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Abstract
Purpose  We conducted a cost-effectiveness analysis in which we compared a preoperative [18F]Fluorocholine PET/CT-based 
one-stop-shop imaging strategy with current best practice in which [18F]Fluorocholine PET/CT is only recommended after 
negative or inconclusive [99mTc]Tc-methoxy isobutyl isonitrile SPECT/CT for patients suffering from primary hyperpar-
athyroidism. We investigated whether the one-stop-shop strategy performs as well as current best practice but at lower costs.
Methods  We developed a cohort-level state transition model to evaluate both imaging strategies respecting an intraopera-
tive parathyroid hormone monitored treatment setting as well as a traditional treatment setting. The model reflects patients’ 
hospital journeys after biochemically diagnosed primary hyperparathyroidism. A cycle length of twelve months and a lifetime 
horizon were used. We conducted probabilistic analyses simulating 50,000 cohorts to assess joint parameter uncertainty. 
The incremental net monetary benefit and cost for each quality-adjusted life year were estimated. Furthermore, threshold 
analyses regarding the tariff of [18F]Fluorocholine PET/CT and the sensitivity of [99mTc]Tc-methoxy isobutyl isonitrile 
SPECT/CT were performed.
Results  The simulated long-term health effects and costs were similar for both imaging strategies. Accordingly, there was 
no incremental net monetary benefit and the one-stop-shop strategy did not result in lower costs. These results applied to 
both treatment settings. The threshold analysis indicated that a tariff of €885 for [18F]Fluorocholine PET/CT was required 
to be cost-effective compared to current best practice.
Conclusion  Both preoperative imaging strategies can be used interchangeably. Daily clinical practice grounds such as 
available local resources and patient preferences should inform policy-making on whether a hospital should implement the 
one-stop-shop imaging strategy.
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Introduction

Primary hyperparathyroidism (PHPT) is an endocrine dis-
order characterised by the parathyroid glands' autonomous 
secretion of parathyroid hormone (PTH). This is caused by 
a solitary parathyroid adenoma in 85% of cases, by para-
thyroid hyperplasia in 10% of cases, by multiple adeno-
mas in 5% of cases and by parathyroid carcinoma in less 
than 1% of cases [1–4]. PHPT may result in neurological 
symptoms, renal events and osteoporosis with or without 
fractures [5, 6], causing increased morbidity and decreased 
quality of life (QoL) [7, 8].

The hallmark of diagnosing PHPT is biochemical test-
ing indicating an inappropriate PTH response with respect 
to the serum calcium level. Imaging is used to localise 
the enlarged parathyroids and to determine the optimal 
surgical approach. In current best practice guidelines, a 
combination of morphological and molecular imaging is 
recommended consisting of cervical ultrasonography (US) 
and parathyroid scintigraphy with 2-phase single-photon 
emission computed tomography and computed tomogra-
phy (SPECT/CT) using [99mTc]Tc-methoxy isobutyl isoni-
trile (MIBI) as radiopharmaceutical [9, 10]. Currently, 
partial-body [18F]Fluorocholine ([18F]FCH) positron emis-
sion tomography and computed tomography (PET/CT) is 
only recommended after negative or inconclusive MIBI 
SPECT/CT [11–13]. Partial-body [18F]FCH PET/CT, 
however, might substitute conventional imaging includ-
ing US and MIBI SPECT/CT [14–16], such that imaging 
can be developed into an [18F]FCH PET/CT-based one-
stop-shop localisation strategy [17, 18]. In line with this, 
a recent network meta-analysis including a total of 8,495 
patients from 119 direct competitive studies demonstrated 
the superior performance of [18F]FCH PET/CT in both 
patient-based and lesion-based analyses [19].

PHPT can only be cured with surgery. In case of local-
ised single parathyroid adenoma, minimally invasive par-
athyroidectomy (MIP) can be performed. Otherwise, an 
explorative neck dissection can be performed in which 
all parathyroid glands are visually inspected [20–24]. To 
minimise the risk of persistent or recurrent hyperparathy-
roidism, rapid intraoperative PTH (ioPTH) monitoring can 
prevent a secondary neck exploration at the cost of longer 
durations of surgery and challenging logistics [25, 26]. 
MIP is associated with decreased complication rates while 
maintaining high cure and low recurrence rates compared 
to a neck exploration [27–32]. MIP also decreases the risk 
of hypoparathyroidism and postinterventional hospital vis-
its [33, 34], both associated with decreased QoL [35, 36]. 
However, the move towards MIP highly depends on the 
preoperative imaging strategy used. Therefore, it is essen-
tial to evaluate the impact of imaging on long-term health 

effects and costs as [18F]FCH PET/CT is currently more 
expensive than MIBI SPECT/CT.

We conducted a model-based cost-effectiveness analysis 
in which we compared the [18F]FCH PET/CT one-stop-shop 
strategy to current best practice in which [18F]FCH PET/CT 
is only recommended after negative or inconclusive MIBI 
SPECT/CT. We studied whether the one-stop-shop strategy 
performs as well as current best practice but at a lower cost. 
This article aims to provide recommendations for the opti-
mal imaging strategy to localise parathyroid adenomas when 
costs are taken into consideration.

Material and methods

This study was exempt from approval by the local ethics 
committee as it did not include individual patient data. 
Instead, all model parameters were obtained from literature 
evidence or were elicited from an expert panel. Clinical evi-
dence was mainly based on publications from the European 
Endocrine Surgical Quality Registry (EUROCRINE) includ-
ing parathyroid diseases [37]. A hospital perspective was 
adopted in which health-related utilities and direct health-
care costs were covered. For all simulation analyses, R Sta-
tistical Software (version 4.2.1) was used [38], with software 
packages ‘dampack’ and ‘darthtools’ [39, 40]. This study 
is reported following the Consolidated Health Economic 
Evaluation Reporting Standards (Online Resource 1) [41].

Imaging strategies

In this study, current best practice is compared with the [18F]
FCH PET/CT-based one-stop-shop imaging strategy. In cur-
rent best practice, [18F]FCH PET/CT is only provided after 
negative or inconclusive US and MIBI SPECT/CT (Fig. 1a) 
[9, 10]. In the one-stop-shop strategy, conventional imag-
ing including US and MIBI SPECT/CT will no longer be 
provided (Fig. 1b) [17, 18]. As described in the 2021 Euro-
pean Association of Nuclear Medicine practice guidelines 
for parathyroid imaging, preoperative US provides an addi-
tional evaluation of the thyroid that might change patient 
management, especially in the case of coexisting (suspected) 
malignant nodules [9]. Therefore, in a separate simulation, 
we slightly adjusted the one-stop-shop strategy by including 
preoperative US.

Treatment settings

We developed a cohort-level state transition model (cSTM) 
to evaluate the long-term health effects and costs of cur-
rent best practice compared to the one-stop-shop imaging 
strategy. Current best practice and the one-stop-shop strat-
egy were both covered in two different treatment settings. 
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Both treatment settings are representative of daily clinical 
practice. The first treatment setting consists of MIP with 
ioPTH monitoring in case of positive imaging results and 
explorative neck dissection with ioPTH monitoring in case 
of negative or inconclusive imaging results, referred to as 
the ioPTH-monitored treatment setting (Fig. 2a). In this 
setting, MIP might be directly converted to explorative 
neck dissection based on ioPTH monitoring. The second 
treatment setting consists of MIP without ioPTH monitor-
ing in case of positive imaging results and pharmacother-
apy in case of negative or inconclusive imaging results, 
referred to as the traditional treatment setting (Fig. 2b). 
An expert panel consisting of two medical imaging spe-
cialists (LFG-O and DV), one endocrinologist specialised 
in bone and mineral diseases (NMA-D) and one surgeon 
specialised in endocrine neck surgery (AS), all involved in 
the daily care of PHPT patients, was routinely consulted to 
discuss the imaging strategies (Fig. 1) and corresponding 
treatment settings (Fig. 2).

State‑transition modelling

The cSTM reflects patients’ hospital journeys after bio-
chemically diagnosed and localised PHPT. Separate entry 
points were defined for patients with positive and negative or 
inconclusive imaging results (Online Resource 2). Depend-
ing on the imaging result and treatment setting, patients 
receive MIP, explorative neck dissection, pharmacotherapy 
or active surveillance. MIP might be immediately converted 
to explorative neck dissection based on ioPTH monitoring 
(if accessible). Subsequently, patients are either cured, suf-
fer from persistent hypoparathyroidism or suffer from per-
sistent hyperparathyroidism. In case of the latter, patients 
have a yearly probability to receive repeat [18F]FCH PET/
CT scans of which a subgroup will receive secondary par-
athyroidectomy. Otherwise, patients experience persistent 
hyperparathyroidism treated pharmacologically or sympto-
matically including active management of serum calcium 
concentrations and bone density with routine vitamin D 

Fig. 1   Imaging strategies are visualised. The figure shows (a) cur-
rent best practice [9, 10] compared to (b) the one-stop-shop strategy 
[17, 18]. In current best practice, [18F]FCH PET/CT is only provided 
after negative or inconclusive MIBI SPECT/CT. In the one-stop-shop 
strategy, conventional imaging including US and MIBI SPECT/CT 

is no longer provided. Abbreviations: PHPT, primary hyperparathy-
roidism. US, ultrasonography. MIBI SPECT/CT, single-photon emis-
sion computed tomography and computed tomography using [99mTc]
Tc-methoxy isobutyl isonitrile. [18F]FCH PET/CT, positron emission 
tomography and computed tomography using [18F]Fluorocholine



	 European Journal of Nuclear Medicine and Molecular Imaging

supplementation and medication such as bisphosphonates, 
denosumab or calcimimetics. A subgroup of these patients 
will develop secondary disorders including neurological, 
cardiovascular, bone and renal events causing increased 
morbidity and decreased QoL.

Model parameters

The simulated cohorts had a mean age of 62 years at base-
line reflecting the mean age of patients diagnosed with 

PHPT [25]. A fixed cycle length of twelve months and a 
lifetime simulation horizon were used. Iteratively, we simu-
lated 50,000 cohorts. The cSTM covered a large set of input 
parameters such as imaging characteristics, transition prob-
abilities, relative risks, cure and mortality rates (Online 
Resource 3). An important parameter was the utilisation of 
the [18F]FCH PET/CT scanner in current best practice. The 
utilisation level directly depended on the estimated probabil-
ity of negative or inconclusive conventional imaging (base 
case value of 20.4% of all patients [25]). Other important 

Fig. 2   Treatment settings are visualised. The figure shows (a) the 
ioPTH-monitored treatment setting and (b) the traditional treatment 
setting. In both settings, five health states (ovals), several transition 
probabilities after each 12-month cycle length (arrows) and multiple 
lines of imaging and treatments (boxes) that patients may receive 
during their hospital journey are included. Patients enter the model 
when receiving a positive or negative/inconclusive imaging result. 

MIP might be directly converted to explorative neck dissection based 
on ioPTH monitoring. Secondary disorders include neurological, car-
diovascular, bone and renal events causing increased morbidity and 
decreased QoL. Abbreviations: ioPTH, intraoperative parathyroid 
hormone serum level. MIP, minimally invasive parathyroidectomy. 
QoL, quality of life
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parameters covered the conditional probabilities of full 
curation after targeted and explorative parathyroidectomy 
(pooled base case value of 95.7% of all patients [25]) and 
the conditional probabilities of experiencing neurological, 
cardiovascular, bone or renal events in case of no curation 
(pooled base case value of 24.6% of all non-curative patients 
[5, 6]). It is also worth noting that the base case probability 
of immediate conversion of MIP to explorative neck dis-
section was 8.5% in the ioPTH-monitored treatment setting 
[25]. The simulated transition probabilities and relative risks 
were dependent on the time since the start of the simulation 
and the time spent in a health state. The simulation time 
dependency captured the increasing age-dependent back-
ground mortality and the state-residence time dependency 
captured the time spent in a given health state. The age-
dependent background mortality rates were retrieved from 
Dutch demographic data for the period 2018–2022 from 
Statistics Netherlands [42].

Cost information

Cost data were gathered from a healthcare perspective 
covering the costs related to diagnostics, medication and 
treatments (Online Resource 3). These costs were approxi-
mated by utilising the Dutch healthcare authority tariffs 
2023 covered in the Dutch system of diagnosis treatment 
combinations [43] and drug database [44], accompanied 
by the Leiden University Medical Center specific reference 
tariffs. The model used a base case tariff of €965 for partial-
body [18F]FCH PET/CT, a base case tariff of €237 for pla-
nar parathyroid scintigraphy, a base case tariff of €350 for 
thorax-neck MIBI SPECT/CT and a base case tariff of €84 
for cervical US. The costs of treatment-related complications 
were reflected by covering the costs of prolonged hospitali-
sation and additional interventions required. According to 
the Dutch guidelines, an annual discount rate of 3% was 
applied to all future costs [45].

Health effects

Utilities and disutilities based on EQ-5D literature evidence 
were gathered (Online Resource 3). The retrieved utilities 
reflect the valuation of health-related QoL on a scale from 
zero to one. The retrieved disutilities reflect the valuation of 
treatment-related complications [46]. Typically, cured PHPT 
patients will experience a better QoL (mean value of 0.84) 
[6] than the patients suffering from neurological, cardiovas-
cular, bone or renal events (mean values of 0.59–0.78) [7, 
8, 33]. Using these utility values, we calculated the qual-
ity-adjusted life years (QALYs) by the discounted sum of 
utilities over the lifetime evaluation period. According to 
the Dutch guidelines, an annual discount rate of 1.5% was 
applied to all future health outcomes [45].

Base case analysis

Using the cSTM, we calculated the expected health effects 
and costs of each imaging strategy captured for each treat-
ment setting. We expressed cost-effectiveness in terms of 
the net monetary benefit (NMB). The NMB was calcu-
lated by multiplying the QALYs by the willingness-to-
pay (WTP) per QALY and subtracting the costs. The one-
stop-shop strategy was considered cost-effective compared 
to current best practice when the incremental NMB was 
greater than zero. A WTP value of €50,000 per QALY is 
recommended by the Dutch healthcare authority for the 
expected disease burden [45].

Probabilistic analysis

We conducted a probabilistic analysis applying Monte 
Carlo experiments to assess joint parameter uncertainty. 
We randomly sampled 50,000 parameter sets by assigning 
parametric distributions to all model parameters. Subse-
quently, both the one-stop-shop strategy and current best 
practice were evaluated for each parameter set. The point 
estimates of the cost-effectiveness ratios were plotted in 
cost-effectiveness planes. The incremental cost-effective-
ness ratio (ICER) was the difference in costs divided by 
the difference in QALYs. As a function of the WTP per 
QALY, cost-effectiveness acceptability curves (CEACs) 
were used to visualise the probability that the one-stop-
shop strategy was cost-effective compared to current best 
practice.

Threshold analysis

We performed two threshold analyses and the results 
were plotted in decision curves [47]. In the first threshold 
analysis, we systematically decreased the base case tar-
iff of partial-body [18F]FCH PET/CT until the one-stop-
shop strategy led to lower costs than current best practice. 
Tariff estimates ranged from €600 up to €1,445 thereby 
opting to cover different economic European situations. 
Tariffs are hospital-specific as tariffs vary between Dutch 
hospitals ranging from estimates of €754 to €1,307 [48, 
49], respectively, country-specific. For example, France 
handles a degressive pricing system in which tariffs vary 
between €550-€1,000 per scan depending on the age of 
the scanner and the annual number of exams performed 
on that scanner [50]. In the second threshold analysis, we 
treated the sensitivity of MIBI SPECT/CT as a continu-
ous variable. The expected sensitivity of MIBI SPECT/
CT ranged from 60%-90% since the performance of MIBI 
SPECT/CT is quite uncertain [14–16].
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Sensitivity analysis

To assess the robustness of the model outcomes, we per-
formed a one-way sensitivity analysis with 95% confidence 
interval ranges for all model parameters compared to the 
base case. Furthermore, we performed sensitivity analyses 
in which we changed utility parameter values compared to 
the base case. First, we assigned a fixed disutility of 0.005 
to patients receiving both MIBI SPECT/CT and [18F]
FCH PET/CT to account for patient radiation burden [51]. 
Second, we assigned a fixed disutility of 0.01 to patients 
receiving three different preoperative scans to account for 
challenging logistics [11–13], which in turn might result in 
waiting lists, delayed localisation of the parathyroid adeno-
mas and reduced patient satisfaction.

Results

Base case analysis for the ioPTH‑monitored 
treatment setting

The expected total costs per simulated patient in the one-
stop-shop strategy were similar to current best practice. 
The one-stop-shop strategy had an estimated mean total 
cost of €3,841 per patient and current best practice had an 
estimated mean total cost of €3,822 per patient. Also, there 
was no expected clinically relevant difference in the QALYs 
obtained as the estimated mean total QALY was 12.65 per 
patient in both strategies. Consequently, the incremental 
NMB was approximately zero. The results of the Monte 
Carlo experiments were plotted in cost-effectiveness planes 
(Online Resource 4, Fig. 1). The results of the adjusted 

one-stop-shop strategy including preoperative US were 
reported in Online Resource 5.

Base case analysis for the traditional treatment 
setting

The simulation outcomes of the traditional treatment setting 
were in line with the ioPTH-monitored treatment setting. 
The expected total costs per simulated patient in the one-
stop-shop strategy were similar to current best practice. The 
one-stop-shop strategy had an estimated mean total cost of 
€4,535 per patient and current best practice had an estimated 
mean total cost of €4,514 per patient. There was no expected 
clinically relevant difference in the QALYs obtained as the 
estimated mean total QALY was 12.64 per patient in both 
strategies. Consequently, the incremental NMB was again 
approximately zero. The results of the Monte Carlo experi-
ments were plotted in cost-effectiveness planes (Online 
Resource 4, Fig. 1). The results of the adjusted one-stop-
shop strategy including preoperative US were reported in 
Online Resource 5.

Threshold analysis

Decision curves show the results of the threshold analyses 
for the ioPTH-monitored treatment setting. Figure 3a shows 
that the one-stop-shop strategy was cost-effective when the 
base case tariff of partial-body [18F]FCH PET/CT (€965) 
decreased by at least €80 (8.3%) resulting in a suggested 
tariff of €885. Figure 3b shows that the one-stop-shop strat-
egy was cost-effective when the base case sensitivity of 
MIBI SPECT/CT (79.6%) decreased to sensitivity values 
lower than 78%. The results of the threshold analyses for the 

Fig. 3   Decision curves depicting (a) the tariff of [18F]FCH PET/
CT on the x-axis and (b) the sensitivity of MIBI SPECT/CT on the 
x-axis. The total costs including imaging, surgery and pharmacother-
apy of the expected PHPT care pathway are depicted on the y-axis 
and given an ioPTH-monitored treatment setting. Abbreviations: 

ioPTH, intraoperative parathyroid hormone serum level. [18F]FCH 
PET/CT, positron emission tomography and computed tomography 
using [18F]Fluorocholine. MIBI SPECT/CT, single-photon emission 
computed tomography and computed tomography using [99mTc]Tc-
methoxy isobutyl isonitrile. PHPT, primary hyperparathyroidism
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traditional treatment setting were similar (Online Resource 
4, Fig. 2).

Sensitivity analysis

A tornado diagram of the one-way sensitivity analy-
sis visualises the input parameters that led to a rela-
tive change in the incremental NMB of at least 10% 
compared to the base case (Online Resource 4, Fig. 3). 
We observed that the tariff of partial-body [18F]FCH 
PET/CT had the most impact on the incremental NMB. 
Furthermore, we applied disutilities to model the 
health consequences of patient radiation burden and 

challenging logistics. The corresponding CEACs were 
plotted for the ioPTH-monitored treatment setting. If 
incorporating a disutility for radiation burden, the 
expected ICER was €48,092 and the probability of the 
one-stop-shop strategy being cost-effective was 52% at 
the most accepted WTP threshold of €50,000 per QALY 
(Fig. 4a). If incorporating a disutility for challenging 
logistics, the expected ICER was €24,046 and the prob-
ability of the one-stop-shop strategy being cost-effective 
was 66% at the most accepted WTP threshold of €50,000 
per QALY (Fig. 4b). The results of sensitivity analyses 
for the traditional treatment setting were similar (Online 
Resource 4, Fig. 4).

Fig. 4   The cost-effectiveness acceptability curves show the prob-
ability that the one-stop-shop strategy is cost-effective compared to 
current best practice at different WTP thresholds per QALY rang-
ing from €0 to €100,000. The first curve (a) shows that incorporat-
ing a fixed disutility of 0.005, as a consequence of radiation burden 
for patients receiving both MIBI SPECT/CT and [18F]FCH PET/CT, 
results in an ICER of €48,092 and a 52% probability that the one-
stop-shop strategy is cost-effective at the most accepted WTP thresh-
old of €50,000 per QALY. The second curve (b) shows that incor-
porating a fixed disutility of 0.01, as a consequence of challenging 

logistics for patients receiving three different preoperative scans, 
results in an ICER of €24,046 and a 66% probability that the one-
stop-shop strategy is cost-effective at the most accepted WTP thresh-
old of €50,000 per QALY. Abbreviations: WTP, willingness-to-pay. 
QALY, quality-adjusted life year. ICER, incremental cost-effective-
ness ratio. [18F]FCH PET/CT, positron emission tomography and 
computed tomography using [18F]Fluorocholine. MIBI SPECT/CT, 
single-photon emission computed tomography and computed tomog-
raphy using [99mTc]Tc-methoxy isobutyl isonitrile
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Discussion

This study explored the cost-effectiveness of two imaging 
strategies to localise parathyroid adenomas and to guide 
succeeding treatment for patients suffering from PHPT: the 
[18F]FCH PET/CT-based one-stop-shop strategy and cur-
rent best practice in which [18F]FCH PET/CT is only rec-
ommended after negative or inconclusive MIBI SPECT/
CT. The simulated health effects and costs were similar for 
both imaging strategies. Accordingly, the one-stop-shop 
strategy is not associated with lower costs and both imag-
ing strategies can be used interchangeably. This applies to 
both the ioPTH-monitored treatment setting in which MIP 
might immediately be converted to explorative neck dis-
section as well as the traditional treatment setting in which 
ioPTH is not monitored. The total PHPT care pathway 
costs, however, varied between the ioPTH-monitored and 
traditional treatment setting (estimated values of €3,822-
€3,841 compared to €4,514-€4,535). A recent Cochrane 
review discussed that there exists considerable uncertainty 
surrounding such estimates which might be explained by 
differences in hospital charges for surgical procedures as 
well as differences in the surgical protocols [26].

In essence, the decision to implement either imag-
ing strategy depends on available local resources as well 
as patient preferences. We want to emphasise that daily 
clinical practice grounds – such as easy resource capacity 
allocation, reduced waiting times, reduced travel times, 
reduced hospital waste, reduced patient radiation burden 
and meeting patient preferences – should inform the pol-
icy-making on whether a hospital should implement the 
one-stop-shop imaging strategy. The one-stop-shop strat-
egy decreases the number of hospital visits which is fun-
damentally preferable in terms of logistics, environmental 
impact and interference in patients’ lives. Also, the one-
stop-shop strategy is preferred when healthcare resources 
are limited as it has a lower impact on scarce resources. 
Moreover, the one-stop-shop strategy might save approxi-
mately half the radiation burden of current best practice. 
Of course, the availability of [18F]FCH PET/CT scanners, 
radiopharmaceuticals and personnel should be taken into 
consideration when opting for the one-stop-shop strategy.

In current practice, preoperative cervical US is used 
to rule out thyroid disorders [9]. Nevertheless, a strategy 
including US and [18F]FCH PET/CT but without MIBI 
SPECT/CT might not be considered a relevant strategy 
for cost-effectiveness analysis. Most importantly, because 
[18F]FCH PET/CT allows for MIP, therefore, trauma after 
surgery is generally minimal and does not lead to addi-
tional risks if re-intervention in the neck region (for thy-
roid disease) would be necessary. Second, because [18F]
FCH PET/CT has a very high negative predictive value 

to rule out thyroid cancer [52], and the low-dose CT per-
formed during [18F]FCH PET/CT may not be suitable to 
exclude coincidental thyroid carcinoma but provides the 
surgeon with anatomical context in case of thyroid nodules 
or goitre. If the local situation does not allow omitting US, 
costs will increase approximately at the rate of preopera-
tive US but a clinically relevant increase in QALYs may 
not be expected (Online Resource 5).

To our knowledge, only one study assessed the cost-effec-
tiveness of [18F]FCH PET/CT regarding the localisation of 
enlarged parathyroids [53]. The authors argued that [18F]
FCH PET/CT is potentially a cost-effective imaging tech-
nique in the United States. They, however, performed a head-
to-head comparison of [18F]FCH PET/CT with stand-alone 
conventional imaging including 4-dimensional CT, US, 
and MIBI SPECT, while we compared an [18F]FCH PET/
CT-based one-stop-shop strategy with the use of [18F]FCH 
PET/CT after negative or inconclusive conventional imaging 
including sequential US and MIBI SPECT/CT. Where mod-
els focus on stand-alone imaging without consideration of 
sequential imaging, there is a profound source of structural 
uncertainty implying that the cost-effectiveness of imaging 
across the PHPT care pathway remains uncertain [54–56].

The American study reported substantial incremental 
QALY benefits (values of 0.02–0.05) [53], whereas we 
could not find such QALY benefits. The American study 
also reported relatively high cost outcomes (values approxi-
mating €10,000) [53], whereas we found at most half these 
costs. These differences might be explained by the modelling 
methods used in combination with the different tariffs of 
imaging, surgery and pharmacotherapy within the American 
and European healthcare systems. The choice of modelling 
method depends on the complexity of the clinical process 
to be modelled, the available evidence and the modellers’ 
experience. We obtained all model parameter values from 
aggregated literature evidence complemented with expert 
elicitation, justifying that we developed a cSTM.

This study has some limitations. We simulated imaging 
test results using conditional probabilities reflecting the 
diagnostic performance of MIBI SPECT/CT and [18F]FCH 
PET/CT. The performance of [18F]FCH PET/CT, however, 
varies between current best practice and the one-stop-shop 
strategy because [18F]FCH PET/CT can be used as first-line 
or second-line imaging. Where there was abundant evidence 
available to properly estimate the performance of [18F]FCH 
PET/CT as second-line imaging (base case accuracy of 76% 
used for simulations [11–13]), limited evidence was avail-
able of [18F]FCH PET/CT as first-line imaging (base case 
accuracy of 96% used for simulations [14–16]). Nonetheless, 
[18F]FCH PET/CT would be the most favourable imaging 
technique for the localisation of parathyroid adenomas and 
its superior performance has been demonstrated in several 
reviews and meta-analyses [19, 57–61]. Sequentially, patient 
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outcomes can be improved with effective patient manage-
ment after localisation with imaging. Further patient man-
agement depends on contextual factors within the treatment 
pathway including the availability of surgical and pharma-
cological procedures and their effectiveness. Therefore, 
assessing the clinical utility of imaging requires an inte-
grated approach that considers all contextual factors along 
the treatment pathway.

Also, the time to repeat imaging may impact clinical 
utility. The simulated time to repeat imaging was based on 
expert judgements assuming a constant exponential hazard 
rate as we tend to decrease imaging frequency once the pre-
vious imaging results were negative. We validated whether 
this assumption was accurate with extreme parameter value 
testing, testing of traces in which patients were tracked 
through the model, and unit testing in which sub-modules 
of the model were tested. The time to repeat imaging was 
found to be comparable with published EUROCRINE evi-
dence [37].

It is noteworthy that the clinical utility of imaging might 
be estimated in randomised controlled trials. However, tri-
als are not always recommended since they are costly and 
time-consuming. They are also considered less feasible 
given all combinations of imaging and therapeutics that 
can be compared in this setting. Moreover, trials do often 
not allow assessment of lifetime outcomes or risks related 
to imaging (e.g., patient radiation burden due to imaging). 
Model-based cost-effectiveness analysis should be seen as 
a valid alternative [62]. However, cost-effectiveness models 
evaluating imaging will be more complex and require more 
evidence than models evaluating therapeutics. Given the 
complexity and dependencies related to the use of imaging, 
researchers may not always be fully aware of all the different 
aspects potentially influencing the results of a model-based 
cost-effectiveness study, and the results of model-based 
cost-effectiveness studies are only relevant insofar as they 
represent current clinical practice in the specific decision 
context [63].

The results of this study can be used to revise interna-
tional guidelines for parathyroid imaging [9, 10]. The need 
for revision is underpinned by previous studies showing 
that there exists a substantial variation in the imaging tests 
used [17, 18]. Additional studies, preferably based on data 
from randomised clinical trials and analysing clinical pat-
terns across multiple lines of sequential imaging rather than 
stand-alone imaging, are required to reach a comprehensive 
evidence base for guideline improvement. The inclusion 
of cost-effectiveness studies in the guideline revision pro-
cess will lead to a more sensible use of scarce healthcare 
resources.

This study represents the first cost-effectiveness analysis 
encompassing sequential imaging, surgery and pharmaco-
therapy. We demonstrated that the one-stop-shop imaging 

strategy can be seamlessly integrated into routine clinical 
practice with negligible additional expenses for hospitals. 
Therefore, the adoption of the one-stop-shop strategy hinges 
primarily on the availability of local resources.
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