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Abstract

3D Gaussian Splatting (3DGS) [10] is a promising 3D
reconstruction and novel-view synthesis technique. How-
ever, the field of semantic 3D segmentation of 3D Gaussian
Splats scenes remains largely unexplored. This paper dis-
cusses the challenges of performing 3D segmentation di-
rectly on 3D Gaussian Splats, introduces a new dataset fa-
cilitating evaluation of 3DGS semantic segmentation and
proposes use of PointNet++, initially developed for point
cloud segmentation, as a 3DGS segmentation model. As
the results show, PointNet++ is also capable of performing
3DGS segmentation with performance close to the perfor-
mance achieved in point cloud segmentation tasks. When
taking into account only the positions, 3D Gaussian Splats
appear to be more difficult for PointNet++ to process than
point clouds sampled from mesh faces, possibly due to their
irregularity. However, as shown in the paper, inclusion of
size, rotation and opacity of each splat allows PointNet++
to achieve nearly 87% of accuracy, outperforming Point-
Net++ on point clouds sampled from meshes.

1. Introduction
Recent years have seen an emergence of deep learning
methods for 3D geometry understanding tasks, such as 3D
segmentation [8]. 3D segmentation is an important task in
computer vision with numerous applications in fields such
as robotics, autonomous driving [23] and medical analysis
[13]. It is a process of assigning fine-grained labels to parts
of a 3D object or scene. There exist many 3D representation
methods, with meshes, voxels and point clouds traditionally
being the most common ones. 3D segmentation methods
have been developed for most of them [8]. However, in re-
cent years, new ways of representing 3D scenes have been
developed, such as Neural Radiance Fields (NeRF) [14] or
3D Gaussian Splatting [10].

3D Gaussian Splatting (3DGS) [10] is a novel technique
of representing and reconstructing 3D scenes from 2D im-
ages. Along with an earlier method, NeRF [14], it has rev-
olutionized the field of novel view synthesis. It offers pho-
torealistic quality and fast training and rendering times and
is therefore a promising technology, which can find many
applications in virtual reality, urban planning and medi-
cal imaging [5]. This leads to the need of developing ob-
ject recognition and segmentation methods for 3D Gaussian
Splats.

Current work on 3D segmentation of 3D Gaussian Splats
is mostly limited to methods based on performing the ac-
tual segmentation in 2D. A notable example is Segment
Anything in 3D Gaussians [9], which renders the 3D Gaus-
sians from multiple points of view, performs the segmen-
tation in 2D using the Segment Anything model [12] and

then projects the prediction back onto the 3D Gaussians
and uses a voting mechanism to determine the final label
for each splat. This method is able to achieve decent re-
sults, however performing the segmentation in 2D can suf-
fer from problems such as inconsistent per-view segmenta-
tion masks, which make the results less reliable [7]. More-
over, it can be hypothesized that performing the segmenta-
tion in 2D may lead to losing some of the geometric details
not captured in the images that could otherwise be used if
the segmentation was done directly on the 3D data.

This highlights the need for creating a method of per-
forming 3D segmentation directly on 3D Gaussian Splats
representation, which is the core research question of this
paper. Given the fact that 3D Gaussian Splats are in princi-
ple a more sophisticated point cloud, it should be possible to
utilize some of the existing point cloud segmentation meth-
ods and adapt them to work on 3D Gaussian Splats.

As 3D Gaussian Splatting is a new technique, no 3D
Gaussian Splats datasets exist yet, therefore developing a
method of 3DGS segmentation necessitates preparing a cus-
tom 3DGS dataset. This paper describes the considerations
related to choosing appropriate kind of dataset and generat-
ing 3DGS data based on it.

Furthermore, this paper briefly describes characteristics
of some of the existing deep learning architectures capable
of 3D point cloud segmentation. Subsequently, it describes
how PointNet++ [15], the successor of the pioneering Point-
Net [4] architecture, can be adapted to work on 3D Gaus-
sians, including incorporating additional features for each
point, such as size, rotation and opacity, which were orig-
inally not present in the data the point cloud segmentation
techniques were developed for.

The key contributions of this paper are as follows:

• presenting a 3DGS dataset preparation pipeline facilitat-
ing training and evaluating 3DGS segmentation models,

• showing that PointNet++, a model originally developed
for point cloud segmentation, is also capable of perform-
ing 3DGS segmentation,

• assessing the influence of using 3DGS and of incorporat-
ing the additional features, i.e. rotation, scale and opacity
on PointNet++ segmentation accuracy.

The next section (Sec. 2) states the problem in a more
concrete manner. Section 3 describes the process of data
generation and using existing point cloud segmentation
deep learning architectures to solve to problem. Section 4
presents the results and compares them to the existing tech-
niques. Section 5 is a discussion about the results, their
implications and limitations. Section 6 presents the con-
clusions of the paper, while outlining recommendations for
further research. Finally, Section 7 discusses the aspects
related to reproducibility and integrity of this research.
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2. Problem statement

This paper discusses and evaluates deep learning solutions
for the problem of performing 3D segmentation directly on
3D Gaussian Splats. The input is an unordered set of Gaus-
sian splats, where each splat, as described by Kerbl et al.
[10], has the following features:
• position, represented as a 3D vector,
• rotation, represented as a quaternion,
• scale, represented as a 3D vector,
• opacity, represented as a real number between 0 and 1,
• direction-dependent color, represented as spherical har-

monics.
The output is an assignment of one of c predefined semantic
classes to each of the input Gaussian splat.

This paper focuses purely on supervised learning tech-
niques for training the deep learning model, therefore each
of the input Gaussian splats must be annotated with a
ground truth class label. The process of preparing the data
and obtaining the ground truth labels is described in Sec. 3.

3. Method

This section first describes the considerations related to the
lack of existing 3DGS datasets and the need of creating a
custom one in Sec. 3.1. Subsequently, in Sec. 3.2, it dis-
cusses the choice of appropriate existing 3D segmentation
deep learning architecture and its adaptation for 3DGS seg-
mentation.

3.1. Dataset

3.1.1 Dataset considerations

One of the biggest challenges of developing a 3D segmen-
tation technique working directly on 3DGS data is the fact
that no 3DGS datasets of objects or scenes exists yet, which
might be in part due to the relative novelty of the 3DGS
method and because object detection on 3DGS has not been
well researched yet. Therefore, to be able to develop a
3DGS segmentation method, a custom 3DGS dataset must
be created first, based on existing 3D objects or scenes
datasets. However, for it to be possible to generate 3DGS
representation of a scene from an existing dataset, it needs
to fulfill certain criteria. First, it must be possible to obtain
comprehensive, multi-camera footage of the scene, such
that the scene is covered sufficiently for 3DGS generation to
be possible. Furthermore, 3D ground truth should be avail-
able to facilitate supervised learning. Moreover, to train and
test segmentation, scenes consisting of objects of more than
one class are necessary.

A brief review of other papers proposing 3D segmenta-
tion methods shows that for the task of semantic segmen-
tation, most often, datasets covering whole scenes are cho-
sen [8], such as S3DIS [2] or SUN RGB-D [19]. However,

some of them, such as SUN RGB-D are not suitable, as
they do not provide full 3D geometric data, but only se-
lected photographs, which makes it impossible to generate
3DGS data from them. Other datasets, such as Stanford 2D-
3D-S Dataset [3] do provide full geometric data, but consist
of multiple complicated indoor spaces, making it not triv-
ial to generate 3DGS data from. While being able to use
full indoor spaces datasets, such as 2D-3D-S to train and
test 3DGS segmentation would undoubtedly be useful and
would allow to compare the performance of 3DGS segmen-
tation methods with other techniques such as point cloud
segmentation in a straightforward way, generating 3DGS
data of scenes like these is complicated enough to deserve
to be a research topic on its own and will therefore not be
pursued in this paper.

3.1.2 Custom dataset creation

Motivated by the nontriviality of directly generating 3DGS
data from one of the existing semantic scene segmentation
datasets, this paper chooses a different approach, namely
composing custom multi-object scenes based on objects
from the ModelNet10 dataset [21]. ModelNet10 is a dataset
of nearly 5000 untextured 3D meshes split into 10 differ-
ent classes, widely used for object classification tasks [16].
Composing custom scenes consisting of multiple objects
belonging to multiple categories allows for training and
evaluating semantic scene segmentation, while maintain-
ing simplicity and facilitating numerous data augmentation
techniques. The detailed process of preparing the data is
described in the following paragraphs.

The first step of creating the 3DGS multi-object scenes
dataset is obtaining a 3DGS version of each of the Model-
Net10 objects. For this, as 3DGS is based on reconstructing
3D scenes from images, comprehensive footage of each ob-
ject is needed. It is obtained by rendering the object from
multiple cameras using Blender [6]. The next step is gener-
ating 3DGS data based on the rendered images.

The standard 3DGS generation method, as described in
the original paper [10] involves camera calibration and ini-
tial sparse point cloud generation using Structure from Mo-
tion (SfM) [18]. However, due to simplicity of the single-
object scenes, lack of textures and intricate details, use of
SfM is impossible in most cases, because not enough key
points can be found. Therefore, for 3DGS generation for
ModelNet models, use of SfM was avoided altogether by
exporting camera transformations from Blender while ren-
dering and by using random point cloud initialization in-
stead of the SfM point cloud, as outlined in the 3DGS paper
[10].

As the size of the ModelNet10 models does not necessar-
ily correspond to the size of real-world objects and some of
the models are significantly larger or tinier than the rest, the
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objects’ sizes need to be normalized. This is done by mea-
suring the diagonal of the object (understood as the distance
between the opposite corners of the 3D axis-aligned bound-
ing box of the object) and scaling it such that the diagonal
is equal to 1.

While a 3DGS representation of each ModelNet10 ob-
ject individually is already sufficient to train a classifica-
tion model, training a semantic segmentation model re-
quires scenes comprised of points belonging to multiple
categories. Therefore the last step of the data preparation
process is randomly composing 3DGS scenes from 3DGS
representations of the ModelNet10 objects. All the models
are randomly split into scenes of 3 to 5 objects (the exact
number is chosen randomly for each new scene) placed next
to each other, such that each model appears in exactly one
scene. Then, for each scene, all its models are placed ran-
domly according to Algorithm 1. The algorithm operates
entirely in 2D. The Z coordinate (up-down) of the position
of all the objects is set to 0. An example of one of the it-
erations of the scene composition algorithm can be seen in
Fig. 1.

Algorithm 1: Scene composition
input : List O of objects to place
output: Placement (position and rotation) for each

object in O

1 Place(O[0], (0, 0), RandomRotation());
2 for o ∈ O[1 :] do
3 r← RandomRotation();
4 o polygon← Rotate(AABB(o), r);
5 impossible←

MinkowskiSum(Union(already placed
polygons), Scale(o polygon, −1));

6 impossible← Dilate(impossible,
0.02);

7 contour← Contour(impossible);
8 t← RandomPointOn(contour);
9 Place(o, t, r);

10 end

The last element needed for training a supervised ML
model on the 3DGS data is the ground truth annotation.
Thanks to the synthetic scene generation procedure de-
scribed above, it can be obtained easily. Assuming the gen-
eration of 3DGS representations of each ModelNet object
is correct and no artifacts, such as floaters occur, it can be
assumed that all Gaussian splats in the 3DGS scene rep-
resenting a single ModelNet object, belong to the class of
that object. Then, when composing the multi-object scenes,
each Gaussian splat is assigned a class based on the class of
the model it comes from.

Figure 1. Illustration of an iteration of the scene composition al-
gorithm. Blue polygons are already placed. Red dashed line is the
dilated contour of impossible (see Algorithm 1). The green poly-
gon (with the green dot at its origin) is being placed at the contour
of impossible thanks to which it is close to the already placed
polygons, while not intersecting with any of them.

3.2. Model

In the search for a deep learning 3DGS segmentation
method, it is crucial to realize that 3DGS representation is
essentially a point cloud, where each point also has addi-
tional attributes, namely rotation, scale, opacity and color.
Therefore it makes sense to start the exploration with ex-
isting point cloud segmentation models, as long as they are
flexible enough to allow for inclusion of the additional at-
tributes. A method worth mentioning is PointNet [4], a
Multi Layer Perceptron, which was the first 3D point cloud
segmentation method to be proposed. It gave rise to numer-
ous other methods, including convolutional neural networks
and transformer networks [8]. Another relevant architecture
is PointNet++ (see Fig. 2) [15], a successor of PointNet.
Even though it is a relatively simple and not the most recent
method, it achieves decent results. A recent paper, Point-
NeXt [17] has shown that after certain minor modifications
to the architecture and improved training methods, Point-
Net++ is still capable of achieving state of the art results.
This is why it has been chosen as a starting point for this
paper.

By default, PointNet++ uses position as the only point
feature. However, the architecture itself is flexible enough
to accept arbitrary number of channels for each point be-
sides the location, which allows for incorporation of all
3DGS features. Specifically:
• position is represented as a 3D vector, as required by the

PointNet++ architecture,
• opacity is represented as a real number in the range [0, 1],
• color is skipped, because the training data does not in-

clude textures, therefore the color of the 3D Gaussians is
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Figure 2. PointNet++ architecture [15]. The input is of size
(N, d+C), where N is the number of points/splats, d is the num-
ber of spatial dimensions (3 for 3DGS) and C is the number of
additional channels on top of the position. The output is of size
(N, k), where N is the number of points/splats and k is the num-
ber of possible classes.

constant and it would not contribute to the model’s deci-
sion,

• scale is represented as a 3D vector (x, y, z), where x, y
and z mean scaling in the X, Y and Z axes respectively,

• rotation can be represented in multiple ways, includ-
ing quaternion, rotation matrix, Euler rotation, axis-angle
representation, etc.; the influence of different rotation rep-
resentations is assessed in Sec. 4.
PointNet++ requires the input to be of constant size.

However, each 3DGS scene has a different number of splats.
Therefore uniform sampling is used to get a constant num-
ber of 4096 samples for each scene.

4. Experiments
To answer the questions posed in Sec. 1 and to validate the
hypothesis that PointNet++ can be used to perform seman-
tic segmentation of 3DGS, a series of experiments is carried
out. The results are then analyzed using a quantitative ap-
proach, namely by comparing accuracy and mean Intersec-
tion over Union (mIoU) of different models. Accuracy and
mIoU are the most widely used metrics for assessing per-
formance of semantic segmentation methods [8], [15], [17].
Qualitative approach is then used to verify the correctness
of the results for selected scenes.

This section describes the setup used in the experiments
in Sec. 4.1. Then, in Sec. 4.2 it introduces the baseline:
evaluation of PointNet++ on point clouds sampled from
scenes composed according to the algorithm in Sec. 3.1.2.
Subsequently, in Sec. 4.3 PointNet++ is evaluated on 3D
Gaussian Splats data, the effects of incorporating additional
3DGS features are assessed and the results are compared to
the baseline.

4.1. Experimental setup

The models were trained using scenes created according
to Sec. 3.1.2. The original train-test data split from Mod-
elNet10 dataset was used, specifically, the training scenes

were composed using only the training models and the test
scenes were composed using only the test models. To im-
prove the results, data augmentation was used, specifically
for each epoch, the scenes were recomposed, i.e. the posi-
tion and rotation of each object in the scene was randomized
for each epoch. Additionally, for each epoch, a different
(random) subset of samples was used in the training.

All models were trained for 200 epochs using the Py-
Torch library [1], with the Adam optimizer [11], expo-
nential learning rate decay (Step Decay), weight decay of
0.0001, batch size of 8. The optimal values of initial learn-
ing rate (LR) and LR decay rate were chosen using hyper-
parameter tuning, during which 9 different configurations of
LR and LR decay rate were evaluated for each experiment.
The hyperparameter tuning was performed on 80% of the
training data, after which the model was evaluated on the
remaining 20% (validation set). Subsequently, the hyperpa-
rameters for which the model achieved the highest accuracy
on the validation set were chosen for training the models
on the full training dataset in each experiment. The cho-
sen hyperparameter values are reported in each experiment
subsection.

4.2. Baseline: PointNet++ on point clouds

Performance of PointNet++ on 3DGS data will be com-
pared with performance of PointNet++ on point clouds sam-
pled uniformly from meshes. Due to the fact that a different
dataset is used in this paper, the results from the original
PointNet++ paper could not be used. Instead, as a baseline,
PointNet++ has been trained on point clouds sampled from
meshes from scenes composed according to the description
in Sec. 3.1.2. Specifically, for each scene, equal number of
samples was taken from each object and samples were taken
uniformly from the faces of each object. Each sample is a
3D vector representing its position.

Hyperparameter tuning was performed for the baseline
model, the results can be seen in Tab. 1 and Fig. 3. The op-
timal hyperparameter values were found to be 0.003 for ini-
tial LR and 0.8 for LR decay. The model was subsequently
trained with these hyperparameter values on the full training
dataset three times. Evaluation showed the average accu-
racy of 84.6% and average mIoU of 71.03%. Qualitative in-
spection of the segmentation results for selected scenes (see
Fig. 4b) confirms that the model correctly learns to segment
objects in simple scenes as expected based on [15].

4.3. Experiment: PointNet++ on 3D Gaussian
Splats

Finally, the performance of PointNet++ on 3DGS data was
evaluated. Several experiments were carried out to measure
the accuracy and mIoU for different subsets and different
representations of the 3DGS attributes.

Hyperparameter tuning resulted in finding the optimal
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Initial LR

LR decay 0.001 0.003 0.01

0.9 88.34 88.36 88.97
0.8 88.78 89.53 87.91
0.7 87.09 88.77 88.15

Table 1. Hyperparameter tuning results (accuracy, %) for Point-
Net++ on point clouds

Figure 3. Plot of training accuracy over epochs for all 9 hyperpa-
rameter configurations on point cloud (baseline) data. As can be
seen, 200 epochs is enough for the models to converge.

(a) Original scene

(b) Point cloud segmentation

Figure 4. Example of a scene and its segmentation performed by
PointNet++. Color depicts label: red - toilet, green - bed, blue
- chair, gray - other classes. (b) contains only the 4096 points
sampled from the faces of the meshes and used by the model.

values of 0.003 and 0.9 for the initial LR and LR decay re-
spectively. The exact results of the hyperparameter tuning
can be seen in Tab. 2 and Fig. 5.

PointNet++ trained and evaluated on the position only

Initial LR

LR decay 0.001 0.003 0.01

0.9 87.49 89.39 71.28
0.8 85.42 88.02 88.63
0.7 82.31 86.22 81.91

Table 2. Hyperparameter tuning results (accuracy, %) for Point-
Net++ on 3DGS (position only). Results on 3DGS with more at-
tributes show a similar pattern and yield the same optimal values
of hyperparameters.

Figure 5. Plot of training accuracy over epochs for all 9 hyperpa-
rameter configurations on 3DGS data (position only). As can be
seen, 200 epochs is enough for the models to converge. The same
holds for 3DGS with more attributes.

(ignoring the rest of the 3DGS attributes) achieved accu-
racy of 81.19% and mIoU 68.89%, both of which are lower
than the baseline. Incorporating the opacity information in-
creased the accuracy to 84.97%, which is slightly higher
than the baseline, and the mIoU to 74.97% (3.94%pt higher
than the baseline).

Three different methods of including scale and rotation
on top of position and scale of each splat were tested.
Representing both as a covariance matrix, as described in
[10], decreased the accuracy to 81.76% (comparable to
the position-only variant, worse than the baseline) and the
mIoU to 70.17% (slightly better than position-only, still
worse than the baseline). Keeping scale and rotation sepa-
rate and representing rotation as a matrix resulted in 85.84%
accuracy and 75.98% mIoU, better than position+opacity.
The best results out of all tested variants were achieved by
representing the rotation as a quaternion, which resulted in
accuracy of 86.77% and mIoU of 77.40%, both significantly
higher than the baseline.

The results can also be seen in Tab. 3. Each of the vari-
ants was trained and evaluated three times and the results
were averaged.

Qualitative inspection of the segmentation results for se-
lected scenes (see Fig. 6b, Fig. 6c and Fig. 6d) show that
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Accuracy (%) mIoU (%)

Baseline 84.60 71.03
3DGS: Position 81.19 68.89
3DGS: Position + Opacity 84.97 74.97
3DGS: Position + Opacity + Covariance matrix 81.76 70.17
3DGS: Position + Opacity + Scale + Rotation (matrix) 85.84 75.98
3DGS: Position + Opacity + Scale + Rotation (quaternion) 86.77 77.40

Table 3. Comparison of PointNet++ accuracy and mIoU on different kinds of data. Each value is an average of the results obtained in three
different runs.

the models are generally able to correctly classify each ob-
ject in the scene, however rarely every splat of the object
is correctly classified. Oftentimes certain splats inside an
object are assigned a different class; this happens particu-
larly often in parts of objects neighbouring other objects.
Comparison of the qualitative results of models trained us-
ing different subsets of 3DGS features does not yield any
substantial conclusions - each model segments the scenes
differently, however this should most likely be attributed to
random differences between the models and not inclusion
or lack thereof of the additional attributes.

5. Discussion

This section reflects on the results in Sec. 5.1 and discusses
the limitations of the proposed approach in Sec. 5.2.

5.1. Reflection

First of all, the results confirm for the first time that, as hy-
pothesized before, 3D Gaussian Splats can be processed
directly using deep learning models to perform 3D seg-
mentation. This opens a whole new field of research,
which will probably develop as the 3DGS method gets more
widespread. Showing that PointNet++ is indeed capable of
segmenting 3DGS is the first, but certainly not the last step
in developing robust ML models for 3DGS segmentation.

Looking more closely at the obtained results, it is inter-
esting to see that the PointNet++ performance on position-
only 3DGS is lower than the baseline PointNet++ perfor-
mance on position-only point clouds sampled from meshes.
This suggests that the 3DGS representation is more diffi-
cult to learn from. One possible explanation is that it is less
regular than the point clouds sampled from meshes - un-
like in the point clouds, the points (splats) are located not
only on the outer contour of the object, but also inside the
object. Furthermore, in 3DGS the splats are not as evenly
spread as in the uniformly sampled point cloud - instead,
some parts of the object are represented as multiple small
splats (where the complexity is high) and others are rep-
resented using few bigger splats (where the complexity is
low). On the other hand, the inclusion of opacity infor-

(a) Original scene

(b) 3DGS segmentation (position only)

(c) 3DGS segmentation (position + opacity)

(d) 3DGS segmentation (position + opacity + scale +
rotation)

Figure 6. Example of a scene and its segmentation performed by
PointNet++. Color depicts label: red - toilet, green - bed, blue -
chair, gray - other classes. (b), (c) and (d) contain only the 4096
Gaussian splats used by the model.

6



mation was enough to significantly increase the accuracy
to the level achieved on point clouds. This might suggest,
that the biggest problem of position-only 3DGS data was in
fact lack of opacity data leading to inability to distinguish
between low importance (low opacity) splats and high im-
portance (high opacity) splats.

It should not be surprising that addition of rotation and
size information improved the performance compared to the
variant without rotation and scale. As mentioned before,
some parts of the objects are made of many small splats
while others are made of few bigger splats, and making the
model aware of the extent of the splats helps it to get a bet-
ter understanding of the density of different areas of the ob-
jects.

It is, however, surprising to see that the accuracy on the
irregular 3DGS data, after inclusion of all the available at-
tributes, is higher than the accuracy on the a bit more regu-
lar (thanks to being uniformly sampled from a mesh) point
clouds. This might suggest that sampling point clouds from
meshes actually loses some information about the object
(everything that is in between the sampled points is un-
known), which is better retained when turning the same
mesh into a 3DGS representation. However, as can be no-
ticed by visually inspecting the segmentation results (e.g.
Fig. 6b), the 4096-element subsets of 3DGS scenes are still
not enough to fully cover the surfaces of the objects, and
therefore they also lose some geometric information com-
pared to the original meshes, although to a lesser extent than
point clouds, thanks to the size and rotation data. The per-
formance increase after adding attributes allowing for bet-
ter preservation of the original structure of the mesh might
therefore suggest that the performance could be further in-
creased by choosing a number of samples bigger than the
current 4096. It is, however, unsure whether this increase
in the number of samples could be fully utilized by Point-
Net++, because Qi et al. [15] shows that after a certain
point, increase in the number of points in the point cloud
does not result in increased performance. Evaluating the ef-
fect of increase in the number of splats on the segmentation
performance of PointNet++, as well as other models, would
undoubtedly be an interesting direction of further research.

5.2. Limitations

While the aforementioned results are a significant step to-
wards direct semantic segmentation of 3D Gaussian Splats,
they are also limited in certain ways, due to the limited time
scope of this research. The limitations, most of which are
related to the data used for training and evaluation of the
model, are outlined in the following paragraphs.

Synthetic data As the first step, this research focuses
solely on simple, synthetic 3D scenes composed of Model-
Net objects according to the process described in Sec. 3.1.2.

However, this is not a realistic scenario, as in real world, the
spaces semantic segmentation is usually applied to, such as
real indoor and outdoor scenes, are more complex and con-
tain significantly more objects, which often belong to more
than 10 classes. Furthermore, in real world applications, the
3D Gaussian Splats are in most cases not generated based
on artificial renders, but on real photographs, which adds a
further layer of complexity, due to varying lighting condi-
tions, moving objects and imperfect cameras, which might
lead to a lower quality of 3D Gaussian Splats representation,
which might in turn pose a greater challenge for a 3DGS
segmentation model. Another downside related to using a
custom dataset is the difficulty in directly comparing the re-
sults to results obtained in other papers.

To overcome this, generating a 3DGS version of existing
indoor scene scans datasets would be necessary. However,
as already mentioned in Sec. 3.1, it is not a trivial task and
could be its own research topic. Generating such a dataset
is however necessary to further the research in the field of
semantic scene segmentation on 3DGS in the future.

3D ground truth Elaborating on the topic of realistic
data, another issue is the ground truth availability. The arti-
ficial process of scene composition used in this paper allows
for obtaining ground truth labels for each Gaussian splat
easily, as described in Sec. 3.1.2. However in real world
scenarios, obtaining ground truth so easily is rarely possi-
ble, and instead manual annotation is often necessary. It is
important to realize though, that manual annotation of 3D
Gaussians would be a long and complicated process, espe-
cially in complex indoor and outdoor environments. Be-
cause of this, in many scenarios, only 2D image annota-
tion is a feasible option. However possessing only the 2D
ground truth poses another challenge for the process of seg-
mentation model training. In case of unavailability of 3D
ground truth, a different loss calculation method would need
to be developed, such as calculating the loss based on the
difference between the ground truth annotated image and
the 2D render of the same scene rendered using the same
camera parameters. This is a research area that could con-
tribute not only to the field of 3DGS segmentation, but of
3D segmentation in general.

Color Color, next to the shape, is an important attribute of
real world, as well as artificial 3D objects and could there-
fore contribute to the decision about assignment of class to
object when performing 3D segmentation. It could be there-
fore hypothesized, that inclusion of color as one of the at-
tributes to the PointNet++ model for 3DGS segmentation
could improve the overall performance of the model. This
could however not be done in this research because of the
choice of the ModelNet dataset, which does not contain tex-
tures nor any other color data. Choosing a different dataset

7



with color information and evaluating the effect of includ-
ing the color on the accuracy of 3D segmentation could be
an interesting direction of further research.

Scale Another aspect of 3D objects that could help distin-
guish between objects of different classes is the size of the
object. However, in this paper, the impact of size informa-
tion on the performance of 3D segmentation could not be
examined, because the chosen dataset does not contain re-
liable scale information and all objects had therefore to be
normalized, as explained in Sec. 3.1.2.

ML architecture Moreover, the ML model chosen for 3D
segmentation of 3DGS in this paper is PointNet++. While
it achieves decent results, it should be noted that in the
years following the creation of PointNet++, new deep learn-
ing models for point cloud segmentation have been devel-
oped, some of them surpassing the performance of Point-
Net++, such as Dynamic Graph CNN [20] or Point Trans-
former [22]. It therefore makes sense to research whether
use of one of these models could also improve the results
of 3DGS segmentation. Moreover, taking into account the
differences between point clouds and 3DGS, it is possible
that another model could be created, such that it is tailored
specifically for processing of 3DGS. This area definitely de-
serves further research.

Comparison to existing 3DGS segmentation methods
While the field of 3DGS segmentation remains largely un-
explored yet, there do exist some indirect 3DGS segmenta-
tion methods, such as Segment Anything in 3D Gaussians
[9]. It would certainly be interesting to compare them to
the method used in this paper. However, as Segment Any-
thing in 3D Gaussians [9] relies on visual (not geometric,
as PointNet++) information to perform the segmentation,
comparing the two methods on a dataset without textures
would probably not be a fair comparison. For this, a tex-
tured dataset would have to be used.

6. Conclusions
The goal of this research was to answer the questions of
whether (and which of) the existing point cloud segmenta-
tion methods can be applied for 3DGS segmentation, what
is their performance on 3DGS data and how does the in-
clusion of additional 3DGS features (opacity, rotation and
scale) influence the performance. The paper described con-
siderations related to the lack of a 3DGS dataset and the
need to create a custom one to facilitate assessing perfor-
mance of ML models on 3DGS data. Subsequently, after
considering various alternatives, PointNet++ was chosen as
the point cloud segmentation architecture for the experi-
ments to be carried out on. The experiments allowed to

answer the questions stated above, specifically:
• sementic 3DGS segmentation can indeed be performed

using existing point cloud segmentation methods,
• PointNet++ is at least one point cloud segmentation

method capable of also processing 3DGS, although the
similarity between point clouds and 3DGS data allows to
hypothesize that other architectures could also work,

• inclusion of the additional 3DGS features indeed posi-
tively affects the accuracy and mIoU of PointNet++ on
3DGS data; inclusion of opacity information improves
the result compared to the position-only data and addi-
tionally including rotation and scale on top of position
and opacity further boosts the performance,

• out of all tested variants, a combination of position, opac-
ity, scale and rotation represented as a quaternion allows
for achieving the highest performance, namely 86.8% of
accuracy and 77.4% of mIoU, which is better than the
baseline — PointNet++ on point clouds sampled from
meshes (84.6% of accuracy and 71% of mIoU).

While the results are a significant step towards developing
robust techniques for 3DGS segmentation, more research is
needed, e.g.:
• training and evaluating on real-world (non-synthetic)

scenes,
• assessing different, possibly more modern point cloud

segmentation architectures or developing new methods
tailored for 3DGS data,

• using a textured dataset and assessing the influence of in-
corporating the color data on the performance.

7. Responsible Research

Reproducibility Responsible research necessitates repro-
ducibility. For any research results to be reliable, it must be
possible to reproduce them by other scientists to verify their
credibility. This is why the code that can be used to gener-
ate the dataset and to perform the experiments is published
in a GitHub repository 1 such that anyone can use it to re-
produce the results by following the detailed steps outlined
in the paper.

The 3DGS dataset generation is a long and computation-
ally expensive process. To limit the environmental impact
of the research done by our research group, a decision was
made to create the dataset of the 3DGS scenes of each Mod-
elNet10 object only once and reuse it by more researchers
in our group. The generation was performed by Andrei
Simionescu and the dataset was made available at the 4TU
website 2 to facilitate easier reproduction of the result, while
following the FAIR principles.

1https : / / github . com / karol - 202 / direct - 3dgs -
segmentation

2https://data.4tu.nl/private_datasets/q32Led--
j18SvCZ_X4-RLQBsZRy5Ded3Pf6EbdkzXJg
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Integrity All data management and experiments were
performed with the highest ethical standards in mind. No
manipulations (such as leaving out certain data points, data
fabrication) were done to the data. The used data is fully
synthetic, no individuals were involved in the process of its
creation, therefore it should not raise any ethical nor privacy
concerns. Both the data 3 and the external code 4 used in this
research are licensed in a way making it freely available for
research purposes.
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