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Abstract

The recently introduced Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (RV-GOMEA)
has been shown to be among the state-of-the-art for solving grey-box optimization problems where
partial evaluations can be leveraged. A core strength is its ability to e�ectively exploit the linkage
structure of a problem. For many real-world optimization problems, the linkage structure is unknown a
priori and has to be learned online. Previously published work on RV-GOMEA however demonstrated
excellent scalability only when the linkage structure is pre-speci�ed appropriately. The commonly used
mutual-information-based metric that is used to a learn linkage structure online in the discrete version
of GOMEA did not show as e�ective in the real-valued domain and did not result in similarly excellent
results, especially in a black-box setting. In this thesis, the strengths of RV-GOMEA are combined with
a new �tness-based linkage learning approach that is inspired by di�erential grouping but reduces its
computational overhead by an order of magnitude for problems with fewer interactions. The resulting
new version of RV-GOMEA achieves scalability similar to when a prede�ned linkage model is used.
Additionally, for the �rst time, the EDA AMaLGaM, that served as a foundation for RV-GOMEA is
outperformed in a black-box setting, where partial evaluations cannot be leveraged.
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1

Introduction

What do creating a radiation therapy treatment plan for treating cancer and �nding the best placement
of windmills in a sea area have in common? At �rst sight, these problems seem totally unrelated, but
when approaching them in a more mathematical way without making all too many assumptions or
simpli�cations, they can both be modeled as complex (multi-objective) optimization problems with
real-valued variables.

A commonly used approach to tackle these types of optimization problems is to use Evolutionary
Algorithms (EAs). An EA is a generic population-based meta-heuristic optimization algorithm that
uses methods inspired by biological evolution. Population-based search algorithms have been shown
to perform particularity well on un-smooth problem landscapes where no gradient can be calculated
and are more robust against noisy problem landscapes than point-based search methods [20]. Because
population-based search algorithms maintain a population of solutions that can be extended into mul-
tiple directions simultaneously, EAs are less prone to get stuck in local optima and are more likely
to search past plateau-like regions of the problem landscape. In practice, many real-world problems
have un-smooth problem landscapes which contain local optima, therefore EAs have been a widely used
approach to solve many real-world problems

Generally speaking, an EA maintains a population P , that consists of n solutions, also called
an individual, to the optimization problem. At the start of the algorithm, the solutions are (often)
randomly sampled and the value of the objective function is calculated for every solution, this so-called
�tness value is used to compare the individuals of a population against one another. Every iteration
(also called generation) the best solutions are selected and combined (called variation) to create a new
generation of n solutions. This process is repeated until the computational budget is exhausted or an
optimal solution is found.

1.1. Genetic Algorithms
1.1.1. Discrete optimizations
One of the most widely used EAs for discrete variables is the simple Genetic Algorithm (GA) [12].
Typically, every generation of the simple GA consists of two steps: selection and combination. In
every generation, the best τ · n solutions are selected based on certain selection criteria that use the
objective value of a solution to rank solutions against each-other. Here τ is the selection size, specifying
which proportion of the population will be selected and used for recombination. After selection, n new
solutions are created by taking n

2 pairs of solutions from the set of selected solutions and combining
them to create two new solutions, this is the combination step. There are various ways to recombine two
parent solutions into new solutions. A classic example is given by uniform crossover: for every variable
in the solution, with an equal probability the variables is taken from either of the parent solutions. A
second solution is created by taking every variable from the opposite parents' solution. An example of
uniform crossover can be seen below.

parents
1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

uniform
======⇒
crossover

o�spring
1 1 0 1 0 1 1 1 0 0

0 0 1 0 1 0 0 0 1 1

1
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A key issue with this simple genetic algorithm, that uses crossover as its variation operator, is
that when a problem has strong interactions between variables, the �tness of a solution is no longer
dependent only on changes made to individual variables that can be exchanged independently to combine
into better solutions. In this case, variables that are strongly dependent will contribute to �tness in
non-decomposable combination with each other. These variables should not be exclusively crossed over
independently. This is because when the probability of picking a value from either parent is equal,
the probability that these variables will be crossed over together becomes 1

2b
where b is the number of

dependent variables. This causes the simple GA to only scale well when such prior knowledge about
the problem structure is known and can be acted upon i.e., di�erent types of crossover operators can
be designed that respect the dependencies. When no prior knowledge about the optimization problem
is known, which is called black-box optimization, simple GAs, have a high risk of not scaling well, as
can be seen in [27], showing that the required population size scales exponentially with the problem size
for problems with high interdependence when using uniform crossover. The process of identifying these
dependent problem variables (or building blocks), that should be conserved during crossed-over is called
linkage learning. Due to the scalability problems of the simple GA, theoretical studies have shown that
if an e�ective linkage learning GA could be designed, this GA would have signi�cant advantages over
the simple GA. [30]

To deal with this, new techniques have been introduced to allow for detecting dependence between
problem variables and exploit them automatically. The �rst truly successful approach was to build
probabilistic models on the whole group of selected parent solutions and sample the new population
from the distribution of these parents. This group of algorithms is called Estimation of Distribution
Algorithms [19, 23] and the most simple version of an EDA is known as the Univariate Marginal
Distribution Algorithm [23]. For every variable, the probability distribution is based on the frequency
of that variable in the selection parent set. For an `−dimensional problem, there will be ` independent
probability distributions i.e., univariate distributions, that are used to sample the variables of new
solutions. Whilst this algorithm was shown to work signi�cantly better on linear problems, it still uses
a univariate distribution that samples every variable independently and thus su�ers from the same
di�culties as the simple GA with uniform crossover when it comes to linkage.

To better employ the underlying structure of a problem, EDAs were introduced that model prob-
abilistic dependencies. Among other EAs, a notable algorithm is the Extended compact GA (ECGA)
[11] that aligns the problem of linkage learning with learning the probability distributions of the selected
individuals of a population in multi-variate spaces. Following a greedy algorithm, a marginal product
model (MPM) is learned. A MPM is a model that contains sets of variables such that every problem
variable xi is present in exactly one of the subsets of a MPM. An example of an MPM for a problem
with l = 4 is {{x0, x2}, {x1}, {x3}}. Using this MPM, a univariate distribution will be learned for x1
and x3, while for x0 and x2 a joint distribution will be created from the selected individuals. The ECGA
was one of the �rst EA's to automatically model higher-order dependencies between decision variables.
Whilst this approach overcame some of the problems encountered with the simple GA regarding linkage
learning, estimating the marginal product model is computationally expensive. The time complexity
of O(n`3) results in a substantial overhead for higher dimensional problems, which leads to the poor
scalability of the ECGA.

Next to its computational complexity, another drawback of using a MPM is that every variable is
represented exactly once in the linkage structure, which requires a non-overlapping partitioning to be
learned. The minimal population size required to accurately learn this partitioning increases as the size
of dependent components increases [32]. To better model complex problem structures and represent
di�erent orders of dependencies into one model, a hierarchical linkage model is proposed that models
dependencies in a tree-shaped model called a linkage tree (LT) [28]. An example of a linkage tree for a
5-dimensional problem can be seen below.

{x1, x2, x3, x4, x5}

{x1, x2, x3}

{x1, x2}

{x1} {x2}

{x3}

{x4, x5}

{x4} {x5}

The hierarchical nature of this linkage structure does not allow for a probabilistic model to be built
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on every subset of the LT, since that would mean that sampled variables would be overwritten by
samples drawn form higher order subsets e.g., when a sample is drawn from {x1, x2} and later a new
sample is drawn for the subset {x1, x2, x3}, the values sampled for x1 and x2 will be overwritten until
eventually a sample is drawn for the complete set of variables, overwriting all previous samples.

To overcome this, the proposed linkage tree model is combined with a new variation operator called
optimal mixing, introduced in [29]. To e�ectively exploit the dependencies modeled at every level of
the linkage tree, optimal mixing uses intermediate function evaluations to determine whether a certain
permutation of problem variables was bene�cial. For every solution, a donor solution is taken and for
every linkage set present in the linkage tree, the variables represented by the linkage set from the original
solutions are replaced by those of the donor solution. The newly created solution is evaluated and if the
�tness has increased, the changes are accepted and the original solution is replaced by the new solution.
If not, the changes are reverted. This process is repeated for every linkage set in the linkage tree and
for every solution in the set of selected solutions. Employing this approach to variation, the gene-
pool optimal mixing evolutionary algorithm GOMEA [4] is derived. This state-of-the-art evolutionary
algorithm for discrete optimization uses multiple di�erent donor solutions for every linkage set in the
linkage model. Below, a partial example is shown, showing the optimal mixing steps for the three

linkage sets {x1, x2}, {x3} and {x5}. Here the �tness function is de�ned as f(x) =
∑l
i=0 xi. At �rst,

the �tness of the newly created solution is improved and thus the changes are accepted. As inserting
the values of the new donor solution for the second linkage set into the new solution does not yield
an improvement, these changes are not accepted. Lastly changing x5 to the value of the last donor
solution results in an improvement, thus, the changes are accepted, leading to the optimal solution for
this problem.

original solutions 0 0 1 1 1
insert values
=======⇒
{x1,x2}

new solution 1 1 1 1 0
f(x)=4
====⇒ accepted

donor solution 1 1 0 0 0

accepted solutions 1 1 1 1 0
insert values
=======⇒
{x1,x2,x3}

new solution 1 1 0 1 0
f(x)=3
====⇒ not accepted

donor solution 1 1 0 0 1

previous solutions 1 1 1 1 0
insert values
=======⇒
{x5}

new solution 1 1 1 1 1
f(x)=5
====⇒ accepted

donor solution 0 1 0 1 1

Inserting the variables from random donor solutions as employed in gene-pool optimal mixing (GOM)
has an e�ect similar to that of sampling variables from a probabilistic model based on the frequency
of the combination of variables in a population as used in model-based EDAs. However, two main
improvements on the ECGA like EAs should be noted. Firstly, as a hierarchical linkage structure is
used, variables can be present in multiple solutions and overlapping thus more complex structures can be
used to model the linkage of a problem. Secondly, when solutions contain partially optimal combinations
of variables, e.g., the �rst two solutions in our previous example, instead of using the �tness-value of
the complete solution, a part of that solution is used and the �tness-values is recalculated while keeping
all other variables as they were. The new �tness-value is thus based on only the new variables which
decreases the probability of discarding partially optimal solutions because the rest of the solution is
sub-optimal.

1.1.2. Grey-box optimization
As described earlier, when no prior information about the problem structure and objective function
of an optimization problem is known, we use black-box optimization. For many problems however,
some information about the problem structure is known beforehand or can be derived form the problem
de�nition, which is called grey-box optimization. Furthermore, some grey-box optimization problems
allow for partial evaluations, meaning that when a subset of the optimization variables are modi�ed,
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the new objective value can be calculated by only recalculating the modi�ed variables. In the grey-
box domain, GOMEA becomes even more e�cient because partial evaluations can be leveraged during
optimal mixing. When exploiting the problem structure of a problem, only modi�ed variables have to
be re-evaluated which can be done in g

` of the original costs of an evaluation, where g is the size of the
linkage set. Since almost all evaluations made by GOMEA are partial evaluations, this algorithm works
particularity well in the grey-box domain, outperforming model based EDAs that often exclusively
evaluate a completely new solutions to the optimization problem.

1.1.3. Real-valued optimization
In the real-valued domain i.e., problems with real-valued variables, crossover alone does not su�ce to
successfully explore the search space. Instead of recombining existing solutions, EDAs, therefore, use a
probability distribution over the solution space to sample new solutions. In earlier EDAs applied to the
real-valued domain, the normal distribution is estimated based on the Maximum Likelihood estimate
from the selected solutions. This approach, however, has been shown to be ine�cient, as the variance
decreases too fast and the EA converges prematurely, even on slope-like regions of problem landscape
[9]. To overcome the problem of premature convergence due to variance shrinking, multiple ideas have
been introduced to reshape the estimated distribution, one of which is the Adaptive Variance Scaling
(AVS) in combination with the Anticipated Mean Shift (AMS) that demonstrate excellent performance
when used together to form the Adapted Maximum-Likelihood Gaussian Model (AMaLGaM) [1]. AVS
is designed to counteract the variance-diminishing e�ect of selection by multiplying the variance stored
in the covariance matrix Σ with a multiplier that is based on the rate of improvement of the population.
AMS uses the direction in which solutions were moving between the previous and current generation
and extrapolates this into the probability distribution used to sample the next generation.

Similar to discrete problems, the linkage of an optimization problem remains a key element in solving
large-scale (complex) optimization problems e�ciently. An example of a real-valued function containing
linkage between problem variables is the rotated hyper ellipsoid function de�ned by:

f(x) =

l∑
i=0

( i∑
j=0

xj

)2
The two dimensional version of this problem is de�ned by f(x0, x1) = x20 + (x0 + x1)2 and a contour
plot of this function can be seen in Figure 1.1. Consider a solution at x = [5,−7] with f(x) = 29. If
we would insert the optimal value for x0 into this solutions, we would get x = [0,−7] with f(x) = 49,
showing that moving to the optimum in one direction does not necessarily result in a better objective
value. However, a small step towards the optimum does lead to an improvement in this case, consider
x = [3,−7] with f(x) = 26, whilst getting too close to the optimum does result in a slightly worse
objective value x = [1,−7] with f(x) = 37. For this function x0 and x1 are dependent, when variables
are changed in one single dimension, only small steps towards the optimum lead to an improvement in
overall �tness, whilst a big step towards the optimum leads to a decreased �tness. As a result, when
updated independently, only small improvements can be made to one dimension successfully. To solve
this problem e�ciently, x0 and x1 should thus be considered dependent and updated jointly.

To encapsulate the linkage information of an optimization problem, the sampling model used by
AMaLGaM can be set to sample from the full `× ` covariance matrix of a problem. However, this ap-
proach has consequences when it comes to scalability. Firstly, to sample a distribution based on the full
covariance matrix, a Cholesky decomposition is computed in O(`3) time. For high-dimensional search
spaces, computing this decomposition becomes very expensive. Secondly, it is necessary to maintain a
big population size to ensure enough data points can be used to build an accurate multi-dimensional
sampling model when the dimensionality of the problem increases. Whilst these disadvantages might
seem inescapable for strongly dependent problems, the extra computation time and large population
sizes are super�uous for partially-decomposable problems which can be solved faster using other types
of AEs. A univariate version of AMaLGaM was introduced that is e�cient on problems with few
or weak dependencies but does not scale well on problems with non-decomposable sub-components.
Given the positive results produced by linkage learning methods employed in the discrete domain, a
mechanism is needed that allows for accurate linkage learning in the real-valued domain as well. Since
many real-valued problems allow for partial evaluations as well, introducing a method to e�ectively
leverage partial evaluations in the real-valued domain could also lead to signi�cant improvement in the
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Figure 1.1: contour plot of the 2-dimensional rotated hyper hyper ellipsoid function.

real-valued domain.

Whilst such a model does exist in the discrete domain it has only recently been tried to extend to the
real-valued domain. The strengths of AMaLGaM in sampling new solutions from an estimated Gaussian
distribution are thereby combined with the optimal mixing operator that allows GOMEA to exploit the
linkage of a problem very e�ectively which resulted in RV-GOMEA [5]. RV-GOMEA has been shown
to indeed perform exceptionally well if the linkage structure is modeled adequately, especially in the
grey-box scenario. However, di�culties arise in learning the correct linkage model online. Whilst a
linkage tree based on mutual information is capable of capturing the correct linkage of a problem in the
discrete domain, applying the use of mutual information of the established probability distribution to
the real-valued domain does not necessarily reveal the true nature of dependencies as imposed by the
�tness function. This is because selected solutions tend to align with the joint direction of improvement
due to mechanisms such as the anticipated mean shift from AMaLGaM [3]. The resulting inability
to correctly recognize fully decomposable sub-components can result in an over-complicated model for
decomposable problems.

An alternative approach to identifying linkage is to use the changes in �tness values when changing
certain variables. The most prominent method that takes such an approach is Di�erential Grouping [21].
Whilst this method has been shown to correctly identify the decomposability of variables, it does not
allow for overlapping linkage models like the linkage tree and is computationally expensive in checking
all `(`− 1) pairwise dependencies.

1.2. Research Objectives
Solving the problems stated above form the core objectives of this research project. To better display
the research goals of this project, three research questions have been de�ned that will be answered in
this thesis.

1.2.1. Online linkage learning

Whilst optimal mixing has provable added value in the real-world and turned out to be an e�ective
method to exploit the linkage structure of a given optimization problem, it has never been successfully
combined with an online linkage learning method in the real-valued domain. The �rst research question
focuses on how we can leverage the strengths of the state-of-the-art for optimal-mixing RV-GOMEA
with an online linkage learning method in a way that RV-GOMEA can be e�ectively applied to problems
of which the linkage structure is not known a priori.

Research question 1 How can we combine RV-GOMEA with an online linkage learning method
that is able to correctly detect decomposability of (sub) components?
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1.2.2. Scalability
From literature we can conclude that RV-GOMEA has shown excellent scalability in combination with
prede�ned linkage models. Whilst multiple algorithms have been proposed to learn a linkage structure
online based on �tness values. These methods are computationally expensive and do not scale well for
problems that are highly decomposable.

Research question 2 How can we minimize the overhead of our online linkage learning method
on the scalability of the optimization algorithm?

1.2.3. Linkage structure
Linkage Trees have been widely used to model the linkage structure of a problem. It has already been
suggested that pruning the linkage tree might yield improvements in the discrete domain [8]. Therefore
it makes sense to re-evaluate this linkage structure and see if improvements can be made by decreasing
the size of the linkage tree, which in turn also results in a more speci�c optimal mixing phase where
only linkage sets containing actual dependencies are mixed.

Research question 3 How can we translate pairwise dependencies to a linkage structure that can
capture the higher order dependency structure of an optimization problem?

1.3. Outline
This thesis contains a full article in which RV-GOMEA is extended with a �tness-based linkage learning
method that aims to overcome the earlier described problems in linkage and scalability. The resulting EA
is compared with an existing state-of-the-art AE for black-box real-valued optimization, AMaLGaM,
as well as with the original RV-GOMEA and RV-GOMEA with prede�ned linkage structures. To
validate the performance of our method the dependencies found will be evaluated and the resulting
linkage structures will be compared with the expected linkage structures for known benchmark problems.
Finally, this thesis is concluded with a discussion and future work section.
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2.1. Introduction
A key strength of many state-of-the-art-model based evolutionary algorithms (EA's) lies in the e�ective
exploitation of a problem's linkage structure [5, 21, 24, 26]. When the linkage structure of a problem
is known, this information can be used to solve the optimization more e�ectively. If a problem is fully
decomposable into sub-problems, these lower-dimensional sub-problems can be solved independently
to achieve better e�ciency. Conversely, if a problem is (partially) inseparable and its variables are
strongly dependent, trying to solve the problem with a model that wrongly assumes decomposability
is very ine�cient. This is known to hold for problems with discrete (binary) variables, e.g., deceptive
trap function [27], as well as real-valued variables, e.g., rotated ellipsoid function [16].

A well-known approach that e�ectively exploits the linkage model of a problem in the discrete
domain is Optimal Mixing (OM) [29]. In Optimal Mixing, variables modeled in the same linkage
set will be a�ected by recombination together, ensuring that no valuable information captured in the
speci�c combination of variables is lost. The recombination operator applies recombination to partial
solutions by iterating over all linkage sets in a linkage model. For every linkage set, recombination is
executed only on the variables represented in the current linkage set exchanging partial solutions between
individuals. If this recombination leads to an improved �tness of the individual solution, the changes
are accepted. The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) [4] randomly chooses
a donor solution for di�erent linkage sets, hereby exploiting the entire gene-pool in search for optimal
sub-solutions. In black-box optimization (BBO) this approach has shown excellent scalability, e�ectively
exploiting the problem structure of the problem at hand. When partial solutions can be leveraged, GOM
has proven to be even more e�cient, allowing for the inexpensive re-evaluation of partially changed
solutions. The recently introduced RV-GOMEA [5] leverages the strengths of GOMEA for the real-
valued domain. The linkage learned method employed by GOMEA has shown excellent performance
and scalability in the discrete domain, but some issues have been encounter when applying the same
approach to the continuous search spaces of the real-valued domain.

A fundamental drawback of the current approach lies in its inability to correctly recognize fully
decomposable sub-components. At the root of this lies that this method has problems in identifying
independent variables in the case of real-valued variables because selection causes the solutions to align
with the density contours of the search space. Additional mechanisms such as the anticipated mean
shift in AMaLGaM [3] and the evolution path in CMA-ES [7] cause the solution and Gaussian model
of variation to align with the joint direction of improvement (i.e., the gradient in smooth problems). In
either case, the mutual information of the Gaussian model will indicate that dependencies exist, even if
this is not the case, e.g., on the sphere function, especially when the population is initialized far away
and not bordering the optimum. Moreover, the method is based on the spread of the population and
often many generations are needed for the linkage structure to be properly exposed by a population.

An alternative approach to identifying the linkage structure of a problem is based on measuring
the changes in �tness values by perturbing certain variables. This method was �rst introduced in
combination with the greedy linkage learning approach known as Di�erential Grouping [21]. Whilst
this method is able to correctly identify independent variables, it does not allow for overlapping link-

7
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age sets nor does it de�ne a comparable measure on the dependence of variables. Lastly, when the
problem consists mainly of decomposable sub-components, learning the linkage model is unnecessarily
computationally expensive, as all of the `(`− 1) possible pairs have to be checked, even for completely
decomposable problems.

In this paper, we try to overcome the earlier stated drawbacks of existing linkage learning methods
by using the �tness-based dependency strengths to build an adapted linkage model based on the Linkage
Tree as used in RV-GOMEA. Two di�erent linkage model building methods are proposed. Both meth-
ods separate decomposable sub-problems as much as possible without separating non-decomposable
variables that are strongly dependent. The resulting linkage models are integrated into RV-GOMEA,
which has been proven to perform excellently on real-valued benchmarks when correct linkage models
are provided [5]. The introduced methods will be compared with existing linkage learning methods
in combination with RV-GOMEA for a variety of benchmark problems. The hypothesis is that the
proposed method is able to scale almost identically to o�ine learned linkage models but without the
need of problem-speci�c knowledge. In the black-box domain, we expect a performance similar to that
of AMaLGaM, something that has not been achieved before.

As for many real-world applications of (RV-)GOMEA like brachytherapy treatment planning [14, 17],
deformable image registration [18] and more [2, 15], the optimal linkage model is not known and strong
dependencies are imposed through geometry, e.g., transformation vector �eld nodes or potential windmill
locations that are near each-other are strongly dependent, but those far apart are weakly dependent.
This results in problem structures that are only non-decomposable to some extent. The provable added
value of RV-GOMEA for these real-world problems could be increased even further if correct linkage
models could be learned e�ciently online.

The remainder of this article is structured as follows. In Section 2.2 we elaborate on the existing
RV-GOMEA. Existing methods to model the dependencies of an optimization problem are discussed in
Section 2.3. In Section 2.4 our newly proposed incremental approach for learning the linkage structure of
a problem is introduced. The benchmark problems used to validate the performance of our method are
introduced in Section 2.5, and Section 2.5.3 shows scalability results on these problems. The implications
of our work and further challenges ahead are discussed in Section 2.7. Lastly, this article is concluded
in Section 2.8 with a conclusion.

2.2. RV-GOMEA
One of the key elements of GOMEA is its variation operator: the gene-pool optimal mixing method.
This method uses a so-called Family of Subsets (FOS) to exploit the linkage structure of a problem.
The current version of RV-GOMEA [5] is a combination of the existing GOMEA [4], which performs
excellently in the discrete domain, extended with a continuous sampling model as employed in the
state-of-the-art for numerical optimization, the Adapted Maximum-Likelihood Gaussian Model Iterated
Density-Estimation Evolutionary Algorithm (AMaLGaM) [1].

2.2.1. Family of subsets
The linkage structure of a problem is modeled in GOMEA using a FOS, denoted as F . The set
S = {0, 1, ..., `− 1} contains all problem variables and every set Fi ∈ F is a subsets of S. The complete
FOS F is a subset of the power-set P (S) of S. Lastly, the FOS F is complete, meaning that every
problem variable is represented in at least one subset of F . There are various methods for constructing
a FOS. Di�erent FOS structures have proven to work best on di�erent problems [29]. Here we partially
focus on two types:

Marginal product FOS
A marginal product FOS is de�ned as a set F where for every Fi and Fj ∈ F it holds that Fi ∩Fj = ∅.
The univariate FOS is a special case of a marginal product FOS with |F| = ` and thus |Fi| = 1 for all
Fi ∈ F .

Linkage tree FOS
The linkage tree FOS is most commonly used and shown to be the most universal in discrete optimization
[28, 29]. The de�ning property of a linkage tree FOS is that every set Fi ∈ F that contains more than
one set is the union of two other sets in F . Conceptually the linkage tree is built by iteratively merging
the two FOS elements with the highest dependence Fi and Fj to form a new FOS element Fk that is
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added to the FOS, thus Fi ∪ Fj = Fk. When only pairwise-dependencies are used an implementation
exists that allows for an LT FOS to be built in O(n`2) time [10]. The process of iteratively merging
linkage sets is repeated until no more merges are possible, i.e., the full set of variables is added or the
maximum linkage set size |Fk| = 100 is reached.

2.2.2. Gene-Pool Optimal Mixing
The core principle of GOMEA, Gene-pool Optimal Mixing (GOM), mixes the population following
the FOS subsets represented in the linkage model. Variables that are represented in the same FOS
subset will be recombined together. In the real-valued domain, recombination alone does not su�ce
as one needs to sample values not currently present in the population and thus a continuous model is
needed. In the recently introduced RV-GOMEA [5] to sample solutions in the space represented by a
FOS subset, a Gaussian sampling model is used as found in AMaLGaM [1]. During one generation of
RV-GOMEA, for every Fi ∈ F of size |Fi| = k a k−dimensional AMaLGaM model is estimated from the
n ·τ best individuals in the population P (τ being the fraction of solutions selected from the population,
in this case 0.35 as used in original AMaLGaM [1]). To create new o�spring, all linkage sets Fi are
considered in random order. For every solution |Fi| new values are sampled from the AMaLGaM model
and inserted into the existing solution. If this results in an increase in �tness, the changes are accepted.
If not, the change is accepted with probability paccept = 0.05. The next linkage set is considered. If an
individual does not improve for a certain number of generations, a method called forced improvement is
applied to alter the individual following a convex linear combination of the parent solution and the elitist
solution of the population, i.e. by moving it closer to the elitist solution. To obtain good performance
in an EA it is often important to correctly set the population size parameter. However, the best-suited
population size is problem dependent and can thus not be set without any problem speci�c knowledge.
To avoid needing to tune the population size parameter, RV-GOMEA uses an interleaved multi-start
scheme (IMS) that runs multiple independent EA instances with growing population sizes. As smaller
population sizes converge quicker but get stuck in local optima, an instance will be terminated once it
is outperformed by another instance that has a larger population size.

2.2.3. Grey-Box domain
Most of the research done one EAs is aimed at black-box optimization problems where no knowledge
about the problem or its underlying structure is known. In this article, we also consider a domain of
grey-box optimization problems where partial problem evaluations can be performed. Whilst partial
evaluations can be applied, that does not impose that the optimal problem structure is known and
thus in both domains, e�ective linkage learning plays an important part in optimization. In a grey-box
setting, partial evaluations allow for the recalculation of �tness when there are only few, e.g. k, modi�ed
variables in O(g(k)) time, rather than incurring the O(g(`)) overhead of full evaluations since these are
only needed when all variables are changed. With g() typically being a polynomial function e.g. g(`) = l
or g(`) = `2. The cost of one partial function evaluation is therefore counted as k

` with k as the number
of changed variables. Since the optimal mixing phase of RV-GOMEA makes almost exclusively partial
modi�cations to existing solutions, RV-GOMEA can very e�ectively leverage partial evaluations which
makes it an e�ective algorithm for grey-box problems.

2.3. Existing linkage learning methods
Multiple methods have been proposed to identify the structure of an unknown optimization function.
In this section two of these methods will be introduced. Firstly, a population-based method that
uses the spread of a population in the search-space to model dependencies is introduced. Secondly, a
�tness-based method where the �tness values are directly used to measure linkage between variables
is introduced. Both of these methods focus on pairwise dependencies. Once these dependencies are
known, dependencies between subsets of variables are extrapolated from them.

2.3.1. Distribution-based methods
One of the methods used to extract dependencies based on the distribution of a population is the Mutual
Information method (MI) [13]. The mutual information MIij of variables xi and xj de�nes how much
information about xi we can derive by knowing xj and vice versa. The MI is computed based on the
probability distribution associated with the variables. In the case of real-valued variables, a parametric
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distribution is often used. In our case, as the AMaLGaM model is essentially a normal distribution, to
calculate the MI between two variables xi and xj , the Pearson product-moment correlation coe�cient
rij can be used with rij ∈ [−1, 1]. A high absolute value of r corresponds to a high linear correlation
between xi and xj . The mutual information between xj and xj is de�ned as follows:

MIij = log

(√
1

1− (rij)2

)
(2.1)

where rij = Σ̂ij/ (σ̂iσ̂j) ∈ [−1, 1] (2.2)

2.3.2. Fitness-based methods
The second method we consider to de�ne whether two variables interact is the Di�erential Grouping
method [21]. This method is directly based on �tness values and classi�es a pair of variables as either
separable or non-separable speci�cally by comparing the di�erence in �tness whilst making the exact
same perturbation for xi for di�erent values of xj . Variables xi and xj are said to interact when
|∆i −∆i,j | ≥ ε for some user-de�ned small ε, where ∆i and ∆i,j are de�ned as follows:

∆i = (f(x)|xi = ai, xj = aj)− (f(x)|xi = ai + bi, xj = aj) (2.3)

∆i,j = (f(x)|xi = ai, xj = aj + bj)− (f(x)|xi = ai + bi, xj = aj + bj) (2.4)

where ai and bi can be any real value as long as xj and xj remain within the function bounds. In this
method ai and bi are selected randomly such that for every xi, ai and ai + bi fall within the bound for
xi inside the current population.

Figure 2.1: Non-decomposable Gaussian search distribution (green iso-lines) learned from a population of sampled solu-
tions on a 2D version of the decomposable sphere problem (purple iso-lines).

2.4. Scaled �tness-based linkage learning
To learn a linkage tree FOS, it is necessary to de�ne a notion of linkage, or dependency, strength between
pairs of variables. We denote di,j as the pairwise dependency strength between xi and xj where:

di,j =

{
1−∆i,j/∆i if ∆i ≥ ∆i,j

1−∆i/∆i,j otherwise
(2.5)

From di,j a matrix D of size `× ` can be constructed, storing all pairwise dependency strengths of
an `-dimensional problem. By de�nition of equation 2.5 the values of this matrix will lie within [0, 1)
with 0 for independent variables and di,j > 0 indicating some interaction between xi and xj . It is worth
noting that even though di,j does not represent a absolute dependency strength between variables, it
can be used to compare the relative pairwise dependency strength by comparing di,j and di,k. This
property makes it possible to learn a linkage tree FOS based on the information stored in D as described
in [5].
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2.4.1. Analysis of overhead

Filling matrix D requires `(`−1)
2 dependency checks. For each of these dependency checks, four eval-

uations are needed, which results in a total number of 2`(` − 1) evaluations. It is shown in [22] that

it is possible to decrease the number of evaluations to 1 + ` + `(`−1)
2 by using the same ai and bi for

every check and storing f(x)|xi=ai+bi for every xi ∈ x. When partial evaluations van be leveraged, the
overhead can be decreased even further. Since only one variable is changed for the evaluations done to
compute di,j , the number of changed variables k = 1 and therefore it is possible to decrease the total

number of evaluations even further to 1 + 1
` (`+ `(`−1)

2 ) = 2 + `−1
2 .

2.4.2. Incremental dependency updating
It is plausible to assume that real-world high-dimensional problems tend not to be fully dependent with
strong dependencies (e.g., a 1000-dimensional rotated ellipsoid), but to be non-decomposable only to
some extent. We, therefore, aim to slightly bias our method toward the assumption of less-than-fully
dependent problems by decreasing the number of evaluations needed on sparsely dependent problems.
To this end, to spread the computational load of �lling the dependency matrix, every Dij is initially
set to the default value of 0 (independent). In each generation, ` random pairs are evaluated and a new
FOS is learned. Since the right linkage model is not dependent on the population size, the same linkage
structure is used for every population that is maintained with respect to the IMS explained in Section
2.2.2. We call this process incremental dependency updating. The pseudo-code for this algorithm can

be found in algorithm 1. The process of checking all `(`−1)
2 pairs will be called a dependency cycle.

When all pairs have been checked, no checks will happen for 2k generations where k is the number of
cycles that have taken place already. To better allocate the computational budget during optimization
of a problem that is suspected to be independent, the dependency cycle is stopped prematurely and
started again after 2k generations with new random pairs. Speci�cally, the dependency cycle is stopped
whenever no dependencies are found in one iteration (` checks) and if the average number of found
dependencies over all dependence cycles so far is smaller than some minimum value. We used 2

` as this
was empirically found to work well on a variety of problems. Since the matrix is initialized with 0's
the computational resources are geared more toward univariate optimization which results in a slight
bias to decomposable problems. Yet, by restarting the dependency cycle every 2k generations, changes
in function landscapes can be captured and the dependencies can be updated accordingly. As a result
of the initialization of the dependency matrix, all variables are assumed to be independent and will
only be considered to be dependent once an actual dependency is detected. Stopping the dependency
detection when no dependencies are found is therefore not expected to signi�cantly change the outcome
of the dependency checks.

2.4.3. Pruning
Based on the information obtained from the scaled �tness-based dependency detection, a pruning
method for the Linkage Tree FOS described in Section 2.2.1 can be used. The goal of pruning is
to eliminate unnecessary linkage sets. A smaller FOS reduces the number of function evaluations and
time spent on GOM per generation. If only the linkage sets that best capture the dependency between
variables are correctly maintained, the e�ciency of GOMEA may very well improve.

Consider the moment during the learning of the FOS, that two linkage sets Fi and Fj are to be
merged to create Fk = Fi ∪ Fj . If all variables in Fk are pairwise dependent, Fi and Fj are removed
from the FOS. Since all variables in Fk are dependent, mixing these variables together (which in
RV-GOMEA entails sampling form a joint Gaussian distribution) will likely yield better results than
separately mixing the variables from Fi or Fj . Similarly, if there is no pairwise dependence between
any variable in Fi and any other variable in Fj , Fk is removed from the FOS.

In case that there are some pairwise dependencies between subsets, but not every variable in Fi is de-
pendent on every variable in Fj , the problem consists of non-decomposable overlapping sub-components.
For this case we present two di�erent pruning approaches, resulting in di�erent FOS structures:

(partial) Linkage Tree
In this case, the two subsets Fi and Fj are merged together into Fk and all linkage FOS sets are kept
in the FOS. This approach will result in a (partial) linkage tree where the biggest linkage sets are the
size of the biggest non-decomposable sub-components.
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Algorithm 1 Incremental dependency updating

1: pairs← shuffelePairs() . all possible pairs, randomly ordered
2: w ← 0 . The number of waiting cycles
3: k ← 0 . The number of cycles that have take place
4: g ← 0 . The generations that have take place
5: t← 0 . The total dependencies found
6: while not terminated do

7: if w = 0 then

8: d =← evaluateLpairs(pairs) . Dependencies found
9: t = t+ d
10: g = g + 1
11: if (d = 0 and t ≤ 2 · g) or all pairs are evaluated then

12: w ← 2k

13: k ← k + 1
14: pairs← shuffelePairs()
15: t, d← 0

16: else

17: w − 1

18: continue RV-GOMEA
19: ...

Marginal product
The second approach ignores the subset of dependencies between Fi and Fj and keeps only the fully
dependent linkage sets Fi and Fj in the FOS without merging any more sets. Combined with the other
pruning steps this will always create a marginal product FOS, containing every variable exactly once.

2.4.4. FOS-based population size
With the problem-speci�c knowledge obtained by our linkage learning method, we can project a min-
imally required population size needed for RV-GOMEA to work well. If γ is the size of the biggest
linkage set in F then following [3] the minimal population size nbase needed can be calculated as
nbase = 17 + 3γ

√
γ. We combine this baseline with the IMS described in Section 2.2.2. Across all

populations in the IMS, one FOS is maintained since the linkage structure of a problem is not depen-
dent on the population size. The incremental dependency updating as described in Section 2.4.2 thus
happens in every generation of the IMS. Every time a new FOS is built and the size of the biggest fully
dependent linkage set has increased, nbase is recalculated and the populations with a population size
smaller than nbase are stopped.

A second use of population sizing is if the linkage tree FOS is built, and not all variables in one
linkage set are pairwise dependent, e.g., if Fi = {1, 2, 3} and d1,2 = 0.5, d1,3 = 0, d2,3 = 0.5. The
population size is then not updated as described earlier, but the FOS set Fi is only added to F if
|Fi| ≤ γmax, with γmax = (n−17

3 )
2
3 the maximal acceptable linkage set size for a population in the IMS

of size n.

2.5. Experiments
2.5.1. Benchmark algorithms
To conduct our experiments we compare the performance of RV-GOMEA in combination with our
two proposed methods for �tness-based linkage learning, described in Section 2.4, to existing ver-
sions of RV-GOMEA and AMaLGaM. Table 2.1 gives an overview of all versions of RV-GOMEA and
AMaLGaM that are used for our experiments, di�ering only in how the linkage model is de�ned or
learned. For our newly proposed methods, we make a distinction between a �tness-based linkage tree
(RV-GOMEA-FBLT) and a �tness-based marginal product linkage structure (RV-GOMEA-FBMP) of
which the di�erences between the resulting models are described in Section 2.4.3. Because the second
pruning approach of the �tness-based linkage learning method will always create a marginal product
linkage structure, this method can also be used to create a linkage structure for AMaLGaM, equipping
it with a linkage learning method for the �rst time. The MP linkage model is used to restrict the
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Linkage model Description

RV-GOMEA-FBLT RV-GOMEA with a learned �tness-based linkage tree
RV-GOMEA-FBMP RV-GOMEA with a learned �tness-based marginal product model
RV-GOMEA-UNI RV-GOMEA with a prede�ned univariate linkage model
RV-GOMEA-UNI5 RV-GOMEA with a prede�ned linkage model using blocks of 5 consecu-

tive variables.
RV-GOMEA-FULL RV-GOMEA with a prede�ned full linkage model
RV-GOMEA-LT RV-GOMEA with a learned linkage tree model, based on Mutual Infor-

mation as described in [5]
RV-GOMEA-DG RV-GOMEA with a learned linkage structure based on di�erential group-

ing as proposed in [21]
AMaLGaM-UNI AMaLGaM with a prede�ned univariate linkage model
AMaLGaM-FB AMaLGaM with a learned �tness based linkage model

Table 2.1: All algorithms used for our experiments.

covariance matrix of AMaLGaM, i.e., the covariance is assumed to be 0 for variables in di�erent FOS
elements. AMaLGaM-FB will be compared to the previously described versions of RV-GOMEA.

2.5.2. Benchmark problems
To study the impact of di�erent types of linkage learning on the performance of RV-GOMEA, we �rst
consider a set of six optimization problems. Whilst some of these problems are not decomposable,
none of the used benchmark problems are fully dependent, aligned with the idea that real-world high-
dimensional optimization problems are highly unlikely to have a linkage structure where each variable is
dependent on every other variable. The problems we will consider are Sphere, Michalewicz, Rastrigin,
Rosenbrock, Sum of Rotated Ellipsoid Blocks (SoREB) and an overlapping version of SoREB.

The �rst three benchmark functions exhibit no dependencies. First, we consider the sphere function
which is a widely-used benchmark for real-valued optimization. The sphere function has a smooth
landscape and no local minima.

fSphere(x) =

`−1∑
i=0

x2
i

Second, we consider the Michalewicz function. In comparison with the smooth sphere function, it
contains l! local optima that are unevenly distributed throughout the search space. The de�nition of
the Michalewicz function is as follows, with xi ∈ [0, π]:

fMichalewicz(x) =

`−1∑
i=0

[
− sin (xi) · sin

(
(i+ 1)x2

i /π
)20]

Next, the Rastrigin function is also a non-linear and multi-modal function but its local minima are
evenly spread and superimposed on the sphere function.

fRastrigin(x) = 10`+

`−1∑
i=0

[
x2
i − 10 cos (2πxi)

]
The fourth benchmark function we consider is the Rosenbrock function that contains a parabolic valley
with one global optimum and one local optimum for 4 ≤ l ≤ 100 [25]. Finding the global optimum in this
valley is considered relatively hard. Finding the valley is trivial, but converging to the global minimum
requires a search through this parabolic valley that requires di�erently oriented covariance matrices at
di�erent points during the search. By design, every consecutive pair of optimization variables in this
function is dependent which results in l − 1 overlapping dependent components. The de�nition of the
Rosenbrock function is as follows:

fRosenbrock(x) =

`−2∑
i=0

[
100

(
xi+1 − x2

i

)2
+ (1− xi)

2
]

The SoREB function uses a rotation function Rθ that de�nes the counterclockwise rotation of a vector
around the origin by an angle of θ and an ellipsoid function fEllipsoid . Due to the construction of
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Figure 2.2: Heatmaps over 30 runs for ` = 50 with the Fitness-Based measure

the SoREB function, the variables in every block of k consecutive optimization variables have strong
dependencies, but are independent from any other optimization variables outside of their block. For
our benchmark we use a block size of k = 5 and a rotation of θ = 45°. The ellipsoid function and the
SoREB function are de�ned as follows:

fEllipsoid(x) =

`−1∑
i=0

[
10

6l
`−1 x2i

]

fSoREB(x, k) =

`/k−1∑
i=0

[
fEllipsoid

(
Rθ
([
xki, . . . , xk(i+1)−1

]))]
The SoREB function is a problem containing only non-overlapping non-decomposable sub-components

of size k. We de�ne an overlapping version of this problem as OSoREB. In addition to the original
SoREB problem, a second set of SoREB blocks is used with blocks of length 2 for every pair of consec-
utive parameters in successive blocks of SoREB with k = 5 (e.g., for x4, x5 and x9, x10). The de�nition
of OSoREB is as follows:

fOSoREB (x, k) = fSoREB(x, k) +

`/k−1∑
i=1

[fEllipsoid (Rθ ([xki−1, xki]))]

2.5.3. Setup

Evaluating linkage learning
We employ di�erent means to verify the validity and impact of di�erent linkage learning algorithms.
The dependency matrices produced by our �tness-based method is compared to the matrices produced
by the existing mutual information method. The dependency matrices give us valuable insight into
the pairwise dependencies found during optimization, which is used to create the FOS structures used
for GOM. For all benchmark problems, the pairwise dependencies are known and can thus be easily
compared to the learned dependency matrices. Average dependency matrices are be computed over 30
independent runs with ` = 50 for all benchmark problems. As our linkage learning approach builds a
model on the relative dependencies between variables, the heatmaps shown are normalized according
to min-max feature scaling, such that all values range between [0, 1] without loss of information. For
all non-overlapping benchmark problems, we also verify whether the learned linkage sets corresponds
to the combination of optimal linkage sets that capture all existing dependencies but do not combine
independent variables.

Evaluating scalability
Another important aspect of our evaluation is the scalability analysis of RV-GOMEA on a subset
of the benchmark functions. Scalability graphs are commonly used to benchmark the performance
of optimization algorithms because they summarize the most important aspects of the algorithm's
performance as well as provide a prediction regarding the performance on higher-dimensional problems.
We compare the scalability of RV-GOMEA when using di�erent linkage learning models as described
in Section 2.5.1. For a broader comparison of the previously existing versions of RV-GOMEA with
di�erent state-of-the-art EAs, we refer to [5]. For visibility we have only plotted RV-GOMEA-FBMP
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(d) OSoREB, 1e4 evalua-
tions
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ations
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Figure 2.3: Heatmaps over 30 runs for ` = 50 with the Mutual Information measure

on non-overlapping problems since RV-GOMEA-FBLT both produce the same FOS structure and thus
have the same scalability.

For every benchmark problem, 30 independent runs are performed with a time limit of 104 seconds
(roughly 2 hours and 45 minutes). All experiments are performed on a 64-core (4 x 16-core AMD
Opteron(tm) Processor 6386 SE) server running Fedora 28 where each run is performed on a single
core. In every run the population is randomly initialized between [−115,−100] for every variable and
[0, π] for fMichalewicz i.e, de�nitely not bracketing the optimum. A problem is considered to be su�ciently
minimized if the elitist solution reaches a value to reach (VTR) of 1e−10 if the optimum value is 0 (which
is the case for all problems except fMichalewicz) and 95% of the optimum for fMichalewicz).

If all runs are solved within the time limit, the problem size is doubled, until the maximum di-
mensionality of 104 is reached. Since a large range of real-world optimization problems, as well as all
our benchmark problems, allow for partial evaluations, we have decided to focus mainly on grey-box
optimization in order to obtain a realistic view of the performance of our algorithm on most real-world
optimization problems.

2.6. Results
2.6.1. Dependency matrices
Figure 2.2 shows heatmaps of the dependency matrices for all benchmark problems as calculated by RV-
GOMEA-FBLT. For the mutual information measure shown in Figure 2.3, the dependency matrices
for SoREB and OSoREB become more speci�c and less noisy after more evaluations, this becomes
apparent in Figures 2.3h and 2.3g. All heatmaps shown are zoomed in to the �rst 20 dimensions, making
it easier to inspect the dependencies, whilst still optimizing a 50-dimensional problem. On the fully
decomposable problems: sphere, Rastrigin and Michalewicz the mutual information measure is not able
to correctly identify the independence of the variables. Even if variables are independent, a correlation
is measured. In combination with the normalization of the dependency matrices used to create a FOS
we can conclude that this measure encounters high amounts of noise for decomposable problems. The
�tness-based method is able to correctly identify two independent variables, which results in a matrix
containing only 0's for all three decomposable benchmark problems. By de�nition of the SoREB and
OSoREB problems, the �rst two variables of a block exercise the highest in�uence on the total sum and
thus show the strongest dependencies. This strong dependency can be seen in all Figures 2.2c, 2.2d,
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2.3c, 2.3d, 2.3g and 2.3h, but only the �tness-based method (2.2c, 2.2d) and the mutual information
method on SoREB after 1e5 evaluations have extracted the correct block structure without displaying
noise between decomposable variables. One of the main drawbacks of the mutual information method
now, becomes immediately clear, because even though the dependencies will eventually be found, RV-
GOMEA is able to already solve this instance of SoREB within 1e5 evaluations if a proper FOS is
provided [5].

2.6.2. FOS structures

We can divide the benchmark problems into non-overlapping and overlapping optimization problems.
Sphere, SoREB, Michalewicz, and Rastrigin are non-overlapping. The Rosenbrock problem and the
OSoREB problem contain overlapping components. To better visualize the FOS structures produced
by our methods, Figures 2.4 and 2.5 show the elements captured in a single FOS structure. In these
�gures, the horizontal axis represents the index of the optimization variables. Every linkage set is
represented in one row of the �gure, the highlighted x values mark the presence of that optimization
variable in that one linkage set. Colors are used to improve visibility but do not contain any additional
information.

Non-overlapping benchmarks

For the non-overlapping problems, the optimal FOS structures are known and can be compared with the
FOS structures generated by RV-GOMEA-FB. We will look at the algorithm's FOS structures created
for sphere and SoREB. Rastrigin and Michalewicz are not considered here since for these problems
the dependency matrix and thus FOS structure is equal to that of sphere. The FOS structures found
and used by RV-GOMEA-FB for sphere and SoREB that can be seen in Figures 2.4a and 2.4b are as
expected, considering the dependency matrices discussed in Section 2.6.1. For sphere, it holds that a
fully decomposable problem can best be represented by a univariate FOS consisting of exactly l subsets,
each containing a single optimization variable. As stated in Section 2.5.2 the SoREB function is rotated
in blocks of k consecutive optimization variables with k = 5 in this case. Thus the dependencies of
SoREB should be represented by a marginal product FOS containing blocks of size k as is the case in
Figure 2.4b.

Overlapping benchmarks

The optimal FOS structures for overlapping benchmarks are unknown because no marginal product FOS
can describe all dependencies without combining independent variables or leaving out dependencies. For
these overlapping problems, a distinction is made between RV-GOMEA-FBLT and RV-GOMEA-FBMP.
The latter linkage learning method creates a marginal product FOS, whereas the former continues to
build a linkage tree, eventually containing all non-decomposable linkage sets. Figure 2.5 shows the FOS
structures created for Rosenbrock and OSoREB by RV-GOMEA-FBLT and RV-GOMEA-FBMP where
l = 20.

(a) Sphere

(b) SoREB

Figure 2.4: FOS structures for ` = 50 with every block representing a single linkage set

Scalablility



2.6. Results 17

(a) Rosenbrock MP (b) Rosenbrock LT (c) OSoREB MP (d) OSoREB LT

Figure 2.5: Linkage structures for ` = 20 with every block representing a single linkage set

2.6.3. Scalability analysis
Figure 2.6 shows the performance of di�erent linkage learning methods in combination with RV-GOMEA
on all six benchmark problems.

(Partially) Decomposable problems

For the fully decomposable problems Sphere, Rastrigin and Michalewicz, we can observe that RV-
GOMEA-FBLT and RV-GOMEA-FBMP scale as well as RV-GOMEA-UNI and better than AMaLGaM-
FB. Whilst RV-GOMEA is partially based on AMaLGaM, the optimal mixing employed in RV-GOMEA
has not been shown to outperform the model based EDA approach used by AMaLGaM on all bench-
mark problems before. In this paper suitable comparison has been made between RV-GOMEA and
AMaLGaM as both algorithms have been provided with the same linkage learning method and better
results have been obtained by RV-GOMEA, implying that the optimal mixing of (RV-)GOMEA has
signi�cant added value in the real-valued domain.

The incremental dependency updates have minimal overhead on the overall scalability as opposed to
the original di�erential grouping (RV-GOMEA-ODG) where the number of dependency checks needed
to build a linkage model scales quadratically with the problem size.

On SoREB, a non-univariate linkage model is used as RV-GOMEA baseline, containing blocks of 5
consecutive optimization variables (RV-GOMEA-UNI5). RV-GOMEA-FBLT and RV-GOMEA-FBMP
�nd the same structure (�g. 2.4b), but in GBO a small overhead is noticeable as the problem size
increases. This overhead is caused by a decrease in the ratio of dependent to independent pairs as the
problem size increases. By the de�nition of SoREB, every variable is dependent on the other k − 1
variables in its block and has no dependency on all other `− k problem variables. If the dimensionality
of SoREB increases, the number of blocks increases, but the size of the blocks will always be equal
to k. In other words, as ` grows larger, the number of independent variables ` − k becomes larger.
Eventually, every possible pair has to be checked to ensure all existing dependencies are found, which
ultimately still causes a quadratic overhead compared to the baseline RV-GOMEA-UNI5, which uses
a prede�ned structure, but still scales better than the original �tness-based linkage learning used in
RV-GOMEA-DG.

Non-decomposable problems

As the Rosenbrock and OSoREB problem contain non-decomposable sub-components, RV-GOMEA-
FBLT and RV-GOMEA-FBMP generate di�erent linkage models and their scalability should be evalu-
ated independently. As shown in Section 2.6.2, a full linkage tree FOS is built in RV-GOMEA-FBLT
to capture the dependence between single parameters in di�erent sub-components, whereas a marginal
product structure is used by RV-GOMEA-FBMP. The former results in slightly better scalability on
OSoREB implying that there is indeed added value in bigger FOS elements that can capture the link-
age over partially dependent (sub)-components. On the Rosenbrock problem, RV-GOMEA-FBLT and
RF-GOMEA-FBMP show similar scalability but are outperformed by RV-GOMEA-UNI, implying that
even though this problem contains dependencies, it can still be e�ciently solved by a univariate linkage
model.
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Figure 2.6:
Medians of scalability experiments with each data point being the median of 30 successful runs.
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2.7. Discussion
The method introduces in this paper is able to learn pairwise dependencies between variables online.
There are, however, certain issues left unaddressed in �nding the optimal linkage structure to any
optimization problem. One of the key questions left unanswered is how to deal with problems containing
overlapping sub-components. The optimal linkage structure to solve these benchmark problems is
unknown, nor do we know whether a universally optimal linkage structure for these kinds of problems
exists for RV-GOMEA. Whilst two of our benchmark problems contain overlapping components, the
results between our two proposed linkage models did not vary much and we did not manage to �nd a
de�nitive optimal structure for these benchmark problems.

While our proposed approach de�nes relative dependencies on pairs of variables, it does not provide
an absolute or relative minimal value to de�ne non-separability of sub-components. More research is
required to determine the possibility of �nding a measurement that allows for the further decomposition
of weakly dependent sub-components.

When focusing on the pairwise dependency checks done on the Rosenbrock problem, it occurs that
whilst the results obtained from these checks are as expected, pairwise dependencies might not be
suitable to model the higher order dependence of this non-decomposable problem. Even though two
variables xi and xi+2 are not pairwise dependent, their optimal values both depend on the value of xi+1

and vice versa, making them dependent to some extent. These higher order dependencies cannot be
captured by the pairwise dependency checks done by the approach introduced in this article.

Lastly, the order in which pairs are checked is completely random, a smarter approach might be to
evaluate the pairs that are more likely to be dependent �rst, which is likely to improve RV-GOMEA-
FBLT's performance even more on speci�c problems.

2.8. Conclusion
We have introduced a �tness-based linkage learning approach that can �nd pairwise dependencies be-
tween variables and build a linkage structure online without the need for any problem speci�c knowledge.
Using the found dependencies this approach also sets a lower bound on the required population size
for the learned problem structure. The proposed method has been evaluated on di�erent well-known
benchmark problems and has proven to be e�cient in determining the correct pairwise dependencies
between variables. Two di�erent methods have been proposed based on estimated pairwise dependencies
to model the linkage structure of a problem. These methods have been integrated into RV-GOMEA and
AMaLGaM and resulted in both algorithms being able to learn well-performing dependencies online.
RV-GOMEA-FBMP and RV-GOMEA-FBLT have shown to outperform the current state-of-the-art (for
black-box scenarios) an EA know as AMaLGaM upon which RV-GOMEA was based, whilst leveraging
the same linkage model. Because a comparison between RV-GOMEA and AMaLGaM has never before
resulted in better performance of one algorithm on all benchmark problems, this is the �rst time we can
conclude that RV-GOMEA has outperformed the model based EA that it was partially based on. Parts
of RV-GOMEA and AMaLGaM are equivalent, but RV-GOMEA distinguishes itself from AMaLGaM
by its optimal mixing, the better performance of RV-GOMEA on our benchmark problems thus clearly
shows the added value of the optimal mixing employed by RV-GOMEA.

Whilst the two methods used for RV-GOMEA have equal performance on (partially) decompos-
able benchmarks, the generated linkage models di�er for benchmark problems with overlapping sub-
components. The di�erence lies in whether a (partial) linkage tree is built that captures all possible de-
pendencies, or a marginal product linkage model is used. Whilst both methods have their strengths, RV-
GOMEA-FBLT scales better on problems with strong dependencies and overlapping sub-components,
thus proving to be a more robust method for large-scale real-world optimization problems with unknown
problem structures.

Given the overall scalability of RV-GOMEA-FBLT, we conclude that the proposed algorithm is
able to learn a linkage structure online and scale as well as the current state-of-the-art for grey-box
optimization, RV-GOMEA when provided with the optimal structure.
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Conclusion

3.1. Research questions
To conclude this thesis, the research objectives introduced in Section 1.2 will be revisited.

3.1.1. Online linkage learning
Research question 1 How can we combine RV-GOMEA with an online linkage learning method that
is able to correctly detect decomposability of (sub) components?

The �tness based linkage learning approach proposed in Section 2.4 has been shown to successfully
detect decomposability as well as the linkage between pairwise problem variables. The heatmaps pre-
sented in Figure 2.2 clearly support this claim and show that for all benchmark problems the correct
pairwise dependencies are found by this method. To combine this pairwise dependency learning ap-
proach with RV-GOMEA, a linkage model is created online that leverages the pairwise dependencies
to create a linkage tree as was previously used by RV-GOMEA. More about this linkage model will be
discussed in Section 3.1.3

3.1.2. Scalability
Research question 2 How can we minimize the overhead of our online linkage learning method on
the scalability of the optimization algorithm?

The overhead of an online linkage learning method based on �tness evaluations has shown to be
a problem for the original di�erential grouping method when integrated into RV-GOMEA. The incre-
mental dependency updating introduced in Section 2.4.2 aims to overcome this by initially assuming a
completely decomposable linkage structure and ceasing to learn the rest of the linkage structure when
the problem is suspected to be decomposable. The dependency checks are iteratively resumed after a
certain number of generations but will be stopped again when no linkage is found. Whilst this approach
reduces some of the overhead created by redundant dependency checks, it also introduces a slight bias
towards (partially) decomposable problems.

3.1.3. Linkage structure
Research question 3 How can we translate pairwise dependencies to a linkage structure that can
capture the higher order dependency structure of an optimization problem?

The proposed �tness-based linkage learning method is able to correctly identify decomposability
between (sub-)components. Section 2.4.3 shows two methods for pruning the linkage tree to remove
redundant (sub-)components resulting in a more e�ective linkage structure and better mixing of variables
during optimal mixing. The pruning of linkage model works two ways as small linkage sets are removed
if bigger linkage sets are required to express the linkage of a problem and similarly, big linkage sets are
removed if the smaller linkage present set in the linkage model would su�ce to model the linkage of a
problem. Two di�erent pruning method have been compared against each other, whilst both models

21
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create the same linkage model for partially decomposable problems, they produce di�erent linkage
models for problems that contain overlapping sub-components. The marginal product model linkage
structure produces better results on the Rosenbrock, but the partial linkage tree works better on the
overlapping SoREB problem. Whilst both models have their strengths, their results are fairly similar
and they are both able to create well-scaling linkage models that can be e�ectively used by RV-GOMEA.

3.2. Discussion
The research presented in this paper provides a baseline for �tness-based linkage learning in optimal
mixing algorithms for the real-valued domain. For the non-overlapping benchmark problems, the op-
timal structure could be determined, the models produced by our algorithm have been veri�ed using
the known optimal models. For non-overlapping benchmark problems, however, the optimal structures
are not known, nor do we know if a generalized approach exists to determine these structures. When
comparing our two linkage learning approaches, the linkage tree performed better on OSoREB, whilst
the marginal product model works slightly better on the Rosenbrock problem. Since these results do not
give us a de�nitive answer as to which linkage structure works best on these problems, this thesis does
not provide an optimal approach to learn the structure of a problem with overlapping sub-components.

Looking more closely at the pairwise dependencies found on the Rosenbrock problem, it can be
noted that all pairs of variables that are not consecutive have a dependence of 0, meaning that when
all variables are unmodi�ed and the dependency check speci�ed in Equation 2.5 is performed, there
is no dependence found between xi and xi+2. Whilst this is what we would expect for xi and xi+2,
they are both dependent on xi+1 and optimizing either one will require optimization of xi+1 as well.
Some higher order of dependence does exist for xi and xi+2 that can not be measured with our pairwise
dependency checks. Finding such a measure would be a great addition to many real-world problems
such as deformable image registration [18] but also to the circles in a square problem which is related to
a wide variety of real-world applications [6] because many of these problems contain strong dependen-
cies imposed through geometry, e.g., transformation vector �eld nodes that are near each-other have
strong dependence, but those far apart are independent. Resulting in problem structures that are only
non-decomposable to some extent. When using our �tness-based dependency check on these kinds of
problems, nodes that do not have any direct connection will be marked as independent, even though
they can be dependent on the same intermediate node, making them linked even though the dependency
check suggests otherwise.

3.2.1. Future work
Our proposed approach de�nes relative dependencies on pairs of variables but does not provide an
absolute or relative minimal value to de�ne non-separability of sub-components. Interesting open is-
sues, therefore, lie in researching a measure of minimal (absolute or relative) dependency strength to
decompose weakly dependent (sub-)components. An interesting research question is thus how high
the measured dependency between two variables should be to consider these variables dependent on
one-another and when can we better model two variables as independent even when they have mea-
surable dependence? The importance of this issue is highlighted in RV-GOMEA-FBLT's performance
on the Rosebrock problem, compared to the univariate baseline of RV-GOMEA-UNI. Even though the
Rosenbrock problem contains decomposable sub-components, a model capturing these dependencies is
still outperformed by a univariate model. This raises the priority of the question of how to de�ne the
non-separability of sub-components even further.

A second, related, open issue is that of the overlapping components in optimization problems. Even
when the pairwise dependencies between variables are known, no method exists to create an optimal
linkage model for every kind of overlapping problem. When looking at the overlapping SoREB function
de�ned in Section 2.6.3, we can verify whether the pairwise dependencies are correct, but it is impossible
to verify the correctness of the linkage model created based on these dependencies, since it is not known
what this model is supposed to look like. The question here is whether there exists a de�nitive approach
to correctly model overlapping dependencies and if it does, what does it look like? More research into
linkage structures is thus needed to determine whether such an optimal structure exists.

This �tness-based linkage learning method has shown to work well on the real-valued single objective
problems. It has however not yet been applied to the multi-objective domain, where a lot of real-world
applications of the current version of RV-GOMEA lie [17], [15]. To learn a linkage model based on �tness
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as has been done in this thesis is not as trivial in the multi-objective domain as it is for single objective
optimization. Multiple objectives can often be calculated by multiple �tness functions and variables can
be dependent on each other in one objective, but independent in a second objective. An open issue is
thus how to correctly apply this �tness-based linkage learning in the multi-objective domain. In many
real-world problems, dependencies are not fully dependent, neither fully independent. The introduced
approach checks pairs of variables in random order. An interesting improvement to this randomized
approach might be to make soft assumptions about where interesting dependencies might lie. Variables
that have been marked as independent in the last n checks will be more likely to be independent again
than a pair of variables that have been dependent on all previous checks. Also, if variable xi is dependent
with xi+1 and xi+2, it might be more interesting to check the pair {xi+1, xi+2} than {xi+1, xi+100}. A
possible improvement to the introduced approach is thus to �nd a smart ordering of pairs that can be
bene�cial to �nding dependencies early on and will reduce the total number of evaluations needed to
build the linkage model.

Lastly, one of the key aspects of RV-GOMEA-FBLT is its focus on high-dimensional real-valued
problems. The improvements made in this thesis have been shown to work on well-established bench-
mark problems, but not on real-world problems. A clear next step would, therefore, be to also apply
the new version of RV-GOMEA to real-world optimization problems.

3.2.2. No free lunch
As this thesis introduces an optimization algorithm that is aimed at solving a wide variety of opti-
mization problems, it is important to discuss how this aim relates to the no-free-lunch-theorem [31].
This theorem states that the computational cost of �nding the optimal solution averaged over all opti-
mization problems, is the same for any optimization method, hence claiming that no algorithm o�ers
a computational "short cut". That is, improvement of performance in problem-solving hinges on using
prior information to match the method applied to problems at hand.

As our optimization method is speci�cally designed to be e�cient in a certain class of problems,
the no free lunch theorem does not apply to this research. However, in more speci�cally de�ning which
class of problems our method is biased towards, we can get a better understanding of the strengths and
limitations of our method. In this research, we have focused mainly on problems that are (partially)
decomposable and problems where partial evaluations can be leveraged. One of the key strengths of
the introduced method is the ability to exploit and extract dependency-based problem structures. Our
method is less suitable for fully non-decomposable problems especially when the problem structure is
known a priori, as no decomposition and partial evaluations will then be possible, disabling two of the
big advantages of our method. Lastly, when the objective function of a problem is very computationally
expensive, certain drawbacks to a �tness-based linkage learning approach become evident. For every
pair of variables, at least one function evaluation is needed, and in our approach in every generation
at most l pairs of variables will be evaluated. This linear upper-bound on the number of evaluations
required by our method makes it thus less suitable for high-dimensional problems with costly function
evaluations.

3.3. Conclusion
In this thesis, a �tness-based linkage learning approach is introduced that is able to e�ectively exploit
a linkage structure online, based on pairwise dependencies between problem variables. The proposed
method has been evaluated on di�erent well-known benchmark problems and has proven to be e�cient
in determining the correct pairwise dependencies between variables. The resulting linkage structures
together with a found lower bound on the population size are combined with a state-of-the-art optimiza-
tion algorithm RV-GOMEA and have proven excellent scalability on real-valued benchmark problems.

Whilst RV-GOMEA is partially based upon AMaLGaM, a strength of RV-GOMEA lies in the
optimal mixing employed by RV-GOMEA that allows for e�cient mixing of partially optimal solutions
whilst leveraging partial evaluations. One fundamental di�erence is that AMaLGaM (and other model-
based EDAs) does not allow for partial evaluations or overlapping linkage structures because the entire
solution is sampled at once and only evaluated as a whole. The optimal mixing of RV-GOMEA has
not been objectively compared with the model based EDA approach employed by AMaLGaM before,
as both models advance under di�erent linkage models. The linkage learning approach introduced in
this thesis, however, suggested a marginal product model for RV-GOMEA that could be employed by
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AMaLGaM as well, allowing, for the �rst time, a fair comparison between these two types of algorithms.
From the scalability results, it could be concluded that RV-GOMEA outperforms AMaLGaM whilst
using the exact same linkage learning techniques. These results imply that the optimal mixing employed
by RV-GOMEA has measurable added value on the EA as a whole, resulting in a better performance
than the EDA that forms the basis for the sampling of new solutions in RV-GOMEA but does not
employ optimal mixing of variables.

Given the overall scalability of RV-GOMEA-FBLT, we conclude that the proposed algorithm is able
to learn a linkage structure online and scale as well as the current state-of-the-art for GBO, RV-GOMEA
when provided with the optimal structure.
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