draft of 17m (figure 4.14) and of the jacket (figure 4.13). A jacket model that
was available has been scaled down to match the properties of the design jacket described in chapter 2.

The mesh of the PS consist of 4201 diffracting panel below sea level and 789 non-diffracting elements above
sea level, whilst the jacket consist of 573 Morison tube elements. The draft of the vessel is 17 m. The vessel
has a displacement of ∆= 5.32 ·105m.

Figure 4.13: AQWA Model of jacket Figure 4.14: AQWA Model of PS
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The frequency domain analysis gives the mass and spring matrices from the equation 4.23 - 4.26. The response
of the structures in waves is calculated by solving the equation of motion in the frequency domain:

[ω2(Ms + As (ω)− iωB(ω)+C ]X (ω) = F (ω) (4.22)

where:

Ms = Mass of structure [kg]

As (ω) = Added mass [kg]

Cs == Hydrostatic stiffness [N/m]

Bs (ω) = Damping [N/(m/s)]

F (ω) = Wave force (incident and diffracting) [N/m]

The added mass and damping are frequency dependent. Ansys AQWA solves these matrices for the PS and
the jacket for a predefined frequency range of 0.1 <ω< 1.7 with a frequency step of ωstep = 0.02 rad/s. Since
the added mass and damping are frequency dependent (so they’re matrices of [6×6×68])

Mvessel =



5.28E+08 0 0 0 0 0
0 5.28E+08 0 0 0 0
0 0 5.28E+08 0 0 0
0 0 0 7.20E+11 2.38E+10 1.61E+11
0 0 0 2.38E+10 4.67E+12 4.60E+09
0 0 0 1.61E+11 4.60E+09 5.23E+12

 (4.23)

M j acket =



1.40E+07 0 0 0 0 0
0 1.40E+07 0 0 0 0
0 0 1.40E+07 0 0 0
0 0 0 3.65E+10 4.22E+08 6.49E+08
0 0 0 4.22E+08 3.30E+10 7.90E+08
0 0 0 6.49E+08 7.90E+08 1.69E+10

 (4.24)

Cvessel =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 3.68E+08 -3.98E+03 3.54E+09 0
0 0 -3.98E+03 4.51E+11 -1.66E+05 3.47E+10
0 0 3.54E+09 -1.66E+05 3.63E+12 1.47E+05
0 0 0 0 0 0

 (4.25)

C j acket =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 1.02E+04 -8.31E+04 -5.60E+04 0.00E+00
0 0 -8.31E+04 1.36E+07 -2.46E+06 -1.58E+04
0 0 -5.60E+04 -2.46E+06 8.65E+06 2.20E+04
0 0 0 0 0 0

 (4.26)

With the results from the AQWA frequency domain analysis, also the RAOs from figure 4.6 are computed.

Figure 4.15: AQWA model PS with Forties C Jacket

In AQWA, the two structures can be coupled into one model for AQWA-DRIFT. This is the time domain
program for drift frequency and wave frequency structure analysis in irregular waves.
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Prior to the tilting phase, the jacket is lifted and tilted, in such a way that the slope of the jacket matches
the initial slope of the TLBS. It does so by varying the aft and front hoisting wires on the jacket. This initial
rotation has an influence on which fender will makes contact first.
In AQWA, fenders are added in between the locations of the support structures (or grillages), and the joints on
the jacket corresponding to the grillage locations. The axial force in a fender is determined with: The location
of the fenders is given in table 4.3

Location measuring points

X Y Z

Upper support structure (A) -24.7 0 55.81
Lower support structure (B) -6.845 0 -18

Table 4.3: Measuring locations

The stiffness is given in equation 4.27

Fc =
{

k1∆L+k2(∆L)2 +k3(∆L)3 +k4(∆L)4 +k5(∆L)5 if∆L > 0
0 if∆L ≤ 0

(4.27)

Figure 4.16: AQWA model PS with rotated jacket from side

4.3.1. Relative vs. Absolute Velocity approach in Frequency domain approach
The Morison force on the jacket is highly non-linear. In frequency domain analysis of the jacket, there are
several terms that need attention. The term |u f −us |(u f −us ) in equation 3.50 can be worked out to u f

2 +
us

2 −2u f us . The first and second component, the external fluid force component and the internal motion
force component respectively, can be split in the equation of motion. But especially the third component of
this equation adds extra difficulties to find a solution. Two options are presented to overcome this problem:

• Conservative approach. Neglect the term −2u f us . Due to negative term, the contribution of this term
has a decreasing effect on the total force. A very conservative approach would be to leave out this term.
The structures’ response would be higher

• Drag linearisation. In equation 3.50, the term |u f −us | can be replaced by a factor multiplied by the
root mean square of the relative velocity. According to Borgman [25], this factor is

α=
√

8

π
(4.28)

This gives:

dFdr ag = 1

2
ρDCDαur ms (u f −us )

= 1

2
ρDCDαur ms u f −

1

2
ρDCDαur ms us (4.29)





5
Simulation results

In this chapter, the results from the simulations with the different models are presented, provided with comments,
observations and conclusions.

In chapter 2, table 2.5, several different load cases are defined in accordance with the operability of different
operation modes of the PS. For convenience, this table is repeated below.

Load case Based on operational limit of Hs [m] Tz [s] Current velocity uc [m/s] Spectrum

1 Transfer 1 4.5 0.5 PM
2 Installation 2.5 5.7 0.5 PM
3 Transport (no heading control) 6 8.5 0.5 PM
4 Transport (w heading control) 10 10 0.5 PM

Table 5.1: Environmental load cases

5.1. Structure motions
The first part of the simulations chapter is to compare the motions of the structure, prior to the moment of
impact. A time domain simulation with the self developed pendulum model is conducted, in combination
with the AQWA model. The environmental conditions that will be discussed are described in 2.5, load case
2. Additional sensitivity analysis with varying loadcases and other parameters. Additional motion time series
can be found in the appendix.
From the obtained time series, statistical analysis is conducted for Rayleigh distributed amplitudes, as presented
and briefly explained in chapter 3. Four different aspects of these time series are compared:

• The horizontal and vertical position (in m)of the suspension point in both pendulums, representing
the tip of the TLBs. These are calculated with the RAOs and incoming wave spectrum.

• The horizontal and vertical position (in m) of the mass of the single pendulum, the position of the lower
mass of the double pendulum and the CoG of the jacket wrt to its equilibrium point.

• The tension (in N) in the rod and the hoisting wires.

• The momentum (in kg m/s) of the jacket in X and Z direction. This is calculated with equation 3.81

The results from the time domain simulation of the single and double pendulum and AQWA model for design
load case 2 are given in figure 6.7 , 6.8 and 5.3, respectively.

37
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Figure 5.1: Surge motion load case 2, single pendulum
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Figure 5.2: Surge motion load case 2, double pendulum
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Figure 5.3: AQWA Simulation Surge motion load case 2

For load case 2, the simulation for the MatLab model and AQWA are statistically analysed. By comparing
the models results in table 5.2, it seems that for the motion of the tip of the TLB, the motions show similar
behaviour for all three models. The maximum horizontal displacement is 0.35 m and vertical displacement
is 0.65 m. This is small compared to the dimensions of the system.



5.1. Structure motions 39

X-direction [m] µ σ X1/3 Xmax

Single pendulum -3.20E-05 0.094 0.189 0.35
Double Pendulum -3.20E-05 0.094 0.189 0.35
AQWA 0 0.096 0.193 0.36

Z-direction [m] µ σ X1/3 Xmax

Single pendulum -6.24E-05 0.172 0.34 0.64
Double Pendulum -6.24E-05 0.172 0.34 0.64
AQWA 0 0.177 0.35 0.66

Table 5.2: Position of TLB tip

From the same simulation the horizontal and vertical motions of the COG of the jacket itself are given in table
5.3. The motions of the jacket are not very large, however there are quite some differences in the horizontal
and vertical direction. From the vertical motion it is observed that the motions are that small, so that for
future research this angle can be linearised. The standard deviation of the motion of the jacket in Z-direction
is higher than for the pendulum models, while this is not the case for the X-direction. A possible explanation
is the fact the the hoisting wires are elastic.

X-direction [m] µ σ X1/3 Xmax

Single pendulum 0.4410 0.1057 0.2114 0.3931
Double Pendulum 0.1925 0.0697 0.1394 0.2592
AQWA 1.0738 0.0852 0.1704 0.3408

Z-direction [m] µ σ X1/3 Xmax

Single pendulum 0.001 3.03E-04 6.06E-04 1.13E-03
Double Pendulum 2.54E-05 2.72E-05 5.45E-05 1.01E-04
AQWA 0.0059 3.50E-03 7.00E-03 1.30E-02

Table 5.3: Position of COG of jacket c.q. pendulum (lower) mass

In the pendulum models, the massless rods representing the hoisting wires are under a tension. By rearranging
the equation of motions and filling in the simulation results, the tension at each time step for the MatLab
model was found. From AQWA these tension can be extracted from the results file. The mean tension in all
models are very close, namely 1.38 · 108 N . This value can be easily verified by calculating what the static
tension is in the cable due the the weight of the jacket itself, as in equation 5.1.

Tstatic = Mjacketg = 14.000 ·103 ·9.81 = 1.373 ·108N (5.1)

Equation 5.1 verifies that the tension is approximated well. However, significant differences in the oscillations
are observed. The maximum value of the single and double pendulum is 13 and 5 times higher, respectively.
One possible explanation is to do with the in-extensibility of the rod in de Matlab models. Due to the elasticity
of the hoisting wires, the jacket in AQWA is allowed to extend the hoisting wires and move vertically. In the
submerged part, this quadratic damping and buoyancy forces decrease the tensions amplitude in the hoisting
wires.

Tension [N] µ σ X1/3 Xmax

Single pendulum 1.38E+08 1.29E+06 2.57E+06 4.78E+06
Double Pendulum 1.38E+08 5.44E+05 1.09E+06 2.02E+06
AQWA 1.35E+08 9.75E+04 1.92E+05 3.62E+05

Table 5.4: Tension in rod and hoisting wires
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The interface between the jacket and the TLBs will be modelled as fenders, where kinetic energy must be
absorbed in order to minimize impact (and damage) on the vessel. Therefore, the amount of amount of
kinetic energy that needs to be absorbed is quadratically related to the in the relative velocity of the jacket
and the TLBs. Since the motions of the vessel are independent of the motions of the jacket, the kinetic energy
relative to the relative velocity has to fully dissipated by the interface between the jacket and the PS. The
results from the analysis of the relative velocity is given in table 5.5.

X-direction [kg m/s] µ σ X1/3 Xmax

Single pendulum 3.4E+03 1.2E+06 2.5E+06 4.6E+06
Double Pendulum 3.4E+02 5.5E+05 1.1E+06 2.1E+06
AQWA 3.77E+03 9.51E+04 1.90E+05 3.54E+05

Z-direction [kg m/s] µ σ X1/3 Xmax

Single pendulum 3.30E+01 3.60E+03 7.20E+03 1.34E+04
Double Pendulum 9.29E+02 1.56E+05 3.11E+05 5.79E+05
AQWA 9.87E+03 6.86E+05 1.37E+06 2.55+06

Table 5.5: Momentum of CoG

From tables 5.2 - 5.5, several observations are made:

• The tip of the TLBs has a maximum occuring deviation within a range of 1 meter. This is small relative
to the dimensions of the system.

• Due to the small motions of the jacket, the impact between the jacket and the TLBs is will be induced
by the tilting of the TLB. The tilting of the TLB will be achieved by pulling the derrick hoist wires with a
velocity of 0.01 m/s. This would result in a horizontal velocity of the TLB tip of 0.0056 m/s. This velocity
multiplied by the jacket mass would given an momentum of p = 0.0056 ·14.000.000 = 78400 kg m/s

If for each loadcase from table 2.5, the statistically maximum momentum of the jacket is calculated, the
following results are obtained:
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Figure 5.4: Maximum momentum per loadcase

Many simulations were conducted with the MatLab model of the submerged double and single pendulum.
Though in general, the model showed the right behaviour within a certain range of the AQWA results, it was
concluded that these models did not show consistent results enough in order to continue impact calculations.
Therefore, for further calculations, the AQWA models are developed to model the actual impact and mating
characteristics.
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5.2. Impact
After simulation the motions of the free floating jacket, the titling of the TLBs is applied, therefore causing
impact at a certain point. To gain more insight in process impact, the velocity of the jacket is calculated.
In impact mechanics, a measuring unit for impact is often the change in momentum [18], as explained in
chapter 3. Therefore, in figure 5.5, the velocity of the jacket in the X , Z ,θ direction can be seen for a still-water
conditions.

Figure 5.5: Structure motions without environment

In these figures, clearly the three phases can observed; the suspended (free-hanging), transition and tilting
phase. The transition phase is indicated by the cyan coloured part. The exact boundaries of these phases
are determined with deflection of the fenders, because a clear distinction can be seen between contact and
non-contact. This is more elaborately explained in section 5.2.2.

In all three different phases, a dominating frequency can be observed. Especially in the horizontal direction,
these different frequencies can be distinguished. Therefore a spectral analysis is made from the horizontal
motion in figure FFT, with the fast fourier transform. This can be seen in figure 5.6. The identified frequencies
with a corresponding explanation is given in table 5.6.
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Figure 5.6: Spectral analysis of jacket velocity
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Peak Direction Phase

0.006 x,θ all
0.17 x,θ free hanging
0.41-0.62 z all
2.01 x,θ tilt
5.9 z free + transition
11.2 all free + transition

Table 5.6: Spectral analysis results from figure 5.6

The following observations are made:

• Multiple peak can be seen in the range of the incoming wave spectrum.

• During free hanging phase: ω≈ 0.17 rad/s.

• During the transition phase the frequency in still water conditions seems to increase from ω ≈ 0.48
rad/s to ω≈ 1.25 rad/s

• During the tilting phase, slow varying harmonic motions are observed, with a frequency ofω≈ 0.02rad/s.
This motions are not within the scope of this thesis, however, these motions are attributed to the low
frequency mooring forces due to the slow varying drift.

• The higher peak are harder to explain. An inital presumption would be that it has something to do with
the high stiffness of the cable configuration and the mass suspended from it. However, more extensive
analysis is necessary to support this presumption.

In figure 5.7, the structure motions are given including environmental excitation of load case 2 (table 2.5)

Figure 5.7: Structure motions with environment
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A frequency analysis as in 5.6 shows that much more energy is present in the frequency part between 0 and 2
rad/s, due to the environmental actions.
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Figure 5.8: Spectral analysis of jacket velocity with environmental excitation

5.2.1. Static behaviour fender
Before looking at the dynamic analysis of the fenders, first the static forces of the fenders are considered. The
jacket is in rest on the TLBs, and the full weight of the jacket is acts on the fenders. The total reaction force of
these fenders are calculated as a function of tilting angle as in figure 5.9.

A

B
L

TLB

Figure 5.9: Static model for forces on fenders

The normal forces on the model are calculated with equations 5.2 - 5.4, in a rotated axis frame

∑
F = FA +FB −FZ ·cosθT LB = 0 (5.2)∑

MA = FB ·L A−B −FZ cosθT LB ·L A−Z = 0 (5.3)∑
MB =−FA ·L A−B +FZ cosθT LB ·LB−Z = 0 (5.4)

For the weight of the jacket, the dry weight is used. Equations 5.2 - 5.4 can be rewritten to:

FA = L A−Z

L A−B
Mjacketg ·cosθT LB (5.5)

FB = LB−Z

L A−B
Mjacketg ·cosθT LB (5.6)
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Using the values from table 5.7, a graph is generated with reaction forces for both fenders in figure 5.10, for
an angle range between 0 < θT LB < 120. However, it should be noted that now there are only 2 fenders taken
per beam taking the impact. For negative forces, the fenders do not make contact, and is therefore 0.

Value Unit

Mjacket
a 7.000.000 kg

L A−B 76.2 m
L A−Z 26.5 m
LB−Z 49.7 m

Table 5.7: Dimensions for static analysis

aSince there are 2 beams, and it is assumed that the mass is evenly distributed over the two beams, the mass of the jacket is set at half of
the total dry weigth (14.000 tonnes)

As the weight distribution on both fenders changes as function of tilt, the fenders natural frequency change
with it. It is calculated with:

ωn =
√

k

m
=

√
k

Ffend/9.81
(5.7)
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Figure 5.10: Normal forces fenders

5.2.2. No Environmental forces

First, a time domain simulation is run where the TLBs are hoisted in still water conditions, i.e. no environmental
influences. The beams are hoisted with 0.01 m/s. The results can be seen in figure 5.11.
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Figure 5.11: Fender forces without environmental influences

From this figure, several things can be observed.

• Three different phases can be observed; the suspended phase, the mating phase and the tilting phase.
The transition from suspended phase tot mating phase is when the first compression occurs. In this
case, this is at t = 201. The mating phase ends when there are no more occurrences of fender force
reaching F = 0, indicating that there is no more contact. The exact point when these phases start and
end are determined with these plots. The mating phase is highlighted in cyan in figure 5.11, and it’s
duration is Dmating = 72s.

• By analysing the data the amount of re-bounces can be calculated. In the compression graph, the start,
maximum and end of impulse is marked with a red cirlces in 5.12. These values are are corresponding
with t0, tc and t f , respectively. The impulses, calculated with equation 3.77, can be seen in figure 5.13

Figure 5.12: Detail of impact
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Figure 5.13: Impulses during mating phase

• The first impact is not the highest. The observation can be explained by the comparison of the system
with a pendulum; the highest forces occurs when the jacket impact with the highest velocity. A pendulum
has the highest velocity when it is a a zero angle position, and it has zero velocity in its outer position.
The tilting of the TLBs causes the equilibrium point of the jacket closer to the fenders, therefore impact
at higher velocity.

• After the mating phase, the tilting phase starts. During these phase, an increase can be observed in
the compression as well in force. This is because the gravitational force on the fenders increases as the
angle between the gravitational vector and normal vector of fender decreases.

• During the tilting phase, the fender seems the experience a harmonic motion, due to the springs. The
frequency of this harmonic motion is identified as 1 rad/s.

• When zoomed in a single impact, for example the first at t = in figure 5.14b, the damping coefficient
shows the absolute damping force. However, during the decompression phase, the damping force is
seems to make an inconsistent ‘jump’, whilst it should be negative. This is manually corrected, as in
figure 5.14c.

Figure 5.14: Detail of damping

• The derrick hoist is continually hoisting, until it reaches some arbitrarily chosen value, when it is certain
in the tilting phase. When the hoisting stops, the jacket has a rotating inertia, that causes a short
impulse on the fender system. This can be seen in figure 5.15. This effect is not within scope of this
research and will be neglected.
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Figure 5.15: Detail of damping

• During this compressions phase, there should be not damping force at all, as the fender does not ‘stick’
to jacket. This is not implemented in the current model. Presumably, this damps the jacket motions
even more in the model. However, this is recommended for future research.

5.2.3. With environmental forces

Now, the results of the simulation is given where the jacket ánd the vessel are excited by environmental forces.
Load case 2 is applied (table 2.5). With a hoisting velocity of αT LB = 0.01[m/s], this gives the results in figure
5.16

Figure 5.16: Fender forces with environmental influences

From these results, the following observations can be made:

• Environmental forces certain have an effect on the system. The duration of the mating phase increases,
to Dmating = 214s.

• Rebounces are much more frequent. In this load case, there are 31 re-bounces.

5.2.4. Maximum force vs Hs

In figure 5.19, the maximum force is plotted per significant wave height.
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Figure 5.17: Maximum force vs Hs

The following observations can be made:

• At Hs = 0, the maximum force is obviously independent of Tz . However, with increasing tilting velocity,
the maximum force is higher at α= 0.01m/s, but lower then decreases for α= 0.012m/s.

• For the design sea state, the maximum force is expected to be around 10 MN. To get a sense of magnitude,
this force will compared to the gravitational force the jacket exerts on the aft deck is the vessel when
it is fully tilted and laying horizontally. In that case, the jacket is supported by all 8 support structures
(only 4 experience impact during the transition phase). When the jacket is titled until it is horizontal on
the aft deck, each of the support structure will experience 1

8 of the total gravitational force, i.e. 17 MN
per support structure. Therefore, the designers of these jacket support structures should design for this
maximum load and not for the impact during the transition phase.

5.2.5. Mating phase duration vs Hs

A batch simulation is done to check the sensitivity of the system to various environmental parameters. In
tables 5.8 and 5.9 these results are given. The fender stiffness is 5 ·107 N/m and damping coefficient is 0.01.
The tilting velocity is αT LB = 0.01 m/s. Per combination of Hs and Tp , 6 results are given: (in same order of
appearance:

• Duration of mating phase [s]
• Maximum deflection of fender [m]
• Maximum force generated by fender [kN]
• Mean coefficient of restitution
• Mean impulse on jacket [kNs]
• Maximum impulse on jacket [kNs]
• Number of re-bounces.
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Hs 0 2.5 4 6

Dmating 72 214 232 708 [s]
δdeflection 0.036 0.193 0.253 0.336 [m]
Fmax 1.78E+03 9.68E+03 1.27E+04 1.69E+04 [kN]

¯e∗ 0.811 1.150 1.285 2.080 [-]
p̄ 2.25E+04 2.25E+01 2.25E+01 2.25E+01 [kNs]
pmax 2.70E+04 1.51E+05 1.68E+05 4.17E+06 [kNs]
Nrebounces 13 31 30 67 [-]

Table 5.8: Results from simulation with Tz = 6.8s

Hs 0 2.5 4 6

Dmating 72 232 265 656 [s]
δdeflection 0.036 0.163 0.370 0.337 [m]
Fmax 1.78E+03 8.15E+03 1.86E+04 1.70E+04 [kN]

¯e∗ 0.811 1.656 1.174 1.627 [-]
p̄ 2.25E+04 7.04E+04 1.26E+05 4.46E+05 [kNs]
pmax 2.70E+04 3.35E+05 2.33E+05 1.27E+07 [kNs]
Nrebounces 13 35 26 40 [-]

Table 5.9: Results from simulation with Tz = 8.5s

The magnitude of all values increase with increasing environmental conditions. However, it appears that the
duration of the mating phase increases exponentially between Hs = 4 and Hs = 6. This can be explained
by examining the fender compression or force plot from that particular load case. Due to the more severe
weather conditions, the fenders lose contact several more times after 200 seconds. When the mating phase
duration is plotted against significant wave height and tilting velocity, the following graph (5.19). Especially
for longer waves, the mating phase duration is less for higher tilting velocities. This can be explained by
the fact that the jacket and beams’ relative motion towards each other is faster, so that the steady state of
continuous contact is made quicker.
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Figure 5.18: Maximum force vs Hs

5.3. Geometrical Loadcases
Besides the environmental parameters, also several geometrical parameters are varied, namely the tilting
velocity αT LB , fender stiffness and damping ratio
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5.3.1. Number of re-bounces vs Hs
In figure 5.19 the number of re-bounces is shown for each of the different tilting velocities. One of the things
that stands out is that at a tilting velocity ofαT LB = 0.01 m/s, the amount of re bounces at still water conditions
(Hs = 0) is higher than for αT LB 0.008 and 0.012 m/s. The main trend is that for an increasing severity of sea
state, the amount of re-bounces increase. However, for Tz = 8.
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Figure 5.19: Maximum force vs Hs

5.3.2. Coefficient of Restitution
In figure 5.20, a graph of the compression in a fender is shown and the corresponding horizontal velocity of
the jacket in X -direction. By determining the start (to) and end (t f ) and consequently dividing the corresponding
velocities, the coefficient of restitution is obtained (equation 3.84). However, it should be noted that the
jacket experiences a constant velocity due to the tilting of the jacket, which is independent of the collision.
Conclusions drawn from change in this value should be done carefully.

Figure 5.20: Jacket velocity vs at impact, for loadcase 2, with k = 5E8 N/m and d = 0.01

An overview of all responses calculated with the equations mentioned before can be found in tables 5.10 -
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5.12, where fender parameters are varied, while environmental parameters are kept constant at the values of
load case 2.

k 5.00E+03 5.00E+04 5.00E+05 [kN/m]

Dmating 200 258 186 [s]
δdeflection 0.618 0.168 0.034 [m]
Fmax 3.09E+03 8.39E+03 1.72E+04 [kN]

¯e∗ 1.413 1.297 2.319 [-]
p̄ 6.41E+03 6.39E+03 4.65E+03 [kNs]
pmax 9.26E+04 1.35E+05 1.39E+05 [kNs]
Nrebounces 19 50 55 [#]

Table 5.10: Result table for various geometrical parameters, for d = 0.001

k 5.00E+03 5.00E+04 5.00E+05 [kN/m]

Dmating 238 246 122 [s]
δdeflection 0.728 0.176 0.037 [m]
Fmax 3.64E+03 8.79E+03 1.85E+04 [kN]

¯e∗ 1.330 1.299 1.797 [-]
p̄ 7.12E+04 6.39E+04 4.55E+04 [kNs]
pmax 1.03E+05 9.92E+04 6.53E+04 [kNs]
Nrebounces 23 45 24 [#]

Table 5.11: Result table for various geometrical parameters, for d = 0.01

k 5.00E+03 5.00E+04 5.00E+05 [kN/m]

Dmating 161 120 73 [s]
δdeflection 0.431 0.084 0.018 [m]
Fmax 2.16E+03 4.29E+03 1.04E+04 [kN]

¯e∗ 2.488 1.146 1.166 [-]
p̄ 8.29E+03 5.80E+04 4.36E+04 [kNs]
pmax 2.66E+05 3.37E+05 1.65E+05 [kNs]
Nrebounces 11 14 11 [#]

Table 5.12: Result table for various geometrical parameters, for d = 0.1

From these tables, the following conclusions can be made:

• For increasing fender stiffness, the mating duration does only significantly decrease for k = 5E8N/m

• The mean coefficient of restitution increases for higher stiffness at d = 0.001, while for d = 0.1 this value
decreases for higher stiffness. Due to the tilting of the beams, the jacket also obtains a velocity.





6
Conclusions

Numerical time-domain simulations of a jacket removal procedure have been conducted to research the
behaviour of Allseas’ Jacket Lift System. In this chapter, the conclusions and recommendations that follow
from this thesis are presented.

6.1. Conclusions
3 models of the jacket lift system are developed. The first two are to predict the motions of a suspended jacket
according to a single and double submerged pendulum model. In addition, a full 3D model of the jacket lift
system was developed in ANSYS AQWA, to validate the pendulum. A direct-time domain simulation is used
due to non-linear motions and forces, using a Runge-Kutta integration scheme. The hydrodynamic forces on
the jacket are obtained by a instantaneous summation of Morison forces on all jacket members, where flow
velocity and acceleration is calculated with potential flow. To accelerate simulations, the jacket is modelled
as one cylinder with an equivalent diameter to account for drag and inertia.

In operational limit sea states, simulations showed that maximum occurring motions of the jacket are within
a range of 1 meter in the horizontal direction, caused by predominantly drag forces, for all developed models.
The actual mating of the jacket with the tilting lift beams is induced by the tilting of the beams. If there is
no tilting, the beams will not make contact. In addition, the pendulum models do not take into account the
disturbed fluid potential and dynamic positioning of the vessel. The pendulum models do not display the
same behaviour as the 3D model and are therefore regarded to be insufficient to predict the mating of the
jacket. Impact simulations were therefore conducted in the AQWA model.

The jacket mating loads are dependent on the kinetic energy that have to be absorbed by the jacket support
structures. Fenders were modelled to absorb this energy, where values from typical fenders were used. The
loads are dependent on the stiffness and size of the fender, i.e. possible deflection. From the motion analysis
of the jacket, the most probable maximum momentum of the jacket is 3.5 ·105 kg m/s. This should be taken
into account in the design of the jacket support structures.

A sensitivity analysis showed that the parameters that have most influence on the mating phase characteristics
are the tilting velocity and the stiffness of the fender. The maximum occurring deflection will increase for
increasing significant wave height, as that increases the momentum of the jacket. A higher wave period does
not have an increasing influence on the maximum force.
When the jacket is tilted until it is horizontal on the aft deck, each of the support structure will experience
a static force that is 1

8 of the total gravitational force, i.e. 17 MN per structure. This load is critical and the
designers of these jacket support structures should design for this maximum load and not for the impact
during the transition phase.
With this information, the subquestions can now be answered:

• How can both bodies, i.e. the jacket and the vessel, be described dynamically?
3 models of the jacket lift system were developed. In 2 of these models the system was represented as
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a single and double pendulum, with the jacket as a single cylinder with an equivalent drag and inertia
diameter. In AQWA, the full 3D system is modelled. The pendulum models did not take into account
all actions, of which most notably were wave drift forces on the vessel, wind and mooring (dynamic
positioning). Therefore the absolute values are not usable for impact analyses, but it provides a good
indication of the influences due to environmental actions.

• How are these bodies coupled and how can this combined system be approximated by a model?
In the pendulum representation, the motion of the jacket is assumed not to influence the motion of
the vessel. In addition, the two structures are modelled connected with an inextensible rod. In the 3D
model, the structures could influence each other, and the structures were connected with stiff cables.
This adds an extra degree of freedom, resulting in different behaviour.

• How can the jacket mating loads be approximated when the jacket makes contact with the vessel?
The mating loads are dependent on the initial momentum of the jacket and the characteristics of the
support structure. These structures have to absorb the total kinetic energy. By varying the stiffness and
the deflection length, the maximum force could be approximated.

• What are the most important external influences on the jacket lift system and how can these be integrated?
Regarded as most important influences on the system are the environmental actions and the tilting of
the beams, as they put energy in the system. The environmental load cases are based on the operating
limits of the Pioneering Spirit, where the design load case is an Pierson-Moskowicz irregular sea with
Hs = 2.5 m, Tz = 5.7s and a current velocity of 0.5 m/s. In the AQWA model the tilting is integrated
with a winch attached to the tilting lift beams, winching at 0.01 m/s. The influence of the environment
proved to be of secondary importance.

With the answers presented above, the main research question is answered:

• What are the key influences on the dynamic behaviour of the jacket mating loads on the Pioneering
Spirit during the transition phase.
3 Models were developed, in order to predict the jacket motions and mating loads. From these models,
it was derived that the most important parameters are fender stiffness and dimensions, and the tilting
velocity. The fender characteristics determine the maximum energy absorption. The tilting velocity
affects the time of contact during mating.
The sea state has a significant influence on the motion of the jacket. Increasing environmental conditions
have an increasing effect on the most probable maximum momentum of the jacket, increasing the
required energy absorption of the fenders.

6.2. Recommendations
• One aspect that has not been taken into account in calculating the response of the jacket is the presence

and influence of the vessel on the linear fluid velocity potential. The fluid potential consists of the
radiation potential, diffraction potentials and the incident undisturbed wave potential.

Φ=Φr +Φd +Φw (6.1)

For the pendulum approach, the influence of vessel is only taken into account in the form of a prescribed
imposed motion at the tip of the TLBs, and only the incoming undisturbed wave potential Φw is used.
This assumption was necessary to build the pendulum model approach. The diffraction or radiation
potentials might excite the system.

• The equivalent jacket model was used in order to accelerate the direct-time simulations. The approach
is based on a method for bottom found offshore structures, by Dubbers et al [24]. However, this concerned
a fixed structures on the sea bottom. A algorithm was written that automatically computes this equivalent
jacket model, after which it remained in that form. However, in this case it concerned a jacket that
is rotating and translating. If the rotation cannot be assumed as small, the equivalent model would
have to be recalculated each time. In addition, the stick ranges would change and equivalent diameter
for each specific range, adding up to the total computation time. Since the point was to decrease
computational effort this is not done. Therefore, my recommendation would be to research whether
this equivalent jacket model would still be valid for a moving truss structure.
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Appendix B: Simulation results
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Figure 6.1: Surge motion load case 1, single pendulum
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Figure 6.2: Surge motion load case 1, double pendulum
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6.4. Load case 2
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Figure 6.3: Surge motion load case 2, single pendulum
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Figure 6.4: Surge motion load case 2, double pendulum

6.5. Load case 3
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Figure 6.5: Surge motion load case 3, single pendulum



6.6. Load case 4 63
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Figure 6.6: Surge motion load case 3, double pendulum

6.6. Load case 4
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Figure 6.7: Surge motion load case 4, single pendulum
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Figure 6.8: Surge motion load case 4, double pendulum





Appendix C: Fender characteristics

Nominal size
(Diameter x Length)
[mm]

Initial Internal
pressure [kPa]

Guaranteed Energy
Absorption (GEA) [kNm]

Reaction
force at GEA
[kN]

1500x3000 50 153 579
2500x5500 50 943 2019
4500x12000 50 6473 7984

Table 6.1: Typical values for Yokohama type pneumatic fenders with p0 = 50 kpa [26]

Nominal size
(Diameter x Length)
[mm]

Initial Internal
pressure [kPa]

Guaranteed Energy
Absorption (GEA) [kNm]

Reaction
force at GEA
[kN]

1500x3000 80 214 761
2500x5500 80 1317 2653
4500x12000 80 9037 10490

Table 6.2: Typical values for Yokohama type pneumatic fenders with p0 = 80 kpa [26]

In graph 6.9 and 6.10, the performance curve of the largest types of Yokohama fenders are given. A performance
curve, or load-deflection curve gives a rough indication of the fender behaviour under loading. The initial
pressure p0 affect the behaviour, therefore two similar types are given with different initial pressure.

Figure 6.9: Performance curve of Yokohama pneumatic fender [p0 = 50 kPa]
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Figure 6.10: Performance curve of Yokohama pneumatic fender [p0 = 80 kPa]



Appendix D: Jacket removal configuration

67





Appendix E: MatLab model verification

In order to verify calculation of the Morison function of equation 3.38 work, several comparisons are made.
The AQWA model is compared with the MatLab model, as well as that the MatLab model is run with varying
settings.

The design jacket is a large and complex structure, where for each time step, many vector calculations and
integrations take place to calculate the Morison forces. To verify the Morison calculation, the jacket is replaced
by a single fixed submerged tube in infinite depth. The settings from table 6.3 apply:

Item Value Unit Description

Length 5 m Length of cylinder
Diameter 0.2 m Diameter of cylinder
Water depth 1000 m Waterdept at location of cylinder
Distance top to MSWL 5 m For fully submersion
Hs 2.5 m Waveheight
ω 1 rad/s Frequency (Period T = 6.28 s )
ucur r 0.5 m/s Current velocity
Cd 1.08 - Drag Coefficient
Cm 1.2 - Inertia coefficient
Max element size 0.05 m Element size for discrete time integration
Time step 0.001 s Time step
Simulation time 30 s Total simulation time

Table 6.3: Simulation settings for single fixed cylinder

First, only the effect of current is researched. Therefore, there are only drag forces and no inertia forces on
the cylinder.The current is not dependent on the vertical coordinate, therefore it can be left out the integral
in equation 6.2. With equation 6.3 the total force is calculated to be 138.4 N . In figure 6.11 the output of the
model is found; it can be seen that this indeed the calculated with the model.

Fdrag, current = 0.5ρCd D ·
∫ Lmax

Lmin

u2
curr d z (6.2)

= 0.5 ·1025 ·1.08 ·0.52 ·5 = 138.4N (6.3)
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Figure 6.11: Single Cylinder Morison forces

The Morison forces force on the cylinder due to a regular wave is calculated.. A regular wave with H = 2.5,
T = .. is acting on the jacket. The environmental part is plotted in figure 6.12.
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Figure 6.12: Single Cylinder Morison forces

To check whether this is true, the peak of the drag and inertia is calculated. This is done in equations 6.6-6.9

FI,max =
∫ Lmax

Lmi n

π

4
ρCM D2 · u̇max d z (6.4)

= π

4
ρCM D2 ·ζakg ·

∫ Lmax

Lmi n

ekz d z (6.5)

= π

4
ρCM D2 ·ζa g ·ekz

∣∣∣Lmax

Lmi n

= 113N (6.6)
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Fd,max =
∫ Lmax

Lmi n

1

2
ρCd D ·umax|umax| d z (6.7)

= 1

2
ρCd D · (ζa

kg

ω
)2 ·

∫ Lmax

Lmi n

e2kz d z (6.8)

= 1

2
ρCd D · (

kg

ω
)2 1

2k
·e2kz

∣∣∣Lmax

Lmi n

= 195N (6.9)

These forces correspond to the output of the model in figure 6.12.The chosen wave period, 6.28 s, corresponds
with the harmonic motions in the graph. Also, the inertia force lags a half phase behind the drag force, which
is logical due to the fact that acceleration lags a quarter period behind velocity for sinusoidal motions.

AQWA Model verification

The same model verification as for the MatLab model was done for AQWA. In figure 6.13, a very similar results
graph can be seen as with figure 6.12. The drag and inertia forces are in the same order magnitude as for the
MatLab model. In this case, Aqwa-Naut was applied since it concerned a regular wave.

0 5 10 15 20 25 30

time [s]

-300

-200

-100

0

100

200

300

[N
]

Drag Force

Inertia Force

Total Reaction Force

Figure 6.13: Single Cylinder Morison forces - AQWA Model

In addition, a model in AQWA was made the 3D AQWA model and 2D pendulum Matlab comparable. In
AQWA, instead of a fully defined jacket, a single cylinder was made. The height of the cylinder is twice the
length between the top of the jacket and the CoG. This is a discrepancy with real jacket, but a cylinder in
AQWA has its CoG per definition in the middle, whilst the jacket CoG is lower than the geometrical middle.
The material density of the jacket is scaled 1 in order to match the weight of the jacket. The cylinder has an
arbitrarily chosen thickness of 20cm.

The Matlab model is in the X-Z plane. Therefore, in the AQWA model, translation in the Y-direction and
rotation around the X and Z axis are locked for all structures. Two jacket hoisting wires, attached to the top
centre of the cylinder, are set as very stiff (k = 6 ·108) in order to approximate the inextensible rod from the
Matlab model. The model can be seen in figure 6.14a and 6.14b from aft view.

1An initial AQWA-Line simulation was conducted. Consequently, the weight extracted from the result file was divided with the actual
jacket weight of 14.000 tonnes. This factor was multiplied with the material density of cylinder material
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(a) PS with equivalent cylinder (b) PS with equivalent cylinder, aft view

Figure 6.14: MatLab - AQWA Verification
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