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Preface

This document describes the Final Thesis Work (AE5-006, 42 ECTS) on
improvements to filtering techniques for orbital debris conjunction analysis,
performed as part of my Master of Science (MSc) study in Space Engineering
(SpE) at the Faculty of Aerospace Engineering (AE) of Delft University of
Technology (DUT). Included is also a summary of the Literature Research
(AE4-005, 18 ECTS) (Leloux, 2010a) which was performed beforehand on
the same subject. The thesis work mainly consists of setting up a new and
more efficient orbital debris conjunction analysis system in C++, which is
partly integrated in the TUDelft (Dutch acronym for DUT) Astrodynamics
Toolbox (Tudat) as well.

The first two chapters might be read by a general audience, but for
the chapters thereafter knowledge of physics and mathematics and a basic
knowledge of astrodynamics is required. The latter can also be gained in
Chapter 3, in which a general overview of the fundamental concepts of as-
trodynamics needed for this research is given. Chapter 2 might be skipped
if the reader already has sufficient general knowledge of orbital debris. The
literature research also contained a chapter on collision probability (not in-
cluded here), which might be particularly useful for (DUT) students who
want to do thesis work on orbital debris collision probability, following up
on and using my work on conjunction analysis.

I would like to take this opportunity to express my gratitude to my thesis
supervisor ir. Ron Noomen, who has readily provided me with valuable help
and information during the weekly appointments with an hour of feedback,
guiding me through the entire process of completing this thesis. Further-
more, I want to thank my colleague MSc students in rooms 9.06 and 9.03
for the fun we had and the fresh insight and help we exchanged during our
work on the ninth floor of our faculty. My performance surely accelerated
from the moment I started working there during the course of my literature
research. Finally, I would like to express a thank-you to my girlfriend and
family for their unconditional support outside the work, during good times
and bad.

Jonatan Leloux
Delft, February 8, 2012.
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Abstract

The steadily growing amount of orbital debris increases the probability and
amount of collisions between two objects in orbit about the Earth. These
collisions in turn create even more debris, and it is therefore important to
keep track of future conjunctions. The U.S. Space Surveillance Network
(SSN) uses ground- and space-based sensors to observe and track objects of
about 10 cm and larger, of which the orbital information is coded in Two-
Line Element (TLE) sets and listed in a catalog currently containing about
20,000 objects, which is partly distributed to the public.

Using this TLE data, the Simplified General (and Deep-space) Perturba-
tions 4 (SGP4/SDP4) analytical propagator is used to propagate the orbits
of these objects, and includes secular, long-period and short-period pertur-
bations due to the Earth’s gravity field including J2, J3 and J4 and resonance
effects for 12- and 24-hr orbits, as well as perturbations due to atmospheric
drag, solar radiation, and gravitational attraction of the Sun and the Moon.

The propagated orbits are used to predict conjunctions of pairs of ob-
jects. However, due to the large and increasing amount of objects in the cat-
alog, numerically analysing all pairs would be too time-consuming. There-
fore, numerous fast filters and sieves were designed to limit the search space
of conjunction analysis, by discarding object pairs that are proven to never
be able to conjunct.

Four implementations of the classical perigee-apogee filter, next to six
sieves with a new fine conjunction detection method, were analysed, imple-
mented, and tested in terms of performance. The filter makes use of the
altitude band of an object, and can be applied pre-hand. A method based
on minimum and maximum radius determined from ephemerides, was found
to be the most accurate and reliable in long-term application, while being
able to be fine-tuned to the performance needs of a conjunction analysis
process.

Increasingly complex sieves are subsequently applied to the ephemerides
at each time instance in a time interval, in order to efficiently discard object
pairs. Eight possible improvements to the underlying theory and application
of these sieves were made, resulting in one optimal combination of these
improvements, and eventually resulting in a conjunction analysis system
that is almost three times as fast as the best found reference method.
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Nomenclature

The nomenclature used in this research include symbols, subscripts and
acronyms.

For the symbols, which are typeset in italic, a description is given, next to
the corresponding physical unit or dimension in SI-units between brackets,
if applicable. Vectors are typeset non-italic and bold, of which only the
scalar version is explained here. Hats (^) on top of a certain vector indicate
unit vectors, unless indicated otherwise. First and second time derivatives
of a parameter are represented by one or two dots on top respectively (for
example: 9x and :x).

Furthermore, subscripts that are added to symbols to give them a certain
meaning, or to indicate to which other parameter they are subjected, are
described below as well.

Finally, the meaning of all acronyms and abbreviations used in this doc-
ument is listed. They are explained in the text only once, at the moment
they are used first.

Note that sometimes multiple symbols exist for the same meaning, this is
due a literal dependency on the respective references found. The notations
used in the references are used in the same form in this document, when
treating the theory developed in these respective publications.

Symbols

� TLE column with either a plus or minus sign
� TLE column with either a minus or plus sign or a space
a Acceleration [m/s2]
a Semi-major axis of an ellipse [m]
a Analysed
A Area, Area of a surface element [m2]
A Point on long axis of symmetry of an ellipse
A TLE column with any character A-Z or a space
A Azimuth angle [rad]
AR Ellipse Aspect Ratio
B Point on short axis of symmetry of an ellipse

xiii



b Semi-minor axis of an ellipse [m]
B Ballistic coefficient [kg/m2]
B Conjunction plane

B� SGP4-type drag coefficient [R�1
E ]

c Integration constant
c Speed of light = 299,792,458 [m/s]
c Threshold distance, Critical distance [m]
C Centre of an ellipse
C Coefficient
C TLE Classification
d Mathematical derivative
d Distance of closest approach of two ellipses [m]
d Ellipsoid diameter [m]
d Distance [m]
D Conjunction distance [m]
e Eccentricity (of a conic section)
E Energy [J]
E Eccentric anomaly [rad]
f Perturbing acceleration [m/s2]
fpq Function of the variable(s) between brackets
F Force [N]
F Focus (of an ellipse)
g Gravitational acceleration / field strength [m/s2]
G Universal gravitational constant = 6.672-6.676�10�11

[m3kg�1s�2]
G Projection point of P on a of an ellipse
h,H (Orbital) angular momentum [Nms], [kgm2s�1], [Js]
h Height above the Earth’s surface [m]
h Time interval time step [s]
h Elevation angle [rad]
i Inclination [rad]
i, j, k Summation counters (of bodies)
J Gravity field coefficient
k Distance from F to l [m]
k Ellipsoid threshold factor
k Integer counter
l Fixed line
m,M Mass (of a satellite) [kg]
m Object diameter [m]
M Mean anomaly [rad]
n Number (of objects)
n Mean (angular) motion [rad/s], [rev/day]
n Number of objects

xiv



N Position of ascending node [m]
N TLE column with any number 0-9 or a space
N Nutation
N Time step number
p Semi-latus rectum [m]
p Amount of object pairs
P Patch distance
P Point
P Legendre polynomial (one subscript) or Legendre function

(two subscripts) of the first kind
P Precession
P Probability
q Larger of the two perigees of a conjunction pair [m]
Q Smaller of the two apogees of a conjunction pair [m]
r Rejected
r,R Radius, Distance, Position [m]
R Perturbing potential [m2/s2]
R Mean equatorial radius of the Earth [m]
R Rotational axis
S Cross-sectional area perpendicular to V [m2]
S TLE Classified data
S� Effective cross-sectional area in the direction of the radiation

[m2]
t Time [s]
T Orbital period [s]
T Time step [s]
T Time interval [s]
T Mathematical transpose of a matrix
u Argument of latitude [rad]
U Gravitational potential [m2/s2]
U TLE Unclassified data
u, v, w/U, V,W Radial, Along-track and Out-of-plane direction
v, V Velocity [m/s]
W Power density of incoming radiation [W/m2]
x Variable in the Legendre polynomial and function
x Scalar of state-vector of a satellite [m], [m/s]
x, y, z Coordinates in a reference frame [m]
X,Y, Z Reference frame directions
z Scalar of the unit vector perpendicular to the equatorial plane

of the Earth [m]

α Angle between rd and rs [rad]
α Orbital element
B Mathematical partial
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∆ Increment or change of a certain parameter
∇ Mathematical nabla operator
θ True anomaly [rad]
Λ Geographical longitude [rad]
µ Gravitational parameter [km3s�2]
π Mathematical constant
ρ Atmospheric density [kg/m3]
ρ Range between conjunction object pair [m]
σ Standard deviation
τ Time of passage of pericenter [s]
φ Angle between ri and a reference direction [rad]
φ Geocentric latitude [rad]
ω Integration constant
ω Argument of perigee [rad]
Ω Longitude or Right ascension of the ascending node [rad]

P Vernal Equinox (direction vector)

Subscripts

0 Initial epoch
1,2,.. Counter
a Apocenter
acc Acceleration
alb Albedo
app Approach
c Circular
c Chaser object of a conjunction pair
c Chaser and Risk object combined
c Collision
closest, con Closest approach of a conjunction
cr Critical
d Perturbing body
dfe Days from (TLE) epoch
D Aerodynamic drag
E Earth
esc Escape
i, j, k Summation counters (of bodies)
IR Infrared Radiation
k Kinetic
k Iteration counter
loop Looping with SGP4
m Main

xvi



max Maximum
mean Mean of an orbital element
min Minimum
n,m Summation counters of the Earth’s gravitational potential
p Potential
p Pericenter, Perigee
p Primary object
R Reflectivity
r Risk object of a conjunction pair
rel Relative
s Satellite
s Secondary object
S Sun
skip Skipping of a variable
sph Sphere
t Target object of a conjunction pair
tca Time of closest approach
th Threshold
th, fine Fine threshold
x, y, z Components of a vector in the direction of X,Y, Z
� Summation excluding j � i and/or j � k

σ Standard deviation

Acronyms

AAS American Astronautical Society
AE Aerospace Engineering
AFSPC Air Force Space Command
AIAA American Institute of Aeronautics and Astronautics
AS Astrodynamics and Satellite Systems (Chair of DUT, now

called Astrodynamics and Space Missions)
ASAT Anti-SATellite weapon
ASCII American Standard Code for Information Interchange
ATV Automated Transfer Vehicle
BBS Bulletin Board System
BSc Bachelor of Science
CCD Charge-Coupled Device
Closeap Close Approach tool
CNES Centre National d’Etudes Spatiales (French Space Agency)
COPUOS Committee on the Peaceful Uses of Outer Space
COTS Commercial Off-The-Shelf
CPU Central Processing Unit (computer processor)
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CRASS Collision Risk Assessment Software
DEB Debris
DEBIE Debris in-Orbit Evaluator
DISCOS Database and Information System Characterising Objects in

Space
DoD United States Department of Defense
DUT Delft University of Technology
ECI Earth-Centered Inertial (reference frame)
ECTS European Credit Transfer and Accumulation System
EOL End-Of-Life
ERS European Remote Sensing satellite
ESA European Space Agency
ESOC European Space Operations Centre (ESA)
ESTEC European Space Research and Technology Centre (ESA)
EURECA EUropean REtrievable CArrier
FGAN ForschungsGesellschaft für Angewandte Naturwissenschaften

(Research Establishment for Applied Sciences)
GEO Geosynchronous/Geostationary Earth Orbit
GHA Greenwich Hour Angle
GLONASS GLObal’naya NAvigatsionnaya Sputnikovaya Sistema

(GLObal NAvigation Satellite System)
GMV Grupo Mecanica Vuelo (Flight Mechanics Group)
GORID Geostationary Orbit Impact Detector
GPS Global Positioning System
GRAVES The French Space Surveillance System
GSFC Goddard Space Flight Center (NASA)
GTO Geosynchronous/Geostationary Transfer Orbit
HAX Haystack Auxiliary Radar
HEO Highly Elliptical Orbit
HST Hubble Space Telescope
IADC Inter-Agency Space Debris Coordination Committee
ID Object Identification Number
Int. International
IRAS Infra-Red Astronomical Satellite
ISO International Organization for Standardization
ISS International Space Station
JGM Joint Gravity Model
JD Julian Date
LAGEOS LAser GEOdynamics Satellite
LDEF Long Duration Exposure Facility
LEO Low Earth Orbit
LMT Liquid Mirror Telescope
LRIR Haystack Long-Range Imaging Radar
MASTER Meteoroid and Space Debris Terrestrial Environment
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Chapter 1

Introduction

Since the beginning of spaceflight, October 1957, the amount of man-made
debris in orbit about the Earth has been increasing in number as well as in
mass and volume. This so-called orbital debris poses a hazard to operating
satellites, because, due to the relative velocities involved, a collision with
debris could prove to be catastrophic for a mission.

Just recently, on the 10th of February, 2009, the operating Iridium 33
satellite collided with the deactivated Cosmos-2251 satellite, in turn creat-
ing large clouds of new debris. A depiction of the evolution of these debris
clouds can be seen in Figure 1.1. Another recent event which caused a sig-
nificant increase in orbital debris was a Chinese anti-satellite missile test,
on the 11th of January, 2007. The quantification of these events will soon
follow below.

The United States (U.S.) Space Surveillance Network (SSN) observes and
tracks orbital debris and lists information on the orbits of the objects in a
catalog, which currently consists of about 20,000 objects (Stansbery, 2009)
of 10 cm and larger. This orbital information is listed using Two-Line Ele-
ment (TLE) sets, which follow a certain code to compactly state all orbital
elements and other information. A depiction of the relative position of these
objects can be seen in Figure 1.2, for the Low Earth Orbit (LEO) region.

The current ground-based network of radar and optical telescopes can
track objects of about 10 cm and larger in LEO and objects of about 30 cm
and larger in GEO, respectively (Klinkrad, 2009).

The catalog increased by 60% from 2007-2010, of which 80% was due to
the aforementioned two collision events (Kelso, 2010b). Due to these and
other events, the amount of orbital debris steadily increases if no mitigation
measures are taken, see Figure 1.3.

The trend shown in the figure was even too optimistic, since it predicted
that currently there would be about 16,000 objects of 10 cm and larger,

1



Figure 1.1: Orbital evolution of the debris fragment cloud created by the
collision between the Iridium 33 and Cosmos 2251 satellites on the 10th of
February, 2009. (Stansbery, 2009)

Figure 1.2: Orbital debris in Low-Earth Orbit (LEO), objects’ size not to
scale. (ScienceDaily, 2008)
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Figure 1.3: Expected evolution of the orbital debris population of objects
larger than 10 cm in the LEO, Medium Earth Orbit (MEO), and GEO
regimes, for a business-as-usual scenario, over a 100-year prediction times-
pan. (Klinkrad, 2006)

while there is a significant larger amount (20,000) with that same size range
in the catalog at present.

A depiction of the evolution of the amount of objects in the GEO region
in 2112, can be seen in Figure 1.4. The term ‘business-as-usual’ used here,
is what happens when no future orbital debris growth mitigation procedures
are followed, which will be explained more deeply in the following chapter.

The catalog will also grow due to ever increasing accuracy and capabil-
ity of the SSN. Very recently, on the 25th of September 2010, the first
‘Pathfinder’ satellite of the Space-Based Space Surveillance System (SBSS)
was launched, which will increase the capability of the SSN, in terms of the
amount of orbital debris observed, by a factor two, see also the essay on
SBBS Mechatronics by Leloux (2010b).

The orbital information of the objects in the catalog can be used to prop-
agate the simulated position of these objects forward in time. Knowing
where the objects will be in the future, this information can be used to
predict conjunctions of pairs of objects.

If the propagated positional error of the objects is also known, the prob-
ability of collision of the object pair which is in conjunction might even be
determined. If this collision probability is above a certain threshold, a satel-
lite operator could decide to execute an avoidance manoeuvre to decrease
this probability, for satellites with thrusting capability.
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Figure 1.4: Evolution of the Geostationary-Earth Orbit (GEO) debris ring
in 2112 for a business-as-usual scenario compared to clean spacecraft oper-
ations. (Klinkrad, 2009)

A depiction of a conjunction event can be seen in Figure 1.5, including
the path, velocity vectors and error ellipsoids of the objects.

Conjunction analysis could also be used to predict the conjunction and thus
collision trend in the future. Figure 1.6 shows such a trend, in which back-
ground events are collisions involving only launch- and mission-related ob-
jects, and explosion fragments, while uncontrollable feedback events are col-
lisions involving previously generated collision fragments.

This prediction is not far off at present, since the first catastrophic col-
lision of an operating satellite now has taken place. However, 1 collision at
the beginning of this trend does not really say anything yet, being a very
poor statistic.

However, due to the size of the catalog which is ever increasing, a very large
and increasing number of object pairs need to be analysed for conjunctions.
This could be done by simply propagating all objects in time and numeri-
cally stepping forward in time to determine the closest approach distance of
any object pair, but this would take too much computational time.

So, in order to make this process more efficient, some clever filters or
sieves can be set up which decrease the search space by discarding certain
object pairs which are proven to never be able to have a conjunction in the
time interval under analysis.
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Figure 1.5: Conjunction geometry of an Iridium satellite and an Iridium
debris object including their 1-σ position error ellipsoids. (Hall et al., 2010)

Figure 1.6: Expected cumulative number of catastrophic collisions in LEO
for a business-as-usual scenario, over a 100-year prediction timespan, dis-
criminated by collision type. (Klinkrad, 2006)

5



The purpose of this thesis is to set up a complete orbital debris conjunc-
tion analysis system, while implementing as many improvements as possible
with respect to current systems, resulting in a method with unprecedented
efficiency and thus a smaller computational effort.

To do so, insight is needed into orbital debris in general, as well as into
the SSN, its catalog and the orbital propagation of the objects. Further-
more, the fundamental concepts of astrodynamics used in the theory of this
propagation should be understood. Subsequently, a large amount of orbital
debris conjunction filters and sieves that are designed up until now, and are
in use today, should be thoroughly examined and their performance evalu-
ated.

The structure of this document is as follows.
Orbital debris will be discussed in Chapter 2, including general informa-

tion like its history, sources, distribution, re-entry and consequences. Fur-
thermore, observing and tracking debris using ground-based, space-based
and in-situ sensors as well as measuring its consequences will be included.
The chapter will finish with solutions to the problems orbital debris poses,
covering protection, growth mitigation and international cooperation.

Chapter 3 then follows with a description of the fundamental concepts
and theory of astrodynamics, including its history, the many-body and two-
body problem, elliptical orbits and their perturbed version due to various
perturbing forces, as well as elementary analysis thereof.

This description includes all aspects needed to understand the propa-
gator of the objects in the catalog set up by the SSN, which is treated
in Chapter 4. This chapter comprises information on the history of the
SSN, how to retrieve and to interpret TLE data, the SGP4 TLE propagator
currently in use by the SSN, and the reference frame and accuracy of the
propagated TLE data.

Orbital debris conjunction analysis is treated in Chapter 5, in which
all methods designed and in use until now are discussed, as well as their
performance.

Then, in Chapter 6, the implementation of a TLE reader is discussed,
which can read TLE catalog files, save their parameters and check their
validity, as well as determine new variables from these parameters, and save
them in memory. Furthermore, it is able to selectively write any of these
(derived) variables to a file, and do statistical analysis.

Following the TLE reader is a description of the implementation of the
SGP4 Propagator, in Chapter 7. A handler with all the required function-
ality for the conjunction analysis process was written, to function with the
SGP4 core code, which was found online. Input options like the time pa-
rameter type and interval, the SGP4 version and constants used, as well as
output parameters, like time, Cartesian state vector and orbital parameters,
are all specified here.
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Finally, the implementation and performance of the filters and sieves is
treated in Chapter 8. An overview of the four variations of the perigee-
apogee filter designed in this thesis is given. Furthermore, the performance
of the original sieves is compared with respect to several improvements made
to their underlying theory and application. At last, the time step of both
the setup of the perigee-apogee filter as well for the sieves is optimised, and
the results are compared to references.
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Chapter 2

Orbital Debris

Orbital debris is defined as all objects, or parts thereof, created by humans,
that are currently orbiting the Earth or re-entering Earth’s atmosphere, and
serve no useful purpose any more (Klinkrad, 2009)(Stansbery, 2009). Other
phrases frequently used include: space debris, space junk or space waste.

Orbital debris thus does not include micrometeorites, which mostly have
smaller dimensions but higher relative velocities, but will be treated here
shortly as well.

This chapter will provide general information about orbital debris in Sec-
tion 2.1, after which the observing, tracking and measuring of this debris
is described in Section 2.2, and concludes with possible solutions to the
problems this debris poses in Section 2.3.

2.1 General Information

This section will first discuss the history and current status of orbital debris,
after which its sources are explained. Then the spatial distribution of orbital
debris and its decay and re-entry will be treated, after which the section
finishes with a discussion of the negative consequences of orbital debris.

2.1.1 History

Since the launch of the first satellite, Sputnik 1, on the 4th of October 1957,
in total 5092 launch attempts (McDowell, 2010) have placed 6236 satel-
lites (Kelso, 2010a) in orbit, of which only 928 (UCS, 2010) are functioning
at the moment of writing. Due to these launches, an estimated number of
2 � 104 objects larger than 10 cm, 6 � 105 objects larger than 1 cm, more than
3 � 108 objects larger than 1 mm, and 3 � 1013 objects larger than 1 µm are
orbiting the Earth at present (Klinkrad, 2009).

Of these objects currently only less than 15,000 are regularly tracked and
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cataloged by the Space Surveillance Network (SSN) of the United States, of
which data is made publicly available (USSTRATCOM, 2004). However,
the catalog only includes objects of about 5-10 cm or larger in LEO and 30-
100 cm or larger in GEO, since smaller debris cannot be tracked by current
technology, see Section 2.2.

The sources and amount of cataloged objects with respect to time can be
seen in Figures 2.1 and 2.2, sorted by country and category respectively.
These figures also show that the total amount of large objects has increased
drastically since the beginning of spaceflight. The total amount of orbital
debris mass and cross-sectional area in orbit with respect to time show sim-
ilar results (Klinkrad, 2006).

In Figures 2.3 and 2.4 the amount, type (rocket bodies and satellites
are depicted differently) and spatial distribution of the debris with respect
to the Earth are depicted. Since most satellites are launched to LEO and
GEO, most debris can also be found there.

2.1.2 Sources

Apart from the operative satellites, there are a number of sources and
events responsible for the total amount of orbital debris orbiting the Earth.
Summarizing the most important sources and events found in (Klinkrad,
2009), (Klinkrad, 2006) and (Wikipedia, 2010c):

Decommissioned satellites When a satellite is not useful any more its
mission is ended and no contact will be made with it any more. How-
ever, it will still keep on orbiting the Earth.

Rocket upper stages To inject a satellite into orbit the upper stage of a
rocket will need to have the same speed as the satellite at the start of
its first orbit. The upper stage will thus also stay in orbit.

Mission related objects Some objects are needed only at the start of the
mission and are then released into space. Examples include: launch
adapters that connect the satellite to the upper rocket stage, apogee
kick-motors that propel a satellite into Geostationary Transfer Orbit
(GTO), yo-yo de-spin weights that are rolled out in order to stabilize
the initial spin of the satellite, covers to protect optical instruments
from contamination during launch, clamp-bands, etc.

Lost equipment During extra-vehicular activities of astronauts, some e-
quipment has been lost over the years like screwdrivers, protective
gloves, cameras, wrenches, pliers, tool bags, garbage bags jettisoned
from Mir and even a toothbrush!
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Figure 2.1: Amount and distribution of the cataloged objects in orbit ac-
cording to source country versus time. (Klinkrad, 2009)

Figure 2.2: Amount and distribution of the cataloged objects in orbit ac-
cording to source category versus time. (Klinkrad, 2009)
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Figure 2.3: Depiction of the amount, type (rocket bodies and satellites are
depicted differently) and spatial distribution of the debris with respect to
the Earth for the LEO region. (Klinkrad, 2009)

Figure 2.4: Depiction of the amount and spatial distribution of the debris
with respect to the Earth for the GEO region. (Klinkrad, 2009)
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Explosions Residual fuel in tanks and fuel lines of rocket stages in com-
bination with the degradation of these parts due to the harsh space
environment has led to leakage and mixing of these fuels which have
caused almost 200 explosions resulting in large clouds of small debris
fragments. Other sources of explosions are satellite self-destructs.

Collisions About 10 accidental and intentional collisions have taken place,
creating large clouds of debris. Included are collisions of large de-
bris objects with an active satellite or other debris, and anti-satellite
tests performed by the U.S., the Soviet Union and China, destroying
satellites with missiles.

Mission resulting small debris Slag and dust particles are created due
to the firing of solid rocket motors (SRM) of rocket upper stages,
apogee kick-motors or satellites. Furthermore, the release of reactor
coolant of reconnaissance satellites has resulted in debris in the form
of small frozen droplets. Another source has been the release of a large
number of thin copper wires for Project West Ford.

Surface degradation Due to radiation and impacts of small debris and
micro-meteoroids, the surface and coatings of objects in space crack
and degrade, creating very small debris particles.

Of the tracked objects in the SSN catalog 38% are decommisioned satel-
lites, upper stages or mission-related objects, and 6% are functioning satel-
lites. The other 56% are fragments created mainly by explosions, and for a
small part by (un)intentional collisions.

Furthermore, the majority of the approximately 6 � 105 objects larger
than 1 cm that can not be tracked are also debris fragments created by
these explosions and collisions.

However, for objects of 1 mm or smaller, the amount of natural micro-
meteoroids is larger than the mad-made orbital debris (Klinkrad, 2009).
These micro-meteoroids which are very common in space are pieces of rock
from the early stages of the solar system and can attain relatively velocities
significantly higher than man-made orbital debris.

In Figure 2.5 a clear distinction of the sources of orbital debris and
meteoroids is made with respect to their size regime. The white part of the
bar for Sodium-Potassium droplets indicates the size domain for droplets
that have already entered the Earth’s atmosphere, according to computer
simulations (Vorsmann, 2008).

In 2007, a Chinese anti-satellite test increased the catalog population by
25%. In February 2009, two satellites collided which created an estimated
1000 pieces of larger than 10 cm. Both events took place around 800 km
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Figure 2.5: Different sources of orbital debris versus their typical size region,
along with the size regime of cataloged objects. (Vorsmann, 2008)

altitude, which is a popular region for satellites. Since there is almost no
aerodynamic drag at this height, the debris will stay in orbit for a very long
time.

Also the United States of America (USA) destroyed a satellite with a
missile in February 2008, but the resulting debris re-entered the atmosphere
quite fast, since the event took place at around 250 km altitude, see Sub-
section 2.1.4 on orbital decay.

2.1.3 Distribution

In Figures 2.6 - 2.8 the spatial density distribution of orbital debris with
respect to its altitude and source is depicted. The graphs are generated by
ESA’s MASTER-2001 (Meteoroid and Space Debris Terrestrial Environment
Reference) software, which simulates the orbital debris environment and
is updated and corrected by making use of verification data provided by
tracking and statistical measurement systems and methods, see Section 2.2.

It can be seen that the majority of the large (¡10 cm) objects is situated
in the LEO (especially around 800 km) and GEO regions, where the main
sources are larger fragments, and mission and launch objects.

This is also true for medium sized (¡10 cm) objects, where the smaller
fragments and SRM slag dominate. However, the distribution here is more
spread out since smaller objects generally have less stable orbits and frag-
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Figure 2.6: The spatial density distribution of orbital debris with a diameter
larger than 10 cm with respect to its altitude and source. (Klinkrad, 2006)

ments created by explosions and collisions add significant radial velocities
to the particles as well changing the original orbital altitude.

For very small (¡1 µm) objects the distribution is completely spread out
due to the fact that the main contributor is SRM dust, which receive such
large ∆V during GTO because they are very light and therefore their orbits
have very high eccentricities.

In Figure 2.9 the orbital debris and meteoroid cross-sectional flux versus size
can be seen, which is cumulative with decreasing size. Use has been made
of data at various LEO altitudes and inclinations near 28.5 deg using many
measurement techniques, which will be explained in Section 2.2. Here it can
be seen that micro-meteoroids dominate the smaller object regimes while
man-made orbital debris dominates the larger objects.

2.1.4 Orbital Decay and Re-Entry

Orbital debris, including (decommissioned) satellites, rocket stages and frag-
ments thereof, continuously decay into the Earth’s atmosphere. The orbits
of orbital debris decay until they reach denser parts of the atmosphere, which
causes more drag, and this decays the orbit even faster.

Due to the high velocity involved, typically 7.8 km/s at the start of the
decay process at an altitude of about 120 km, the amount of friction keeps
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Figure 2.7: The spatial density distribution of orbital debris with a diameter
larger than 1 mm with respect to its altitude and source. (Klinkrad, 2006)

Figure 2.8: The spatial density distribution of orbital debris with a diameter
larger than 1 µm with respect to its altitude and source. (Klinkrad, 2006)
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Figure 2.9: Cumulative cross-sectional flux versus decreasing sizes of mete-
oroids and orbital debris. (Klinkrad, 2006)
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Figure 2.10: The Automated Transfer Vehicle (ATV) breaking and burning
up in the Earth’s atmosphere. (Klinkrad, 2009)

building up because the density of the atmosphere increases with decreasing
height. The debris loses energy and reaches lower altitudes while speeding
up, and is heated up due to the friction with the atmosphere until it breaks
up and, if the object is not too dense, completely burns up.

However, massive and compact objects like space stations, large satellites
and transport vehicles, or objects that contain stainless steel or titanium
which have high melting temperatures, might not completely burn up and
impact the surface of the Earth. Of space stations like Salyut, Skylab and
Mir with masses of 40 up to 120 tonnes which have re-entered in the past,
20-40% can survive and reach the ground.

Due to the risks involved, satellites that might not completely burn up
can be steered to re-enter above unhabited areas. However, most orbital
debris can not be controlled. Large uncontrollable objects that might not
completely burn up can be tracked, see Section 2.2, so that it is accurately
known where surviving fragments might impact the Earth’s surface, and the
risk can be calculated.

Re-entry simulations can be done beforehand to see whether fragments
will survive and where they will re-enter. Some surviving fragments are light
enough to reach the ground at such low velocity that they are not dangerous.

In Figure 2.10 the Automated Transfer Vehicle (ATV) breaking and burning
up in the Earth’s atmosphere can be seen. In Figure 2.11 the remainders
of a titanium motor casing of a Delta 2 rocket weighing 70 kg is depicted,
which crashed into Saudi Arabia, while its tanks dropped down in Texas,
U.S. The latter might be from a first stage though, which has never really
gone into orbit.
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Figure 2.11: The remains of a decayed titanium motor casing of a Delta 2
rocket which landed in Saudi Arabia. (Stansbery, 2009)

For orbits with a low altitude or low perigee (high eccentricity) this decay
process can happen within a few years, but for high enough (near) circular
orbits decay could take hundreds of years. This process can be sped up by
giving a satellite a so-called End-Of-Life (EOL) boost, see Section 2.3, to
decay directly or within some years. For the latter option the position of
decay can not be controlled accurately, however.

2.1.5 Negative Consequences

Orbital debris and meteoroids have some negative consequences for operat-
ing spacecraft, and large re-entering debris could pose a threat to life and
property on Earth. The chance that a hazard would occur due to re-entering
debris is very small however.

Debris and meteoroids smaller than 1 cm pose a serious threat to criti-
cal hardware of functioning spacecraft though, if no shielding would be ap-
plied, see Subsection 2.3.1. Small orbital debris and meteoroids have such
high abundances that they impact spacecraft regularly, see Subsection 2.2.3.
Particles with sizes in the order of µm merely degrade the surface of a space-
craft, chipping away very small pieces like a sandblasting process. Particles
with sizes in the order of mm could disable a subsystem or do some local
sensor damage already. Objects with sizes in the order of cm could disable
an entire spacecraft and even create an explosion. If a collision were to oc-
cur with debris larger than 10 cm, the entire spacecraft would disintegrate,
creating a large amount of newly formed small and larger debris, like with
the Iridium/Cosmos collision in February 2009.
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These consequences are so severe due to the relative velocities involved.
Objects in LEO move at speeds of about 8 km/s with respect to the Earth.
Satellites and debris can reach relative velocities up to 15 km/s and for me-
teoroids this could even be more than 72 km/s! With such high relative
velocities the kinetic energy released on impact is also very high, even for
very small masses (Wertz, 2001).

However, spacecraft can be protected with bulletproof-vest-like layers
against objects up to 1 mm, and high-valued missions can be shielded against
objects up to 1 cm. Furthermore, objects larger than 5-10 cm are tracked
by the SSN and impact avoidance can be used in these cases.

This still leaves a gap though, for debris with sizes which could be catas-
trophic to a mission but which can not be tracked or protected against.

2.2 Observing, Measuring and Tracking

Tracking and observing orbital debris can be done by ground-based opti-
cal telescopes and radars, space-based telescopes, and analysis of impacted
spacecraft surfaces returned from space. Like said before, more than 14000
orbital debris objects larger than 5-10 cm in LEO and 30-100 cm in GEO
are currently regularly tracked and cataloged by SSN, and can be traced
back to their original launch event and thus owner.

Debris down to 30 cm can be observed in GEO by optical telescopes.
Objects as small as 2 mm can be observed in LEO using radar.

However, smaller objects can not be tracked because they cannot be mea-
sured with large enough accuracy and their orbits are too unstable. For
debris smaller than 1 cm down to a few µm one can analyse measurements
obtained by in-situ impact detectors, or inspect surfaces of spacecraft that
are returned to Earth and have been impacted by such small debris.

Also, hypervelocity impact studies are being performed on Earth to sim-
ulate what will happen if debris hits a spacecraft surface.

Dozens of optical telescopes and radars positioned at different longitudes
and latitudes around the world are used to observe orbital debris in differ-
ent parts of the celestial sky, and are mostly operated by organisations in
the USA, Russia, Japan and Europe.

Next to the SSN, also the Russian Space Surveillance System and the
(experimental) French GRAVES surveillance system keep an orbital debris
catalog, with a number of respectively 6000 and 2500 objects versus the then
observed 9000 objects of the SSN (Klinkrad, 2006).

However, not all telescopes and radar that scan for orbital debris are
connected to these catalogs. Many of them scan known objects with better
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accuracy, smaller objects that are not cataloged, or provide statistical data
of small-sized objects.

2.2.1 Optical Telescopes

The telescopes that observe orbital debris make use of one of the two large
wavelength regions of the electromagnetic spectrum in which the Earth’s
atmosphere is transparent, namely the optical window with wavelengths
from 0.3 µm to 2 µm. Even within this optical window the observed light
coming from the Sun shows some secondary absorption bands after passing
through the atmosphere, so telescopes are mostly located at high altitudes
where the air density has dropped significantly.

The telescopes operate at ‘astronomical night’ conditions, such that there
is the least amount of light pollution while the observed object is still illumi-
nated by the Sun. The reflected sunlight on the spacecraft is then collected
by the telescope aperture, after which it is passed on to a Charge-Coupled
Device (CCD) through some lenses and/or mirrors.

Angular information of the object can be obtained with reference to the
stars observed or through the telescope’s mechanical axes whose positions
are calibrated with the Earth. By using multiple CCD read-outs of the same
object at different epochs, the orbit can be determined. Also the size of the
object can be obtained, as well as its light curve (light intensity versus time)
and spectrum.

These observations can help in identifying the object for a catalog.

Optical telescopes are mainly used for observations of orbital debris in MEO
and GEO, since they perform better at higher altitude than radar based ob-
servations. This is due to the fact that the sensitivity of optical telescopes
is proportional with 1{r2, with r being the distance to the target, while for
radar this factor is 1{r4 due to active illumination, see Subsection 2.2.2.
Objects down to 30 cm in size can be observed in GEO.

The U.S. National Aeronautics and Space Administration (NASA) Orbital
Debris Observatory (NODO, Figure 2.12), located at Cloudcroft in the USA,
uses a Liquid Mirror Telescope (LMT, Figure 2.13) to generate the largest
optical debris dataset to date.

An example of two observed orbital debris objects in GEO (marked in
yellow and red) can be seen in Figure 2.14. The objects observed are dots
while the background stars appear as stripes, this is because the moving
objects are followed by the telescope while the stars are relatively standing
still.

Furthermore, there have been some space-based telescopes that observed
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Figure 2.12: The NASA Orbital Debris Observatory (NODO), located at
Cloudcroft NM, USA. (Stansbery, 2009)

Figure 2.13: The Liquid Mirror Telescope (LMT) of NODO. (Stansbery,
2009)
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Figure 2.14: Two orbital debris objects in GEO (marked in yellow and red)
observed by an optical telescope. (Klinkrad, 2009)

orbital debris: for the Infra-Red Astronomical Satellite (IRAS) as a by-
product of its primary objective to scan the celestial sphere, and for the Mid-
Course Space Experiment (MSX) satellite as its second primary mission,
using the Space-Based Visible (SBV) instrument (Leloux, 2010b). The latter
could observe objects in LEO and GEO with a significantly smaller size than
is possible for Earth-based telescopes.

Very recently, on the 25th of September 2010, the first ‘Pathfinder’ satel-
lite of the SBSS was launched, with its sole purpose of identifying, observing
and tracking orbital debris. It will increase the capability of the SSN, in
terms of the amount of orbital debris observed, by a factor two.

2.2.2 Radar

Radars that observe orbital debris make use of the radio window of the
Earth’s atmosphere, with wavelengths from 1 cm to 100 cm. They can
detect objects of cm size in LEO and down to 2 cm at an altitude of 1000
km.

An object can be tracked by first transmitting a radar pulse which is
then reflected by the object and received back at the radar antenna. By
measuring the travel time of the signal and its Doppler shift, the distance
to the target as well as its time derivative can be determined.

Furthermore, by measuring the direction of the highest gain of the re-
ceived signal, the direction (azimuth and elevation) of the target can be ob-
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tained. Also, the radar echo (history) and its polarization can be used to de-
duce information on the target’s cross-section, attitude and shape (Klinkrad,
2006).

Due to the fact that a radar first has to illuminate an object and afterwards
receive this signal, its performance drops with the previously mentioned fac-
tor of 1{r4. Consequently, they can only be used for observations in LEO,
with current technology standards.

However, performance can be boosted by using a second receiver antenna
at another location: the so-called bi-static mode. In this way the receiving
antenna aperture is effectively increased leading to a larger receiver gain.
Combined with the fact that the data can now be correlated and the av-
erage of two measurements can be taken, this leads to more accurate results.

An example of such a bi-static radar system is the FGAN (ForschungsGe-
sellschaft für Angewandte Naturwissenschaften, in English: Research Estab-
lishment for Applied Sciences) Tracking and Imaging Radar (TIRA) located
at Wachtberg in Germany, which can be seen in Figure 2.15. During an ex-
periment this system even led to detection statistics of debris as small as 0.9
mm.

In Figure 2.16 an artist’s impression of a cutout of the main transmitting
and receiving antenna of the TIRA system can be seen.

The source with the largest abundance of data for orbital debris in the
size range of 1-30 cm is the Massachusetts Institute of Technology (MIT)
Haystack Observatory which is located near Boston in the USA, of which
the Haystack Long-Range Imaging Radar (LRIR) and Haystack Auxiliary
Radar (HAX) can be seen in Figure 2.17.

2.2.3 Surface Examinations and In-Situ Sensors

By examining impact craters on surfaces of spacecraft hardware that have
been in orbit and are retrieved to Earth, orbital debris and meteoroids
smaller than 1 mm can be analysed as well. The size, velocity and direction
of the debris and meteoroids can be deduced by measuring the impact hole
size and shape.

The distribution can be obtained statistically from multiple surface ex-
aminations in different orbits. The origin of the impactor can be determined
through analysis of the chemical composition of the residues inside the im-
pact craters.

Due to the fact that this hardware has to be re-entered into the atmosphere,
it is very costly. So far this was only possible with the Space Shuttle, and
thus the retrieved hardware can not exceed orbits higher than 600 km or
inclinations outside its reach.
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Figure 2.15: The bi-static FGAN Tracking and Imaging Radar (TIRA) lo-
cated in Wachtberg, Germany. (Klinkrad, 2006)

Figure 2.16: Artist’s impression cutout of the main transmitting and receiv-
ing antenna of the TIRA system. (Klinkrad, 2006)
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Figure 2.17: The Haystack Long-Range Imaging Radar (LRIR) and
Haystack Auxiliary Radar (HAX) located near Boston, USA. (Stansbery,
2009)

A good example of examined surfaces is the retrieved Long Duration
Exposure Facility (LDEF) in 1990, which had a total exposed surface of 130
m2 and was in orbit for 5.7 years. On the LDEF 30,000 impacts could be
seen with the naked eye of which 20,000 were documented, 5000 were larger
than 0.5 mm and 1000 were chemically analysed. The LDEF can be seen in
orbit in Figure 2.18 and a retrieved panel thereof in Figure 2.19.

Other examples include windows and other surfaces of the Space Shut-
tles, see Figure 2.21, retrieved satellites and parts thereof, see Figure 2.20,
solar panels of the International Space Station (ISS), Mir and Hubble Space
Telescope (HST), see Figure 2.22 and surface experiments on Mir. The
chemical analysis of impact residues of the solar panels of the Hubble Space
Telescope resulted in 69% meteoroids, 10% man-made debris, while 21%
could not be analysed. Of this 10% man-made debris, 98% was due to solid
rocket motor firing particles and 2% due to paint flakes.

For regions out of the space shuttle’s reach, active in-situ impact sensor sur-
faces can measure the amount, velocity and mass of impactors directly and
send their data back to Earth.

Examples of such sensors are ESA’s Geostationary Orbit Impact Detec-
tor (GORID), see Figure 2.23, which was attached to a Russian satellite
launched into GEO in 1996, which detected 2.4 impacts per day in a dura-
tion of 5 years, while in 2001 the Debris in-Orbit Evaluator (DEBIE) was
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Figure 2.18: The Long Duration Exposure Facility (LDEF) in orbit af-
ter deployment from a Space Shuttle, clearly showing its surface experi-
ments. (Stansbery, 2009)

Figure 2.19: A retrieved surface panel of the LDEF that has been impacted
by small debris and meteoroids. (Stansbery, 2009)
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Figure 2.20: Impact crater on the Solar Maximum Mission (SMM) satel-
lite. (Stansbery, 2009)

Figure 2.21: Impact crater on a Space Shuttle window. (Stansbery, 2009)
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Figure 2.22: Micrometeoroid impact crater on a solar array of the Hubble
Space Telescope with a diameter of approximately 4 mm caused by a particle
of about 0.5 mm. (Klinkrad, 2009)

attached to ESA’s PROBA-1 (Project for On-Board Autonomy) satellite.
Currently DEBIE II is still measuring impacts on the Columbus science
module docked to the ISS, see Figures 2.24 and 2.25.

2.2.4 Hypervelocity Impact Studies

Small-sized orbital debris and meteoroid impacts into satellites or their
shields (see Section 2.3) can be simulated on Earth by so-called hyperve-
locity impacts.

Hypervelocity is defined as the speed of sound within the solid material
which is impacted (Klinkrad, 2009). So when a projectile impacts a certain
material with a relative speed higher than this speed of sound, it is called a
hypervelocity impact, which is reached at about 4-5 km/s for metal and 1-2
km/s for glass.

Orbital debris mostly reaches relative speeds of 0-15 km/s and mete-
oroids 5-30 km/s (Klinkrad, 2006), although meteoroids could even go up
to 72 km/sec.

During hypervelocity impacts, the strength of the material is very low com-
pared to the inertial stresses. As a consequence, the material under hyperve-
locity impact behaves like a fluid instead of a solid. A shock-wave is created
that travels through the material and is reflected by the surfaces. The waves
created can interfere and strengthen each other until the deformation leads
to higher local stress levels than the material can withstand.
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Figure 2.23: Geostationary Orbit Impact Detector (GORID) which was at-
tached to a Russian GEO satellite. (Klinkrad, 2009)

Figure 2.24: Debie II impact panels. (Stansbery, 2009)
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The effect of an impact depends on the material of the impactor and
target, the velocity and incident angle of the impactor, and the mass and
shape of the impactor. With increasing speeds, the impact results in elastic
to plastic deformation, craters, projectile break-up and melting, and even
mass ejections resulting in craters 2-5 times the diameter of the projectile. If
for instance the thickness of the target is decreased, the effects change from
craters, via cracks, to spall detachment, and finally to clear hole penetration,
see Figure 2.26.

Two-stage light-gas guns are typically used to accelerate projectiles to such
high speeds, because they can handle different shapes of projectiles and the
test conditions can be controlled accurately. They work by igniting gun
powder in a tube to force a piston to compress a light gas like helium or
hydrogen through the converging end of the tube, where the pressure builds
up until a calibrated barrel is teared open and the projectile is accelerated
by the increasing speed of the gas into a vacuum chamber (Christiansen,
2006).

A schematic of such a gun can be seen in Figure 2.27, and one which is
used by NASA’s hypervelocity impact technology facility for impact studies
can be seen in Figure 2.28.

Using these or similar types of guns, ranging from powder guns to elec-
trostatic guns, projectiles with masses of 1200 gram down to 0.05 gram can
be accelerated from 1 km/s to 18 km/s respectively (Klinkrad, 2006).

The impact into a certain material sheet is then captured with high-speed
cameras. The velocity can also be measured by lasers or light detectors,
and the integrity of the projectile is checked using flash x-rays. High-speed
camera pictures of such an impact event can be seen in Figure 2.29.

Next to real testing, also numerical simulation of hypervelocity impacts
can be done to study the effects. These simulations can be compared and
calibrated with real test data, which increases their performance in terms of
for instance accuracy and reliability.

2.3 Solutions to the Problems of Orbital Debris

A number of solutions to the threat of orbital debris and meteoroid impacts
and collisions are already in use, while others are under investigation.

This section will first deal with the protection of satellites from orbital
debris through shielding and collision avoidance. Then it will continue with
(growth) mitigation solutions and strategies including self- and external re-
moval. Finally it will conclude with a section on international cooperation
through guidelines proposed by space agencies and other institutes.
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Figure 2.25: Debie II impact panel on the EUTeF on the Columbus module
of the ISS. (Klinkrad, 2009)

Figure 2.26: Pictures of varying results after an impact takes place on sheets
with different thicknesses. (Klinkrad, 2006)
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Figure 2.27: Schematic of a two-stage light gas gun used for hypervelocity
impact analysis. (Klinkrad, 2006)

Figure 2.28: A two-stage light gas gun in use by the NASA hypervelocity
impact technology facility. (Christiansen, 2006)
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Figure 2.29: High-speed camera pictures taken of a hypervelocity impact on
a Whipple shield. (Klinkrad, 2009)

2.3.1 Protection

To protect spacecraft from impacts of and collisions with orbital debris and
meteoroids, use can be made of passive protection techniques such as shield-
ing and active protection solutions like collision avoidance, which are both
elaborated upon further below.

Shielding

Passive protection of spacecraft from impacts is usually done by shielding.
Critical hardware can either be shielded by less critical structures or by
making use of the so-called Whipple shield.

When a spacecraft is shielded by just increasing the thickness of the outer
wall, the structural mass will increase too much compared to the total satel-
lite because a single wall will have to be relatively thick to protect the
spacecraft from critical impacts. This is why Fred Whipple in the 1940’s
invented a shield consisting of an outer thin bumper wall which disintegrates
the impactor into (liquid) fragments after which an inner wall with a certain
spacing from this bumper withstands the created cloud of debris and plasma
containing both bumper and impactor material.

In this way, the impactors’ momentum is distributed over a large area
of the second wall, which can now be made substantially thinner compared
to the case with just one wall. This leads to significant mass reductions.
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An example of a hypervelocity impact on such a Whipple shield captured
by a high-speed camera can be seen in Figure 2.29.

Nowadays stuffed Whipple shields with aluminum, Nextal and Kevlar bumper
layers are being used. Multiple layers in-between slow down the debris cloud
even more, leading to a higher levels of protection with less mass.

Other passive solutions include adding redundancy to a spacecraft de-
sign, by integrating multiple copies of critical or less reliable components.

Collision Avoidance

Collision with debris might be avoided by passive methods such as creating
a spacecraft with a small cross-sectional area, or by changing its attitude in
such a way that it has a smaller cross-section with respect to the expected
debris impact direction. Since the average relative impact velocity is signifi-
cantly higher at the front side of the spacecraft in along-track direction, this
leads to smaller average relative impact velocities.

Another solution could be to design the orbit of the satellite in such a
way that it does not cross highly populated orbital debris regions, but this
is mostly not possible.

By using orbital data of debris cataloged by the SSN, conjunction analy-
sis can be performed. Since both the orbits of the satellite and the orbital
debris are known with a certain accuracy, orbit propagation of these orbits
can lead to collision probabilities.

Other variables that are used in this analysis are the object size, orbit
geometry and the smallest predicted distance between the two objects. This
conjunction analysis is further investigated in the remainder of this thesis.

When the collision probability is higher than a certain threshold, the orbits
can be measured by radars with high accuracy leading to better collision
probability results. If the threat still is too large, active collision avoidance
can be performed by thrusting the spacecraft into a slightly different orbit
with less probability of collision.

Since this requires extra propellant, a large amount of coordination with
other institutions, and also has an impact on the mission, it is very costly.
Therefore it has only been used for high-valued (manned) spacecraft such
as the ISS, Space Shuttle, large LEO constellations, and expensive scientific
Earth observation satellites.

Active collision avoidance is however limited, due to the fact that only 5%
of the tracked catalog objects is maneuverable and a very large amount of
catastrophic debris larger than 1 cm is not routinely tracked.
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2.3.2 Growth Mitigation

To minimize the growth of the orbital debris population, a number of mea-
sures have been proposed and implemented. Orbital debris mitigation mea-
sures include the passivation of spent upper stages and satellites and EOL
disposal, which are explained below. Debris released during normal opera-
tions can be minimized, and intentional destruction of spacecraft could be
forbidden. Also some external removal solutions have been proposed.

Other measures discussed in the previous subsection on protection, like
collision avoidance and shielding, serve in principle to protect the spacecraft,
but they also help in mitigating the growth of orbital debris.

Due to the fact that explosions are the source of a large part of the
orbital debris population, measures can be taken to minimize these events.
Causes of these explosions like residual fuel in spacecraft and upper stages,
can be burned up or released into space. Pressurized vessels can be vented
and batteries can be discharged.

EOL disposal can be applied to both LEO and GEO missions.
LEO satellites can be propelled into a decaying orbit which will make

them burn up in the atmosphere considerably faster than if nothing would
be done. However, this does require extra propellant, and thus extra mass,
increasing the costs. Orbits with higher altitudes require larger amounts of
propellant for the same effect and thus this option is only practical for low
enough orbits.

A disadvantage here is that the spacecraft is then still able to perform
some of its primary function, since it must still be controllable to be able to
de-orbit, and thus some hardware and thrusting capabilities are still func-
tioning, which are now wasted.

GEO satellites are nowadays required to be kicked into a so-called grave-
yard orbit, some hundreds of km above the geo-stationary ring, so that they
do not interfere with new GEO missions. This can also be applied to high
LEO satellites, moving them away from the populated LEO region.

However, the GEO graveyard orbit still poses some risk to satellites in
the geostationary ring, especially in the long run, when the objects in the
graveyard orbits may orbit back into the geo-stationary ring again.

Newly proposed solutions include rolling out an electrodynamic tether on
a cable at EOL of LEO missions, or attaching a sail or balloon, which can
reduce the energy of the spacecraft and make it decay into the atmosphere
faster.

Some solutions to external removal of orbital debris have also been stud-
ied. De-orbiting orbital debris with ground-based lasers (Kelso, 2010b), for
instance, but this is not yet tested due to international agreements which
forbid the use of high-powered lasers in space. This solution might also not
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be efficient enough.
Another solution might be to actively capture orbital debris using space-

craft, but this is regarded too costly.

2.3.3 International Cooperation

In order to coordinate all activities related to the issues of orbital debris
between space-fairing nations, the Inter-Agency Space Debris Coordination
Committee (IADC) has been set up, in which 11 of the largest space agencies
in the world participate. The purposes of this committee are to exchange
research results on orbital debris, review current research, stimulate future
research, and to determine debris mitigation solutions. They contain a steer-
ing group and working groups on measurements, modelling, protection and
mitigation, and organize annual meeting to discuss their findings (IADC,
2010).

NASA was the first space agency that set up orbital debris mitigation
guidelines in 1995 which transformed into standard practices two years later.
Later other nations and agencies around the world designed their own rules,
and in 2002 the IADC had completed an agreement with all of its members
on guidelines to mitigate the growth of orbital debris.

Afterwards, in 2007 the Scientific and Technical Subcommittee (STSC) of
the United Nations (UN) Committee on the Peaceful Uses of Outer Space
(COPUOS) also finished similar mitigation guidelines which were approved
by the UN in 2008. These guidelines generally include all mitigation solu-
tions mentioned previously (UNOOSA, 2010).

Today, debris mitigation standards are being developed by the International
Organization for Standardization (ISO). These standards focus more on how
the guidelines can be implemented by other entities. These ISO standards
are not mandatory, but space agencies and nations have also implemented
their own set of standards for orbital debris mitigation, which are binding
in their own nations (Klinkrad, 2009).

Furthermore, organisations that launch objects into space can be held legally
responsible by the United Nations Outer Space Treaty for damages caused
by these objects, either on ground or in orbit.

However, this treaty was only signed by 27 nations (excluding most of
the space-fairing nations) and ratified by 98 (UNOOSA, 2010). Ratified
means that the country is legally bound by the treaty under international
law, signing means the treaties principles are supported and the country is
in the process of ratifying it in full effect.
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Chapter 3

Astrodynamics

Astrodynamics is an application of the classical theories of celestial mechan-
ics, which in turn may be considered part of the broad field of astronomy.
Celestial mechanics, and thus astrodynamics, is based upon four laws: New-
ton’s three laws of motions and Newton’s law of gravitation.

The fundamental astrodynamical theories that were used in the devel-
opment of the SGP4 and SDP4 TLE propagators, the conjunction analysis
methods and the collision probability methods, are described in this chap-
ter. The theory described here is largely modified and summarised from K.F.
Wakker (2007) and Wakker (2007), unless indicated otherwise.

Included is the general theory of all perturbing forces, which act on a
satellite in orbit about the Earth, that were implemented in SGP4. The
SGP4 and SDP4 propagators will be explained in detail in the next chapter.

3.1 History

Johannes Kepler (1571-1630) published two laws in Kepler (1609b) and a
third in Kepler (1609a) on the orbits of the planets about the Sun, which
were deduced from observations of planetary motions taken by Tycho Brahe
and others over long periods of time. In today’s language they read:

First law The orbit of a planet is an ellipse, of which the Sun is located in
one of the foci.

Second law The radius vector of the planet sweeps out equal areas in equal
intervals of time.

Third law The ratio between the square of the period and the cube of the
major axis of an elliptical orbit is equal for all planets.

Isaac Newton (1643-1727) formulated three laws of motion (Newton, 1687),
which in today’s language state:
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First law Every particle continues in its state of rest or uniform motion
in a straight line relative to an inertial reference frame, unless it is
compelled to change that state by forces acting upon it.

Second law The time rate of change of linear momentum of a particle
relative to an inertial reference frame is proportional to the resultant
of all forces acting upon that particle and is collinear with and in the
direction of the resultant force.

Third law If two particles exert forces on each other, these forces are equal
in magnitude and opposite in direction (action = reaction).

of which the first was already thought of by Galileo Galilei (1564-1642) and
the second by Christiaan Huygens (1629-1642).

With the first law some fundamental concepts still used in physics today
are defined: force, particle (or point mass), time, uniform motion and inertial
reference frame.

Satellites and spacecraft are very small with respect to the Earth and
other celestial bodies, and the planets and their moons are in turn small
compared to the Sun. In astrodynamics these bodies are often treated as
point masses, since only translational motion is treated where objects most
of the times have large distances with respect to each other, and no rota-
tional motion.

Kepler’s laws will be derived in subsequent sections by making use of New-
ton’s laws which are stated below. However, in reality Kepler deduced these
laws from observations before Newton published his laws.

The definition of an inertial reference frame can be derived from the first
law to be: ‘An inertial reference frame is a reference frame with respect to
which a particle remains at rest or in uniform motion if no resultant force
acts upon that particle.’ The first law thus defines an inertial reference
frame in which the second law is valid. The second law can be written as

F � d

dt
pmVq (3.1)

in which F is the force, m is the mass of the particle and V its velocity.
It can be proven that an entire class of inertial reference frames is known

that perform a uniform rectilinear translational motion with respect to the
first one, see Figure 3.1. The above equation can be derived to be invariant
in different inertial reference frames only if the mass m is constant

F � m
dV

dt
(3.2)

In his book Newton also formulated the law of universal gravitation,

F � G
m1m2

r2
(3.3)
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Figure 3.1: Inertial reference frame XYZ and reference frame X’Y’Z’ that
moves with a constant velocity relative to the XYZ frame. (K.F. Wakker,
2007)

which states that two particles of mass m1 and m2 respectively, attract each
other with a force F directed along the straight line intersecting both parti-
cles through the instantaneous distance r. The force is directly proportional
to the product of the masses of both particles and inversely related to the
distance squared.

G is the Universal Gravitational Constant which has a value ranging in
between 6.672-6.676�10�11 m3kg�1s�2 according to different literature (Mon-
tenbruck & Gill, 2001), (Vallado, 2007), (Wertz, 2001), see also Figure 3.2.

The equation can also be written in vector form,

F12 � �Gm1m2��r312�� r12 � �Gm1m2��r212�� r̂12 (3.4)

where F12 is the force that acts on object 2 due to object 1, |r12| � |r2� r1|
is the distance between objects 1 and 2, and r̂12 is the unit vector from
object 1 to 2. In this vector form, the unit vector is directed from object 1
to 2, and so a minus sign applies here.

The force acting upon particle m2 can be envisioned to be caused by a
gravitational vector field generated by m1. The force per unit of mass of
m2 at the location of m2 defined by the position vector r2 from m1 to m2

is called the field strength g223 of the gravitational field generated by m1,
and losing the subscripts, this can be written as

g � �Gm1

r3
r (3.5)

so that we can write
F � mg (3.6)
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Figure 3.2: Values of the Newtonian constant of gravitation G with their
1-σ-bars of standard uncertainty. (Mohr et al., 2008)

The gravitational potential U of a particle m at an arbitrary distance r can
now be expressed as

U � �Gm1

r
(3.7)

so that we can write
g � �∇U (3.8)

for a conservative gravitational field.

In astronomy, phenomena exist that are not precisely described by Newton’s
theories, and that is why Albert Einstein (1879-1955) set up the theory of
general relativity in Einstein (1915). Even though the theory was proved
by experiments, these modifications to Newton’s work result in negligibly
small deviations for short time spans, and can safely be ignored. However,
the modifications have to be incorporated in very precise measurements in-
volving the use of atomic clocks in for instance the navigation systems GPS
(Global Positioning System) and Galileo.

3.2 Many-body Problem

Consider a system composed of n bodies, which may be considered point
masses, in which each mass mi has coordinates xi, yi, zi with respect to an
inertial reference system, see Figure 3.3. The position of body j with respect
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Figure 3.3: The position of n point masses with respect to an inertial refer-
ence frame XYZ. (K.F. Wakker, 2007)

to body i can be expressed as

rij � rj � ri (3.9)

where the magnitude of vector rij is

rij �
�pxj � xiq2 � pyj � yiq2 � pzj � ziq2

�1{2
(3.10)

When it is assumed that outside this system no other bodies are present, no
external forces act on the system and within the system only gravitational
forces occur, then the motion of body i with respect to the inertial reference
frame can be written as

mi
d2ri
dt2

�
�̧

j

G
mimj

r3ij
rij (3.11)

in which the notation * indicates that a summation is taken from j � 1 to
j � n, excluding j � i. The motion is thus mainly governed by bodies that
have a large mass and are close to body i.

The above equation of motion can also be written as three scalar second-
order differential equations, and thus 3n second-order differential equations
can be written for n bodies. This set of equations can not be solved an-
alytically for n ¡ 3 and thus can only be solved by numerical integration
techniques to find the motion of the bodies.

Some general characteristic called the ten integrals of motion can be
derived however, which are derived in K.F. Wakker (2007).
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Figure 3.4: The position of bodies i, j and k with respect to an inertial
reference frame XYZ. (K.F. Wakker, 2007)

3.3 Relative Motion in the Many-body Problem

The equations of motion stated above were derived with respect to an iner-
tial reference system. However, for most problems it is more advantageous
to set up the equations with respect to another body. For instance, for a
satellite orbiting the Earth, it is wise to set up the equations of motion of
the satellite with respect to the centre of mass of the Earth, as this simplifies
the equations.

The equations of motion for body i with respect to one of the n bodies,
referred to as body k, will now be set up. The motion of bodies i and k with
respect to a non-rotating reference frame XYZ with its origin at the centre
of mass of the n-body system (inertial reference frame), see Figure 3.4, can
be written as (using Equation 3.11)

mi:ri �
¸
j�i

G
mimj

r3ij
rij (3.12)

mk:rk �
¸
j�k

G
mkmj

r3kj
rkj (3.13)

Expanding the summation with * notation, dividing by mi and mk re-
spectively, and then subtracting the second equation from the first, and
furthermore fixing the centre of a non-rotating reference frame to body k
(and thus losing subscript k) results in

:ri � �Gmi �mk

r3i
ri �G

�̧

j

mj

�
rj � ri
r3ij

� rj
r3j

�
(3.14)

in which the * denotes a summation from j � 1 to j � n excluding j � i
and j � k. This equation now describes the motion of body i with respect
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to a non-rotating reference frame fixed at body k under the influence of all
gravitational forces between k, i and the n� 2 number of bodies j.

A modified potential can now be set up as

Ûi � �Gmk �mi

ri
(3.15)

and a scalar perturbing function Ri as

Ri � �G
�̧

j

mj

�
1

rij
� ri � rj

r3j

�
(3.16)

for which it can be shown that

:ri � �∇ipÛi �Riq (3.17)

holds true. Body i can be envisioned to move in a force field set up by
the (primary and perturbing) potential Ûi � Ri, which is non-central and
non-conservative.

Considering only one perturbing body (like the Moon or Sun), Equa-
tion 3.14 can be used to set up the motion of a satellite with respect to a
non-rotating reference frame fixed at the centre of the Earth

:rs � �GmE

r3s
rs �Gmd

�
rsd
r3sd

� rd
r3d



(3.18)

in which the subscripts E, s and d denote the Earth, satellite and perturbing
body respectively and furthermore the mass of the satellite is neglected with
respect to the mass of the Earth.

The magnitudes am and ad of the main and perturbing accelerations can
now be derived to be

am � G
mE

r2s
(3.19)

ad � Gmd
rs
r3d

a
1� 3 cos2 α (3.20)

in which α is the angle between rd and rs, see Figure 3.5. For the second
equation is was assumed that the satellite is much closer to the Earth than
to the Moon and a series expansion was used neglecting terms of order three
and higher.

The (maximum) relative perturbing acceleration of a the satellite can
now be set up as

ad
am

� md

mE

r3s
r3d

a
1� 3 cos2 α (3.21)

�
ad
am



max

� 2
md

mE

�
rs
rd


3

(3.22)

45



Figure 3.5: The relative positions of the Earth, satellite and a disturbing
body. (K.F. Wakker, 2007)

For a satellite in a circular geostationary orbit about the Earth (r �42240
km) the maximum relative perturbing acceleration caused by other celestial
bodies can be seen in descending order in Table 3.1, where it has been
assumed that all planets move in circular orbits about the Sun.

Table 3.1: Maximum relative perturbing acceleration of a geostationary
satellite caused by gravitational attraction of other celestial bodies. (K.F.
Wakker, 2007)

Perturbing body md{mE rd{rs pad{amqmax
Moon 0.0123 9.1 3.3 � 10�5

Sun 3.33 � 105 3.48 � 103 1.6 � 10�5

Venus 0.815 9.03 � 102 2.2 � 10�9

Jupiter 317.9 1.39 � 104 2.4 � 10�10

Mars 0.107 1.20 � 103 1.0 � 10�10

Mercury 0.056 1.83 � 103 1.8 � 10�11

Saturn 95.2 2.83 � 104 8.4 � 10�12

Uranus 14.6 6.11 � 104 1.3 � 10�13

Neptune 17.2 1.02 � 105 3.3 � 10�14

Pluto 0.11 1.01 � 105 2.1 � 10�16

α Proxima Centauri 3.7 � 105 9.68 � 108 8.0 � 10�22

Large Magellanic Cloud 6.7 � 1015 3.9 � 1013 2.3 � 10�25

For satellite orbits about the Earth with high altitudes it can thus be
stated that for first-order perturbing acceleration analysis due to celestial
bodies only the influence of the Moon and the Sun needs to be taken into
account, as the influence of Venus (3rd on the list) is a factor 104 smaller.
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3.4 Two-body Problem

If the gravitational attraction between bodies j and i is neglected, Equa-
tion 3.14 reduces to

:ri � �Gmk �mi

r3i
ri (3.23)

which now describes an approximation of the motion of body i with respect
to a non-rotating reference frame attached to k. In the case of a satellite
orbiting the Earth, this would mean that only the gravitational attraction
between the Earth (body k) and the satellite (body i) is taken into account.
It is shown in Table 3.1 this is valid for a first-order approximation of the
motion of the satellite.

If the subscript i is discarded and mi is ignored with respect to mk, which
can safely be done for a satellite orbiting the Earth, the above equation can
be written as

:r � � µ

r3
r (3.24)

with the gravitational parameter µ defined as

µ � Gmk (3.25)

which is 398600.4418 km3s�2 � 0.0008 for the Earth and with these bound-
aries agrees with different literature (Wertz, 2001) (K.F. Wakker, 2007)
(Montenbruck & Gill, 2001) (Vallado, 2007).

Conservation Laws

Two conservation laws can now be derived. Taking the scalar product of
Equation 3.24 and dr{dt and then integrating yields

1

2
V 2 � µ

r
� constant � Ek � Ep � E (3.26)

in which the first term Ek is the kinetic energy and the second term Ep is
the potential energy, both per unit mass of body i, which together form the
total energy E. The potential energy can be derived with the gravitational
potential as well, using Equation 3.15

Û � �µ
r

(3.27)

Taking the vector product of Equation 3.24 and r and then integrating yields

r�V � constant � H (3.28)

which states that the angular momentum of the motion of body i per unit
of mass remains constant.
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Figure 3.6: Plane of motion of body i about k coinciding with plane XY of
a non-rotating reference frame. (K.F. Wakker, 2007)

If the XY plane of a non-inertial reference frame with its origin at body
k coincides with the plane of motion, see Figure 3.6, the above equation can
be used to write

r2 9φ � constant � H (3.29)

in which H is the magnitude of the angular momentum vector per unit of
mass. The angular velocity is thus larger for smaller r.

The area of a surface element A defined by the vector r0 and r0∆r defined
at time t0 and t0 �∆t respectively, see Figure 3.6, can be derived to be

A � 1

2
H∆t (3.30)

by taking the limit ∆t Ñ 0, making use of Equation 3.28 and integrating.
This equation shows that body i sweeps out equal area segments in its orbital
plane during equal time intervals ∆t.

With two different mathematical derivations, it can now be shown that
the solution for r is given by

r � H2{µ
1� c cospφ� ωq (3.31)

in which c and ω are integration constants.

Orbit Shape

In mathematics, a conic section is defined as the curve obtained by inter-
secting a cone with a plane. This curve is described by the geometrical
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Figure 3.7: Geometrical definition of a conic section. (K.F. Wakker, 2007)

collection of all points P for which the ratio of the distance to a fixed point
F and the distance to a fixed line l is constant, see Figure 3.7.

The fixed point F is called the focus, the fixed line l is the directrix
and the above-mentioned ratio of distances is the eccentricity e of the conic
section. The radius r can be derived as

r � p

1� e cos θ
(3.32)

with
p � ek (3.33)

The following types of conic section curves can now be distinguished for
different values of the eccentricity

e � 0 Ñ circle (3.34)

0   e   1 Ñ ellipse (3.35)

e � 1 Ñ parabola (3.36)

e ¡ 1 Ñ hyperbola (3.37)

For the hyperbola another curve on the right-hand side of line l is defined
by inserting a minus sign in front of p and e in Equation 3.32.

If Equation 3.32 is compared with Equation 3.31, it can be seen that body
i moves in a conic section about body k, with p � H2{µ, e � c, θ � φ � ω
and H � r2 9θ � r2 9φ. The hyperbola curve on the right side of line l has no
physical meaning, since the gravitational force is attractive and not repul-
sive.

The orbits described by conic sections are called Keplerian orbits.
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Figure 3.8: Geometry of an elliptical orbit. (K.F. Wakker, 2007)

3.5 Elliptical Orbits

Only orbital debris which is in orbit about the Earth is included in the
catalog of the SSN, so only elliptical (and circular) orbits are treated here,
as parabolic and hyperbolic orbits cause objects to move away from the
Earth.

Geometry

In Figure 3.8 the geometry of an elliptical orbit can be seen along with some
definitions of parameters. Lines AA’ and BB’ are two axes of symmetry of
length 2a and 2b respectively which are called the major and minor axis of
the ellipse.

Using the figure and Equation 3.32 it can be derived that

p � ap1� e2q (3.38)

and inserting this in Equation 3.32 yields

r � ap1� e2q
1� e cos θ

(3.39)

in which θ is called the true anomaly.
The radius at apocenter and pericentre can now be obtained

rp � rθ�0 � ap1� eq
ra � rθ�π � ap1� eq
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from which a relation for a and e can be derived

a � ra � rp
2

(3.40)

e � ra � rp
ra � rp

(3.41)

The distance between the centre of the ellipse and the focus F can be written
as

CF � a� rp � ae (3.42)

while it can be derived that the crossing point of the orbit with the minor
axis occurs when

θ � � arccosp�eq (3.43)

Furthermore b can be written as

b � a
a

1� e2 (3.44)

cos θ � �e (3.45)

while distance FB can be derived as

FB � a (3.46)

The eccentricity can now be written as

e � sinpFBCq (3.47)

Some other characteristics of an ellipse:

• The ellipse has a second focus F 1, for which holds: CF 1 � CF .

• If a circle with center C and radius a is drawn around an ellipse, then
for each line through a point P on the ellipse and perpendicular to a,
see Figure 3.9, holds

PG

P 1G
� b

a
�
a

1� e2 (3.48)

• The area enclosed by an ellipse is equal to πab

Furthermore it can now be derived that

E � Ek � Ep � constant � V 2

2
� µ

r
  0 (3.49)

It can be shown that the larger the orbital energy, the larger the semi-major
axis of the orbit.
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Orbital Velocity and Period

A relation for the velocity in terms of the radius, called the Vis-Viva integral,
can be derived using the above equations for the ellipse

V 2 � µ

�
2

r
� 1

a



(3.50)

Some conclusions can now be drawn about the variation of the velocity in
an elliptical orbit:

• The velocity reaches a minimum value when r is at its maximum at
the apocenter

V 2
min � V 2

a � V 2
cap1� eq (3.51)

in which V 2
ca is the local circular velocity at apocenter.

• It reaches a maximum at pericentre

V 2
max � V 2

p � V 2
cpp1� eq (3.52)

• The ratio between the maximum and minimum velocity can be written
as

Vp
Va

� 1� e

1� e
� ra
rp

(3.53)

• The velocity in an elliptical orbit is equal in magnitude (not in direc-
tion) to the local circular velocity for r � a. From the geometry of the
ellipse it follows that the satellite is then located on the minor axis.

• The radial velocity is zero at pericentre and apocenter. It reaches a
maximum value at θ � 90� and θ � 270�.

• The normal velocity is always positive and reaches a maximum value
at pericentre and minimum value at apocenter.

• The flight path angle is zero at pericentre and apocenter and reaches
an extreme value at cos θ � �e, thus where the minor axis of the
ellipse intersects with the orbit.

The period of an elliptical orbit is given by

T � 2π

d
a3

µ
(3.54)

which can be used to write the mean angular motion n as

n � 2π

T
�
c
µ

a3
(3.55)
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Circular Orbits

A circular orbit is a special case of an elliptical orbit in which the velocity,
called the circular velocity Vc, is constant. It is given by

Vc �
c
µ

r
(3.56)

Now the orbital period of the circular orbit can be written as

Tc � 2πr

Vc
� 2π

d
r3

µ
(3.57)

Kepler’s Third Law and Equation

Using the period of an elliptical orbit, Kepler’s third law can now be derived
by using

a3

T 2
� µ

4π2
� Gmk

4π2

�
1� mi

mk



(3.58)

which is a more accurate form of Kepler’s law. But if mi is assumed to be
negligible with respect to mk, one arrives at Kepler’s third law in its original
form

a3

T 2
� Gmk

4π2
� constant (3.59)

To find an expression for the relation between position in the orbit and time,
previous analysis can be used to write dt as

dt � r2?
µp
dθ (3.60)

� p2?
µp

dθ

p1� e cos θq2 (3.61)

and integrated as

t �
d
p3

µ

» θe
0

dθ

p1� e cos θq2 (3.62)

The evaluation of the integral for an elliptical orbit yields

t� τ �
d
a3

µ

�
2 arctan

�c
1� e

1� e
tan

θ

2

�
� e

a
1� e2

sin θ

1� e cos θ

�
(3.63)

where τ is the time of passage of the pericentre (θ � 0). However, this
solution is not really suitable for analytic nor numerical analysis.

A simpler expression can be obtained using Figure 3.9, in which a circle is
drawn enclosing the ellipse. A line perpendicular to the major axis through
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Figure 3.9: Drawing a circle enclosing the ellipse, the eccentric anomaly E
is defined. (K.F. Wakker, 2007)

body i (point P) intersects the circle in P 1. The angle ACP 1 is called the
eccentric anomaly E of the satellite.

From Figure 3.9 the following can be obtained

r cos θ � a cosE � ae (3.64)

and using the previously described characteristic of a circle around an ellipse
it follows

r sin θ � a
a

1� e2 sinE (3.65)

and thus for an ellipse it holds

r � ap1� e cosEq (3.66)

Using trigonometric relations the following holds for θ

tan
θ

2
�
c

1� e

1� e
tan

E

2
(3.67)

And using previous relations the following expression is derived

E � e sinE �
c
µ

a3
pt� τq (3.68)

� npt� τq (3.69)

�M (3.70)

in which τ is an integration constant and M is called the mean anomaly. τ
is found to be the time of last pericentre passage when filling in E � 0.
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The above equation is known as Kepler’s equation and can be used to
determine E at a certain time t, after which θ can be obtained from Equa-
tion 3.67. Going from θ to t is not really a problem, but obtaining θ from t
involves solving Kepler’s equation for E which can not be solved analytically.

Therefore the following function is set up using Kepler’s equation

fpE,Mq � E � e sinE �M (3.71)

which can be shown to always have a value E for each M when the function
is set to zero.

The Newton-Rhapson method can be applied to solve the equation nu-
merically as

Ek�1 � Ek � fpEk,Mq
d
dE tfpE,Mqu |E�Ek

� Ek � Ek � e sinEk �M

1� e cosEk
(3.72)

and because e   1 the following iterative method can be used to converge
to E

Ek�1 �M � e sinEk (3.73)

in which E0 �M can be used as a starting value.

Orbital Elements

Summarising from the above, the constants a, e and ω determine respectively
the size, shape and orientation of the ellipse in the orbital plane, while τ
is required to determine the position of body i in its orbit at a specified
moment in time.

The nodal line is defined as the line intersection between the reference
plane Y X and the orbital plane. The argument of perigee ω defines the
orientation of the conic section, it is the angle between the nodal line and
the radius vector from the origin to the pericentre.

The argument of latitude is defined as

u � θ � ω (3.74)

However, to define an elliptical orbit in three-dimensional space two more
parameters are needed.

The first one is the inclination i which is defined as the angle between
the orbital plane and the reference plane XY , see Figure 3.10.

Depending on whether the reference plane is the ecliptic or the equatorial
plane, the second parameter needed is called the longitude of the ascend-
ing node or right ascension of the ascending node, indicated by Ω, where
rortation goes from South to North. It is the angle between the nodal line,
and the X-direction, usually the vernal equinox. Ω ranges from 0 tot 360
degrees and i from 0 to 180 degrees.
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Figure 3.10: Definition of the 3-D orbital elements. (K.F. Wakker, 2007)

The six parameters a, e, i,Ω, ω, τ are called the classical or Keplerian or-
bital elements and combined with time t they define an elliptical orbit in
three-dimensional space and the position of body i within this orbit. Instead
of τ and t also the true anomaly θ (at a given epoch) can be used as the
sixth orbital element.

However, the state of the satellite can also be fully described by its position
and speed using rectangular coordinates that define position and velocity,
x, y, z, 9x, 9y, 9z, relative to a reference frame.

So it is not a coincidence that the amount of independent orbital elements
is six, since the position and velocity are determined by three second-order
differential equations. A solution to this set yields six integration constants
which are chosen in such a way that they have a physical meaning as Kep-
lerian orbital elements.

Transformation from Rectangular Coordinates to Orbital Elements

The following conversion from rectangular coordinates, defining position r
and velocity V, to orbital elements is taken from Wertz (2001). Different
conversion strategies can also be found in K.F. Wakker (2007), Montenbruck
& Gill (2001) and Vallado (2007). This conversion scheme can be used to
transform the output of the SGP4 propagator, which is a state-vector in
rectangular coordinates, back into orbital elements again, as a reference.
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The position and velocity vector are given by their scalar components as

r �
�
� rx

ry
rz

�

�

�
� x

y
z

�

 (3.75)

V �
�
� Vx

Vy
Vz

�

�

�
� 9x

9y
9z

�

 (3.76)

and the magnitude of these vectors yields their scalar form as

r � |r| �
a
x2 � y2 � z2 (3.77)

V � |V| �
a

9x2 � 9y2 � 9z2 (3.78)

The orbit angular momentum vector h can now be determined from

h � r�V (3.79)

The vector to the ascending node N is given by

N � ẑ� ĥ � ẑ� h

|h| (3.80)

in which ẑ is the unit vector perpendicular to the equatorial plane of the
Earth.

If a reference frame with its Z-direction normal to the Earth equatorial
plane is chosen it follows

ẑ �
�
� 0

0
1

�

 (3.81)

The unit vector to the ascending node can now be obtained from

N̂ � N

|N| (3.82)

The eccentricity vector e which lies in the direction of pericentre can be
determined from

e � V � h

µ
� r

r
(3.83)

The semi-major axis a can now be determined from

a �
�

2

r
� V 2

µ


�1

(3.84)

while the eccentricity of the orbit follows as

e � |e| (3.85)
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Next, the inclination i is given by

cos i � hz
|h| (3.86)

in which i is defined from 0 to 180 degrees.
The right ascension of the ascending node Ω follows as

tan Ω � Ny

Nx
(3.87)

which needs an atan2 function that solves for a value between 0 and 360
degrees.

The argument of perigee ω can be obtained from

cosω � ê � N̂ � e

e
� N̂ (3.88)

and will be between 0 and 180 degrees if pN̂ � eq � h ¡ 0 and between 180
and 360 degrees when this quantity is less than zero.

The true anomaly θ can now be determined from

cos θ � r̂ � ê (3.89)

� r

r
� e

e
(3.90)

and will be between 0 and 180 degrees if pe � rq � h ¡ 0 and between 180
and 360 degrees when this quantity is less than zero.

Then, using relations set up in previous sections, the time of last peri-
centre passage τ , argument of perigee u, semi-latus rectum p, mean angular
motion n, total energy E, the eccentric anomaly E, mean anomaly M and
orbital period P can be computed.

3.6 Perturbing Forces and Perturbed Satellite Or-
bits

It was shown that the orbit of a body i (satellite) can only describe a perfect
Keplerian orbit (conic section) if the primary body k (Earth) is assumed to
be a point mass or if the mass distribution of body k is radially symmetrical,
and if no other bodies are present and no other forces than the gravitational
one act on the system. In reality this is of course never the case, and de-
pending on the accuracy required, one has to account for different perturbing
forces.

In the case that the primary body is the Earth, perturbations exist due
to the Earth’s irregular gravity field, atmospheric drag, attraction by other
celestial bodies, solar radiation pressure and electromagnetic forces. The
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latter two are generally very small compared to the others and are therefore
not taken into account in the SGP4 propagator and thus will also not be
treated here.

An overview of the relative order of magnitude of all perturbing acceler-
ations due to these forces with respect to the distance from the centre of the
Earth can be seen in Figure 3.11, the content of which will be explained in
subsequent sections. The perturbing forces are small compared to the total
gravitational force and thus only cause small deviations in the Keplerian
orbits.

However, resonance effects can cause small forces to accumulate signifi-
cantly over a large number of orbital revolutions.

The perturbing accelerations from different sources will be treated in the
subsequent chapters. An elaborate discussion on the effect of these acceler-
ations on the orbital elements is given in Wakker (2007).

Earth’s Gravity Field Forces

The general external gravitational potential of a body with arbitrary mass
density distribution can be set up using mathematical spherical harmonics
theory

U � �µ
r

�
1�

8̧

n�2

Jn

�
R

r


n
Pnpsinφq

�
8̧

n�2

ņ

m�1

Jn,m

�
R

r


n
Pn,mpsinφq tcosmpllambda� λn,mqu

�

(3.91)

in which r,φ and λ are the spherical coordinates of the point at which the
potential U is evaluated, with respect to the geocentric rotating reference
frame when the Earth is considered as the body for which the potential is set
up; r is the distance between the point under consideration and the centre
of the Earth and must be larger than the maximum radius of the Earth, φ
is the geocentric latitude and λ is the geographical longitude. Furthermore,
R is the mean equatorial radius of the Earth, Jn, Jn,m and λn,m are gravity
field coefficients (constants). Finally, Pnpxq and Pn,mpxq are respectively
Legendre polynomials and associated Legendre functions of the first kind,
in which x � sinφ and the functions are evaluated as

Pn,mpxq � p1� x2qm{2d
mPnpxq
dxm

(3.92)

Pnpxq � 1

p�2qnn!

dn

dxn
p1� x2qn (3.93)
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Figure 3.11: Order of magnitude of various perturbing accelerations of a
satellite with respect to the distance from the centre of the Earth. (Mon-
tenbruck & Gill, 2001)
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The first term inside the brackets in Equation 3.91 defines the perfect grav-
itational field for a point mass or a body with a radially symmetrical mass
density distribution, and then a series of perturbing terms is added which
try to simulate the real mass distribution of the Earth as well as possible.

The first series account for deviations in the mass density distribution
in North-South direction and are called zonal harmonics, while the second
series named tesseral (m � n) and sectorial (n � m) harmonics represent
mass distribution in both North-South and East-West direction.

J2, J3 and J4 are the only gravity field coefficients used in the SGP4 theory,
and their values are, according to the WGS-72 model (used in SGP4)

J2 � 1082.616 � 10�6 (3.94)

J3 � �2.53881 � 10�6 (3.95)

J4 � �1.65597 � 10�6 (3.96)

and since these coefficients only account for zonal harmonics in the first
series in equation 3.91 no corresponding value for λn,m is needed.

When comparing all gravity field coefficients of the Earth, J2 is by far
the largest, being a factor 103 larger than all other coefficients. For first-
order perturbing analysis it is thus safe if only J2, and in this case combined
with J3 and J4, is accounted for (Klinkrad, 2006).

If one wants to know the magnitude of only the perturbing acceleration,
this can be obtained from

f � �∇
�
U � µ

r

	
(3.97)

and when only J2, J3 or J4 is taken into account this is evaluated as

f2 � �∇
�
µ

r
J2

�
R

r


2

P2psinφq
�

(3.98)

f3 � �∇
�
µ

r
J3

�
R

r


2

P3psinφq
�

(3.99)

f4 � �∇
�
µ

r
J4

�
R

r


2

P4psinφq
�

(3.100)

with the Legendre polynomials evaluated as

P2psinφq � 1

2
p3 sin2 φ� 1q (3.101)

P3psinφq � 1

2
p5 sin3 φ� 3 sinφq (3.102)

P4psinφq � 1

8
p35 sin4 φ� 30 sin2 φ� 3q (3.103)
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Substitution of this relation for J2 into the equation for f2 now yields

f2 � �∇
�

1

2
µJ2

R2

r3
p3 sin2 φ� 1q

�
(3.104)

and with sinφ � z{r

f2 � �∇
�

1

2
µJ2

R2

r3
p3z

2

r2
� 1q

�
(3.105)

Now the perturbative acceleration can be written in its rectangular compo-
nents as

f2,x � �3

2
µJ2

R2

r5
xp1� 5

z2

r2
q (3.106)

f2,y � �3

2
µJ2

R2

r5
yp1� 5

z2

r2
q (3.107)

f2,z � �3

2
µJ2

R2

r5
z

�
3� 5

z2

r2



(3.108)

and taking the relevant partial derivatives we arrive at the spherical com-
ponents

f2,r � 3

2
µJ2

R2

r4
p3 sin2 φ� 1q (3.109)

f2,φ � �3

2
µJ2

R2

r4
sin 2φ (3.110)

f2,λ � 0 (3.111)

Using these relations it can be shown that fr � 0 for φ � �35.26�, 35.26� and
fφ � 0 for φ � �90�, 0, 90�. The effect of J2 can thus be seen to be caused
by an extra band of mass around the Earth’s equator and a subtraction
of mass around the poles, applied to the radially symmetrical case. This
corresponds to the physical ellipsoidial shape of the Earth.

Furthermore, the maximum values are

|f2,r|max � 3µJ2
R2

r4
for φ � �90�, 90� (3.112)

|f2,φ|max � 3

2
µJ2

R2

r4
for φ � �45�, 45� (3.113)

and for a satellite at an altitude of 250 km these maximum values are about
0.3% of the local gravitational acceleration. Although not shown here, a
similar derivation can be done for J3 and J4 as well.

Because the orbital plane of a satellite to first order is fixed in space while
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the Earth rotates about its axis, most deviations average out over periods
of multiple days.

However, for satellites with an orbital period synchronised to the ro-
tation of the Earth and for geostationary satellites, the same part of the
gravity field is orbited repeatedly for longer periods of time and as a results
resonance phenomena occur which cause the satellite to drift in a particular
direction.

The SDP4 theory accounts for resonant geopotential perturbations for 12-
and 24-hour orbits (Klinkrad, 2006).

Aerodynamic Forces

From aerodynamics theory the acceleration of the satellite due to atmo-
spheric drag may be written as

fD � �CD 1

2
ρ
S

M
|V|V (3.114)

where ρ is the atmospheric density, V is the satellite’s velocity relative to
the Earth’s atmosphere, CD is its aerodynamic drag coefficient related to
its cross-sectional area S perpendicular to the velocity vector, and M is
the mass of the satellite. Due to physical reality the acceleration vector is
opposite to the velocity vector and thus actually causes a deceleration of the
satellite, which is integrated using a minus sign.

However, data on CD and ρ in high-altitude regions of the atmosphere,
in which satellites are orbiting, are not very accurate. This is due to the
fact that the local thin atmosphere has a density that changes continuously
over time, and is mainly dependent on the activity of the Sun.

In practise, the density of the atmosphere is determined with tracking data
of multiple satellites and accelerometer data as well. The semi-major axis
and eccentricity of a satellite’s orbit decrease due to atmospheric drag and
this decrease can then be used to determine the term CDρ.

When this is known, a drag coefficient versus altitude profile, which is
based on a standard atmospheric model, is used to determine the atmo-
spheric density.

In SGP4 a power-law altitude profile of air density is used (Klinkrad, 2006),
see Section 4.3.
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Attraction by Other Celestial Bodies

It was derived previously that the perturbing potential due to the gravita-
tional field of bodies other than the Earth can be written as

R � �G
¸
j�k,i

mj

�
1

rij
� xixj � yiyj � zizj

r3j

�
(3.115)

where ri and rj are the position vectors of the satellite (body i) and the
perturbing body j with respect to the origin of the reference frame centered
at the Earth (body k).

The acceleration due to a perturbing body j can now be determined to
be

f � ∇
�
µj

�
1

rij
� xixj � yiyj � zizj

r3j

��
(3.116)

in which µj � Gmj . And with

r2ij � pxj � xiq2 � pyj � yiq2 � pzj � ziq2 (3.117)

the rectangular components of the perturbing acceleration can now be writ-
ten as

fx � µj

�
xj � xi
r3ij

� xj
r3j

�
(3.118)

fy � µj

�
yj � yi
r3ij

� yj
r3j

�
(3.119)

fz � µj

�
zj � zi
r3ij

� zj
r3j

�
(3.120)

The maximum ratio between the magnitude of the acceleration due to the
perturbing body with respect to the main acceleration cause by the Earth
has been derived in a previous section as�

fd
fE



max

� 2
md

mE

�
ri
rd


3

(3.121)

where they were also evaluated numerically already for a LEO satellite.

This ratio has a value of about 6.5 � 10�8 for an altitude of 400 km, and
around 1.6 � 10�5 for a geostationary satellite. Comparing these values it
can thus be concluded that the effect of other celestial bodies starts to be-
come more significant for higher orbits.

That is the reason why the SDP4 propagator was set up, which is used on
orbits with a period of 225 minutes and larger. It includes perturbations due
to the gravitational attraction of the Sun and the Moon as well as resonance
effects of Earth’s gravity.
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Radiation Pressure

The acceleration of a satellite due to the solar radiation pressure force can
be described by

f � CR
WS�

Mc
(3.122)

where W is the power density of the incoming radiation in W/m2, S� is the
effective cross-sectional area that points in the direcion of the radiation, c is
the speed of light, M is the mass of the satellite and CR is the reflectivity
coefficient of the satellite.

In Earth orbit, direct sunlight with a power density of WS �1360 W/m2

as well as Earth albedo and infrared radiation emitted by the Earth need to
be taken into account. At an altitude of 200 km the later two have values
of Walb �400 W/m2 and WIR �300 W/m2 respectively, which will rapidly
decrease with increasing altitude.

This force is generally very small compared to the Earth’s gravitational
attraction, but may still lead to significant perturbations for large-sized
satellites with high reflectivity and small mass over a long period of time
(e.g. Echo-1).

The SDP4 theory has a non-conservative term which can accommodate for
solar radiation pressure effects (Klinkrad, 2006).

Special and General Perturbations Methods

The equation of motion including perturbations for a satellite with respect
to a non-rotating geocentric equatorial reference frame can be written as

d2r

dt2
� µ

r3
r � �∇R� f (3.123)

in which the perturbing or disturbing potential R includes all perturbing
accelerations that can be written as a potential function, and f describes all
perturbing accelerations that can not be written as the gradient of a scalar
function.

This equation can in general not be solved analytically, so numerical
integration techniques or approximate analytical methods are used. The
former are called special perturbations methods and the latter general per-
turbations methods. For the SGP4 (note: Simplified General Perturbations)
theory the latter is used.

Special perturbations methods yield just one trajectory for one particular
satellite using its unique initial conditions.
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General perturbations methods however use analytical methods in which
the perturbing accelerations are expanded into series and integrated an-
alytically term by term. A limited number of terms is used to decrease
complexity and computation time, while still being reasonably accurate.

The solutions of the differential equations are now obtained in the form
of analytical expressions, and describe the change of the orbit as a function
of time for a particular perturbing force.

These latter methods thus yield solutions which are generally applicable
to all satellites for all initial conditions. In this way, the SGP4 theory can
thus be used to propagate all objects in the TLE catalog to any point in
time.

It is noted however that propagating further in time also increases un-
certainty of the solution, but this also holds for special perturbations tech-
niques.

3.7 Elementary Analysis of Orbit Perturbations

Using the equations above, elementary analysis can be performed yielding
for instance

da

dt
� 2a2

µ
V � f (3.124)

dH

dt
� r� f (3.125)

which shows that the semi-major axis and angular momentum of a satellite’s
orbit change in time due to any perturbating force, except when V and f
are perpendicular, yielding the dot-product zero.

Furthermore, it can be derived that for small orbit perturbations the
changes in the components of the angular momentum ∆H can be approxi-
mated by, see Figure 3.12

∆Hx � H0 sin i0∆Ω (3.126)

∆Hy � �H0 cos i0∆i�∆H sin i0 (3.127)

∆Hz � �H0 sin i0∆i�∆H cos i0 (3.128)

which yield changes in the orbit inclination ∆i and right ascension of the
ascending node ∆Ω with respect to their initial values at time t0 as

∆i � �∆Hy cos i0 �∆Hz sin i0
H0

(3.129)

∆Ω � ∆Hx

H0 sin i0
(3.130)

∆H � �∆Hy sin i0 �∆Hz cos i0 (3.131)
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Figure 3.12: Initial and perturbed orbital plane and orbital angular momen-
tum vector definition. (Wakker, 2007)

in which
H0 � ?

µr0 � n0r
2
0 (3.132)

where n0 is the unperturbed mean motion.

These expressions can now be used to yield changes in the orbital elements
due to certain perturbing accelerations for a defined period of time.

3.8 Variation of Orbital Elements Method

Without perturbations the position and velocity of a satellite can be con-
verted to the orbital elements which stay constant. For perturbed orbits,
one can still carry out this conversion to yield the fictitious instantaneous
Keplerian orbit.

A perturbed orbit can be thought of to have ever-changing orbital ele-
ments which describe a Keplerian orbit that just touches the true orbit. The
changing elements are called the osculating orbital elements, describing an
osculating Keplerian orbit for that moment in time.

This theory can be used to write the time derivatives of all Keplerian el-
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ements of an orbit in terms of the partial derivative of the perturbing po-
tential R with respect to these elements. These equations are called the
Lagrange’s Planetary Equations and can for instance be found in Wakker
(2007) and Wertz (2001).

When the perturbing function is known as a function of x, y, z then the
partial derivatives of the function with respect to the orbital elements can
be found as well.

These equations also have a different form for low-eccentricity orbits to cope
with singularities.

Furthermore, they can be written as functions of the accelerations as
well, which has been done in Gauss’ form of the planetary equations.

If the method of the variation of orbital elements is applied to the gravita-
tional potential of the Earth, one can find accurate equations of the changes
of a particular orbital element with respect to a certain time increase. When
this is done, the resulting equations will show secular, short-period and long-
period effects, as can be seen in Figure 3.13.

The secular effects are due to linear terms in the resulting equations and
continuously increase or decrease the orbital elements with respect to time.

The short-period effects have a periodic time in the order of the orbital
period of the satellite, due to the changing local gravitational attraction
during one orbit.

The long-period orbits can have very different periods. For instance, for
LEO orbits the long-period effects on the argument of perigee due to the J2
term can have a period on the order of months or more, depending on the
inclination of the orbit.

The amplitudes of the different effects can have very different values and
ratios as well, depending on the orbital element and perturbing terms.
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Figure 3.13: Secular, long-period and short-period variations of an orbital
element α. (Wakker, 2007)
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Chapter 4

Space Surveillance Network
Data

The TLE data determined by the SSN can be used to propagate objects with
the SGP4 and SDP4 theory, which both will be treated in this chapter. The
TLEs contain ‘mean’ Keplerian elements produced by removing the peri-
odic perturbations in a particular way. These perturbations are then added
again by the analytical SGP4/SDP4 theory, to result in the approximated
ephemerides.

First an overview will be given on the history of the SSN and how to
retrieve publicly available TLE data. Then the TLE data format and its
interpretation along with an example will be given, followed by a discussion
of the propagation of a TLE, including the history of the SGP4 and SDP4
propagators as well as their current implementation and the revised SGP4
version. The chapter will conclude with a description of the reference frame
and the accuracy of TLEs and their propagation.

4.1 History and TLE Retrieval

Since the launch of the very first satellite Sputnik 1 in 1957, the United
States Department of Defense (DoD) has been tracking and cataloging ob-
jects (satellites and debris) in space by making use of the Space Surveillance
Network (SSN), which is currently composed of 29 tracking systems around
the world, see Figure 4.1. Also called the SPACETRACK program, it is part
of the mission of the United States Strategic Command (USSTRATCOM)
to predict where these objects are and when they will decay and re-enter
the Earth’s atmosphere (USSTRATCOM, 2008).

This was primarily done to avoid hazards, prevent the triggering of false
alarms in the missile-attack warning systems, and to know where satellites
of foreign countries are, but is now also done to keep track of all orbital de-
bris, propagate their orbital paths to predict and avoid collisions, and detect
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Figure 4.1: Distribution of the Space Surveillance Network (SSN) tracking
systems. (USSTRATCOM, 2008)

new mad-made objects in space.

The North American Aerospace Defense Command (NORAD) has been
maintaining a catalog of these trackable objects by making use of the so-
called Two-Line Element set (TLE) data format. This data, which can be
used to propagate the tracked object’s orbit in time by making use of the
currently applied Simplified General Perturbations Satellite Orbit Model 4
(SGP4), has been made publicly available through the SPACETRACK web-
site (USSTRATCOM, 2004) since 2004 but can also be retrieved from the
CelesTrak website (Kelso, 2010a).

The latter websites offers a program called the TLERetriever which can
automatically download pre-selected TLE data, which has already been
checked for errors. It does require a valid SPACETRACK account though.

Currently almost 20,000 objects are being tracked of which the updated
TLE data of more than 14,000 can be downloaded today by making use of
the TLERetriever. A selection can be made as to which satellite data needs
to be downloaded in which format, and can then be processed to generate
a corresponding text document which lists all available and updated TLEs
underneath each other.

For a screen shot of the program and an example of such a text document
containing the example which is used in the next section, see Figure 4.2.
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New element sets are generated by NORAD on an as-needed basis rather
than according to an established timetable. How often these updates occur
depends upon a number of factors such as the orbit type or maneuvering
capability of the satellite.

For example, a satellite in LEO, such as the US Space Shuttle, would
have its element sets updated several times a day because of the somewhat
unpredictable results of atmospheric drag as it varies its attitude and the
maneuvering being performed. A satellite in a low-drag orbit which does
not maneuver, such as LAGEOS II (LAser GEOdynamics Satellite), might
only need updates once or twice a week.

Objects such as rocket bodies, defunct payloads, or other orbital debris,
will not be updated as frequently either, unless there is a prediction of a
close approach with an operational payload. Special-interest objects, such
as a large object re-entering the Earth’s atmosphere, normally get special
treatment.

Normally, all new objects are added to the master list as soon as the ob-
ject is cataloged by NORAD. After 30 days have elapsed, elements are only
maintained if someone requests that they be. Otherwise, they are removed.

At present, the master list contains a broad range of satellite element sets
used by a large number of people around the world. It contains elements for
various communications, navigation, weather, and other scientific satellites.
Over the years, it has grown to include almost 15,000 satellite element sets.

The master list was originally intended as a single source of distribution
back when this was originally done via the Celestial Bulletin Board System
(BBS) and later the Usenet newsgroups.

However, many users are interested in only a particular category of satellites
for their applications, such as amateur radio satellites, and do not want a
large list. As such, the TLERetriever sorts out the satellite element sets into
separate categorical lists to make it easier to find the elements of interest.

There is also a form on the SPACETRACK and CelesTrak websites to
request historical two-line element sets. Archives run from January 1980 to
the present and contain tens of millions of TLEs. Those historical element
sets which are requested frequently are kept online in the historical archives.

4.2 TLE Data Format

The publicly available TLE data always has the same format. A sheet
of the original format was distributed in the SPACETRACK Report No.
3 (Hoots & Roehrich, 1980) and can be seen in Appendix A. The following
description of the TLE has largely been obtained and modified from (Kelso,
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Figure 4.2: A screen shot of the TLERetriever and part of a produced text
file containing all currently available TLEs.
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2010a) and (USSTRATCOM, 2004).
The TLE format is composed of one 24-character and two 69-character

lines of data containing the orbital elements of an object, among other data.
The only valid characters in a TLE are the numbers 0-9, the capital alpha-
betical letters A-Z, the period (.), the space ( ), and the plus (+) and minus
(-) signs.

However, not all valid characters can be used at any position (column)
in the TLE. The following data format shows the allowed characters in a
certain column:

AAAAAAAAAAAAAAAAAAAAAAAA

1 NNNNNC NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN

2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN

in which columns with a space or period can have no other character.
Columns with an ‘N’ can have any number 0-9 or, in some cases, a space.
Columns with an ‘A’ can have any character A-Z, any number 0-9, or a
space. The column with a ‘C’ can only have a character representing the
classification of the TLE, normally either a ‘U’ for unclassified data or an
‘S’ for secret data. Of course, only unclassified data are publicly available.
Columns with a ‘+’ can have either a plus sign, a minus sign, or a space
and columns with a ‘-’ can have either a plus or minus sign (if the rest of
the field is not blank).

Further restrictions are placed upon the values in each column as the
individual fields of data are defined.

Here follows a TLE example for the recently launched satellite CryoSat-
2:

CRYOSAT 2

1 36508U 10013A 10130.46204870 .00000003 00000-0 00000+0 0 356

2 36508 92.0231 294.5305 0013120 162.0732 198.1059 14.52323328 4625

The following description defines each of the individual fields for lines 0-2.
The format of the field number used here is defined as the line number in
front of the dot and the field number of that line after the dot. The descrip-
tion also lists the columns that are used by those fields, as well as an example
of such a field taken from the CryoSat-2 TLE example stated above.

In appendix A, Table A.1 a quick overview with a definition of the fields,
corresponding columns and example is given.

Field 0.1 | Columns 01-24 | Example: CRYOSAT 2 | This field in-
dicates the common name for the object based on the information in
NORAD’s Satellite Catalog (SatCat). This is usually just the nor-
mal name of the satellite or rocket body (indicated with ‘R/B’), or
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the name of the satellite which this fragment of debris (indicated with
‘DEB’) belonged to.

Field 1.1 | Column 01 | Example: 1 | The first column of line 1 and 2
represents the TLE line number. The value ‘1’ should be present in
Field 1.1 to indicate that this is line #1 of the TLE. If this is not the
case, the TLE is invalid. It thus also indicates the format of the rest
of the line, which can be used in a computer code verifying the TLE.

Field 1.2 | Columns 03-07 | Example: 36508 | Here the Object Iden-
tification Number is stated of the object the TLE data is for. This is
the Object Catalog Number generated by NORAD, which is a unique
identifier for each Earth-orbiting artificial object cataloged.

The most recent TLE holds a number of ‘36591’ here, so it is already
running past one-third of its limit. This could be problematic in the
near future since smaller and thus more debris can be tracked with
passing time. Object numbers less than 10000 are always aligned to
the right, and padded with zeros or spaces to the left.

Field 1.3 | Column 08 | Example: U | This character indicates the se-
curity classification of the TLE data. All publicly available data will
have a ‘U’ in this field to indicate Unclassified data. Classified (Secret)
TLE data would have a ‘S’ here, but of course, no such data should
be available to public users.

Fields 1.4 | Columns 10-11 | Example: 10 | The Fields 1.4 - 1.6 to-
gether define the International Designator of the object. These three
fields can be left blank, but all must be present if any is. This identifier
is an additional unique designation assigned by the World Data Cen-
ter (WDC) for Satellite Information in accordance with international
treaty of 1975: Convention on Registration of Objects Launched into
Outer Space. The WDC works together with NORAD and NASA’s
National Space Science Data Center (NSSDC) in maintaining this reg-
istry.

Although there have been some changes in format since it was first used
back in the late 1950s, this first field of this International Designator
now indicates the year of the launch. It gives the last two digits. One
should add 1900 to the value of this field if it is ¡� 57 and add 2000
for values  � 56, to get the launch year.

This logic has been applied to solve the ‘millennium bug’, since chang-
ing the TLE format to a 4-digit year would require too many software
changes around the world, or otherwise lead to wrong results. The
reasoning for this logic is that since the first satellite launch was per-
formed in 1957, there will be no 2-digit year values   57 in TLEs for
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launches performed in the 1900’s. Before the year 2057, a TLE format
change will be required though.

Field 1.5 | Columns 12-14 | Example: 013 | This is the second part
of the International Designator. Here the launch number of the year
indicated in Field 1.4 is stated, the number is incremented with every
new launch. A maximum of 999 launches is thus supported by the
TLE format. However, the maximum number to date in any one year
was 129 launches in 1984.

Field 1.6 | Column 15-17 | Example: A | This is the third and final
part of the International Designator. It indicates the piece of the
launch for each object connected to that launch, and is ‘numbered’
alphabetically. Piece ‘A’ is usually the payload. The letters ‘I’ and
‘O’ are not used and thus a total of 13,824 pieces is supported by the
format. The largest amount of debris originating from a single satellite
is due to the recent Chinese anti-satellite test, the last cataloged piece
there has the International Designator 99025DXM. This format thus
also holds a reasonable limit. The field can be either right or left
justified, but the latter is preferred.

There are some significant differences between NORAD’s Catalog Num-
ber and the International Designator. NORAD assigns a catalog num-
ber based upon when the object was first observed, whereas the Inter-
national Designator is always tied to the original launch. For example,
the 81st launch of 1968 carried four payloads into orbit: OV2-5, ERS
21 and 28, and LES 6. Together with the Titan 3C Transtage rocket
body, these objects were assigned International Designators 68081A
through E and Catalog Numbers 03428 through 03432. But after-
wards, NORAD cataloged additional pieces associated with this launch
of which some are still in orbit as Catalog Numbers 25000, 25001 and
30000, among many others, which now have the International Des-
ignators 68081G through H. Piece F and others not listed anymore
are assumed to have been re-entered. The cataloging of smaller de-
bris, which we may be unable to correlate with the original launch,
presents potential problems for the International Designator.

Fields 1.7 | Column 19-20 | Example: 10 | This field and the next de-
fine the reference time for the TLE and are together referred to as the
epoch. Field 1.7 is the two-digit year, for which the same format rea-
soning is applied as for Field 1.4.

Field 1.8 | Columns 21-32 | Example: 130.46204870 | This is the sec-
ond part of the epoch, indicating the day of the year of Field 1.7. The
Coordinated Universal Time (UTC) is used here. The epoch defines

77



the time to which all of the time-varying fields in this TLE are refer-
enced.

An epoch of 98001.00000000 corresponds to 0000 (Universal Time)
UT on 1998 January 01. In other words: midnight between 1997
December 31 and 1998 January 01. An epoch of 98000.00000000 would
correspond to the beginning of 1997 December 31. Note that the epoch
day starts at UT midnight (not noon) and that all epochs are measured
in mean solar time units rather than sidereal time units.

Fields 1.9 | Column 34-43 | Example: .00000003 | Field 1.9 repre-sents
the first derivative of the mean motion divided by two, in units of rev-
olutions per day2.

Field 1.10 | Columns 45-52 | Example: 00000-0 | This field represents
the second derivative of the mean motion divided by six, in units of
revolutions per day3. Together with Field 1.9, a second-order picture
of how the mean motion is changing with time is given. However,
these two fields are not used by the SGP4/SDP4 orbital models which
are currently in use, but only by the previously used simpler SGP
model. Therefore, they serve no real purpose anymore. The different
SGP/SDP orbit propagation models are explained later.

Field 1.10 has a somewhat different format than the other fields. In
particular, a modified exponential notation is used with an implied
leading decimal point. This convention is inherited from the Philco
2000 - Model 212 and the TAC assembly language used on the original
496L system, where all such numbers range from 0 to less than 1. The
first six columns of the field represent the mantissa and the last two
represent the exponent. For example, the value -12345-6 corresponds
to �0.12345�10�6. Each of these two fields can be blank, corresponding
to a value of zero.

Field 1.11 | Columns 54-61 | Example: 00000+0 | This field repre-sents
a parameter called B* (BSTAR), which is an SGP4-type drag coeffi-
cient. In aerodynamic theory, every object has a ballistic coefficient,
B, that is the product of its coefficient of drag, CD, and its cross-
sectional area, A, divided by its mass, m:

B � CDA{m (4.1)

The ballistic coefficient represents how susceptible an object is to drag;
the higher the number, the more susceptible. B� is an adjusted value
of B using the reference value of atmospheric density, ρ0.

B� � Bρ0{2 (4.2)
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B� has units of inverted Earth radii, R�1
E .

The format used is the same as for Field 1.10, which is the modified
exponential notation with an implied leading decimal point.

Field 1.12 | Column 63 | Example: 0 | Here the ephemeris type (i.e.
orbital model) used to generate the data is indicated. Spacetrack Re-
port No. 3 suggests the following assignments: 1=SGP, 2=SGP4,
3=SDP4, 4=SGP8, 5=SDP8. However, this value is used for inter-
nal analysis only. All distributed TLEs have a value of zero and are
generated using the SGP4/SDP4 orbital model, as appropriate.

Field 1.13 | Column 65-68 | Example: 35 | This field represents the
TLE number. Normally, this number is incremented each time a new
TLE is generated. In practice, however, this does not always happen.
When operations switch between the primary and backup Space Con-
trol Centers, sometimes the TLE numbers get out of sync, with some
numbers being reused and others skipped. Unfortunately, this makes
it difficult to tell if all the TLEs for a particular object are present.

Field 1.14 | Column 69 | Example: 6 | The last column on the line rep-
resents a modulo-10 checksum of the data on that line. To calculate
the checksum, simply add the values of all the numbers on each line.
Ignore all letters, spaces, periods, and plus signs. And assign a value
of 1 to all minus signs. The checksum is the last digit of that sum. Al-
though this is a very simple error-checking procedure, it should catch
90 percent of all errors. However, many errors can still sneak through.
To eliminate these, all data posted on (Kelso, 2010a) not only pass
the checksum test, but must also pass both format and range-checking
tests.

Field 2.1 | Column 01 | Example: 2 | The value ‘2’ in column 1 should
be present here to indicate that this is line #2 of the TLE. If this is
not the case the TLE is invalid.

Field 2.2 | Columns 03-07 | Example: 36508 | This field should be the
same as Field 1.2. If this is not the case, the TLE is invalid.

Field 2.3 | Columns 09-16 | Example: 92.0231 | Fields 2.3 - 2.8 are
the mean elements calculated using the SGP4/SDP4 orbital model,
which are explained later. The current field represents the inclination,
and can range from 0 to 180 degrees.

Field 2.4 | Columns 18-25 | Example: 294.5305 | The right Ascension
of Ascending Node is indicated here, and can range from 0 up to 360
degrees.
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Field 2.5 | Columns 27-33 | Example: 0013120 | Here the eccentric-
ity is stated. It is a unitless value with an assumed leading decimal
point. For example, a value of 1234567 corresponds to an eccentricity
of 0.1234567.

Field 2.6 | Columns 35-42 | Example: 162.0732 | This is the Argu-
ment of Perigee, which can range from 0 to 360 degrees.

Field 2.7 | Columns 44-51 | Example: 198.1059 | In this field the Mean
Anomaly is listed, and can also range from 0 to 360 degrees.

Field 2.8 | Columns 53-63 | Example: 14.52323328 | This field indi-
cates the Mean Motion, and is measured in revolutions per day.

Field 2.9 | Columns 64-68 | Example: 462 | This is the revolution num-
ber. Since there are several conventions for determining revolution
numbers, this field also bears some clarification. In NORAD’s conven-
tion, a revolution begins when the satellite is at the ascending node of
its orbit and a revolution is the period between successive ascending
nodes. The period from launch to the first ascending node is considered
to be revolution 0, and revolution 1 begins when the first ascending
node is reached.

Field 2.10 | Column 69 | Example: 5 | The last column here is the mo-
dulo-10 checksum of Line 2. For more information see the explanation
for Field 1.14, as it is calculated in the same way.

For all fields, to any number smaller than the maximum field size leading
spaces or leading zeros can be added. For instance, an epoch can be repre-
sented as either 98001.12345678 or 98 1.12345678 or an inclination can be
represented as 28.1234 or 028.1234.

Mostly, leading zeros are used for fields 1.5 and 1.8 and leading spaces
for all other fields, but both are valid.

4.3 TLE Orbit Propagation

Here follows a general discussion on orbital propagation, and the TLE
SGP4/SDP4 implementation thereof, including its history and the latest
revised version.

4.3.1 Orbital Propagation

To propagate the orbit of an object means that one predicts (calculates)
where the object is going to be in the future, by making use of the starting
conditions (state) of that object at a particular time. The state of that
object can for instance be described by its three-dimensional position and
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velocity, or by its six independent orbital elements, which can be written in
a state vector.

If one now knows all the forces that act upon the object, the state vector
can be determined at a point forward in time, according to Newton’s laws.
The main force will be the gravitational attraction of the Earth if the object
is near the Earth, which is assumed to be spherical and homogeneous here.
Next to this main force, perturbing forces are present, such as gravitational
perturbations due to the fact that the Earth is not spherical and homoge-
neous, the gravitational attraction of the Sun, Moon, or even other planets,
a drag force due to Earth’s atmosphere, or the force due to radiation pres-
sure of the Sun.

These perturbations can be secular, long-periodic or short-periodic. In
Figure 3.13 the variations on an orbital element α due to these different
perturbations were shown.

Secular means that the perturbing effect is constant in time, which re-
sults in a linear behaviour of one or more orbital elements. Long-periodic
perturbations can be averaged out over longer periods, but this will result in
errors at a certain instant, since the amplitude can be rather large. Finally,
short-periodic effects can also result in errors when averaged out.

If only the main gravitational attraction of the assumed spherical homo-
geneous Earth would be taken into account, the object would orbit the Earth
according to Kepler’s laws. That is to say, the semi-major axis, eccentric-
ity, inclination and argument of pericentre would all remain constant. For
increasing precision however one should include subsequently secular, long-
periodic and short-periodic perturbations too.

The time step taken in the above calculation of a point forward in time
should be small however, if one wants to obtain a high enough accuracy. An
object in orbit about the Earth has such a high speed that with a time step
of 1 second, it will move over a distance of almost 8 km!

Thus, if one wants to compute the state vector of the object a large time
step ahead and still maintain a high enough accuracy, the larger time step
should be divided into a large amount of small time steps, and the state
vector should be calculated at each successive small time step ahead. Prop-
agating the orbit in this way involves a large amount of calculations, and
the technique described here uses numerical integration.

Orbital propagation can however also be done analytically. In this way,
one can calculate the state vector of an object a large time step ahead by
just inserting the future time value into the analytical equations.

However, such a model of analytical equations has a certain accuracy for
a corresponding domain. If one wants to obtain a higher accuracy, a more
complex analytical model should be used, thus also increasing the compu-
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tational effort. There is thus always a trade-off between the accuracy of the
resulting state vector and the time that is needed for a computer to calculate
it. The previous discussion on adding different types of perturbations for
higher accuracy also holds true here.

Since applying the numerical integration technique to one object already
requires a large computational effort, using it for the entire satellite cata-
log, while still maintaining high enough accuracy, is simply not possible. At
least, in the past it was not.

This is why in the 1950’s and 1960’s analytical methods were developed,
implemented and improved, which did not require too much computational
effort while still resulting in a reasonable accuracy. These models developed
during the starting period of space flight are more or less still in use today,
and their history is described in (Hoots et al., 2004), and will be briefly
described in the next subsection.

4.3.2 History of Analytical Orbital Propagation Models used
in the SSN

The first few models that were implemented at the U.S. National Space
Surveillance Control Center (NSSCC) used satellite observations from 150
different sites using different measuring techniques and were sent to the
NSSCC by a variety of communication types. The NSSCC then updated
the orbital data of the objects, calculated new ephemeris after which three
products were generated that were sent back to the sites for future observa-
tion.

The technical details of this ephemeris model can be read in (Hoots et al.,
2004), and it was first reported by Wahl in 1959. In the following discussion,
historic references that are used can be viewed in Hoots et al. (2004) as well.

At the same time, the U.S. Navy developed a system which almost automat-
ically detected and cataloged satellites using the Naval Space Surveillance
System (NAVSPASUR), also known as the Fence, which became operational
in 1960. The Fence is a continuous-wave multistatic radar interferometer
composed of three transmitters and six receivers along a great-circle arc of
the Earth.

Almost all orbits of satellites near the Earth which are in its field of view
could be determined automatically without using any information before-
hand. The first computers used to process the data took 15 minutes for one
satellite’s orbit, but this was already reduced to 1 minute in 1961 by making
use of new programming techniques and a new computer.

One of the first implemented theoretical solutions for the motion of a near-
Earth satellite was developed by Brouwer under project SPACETRACK in
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1959 which included the zonal harmonics J2 � J5. At the same time, Kozai
published a similar model. These two methods still serve as the basis of the
models currently in use by the SSN. In 1963 the singularity of eccentricity
and inclination in the model of Brouwer was removed by Lyddane using a
change of variables.

The latter analytical satellite prediction model was implemented by
NAVSPASUR and is known as Position and Partials as functions of Time
(PPT), and included all long-periodic effects. It was changed and imple-
mented in 1964 by Richard H. Smith using ideas from King-Hele with some
theory from Kozai, resulting in a model that included atmospheric drag
and was now numerically closer to the original model of Kozai than that of
Brouwer. Currently the upgraded model PPT3 is in use.

Also in 1964, the Simplified General Perturbations (SGP) model became the
primary orbital prediction model at the Space Detection and Tracking Sys-
tem (SPADATS) Center, which was the relocated follow-up of the NSSCC.
This SGP model was also based on the Brouwer and Kozai solutions, and
transformed by Arsenault et al. into parameters without singularity.

Only long- and short-period terms in position without eccentricity as a
factor were included from the Brouwer model. Atmospheric drag was in-
cluded in almost the same way as Smith implemented it. This SGP model
was now also used at most of the tracking systems in the world.

Then, for the first time in 1965, the model of Brouwer was upgraded with
an efficient and accurate solution including atmospheric effects using an an-
alytical density model rather than the empirical (i.e. making use of tabular
experimental data) one in use. This development was done by Lane, and it
subsequently was further improved by Lane and Cranford in 1969.

However, the size of the catalog in 1969 had grown too big for this model
to be handled by the computers used at that time. So, a simplified version
including only the secular effects of drag was made and integrated in 1970,
named SGP4. In 1979, Lane and Hoots documented the SGP4 derivation of
Lane and Cranford. In that same year SGP4 became the only model used
for satellite catalog updating.

In 1977 Hujsak integrated parts of a solution including perturbations by
the Sun and the Moon as well a geopotential resonance effects, developed
by Bowman 1967, into the SGP4 model. The resulting SDP4 model is used
for so-called deep-space satellites, which here means orbits about the Earth
with a period larger than 225 minutes, see next subsection. The SGP4 and
SDP4 models are still in use today in the SSN.

The SPACETRACK Report No. 3 (Hoots & Roehrich, 1980) lists the for-
mulas used by the SGP, SGP4, SDP4, SGP8 and SDP8 models, as well as
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their implementation in FORTRAN code, and some test cases.
The SGP8 model was developed in 2008 by Hoots and is comparable to

the SGP4 models since it is based on the same theory of Lane and Cranford
for atmospheric drag and gravitational potential. However, the differential
equations are integrated in a different manner, resulting in a different form
of the solution.

The SDP8 model is again the deep-space variant of the SGP8 version,
and uses the same added perturbing effects that were used in the SDP4 ver-
sion. The SGP8/SDP8 models are more accurate for high drag conditions,
and are believed (by the public scientific community) to be used when an
object is re-entering.

However, it is not known by the public scientific community when and
if the SGP8/SDP8 models are used and the re-entering phase is of short
duration.

4.3.3 The SGP4/SDP4 Model

It is believed by the public scientific community that the SSN still more or
less uses the SGP4/SDP4 models to generate today’s TLEs, and only these
models should be used to propagate the TLEs corresponding orbits in time
to produce accurate results, as explained hereafter.

An object’s orbit is measured by the SSN including periodic variations.
Then a TLE is generated from this measured orbit with the SGP4 or SDP4
model, which removes these periodic variations resulting in an element set
with mean values.

So, in order to reconstruct the original orbit with periodic variations,
one has to reconstruct this orbit with exactly the same models that were
used in generating it! So, even if one uses other more accurate propagating
methods on TLEs, or even a numerical integrator, this would still result in
less accurate results.

The end result of the analytical propagation to a certain time in the fu-
ture or past of the epoch of the TLE is a three-dimensional position (x,y,z)
and velocity ( 9x, 9y, 9z) in the Earth-Centred Inertial (ECI) reference frame
which is True Equator and Mean Equinox (TEME). This reference frame is
explained in the next subsection.

The SGP4 model is used for objects in near-Earth orbit with a period of less
than 225 minutes. The SDP4 model is used for objects in orbit about the
Earth with a period of 225 minutes or larger. Its model is the same as the
SGP4 model, but with a part added for the deep-space perturbations and
resonances.

In (Hoots & Roehrich, 1980) the deep-space portion was unfortunately
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only given in FORTRAN code without derivation due to its size.

The entire set of equations used in these models with some explanations
of the variables and included perturbations can be seen in Appendix B,
which was copied from the Appendices of (Hoots et al., 2004), in which the
deep-space model was elaborated upon for the first time.

For the SGP4 model one should use Appendix B in the copy, ignoring
the subsections for the deep-space perturbations. For the SDP4 model one
should use Appendix B in the copy, and the subsections for the deep-space
perturbations are then described in Appendix A of the copy, while section
A.F can be ignored, which is only used in the PPT3 model.

Summarising, the SGP4 model includes Secular Effects of Atmospheric
Drag and Earth Zonal Harmonics, Long-Period Periodic Effects of Earth
Gravity and Short-Period Periodic Effects of Earth Gravity. While the SDP4
model also includes Secular and Long-Period Periodic Effects of Lunar and
Solar Gravity and Resonance Effects of Earth Gravity.

During the beginning of the 1990’s, the 1990 standalone SGP4 code from
project SpaceTrack was sent to the NASA Goddard Space Flight Center
(GSFC) to study on orbit propagation models for the SeaWiFS (Sea-viewing
WIde Field-of-view Sensor) Mission (Vallado et al., 2006). The unrestricted
code, here called the ‘GSFC version’, was then released publicly on the inter-
net and to organizations around the world involved in the SeaWiFS mission
during 1996-1997, and confirmed changes which were already discovered by
a large amount of researchers who were working independently.

4.3.4 Revised SGP4 Version

After the SGP4/SDP4 models used by NORAD were published to the public
for the first time in the SPACETRACK Report NO.3 in combination with
the first public availability of TLEs on the Internet, many users (companies,
institutions, experts, amateurs and others) could now accurately propagate
the orbit of the objects in the catalog themselves. However, these end users
soon found errors with rare cases and corrected the implementation of the
code, and made it more efficient, which resulted in many different versions
in use by the public.

Since changes to the model used by DoD are still not published publicly
by the DoD itself as of today, the code used by the public to propagate the
TLEs is different from the code used to generate the TLEs.

To this end, a paper was published (Vallado et al., 2006) for which all of
these changes were researched and verified. This research resulted in a new
publicly available SGP4 code (with SDP4 integrated) which is designed to
be highly compatible with the recent code in use by the DoD.
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Issues with the original SGP4 version pointed out in (Vallado et al.,
2006) were related to the data format, coordinate system, time system, and
Greenwich Hour Angle (GHA). A few of the major implemented changes
were the restructuring and merging of the SDP4/SGP4 code as well as some
programming and mathematical changes, to increase the efficiency, accuracy
and clearness of the code.

Furthermore, the theory for the lunar and solar perturbations and the
iterating solution to Kepler’s equation were updated for better accuracy and
to solve certain jumps and errors in resulting graphs.

While the previously mentioned changes were verified to be implemented in
the current code in use by the DoD, others were assumed to be implemented,
as they seemed obvious. Assumed changes include updates regarding error
checking, physical constants, negative inclination orbits, integrator problems
and additional Kepler’s equation robustness. Many of the found and solved
errors only apply to exceptional cases.

Propagated ephemerides differences between the revised C++ version of Val-
lado et al. (2006) and the GSFC version can be seen in Figure 4.3. The top
plot shows significant differences which are due to a bug in the GFSC ver-
sion. This bug was related to secular integrator problems for geosynchronous
and semi-synchronous orbits from 720 minutes prior to epoch backwards, re-
sulting from resonance with the orbital period.

When only propagations forward in time are considered, see bottom plot,
the differences are negligible. This verifies that the revised version is very
close to the GSFC version, and thus the proper changes were made, while
new found errors were also fixed like for instance this resonance bug.

Comparing the revised C++ version to the original SpaceTrack Report no.
3 (STR#3) version of the code, see the top plot of Figure 4.4, rather large
differences can be seen for the entire catalog. But when changing the format
of all the variables of the original STR#3 code to ‘double precision’, which
was one of the coding changes to the new revised version, significant reduc-
tion of the differences is already obtained for a large amount of objects, see
the bottom plot of the figure.

Many operations have already switched to numerical processing for higher
accuracy, however, the analytical method still has benefits in certain appli-
cations, and certainly when a large number of satellites has to be processed
like with the catalog.

These applications include rapid assessment of conjunction events, satel-
lite visibility for ground stations and generation of communication schedules.
Other applications are the tracking of antennas with limited CPU (Central
Processing Unit, computer processor) power, or initial orbit design with
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Figure 4.3: For ephemerides generated for the entire catalog for 2 days neg-
ative and positive from epoch, the maximum difference between the revised
C++ version and the GSFC version of the SGP4 code is shown in the top
plot. The bottom plot shows the same comparison but only for propagations
positive from epoch. (Vallado et al., 2006)
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Figure 4.4: For ephemerides generated for the entire catalog for 2 days
negative and positive from epoch, the maximum difference between the re-
vised C++ version and the original STR#3 version of the SGP4 code is
shown in the top plot. The bottom plot shows the same comparison but
with all variables in the STR#3 version using the ‘double precision’ coding
format. (Vallado et al., 2006)
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low-precision requirements.

4.4 Reference Frame of Propagated TLE Data

The TLE ephemeris, when propagated with the SGP4 model, result in state
vectors that are defined in the ECI reference frame which is True Equator,
Mean Equinox (TEME) of epoch. The origin of the coordinate system is
centred at the centre of mass of the Earth.

Here, inertial means that the frame is not co-rotating with the Earth but
‘fixed’ in space with respect to the distant stars, which are relatively fixed.
If an Earth-fixed, and thus rotating, frame were chosen, the equations of
motion for an object in orbit about the Earth would be much more complex.

The ECI frame is not truly inertial in this way since it is for instance still
translating with the Earth in orbit about the Sun. However, in a two-body
problem like a satellite orbiting the Earth this does not produce errors. Only
when a third body is introduced, like the perturbing effects of the Moon or
Sun, the accelerations of the ECI frame should be taken into account as
well (Wikipedia, 2010a).

The ECI frame is defined as a Cartesian coordinate system, which means all
of its axes are orthogonal with respect to each other. The X-axis is pointing
in the direction of the Vernal Equinox, the Z-axis coincides with the Earth’s
rotational axis pointing North, and the Y-axis completes the orthogonal
system.

The Vernal Equinox is an imaginary point is space defined as follows.
If the intersectional line of the Earth’s equatorial plane and the plane of
the Earth’s orbit about the Sun (the ecliptic) is taken, the Vernal equinox
lies in the direction of that line pointing to the Sun around March 21st.
A schematic of the definition of the ECI coordinate system can be seen in
Figure 4.5.

The Z-axis is thus aligned with the true instantaneous North pole. How-
ever, due to gravitational perturbations the Earth’s rotational axis changes
direction, and thus the Earth’s equatorial plane changes as well.

The two types of motion of the Earth’s rotational axis are called preces-
sion and nutation, see Figure 4.6. Here, the rotational axis is indicated with
the green R, precession is the large rotational periodic motion indicated by
the blue P, and nutation, indicated by the red N, is the smaller periodic
motion on top of the precession.

In the ECI-TEME frame, precession is accounted for, but not nutation (Kelso,
2010a). The angle between the Earth’s rotational axis and the ecliptic, which
is called the obliquity, is thus changing with time. This does not affect the
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Figure 4.5: The Earth-Centered Inertial (ECI) Coordinate System. Please
note that the y-axis does not coincide with the ecliptic, while the x-axis
does. (Kelso, 2010a)

Figure 4.6: The two types of motion of the Earth’s rotational axis (green
R), called precession (blue P) and nutation (red N). (Wikipedia, 2010b)
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orthogonality of the ECI frame though, since it is defined with respect to
the Earth itself.

The Earth’s orbital plane also changes over time. Thus, the vernal
equinox, the equatorial plane of the Earth, and the ecliptic plane also vary
with time and can be determined for a particular epoch.

When the short-term periodic oscillations, like nutation, are averaged
out, they are called ‘mean’ as opposed to ‘true’.

The choice for this ECI-TEME frame is logical, since the observations of
the SSN made with sensors fixed to the Earth’s surface are referenced to
the Earth’s true equator, while the position of the Earth in inertial space,
relative to the vernal equinox, is not exact.

4.5 Accuracy of TLE Data and Propagation

The accuracy of a particular TLE depends on many variables. Each tracking
sensor has its own measuring technique and accuracy.

The range to the object plays a part, as well as the amount of data
(variables) collected on a particular object, the type of orbit and its space
environment condition. The amount of data collected on an object and its
accuracy are in turn dependent on the objects’ size, shape, reflectivity and
contact duration, among other things.

NORAD has tried to work with methods incorporating the accuracy
into the TLEs, but they did not succeed, simply because there are too many
variables per TLE.

4.5.1 TLE Consistency

The consistency of TLEs can be checked easily however. If the difference
between two states resulting from TLEs with successive reference epochs is
taken, after one has been propagated towards the epoch of the other TLE,
the magnitude of this difference can be taken as a measure of its consistency.

If this is done for an object with a large number of TLEs, the general
accuracy of the data can be obtained, when it is assumed that the data
was generated statistically unbiased, and the orbit determination and TLE
generation were error-free.

With this method successive TLEs might be correlated due to theory
errors though. Using multiple TLEs of a certain object, the validity of a
certain TLE with respect to time can also be deduced.

In (Legendre et al., 2006) the TLE consistency accuracy determination
approach was used to set up a function based on a mixture of gaussian laws
to be able to predict TLE errors, with good results. Following this study,
(Legendre et al., 2008) made this function also dependent on propagation
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time with encouraging results, but further study needs to be done to improve
and verify these results.

4.5.2 Accuracy Determination Methods

There are some other ways to test the accuracy of TLEs though.

Comparison with tracking data

One is to directly compare the propagated TLE data of operational payloads
with the orbital data from the operator or owner of these satellites. However,
this method can only be used for a limited number of satellites and can thus
not cover all orbit regions.

Operational satellites are routinely tracked, and often with higher ac-
curacy than the results of their TLEs. Examples of high-precision publicly
available orbital data are the GPS and GLONASS (GLObal’naya NAvigat-
sionnaya Sputnikovaya Sistema, which is Russian for: GLObal NAvigation
Satellite System) constellations, as well as the Intelsat and Meteosat satel-
lites, and geodetic satellites.

This data can also be converted into TLEs, and if the same model is used to
propagate them, the results will be of a much higher accuracy than normal
TLEs. These high-precision TLEs can also be obtained from (Kelso, 2010a),
and were also compared with GPS and GLONASS precise ephemerides ac-
curate to the centimetre level.

For the GPS case, the NORAD TLEs showed an average error of 7.54
km with a maximum of 32.45 km, while the high-precision TLEs gave an
average error of 0.87 km with a maximum of 2.37 km, all in any one direc-
tion. For the GLONASS case, the NORAD TLEs showed an average error
of 3.30 km with a maximum of 9.39 km, while the high-precision TLEs gave
an average error of 0.20 km with a maximum of 0.54 km.

Comparisons of TLE data with high-precision orbital data of operational
satellites have been made for Intelsat as well as GPS (Kelso, 2010a) satel-
lites. Orbital elements for all geosynchronous INTELSAT satellites derived
from a private dual-ranging system, with a maximum position accuracy of
250 m when propagated over 14 days, were compared with TLE data prop-
agated between TLE updates for a one-year time span (Chan & Navarro,
2001).

The Root Mean Square (RMS) of the differences ranged from 3-10 km
for radial, 25-60 km for tangential and 5-15 km for normal direction. This
resulted in RMS position and velocity differences of 30-60 km and 2-4 m/s
respectively.

Furthermore, no systematic temporal variations were discovered over
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the one-year time span, indicating consistent accuracy of the TLE data.
Systematic biases were discovered which were related to the geopotential
acceleration indicating differences in the modelling of the terrestrial geopo-
tential harmonics.

In (Kelso, 2007), publicly available post-processed high-precision epheme-
rides, with an accuracy of less than 25 cm, were used for a comparison with
propagated TLE data for 22 GPS satellites.

In-track errors were dominant, with a maximum difference of 10 km at
TLE epoch, going up to 50 km when propagated over 15 days forward or
backward. The radial errors had a maximum one-sigma variation of 2-4 km
for 0-15 days of propagation respectively. The cross-track errors showed a
maximum of 2 km one-sigma variation both at TLE epoch and after 15 days
propagation.

Furthermore, biases found in the TLE errors could lead to overestimation
of the propagated error. These biases could be estimated and removed to
increase TLE accuracy. Also, TLE errors for different satellites with similar
orbits can be significantly different.

Multiple TLEs for one GPS satellite and with a maximum epoch differ-
ence of 15 days were used for a consistency analysis described above, and
gave accuracy results with a good match to the previous comparison with
respect to propagation time, direction and magnitude. The downside is that
the error at TLE epoch can not be determined with this analysis and is thus
set to zero.

Pseudo-Observations

Another way to evaluate the accuracy of TLEs currently in use by the Eu-
ropean Space Agency (ESA) (Flohrer et al., 2008) is to compare the states
derived directly from the TLE data to states resulting from orbit determina-
tion based on pseudo-observations. These pseudo-observations are derived
from the TLEs by simulating inverted tracking station models.

Then an orbit determination process takes place and subsequently nu-
merically propagation yields the object states. The differences (residuals)
between the states generated directly from the TLEs and the states gener-
ated with the latter numerical propagation can be used to determine stan-
dard deviations in radial (U), along-track (V ) and out-of-plane (W ) direc-
tion. These deviations can then be used to generate covariance look-up
tables for orbital debris conjunction analysis. This method can be used for
the entire TLE catalog.

A schematic of the process of this TLE accuracy assessment in use by ESA
can be seen in Figure 4.7. The orbit determination and propagation block
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Figure 4.7: A schematic of the process used by ESA for TLE accuracy
assessment. (Flohrer et al., 2008)

is done by ESA’s Orbit Determination with Improved Normal Equations
(ODIN) software. The covariance tables resulting from this analysis are
used in ESA’s Collision Risk Assessment Software (CRASS).

The precision of the orbit determination and propagation from the pseudo-
observations can be checked by comparison with high-precision orbital data
of certain operational satellites, obtained from combined radar-, laser- and
Doppler-tracking. By comparing the ODIN software with high-precision or-
bital data, ESA determined that the uncertainties of TLEs could be assessed
down to the order of about 20 m, if 24 hour arcs around the TLE epoch are
used.

The estimated uncertainties of all objects in the TLE catalog of January
1st 2008 can be seen in Figure 4.8, in the form of standard deviations σ for
the U , V , and W directions. The figure can be subdivided into several orbit
classes from LEO to GEO which are defined in Table 4.1, and for which the
results can be seen in Figure 4.9.

The average uncertainties per orbital regime can be seen in Table 4.2.
A look-up table of averaged results from this analysis as a function of ec-
centricity, inclination, and perigee altitude can be seen in Table 4.3. The
ESA results are displayed here since they show similar results to the other
studies and are the only full catalog results.

In a similar study (Dong & Chang-yin, 2010) on a part of the catalog, TLE
errors for LEO objects (h   5000 km) were estimated to range from 0.3-0.8
km, for MEO (10, 000   h   25.000) from 0.5-1.5 km, for GEO from 1.5-2.5
km, and for HEO (0.1   e   0.8) from 1-8 km increasing with eccentricity.
When propagating the LEO, MEO, GEO and HEO objects for respectively
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Figure 4.8: Estimated 1-σ-uncertainties (color coded) of all objects in the
TLE catalog of January 1st 2008 in U , V and W direction as a function of
eccentricity and inclination. (Flohrer et al., 2008)

Table 4.1: Orbit class definition in terms of perigee altitude hp and apogee
altitude ha. (Flohrer et al., 2008)

Acronym Description Definition

LEO Low-Earth Orbit ha   2000�RC
MEO Medium-Earth Orbit hp ¡ 2000�RC & ha   40164
GEO Geostationary Orbit hp ¡ 40164 & ha   44164
GTO Geostationary Transfer Orbit hp   2000�RC & ha ¡ 40164
HEO Highly Elliptical Orbit All other orbits

Table 4.2: Average 1-σ-uncertainties in U, V and W direction per orbital
regime for the entire TLE catalog of January 1st 2008. (Flohrer et al.,
2008)
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Figure 4.9: Estimated 1-σ-uncertainties (color coded) of all objects in the
TLE catalog of January 1st 2008 in U , V and W direction as a function
of eccentricity and inclination, per orbital regime. Descending down from
top to bottom the Figures correspond to LEO, MEO, GTO, HEO and GEO
respectively. (Flohrer et al., 2008)
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Table 4.3: Look-up table for average 1-σ-uncertainties in meters in U, V
and W direction of all objects in the TLE catalog of January 1st 2008 as a
function of inclination, eccentricity and perigee altitude hp. (Flohrer et al.,
2008)
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3, 30, 15 and 1 days, using the latest release of the SGP4 model, the position
errors stayed below 40 km, increasing with decreasing altitude.

These TLE accuracy results are about the same as the ESA results. The
MEO propagation results are of the same order as in (Kelso, 2007). The
GEO propagation results seem to be better than in (Chan & Navarro, 2001),
but this might be due to the new and better SGP4 model used.

(Wang et al., 2009) shows similar TLE accuracy results for LEO objects.
Here it is stated that propagation errors for very low altitude orbits decrease
with eccentricity due to more atmospheric drag within one orbital revolution.

Future methods

A possible future accuracy analysis method might be to reproduce the raw
observations for a certain TLE, if one knows the entire TLE production
process. The measurement errors and sensor biases may then be estimated
to yield TLE accuracy as well.

An improved orbit prediction method using TLEs, which is based on the
method and conclusions of (Flohrer et al., 2008), was investigated in Levit
& Marshall (2010). The new method yields far more accurate results than
the normal SGP4 propagation method. However, since the method and or
code is not published in detail it can unfortunately not be used here.
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Chapter 5

Orbital Debris Conjunction
Analysis

When two objects move within a certain predefined small distance with
respect to one another, this is called a conjunction. For object collision
probability analysis of the entire catalog, one first has to determine whether
two objects are in conjunction. For instance, to determine if a manoeuvre is
needed (which is beyond the scope of this research) by a certain high-valued
mission in order to mitigate the risk of collision, the probability of collision
has to be determined, and is checked to exceed certain threshold values.

This probability analysis, which was treated shortly in Leloux (2010a),
can be done after pairs of objects have been found that are in conjunction.
This way, when applied to the entire SSN catalog, one does not have to
calculate the probability of collision of all combinations of pairs of objects
possible. This would take far too many calculations and thus CPU process-
ing time since probability analysis is quite more extensive than conjunction
analysis alone.

Furthermore, even conjunction analysis itself can become quite burdensome
when applied to the so called all-vs-all catalog test case. In this analysis
the possible conjunction of each object of the catalog with respect to every
other object has to be determined. Since evaluating the minimum distance
of all object pairs of the catalog takes up too much computational effort, a
series of filtering techniques or sieves can be used to exclude certain pairs
of objects from the catalog which can be proven to never move within a
certain distance of each other for the time interval that the conjunctions are
determined.

Different techniques have been designed, tested, compared and imple-
mented into existing software by both government and private companies
since the 1980s. Their methods and results will be treated in Sections 5.1
and 5.2 respectively.
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Due to ever increasing capabilities of the SSN to observe and track orbital
debris, in combination with the increasing population, the number of objects
in the debris catalog keeps on increasing. A new Space Based Surveillance
System has been launched which is predicted to increase the observation
capability, in terms of the amount of orbital debris detected, by a factor
2 (Leloux, 2010b).

Furthermore, due to recent intended and unintended collisions like the
Iridium/Cosmos collision and the Chinese anti-satellite test, the number
of trackable objects also drastically increased, and these events might of
course also occur in the near future. The catalog has increased by 60%
from 2007-2010, of which 80% was due to the aforementioned two collision
events (Kelso, 2010b).

Faster and more efficient ways to detect conjunctions are thus needed in
the future to be able to keep up with this catalog growth.

One could argue that only operating spacecraft need to be checked against
the orbital debris catalog. However, all-on-all analysis provides the capa-
bility to find possible collisions of debris with each other pre-hand, so that
possible resulting debris clouds can be followed as fast as possible. Further-
more, the total number of conjunctions in combination with the probability
of these conjunction provides a statistical basis for the future debris growth
trends and possible Kessler syndrome prediction.

This so-called Kessler syndrome is a kind of ‘snowball-effect’ of orbital
debris, similar to how for instance the rings of Saturn were created. When
the amount of orbital debris grows larger and larger, and the collision rate
grows beyond a certain threshold, the amount of debris could grow exponen-
tially and this grow would be self-sustaining, possibly dooming the future
of safe spaceflight (Donald J. Kessler and Burton G. Cour-Palais, 1978).

In the future, debris collisions could also be mitigated by using laser
beams, from the surface of the Earth or from a spacecraft in LEO, that
could de-orbit small objects (up to about 10 cm) to decrease the collision
probability. Increasing the laser power, orbital debris could be removed in
this way by changing the orbit so that it reenters the Earth’s atmosphere,
or escapes from Earth’s gravity field (Wolfgang O. Schall, 1991).

5.1 Overview of Catalog Filtering Methods

The distance of closest approach between two objects can be determined
by simply taking the difference of their position vectors against time for
a certain period of interest and then numerically stepping forward in time
to find the absolute minimum. Analysing all possible pairs in the current
catalog like this consumes too much processing power however.
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Therefore, faster analytical filters have been set-up to discard objects
pairs of which the chaser object does not orbit within a certain reference
sphere or ellipsoid around the target object. These analytical methods are
also useful since analytical orbit determination was used in setting up the
TLE data SGP4 propagator as well.

5.1.1 Hoots

Hoots et al. (1984) designed one of the first analytical methods to determine
a close approach between two objects. A series of geometrical prefilters is
used to discard any pair of objects which will never be within a distance D
of each other.

It is first assumed that the objects follow two-body Keplerian orbits with
no perturbations. The effect of perturbations is small and will not change
the results if D is set large enough. After close-approach pairs have been
distinguished that pass all filters, the perturbations can simply be added by
modifying the analytical equations.

Perigee-Apogee

The first, simplest and most used prefilter is the perigee-apogee test. Let
q denote the larger of the two perigees of the objects and let Q denote the
smaller of the two apogees. If

q �Q ¡ D (5.1)

then the pair does not need to be considered further. All objects pairs that
pass this prefilter move on to the next.

A more in-depth description including a sketch of the situation will be
given in Section 8.2, where the implementation is also discussed.

Geometrical

The second prefilter considers the relative geometry of the two ellipses in
space. There will be two values d1 and d2 of closest approach between the
two elliptical paths, see Figure 5.1. So if the smallest of these values is larger
than D, the pair is filtered out. An analytical solution to this problem is
given in (Hoots et al., 1984).

For near-coplanar objects, that is, for objects which orbital planes have
a relative angle close to zero, the solution, which is based on the relative in-
clination between the two planes, becomes indeterminate, so an exceptional
rule is set up.
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Figure 5.1: Definition of two values d1 and d2 of closest approach between
two elliptical paths. (Hoots et al., 1984)

Time

Even though the elliptical paths lie within a distance D of one another,
this does not necessarily mean that the objects are at this region of close
approach in their respective orbits at the same time. A next prefilter can
thus be set up based on the time that the objects cross the line of intersection
of the two orbital planes.

For non-coplanar object pairs, angular windows around these crossing
points are set up which can be converted to time in the period of interest.
The windows are then checked for overlaps, and if they do, its midpoint will
be used in an iterative process to determine the point of closest approach.
This is done by using Newton’s method. The period in time in which the
TLEs was smaller than D can be determined by this method as well.

For the coplanar cases, the derivative of the TLEs between the two ob-
jects is taken and with numerical and interpolation techniques a point of
closest approach is determined. Since this process is only needed for a few
cases, it will not take much extra processing power. The point of closest ap-
proach determined here is also used as a starting point for Newton’s method
to determine a more accurate point.
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As a last step, all prefilters are analytically modified to incorporate per-
turbations caused by the Earth’s oblateness and atmospheric drag.

5.1.2 Khutorovsky

Khutorovsky et al. (1993) proposed a different procedure to search for ap-
proaching pairs, which is composed of two parts: preliminary selection and
refinement. It was stated that all pairs of objects j and k should be identified
that satisfy the condition

pxj � xkq2 � pyj � ykq2 � pzj � zkq2   c2 (5.2)

where x, y and z are the elements of the position vector of an object and c
is a threshold satisfying two contradictory conditions.

If this condition is tested at intervals rti, ti�hs with time step h, c should
be large enough so that no close approach within the interval is missed. But
c should be small enough for the filter to be efficient, causing it to reject a
large amount of pairs. This procedure consumes too much operations how-
ever.

If x, y, z are converted to integer values and binary scales are used for
efficient computer implementation, CPU time for this preliminary selection
is reduced by a factor 40 for c �400 km and h � 50 sec on a 64-bit proces-
sor (Khutorovsky et al., 1993).

In the refinement part, a more accurate moment at which the TLEs be-
tween the pairs is minimum within the interval h is determined. The same
procedure is now applied three times to the interval rti, ti � hs at which the
closest approach in the previous filter was found to be. Every time a smaller
time step h3   h2   h1   h and smaller threshold c3   c2   c1   c is used.
The object pairs that pass all filters proceed to probability calculations.

5.1.3 Klinkrad

Klinkrad (1993) primarily used the method of Hoots et al. (1984), which
was implemented at ESA/ESOC (European Space Operations Centre), to
set up a conjunction detection process, which was tested on the accurately
known orbits of ERS-1 (European Remote Sensing satellite) and EURECA
(EUropean REtrievable CArrier). Furthermore, is was tested on the orbit of
STS-48 (Space Transportation System) Discovery, and compared to historic
conjunction data of NASA.

A conjunction is here defined as a fly-by of a catalog object at a closest
distance inside the reference ellipsoid du � dv � dw of dimensions 10 � 25
� 10 km centred at the target, in which u, v and w stand for the radial,
along-track and out-of-plane direction respectively.
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The process started off with an epoch filter discarding all TLEs which had an
update time of with for instance more than 30 days difference with respect
to the reference epoch, since these would lead to unacceptable propagation
errors. Secondly, an altitude filter is applied based on the apogee-perigee
filter previously mentioned, including altitude decay.

Then the geometrical filter of Hoots et al. (1984) described above is
applied, followed by the orbit phase filter. Both of these filters have a
collision reference sphere around the target with rsph � dv, since this is the
largest dimension of the ellipsoid.

At last, an ellipsoid pass check is performed, discarding all objects that
orbit within distance rsph but are outside the reference ellipsoid du�dv�dw,
which can be determined as follows. If the fly-by distance is defined as

∆r � rc � rt (5.3)

in which c defines the chaser and t the target, a conjunction event is accepted
by the last filter for k   1 with

k2 � ∆r2u
d2u

� ∆r2v
d2v

� ∆r2w
d2w

(5.4)

since the closest distance is then inside the reference ellipsoid.

The time of closest approach tcon is determined by iteratively solving for
a zero transition of the range-rate between target and chaser

9ρptconq � 0 � p 9rcptconq � 9rtptconqq �∆rptconq (5.5)

The relative velocity of the chaser with respect to the centre of the moving
target at the conjunction event is defined as

∆V ptconq � ∆ 9rptconq � 9rcptconq � 9rtptconq (5.6)

which would be the collision velocity in case of a direct hit. The azimuth
and elevation angles of the relative velocity can be derived as above.

Later on, Klinkrad (1997) used this method, to determine conjunction events
of ERS-1 and ERS-2 with TLE data for the period of one year. Here the
last two filters were combined however, checking for the reference ellipsoid
pass (instead of the reference sphere) within the orbit phase filter.

The same method is used in Sanchez Ortiz et al. (2001) in an imple-
mentation for GMV (Grupo Mecanica Vuelo, Spanish for: Flight Mechanics
Group) on collision risk assessment for ERS-1 and ERS-2.
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5.1.4 Healy

Healy (1995) devised an efficient program to detect close conjunction which
can be run on parallel computers, and can thus also be used to run on
multiple processors or processor cores. In this program a catalog at a certain
time instance can very efficiently be run against itself, one other satellite,
or another catalog.

By making use of a Taylor series extrapolation on the motion of an
object, the time of closest approach can be found within a certain prescribed
time range rt0 � T {2, t0 � T {2s in which the state vector is determined by
any propagator at time t0 � kT with k taken to be any integer. Truncating
the Taylor series at the linear term, the time of closest approach can be
determined to lowest order to be

tclosest � t0 � x0 � 9x0

9x0 � 9x0
(5.7)

where x0 is the relative state-vector between two two objects, which follow
from the propagator. Now the distance at the time of closest approach is
also easily determined.

Furthermore, finding a conjunction within some specified critical distance c
is done by shifting arrays of position vectors of one catalog at a particular
time t0 with respect to another and computing the distances between the
vectors.

This process is then optimised by first sorting the position vectors of the
catalog in ascending order by one element, for instance z. When the cata-
logs are now run against each other the process can stop when a distance is
found to be larger than c, since all further computed distances will be larger
than c because of the ascending order.

The above method can be applied to all catalog time instances t0 � k � T
and a fast technique combined with the Taylor series can be used to find
the minimum distance. The comparison process can be split up in smaller
arrays which will be run on parallel computers.

With this method large catalogs can be run against each other efficiently
by making use of smart programming methods on parallel computers.

5.1.5 Alarcon-Rodriguez

GMV developed a software tool for ESA/ESOC, which predicts conjunc-
tion events of spacecraft with objects in the US Satellite Catalog (Alarcon-
Rodriguez et al., 2004). It will be part of a larger collision risk assessment
tool (CRASS), which will be treated in more detail later, which determines
the collision risk and results in collision warnings based on the probability
of collision for a time duration of one week.
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For the conjunction detection software, GMV developed a ‘smart sieve’
method (Alarcon-Rodriguez et al., 2002) which comprises a series of sieves
(filters) based on fundamental flight principles. These sieves have no con-
straints or singularities, the method uses less computing time than previous
methods, and has better results (more conjunctions detected).

Furthermore, the method includes acceleration effects in determining the
conjunction volume as well, which had not been done by previous implemen-
tations.

The exact same method has also been implemented in GMV’s focusSUITE
in the software tool closeap (Mate et al., 2009). Here the catalog is first
filtered for old TLE data sets that generate inaccurate propagation and for
decayed objects that do not pose a threat any more.

The same process is also described in Klinkrad et al. (2005), Klinkrad
(2006) and Klinkrad (2007) as an implementation for collision avoidance of
ESA satellites, next to a description on orbit prediction uncertainties and
collision risk assessment, respectively.

Theory

In the sieve method, the state vectors of all objects involved are computed at
all defined time steps in the interval to be analysed. If the distance between
two objects is higher than the threshold distance Rth, the pair is discarded.
The threshold distance is defined such that the distance between the objects
can not attain smaller values than the critical distance Rcr until the next
step.

Adding the maximum radius of both objects together to form a critical
volume with radius Rcr, the objects can never touch each other if the chaser
stays outside of the volume centred at the target. The relative velocity
between two objects in an elliptical orbit about the Earth can never reach
two times the escape velocity Vesc.

So during a time step duration ∆t, the chaser can not enter the crit-
ical volume and get out of the threshold volume before the next check is
performed at the next time step, if the threshold radius Rth is defined by

Rth � Rcr � desc{2 � Rcr � Vesc∆t (5.8)

in which desc is the distance travelled during ∆t with the maximum relative
velocity of 2Vesc, see Figure 5.2.

For a chaser object that does enter the threshold volume of a target object at
a certain time step, the minimum distance rmin between the pair of objects
during the time step interval is estimated (excluding acceleration term) by
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Figure 5.2: Definition of the critical volume and radius Rcr, and the thresh-
old volume and radius Rth defined by the maximum relative velocity (vesc)
of two objects. (Alarcon-Rodriguez et al., 2002)

Healy (1995) to be

rmin �
d
r20 �

�
r̄0 � v̄rel

vrel


2

(5.9)

in which the subscript 0 denotes the time step at which the state vectors
were determined, see Figure 5.3.

The relative acceleration can never exceed twice the acceleration at sea level
due to Earth’s gravity field g0, because the objects always orbit above sea
level. Using the equation of motion, the maximum deviation dacc from a
straight constant velocity path during the time interval ∆t can be deter-
mined as

dacc � 1

2
p2g0q∆t2 (5.10)

Thus the critical volume can be expanded using the radius of the acceleration
safety volume Racc, defined as

Racc � Rcr � dacc � Rcr � g0∆t
2 (5.11)

see Figure 5.4.
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Figure 5.3: Definition of the minimum distance vector rmin defined by the
relative velocity vector vrel and relative position vector r0 at t0. (Alarcon-
Rodriguez et al., 2002)

Figure 5.4: Definition of the acceleration safety volume and radius Racc
which is defined by the critical volume radius Rcr and the maximum relative
acceleration(2g0). (Alarcon-Rodriguez et al., 2002)
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Application

The theory described above is used in a series of sieves, described below, to
filter out object pairs that do no reach a predefined distance.

Apogee-perigee filter The method starts with the apogee-perigee filter
of Hoots et al. (1984) described above.

X, Y, Z sieves It is followed by X, Y and Z sieves which discard pairs
of which one component of their relative position vector r is larger than the
threshold radius Rth

ri ¡ Rth ñ r ¡ Rth for i � x, y, z (5.12)

Step skipping If the distance between two objects is very large and it is
known that the chaser will not enter the threshold volume at a number of
following steps, this number of future steps Nskip can be skipped for analysis
for this pair. A safe amount of steps to be skipped according to the reference
is

Nskip � int

�
r �Rth

2



(5.13)

However, this is not believed to be true. Simply dividing the distance be-
tween the two objects minus the threshold radius divided by two would yield
just a distance and not a dimensionless number of steps to be skipped. If
the conservative maximum relative velocity of twice the escape velocity is
taken into account the equation would be derived as

Nskip � int

�
r �Rth
2vesc∆t



(5.14)

In this way, the aforementioned distance is divided by the maximum relative
velocity times one time step, yielding the number of steps which can safely be
skipped. Rounding this value off to one integer below, the chaser object will
never be able to penetrate the threshold volume, not even if their relative
speed would be twice the escape velocity.

r2 sieve Object pairs that pass the X, Y, Z sieve can still have a distance
larger than r, which is checked in the r2 sieve

r2 � r2x � r2y � r2z ¡ R2
th (5.15)

Minimum distance sieve The minimum distance sieve discards object
pairs for which r2min ¡ R2

acc where the acceleration effects are included in
Racc and rmin is calculated with the method of Healy (1995) described above.
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Figure 5.5: Definition of the fine threshold volume and radius Rth,fine de-
fined by the actual approach velocity vapp and acceleration safety volume
radius Racc. (Alarcon-Rodriguez et al., 2002)

Fine r2 sieve Then, a fine r2 sieve is applied. A chaser object might
achieve a distance with respect to the target smaller than Rth but still
not enter the critical volume during the following time step considering the
actual relative velocity.

The sieve is similar to the r2 sieve, but uses the actual relative velocity
vapp instead of 2vesc, and Racc (Equation 5.11) instead of Rth (Equation 5.8).
It discards object pairs for which r2 ¡ R2

th,fine, where Rth,fine is given by

Rth,fine � Racc � 1

2
vapp∆t � Racc � 1

2

����r̄0 � v̄relvrel

����∆t (5.16)

according to the original reference (see Figure 5.5).

However, on examination, the equation does not seem to be correct, and
it is believed that the correct version should be

Rth,fine � Racc � 1

2
vapp∆t � Racc � 1

2

����v̄0 � r̄0r0
����∆t (5.17)

which was later confirmed by Klinkrad (2006), wfere a summary of the
theory described in Alarcon-Rodriguez et al. (2002) is given.
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Figure 5.6: Diagram of the process of the new conjunction analysis method
by (Ting & Hai, 2008)

Fine conjunction detection At last, a fine conjunction detection is per-
formed which numerically finds null values for v2app to accurately find the
point of closest approach.

5.1.6 Ting & Hai

Ting & Hai (2008) investigated a new method to determine close approaches
between satellites, both for the conjunction of a single satellite against the
complete catalog or the catalog against itself. Improved versions of the
apogee-perigee, geometrical and time filter from the method of Hoots et al.
(1984) were used, along with adjusted sieves of Alarcon-Rodriguez et al.
(2002).

Finally, the method of Alfano (1994) is used to determine the final min-
imum distance and time of closest approach, which is called the relative
distance function method. The whole process is illustrated in Figure 5.6.

The basic apogee-perigee filter is adjusted by adding the maximum effect of
orbital decay and perturbations; a fixed value of 10 km is used here. The
geometrical and time filter are transformed to an interval analysis of the ar-
guments of latitude of pairs of objects around the time of closest approach,
including perturbations, and furthermore using a step skipping process.

The threshold and fine threshold distance in the smart sieve are adjusted,
as well as the step skipping process. The r2, minimum distance sieves and
fine conjunction detection are not used.

The method finishes with an accurate distance determination of the con-
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Figure 5.7: Comparison of the mean and osculating values of perigee and
apogee of object #26281 in the analysis interval. (Woodburn et al., 2009)

junction events, based on a relative distance function which was republished
in Vallado (2007) (the original publication could not be found), which was
improved in Alfano (1994).

5.1.7 Woodburn

The three classical filters set up in Hoots et al. (1984) were investigated and
improved in Woodburn et al. (2009) as well. In the classical method the
apogee and perigee were sampled at the beginning of the analysis interval
based on mean orbital elements. The orbital elements were determined at
the midpoint of the analysis interval, and using approximate rates of those
elements the value at the start point was determined.

In Figure 5.7, the real radius of a LEO object is shown next to the
osculating and mean apogee and perigee values for an interval under consid-
eration. It can be seen that the osculating values at the start of the interval
can yield rather large errors. Even when using the mean value for the apogee
or perigee, would provide a better approximation than using the osculating
value, for most cases.

However, for HEO objects, the osculating and mean values for apogee
and perigee fluctuate significantly with respect to the mean values and thus
taking a sample at the start of the interval does not lead to good values that
can be safely used in the filter.

The proposed method now takes samples at both the start and end of the
analysis interval and uses a pad which is added to the detection threshold
to account for periodic effects during the interval. A minimum padding dis-
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tance is required which covers the periodic effects but still also minimises
the amount of pairs that pass through the filter. However, the pad needs to
be set large enough to cover all test cases.

To determine the pad size, the maximum error was determined between
the actual largest and smallest radii for all objects and what would be the
result when the osculating or mean values were taken at the start and end
time of the interval. The maximum error is now used to determine a pad size
of 30 km. However, the filter may still fail using this value in the rare oc-
casion that both samples at start and end time are taken at a deep through
in the variation for apogee and perigee in the HEO case.

Another proposed method considers to determine the actual value of the
apogee and perigee of the entire interval so that only a pad size of 1 km
can be used to increase the efficiency of the filter. This method however
does increase the total computational effort significantly, since for TLEs the
orbits needs to be propagated over the entire interval.

Furthermore, the classical orbit path filter was also investigated in the same
way and it was determined that simply adding a pad, even while taking
samples at the start, mid and end points of the interval, was not enough
to solve the problem of false elimination of pairs in the filter. Improving
the filter requires even more samples and a technique to find the minimum
orbit-to-orbit distance over the analysis interval.

However, these improvements require complex algorithms to find trends
in the minimum distance and these add significantly to the total compu-
tational loads and thus may not be beneficial. Furthermore, when using
this improved filter, some conjunctions were missed due to false rejection of
certain pairs.

Finally, the time filter was investigated and it was determined that the
orbit crossing intervals computed in the classical filter do not comply with
the actual time period near the node of these orbits, and the error will fur-
thermore increase with time. A functional flow diagram of the improved
code was set up which was not described in detail.

The period between the first two nodes of each object were determined
using osculating elements. This period is now used to determine the next
node crossings which is subsequently checked as well. A system can be set
up in which the check might skip some periods while still being accurate
enough. It was determined that using the time filter decreased the total
computation time significantly and could safely be applied.

In Coppola et al. (2009) this improved method of Woodburn et al. (2009)
was used to run an all-vs-all conjunction analysis using parallel processors
and machines. The total amount of data was split up in smaller groups
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which were then allocated to different processors. An analysis was done
using varying source data, time intervals, number of processors, machines,
group sizes, number of groups and tasks, and combinations of the first and
last filter.

5.2 Results of Filtering Methods

The results of the previously described filtering methods have been extracted
from their respective documents and are listed in Table 5.1, which is dis-
cussed below.

5.2.1 Catalog Date

For each method the date of the catalog which has been used for the analysis
is listed, along with the amount of objects n in that catalog. Some methods
were run on one or two satellites versus the catalog, while others analysed
the entire catalog versus itself. This has consequences for the amount of
object pairs p analysed with respect to a certain catalog size.

Then, the conjunction distance D defining when a close approach is
counted as a conjunction is listed for the different methods, along with the
time interval T for which the analysis was performed. Next to that, the
time step ∆t used in the time interval T is given for some methods. Finally,
the number of conjunctions c detected by the method is given, using the
previously described input. For fields that are empty, no data was given in
the corresponding document.

The catalog date in Hoots et al. (1984) is not given, but the catalog date
must be older than the document received date. In Khutorovsky et al. (1993)
an average value is given for catalogs starting from the stated catalog date.
The analysis by Klinkrad (1997) is done over a time interval of more than
14 months using multiple catalogs.

5.2.2 Number of Objects

The number of objects n in the analysed catalog is sometimes not exactly
given in the document, but rather a rounded off value is stated like a ‘pop-
ulation of over 8000 objects’ in Alarcon-Rodriguez et al. (2002). This is
likewise indicated in the table.

Furthermore, the amount of object pairs p analysed for an all-vs-all cat-
alog analysis (not all results in Table 5.1 are for an all-vs-all analysis) is
determined with

p � n2 � n

2
(5.18)
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Table 5.1: Comparison of the different conjunction analysis methods; their input parameters and number of conjunctions
detected.

method [author] catalog date [y.m.d] n [#] p [#] D [km] T [d] ∆t [s] c [#]

Hoots et al. (1984)   1983.12.23 4003 4003 100 1 84
Khutorovsky et al. (1993) ¡ 1992.06 �7000 �24496500 30 1 50 2000

Healy (1995) 1993.01.17 �7000 �24496500 2 1 140
Klinkrad (1997) 1995.12.04-1997.02.17 8210 16420 7.5 440 4596

Sanchez Ortiz et al. (2001) 1998.06.15 8119 8119 7.5 14 3
Alarcon-Rodriguez et al. (2002) 2002.05.15 ¡8000 ¡31996000 25 1 180 10546

Ting & Hai (2008) 2007.08.03 �12000 �71994000 25 1 425 116198
Woodburn et al. (2009) 2009.02.11 11970 71634465 5 1 5338
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since a satellite can not have a conjunction with itself (subtract n from
number of combinations n2), and every pair only has to be analysed once
(divide by two). After this analysis was done, the equation was verified
by Coppola et al. (2009), a reference which was found afterwards.

5.2.3 Conjunction Distance

The conjunction distance D is mostly given for a reference sphere, but for
the method of Klinkrad (1997) a reference ellipsoid is used. In the latter case
the average of the three dimensions of the ellipsoid was taken, for comparison
with the reference spheres of the other methods.

The data of Woodburn et al. (2009) was complemented with data of Cop-
pola et al. (2009) which partly overlapped. It was assumed that the same
results applied, since the research was done on the exact same catalog and
by some of the same people in the same time period and presented at the
same conference.

Three methods were run for varying conjunction distance D, which resulted
in a different number of conjunctions detected, see Table 5.2. The amount
of conjunctions in Khutorovsky et al. (1993) where the resulting average of
multiple runs (time intervals), and so can attain decimal values.

To be able to compare different methods with respect to each other, a re-
lation between the different input variables might be found. If trendlines
added to the above results, it is found that a polynomial of the second de-
gree has a perfect fit for all three cases. In setting up this trendline, the
top results of the first two methods are not taken into account, since they
deviate both in value as well as in position in the documents.

An attempt to compare the detection performance of different methods
was made by assuming that the number of conjunctions detected is pro-
portional to the amount of object pairs and the time interval analysed and
quadratically related to the conjunction diameter D (ignoring the linear and
constant terms in the polynomial):

c9pTD2 (5.19)

So, when calculating the ratio c
pTD2 for different values of D for the same

method, a constant value should result. However, this was barely the case
for (part of) two of the three methods. The equation above can thus not
safely be applied to compare different methods with respect to each other.
If this is done anyway, the results differ too much and the expected increase
in performance with newer methods is not obtained.

When the entire polynomial was used in calculating the ratio for each
method, a constant ratio did result. But since the polynomial is different
for each method, it cannot safely be applied to compare all methods with
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Figure 5.8: Distribution of minimum range at conjunction for all 5338 re-
ported conjunctions in (Coppola et al., 2009).

respect to each other. It can thus be stated that the amount of conjunctions
detected c is dependent on other variables as well, which were not taken into
account.

Furthermore, the abundance and domain of the results prove not to be
large enough to safely perform this kind of statistical analysis. Some of the
input values might not be accurate enough as well, and the methods differ
too much from each other.

Since the tried method did not have fruitful results, the plots and ratio
values are not shown here in detail here.

In Coppola et al. (2009), the minimum range of the conjunction was plotted
versus the reported number of conjunctions, see Figure 5.8. After analysis
of the inverse of this graph, it was found to show a perfect second order
polynomial function (e.g. c9D2), supporting the previous discussion. This
reference was found after the previously mentioned analysis had been done.

5.2.4 Time Interval

The analysed time interval T was not the same for the different methods,
although multiple methods used a time interval of one day. The method
of Woodburn et al. (2009) was also applied to a time span of 5 days, which
yielded 26933 conjunctions, so about a factor 5 more. The proportionality
with time interval assumed in Equation 5.19 was thus reasonable.
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5.2.5 Time Step

The time step ∆t used in the analysed time interval was optimised with
respect to the CPU running time for three methods, but for most methods
it was not given or used. The optimisation for the time step of Alarcon-
Rodriguez et al. (2002) and Ting & Hai (2008) can be seen in Table 5.3.

A smaller time step than the optimum value yields a longer running time
because the analysis has to be done at more points in the interval T . With
a larger time step however, more conjunctions pass the first sieves, which
are more efficient, and thus more conjunctions have to be analysed by the
last computationally intensive fine detection or relative distance function.

5.2.6 Filter Efficiency

The performance of the successive (pre)filters and sieves used in four meth-
ods can be seen in Table 5.4, for which data sometimes was extracted from
the text in certain documents. It lists the percentage of rejected object
pairs with respect to the amount of pairs analysed by a certain filter, and
the percentage that passed the filter with respect to the total amount of
pairs analysed at the beginning of the analysis.

In this way, the relative efficiency of the filters can be seen, and if this
is compared to the relative running time needed for the filter, an optimum
order might be determined. Similar filters in different methods have been
given the same name for better comparison.

5.2.7 Computation Time

In Alarcon-Rodriguez et al. (2002) and Ting & Hai (2008), a comparison
was made with older methods on the same machine, in order to assess the
performance of their newly defined method. This can be seen in Table 5.5, in
which the CPU running time and number of conjunctions detected is listed
for different methods.

For each of the researches, the input catalog, conjunction distance, thresh-
old distance and time interval were set to the same values in the different
methods analysed, in order to make a proper comparison. Nothing is said
about the time step however, but one might assume that for each method
an optimal value was used.

Alarcon-Rodriguez et al. (2002) used a 500 MHz Pentium III and Ting
& Hai (2008) used a 1.66 GHz Centrino Duo.

The results of Alarcon-Rodriguez et al. (2002) shown in this table indicate
that previous methods had a longer running time while being able to de-
tect less conjunctions. Especially the filtering method scores very poorly,
while Hoots et al. (1984) states that all 84 conjunctions were found by this
same filtering method compared to a truth model defined by a brute force
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Table 5.2: Number of conjunctions less than distance D, for three different
methods.

Khutorovsky et al. (1993) Healy (1995) Klinkrad (1997)
D [km] c D [km] c D [km] c

30.0 2000 2.00 140 7.500 4596
3.0 375 1.50 135 3.750 1167
2.0 166 1.00 57 2.500 513
1.0 41.6 0.75 33 1.500 189
0.5 10.7 0.50 18 0.750 44
0.3 4.1 0.40 12 0.500 18
0.2 2.7 0.25 6 0.375 8
0.1 0.65 0.15 2 0.300 6

Table 5.3: CPU running time versus time step ∆t.

Alarcon-Rodriguez et al. (2002) Ting & Hai (2008)
∆t [s] CPU time [m:s] ∆t [s] CPU time [m:s]

60 19:40 300 11:18
90 14:58 400 10:43
120 12:50 425 10:20
180 11:07 450 10:29
240 12:40 500 10:50
300 16:24
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Table 5.4: Performance of the successive filters/sieves for different methods.

Hoots et al. (1984)
prefilter rejected/analysed [%] passed/total [%]

p-a 23.5 76.5
geometrical 36.2 48.8
time 98.4 0.42
processing 80.7 0.08

Klinkrad (1997)
filter rejected/analysed [%] passed/total [%]

epoch 4.7 95.3
p-a 69.7 28.9
geometrical 2.2 28.23
time 94.4 1.58

Sanchez Ortiz et al. (2001)
filter rejected/analysed [%] passed/total [%]

epoch 13.5 86.5
p-a 69.5 26.4
geometrical 98.0 0.52
time 92.9 0.04

Alarcon-Rodriguez et al. (2002)
sieve rejected/analysed [%] passed/total [%]

p-a 59.4 40.6
X 74.3 10.4
Y 72.9 2.8
Z 50.8 1.4
r2 34.5 0.92
min. dist. 90.4 0.88
fine r2 41.9 0.51
fine det. 99.0 0.005

120



Table 5.5: CPU time and number of conjunctions c detected for different
methods.

Alarcon-Rodriguez et al. (2002)
method CPU time [m:s] c

filtering 30:34 101

sieve 20:53 9406
p-a + sieve 13:28 9363

smart sieve (ss) 11:07 10546

Ting & Hai (2008)
method CPU time [m:s] c

rel. dist. func. 181:44 116198
ss + rel. dist. func. 18:10 116198

proposed in ref. 10:20 116198

stepping technique. This means that either the brute force stepping tech-
nique can not find all conjunctions, which seems unlikely, or the method was
not applied very well by Alarcon-Rodriguez et al. (2002), or both.

Ting & Hai (2008) again improved previous versions, and shows that all
conjunctions are detected, by comparing it to other techniques which result
in the same number of conjunctions while using more CPU running time.
However, this could also mean that the results are biased because all methods
conclude with the relative distance function method. This only proves that
the sieves used prior to this function do not miss any conjunctions not also
missed by the function, but this function might not necessarily be able to
find all conjunctions. A different reference method is thus missing here.

Furthermore, the method of Hoots et al. (1984) was said to have a run-
time savings factor of 95 with respect to their brute force method.

The method of Woodburn et al. (2009) also gave computation time results,
both when using TLE data and interpolated ephemerides data, of which
the latter was determined by propagating the TLE data. Different filter
combinations were set up and tested on objects with different orbit regions.

The results showed that in the all-on-all test case the combinations of
multiple filters decreased the total running time by a maximum factor of 42
with respect to no filters used at all, when TLE data was used. In this case
however some conjunctions were missed.

When the orbit path filter was excluded a maximum gain of 18 could
be achieved. In this combination the apogee-perigee filter calculated the
precise values for the extremes. Although this added to the calculation time

1This result seems to be contradictory to the results of Hoots et al. (1984), see text for
details.
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up front, this was outweight by the increased number of rejected pairs.

In Coppola et al. (2009) it was also shown that applying these two filters
decreased computation time by a factor 17. Furthermore, it was shown that
the computation time can also be decreased by a smart choice of the number
of groups and tasks allocated to different processors or machines, and by us-
ing binary data instead of ASCII (American Standard Code for Information
Interchange) files.

Increasing the time interval by a factor 5 increased computation time by
a factor of about 4. This latter in-proportionality was to be expected since
some preprocessing needs to be done for both cases.

Finally, it was stated that the ephemeris memory footprint increases
very rapidly when increasing the catalog size and time interval. When the
memory footprint exceeds 3 GB a 64-bit operating system is required since
more memory storage is not possible on 32-bit machines.
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Chapter 6

TLE Catalog Analysis

In order to analyse a TLE catalog, or use its data to propagate one or more
objects, some steps need to be taken.

The data has to be downloaded (Section 6.1), and read from file into mem-
ory and converted to programming variable types (Section 6.2). Integrity
checks can be performed to make sure the data is valid. Then, some vari-
ables can be calculated which are not written explicitly in the TLE, but can
be derived from the data within a TLE (Section 6.3).

Once this has been done, the variables can be written as output to a text
file, which can be read in with Matlab code to perform statistical analysis
and make figures (Section 6.4).

All this (except for the Matlab part) is accomplished with c++ code which
has been written for Tudat as well. The structure of this code along with
some other useful functions is explained in Section 6.6.

6.1 Downloading TLE Data

A catalog dataset can be downloaded by making use of the TLERetriever
program of CelesTrak (Kelso, 2010a) (Chapter 4.1), which processes data
received from SpaceTrack (USSTRATCOM, 2004).

With this program one can download the most recent entire catalog
(which is updated twice per day), or a subset of the catalog, i.e. only
weather or navigation satellites, or satellites of one constellation, see also
Figure 4.2.

Furthermore, one can choose to download complete daily data, which
contains a set of all TLEs of that day. When one has datasets of multiple
days, one can process them in order to create the most complete catalog of
that moment, containing the single most recent TLE of every object it can
find. So even if the most recent TLE of an object was for instance from
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three days ago, it would now be included in the catalog.

The data is saved in a text file in the format which was explained in Chap-
ter 4. A user can choose between 2-line or 3-line data as well, the latter
containing an extra line with the common name of the object. A valid
SpaceTrack account is needed though, which has to be validated and acti-
vated by USSTRATCOM after registration.

6.2 TLE Reader

Once the data is downloaded and processed, it needs to be read into the
memory of a computer using programming code, if one wants to do analysis
with it. The exact details of the code will be given in Section 6.6, but a
general outline of all the functionality will be given first.

Since the TLE data has a specific format, i.e. with implied leading points,
exponents and numbers stacked together, the data needs to be read in and
converted to the appropriate variable types (integers, doubles, strings) by
the code.

Once this is done, some sanity checks can be performed, to see if all
TLEs are valid. For instance, each TLE needs to be made up out of two or
three lines, both lines need to start with the ‘1’ or ‘2’ integer, the checksum
of both lines has to be correct, the object ID’s of both lines need to be
the same, the data public users download always has the ‘U’ character for
unclassified data, and the orbital model is always ‘0’ nowadays.

If the integrity of a TLE does not appear to be correct, it is deleted from
the list and the program continues with the correct TLEs.

6.3 TLE Calculations

Once the integrity of the TLE data is checked, and the variables obtained
from the TLE are stored in memory using their corresponding variable
types, some calculations can be performed. Variables which are not ex-
plicitly stated in the TLE, but can be derived from the data in the TLE,
can then be stored as well.

For instance, from the mean motion n of an object which is stated in
its TLE in rev/day, converting to rad/s, one can determine the semi-major
axis a using the following equation

n �
c
µ

a3
(6.1)

in which µ, the gravitational parameter of the Earth is defined in Chap-
ter 3a,d its value can be found in the now following table.

124



Table 6.1: Fundamental WGS-72 and WGS-84 constants. (Vallado et al.,
2006)

Constant WGS-72 Value WGS-84 Value

µ 398,600.8 km3/s2 398,600.4418 km3/s2

RC 6378.135 km 6378.137 km
J2 0.001 082 616 0.001 082 629 989 05
J3 -0.000 002 538 81 -0.000 002 532 153 06
J4 -0.000 001 655 97 -0.000 001 610 987 61

For TLEs and SGP4, the WGS-72 (World Geodetic System) constants
were originally used (Hoots & Roehrich, 1980), although it might be that
internally USSTRATCOM has switched to the WGS-84 constants, but this
is unfortunately not known to the public. The WGS-72 set is used here and
in subsequent analysis, as this was recommended in Vallado et al. (2006).

See Table 6.1 for an overview of the constants in both sets.

Since one also knows the eccentricity e from the TLE, the radius at perigee
rp and radius at apogee ra can be determined with the following equations

rp � ap1� eq (6.2)

ra � ap1� eq (6.3)

see also Chapter 3.

Since the TLE can only state the revolution number up to 99999, which
loops back to 0, an attempt was made to recover the total number of revo-
lutions by making use of the objects’ launch year and mean motion. Simply
multiplying the orbital lifetime in days of a satellite with the average of its
mean motion n (now in rev/day) over this lifetime will result in the number
of orbits.

The launch year of an object is given in the TLE, so the lifetime can be
determined with an uncertainty of �1 year. To determine the average mean
motion however, one would need all TLEs of all objects, which unfortunately
are not all available.

An approximation is made by using the current mean motion. When one
uses this value in the calculations, an approximate number of total revolu-
tions results. When one compares this value to the TLE revolution number
of the object, which is exact (although missing a multiple of 100k), one can
add the appropriate multiple of 100,000 revolutions to get the exact total
number of revolutions.

Finally, all variables that were read in and calculated, can be written as

125



output to a text file in tabular form, for subsequent analysis.

6.4 TLE Statistical Analysis

The tabular output data can now be read into Matlab for statistical analysis.
Histograms of some interesting variables in terms of number of objects

were made, see Figures 6.1 - 6.10, for complete and processed catalog files
of the 10th of January 2011 and the 10th of April 2011. The former catalog
is indicated in blue and the latter in red, so that a nice comparison can be
made.

The increment of the variable on the horizontal axis can be seen in the
titles of the figures, as well as the total number of objects in that catalog.

Some variables of the TLE objects are plotted versus each other in Fig-
ures 6.11 - 6.15. For these plots only data from the catalog of 2011.04.10 was
used, as they did not differ that much from the same graphs of the catalog
of three months older.

6.4.1 TLE Object Histograms

In Figure 6.1 a histogram of the Epoch Day can be seen, which shows that
most TLEs are very recent.

The bulk of objects has a maximum age of 2-3 days, while the maximum
age of a certain TLE is less than 30 days here. This is a result of the
processing done by SpaceTrack or CelesTrak, which kicks out outdated TLEs
older than 30 days. Negative values indicate the previous year (2010) here,
so that the graph is more clearly distributed on one small axis.

Figure 6.2 shows the inclination i versus number of objects, which contains
a small peak above 0 degrees representing the geostationary satellites, with
their ground tracks following the equator. The next peak is due to the
navigation and Molniya orbits, of which the latter have an inclination of
about 63.4 degrees.

Two other peaks are of the debris clouds of the Cosmos 2251 and Irid-
ium 31 satellites, with inclinations of 74 and 86 degrees (Kelso, 2010c) re-
spectively. The largest peak can be seen at the end, around 98 degrees
inclination, around which sun-synchronous orbits are situated.

Furthermore, there are a large number of semi-polar orbits around 82
degrees, while some other smaller peaks are due to the latitudes of launch
sites with certain azimuth launch constraints.

The right ascension of the ascending node Ω in Figure 6.3 shows uniformly
distributed scattered results, which was to be expected, although one peak
seems to be shifted over 30 degrees in 3 months. The cause for this effect is
unclear.
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Figure 6.1: Histogram of the Epoch Day.
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Figure 6.2: Histogram of the inclination i.
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One could argue that all sun-synchronous orbits have about the same Ω
at a particular time. However, after three months Ω would then have to be
changed by 360{4 � 90�, which is not the case.

The eccentricity e can be seen in Figure 6.4, in which most objects are
concentrated near the zero value, as most orbits are (near-) circular. This
distribution can be seen more clearly in Figure 6.5, which is zoomed in to
the 0-0.1 region.

Furthermore, a peak is seen in the 0.65-0.75 region, which can be seen
more clearly in Figure 6.6. This region includes GTO and Molniya objects,
both with eccentricities around 0.72.

The argument of perigee ω and mean anomaly M are distributed evenly
in Figures 6.7 and 6.8, which was to be expected, as the objects are scattered
around the Earth.

The mean anomaly does seem to have some peaks near 0/360 degrees,
indicating that more objects would be closer to the their perigee. This does
not seem logical however, since one would expect more objects near the
apogee, as the objects move more slowly there.

But, since most orbits are circular, the peak might also occur due to the
fact that the perigee is not always well defined for a circular orbit. A certain
reference value might be taken for near-circular objects for which this is the
case.

In the histogram of the mean motion n some peaks can be seen as well.
The peak at 1 rev/day represents the GEO objects, while the peak

around 2 rev/day is due to the navigation and communication constellations
of satellites like GPS and GLONASS, and due to the GTO objects. The
peaks around 12.5, 13.8 and 14.5 rev/day are LEO objects corresponding to
preferred orbital heights for science, weather and remote sensing satellite,
respectively.

In Figure 6.10 the total number of revolutions can be seen.
The amount of objects decreases with increasing revolutions, since newer

objects are more abundant, due to the decay of objects into the Earth’s at-
mosphere. The two peaks are due to the debris clouds of the Chinese ASAT
(Anti-SATellite weapon) test and collision.

The TLE variables not shown here were analysed as well, but their his-
tograms were not interesting enough to show in this report. Some of them
will be discussed shortly now.

For the TLE line number it was a nice extra check to see if all lines 1
and 2 of the catalog carried the integer 1 and 2 respectively, which they did.
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Figure 6.3: Histogram of the right ascension of the ascending node Ω.
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Figure 6.4: Histogram of the eccentricity e.
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Figure 6.5: Zoomed in version of Figure 6.4 from 0-0.1.
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Figure 6.6: Zoomed in version of Figure 6.4 from 0.65-0.75.
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Figure 6.7: Histogram of the argument of perigee ω.
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Figure 6.8: Histogram of the mean anomaly M .
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Figure 6.9: Histogram of the mean motion n.
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Figure 6.10: Histogram of the total revolution number.
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The same story holds for the orbital model and classification which were
always ‘0’ and ‘U’ respectively.

The modulo-10 checksum showed a more or less constant distribution over
the numbers 0 to 9, which is to be expected after little less than 15k objects
are taken into account.

The object ID number gave scattered results, although the number of ob-
jects seems to increase somewhat linearly with time. This is to be expected
since older missions (smaller object ID numbers) have had more time to
burn up into the atmosphere and thus disappear from the catalog.

Some large peaks and troughs can be seen in this particular histogram
as well, maybe because some in-orbit breakup events caused a large number
of new objects to be discovered in serial order, thus creating a peak or a
trough when they all have burned up in the atmosphere.

The histogram for the launch year shows two very large peaks in 1993 and
1999, the launch year of TLE names ‘COSMOS 2251’ and ‘FENGYUN 1C’
respectively. These two satellites were the source of very large clouds of
debris, as explained earlier.

Some smaller peaks in the 1960s to 1980s might indicate some very pro-
ductive years in the cold war. The same debris cloud peaks can be seen in
the launch number graphs.

For increasing TLE number, the number of objects decreases linearly, since
more new objects with less TLEs remain, as older objects with more TLEs
had more time to disappear into the atmosphere.

Unfortunately, it was not possible to determine the total TLE number for
an object from the looped (99999 Ñ 1 ) version, like done for the revolution
number. To do this, one would need to spit through the entire database of
catalogs for every object since its creation, and count the number of TLEs,
which is impossible without access to this entire database.

6.4.2 TLE Object Variable Plots

The inclination i is plotted versus the eccentricity e in Figure 6.11, in which
each dot represents one object, and the different orbital regions are coloured.

The GEO region in the lower left corner can be clearly seen to have very
low inclination and eccentricity values, which was to be expected.

The LEO objects hold low eccentricity values (if their eccentricity would
be larger, they would decay to circular orbits), and have various inclina-
tions. The groups at certain inclination bands were explained earlier with
the inclination histogram.

Furthermore, the GTO region can be clearly seen to have the same ec-
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Figure 6.11: Scatter plot of inclination i versus eccentricity e, for the catalog
of 2011.04.10. Each dot represents one object, coloured per orbital region.

centricity, of which the group with the higher inclinations represents the
Molniya orbits.

In Figure 6.12 one can see the eccentricity e versus the semi-major axis a.
The graph has an upper limit, which can be explained to be the limit of
eccentricity that an object can have for a certain semi-major axis, or else it
would decay into the atmosphere.

The LEO, GTO and GEO objects can be clearly seen in their semi-
major-axis bands, with corresponding eccentricities.

Figure 6.13 shows the inclination i versus semi-major axis a for all objects,
showing some similar results as explained previously. Interesting to note are
the groups of MEO objects within a narrow band of semi-major axis and
inclination, belonging to the constellations.

The apogee radius ra is plotted versus the perigee radius rp in Figure 6.14,
which has been zoomed in excluding a few ‘wanderers’ to present the bulk
more clearly in Figure 6.15. These wanderers can be seen to have very large
apogee values. Which satellites this are exactly, will be shown later.

In Figure 6.15, the black lines represent the borders between orbital re-
gions, defined in Table 4.1. The objects belonging to a certain orbital region
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Figure 6.12: Scatter plot of eccentricity e versus semi-major axis a, for the
catalog of 2011.04.10. Each dot represents one object, coloured per orbital
region.
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Figure 6.13: Scatter plot of inclination i versus semi-major axis a, for the
catalog of 2011.04.10. Each dot represents one object, coloured per orbital
region.
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Figure 6.14: Scatter plot of apogee radius ra versus perigee radius rp, for
the catalog of 2011.04.10, each dot represents one object, colored per orbital
region.
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Figure 6.15: Zoomed in version of Figure 6.14, with added orbital region
boundary lines.
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can be clearly seen to be fitted in between these lines. An upper border
is defined here as well, representing the line above which the apogee of an
object would turn into a perigee, positioning itself underneath the line again.

For the MEO objects, there are some short lines of objects visible, which
could be more clearly seen when zooming in further. These lines represent
constellations of satellites, with a constant perigee over apogee ratio, such
that they have an equal orbital period.

6.4.3 Fragment and Source Counts

A function was implemented which counts the current amount of fragmented
objects in the catalog belonging to one original payload. It does this by
looking at both the objects’ name, which is equal for different parts of debris
belonging to one original payload, as well as the combination of the objects’
launch year and number. This way, it can be determined if multiple objects
originate from the same launched payload, since some objects have the same
name while not originating from the same payload.

The resulting list is sorted in descending order, of which the top-10 can
be seen in Table 6.2, in which the results for the two different analysed cat-
alogs have been combined for comparison.

It can be seen that the amount of debris objects for some object sources
decreased in these three months. This mostly seems to be the case for the
ASAT test and collision event treated earlier (top-3). Since these events
happened recently and the clouds are relatively large, the objects of these
clouds are more likely to decay faster into the Earth’s atmosphere.

Most of the amounts of the other sources seem to stay fairly constant.
Another reason could be that the SSN made less observations in the latter
period, or stopped observing some objects.

A similar function was implemented which counts the amount of objects
with the tag ‘R/B’ or ‘DEB’ in their name, corresponding to rocket body or
(fragmented) debris objects. Table 6.3 lists the results for the two catalogs.

It can be seen that the major part of the catalog is filled with debris
objects, while there are a large amount of rocket bodies as well. The latter
actually increased, while mainly debris objects disappeared from the catalog.

The other objects in the list are mainly (non-)active payloads.

There are some other tags as well, like ‘(YO)’ for yo-yo de-spin devices
and ‘(metal obj)’ for general metal objects.

However, the abundance of these tag name categories compared to their
marginal appearance made the implementation of all these tags too tedious.
If one is interested in any of these sources as well, the function could easily
be extended.
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Table 6.2: Count in descending order of number of fragments per object
name & launch year/number.

launch 2011.01.10 2011.04.10
year no. TLE object name # #

1999 25 FENGYUN 1C DEB 2791 2761
1993 36 COSMOS 2251 DEB 1313 1307
1997 51 IRIDIUM 33 DEB 462 457
1981 53 COSMOS 1275 DEB 251 251
1970 25 THORAD AGENA D DEB 243 243
1975 52 DELTA 1 DEB 207 207
1999 57 CZ-4 DEB 186 184
1961 15 THOR ABLESTAR DEB 178 175
1973 86 DELTA 1 DEB 173 173
1992 93 SL-16 DEB 169 169

Table 6.3: Count of debris, rocket body or other objects.

2011.01.10 2011.04.10

Total number of objects 14638 14541
Debris (DEB) objects 9807 9723
Rocket Bodies (R/B) 1083 1085

All other objects 3748 3733

Furthermore, the amount of objects within a certain orbital region was
counted as well, see Table 6.4. As could already be seen from previous
analysis, most objects are in the LEO region, followed by the HEO and
GEO regions.

The amount of GEO objects increased, while all other regions decreased.
For most regions the decrease could be explained by atmospheric decay,
except for the MEO region. These MEO objects could have been switched
to another region however.

To check the evolution of the catalog, a current version was downloaded and
processed. It showed even less objects than before, proving the decreasing
trend.
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Table 6.4: Count of different orbital regime objects.

2011.01.10 2011.04.10

Total number of objects 14638 14541
LEO objects 11358 11281

MEO objects 353 350
GEO objects 984 986
GTO objects 482 476
HEO objects 1461 1448

All other objects 0 0

6.5 Sorting

A function was implemented to sort the catalog with respect to a certain
variable, of which an example for the apogee radius ra, sorted descendingly,
can be seen in Table 6.5, for the catalog of 2011.01.10.pm. The top-10 is
listed along with some other relevant variables, like object name (as in their
TLE), object ID, launch year (l.y.), apogee and perigee radius (ra and rp),
semi-major axis a, eccentricity e and inclination i.

The record holder, ‘PROGNOZ 6’, is the only one out of 10 original Prognoz
satellites (launched by Russia in the 1970s and 1980s) still in the catalog,
and its mission was to study solar radiation and plasma, and the Earth’s
magnetosphere (Astronautica, 2012).

In the catalog of three months later, its perigee radius already decreased
by over 400 kilometres, indicating that it might decay into the Earth atmo-
sphere soon. Its apogee radius also went up by more than 400 km though,
most probably due to the gravitational attraction of the Moon (and partly
also the Sun), as the object is already more than halfway to the Moon when
located in the apogee of its orbit!

In the catalog of three months later, the object ‘ATLAS AGENA D R/B’
already disappeared, which after inspection could be seen to have decayed
on the 18th of January 2011 (Kelso, 2010a).
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Table 6.5: Top-10 of objects with largest apogee radius, along with some other relevant variables.

Object Name ID l.y. ra [km] rp [km] a [km] e [-] i [deg]

PROGNOZ 6 10370 1977 201048 9951 105499 0.91 61.03
GEOTAIL 22049 1992 191782 61455 126619 0.51 38.86
SL-6 R/B(2) 32705 1977 187669 20732 104200 0.80 52.82
ASTRON 13901 1983 187184 29847 108515 0.72 68.92
SL-12 R/B 20413 1983 185602 28839 107220 0.73 68.45
OPS 3662 (VELA 3) 836 1964 183873 35501 109687 0.68 75.51
INTEGRAL 27540 2002 165219 10217 87718 0.88 79.56
OGO 5 3138 1968 152383 7422 79903 0.91 45.94
ATLAS AGENA D R/B 3145 1968 152258 6598 79428 0.92 47.57
CXO 25867 1999 149111 12462 80786 0.85 68.28
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6.6 TLE Code Implementation

The code which was written to perform the above analysis will now be ex-
plained, along with some functionalities which were not mentioned yet. The
programming language used is C++, and most of the functions have been
implemented in Tudat as well.

A flow diagram of the processes and data streams in the TLE input process,
and the functions of the code, can be seen in Figure 6.16. The flow diagrams
shown here, as well as subsequently in this report, are not standard (C++)
coding diagrams, as the level of detail is not that deep.

These ‘official’ flow diagram formats exist to show the process of the
actual code in detail, containing every for-loop and if-structure. The pur-
pose here is moreover to give a general macro overview of how the code was
setup at the highest level, showing the largest classes, functions and data
structures only.

The process starts with the measurements made by the SSN, which are con-
verted to TLE data and made available on SpaceTrack. This data is then
downloaded and processed by the TLERetriever of CelesTrak, like explained
before.

The TLE data is saved in text files and are then read in by Tudat C++
code, which starts with the file reader class. The text file is opened and its
lines are stored as strings by the text file reader class. Lines can be skipped
if needed, and lines with a specific starting character can be ignored as well.

The TLE text file reader class then converts the strings into the TLE
variable types, according to the format description of Chapter 4. These vari-
ables are stored in the TLE data class, of which one object per TLE is made.

When all the data is converted, the variables can be analysed to check
for file integrity. To see if the the TLEs are valid, the checks, which were
described above, are performed, i.e. certain variables always have certain
values.

When all TLEs are checked to be valid, and the invalid TLEs are deleted,
some extra variables can be calculated with the TLE data, as explained
above. These new variables are also stored in the TLE data object. In this
calculation process, some WGS constants are used, which are defined in the
WGS constants class, see also Table 6.1.
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Figure 6.16: Flow diagram of the TLE input process. See legend for the explanation of the block types. The first 3 blocks
are performed by external institutions, while the fourth and fifth are performed using an external program.
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The TLE objects can now be divided into subgroups. A percentage
of the catalog can be created, with randomly picked objects, so as to be
a representative smaller catalog. This can also be done by specifying the
amount of objects for the new randomly chosen subgroup.

Furthermore, the catalog can be subdivided into the different orbital
regimes like defined in Chapter 4. This leads to new groups of objects which
can later on be written to separate files again.

Other options include a sort function which can sort the entire catalog with
respect to a certain variable in ascending/descending order. This sorted
catalog can then also be written to a text file.

The number of objects originating from one launch and carrying the
same name (so originating from the same initial body) can be counted and
be written to a text file in ascending/descending order. The number of ob-
jects carrying the tag ‘R/B’ (Rocket Body) or ‘DEB’ (Debris) can also be
counted and written to a text file as output.

There are two functions which can write the entire catalog or a subgroup
to a text file, respectively. One writes the data as the original TLEs which
can be used by the SGP4 propagator. The other writes certain specified
converted variables in tabular form according to a specified order, which
can for instance be read into Matlab to make statistical figures.

A copy of the code including an explanation of all functions can be down-
loaded from the repository of the Tudat project, see Tudat website (AS,
2011).
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Chapter 7

SGP4 Propagator
Implementation

Now that the TLE reader is completed, the information contained in the
TLEs can be read and used by the SGP4 propagator.

There exist multiple versions of this propagator on the internet, most
of which are made by individuals, but all stemming from the original code
published in Hoots & Roehrich (1980). This code was described in a more
clear way in Hoots et al. (2004), in which a history of the evolution of the
analytical orbit modelling in the U.S. Space Surveillance System was treated.

An improved version of this original SGP4/SDP4 code was published in Val-
lado et al. (2006), which was now combinedly called SGP4. This improved
version was not published by USSTRATCOM (which generates the TLEs),
but was rather made through the combined efforts of the public scientific
community, who tried their best to find possible improvements to the origi-
nal code, and thought about changes that most probably would have been
implemented by now. The results of these improvements were verified to be
correct.

In Miura (2009) it was even concluded, that NASA JSC should imple-
ment this new revised version of the code, as this would lead to more accurate
results by orders of magnitude over longer periods of time. The revised code
was also compared to SATRAK, a ‘black-box’ program released to selected
agencies, and led to similar positive results.

In conclusion, the revised SGP4 code described in Vallado et al. (2006)
is currently believed to be the best available way to propagate the objects
of the TLE catalog. This code is therefore used in this thesis.
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7.1 SGP4 Propagator Code Implementation

The revised SGP4 code was released in a number of languages, of which one
is claimed to be C++, but this is actually original C code. This C version
is used to allow for a proper integration in Tudat (which is programmed in
C++), and the rest of the code written for this thesis.

An SGP4 handler class is implemented which handles the input and
output of the SGP4 propagator.

7.1.1 Tudat SGP4 Propagator Handler

A flow diagram of the data and processes of the SGP4 propagator and its
code structure can be seen in Figure 7.1. The diagram starts where the TLE
reader diagram, shown in Chapter 6, left off at the SGP4 propagator block.

The TLE data that was read by the TLE reader, might have been trans-
formed into subgroups, depending on the application. Either these subgroup
TLE data files, an entire TLE catalog file, or even a file with only containing
one TLE can be used as an input for the SGP4 propagator. Along with the
name and location of this input file some other input data are needed (which
can be set in any order).

First of all, the operations mode needs to be chosen, which can be set by
one of the following characters:

‘a’ = AFSPC is the best understanding of how the AFSPC version of the
SGP4 code works, which was also used in verifying the revised version
in Vallado et al. (2006).

‘i’ = improved is the revised SGP4 version of the code resulting in smoother
behavior and improved results.

Then the type of run needs to be indicated, which can be picked by making
use of one of the following characters:

‘m’ = manual is the most general manual running mode, for which the
time interval can be set manually to three different modes which will
be described later: minutes from epoch, year and day of year, and date
and time. This mode is set as default.

‘v’ = verification is the verification run which uses a special modified
TLE file that comes with the release of the code, and is used to verify
if the SGP4 code is working. The resulting ephemerides data can be
compared with the data which is listed in Vallado et al. (2006).

‘c’ = compare is a running mode which is described as comparing 1 year of
full satellite catalog data. However, when testing this mode, the result
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Figure 7.1: Flow diagram of the SGP4 input/output process. See legend for
the explanation of the block types.
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was that for each TLE used as input, ephemerides were generated for
a time interval of -1440 to 1440 minutes from epoch with a time step
of 10 minutes, which can thus just as easily be done with the manual
mode.

When choosing manual input, one can choose the type of input and the
analysis interval through one the following functions:

Minutes From Epoch sets the analysis interval with two doubles, one for
the starting time and end time respectively, counted as minutes from
the epoch of the TLE.

Date and Time sets the interval using two times five consecutive integers
and one double, containing the starting and stopping year, month,
day, hour, minute and second, respectively.

Year and Day sets the interval using a starting and stopping year integer
and day of that year as a double.

Furthermore, the time step ∆t in minutes can be set as well, using a double.
One can also choose which set of constants is used, by setting one of the
following:

wgs72old are the WGS72 constants listed in the original description of the
SGP4/SDP4 code (Hoots & Roehrich, 1980). They are of low-precision
however.

wgs72 are the WGS72 constants with higher precision, variables are derived
from one another here. Since this set of values was used in the newer
publication, this is the default set of constants used. Most external
programs also make use of this set, so this will create less difficulties
when any two different programs are mixed.

wgs84 sets the newer WGS84 constants to be used. It might be possi-
ble that USSTRATCOM uses these constants nowadays, but this has
never been published. The accuracy of the results of the SGP4 prop-
agator will not really be impacted, so these constants only need to be
set when using external programs which make use of this set as well.

Finally, the type and order of ephemerides output combined with their epoch
can be set, either through one of the following sets of variables, or all of the
variables individually:

Epoch lists the epoch of each ephemeris either in minutes from epoch,
Julian date or ‘date time’ format as described above.
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Cartesian State Vector lists the Cartesian coordinates x, y, z and their
time derivatives 9x, 9y, 9z at each time instance in the interval. They are
defined in the ECI TEME reference frame described in Section 4.4.

Keplerian Elements Lists any of the following Keplerian elements (with
their SGP4 variable name between brackets) of the ephemeris: semi-
latus rectum (p), semi-major axis (a), eccentricity (ecc), inclination
(incl), longitude of ascending node (omega), argument of perigee (argp),
true anomaly (nu), mean anomaly (m), argument of latitude (arglat),
true longitude (truelon) and longitude of periapsis (longper).

After all of the above described input settings have been set, the SGP4
propagator can be run. It will then produce an output file containing the
set output variables like epoch, state-vector and/or orbital parameters. For
some select functions (for example: propagating only one object to one
time instance) this data will be stored in an array/vector in the computer’s
memory and will be used in the conjunction analysis process.

7.1.2 Tudat External SGP4 Propagator Code

A flow diagram containing the code structure of the external SGP4 propa-
gator can be seen in Figure 7.2. The code consists of the following three files
containing functions which are called from the SGP4 propagator handler, or
each other:

SGP4Ext contains general mathematical functions, as well as a Kepler’s
equation solver, conversion from Cartesian to Kepler elements as well
as date/time, Julian date and year / day of the year conversions.

SGP4IO comprises the reading, converting and saving of the variables in
the TLE input file, as well as converting the different possible input
intervals to Julian date.

SGP4Unit holds all functions originally listed in Hoots & Roehrich (1980),
which are now improved. A description of these functions follows be-
low.
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Figure 7.2: Flow diagram containing the code structure of the SGP4 propagator from Vallado et al. (2006).
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The functions of the analytical SGP4 propagator described in Vallado et al.
(2006) are:

dpper determines deep space long-period periodic contributions to the mean
elements using a recurring function.

dscom provides deep space common items used by both the secular and
periodic subroutines, and is a reorganisation of the original ‘dpper’
function.

dsinit calculates deep space contributions to the derivative of the mean
motion, due to geopotential resonance.

dspace analyses deep space contributions to the mean elements for a per-
turbing third body, averaged over one revolution of the Sun and Moon.
For Earth resonance effects, the effects have been averaged over a num-
ber of revolutions of the satellite, using the mean motion.

initl initializes the SGP4 propagator. All the initialization is done here
instead of having multiple loops inside other routines.

sgp4init initializes variables for SGP4.

sgp4 is the sgp4 prediction model from AFSPC.

gstime finds the Greenwich sidereal time.

getgravconst gets the constants for the propagator as chosen by the user.
The common usage is WGS72.

The code works as follows, following Figure 7.2.
When the code is started up in the outer loop, it reads 1 TLE, converts

the input interval to Julian date, and initialises the variables for SGP4 and
the propagator. Furthermore, it receives the constants used, and finds the
Greenwich sidereal time for that epoch.

Then it checks if the object is defined as ‘deep-space’ (period larger
than 225 minutes) or as ‘near-Earth’, and applies the deep space routines
only if needed. The code then continues in the inner loop to determine all
ephemerides for that object. When the entire interval has been analysed,
the inner loop is completed and the outer loop is entered again, to start with
the next TLE.

Since for each TLE the SGP4 propagator is now only initialised once,
using the new inner and outer loops, it is 10% faster than the old way de-
scribed in Hoots & Roehrich (1980) in which the initialisation was integrated
in only one loop.
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Applying the SGP4 propagator to the entire catalog file, resulted in so-
called error codes 1 and 6 for some 20 objects, which were removed from
subsequent analyses. Error number 1 occurs when the eccentricity somehow
gets below 0.0 or above 1.0 during propagation, while error number 6 occurs
when an object is flagged as decaying.

Furthermore, any not-flagged decaying objects negatively influencing the
results of analyses done in this report were removed from the catalog as well.

7.2 SGP4 Propagator Verification

To verify the proper implementation of the code, and to verify the validity
of the results of the SGP4 propagator, the results of three reference doc-
uments were reproduced. As a start, the verification run described before
was carried out, for which the results are listed in Hoots & Roehrich (1980),
and these were verified to be correct.

This document also contained seven figures with plotted results in terms
of Keplerian or Cartesian elements of the SGP4 propagator. These figures
were reproduced, of which two can be seen in Figures 7.4 and 7.6, with the
originals in Figures 7.3 and 7.5, respectively.

Unfortunately, a working copy of the original code of Hoots & Roehrich
(1980) is not at hand, so the results of the old propagator indicated here as
‘STR#3’, could not be reproduced. However, after verification of all figures,
it is proven that the produced ephemerides are correct, both as Keplerian
and as Cartesian elements.

Furthermore, at the end of Hoots & Roehrich (1980) one tabular example
is given of each of the orbital models. The original tables of the SGP4 and
SDP4 orbital models can be seen in Tables 7.1 and 7.3. The TLE which
was used to produce these tables was listed as well, so the tables could be
reproduced with the newly implemented code, as can be seen in Tables 7.2
and 7.2.

The results can be seen to match from five up to eight significant num-
bers. The difference is due to the improvements made in the newer version
of the code.

Finally, in Woodburn et al. (2009), a graph of plotted results with its
corresponding TLE can be found as well, see Figure 7.7. In this figure the
radius of the object is plotted as well as its osculating and mean perigee and
apogee.

The osculating perigee and apogee were taken from the Keplerian el-
ements ephemerides resulting from the SGP4 propagator, while the radius
was obtained by taking the square root of the squared Cartesian coordinates.

152



Figure 7.3: Original Figure 2 (top) from Vallado et al. (2006), object 23599.
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Figure 7.4: Recreated Figure 2 (top) from Vallado et al. (2006), object
23599.
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Figure 7.5: Original Figure 2 (bottom) from Vallado et al. (2006), object
23599.
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Figure 7.6: Recreated Figure 2 (bottom) from Vallado et al. (2006), object
23599.
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Table 7.1: Original SGP4 table from Page 82 of Hoots & Roehrich (1980).

Table 7.2: Recreated SGP4 table from Page 82 of Hoots & Roehrich (1980).

SDP4 TSINCE X Y Z

0.00000000 2328.96975262 -5995.22051338 1719.97297192
360.00000000 2456.10706533 -6071.93855503 1222.89768554
720.00000000 2567.56229695 -6112.50383922 713.96374435

1080.00000000 2663.08964352 -6115.48290885 196.40072866
1440.00000000 2742.55398832 -6079.67009123 -326.39012649

XDOT YDOT ZDOT

2.91207328 -0.98341796 -7.09081621
2.67939004 -0.44829081 -7.22879216
2.44024575 0.09810900 -7.31995926
2.19612156 0.65241509 -7.36282415
1.94849765 1.21107268 -7.35619313
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Table 7.3: Original SDP4 table from Page 83 of Hoots & Roehrich (1980).

Table 7.4: Recreated SDP4 table from Page 83 of Hoots & Roehrich (1980).

SDP4 TSINCE X Y Z

0.00000000 7473.37102491 428.94748312 5828.74846783
360.00000000 -3305.22148694 32410.84323331 -24697.16974954
720.00000000 14271.29083858 24110.44309009 -4725.76320143

1080.00000000 -9990.05800009 22717.34212448 -23616.88515553
1440.00000000 9787.87836256 33753.32249667 -15030.79874625

XDOT YDOT ZDOT

5.10715539 6.44468031 -0.18613330
-1.30113732 -1.15131560 -0.28333582
-0.32050453 2.67984154 -2.08405436
-1.01667439 -2.29026798 0.72892334
-1.09425155 0.92358991 -1.52231101
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Figure 7.7: Original Figure 2 from Woodburn et al. (2009), object 26281.
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Figure 7.8: Recreated Figure 2 from Woodburn et al. (2009), object 26281.
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Although it is not clear how the mean values were generated in the
reference document, in the recreation the mean was taken as an average of
the osculating elements over one orbital period. This seems to be close to
the reference document, but not exactly (difference is approximately 1 km).
The mean values directly generated from the TLE variables matched even
less well.

7.3 Catalog Plots

When an entire catalog is taken as the TLE input source file, and it is
propagated to only one moment in time, a 3D representation of the location
of all objects in that catalog can be made, using the produced Cartesian
components.

Exactly this was done for the catalog of 2011.05.05 am which contained
14,394 objects, and was propagated to 2011.05.05 12:00:00. See Figures 7.9
and 7.10 for a 3D plot of the location of these propagated objects with
respect to the Earth, for the LEO region, viewed from the plane of the
equator and the North pole axis respectively.

Furthermore, see Figures 7.11 and 7.12 for the same plot, but now for the
GEO region, in which the geostationary ring of satellites is clearly visible.
The LEO region can also here be seen to have the highest abundance of
objects.

The same catalog was used again, but now each object was propagated to
its TLE epoch. Propagation is still needed here, as the SGP4 propagator is
used to determine the state vector of the objects at the epoch of the TLE.
The resulting plots can be seen in figures 7.13 and 7.14, in which the Earth
is drawn merely for scale, and not for orientation. The latter is because each
TLE has a different Epoch, and consequently would each need a different
orientation of the Earth in one plot.

The figure makes for a peculiar sight at first glance. It seems like almost
all objects are located in the equator plane, while the measurements made
by the SSN are done all around the world, and are averaged over a period
of time to form the TLE.

It thus seems to be the case that the TLEs are produced in such a way
that the position at the TLE epoch is defined as being on the equator, at
the location of the node of the orbit. Why just a few objects are positioned
away from the equator at their TLE epoch is unclear.

Two orbit starting points with constellations of satellites can clearly be
seen in the MEO region, in Figure 7.14.
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Figure 7.9: All 2011.05.05 am catalog objects propagated to 2011.05.05
12:00:00, LEO ring equator view.
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Figure 7.10: All 2011.05.05 am catalog objects propagated to 2011.05.05
12:00:00, LEO ring North pole view.
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Figure 7.11: All 2011.05.05 am catalog objects propagated to 2011.05.05
12:00:00, GEO ring equator view.

161



Figure 7.12: All 2011.05.05 am catalog objects propagated to 2011.05.05
12:00:00, GEO ring North pole view.

Figure 7.13: All 2011.05.05 am catalog objects propagated to their TLE
epoch, GEO ring equator view.
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Figure 7.14: All 2011.05.05 am catalog objects propagated to their TLE
epoch, GEO ring North pole view.
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7.4 Cartesian Component Plots

To eventually be able to establish a basis for conjunction analysis, objects
in the catalog need to be propagated for a certain interval of time T , at
following time instances ti, defined by a time step ∆t, resulting in Cartesian
coordinates at each of those time instances.

As a reference method, conjunction analysis will first be done by a so-
called ‘brute-force’ method, which simply subtracts the coordinates of one
object from another, resulting in the vector between the pair of objects, and
thus their distance.

However, to be able to determine the minimum conjunction distance D
in this interval accurately, the position of both objects in this time interval
needs to be accurately determined as well. That is, the minima and maxima
in the relative coordinates need to be well defined in order for the minimum
of the conjunction distance to be reliably assessed.

To do this, the time step ∆t needs to be small enough that these extrema
are reasonably well described, so that not an entire extremum is missed in
the process. If the latter is the case, then, when defining a certain conjunc-
tion distance threshold, a pair of objects might be missed in the process,
while in reality their minimum distance is lower than this threshold.

The above is illustrated in Figures 7.15 - 7.19, in which an example is given
of a propagated object from each of the previously defined orbital subgroups:
LEO, MEO, GEO, GTO and HEO. One TLE was taken from each subgroup
created by the TLE reader of Chapter 6 and their ephemerides were plotted
for a period of 100 minutes. Since for the GEO and GTO objects one period
and its extrema can not really be seen in these 100 minute interval, a subplot
is made in the same figure containing one period.

The propagation was performed for both a time step of ∆t � 1 and 5
min. The Cartesian coordinates x, y, z and their radius r are plotted with
different colours for ∆t � 1 min while the 5 min steps are plotted over these
results with black crosses.

The extrema are due to the objects orbital period, which are the phe-
nomena with the smallest period for the Cartesian components using the
SGP4 propagator. That is, when one would plot these variables with any
smaller time step ∆t and time interval T , one would not see another dis-
turbance with a smaller period on top of the shown sinusoid, which might
result in different extrema.

It can be seen clearly that sometimes the extrema are not well defined with
the black crosses, that is, relatively to the coloured dots. The accuracy of
this extrema determination is dependent on a number of variables.

If the period of the sinusoid increases, the same extremum will be ‘spread
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out’ over a larger period of time and thus contain more data points, and thus
the extremum will be better defined.

Furthermore, if the amplitude of the sinusoid is larger, the difference in
the coordinate of one data point with respect to the following one, will be
larger than for a sinusoid with a smaller amplitude, while having the same
period.

Thus, objects with small orbital periods P and large fluctuations in their
coordinates over one period, will lead to worse accuracy when determining
the extrema with the same ∆t. This is confirmed by visual inspection of the
graphs, zooming in and out on the maxima and approximately determining
the difference between one or two coloured dots and the ‘real’ extremum.

This difference turns out to be the largest for the LEO, MEO and HEO
objects, which have the largest period-over-amplitude ratio. For a time step
∆t of 1 minute, the maximum difference and thus also the approximate
accuracy, is still on the order of 10 km. And as the accuracy of TLEs is
comparable to this value, it would be wise to use smaller time steps than 1
minute.

However, this problem can not be circumvented, because, even if the time
step is made infinitesimally small, the real conjunction distance might still
be smaller than the calculated one. It could thus happen that a pair of
objects would not be counted as conjunction, while in reality it just was.

The approach taken in the following conjunction analysis will be one
which analyses a catalog with a smaller and smaller time step each time,
so that the number of conjunctions detected will rise and converge to a
maximum, while keeping the CPU time below a reasonable limit. This
converged state of conjunctions will then be taken as a ‘truth’ reference for
subsequent analyses.
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Figure 7.15: LEO object (ID #22), radius versus time from epoch.
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Figure 7.16: MEO object (ID #163), radius versus time from epoch.
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Figure 7.17: GEO object (ID #634), radius versus time from epoch.
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Figure 7.18: GTO object (ID #862), radius versus time from epoch.
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Figure 7.19: HEO object (ID #5), radius versus time from epoch.
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Chapter 8

Orbital Debris Conjunction
Analysis Implementation

Now that we are able to process TLE catalog files and propagate them with
the analytical SGP4 propagator over a set time interval T , with a set time
step ∆t, and a set list of output variables, the resulting ephemerides file can
be used for conjunction analysis.

The eventual objective is to find all conjunctions within a defined dis-
tance, for a time interval of 1 day, as efficient as possible. Since every half
day a new catalog is placed online with new data (for each day, one is listed
as ‘am’ and the other as ‘pm’), this gives enough buffer. When a new catalog
is available the conjunction analysis process can be started again with this
new data, while having a buffer of half a day.

To be able to verify the results of the filters and sieves (which were
discussed in Section 5.1), a benchmark is needed, which is called the “brute-
force” method here. After the brute-force method has been verified to work
correctly, filters and sieves will be applied to make the conjunction analysis
process more efficient.

The difference between the terms ‘(pre)filter’ and ‘sieve’ used here, lies
in the fact that filters only have to be applied per object pair once, while
sieves have to be applied per object pair and for each time instance, using
the ephemerides. These different name conventions were merely copied from
the respective references.

Note that in all analyses the ephemerides resulting from the SGP4 prop-
agated TLEs are considered a ‘truth’ set here. The conjunction analysis
process is optimised assuming the ephemerides are ‘perfect’ descriptions of
the orbits.

Here now follows a description of the implementation and results of the
brute-force method, in Section 8.1. Included is a description of the ephemerides
generation, specialised for this conjunction analysis process.
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Then, in Section 8.2 follows an analysis of the perigee-apogee filter (which
was first described in Section 5.1), of which four different implementations
are tested here.

Finally, a description of the implementation of the sieves and their results
and performance is given in Section 8.3. Eight possible improvements to
the original sieves were made as well, and to which the performance was
compared. The implementation of the perigee-apogee filter is treated here
as well.

8.1 Brute-Force Code Implementation

A flow diagram of the conjunction analysis code subjected to the brute-
force method can be seen in Figure 8.1, in which the upper level processes
(classes, functions) and data flows are shown. These processes are separately
described in the following subsections.

The process starts with the ephemerides file generated by the SGP4
propagator, which contains the state of each object in the catalog at every
time instance ti in the time interval T , separated by a time step ∆t, which
is elaborated upon further in Subsection 8.1.1.

8.1.1 Ephemerides Generation

At first, the SGP4 ephemerides generation was done like before, that is, per
object, all available output variables (date and time, minutes from epoch,
Cartesian state vector, Keplerian elements) were listed per time step ti un-
derneath each other. Thus, in an output text file, first all ephemerides data
for the entire time interval T of the first object was listed, underneath which
all the other objects followed subsequently with their respective data.

However, as the time interval under consideration grew larger, for the
conjunction analysis class to be able to handle large-sized ephemerides files,
the ephemerides needed to be written per time instance ti for all objects.
Because in the original SGP4 way, if the conjunction analysis class were to
analyse the conjunction at one particular time instance, it would have to
scroll through the entire ephemerides file to collect the data of all objects
for one ti. Or the entire file would have to be read into memory first, which
was not possible any more as the ephemerides files for longer time intervals
grew larger than the available memory on the used machine. The previous
SGP4 code was thus rewritten for this purpose.

Also, for a full-day analysis, using the old way, the ephemerides file
would grow larger than the available storage space. The output data of each
ephemeris line was consequently made as small and efficient as possible. This
was done by listing, for each time instance in Julian Date (written only once),
the Cartesian state vector for all objects, next to their ID. The Cartesian
state vectors in the output were written in meters for the position and in
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Figure 8.1: Flow diagram of the brute-force conjunction analysis process.
See legend for the explanation of the block types.

meters per second for the velocity, such that it did not need a decimal point
and could be read in as integers, while still maintaining sufficient accuracy.
This resulted in an ephemerides file of 71.6 GB for a one-day analysis with
a time step of 1 second, compared to about 200 GB before. Examples of the
new output files will be given in subsequent sections.

8.1.2 Conjunction Analysis

The ephemerides data is then read in by a function in the conjunction anal-
ysis class, after which a certain conjunction analysis method can be called,
in this case the brute-force method. At first, all ephemerides were read in
and stored in memory, after which the conjunction analysis was performed.
However, when analysing larger time intervals the ephemerides file began
growing larger than the available memory.

Later on this was solved by reading in the ephemerides file (which was
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now written in a different way, as described above) per time instance, after
which conjunction analysis is performed for this time instance only. When
this is done, the relevant conjunction info is stored, and the method carries
on to read in the ephemeris info of the next time instance, which is then
analysed for conjunctions.

Conjunction Distance

Before the brute-force method is called, the conjunction distance D needs to
be defined: only ephemerides sets of an object pair with a distance smaller
than this set value will be registered as being a conjunction. Care must be
taken when setting this variable with respect to the time step ∆t, because,
when it is set too low, some conjunctions might not be detected, and when
it is set too high, too much conjunctions might be detected.

When two objects move with a relative speed of, say, 10 km/s directly
towards each other, while the time step ∆t of the ephemerides is set to 1
second, and the conjunction distance D is set to 5 km (or less), the con-
junction event (or even collision event in this case) might be missed entirely.
This is simply due to the fact that there might be no ephemerides of these
objects defined during the time period in which the distance between the
two objects is smaller than this 5 km.

Since no object in the catalog which is orbiting the Earth can ever exceed
the escape velocity Vesc � 11.18 km/s of the Earth (calculated with the
WGS-72 constants), the relative velocity of two objects can never exceed
twice the escape velocity. In fact, the fastest flying object orbiting the
Earth in the recent past was the Atlas Agena D rocket booster of Table 6.5,
which reached a velocity at perigee of approximately Vp � 10.76 km/s.

If the time step ∆t is 1 second, the maximum relative distance which
can be covered by two such objects during one time step is thus 21.52 km,
and has a maximum of 22.36 km for any object pair. Taking a small extra
margin it would thus be wise to scale D with ∆t as D � 25∆t, with D in
km and ∆t in seconds.

When this is done, an object pair which would be on a collision course
would thus be detected at least twice. But, an object pair for which the
secondary object merely touches the conjunction sphere centred around the
primary object, might still not be detected. However, there exists a conjunc-
tion distance such that, when the distance of the object pair would at any
point be smaller than this value, the conjunction would always be detected
due to the ephemerides sampling defined by ∆t.

This is shown more clearly in Figure 8.2, in which a primary object (p)
and a secondary (s) object can be seen. If the primary object is defined as
not moving, the secondary object moves with the relative speed of the object
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Figure 8.2: Schematic of the worst case scenario when a conjunction could
just be missed.

pair. In a worst case scenario, there would exist ephemerides so that the
secondary object would lie just on the edge of the conjunction sphere defined
by D for two consecutive time instances t1 and t2, while the conjunction
would just not be detected. Rectilinear motion is assumed here as the time
step is small. Using Pythagoras’ equation one can now determine r:

D2 �
�
d

2


2

� r2 (8.1)

For the worst case scenario the relative velocity would be two times Vesc, so
the distance d travelled would be 2Vesc∆t.

r �
a
D2 � v2esc∆t

2 (8.2)

With the conjunction distance defined as 25 km and the time step set at 1
second, the result would be r � 22.36 km. Thus, in the worst case scenario
for this setup, an object pair which would have a distance of 22.36 km at
closest approach, might still just not be detected by the brute-force method.

No matter how small ∆t, and how large (or small) D, this problem can
never be circumvented, since any secondary object touching the conjunction
sphere centred around the primary object for a period smaller than the de-
fined ∆t might still not be detected (in fact, it can be done using a different
method, as we will see later on). For further analysis, D will be determined
as described above.

The results of the brute-force analysis will be used as a “truth state” for
verification of the sieves and filters later on. If needed, these filters and sieves
will make use of the same ephemerides data, resulting in no compatibility
issues.
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Brute-Force Method

The brute-force function then determines which object pairs at what time
instances ti had a relative position less than the set conjunction distance D.
It does this by reading in the ephemerides of all objects in the catalog for one
time instance ti and analysing all possible objects pairs, thereby excluding
combinations of an object with itself and double combinations (like object
one combined with object two, and object two combined with object one).

The amount of pairs that need to be analysed in this way was given by
Equation 5.18. This means that for the current public catalog size of 14,644
objects, 107,216,046 pairs need to be analysed per time instance! For a full-
day analysis with a time step of 1 second this results in 9,263,573,590,446
pairs that need to be analysed.

For each pair the differences between all position vector components are
taken, squared and added, to determine the distance squared. This value
is then compared to the defined conjunction distance squared, and if it is
smaller, the conjunction information will be stored, including the distance
between the two objects, which is taken as the square root of the previously
determined value:

if r2rel � pxs � xpq2 � pys � ypq2 � pzs � zpq2   D2 (8.3)

Ñ rrel �
b
r2rel (8.4)

The resulting conjunction data contains, per conjunction, information on
the two objects involved (by ID), the time of the conjunction, the distance
between both objects at that moment, and the Cartesian state vectors of
both objects. This data is written to a text file for future analysis or com-
parison.

The reason why the square root is not taken right away lies in the fact that it
then has to be taken for every comparison, that is, for all 107,216,046 possi-
ble pairs per time instance. When comparing with the squared conjunction
distance like above, the square root only needs to be taken for the found
conjunctions that meet this requirement. Since taking the square root is a
relatively time-consuming process for a computer, this small trick already
resulted in reduction of CPU time by a factor two.

Post-Processing

However, during one conjunction event, the distance between two objects
might be below the conjunction distance D for multiple following time in-
stance ti. The following function thus filters out these multiple defined
conjunctions, and only stores the conjunction info at the time instance at
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which the determined distance is minimum, resulting in one determined
conjunction per object pair.

Furthermore, after the step described above, the conjunction info is
sorted ascendingly with respect to the distance between the two objects per
found conjunction, resulting in a nice overview with the closest approaches
on top. Then, the sorted minimum conjunction info is written to a text file.

Calculating Time and Distance at Closest Approach

The now found minimum distance between two objects for a conjunction
event is not the real minimum distance that occurs during that conjunction
event in “reality”, since we are stuck with a time grid defined by ∆t for
our analysis up until now. The time at which the real minimum distance
for a conjunction lies somewhere around the time instance found, and can
be determined with a Taylor series approximation, as described in (Healy,
1995).

The relative displacement vector x of the two objects can be approximated
as

x � x0 � pt� t0q 9x0 � 1

2
pt� t0q2:x0 � � � � (8.5)

with which the point of closest approach can be found at the minimum value
of x � x. Truncating the previous equation at the linear term then results in

x � x � x0 � x0 � 2pt� t0qx0 � 9x0 � pt� t0q2 9x0 � 9x0 (8.6)

The time of the extremum can be found by setting the derivative equal to
zero,

d

dt
px � xq � 2x0 � 9x0 � 2pt� t0q 9x0 � 9x0 � 0 (8.7)

So, to lowest order, the time at closest approach occurs at

tclosest � t0 � x0 � 9x0

9x0 � 9x0
(8.8)

with which the distance between both objects at this time can be determined
using the initial values and Equation 8.5.

The time and relative displacement vector found earlier by the brute-force
method are thus the initial values indicated by the subscript 0 in the previ-
ous analysis, with which the real time and distance of closest approach can
be approximated. This approximation is only accurate for small time devi-
ations, but when the time of closest approach lies within two time instances
separated by a small time step ∆t, the results are fairly accurate here, since
it always lies within 1

2∆t from the initial value.
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If the time of closest approach lies outside of the time interval T under
analysis, it can deviate from the time at which the initial conditions are
known by a much larger offset, however, and the results will in most cases
not be accurate any more. These results will be ignored (while the results
of the time grid will be kept), since they lead to conjunction events which
have a time of closest approach outside of the time interval T under analysis
in the first place!

Looping with SGP4

To obtain the most accurate time and distance possible at closest approach,
one can feed the results of the Taylor series approximation back to the SGP4
propagator, and analyse the results. A relatively coarse time grid of say 10
time steps of 0.1 seconds around the approximated time of closest approach
can be fed back into the SGP4 propagator, next to the TLEs of the objects
under consideration, which are taken from the TLE reader.

A special function within the SGP4 propagator had to be written for
this purpose, however, which can handle this type of input and feed the re-
sults right back into the conjunction analysis, without writing them to a file.

This newly generated ephemerides data for both objects in the conjunc-
tion pair can then be used to determine at which time instance the distance
of the objects is minimum. When this is done, a new and more fine time
grid around this point can then be used again to determine the conjunction
more accurately. This whole process can thus be looped as many times as
needed in order to find the conjunction info at a particular accuracy.

However, since this process is not really needed for the main purpose
of this thesis, and costs too much time, it is not researched in-depth. The
evaluation of the filters and sieves later on can already be done with just
the conjunction information gained from the brute-force method combined
with the Taylor series approximation.

Looping just one time can already be used for verification though, as
will be shown later on.

8.1.3 Results

First some examples of the output text files of the code will be given, after
which some results of all the runs that were made will be presented, followed
by three verification methods applied to these results.

Example Output Files

The final setup of the ephemerides text file described above can be seen in
Table 8.1, in which part of a file has been listed for two time instances in
JD, including the first and last few objects of the catalog.
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Table 8.1: Example of part of an ephemerides text file for two time instances.
Per time instance t, the state vector of each object is listed. The first column
lists the object ID, followed by the x, y and z coordinates, and then the
components of the velocity 9x, 9y and 9z. The catalog file used is of 2011.10.20
am, and the time instances are 2011.10.21 00:00:00 and 1 second later.

t [JD]
ID x [m] y [m] z [m] 9x [m/s] 9y [m/s] 9z [m/s]

JD= 2455855.500000000
5 -8180105 -3527961 -4080313 557 -5584 1914

11 7007354 3007982 -652267 -3065 5436 4033
12 -1414288 8877550 -3626454 -5061 -1964 -2224

...
37842 2692036 6330543 2022886 -6921 2456 1388
37843 -13678754 12212717 8054 -1184 -1901 -2608
JD= 2455855.50001157

5 -8179546 -3533545 -4078398 561 -5582 1916
11 7004286 3013417 -648234 -3071 5433 4033
12 -1419349 8875585 -3628678 -5061 -1967 -2222

...
37842 2685114 6332996 2024273 -6924 2450 1386
37843 -13679937 12210817 5445 -1183 -1901 -2608

In Table 8.2 an example of part of an output text file of the first step in the
brute-force conjunction analysis can be seen. For each time instance, the
object pairs that have a distance less than the set conjunction distance are
listed. The state vectors of both objects are also stored for future analysis.

Then, when one conjunction event per object pair is set, the conjunctions are
sorted ascendingly by distance, and the time and distance at time of closest
approach (tca) are calculated as described above. The resulting output text
file looks like the example in Table 8.3.

At first glance, a possible collision (dps � dtca � 0) seems to be found!
However, it turns out that these objects are called ‘SOYUZ-TMA 02M’ and
‘PROGRESS-M 10M’ respectively. Both are Russian spacecraft launched
from Baikonur by a Soyuz rocket. The former, on 2011 June 7 at 20:12 UT,
carrying a crew of three astronauts to the ISS. The latter, on 2011 April 27
at 13:05, resupplying the ISS with cargo. During the time interval T under
analysis, both were still docked to the ISS, and had the same TLE parame-
ters resulting in the same orbit and thus generating the distance of 0 meters.
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Table 8.2: Example of part of a brute-force conjunction output text file for
two time instances. Per time instance tcon, the ID’s of both the primary (p)
and secondary (s) object of the conjunction pair is given, followed by the
distance between the objects and their state vectors. The catalog file used
is of 2011.10.20 am, and the time instances are 2011.10.21 00:00:00 and 1
second later.

tcon [JD] IDp IDs dps [m] xp [m] � � � 9zs [m/s]

2455855.50000000 12091 5446 18032 7005608 6944
2455855.50000000 22699 4737 16627 -6852330 7305
2455855.50000000 26638 25462 15703 22898305 -3

...
2455855.50000000 37479 37054 18816 799579 118
2455855.50000000 37633 25544 13554 3994459 -5460
2455855.50000000 37633 37396 0 3994459 -5455
2455855.50001157 12091 5446 19102 7003463 6942

...
2455855.50001157 37429 245 19987 -3259348 1688
2455855.50001157 37479 37054 18581 805538 125

...

Why the ISS itself did not result in such a close conjunction with the above
two objects, is because the TLE for the ‘ISS (ZARYA)’ has an epoch of half
a day later, thus resulting in a different orbit. The ISS turned out to have a
minimum distance of 13470 meters from the above two objects in the time
interval under analysis, according to the SGP4 theory, which is an indication
for the accuracy of TLE propagation.

Another conjunction pair (not shown in the table) that keeps on show-
ing up is formed by ‘PRISMA (MANGO)’ and ‘PRISMA (TANGO)’, two
Swedish satellites which will test technologies and rendezvous and formation
flying in space, hence the constant close encounters. Also ‘TANDEM-X’ and
‘TERRASAR-X’ form such a pair, which are two German radar mapping
satellite that fly in close formation to obtain better accuracy.
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Table 8.3: Example of part of an output text file after post-processing. Per object pair one conjunction event is listed with its
time instance tcon, the ID’s of both the primary (p) and secondary (s) object of the conjunction pair, followed by the distance
between the objects, their state vectors (not shown here), and the calculated time of closest approach ttcarel (relative to tcon),
distance at time of closest approach ttca and the time of closest approach tca. The catalog file used is of 2011.10.20 am, and
the time interval under analysis is a 1-day period from 2011.10.21 00:00:00 until 2011.10.22 the same time.

tcon [JD] IDp IDs dps [m] � � � ttcarel [s] dtca [m] ttca [JD]

2455855.50000000 37633 37396 0 0.000 0 2455855.50000000
2455856.07379629 34032 33837 213 0.005 211 2455856.07379635
2455855.66113425 30906 30519 246 -0.005 235 2455855.66113420
2455855.54719907 34827 31617 323 0.018 176 2455855.54719928

...
2455856.33766203 31438 31140 25000 0.003 25000 2455856.33766206
2455855.90634259 34522 21529 25000 -0.433 24431 2455855.90633758
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Performance

Here follow the performance results of the brute-force method, but first an
explanation of CPU time and a description of the system used, is given.

CPU time The performance of the code in terms of CPU time can be
easily retrieved from the system at runtime by fetching the processor time
at the start of the program, and at the end (or somewhere in between), and
then subtracting the former from the latter. The result is then the number
of clock ticks since the start of the program, and this can then be divided
by the number of clocks per second of the respective machine.

However, if that respective CPU was busy with other calculations as
well (other programs open or running), then the CPU power needed for
these other calculations will be included in the resulting CPU time as well.
The resulting time in seconds is then not quite the regular wall clock time,
but the time the CPU needed to make all calculations during the time the
code was executed.

This timing method is not perfect, but can work if the other processes
are kept at a minimum, as we will see in the next paragraph.

System The system on which all code in this report was compiled and
executed is a Hewlett-Packard HP EliteBook 8530w, with a Mobile Dual-
Core Intel Core 2 Duo T9600 2800 MHz processor, and 4060 MB (DDR2-800
SDRAM) system memory. Of this system, one of the two cores was thus
used for analysis, and, while the system has a 64-bit capable processor, the
code was compiled and run as 32-bit. The editor/compiler used is QtCre-
ator/MinGW. The CPU time shown for all analyses is rounded off to integer
seconds, so as to account for the inaccuracy of this timing process.

Since a dual-core processor was used, the execution of the code is by
default done by only one of the two cores, which always runs close to full
power (50% of total CPU-power), while the other core is busy with all other
processes such as the operating system and software that is running. Thus,
the CPU time determined in the way described above will lie close to the
CPU time which would be needed had the CPU devoted its full power to
this process for the whole duration. Different runs can thus be compared in
this way, with only a small margin of error.

Optimum time step After initially running the brute-force conjunction
method including the post-processing steps (but without the loop) for the
first time using different time step sizes ∆t, for a time interval T of 60
seconds, the resulting CPU time needed is shown in Figure 8.3. It can
be seen in this plot that for small time steps (5 and 6 seconds) the CPU
time decreases with ∆t while for large time steps (30 and 60 seconds), the
CPU time increases with ∆t. An optimum (minimum) time can thus be
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Figure 8.3: CPU time versus time-step ∆t for the brute-force method, for
a time interval T of 1 minute, applied to the catalog of 2011.06.22 am con-
taining 14507 objects.

found somewhere in between, at ∆t � 15 s, which was found by iterative
processing.

The first and decreasing part of the plot can be explained by looking at the
amount of ephemerides that have to be generated and analysed. For the
conjunction analysis this even scales quadratically, since it has to analyse
all possible pairs. For a smaller time step, more ephemerides are generated
and thus more conjunctions need to be analysed, resulting in a higher CPU
time.

The last and increasing part of the plot can be explained by looking at
the number of conjunctions that are found. Since the conjunction distance
is set at D � 25∆t, more and more conjunctions will be found for higher ∆t,
which need to be stored, written to a file and post-processed. Because of
the higher conjunction distance which needs to be set in order to still catch
a reasonable amount of the conjunctions (cf. Equation 8.2), the CPU time
will rise because of the burden the large amount of conjunctions brings with
it.

The middle saw-tooth like relation stems from the fact that for ∆t �
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Table 8.4: The performance of the brute-force method in terms of num-
ber of found conjunctions (one minimum conjunction per object pair), and
CPU time needed for SGP4 propagation (SGP4), the brute-force method
(brute) and post-processing (post), with different input for the time step
∆t, time interval T and conjunction distance D. The catalog file used was
of 2011.10.20 am, with all analyses starting at 2011.10.21 00:00:00.

CPU time [s]
∆t [s] T [s] D [km] c [#] SGP4 brute post total

1 1 25 41 5 14 0 19
0.1 1 2.5 2 7 74 0 81
0.1 1 25 41 7 74 0 81
15 60 375 57214 6 34 198 238
5 60 125 5723 8 93 5 106
5 60 375 60353 8 86 521 615
2 60 50 850 13 212 1 226
1 60 25 198 20 406 0 426
1 60 50 860 20 403 2 425
1 60 125 5816 20 422 22 465

0.5 60 25 202 35 809 0 844
0.5 60 50 861 35 840 3 878

15 � 19 s, the amount of time instances in the interval is 5 for all ∆t,
while for ∆t � 20 s, this amount changes to 4, resulting in the drop. The
slight increase in this saw tooth is because of the increase in the amount of
conjunctions found due to the slightly increased ∆t.

Amount of conjunctions To test the performance of the brute-force
conjunction analysis system in terms of conjunctions found and CPU time
needed, some runs were made with different input for ∆t, T and D, of which
the results are listed in Table 8.4. The number of conjunctions c listed here
is after the post-processing, so one minimum conjunction per object pair
is counted. The CPU time is listed separately for the SGP4 propagation
(SGP4), the brute-force method (brute), and the post-processing (post).

To find out the influence of ∆t on the number of conjunctions found, T and
D need to be kept constant.

When comparing the number of found conjunctions for T � 1 s, D � 25,
∆t � 1 s versus ∆t � 0.1 s (both 41), one might think that all conjunctions
might be found already with ∆t � 1 s. But when making the same com-
parison for T � 60 s, D � 25, ∆t � 1 s vs ∆t � 0.5 s, the latter finds 4
conjunctions more (198 versus 202).
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For larger values of ∆t, this difference grows larger however, as can be
seen for D � 125 km and D � 375 km, comparing the smaller ∆t with the
larger one. For the best results in terms of the number of found conjunctions,
the time step ∆t can thus best be set as small as possible, keeping D � 25∆t.

Furthermore, when looking at the CPU time, the time needed for SGP4
propagation can be ignored with respect to the time needed for the brute-
force method, for larger time interval T . This is because the amount of pairs
analysed by the brute-force method scales quadratically with the amount of
objects propagated by SGP4.

Decreasing ∆t for the same T , drastically increases CPU time for the
brute-force method. However, increasing ∆t and thus also D, increases the
CPU time for post-processing. This is because, as the number of conjunc-
tions found increases, the post-processing needs to make more and more
comparisons, when filtering out the multiply defined conjunction pairs.

The CPU time needed for post-processing increases quadratically with the
amount of conjunctions found, and thus ∆t needs to be kept as small as
possible, especially for larger time intervals like the full-day analysis.

Also, the file sizes grow for the conjunction info, which slows down fu-
ture processes that need these files for comparison with the results of the
filter and sieve processes. However, since smaller ∆t increases the CPU time
needed for the brute-force method again, a trade-off has to be made.

For a full-day analysis, the largest ephemerides file (71.6 GB) which can
still be stored in the machine at hand is for ∆t � 1 s. Since this value also
leads to good performance in terms of number of conjunctions found and
to reasonably low post-processing times (cf. Table 8.4), it was chosen to
generate the “truth” data sets.

Results of new setup After the data for Table 8.4 was produced, the
switch was made to the new setup for the SGP4 propagator and ephemerides
file generation, with an accompanying new brute-force method code imple-
mentation, to be able to handle the very large ephemerides files. ‘New’ here
is with the ephemerides ordered per time step, rather than per object, as
explained before.

This resulted in a more efficient process leading to lower CPU times, as
can be seen in Table 8.5, in which the results of larger time intervals T are
shown, all for ∆t � 1 s and D � 25000 m.

Looking at the second row of the table, the CPU time needed for SGP4
is reduced by more than a factor 2, compared to Table 8.4, for the same
initial parameters (row 8). Furthermore, the CPU time for the brute-force
method (‘brute’) in row 2 was also reduced by almost a factor 2.
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Table 8.5: For ∆t � 1 s and D � 25000 m, the amount of conjunctions (both
multiple defined conjunction pairs (t.c.) as well as one minimum conjunc-
tion per object pair (m.c.)) found for different T , and their corresponding
CPU times, are listed. The catalog file used was of 2011.10.20 am, with all
analyses starting at 2011.10.21 00:00:00.

CPU time [s]
T [s] # t.c. # m.c. SGP4 brute post total

1 75 41 1 8 0 9
60 2141 227 9 224 0 233

3600 118339 10296 502 13438 78 140118
86400 2848301 208911 12157 311832 96129 420118

In this table the total amount of conjunctions (so including multiple de-
fined conjunction pairs) are listed as well as the conjunction with minimum
distance (m.c.), defined once per object pair. Both amounts can be shown
to more or less vary linearly with T , as would be expected. For the latter
this is only the case for larger T , as a relatively high amount of duplicates
are filtered out for smaller T .

Furthermore, the CPU time needed for the brute-force method and post-
processing of the 1-day interval has really grown large (about 4 and 1 days
of running, respectively), but fortunately still within reasonable limits.

Finally, using the resulting conjunction info file of the full-day analysis,
the amount of conjunctions found could be listed versus the conjunction
distance, as can be seen in Table 8.6.

The amount of found conjunctions for both types can be seen to grow
exponentially, as could also be expected, since the conjunction volume grows
cubically with D.

The total amount of conjunctions at first does not grow that fast, because it
has many object pairs which are counted a relatively high amount of times
(some have a conjunction at every time instance).

The CPU time listed here is just that of post-processing, as the input files
used here was already containing all conjunctions with a distance smaller
than 25 km. The CPU time can be seen to increase quadratically with
respect to the amount of total conjunctions.

Verification

The results were verified in three ways, the first of which made use of a
different source for an equation. A different expression for the minimum

184



Table 8.6: For ∆t � 1 s and T � 86400 s, the amount of conjunctions (both
multiple defined conjunction pairs (t.c.) as well as one minimum conjunction
per object pair (m.c.)) found for different D, and their corresponding CPU
times (only for post-processing here), are listed. The catalog file used was
of 2011.10.20 am, with T running from 2011.10.21 00:00:00 until 2011.10.22
at the same time.

D [m] # t.c. # m.c. CPU time [s]

1000 170013 69 221
2000 222991 506 430
5000 275149 5992 647

10000 389176 33426 1379
20000 1610676 136811 31107
25000 2848301 208911 96129

distance between two objects at time of closest approach is given in (Alarcon-
Rodriguez et al., 2002) as

rmin �
d
r20 �

�
r̄0 � v̄rel

vrel


2

(8.9)

which is actually turns out to be the worked-out and scalar version which
one gets when filling in Equation 8.8 in Equation 8.5.

This new scalar form of the equation gives exactly the same results as
the previous vector equation, see Table 8.7 (rmin versus dtca), and can be
considered as a first (small) form of verification, as the equations were taken
from different references.
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Table 8.7: Verification of the determination of the minimum distance of an object pair. The time is here given in seconds
past 2011.10.21 00:00:00, with dtca determined by the Taylor series, rmin by the new scalar equation, and dpsloop by looping
with SGP4 using the newly determined time of closest approach tloop.

tcon [s] IDp IDs dps [m] ttca [s] dtca [m] rmin [m] tloop [s] dpsloop [m]

22 31663 31346 2447 0.078 2446 2446 22.078 2446
9 19905 7019 5240 -0.257 4245 4245 8.743 4245

35 36198 32450 5481 0.013 5481 5481 35.013 5481
22 35797 20440 5841 -0.246 4539 4539 21.754 4539
58 32289 28858 5951 -0.412 5873 5873 57.588 5873
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The second form of verification makes use of the SGP4 loop at the end
of the brute-force process.

After determining the accurate time of closest approach and accompa-
nying distance for an object pair with the Taylor series approximation, this
data can be used as input for the SGP4 propagator again to directly de-
termine the difference between the two objects at a time grid around that
time, and thus not making use of the Taylor series approximation.

The results can be seen in Table 8.7, in which the distance of an object
pair after the looped SGP4 determination, dpsloop , can be seen to match the
results of the Taylor series approximation, dtca. The results also show that
this is in fact the real minimum distance at the right time, since the SGP4
loop used a fine time grid around the result of the Taylor series determina-
tion, and this was the minimum result of that grid.

The third and last (but definitely not least) verification method is carried
out by comparing the results of the brute-force conjunction analysis method
with the conjunction results that can be found in (Kelso, 2010a), using the
search engine of the SOCRATES (Satellite Orbital Conjunction Reports
Assessing Threatening Encounters in Space) system. The conjunction in-
formation for 5 conjunction pairs gained from that website is depicted in
Figure 8.4.

A time interval around the time of closest approach (tca) of these con-
junctions was now used as input for the SGP4 propagation, followed by
the brute-force method with post-processing. The results of this conjunc-
tion analysis process are listed in Table 8.8, which can be seen to exactly
match those of Figure 8.4! Two independent researches have hereby now
thus established the exact same results.

187



Figure 8.4: Conjunction data of 5 objects pairs gained from the search engine of SOCRATES in (Kelso, 2010a).
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Table 8.8: Conjunction results for 5 object pairs for verification with Figure 8.4. The time listed for tcon and ttca are taken
from 2011.11.1 12:00:00 onwards, tdfe stands for time in days from the TLE epoch. The catalog used was that of 2011.11.01
am.

tcon [mm:ss] IDp IDs tdfep [days] tdfes [days] dps [m] ttcarel [s] dtca [m] ttca [mm:ss]

00:03 31490 22237 0.455 0.595 2481 -0.065 2280 00:02.935
00:37 30683 10514 0.675 1.572 4438 -0.022 4426 00:36.978
01:38 37527 25274 1.750 0.642 835 0.027 781 01:38.027
02:55 28302 5557 0.599 1.405 8575 0.493 4624 02:55.493
02:57 37339 15595 5.038 0.922 5458 -0.365 1450 02:56.635
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8.1.4 Results v2

After all of the above results were generated, two improvements in the way
the code was run and timed lead to a necessary rerun of the brute-force
method, generating new results.

Compiler Setting

It was found that the compiler used here, QtCreator, has a ‘release’ mode,
next to the default ‘debug’ mode. This ‘release’ mode setting results in a
much faster execution of the code.

This is due to the fact that in ‘debug’ mode, QtCreator will include
additional debug symbols that one needs for debugging the application. So
when the code is bug-free, and thus does not need the ‘debug’ mode anymore,
it can be run using the much more efficient ‘release’ mode.

With the latter setting the CPU time was seen to decrease with a factor
of 4-6, depending on the kind of code.

CPU Timer

Furthermore, a more accurate CPU timing process was implemented, by
using the CPU timer from the Boost library (Dawes & Stewart, 2011), which
can measure the CPU time of only the code that was executed. The resulting
CPU time is the same as the wall clock time the code would take to run
with the respective CPU at full power (100%).

So even if the program would run at say 75% of the CPU’s power, be-
cause it is also doing other things at the same time, this would not make
a difference for the output. In this way different parts of code, can be
compared easily in terms of CPU time performance.

Rerun of Brute-Force Method

Due to the above two new developments, it was decided to rerun the brute-
force method to generate new results. Since a real CPU timer is now used,
the brute-force can be compared to future analyses in a safer way. Further-
more, using the ‘release’ mode, the improvement of using a filter or sieve is
much more clear.

Another solution to the problem would be to run future analyses also in
the ‘debug’ mode, but the improvement of using one filter compared to a
filter and a sieve for instance, would then not be that large, since most of the
CPU time is used for the debugging process, which will be approximately
equal for both runs.

This is due to the fact that, for instance, when using vectors in C++,
the ‘debug’ mode will store a large amount of extra information per vector,
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to see if it evolves safely during the execution of the code, and to be able to
state where in the code a bug was generated. Since the amount of vectors
might be comparable for two methods, this is what causes the extra CPU
time needed to be comparable. In ‘release’ mode this extra information is not
needed, and thus large improvements between two methods can be observed.

Since the brute-force method now had to be run again anyway, some im-
provements were made to the method itself as well.

Conjunction event determination The theory explained with use of
Figure 8.2, to determine the conjunction distance and the distance below
which it was certain all conjunction would be found, is now reversed, to find
all conjunctions within 25 km. This was done by setting r equal to 25 km,
to determine the conjunction distance needed for the brute-force, resulting
in D � 27.386 km for a time step of ∆t � 1 s.

However, some conjunctions with a distance in between this new D and
25 km are now found at the time steps themselves, while still resulting
in a minimum distance of above 25 km. These are subsequently filtered
out during post-processing, resulting in a list of all minimum conjunction
distances of below 25 km. This new list will thus theoretically be able to
contain more conjunctions than the previously applied method.

Post-processing: One minimum conjunction Next to the above, the
post-processing function to determine only one minimum conjunction per
object pair is now rewritten as well. It will now be able to detect multiple
minimum conjunctions events for one object pair, as two objects in fairly
constant orbits might have a conjunction again when they have both made
one extra revolution.

It will still filter out the multiply defined conjunction information though,
affiliated with the same conjunction event. Next to this new implementa-
tion, it was also written much more efficiently, resulting in a significantly
lower post-processing time. Furthermore, the final results are now sorted
ascendingly with respect to the distance at closest approach.

An example of the top-10 of the final output file is given in Table 8.9.
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Table 8.9: Example of the top-10 of a v2 output text file after post-processing. The catalog file used is of 2011.10.20 am, and
the time interval under analysis is a 1-day period from 2011.10.21 00:00:00 until 2011.10.22 the same time.

tcon [JD] IDp IDs dps [m] � � � ttca [s] xtca [m] ttca [JD]

2455855.50000000 37396 37633 0 0.000 0 2455855.50000000
2455856.05105324 8004 17122 978 0.072 37 2455856.05105407
2455855.69494213 12962 30885 7212 0.490 41 2455855.69494779
2455856.05793981 33999 36304 1057 0.070 53 2455856.05794062
2455856.47300925 32342 34118 1610 0.185 78 2455856.47301139
2455856.20203703 4673 37061 6488 0.441 130 2455856.20204213
2455856.47914351 32232 37088 610 -0.095 132 2455856.47914241
2455856.44265046 4755 12652 4787 0.325 144 2455856.44265423
2455855.75068287 8159 23004 3149 0.224 152 2455855.75068546
2455855.95745370 20324 37415 877 -0.059 153 2455855.95745302
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Table 8.10: Performance results of the new improved brute-force method.

CPU time [s]
T [s] # t.c. # m.c. SGP4 brute post total

1 96 42 1 2 0 2
60 2751 232 8 51 0 59

3600 151240 10597 453 2988 1 3442
86400 3552394 255712 10793 71742 575 83109

Results The results of the new improved brute-force method can be seen
in Table 8.10. Comparing these new results to Table 8.5, it is noted that
the total number of conjunction is increased, due to the increasing D, and
furthermore the number of minimum conjunctions is also increased, since
now all conjunctions within 25 km are found, and also due to object pairs
having multiple conjunction events. Furthermore, the CPU time for SGP4
propagation has only slightly decreased due to the fact that the SGP4 theory
is written in C instead of C++, using arrays instead of vectors, and thus
less debug information was used for the ‘debug’ mode.

However, the CPU time needed for the brute-force method is decreased
with a factor of more than 4 due to the new ‘release’ mode. Furthermore,
post-processing has gained a huge decrease in CPU time due to the com-
bined effect of the ‘release’ mode and the more efficient rewritten code.
And, when the post-processing was applied to the output of the brute-force
method directly, after 50 seconds of reading in data, the new post-processing
implementation only took 9 seconds to complete. This thus suggests that
it would be more efficient to first write the data to a file, and then read it
again to apply post-processing, but this was not implemented further.

Although part of the previous reasoning to choose a time-step of 1 sec-
ond is now diminished by the faster post-processing times, the rest of the
reasoning still applies. Thus the time step of 1 second was kept, as with
larger time steps the Taylor approximation for the minimum conjunction
distance would be less accurate.

Furthermore, using a larger time step will increase the needed conjunc-
tion distance D, and will thus also increase the amount of total conjunctions
detected for which information has to be kept in memory during the pro-
cess. The conjunction data written to a file is already around 500 MB for
the current setup.
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Figure 8.5: Schematic of different cases for the perigee-apogee filter, showing
a filtered (#2) and an accepted (#3) candidate for a possible conjunction
with a primary object (#1). Note: not to scale, the ‘ovals’ in the picture
represent ellipses.

8.2 Perigee-Apogee Filter

Filters can be applied in a conjunction analysis process, to discard pairs of
objects which are proven never to able to conjunct in the time interval un-
der analysis. As applying these filters to one object pair can be very quick,
compared to analysing a pair for the entire time interval with the brute-force
method, the total conjunction analysis system can be made much more ef-
ficient, compared to the brute-force method.

The perigee-apogee filter (also called altitude filter), first described in Hoots
et al. (1984), filters out object pairs for which the apogee of one of the two
objects is smaller than the perigee of the other. Let q denote the larger
of the two perigees of the objects and let Q denote the smaller of the two
apogees. If

q �Q ¡ D (8.10)

then the pair does not need to be considered further. All object pairs that
pass this prefilter move on to the next. This is illustrated in Figure 8.5, where
a filtered (#2) and an accepted (#3) candidate for a possible conjunction
with a primary object (#1) is shown. The combination of object #2 and #3
would also form a pair that would not be filtered by the perigee-apogee filter
and thus continue to the next filter and/or sieves. Note: the orientation of
the orbits does not make a difference.

The strength of this filter lies in the fact that if a pair of objects is filtered
out, they need not be considered any more for the entire time interval under
analysis. Furthermore, the perigee and apogee need only be determined
once, per object, while the application of the filter then only consist of
comparisons.
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The objects will ‘never’ be able to have a conjunction, since they do
not have an overlap in their altitude ranges. In fact, the difference must be
at least equal to the conjunction distance D, for no conjunction to occur.
However, since the apogee and perigee of both objects change over time, one
has to account for this perturbation as well in the filter.

8.2.1 Hoots

In Hoots et al. (1984) the perturbations were taken into account, by cal-
culating the apogee and perigee for both objects at the start of the time
interval under analysis, based on the orbital elements at the middle of this
time interval. This was done by using approximate rates of the mean motion
and eccentricity, determined from the time derivative of the mean motion,
and so accounting for perturbations due to the Earth’s oblateness and drag.
The perigee and apogee were calculated at the beginning of the time inter-
val, since it was assumed that the perigee would remain constant, while the
apogee would decrease with time. And thus, the filter would still remain
valid.

It was not stated what kind of orbital elements to take at the middle of
the time interval, but it is assumed that the mean elements were taken, as
the osculating elements would lead to more erroneous results.

However, there are some problems with this theory. Although the time
derivative can be obtained from a TLE, this average value will only be valid
at the TLE epoch, and thus not necessarily during the time interval under
analysis or at its midpoint. Furthermore, when looking at radius evolutions
of multiple objects from the catalog, both the apogee and perigee can be
seen to both increase and decrease with respect to time for different objects.
This can for instance be seen in Figure 8.6, were the radius and osculating
apogee and perigee of object #13901 are plotted versus time since epoch.
The plot shows that the apogee is increasing and the perigee is decreasing
in this case.

Furthermore, when using this theory, the mean orbital elements at the
midpoint of the time interval need to be obtained from the ephemerides
somehow and thus from the osculating orbital elements. An average could
be taken over one or multiple orbital periods, but this would introduce even
more uncertainty to the method. Furthermore, as not all perturbations of
the SGP4 theory are taken into account here, this would introduce another
error, especially for high-altitude orbits where then the third-body pertur-
bations are not taken into account.

All of these error sources add up and therefore this method is not deemed
reliable for the perigee-apogee filter.
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Figure 8.6: Radius and osculating perigee and apogee versus time since
epoch.

8.2.2 Ting & Hai

In Ting & Hai (2008) the equation was changed to

q �Q ¡ D �D1 (8.11)

where D1 accounts for the sum of orbital decay and short-period altitude
variations. It was stated there that calculations had shown that a typical
value of D1 is 10 km while it is also stated that for LEO orbits it is roughly
20 km, while not stating for which time period this holds. Later calculations
in the publication are applied to a time interval of 1 day, so this is assumed
as the time period for D1 as well.

Furthermore, it is also unclear how the apogee and perigee were obtained,
and which value was taken for D1: 10, 20 or 30 km? Looking at Figure 8.6
it can be seen that both the apogee and perigee negatively influence the
perigee-apogee filter with a change of more than 50 km per day, while this
is not per se a worst-case scenario. D1 would thus at least have to be 100
km in this case.

Four methods, of which three are new methods purposely designed for this
MSc thesis study, were considered however, which will be described below.
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For one of the three new method equations are used from a reference how-
ever.

8.2.3 Directly from TLE

The fastest way to obtain the apogee and perigee for an object would be
to directly determine them from the TLE, using the eccentricity and mean
motion. Since these are mean values at the TLE epoch, a certain error will
be made with respect to the real apogee and perigee during the time interval
under analysis. This error can be quantified however.

When first generating ephemerides for all objects for the time interval under
analysis, using a very small time-step ∆t � 1 s, and subsequently determin-
ing the minimum and maximum radius rmin and rmax for each object during
this time interval, a ‘truth’ reference is set up. The error ∆rp and ∆ra made
for each object is then simply obtained by subtracting the perigee from the
minimum radius and the apogee from the maximum radius.

∆rp � rmin � rp,mean (8.12)

∆ra � rmax � ra,mean (8.13)

The maximum error that is made for the whole catalog with respect to
both the perigee and apogee can now be determined, which can be used as a
patch. Adding these patches to all obtained average values for perigee and
apogee directly obtained from the TLE would lead to a safe application of
the perigee-apogee filter. This can be equated as

pq � Ppq � pQ� Paq ¡ D (8.14)

q �Q ¡ D � Pp � Pa (8.15)

where Pp and Pa are the (absolute) perigee and apogee patches respectively.

For the catalog of 2011.10.20.am, this maximum error negatively influenc-
ing the perigee-apogee filter would result in ∆rp,max � �135.141 km for the
perigee patch (Pp is the absolute of this value in the equation above), and
∆ra,max � 338.531 km for the apogee patch. The resulting filter would lead
to 29.56% of the total amount of pairs being discarded, thus making the
filter relatively inefficient, as we will see later on.

Object #25811 generates the worst-case apogee error, which is shown in
Figure 8.7, where the mean apogee from the TLE (constant), as well as the
radius and osculating apogee are plotted versus time since TLE epoch.

The ‘wobble’ that can be seen in the apogee history, stems from the
osculating semi-major axis and eccentricity, see Figure 8.8, which result
from the SGP4 theory. The semi-major axis and eccentricity can be seen
to amplify each other when generating the apogee, while they partly cancel
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each other out for the perigee, as for the latter 1� e is used.

An improvement could be made to this method by not conservatively taking
the patches constant and equal to the maximum error, but by trying to find
a relation between the error made per object, and some other variable of
the respective TLE.

In Figures 8.9 - 8.12, the error in perigee and apogee made per object
is plotted versus a number of TLE variables. Here only the negative values
for the perigee error and positive values for the apogee error are shown,
as these are the ones negatively influencing the perigee-apogee filter. The
mean motion n, eccentricity e and semi-major axis were chosen, as they
might have the largest chance of showing some relation with error.

As can be seen from the first three of these plots, there exists no clear
relation which falls closely on top of all the errors for any of the plots, both
perigee and apogee, partly due to some large errors made for only a few
objects. A relation could be set up, but then the patch would be relatively
large with respect to most of the objects at hand. Furthermore, the larger
errors made seem to be randomly distributed, so even if a relation could be
set up for this catalog, it would certainly not hold for any catalog.

It might be that these larger errors are due to old TLEs, that is, objects
for which the epoch of the TLE would be relatively distant from the anal-
ysis interval. Since these objects would have to be propagated forwards in
time to a larger offset compared to their TLE epoch (and thus when the
measurements of their orbits were made), the resulting ephemerides might
show a larger difference from the values in the TLE. In Figure 8.12 it can
be seen that although some objects with a distant TLE epoch show to have
large errors, an evenly large amount of objects with a large TLE epoch, that
is, “fresh” TLEs, can also have large errors. Note: the time interval that
was analysed lies at the far right, around day 295.

One might argue that the objects that produce the extreme errors could
be excluded from the analysis, but what if one of these objects then were
to have a collision with the ISS? Furthermore, these excluded objects might
have smaller errors in future catalogs, while other objects will have larger
errors.

8.2.4 Modifications for Perturbations

Although the mean perigee and apogee determined directly from the TLE do
not generate good results for the perigee-apogee filter, the process described
in Hoots et al. (1984) to include perturbations might be modified for use
with TLEs.

It is suggested there, that mean effects of the Earth’s oblateness and
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Figure 8.7: Mean (constant) and modified (linear) apogee from TLE, radius
and osculating apogee versus time since TLE epoch.
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Figure 8.8: Semi-major axis and eccentricity versus time since TLE epoch.
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Figure 8.9: Mean perigee and apogee error versus mean motion n.
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Figure 8.10: Mean perigee and apogee error versus eccentricity e.
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Figure 8.11: Mean perigee and apogee error versus semi-major axis a.
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Figure 8.12: Mean perigee and apogee error versus TLE epoch.

201



atmospheric drag can be approximated by

n � n0 � 9n0t (8.16)

e � e0 � 9e0t (8.17)

where the time derivative of the eccentricity is given as

9e0 � �2

3

9n0
n0
p1� e0q (8.18)

Using these equations, the mean motion n and eccentricity e can both be
determined at the start and end of the time interval. The time t is then
the start and end time minus the TLE epoch, while the mean motion n0,
its time derivative 9n0, and eccentricity e0 can all be taken straight from the
TLE.

Following, the mean perigee and apogee at the start and end time of the
interval can be calculated, and the perigee is then set to the minimum of
these two values, while the apogee is set to the maximum, as they change
linearly with time.

Applying this technique to for instance to object #25811, which generated
the largest error above, the modified apogee ra,mod can be seen to follow the
maxima of the radius much better, see Figure 8.7, resulting in an error of
only 17 km.

However, when applied to the whole catalog for the same 1-day analysis,
the largest error made for the apogee is still 189 km while the maximum
perigee error is -80 km, resulting in 36.36% of the pairs discarded. The
radius history of the object producing the largest error for the apogee now,
object #3956, is shown in Figure 8.13.

Furthermore, the errors made for the perigee and apogee for all objects
were plotted versus the same variables as in was done in Figures 8.9 - 8.12
(and now also including the time derivative of the mean motion), resulting
in the same kind of scatter for which unfortunately no clear relation exists,
to make the filter more efficient, and are therefore not included here.

8.2.5 Sampled from Osculating Elements

Another method for an application of the perigee-apogee filter that was in-
vestigated is the one presented in Woodburn et al. (2009), as described in
Section 5.1. Here an improvement of the filter was discussed, by determining
the osculating orbital elements at the start- and endpoint of the time inter-
val, and using these to obtain the minimum perigee and maximum apogee
radii of the two time instances.

It was then shown that in doing so, an error still might be made. Thus
the difference between the real perigee and apogee and the osculating ones
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Figure 8.13: Mean (constant) and modified (linear) apogee from TLE, radius
and osculating apogee versus time since TLE epoch.

were plotted for all objects, and was shown to have a maximum of about 30
km for both cases. This 30 km was then used as a patch for both perigee
and apogee for the application of the filter for all future analysis (and thus
also different catalogs).

However, while the error that is made by using the osculating elements
at the start- and endpoint of the time interval might have a maximum of
30 km in this case (catalog, time interval), this certainly will not necessarily
hold for all future cases.

For instance, when looking at the history of the radius and osculating
apogee of GTO object #23687 in Figure 8.14, if the start- and endpoint of
the time interval were to both fall precisely into a valley of the osculating
apogee graph, the apogee determination would be off by about 46 km in
this case. While this is just one of the worst-case examples, it could be that
there exist objects for which even larger error are possible.

Applying this method with a patch of 30 km for both the apogee and perigee
at the catalog of 2011.10.20.am for a 1-day analysis yields 49.11% of the pairs
to be discarded. However, since this patch is shown to be unsafe, running it
with a safer patch of 50 km results in 45.57% pairs discarded.

Furthermore, applied to different catalogs and time intervals, this method
could result in larger errors as well. And, if one would need to check each
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Figure 8.14: Radius and osculating apogee versus time since epoch.

catalog for the maximum error made, which is done by comparing it to
the real minimum and maximum radius, why not directly determine the
‘perigee’ and ‘apogee’ from the radius history itself?

8.2.6 Determined from Ephemerides

By taking the minimum and maximum attained value for the radius over the
time interval under analysis, determined from the ephemerides, and using
these for the perigee-apogee filter, one would be sure that no error is made
by obtaining these values via other variables. However, an error can still be
made due to the fact that these extrema can only be determined with an
accuracy dependent on the time step ∆t. The smaller this time step, the
better a minimum or maximum radius can be approximated.

This can be seen in Figure 8.15, in which the radius history of object
#7373 is plotted for time steps of 60, 30 and 1 second. If the minimum
radius (perigee) would be determined using a time step of 60 seconds, it
would be off by more than 2.5 km, whereas using a time step of 30 seconds
would in this case yield a result relatively close to the exact minimum (only
10ths of meters off).

Using a larger time step will decrease the CPU time, while increasing
the error made due to approximation. And since the largest of this error
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Figure 8.15: Radius versus time from TLE epoch with different time steps.

in the entire catalog has to be used as a patch for all catalog objects when
applying the filter, this will also decrease the performance of the filter, in
terms of percentage of discarded pairs.

To determine the performance of the perigee-apogee filter based on different
time steps ∆t, a reference was made based on ∆t � 1 s. For a number of
time steps, the ephemerides for the entire 1-day interval were generated for
all objects. From these ephemerides the minimum and maximum attained
radius per object were taken as rmin and rmax. These two values were now
subtracted from the rmin and rmax obtained by using ∆t � 1 s, and sub-
sequently, the maximum error made in these two variables of all objects, is
indicated in Table 8.11 as ∆Rmin [m] and ∆Rmax.

The error can be seen to decrease rapidly, and so using this data, a safe
guess on the exact error made by using ∆t � 1, compared to the real rmin
and rmax, would be somewhere below -10 m for rmin and below -1 m for
rmax. A plot of the error made for all objects and ∆t � 60, 30, 20, 10 s can
be seen in Figure 8.16.

The performance of the perigee-apogee filter for each of these time steps can
now be determined by using the relevant ∆rmin as a patch for the perigee
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Table 8.11: For different time steps ∆t, the maximum error made by deter-
mination of rmin and rmax of all objects, with respect to ∆t � 1 s, next to
the percentage of rejected over analysed r{a pairs by the resulting perigee-
apogee filter, and the CPU time needed for the entire process of determining
these patches.

∆t [s] ∆Rmin [m] ∆Rmax [m] r{a [%] tCPU [s]

3600 -6215122 675518 16.01 1
1800 -2062665 212197 19.06 2
600 -249846 21888 36.34 6
360 -98585 7992 45.78 10
180 -21148 2372 54.42 19
60 -2620 306 57.08 56
30 -740 85 57.36 112
20 -334 38 57.42 168
10 -84 8 57.46 334
1 - - 57.47 3388
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Figure 8.16: Error of rmin and rmax relative to ∆t � 1 s, per object.
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and ∆rmax as a patch for the apogee, plus adding the assumed maximum
error made by ∆t � 1 itself as respectively -10 and 1 m. This results in the
percentages of discarded pairs indicated in the next column, while using a
conjunction distance D of 25000 m. Furthermore, it is noted that using no
patch, and the minima and maxima determined by the ephemerides with
∆t=1 s, the result is 57.47% pairs discarded, while using no patch and a
conjunction distance of 0 m, 61.04% of the pairs are discarded.

Finally, the CPU time needed for the process of determining the patches
for each of the time steps is listed in the table as well. The CPU time
needed for merely applying the perigee-apogee filter to the whole catalog
with the already determined patches (to filter out the pairs), is in all cases
approximately 1.5 seconds, and is not included in the table. A trade-off can
now thus be made between the percentage of pairs discarded and CPU time
needed. This trade-off can be done when the CPU time needed for the en-
tire conjunction analysis process is known, as it depends on the performance
gain it creates for the entire process.

The first three methods analysed in Subsections 8.2.3 - 8.2.5 could be pro-
cessed within approximately 1, 2 and 4 seconds CPU time respectively. Now
comparing the results of Table 8.11 to the ‘directly from TLE’ method, to
gain a performance of about 29% discarded pairs, the CPU time needed
to establish the safe filter discussed here, only 4 seconds of CPU time are
needed. Furthermore, compared to the method with modifications for per-
turbations, for a performance of about 36% one would only need 6 seconds
here. Finally, comparing it to the filter based on osculating elements, to
gain a performance of about 45%, this new method needs on the order of 10
seconds.

8.2.7 Reliability in Permanent Application

The first of the two filters (Subsections 8.2.3 - 8.2.4) yield semi-random errors
for the determination of the perigee and apogee, due to the fact that these
errors are produced by observation errors of the object when producing the
TLE. Although the errors determined for the catalog at hand can be used
for a safe patch applied to conjunction analysis for that same catalog, one
must be careful in selecting a safe patch for future analyses with different
catalogs.

For a determination of these safe patches, one could analyse multiple cat-
alogs in a row, and from the absolute maximum errors of all these catalogs,
determine a safe patch for all future conjunction analyses. Furthermore, this
could be repeated after some time, say, a number of months, to see if the
patches are still valid then; if not, the patches could be updated.

This analysis could be run separately to the real-time ongoing conjunc-
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tion analysis, therefore not hampering this process in terms of CPU time
needed. running parallel to the ongoing conjunction analysis, it would have
no practical CPU time limitation.

If, in a worst-case scenario, while analysing a future catalog with patches
determined pre-hand using earlier catalogs, an object would unknowingly
generate an error which would be larger than the patch size, the probability
that this object would have a conjunction which would not be detected is
very small. Since this primary object would have to be close to a secondary
object at exactly its perigee or apogee, while the secondary object would
also have to be at its apogee or perigee, respectively, at that same moment,
while also having an error close to the conservatively determined patch size.
And since the occurrence of any of these conditions has a low probability by
itself, a combination of these conditions would have a very low probability
to occur.

It therefore can be said that while the application of these two methods
for the perigee-apogee filter can be executed in a very safe way, it can never
reach a perfect application with 100% security to always safely filter only
non-conjunctions.

For the third method analysed, depending on osculating elements (Subsec-
tion 8.2.5), the maximum size of the local minima of the osculating perigee
and apogee could be determined for all objects for multiple catalogs. As
the maximum error for the determination of the perigee and apogee for this
filter depends on this local minimum, a safe patch can be determined based
on the largest local minimum found.

Since these minima are produced by the SGP4 theory, and are large
especially for HEO and GTO objects, they are less random than the errors
of the former two methods. When multiple catalogs are now analysed, one
can be fairly sure that the largest error which can practically be made by
the SGP4 theory in this way, is caught.

And since furthermore the same conditions, like described above, must
apply for a worst-case scenario conjunction not to be detected, it therefore
can be said that a filter using this method can be applied in an even more
safe manner than using the previous two methods.

The last method described above (Subsection 8.2.6) yields the errors made
in the determination of the perigee and apogee from the inaccuracy of the
approximation of the extrema of the radius generated from ephemerides.
The maximum error of the catalog for a certain time step like indicated in
Table 8.11 will always be a worst-case scenario like shown in Figure 8.15 for
∆t � 60 s, and is most likely to be produced by HEO and GTO objects.

Since the catalog contains a large number of objects, the error produced
by the worst-case scenario for a certain time step will always lie very close to
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the error that could ever possibly be reached by that catalog (i.e. resulting
in a worst-case scenario like for ∆t � 60 s in Figure 8.15). Certainly, if mul-
tiple catalogs are analysed, this error will lie even closer to that theoretical
maximum.

It therefore can be said that the patches for this method can be de-
termined very safely as well, perhaps around the same order of safety of
the filter based on osculating elements, due to the fact that these are both
produced by theoretical mathematical models, and are not based on mea-
surement errors, like the first two methods.

Since the last method is, of the two most reliable methods, the only one
implemented fully here, and can be fine-tuned with respect to the percent-
age of pairs to be discarded versus CPU time, while operating at comparable
performance in terms of computation time, this is the one that is selected
in subsequent analysis.

8.3 Sieves

Next to the filters which are applied pre-hand, another way to decrease the
conjunction analysis processing time is by the application of (a) sieve(s) to
the ephemerides, as discussed in Section 5.1. These sieves can be applied
consecutively to the ephemerides generated at each time instance, each time
discarding a percentage of the pairs that passed the previous sieve, in order
to reduce the search space for conjunctions as quickly as possible.

At first, an implementation of the sieves was made like originally de-
scribed in (Alarcon-Rodriguez et al., 2002), to test this theory in terms of
performance (Subsection 8.3.3). However, the last ‘sieve’ which accurately
determines the conjunctions within the time step, was implemented in a dif-
ferent way here (Subsection 8.3.1). Originally this was done by numerically
finding null values for v2app to accurately find the point of closest approach.
But since the theory to do this was not described in the publication, a differ-
ent approach was used here, making use of the Taylor series approximation
for the minimum conjunction distance and time described in Section 8.1.
The implementation of the entire process including the perigee-apogee filter
is then discussed with a flow diagram in Subsection 8.3.2.

The sieves can also be applied separately to test their performance, so the
optimal combination and order of the sieves can be found (Subsection 8.3.4).
Improvements to the existing sieves are described in Subsection 8.3.5. Once
the optimum combination of improved sieves is found, the time step can be
optimised (Subsection 8.3.6), because the theory for these sieves is variable
with ∆t.

Following, the chosen perigee-apogee filter can be optimised with its
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own variable time step, in combination with the now determined optimum
conjunction analysis process (Subsection 8.3.7). Then, a comparison is made
with the results of previous method described in references (Subsection 8.3.8)
Concludingly, some other improvements which could not be implemented
during the course of this thesis (due to time constraints), are discussed in
Subsection 8.3.9.

8.3.1 New Fine Conjunction Detection Method

When the optimal time step for the conjunction analysis process making use
of the sieves is rather large, say, in the order of minutes, the Taylor series
approximation will be less accurate, thus making it difficult to compare the
results, in terms of conjunctions found, of the sieves method, with the brute
force method. Because, when a conjunction is found by the brute force
method, which makes uses of the Taylor series to determine a minimum
conjunction event within a time step of one second, this conjunction would
be more accurately determined, than with a time step of one minute.

So if there is a conjunction found by the brute force method that is just
below 25 km, using the same Taylor series method but for a larger time step
for the sieves method, the same conjunction could be determined at little
over 25 km, and would in the latter case not be count as a conjunction. Both
methods must thus have the same order of accuracy in the determination of
a conjunction event. This is done as follows.

Since a number of calculations needed for some of the sieves are also used
in the Taylor series approximation to determine the minimum conjunction
event, they can be easily reused and implemented here. Furthermore, the
Taylor series approximation was already applied in the brute force method,
so its theory is known.

The method implemented here makes a first estimation of the conjunction
event within a larger time step ∆t (which could be in the order of minutes,
see Section 5.1), making use of the Taylor series approximation method,
which was explained before. The accuracy of this method is now relatively
poor compared to the method applied within the brute force conjunction
analysis, where a time step of 1 second was used.

Thus, the time instant now determined for this conjunction event is used
in combination with the TLEs of the two objects, to propagate both objects
to this time instant. The TLEs can be obtained per object directly from the
TLE reader, where each TLE separately is mapped to its object ID.

This propagation results in new state vectors, which can be used for
another Taylor series approximation of the conjunction event, resulting is a
more accurate determination.

This method can now be iterated to produce the required accuracy, which
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is here set to stop when tclosest is smaller than 0.5 seconds, as was the case
for the brute force method, resulting in a comparable accuracy.

8.3.2 Implementation of Sieves

In Figure 8.17, a flow diagram of the total conjunction analysis process in-
cluding the application of the perigee-apogee filter and the sieves can be seen.

The process starts off with the ephemerides file generated by the SGP4
propagator which was already treated in Chapter 7, and with the TLE data
generated by the TLE reader which was treated in Chapter 6.

Then, the perigee-apogee filter is applied with a patch matching the
maximum error in perigee and apogee. The filter needs a file with the min-
imum and maximum radius of each object. This file is generated beforehand,
separately, using the SGP4 propagator with a certain time step on its own.
Since for some analyses the perigee-apogee filter was not used, it can also
be set off, and will then not be included in the process. The remaining pairs
then go to the sieves process, which starts out by setting the critical radius
Rcr, after which Rth and Racc can be determined. For improvements 4-5a,
these variables are calculated within the sieves for each pair.

The combination and order of the sieves also needs to be set, after which
the ephemerides file can be started to be read in. After the ephemerides of
one time instance are read in, the sieves are run on this time instance, and
only on the remaining pairs of the perigee-apogee filter.

The pairs that passed all tests, continue to the fine conjunction detec-
tion, which loops through the SGP4 propagator to find the conjunction event
with minimum distance. Once this has been found, it adds the conjunctions
with a minimum distance smaller than 25 km to the list of conjunctions.

This process is then looped until all time instances in the ephemerides file
have been analysed, and thus all conjunctions have been found. This data
is written to a file. Since multiple defined conjunction events can still ex-
ist now, these are filtered out after which the resulting conjunction data is
sorted and written to another file.

Furthermore, the performance in terms of average percentage of rejected
pairs with respect to the analysed pairs per sieve, and the CPU time of all
separate steps, is given as output.

8.3.3 Performance Results of the Original Method

After all of the sieves were implemented successfully like described in Alarcon-
Rodriguez et al. (2002) (excluding the time skipping process), with the new
fine conjunction method at the end, some performance results could be gen-
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Figure 8.17: Flow diagram of the conjunction analysis process subjected to
the application of the apogee-perigee filter and the sieves.
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erated, as listed in Table 8.12. The analysis performed here, was with the
sieves in the original order and setup, like described in the reference. This
is done to get a first reference benchmark, and to see if and how the results
compare to the reference document. Later on, in the next subsection, the
sieves will be analysed seperately.

The column ‘pre’ within the tab CPU time tCPU stands for pre-processing,
and includes the TLE reader, SGP4 propagation and perigee-apogee filter
application processes, of which the first and last for all cases needed ap-
proximately 1.6 and 1.5 seconds CPU time, respectively, irrespective of any
input parameters.

Furthermore, the conjunction distance was in all cases 25 km, and the
best available perigee-apogee filter was applied in each case, resulting in
57.47% of the pairs discarded, before the sieves process started.

The sieves were written as different functions here, where each sieve
passes on the pairs that are remaining to the next sieve.

The performance of the sieves is taken as an average of the performance
of all time instances, because the sieves are applied to the ephemerides of
each time instance, generating different results.

Looking at the entries in the table, the same time intervals T were anal-
ysed as for the brute force method, all resulting in the same (number of)
minimum conjunction (m.c.) events found, thereby verifying the safe appli-
cation of the perigee-apogee filter and sieves, in this order at least.

Due to the fact that for the time interval of 1 seconds the time step can
also attain a maximum value of 1 seconds, the brute force method is faster
than the sieves method, due to the fact that both methods have to analyse
the same amount of time instances, while the sieve method has to perform
more calculations.

However, for the time interval of 60 seconds, the situation is reversed
already, since now the time step of the sieve method can be increased to
60 seconds as well, still yielding the analysis of only two time instances,
whereas the brute force method had to analyse 61.

Then, the improvement can be seen to increase until finally resulting in
a decrease of CPU time by a factor of more than 50 for a 1-day analysis
interval.

Multiple time steps were tried for the time interval of 1 hour, yielding
an approximate optimal result for ∆t � 90 seconds, which was then used
for the 1-day interval.
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Table 8.12: Performance results of the sieves method, original order and implementation, but with the new fine conjunction
detection (f.c.d.) method. The corresponding total CPU time needed for the brute force method (‘brute’) of Table 8.10 is
indicated as well. All cases used a conjunction distance D of 25 km, and the best available perigee-apogee filter was used
pre-hand, rejecting 57.47% of the pairs in all cases before the sieves process started.

tCPU [s] Pairs rejected/analysed [%]
T [s] ∆t [s] # ti # t.c. # m.c. pre sieves post total brute X Y Z r2 rmin r2fine f.c.d.

1 1 2 77 42 4 2 0 6 2 99.58 99.37 88.04 43.01 30.67 25.66 8.33
60 60 2 294 232 4 3 0 6 59 92.02 90.04 64.11 32.73 96.54 56.30 88.84

3600 60 61 13960 10597 11 68 1 80 3442 92.03 90.05 64.59 33.11 96.45 57.29 82.25
3600 90 41 14021 10597 9 62 1 72 3442 88.26 85.92 61.95 32.24 94.26 53.31 93.39
3600 120 31 14326 10597 8 74 1 82 3442 84.55 82.01 60.10 31.79 91.20 49.68 96.96

86400 90 961 338215 255712 125 1476 16 1616 83109 88.26 85.96 61.94 32.24 94.25 53.45 93.18
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The total number of conjunctions (t.c.) found is significantly smaller
than for the brute force method, as the fine conjunction detection method
already filters out all found minimum conjunction with a distance larger
than 25 km. The difference with the amount of minimum conjunctions found
here is thus purely due to the multiple defined conjunction phenomena, as
explained earlier.

The CPU time needed for pre-processing can be seen to increase with
time interval T , while decreasing with time step ∆t. This is due to the fact
that the SGP4 propagation has to propagate to more time instances when
only the time interval increases, while decreasing when only the time step
increases.

Furthermore, the CPU time needed for the application of the sieves in-
creases with the time interval as well, while there exists an optimum for
a certain time step. Finally, the CPU time needed for post-processing in-
creases with time interval (or rather, total amount of conjunctions) as well.

What then follows are the columns for the performance of the respective
sieves in terms of percentage of the amount rejected pairs with respect to
the amount of pairs analysed by that sieve. The performance of the first 4
sieves can be seen to decrease with increasing time step, since the threshold
distance Rth on which these sieves are based increases with ∆t.

This also holds for the 5th and 6th sieve, when looking at only the time
interval of 1 hour. The reason that this does not completely hold for the
time intervals of 1 and 60 seconds, is because the first sieves have now fil-
tered so many extra pairs already, which would also have been filtered by
these 5th and 6th sieves, but were now already filtered, thus decreasing their
performance.

As the time step increases, less pairs are filtered out by the first 6 consecutive
sieves, thus the more pairs end up at the fine conjunction detection, which
thus has to filter out more pairs. This last sieve is relatively slow, because it
has to perform significantly more calculations, due to the fact that for each
pair that is still remaining, SGP4 propagation has to be performed.

This is therefore the reason why there exists an optimum time step for
a certain time interval in terms of CPU time needed; increasing the time
step leads to less time instances which have to analysed, decreasing the CPU
time needed, but at the same time leads to more pairs ending up at the last
sieve, increasing the CPU time needed again.

Example Output

An example of the output data of the new fine conjunction detection method
is given in Table 8.13, where conjunctions of the ISS and Delfi-C3 are given.

215



For the full-day analysis, the ISS had 5 conjunctions with a distance smaller
than 25 km, while Delfi-C3 had 31. Of the latter only the top-10 of smallest
conjunction distances, and the 31st, is shown.

In the table the looping can be seen until the time offset is smaller than
half a second, which happens at the second step (subscript 1) for all cases
shown here.

The reason for the difference in the amount of conjunctions is because the
average altitude of the ISS (approximately 387 km) is much lower than that
of Delfi-C3 (621 km), whereby Delfi-C3 orbits in a much more crowded area
in terms of total number of orbital debris objects.

The two top objects that conjunct with the ISS are the docked Soyuz stages
again, which were treated earlier. The amount of conjunctions found with
the ISS for 1 day and smaller than 25 km was 7 in Alarcon-Rodriguez et al.
(2002), and thus quite similar.
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Table 8.13: Example output of the new fine conjunction detection system, for conjunctions of the ISS and Delfi-C3 (using
their TLE names), for the same full-day analysis as above.

ti [JD] IDp IDs dps [m] tclosest,0 [s] xclosest,0 [m] tclosest,1 [s] xclosest,1 [m] tcon,1 [JD]

ISS (ZARYA)

2455855.51388888 25544 37396 13475 -22.000 13472 0.000 13466 2455855.51363441
2455855.51388888 25544 37633 13475 -22.000 13472 0.000 13466 2455855.51363441
2455855.51041666 25544 35002 63069 6.208 18873 0.000 18870 2455855.51048851
2455855.95312500 25063 25544 335331 31.909 23750 -0.015 23737 2455855.95349414
2455855.98611111 25063 25544 522524 -49.753 24231 0.052 24272 2455855.98553586

DELFI-C3 (DO-64)

2455855.57465277 32150 32789 553189 46.676 1291 -0.042 1328 2455855.57519252
2455856.35069444 29126 32789 515578 50.928 4872 -0.053 4906 2455856.35128328
2455855.71180555 32789 32791 8196 30.600 4971 -0.248 4979 2455855.71215685
2455856.10937500 5133 32789 96956 -6.578 7548 0.000 7544 2455856.10929886
2455856.35416666 27146 32789 253683 23.033 7841 -0.006 7829 2455856.35443319
2455856.17708333 5133 32789 510720 -34.774 8745 0.015 8756 2455856.17668103
2455856.21527777 32376 32789 144324 11.085 8885 -0.001 8884 2455856.21540606
2455856.08333333 27147 32789 16034 -16.323 9072 -0.015 9070 2455856.08314422
2455856.11979166 32789 35687 839735 60.391 10189 -0.085 10184 2455856.12048964
2455855.71006944 23608 32789 494503 46.013 11950 -0.038 11955 2455855.71060155

� � �
2455855.67708333 23608 32789 208960 -19.369 24234 0.003 24239 2455855.67685919
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8.3.4 Sieves Applied Separately

When running the sieves consecutively, like above, the performance of each
sieve is not immediately clear. Therefore, each sieve was tested on all pos-
sible pairs separately, see Table 8.14. However, since the functions of all
sieves still store the remaining pairs at the end, sieves that are fast but filter
out less pairs, have to store more pairs and thus become slower again.

At the end, when a most efficient order has been established for the final
conjunction analysis process, the sieves will be implemented right after each
other in one function, using nested if structures. Thus, they then do not
need to store the remaining pairs any more, as a pair under analysis will
move immediately to the next sieve when it is not filtered out.

Therefore, the sieves are also tested separately without storing the re-
maining pairs at the end. In this way, when combining multiple sieves, in
subsequent sieves use can be made of already calculated variables, while
these variables had to be calculated multiple times when applying the sieves
separately.

Furthermore, the performance of each sieve separately does then not
have to be stored any more. The input/output and calculation of this infor-
mation was not counted as counted as part of the sieves anyway, but rather
as part of the post-processing.

Comparing the performance of the different sieves can give an indication
for the most efficient combination and order of sieves. However, a sieve that
scores well when applied to all possible pairs, could perform poor when ap-
plied to the remaining pairs of another sieve. A good example of this are
the X, Y and Z sieves, which filter the same objects as the r2 sieve would
filter by itself.

Since the perigee-apogee filter is applied very quickly and only once
(not at each time instance), it is always beneficial to run this filter before
the sieves process is started. As the sieves might perform differently when
applied after the perigee-apogee filter is applied, the performance of the
sieves was also tested on the remaining pairs of the perigee-apogee filter.

Results

When looking at the results of the original sieves, one can see that all sieves
need less processing time when the perigee-apogee filter is applied first, and
also when the pairs do not have to be stored. Applying the perigee-apogee
filter results in only a small decrease in percentage of pairs discarded, while
the CPU time decreases drastically, and thus proved that it is best applying
the perigee-apogee filter pre-hand at all times.
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Table 8.14: Performance of different sieves, original implementation, applied to the time interval of 1 hour, both separately
(upper 6 entries) and as combinations (bottom 5 entries), and both applied with and without the storing of the remaining
pairs at the end of the sieve, and furthermore with and without the application of the perigee-apogee filter up front.

with pairs storing without pairs storing
without p-a with p-a without p-a with p-a

Sieve r{a [%] tCPU [s] r{a [%] tCPU [s] r{a [%] tCPU [s] r{a [%] tCPU [s]

X 89.28 82 88.26 40 89.28 53 88.26 26
Y 89.58 81 88.61 39 89.58 53 88.61 26
Z 88.19 83 87.57 40 88.19 53 87.57 26
r2 99.65 73 99.57 34 99.65 61 99.57 29
rmin 99.87 146 99.79 66 99.87 135 99.79 61
r2fine 99.97 235 99.95 103 99.97 210 99.95 92

XYZ 99.46 76 99.37 37 99.46 58 99.37 28
XYZ+r2 99.65 76 99.57 37 99.65 70 99.57 34
Y+r2 99.65 78 99.57 38 99.65 68 99.57 33
All-XYZ 99.9945 70 99.9886 33 99.9945 70 99.9886 33
All 99.9945 79 99.9886 38 99.9945 79 99.9886 38
All Sep. 99.9945 92 99.9886 45 - - - -

219



Furthermore, some sieves are faster, while filtering out less pairs, while
others are slower, due to the fact that they are more complex and more cal-
culations have to be performed in their application, but discard significantly
more pairs.

Due to the fact that the X, Y and Z sieves have to store significantly more
remaining pairs because they filter out less, they perform even worse than
the r2 sieve at the left-hand side of the table, while they are quicker at the
right hand-side. When looking at that right-hand side, it can be seen that
while the X, Y and Z sieves perform better in terms of computation time
than the r2 sieve, this is only slightly so, and thus a better combination of
the sieves than originally described in Alarcon-Rodriguez et al. (2002) might
exist.

Therefore, the X, Y and Z sieves were combined in one function (XYZ),
so that their combined performance could be compared to the r2 sieve, and
furthermore to the combination of both (XYZ+r2). Looking at the results
(lower part of Table 8.14) it can be concluded that one is better off using
only the r2 sieve, while not making use of the X, Y or Z sieves at all.

However, for the last two sieves, rmin and r2fine, the same kind of reasoning
does not apply, as their underlying theory is not similar and their CPU times
are significantly different as well. Furthermore, when looking at Table 8.12,
the rmin sieve can be seen to still filter out a relatively large amount of pairs,
when applied to the remaining pairs of the r2 sieve, while it does this twice
as fast as the r2fine sieve would.

Sieves Combined

Therefore, the order of the last 3 of the original sieves is kept as is, and a
comparison is made between all sieves implemented in 1 function, both with
and without the X, Y and Z sieves. Losing the X, Y and Z sieves shows to
be significantly more efficient.

The reason why this is true is because some pairs that are not filtered
out by the X, Y and Z sieves, but are filtered out by the r2 sieve, have to
go through 4 if statements before they are discarded. Similarly, even more
pairs have to go through the X and Y sieves before being discarded by the Z
sieve, having crossed 3 if statements. In the same way, a comparable amount
of pairs have to go through 2 if statements before being discarded. Thus,
even though the r2 sieve needs a little bit more calculation, it is still faster
on its own because only one if statement has to be passed by all pairs.

Another combination which might be more efficient now arises, and that
is, just combining one of the X, Y or Z sieve with the r2 sieve. Since the
Y sieve seems to be most efficient here, it was chosen to form the combined
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Y+r2 sieve.
One might expect this sieve to be faster than the XYZ+r2 sieve as it

has less if statements, while the Y sieve on itself is faster than the r2 sieve.
However, as can be seen in Table 8.14, while the Y+r2 sieve is a little

bit faster than the XYZ+r2 sieve, it is still not faster than the r2 sieve by
itself.

The reason why the percentage of rejected pairs is listed with more deci-
mals for the last three entries is because when these percentages get closer
to 100%, they cannot be compared anymore, as they all would round off to
99.99, and, as we will see later on, even to 100.00%.

To see how much time is lost on storing the remaining pairs, all sieves
written as separate functions (‘All sep.’) were also tested using the original
ordering. As can be seen, this resulted in significantly more CPU time, thus
proving that it is beneficial not to apply all functions separately. The same
test could not be applied when not storing pairs, as then the remaining pairs
can then not be sent to the next sieve, hence the ‘-’ signs.

Verification

Next to the above performance testing, all of the original sieves were put
first in the entire conjunction analysis process in order to determine whether
still the same amount of conjunctions would be found as with the brute-force
method. This turned out to be the case, and thus all sieves can be safely
applied. That is, their theory holds, and they will not discard pairs which
do have a conjunction.

As the author of this report is no computer scientist, the code might not
have been written in an optimal way. However, as all sieves were written in
the same way, and the sieves are believed to be applied in the most efficient
way possible, they can be compared to one another. So, even though one
might think of ways to better implement the conjunction analysis process,
the same reasoning in terms of performance and resulting combination and
order of sieves would still hold.

Although these tests were performed for a time interval of 1 hour, some
runs were also made for 1 day, generating similar results: multiplications by
approximately 24 for the computing time and approximately the same per-
centage of discarded pairs. Therefore, the results generated here are deemed
good enough for the proper optimisation of the sieve combination and order.

A small test to determine the performance of just the fine conjunction detec-
tion method (which was not included in Table 8.14) was also made, resulting
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Figure 8.18: Schematic of the new determination of Rth.

in 99.9993% of pairs being discarded but needing 47608 seconds of CPU time,
for the time interval of 1 hour, using a time step of 90 seconds.

If this sieve would solely be used for the conjunction determination pro-
cess, it would even need more than 13 times the computing time of the brute
force method! It can thus be safely said that it is best that this ‘sieve’ is
placed at the end.

8.3.5 More Improvements

Next to losing the XYZ sieves, four more possible improvements with re-
spect to the original sieves and underlying theory were tested, which will be
explained below. Not including the XYZ sieve is called improvement 1 from
now on, so the tag ‘All+1’ will mean all sieves, but with the X, Y and Z
sieves removed, in the rest of the document.

Two improvements were made to the underlying theory of the sieves
(improvements 2 and 3 respectively), while the other two were made by
determining variables per object rather than use a constant value (improve-
ments 4 and 5).

Improvement 2: Better Threshold Radius Definition

The way in which the radius of the threshold volume Rth was originally
determined was already shown in Section 5.1.

There, see Figure 5.2, the relative path of the secondary satellite is taken
perpendicular to the sphere (or circle) spanned by Rth, while it could (or
should?) be drawn by just touching the sphere spanned by Rcr, leading to a
smaller value for Rth. This is shown in Figure 8.18, and is in fact analogous
to the theory set up with help of Figure 8.2.
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Originally Rth was calculated as

desc � 2vesc∆t (8.19)

Rth � Rcr � desc{2 � Rcr � vesc∆t (8.20)

And, since R2
th is used in the r2 sieve, results in

R2
th � pRcr � vesc∆tq2 � R2

cr � 2Rcrvesc∆t� v2esc∆t
2 (8.21)

However, the new proposed way to determine R2
th follows from Figure 8.18

as
R2
th � R2

cr � v2esc∆t
2 (8.22)

decreasing R2
th by 2Rcrvesc∆t.

Decreasing Rth is beneficial for the X, Y, Z and r2 sieves, as the test for
discarding pairs in these sieves depends on this constant. Decreasing Rth
will increase the amount of discarded pairs, thereby increasing the perfor-
mance of the sieve. And, since the constant is only calculated once before
application of the sieve, it will not increase the computation time of the
entire process.

On the downside, due to the fact that ∆t is squared in the last term, for
a time step of 90 seconds and a critical radius of 25 km, the decrease in R2

th

is only little less than 5% of the original. But this does not take away the
fact that extra rejection of pairs can be gained ‘for free’ here.

Improvement 3: Better Acceleration Radius Definition

The radius of the acceleration safety volume Racc was originally envisioned
to be determined as, see also Section 5.1,

dacc � 1

2
p2g0q∆t2 (8.23)

Racc � Rcr � dacc � Rcr � g0∆t
2 (8.24)

However, in this way, one actually determines the maximum possible devi-
ation due to acceleration at the end of the time step, and thus at the next
time instance. But, because the point of closest approach, in a worst-case
scenario, occurs at the midpoint of the time step, one could (or should?)
determine the maximum curving effect due to acceleration as

dacc � 1

2
p2g0qp1

2
∆tq2 (8.25)

Racc � Rcr � dacc � Rcr � 1

4
g0∆t

2 (8.26)

resulting in a significantly smaller radius Racc. For a time step of 90 seconds
and a critical radius of 25 km, Racc is decreased by a factor of more than
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Figure 8.19: Schematic of the improvement of the determination of Racc.

2.3 compared to the original!

Again, a smaller Racc leads to more pairs being discarded, this time by
both the rmin and the r2fine sieve.

In the rmin sieve, Racc is tested against the value for rmin, which is the
minimum value that the distance attains at the point of closest approach,
and is determined linearly using the relative velocity and position. Since
rmin is determined at each time instance in the application of the sieve,
when a conjunction would occur, there will be one time instance where rmin
is determined at a time difference smaller than half the time step, thereby
proving the safe application of the improvement proposed here.

The improvement for the rmin is illustrated in Figure 8.19.

The r2fine sieve is applied differently however, where the fine threshold dis-
tance Rth,fine is determined, see Section 5.1, by adding Racc to the distance
covered due to the relative approach velocity in half a time step.

This Rth,fine is then tested against the distance between the two objects
under analysis. This is correct, but due to the decrease in Racc this test will
now filter out more pairs as well.

Improvements 4/4a: Better Maximum Relative Velocity Determi-
nations

The application of all sieves is in principle theoretically determined by two
constants, vesc and g0, and one variable, ∆t, as all other variables are de-
termined by the ephemerides of the objects. The time step is optimised by
performing iterations on the complete conjunction analysis process.
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Since the two constants are chosen very conservatively, there might be
some room for improvement here.

In determining Rth, the escape velocity vesc is used, as this is the absolute
maximum velocity an object can attain, while in orbit about the Earth.

However, since for the perigee-apogee filter the minimum radius of each
object has already been determined, the maximum velocity per object can
also be determined, in the time interval under consideration. This has to be
done with the vis-viva law, as the minimum radius for an object here is not
necessarily the perigee radius of the object, due to the possibility of objects
having a larger orbital period than the time interval under consideration.

vmax �
d
µ

�
2

rmin
� 1

a



(8.27)

If this new value for Vmax is now to be used in the sieve per object, the
threshold distance follows as, using the result of improvement 2,

R2
th � R2

cr � p1
2
pvmax,p � vmax,sqq2∆t2 (8.28)

Rth �
c
R2
cr � p1

2
pvmax,p � vmax,sqq2∆t2 (8.29)

which is calculated per pair.

Since the value of vmax determined per object is always smaller than vesc,
which was previously applied in all cases, the sieves using Rth, namely the
X, Y, X and r2 sieves, will be able to filter out more pairs.

There is a catch here however, and that is that in the application of
these sieves, Rth has to be calculated per pair, while previously this was a
constant which could be determined once pre-hand. This will increase the
running time of these sieves.

This improvement could be taken one step further (improvement 4a), by
taking the actual velocities of each object at each time instance to deter-
mine R2

th.
However, as this involves taking the square root to obtain the velocity

from its components for both objects, it increases the computational burden
significantly, as will be shown later.

Improvements 5/5a: Better Relative Acceleration Determinations

The application of g0 can be improved in a similar way as in improvement
4, namely, calculating its maximum value pre-hand, per object, for the time
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interval under consideration, using the minimum radius which was already
determined per object for the apogee-perigee filter,

gmax � GM

r2min
(8.30)

resulting in a new Racc, using the result of improvement 3,

Racc � Rcr � 1

4
p1
2
pgmax,p � gmax,sqq∆t2 (8.31)

which has to be calculated per object pair.

The sieves that make use of Racc, namely, the rmin and r2fine sieves, will
be able to filter out more pairs, due to the fact that gmax determined per
object is always smaller than g0.

However, also here it is true that these sieves will now need more CPU
time in their application, as they have to perform more calculations than
before, when Racc was determined as a constant and pre-hand.

This improvement can also be taken one step further (improvement 5a), by
taking the actual radius of each object at each time instance to determine
g and then Racc. However, this increases the computation time somewhat
again.

Results

The performance results of the sieves applied separately without storing the
remaining pairs, but including improvements, are shown in Table 8.15, and
can now be compared with the results obtained earlier for the original sieves,
listed in Table 8.14.

All improvements were tested to find the same conjunctions as the origi-
nal sieves and thus also as the brute force method, and are thus safe to apply.

For the first 10 sieve entries of Table 8.15, it can be seen that improve-
ments 2 and 3 always increase the amount of pairs that are rejected, while
the computation time stays the same.

However, when improvements 4 and 5 are added on top of 2 and 3, the
amount of pairs rejected is increased, but the CPU time is also increased.
They will therefore have to be tested in a complete conjunction analysis run
to determine whether they are worthwhile or not.

Combination of Improvements The results of the complete conjunc-
tion analysis process for a number of combinations of sieves and improve-
ments, for a time interval of 1 hour, are shown in Table 8.16. This time,
also improvements 4a and 5a were tested.
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Table 8.15: Performance of sieves including improvements, for a time interval
of 1 hour and a time step of 90 seconds.

without p-a with p-a
Sieve r{a [%] tCPU [s] r{a [%] tCPU [s]

X+2 89.54 51 88.54 26
Y+2 89.83 52 88.88 26
Z+2 88.44 53 87.83 26
r2+2 99.67 60 99.59 29
rmin+3 99.974 134 99.95 61
r2fine+3 99.977 210 99.96 92

XYZ+2 99.49 57 99.40 28
XYZ+r2+2 99.67 70 99.59 34
All+1+2+3 99.9991 71 99.9978 33
All+2+3 99.9991 78 99.9978 38

r2+2+4 99.87 71 99.8217 34
rmin+3+5 99.9785 152 99.9618 68
r2fine+3+5 99.9775 241 99.9644 106

The number of found conjunctions was 10597 in all cases, being the
same conjunctions as were found by the brute-force method. Furthermore,
the pre- and post-processing times were approximately 9 seconds in total for
all cases, so only the total CPU time is listed here.

Compared to the original, improvements 1, 2 and 3 can be seen to reduce
the total computation time significantly. Then, following these results, im-
provement 4 is seen to add too much extra calculations to a high amount of
pairs in the earlier sieves, while improvement 5 decreases the running time
slightly again. The same happens for 4a and 5a, where 5a can be seen to
perform slightly less again, compared to improvement 5.

Full Conjunction Analysis Process The three most promising combi-
nations, next to the original, are now tested on the full 1-day time interval,
generating the results listed in Table 8.17.

It can be seen here that all of these three combinations generate similar
results, with the combination of improvements 1+2+3+5 scoring the lowest
CPU time.

Furthermore, it can be seen that while the difference in the percentage
of pairs filtered does not look like much, with respect to the number of
pairs that are left at that point, it is a large number, as can be seen by the
percentage which the fine conjunction detection method has to filter out at
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Table 8.16: Performance of the original sieves compared to the improvements
in a full conjunction analysis process, for a time interval of 1 hour and a
time step of 90 seconds.

r{a [%]
Sieves # t.c. tCPU [s] sieves f.c.d.

All orig. 14021 63 99.9886 93.38

All+1 14021 59 99.9886 93.38
All+2+3 12593 50 99.9978 68.87
All+1+2+3 12593 46 99.9978 68.87

All+1+2+3+4 12407 50 99.9979 68.89
All+1+2+3+5 12479 45 99.9982 62.03
All+1+2+3+4+5 12323 50 99.9983 62.02

All+1+2+3+4a 12348 69 99.9979 68.91
All+1+2+3+5a 12473 46 99.9983 61.50
All+1+2+3+4a+5a 12267 69 99.9983 61.52

Table 8.17: Performance of the original sieves compared to the improvements
in a full conjunction analysis process, for a time interval of 1 day and a time
step of 90 seconds.

r{a [%]
Sieves # t.c. tCPU [s] sieves f.c.d.

All orig. 338189 1413 99.9886 93.19
All+1+2+3 303789 1025 99.9978 67.96

All+1+2+3+5 301201 998 99.9982 60.89
All+1+2+3+5a 301027 1007 99.9983 60.32

the end.

Optimisation of this last sieve can thus also yield performance increases,
although the function was implemented here to the best of knowledge as
efficient as possible. Implementing a different but faster way to determine
the conjunction event within the time step can have beneficial results.

8.3.6 Optimisation of Time Step

Although all of the above analysis was done with a time step ∆t of 90
seconds, an optimisation of this time step applied to the entire full-day con-
junction analysis process still has to be performed. In Table 8.18 the results
of multiple runs with a different time step can be seen for the combination
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Table 8.18: Optimisation of time step ∆t, for combination ‘All+1+2+3+5’.

tCPU [s] r{a [%]
∆t # t.c. pre sieves total sieves f.c.d.

60 314479 187 1202 1405 99.9992 37.60
90 301201 123 859 998 99.9982 60.88

120 296122 95 708 819 99.9962 67.35
130 295391 88 686 791 99.9951 79.97
140 294652 82 670 768 99.9938 82.99
150 294177 77 660 753 99.9923 85.47
160 294121 73 665 754 99.9904 87.57
170 293805 69 670 755 99.9881 89.31
180 293796 65 680 761 99.9854 90.74
210 294546 56 763 836 99.9745 93.83

‘All+1+2+3+5’, which performed best in Table 8.17.
Post-processing took approximately 16 seconds in all cases, and again the

same minimum-conjunction events were found as in the brute-force method.

What can be seen here is that for larger time steps, the pre-processing time
decreases, due to the fact that less ephemerides have to be generated, which
also decreases the burden on the sieves process, as these have to process the
ephemerides at each time instance.

Furthermore, an optimum can be seen at ∆t � 150 s. Due to the fact
that more and more possible conjunctions end up at the fine conjunction
detection method, the whole progress slows down again for larger time steps.

Something else is noted now as well: the more pairs a combination of sieves
discards, the higher the time step where the optimum will be found. And so,
the combination ‘All+1+2+3+5a’, which performed slightly better in terms
of pairs discarded, but slightly less in terms of CPU time needed, for a time
step of ∆t � 90 s, just might perform better at its time step optimum than
the combination analysed here!

Therefore, the optimum time step for the combination ‘All+1+2+3+5a’
was also determined, see Table 8.19, and for ∆t � 150 s, the CPU time
needed is slightly less compared to the optimum value in Table 8.18

To compare the results to the original sieves, the time step had to be opti-
mised there as well, as can be seen in Table 8.20.

The optimum here lies around ∆t � 90 seconds, which results in a CPU
time of around 1422 seconds.
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Table 8.19: Optimisation of time step ∆t, for combination ‘All+1+2+3+5a’.

tCPU [s] r{a [%]
∆t # t.c. pre sieves total sieves f.c.d.

120 295861 96 712 833 99.9962 75.89
150 293898 77 657 751 99.9924 85.13
155 293599 75 660 751 99.9916 86.26
160 293806 73 662 752 99.9906 87.27
180 293648 65 677 758 99.9858 90.49

Table 8.20: Optimisation of time step ∆t, for the original combination of
sieves.

tCPU [s] r{a [%]
∆t t.c. pre sieves total sieves f.c.d.

60 339927 188 1385 1589 99.9972 81.64
80 337720 145 1263 1425 99.9926 90.72
90 338189 126 1280 1422 99.9886 93.17

120 344426 96 1567 1679 99.9666 96.84

The optimum has a lower value here because the original sieves filter less
pairs in total, for the same time step. This can be seen when comparing r{a
for the time step of 120 seconds in Tables 8.19 and 8.20.

With respect to the optimal time step, compared to the original sieves,
the combinations ‘All+1+2+3+5/5a’ can be seen to be almost twice as fast.

8.3.7 Optimisation of Perigee-Apogee Filter

Looking at the total computation time for the full conjunction analysis pro-
cess, a proper selection of the time step used for the determination of the
minimum and maximum radius per object for the perigee-apogee filter can
now be made.

Up until now, the best available perigee-apogee filter (∆t � 1 s) with the
smallest patches (10 and 1 m) was used. Choosing a larger time step here
decreases the amount of CPU time needed to determine the patches for the
perigee-apogee filter, but also decreases the amount of pairs filtered out,
which in turn increases the CPU time of the total process again.

An optimum can thus be found here as well, and the results of multiple
runs can be seen in Table 8.21.
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Table 8.21: Optimisation of time step ∆t, for the perigee-apogee filter, using
the sieve combination ‘All+1+2+3+5a’.

tCPU [s] r{a [%]
∆t filter sieves total filter sieves f.c.d.

1 3388 654 4134 57.4677 99.9924 85.1268
10 334 656 1083 57.4556 99.9924 85.1306
20 168 656 916 57.4189 99.9924 85.1431
30 112 656 860 57.3602 99.9924 85.1615
60 56 658 807 57.0837 99.9925 85.2485

180 19 694 806 54.4187 99.9926 85.7616
360 10 782 886 45.7800 99.9938 85.8586

In between the time step of 60 and 180 seconds for the generation of the
data for the perigee-apogee filter, the total conjunction analysis process can
be seen to have a minimum total CPU time.

Although less pairs are filtered here by the perigee-apogee filter than for
smaller time steps, and the sieves thus have to process more pairs at each
time instance, the process to generate the minimum and maximum radii of
all objects for the perigee-apogee filter takes considerable less computation
time, hence resulting in the optimum.

8.3.8 Comparison with References

Since a relation to compare the results of different methods analysed in
different publications could not be found in Chapter 5, the results gained
here cannot easily be compared to older methods which had different starting
parameters. Most methods used different values for the amount of objects
in the catalog (and thus amount of pairs analysed), for the conjunction
distance, and for the time interval analysed.

Amount of found Conjunctions

Looking at the results of the found references in Table 5.1, one can see
two entries that match the starting parameters used here quite closely,
namely, Alarcon-Rodriguez et al. (2002) and Ting & Hai (2008), which used
the same time interval and the same conjunction distance. The amount of
pairs analysed is significantly less however.

The catalog analysed here contains 14603 objects, resulting in 106616503
pairs analysed, which is approximately 3.3 and 1.5 times the amount of
pairs analysed in the two references, respectively. However, the method
implemented here found approximately 24 and 2.2 as many conjunction
events.
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However, no clear relation between these two variables exists either. This
can be due to the fact that previous methods might not have found all con-
junctions, but this is assumed not to be the case, due to the fact that at least
the latter of the two methods also used a reference method for verification.
Furthermore, the first of the two methods is the same implemented here,
which is verified.

The reason that there exists no natural relation is probably due to the
non-randomness of the position and the orbits of the objects in space. In
time, most new objects are added to the LEO and GEO regions, generating
a disproportionate amount of extra conjunctions.

Finally, comparing Table 8.6 with Table 5.2, the same (approximate) quadra-
tic decrease of number of conjunctions for decreasing conjunction distance
can be observed.

Optimal Time Step

When comparing the optimal time step found here with the two references
in Table 5.3, they are all different, due to the fact that all conjunction
analysis systems are different with different concluding methods, like the
fine conjunction detection method here.

Sieve Performance

Furthermore, the percentage of rejected over analysed pairs gained here
compared to Table 5.4 is different for all sieves, as different method with
different time steps were applied.

However, for the method described in Alarcon-Rodriguez et al. (2002),
the same trend for the sieves can be seen for the results here, see Table 8.12,
for a time step of 120 seconds, which comes close to the 180 seconds used in
the reference. That is, the Z sieve filters out considerably less than X and
Y, since the latter sieves already filtered out objects that would have been
filtered out by Z as well.

Then, the r2 sieve performs considerably less again, around 30%, which
is about the same that was gained here. Also, the rmin and Rth,fine sieves
show similar numbers.

8.3.9 Possible Other Improvements

There are other improvements that could be made to the sieves process, and
two other filters might be applied before application of the sieves, but after
the perigee-apogee filter. Unfortunately, there was not enough time in the
scope of this thesis to implement and test these additions.

A brief description is given here though, as some research on the possi-
bilities was done.
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Improvement 6: Relative Acceleration

Looking back at the equations to determine the maximum relative accelera-
tion between two objects in near conjunction, in subsection 8.3.5, it can be
said that this worst case scenario of adding the two gravitational accelera-
tions can actually never be met. Due to the fact that two objects that are
in near conjunction have gravitational accelerations that are quite similar to
one another, taking the absolute difference of the accelerations determined
with improvement 5a might be a better estimate of their maximum relative
gravitational acceleration.

However, implementing this resulted in less conjunctions found. For an
optimum time step of 200 seconds, the absolute difference needed to be mul-
tiplied with a factor 20 in order to find all conjunctions again. However, this
did result in a total computation time of only 494 seconds, thus being almost
three times faster than the original reference method. In the sieves process,
99.9981% of the pairs were discarded here, compared to the optimum of
99.9924% of Table 8.19.

Seeing as taking the difference needed such a large factor in order to
work, the accelerations due to drag might be more important here. As the
velocities vectors of both object can have large differences, the accelerations
due to drag will not be similar, and generate a large relative acceleration.
Furthermore, all other perturbations are quite similar for both objects near
the conjunction point. This would require a different approach altogether,
resulting in smaller relative accelerations, and consequently a larger amount
of discarded pairs by the rmin and Rth,fine sieves, and might be worth re-
searching more in-depth in the future.

Step Skipping

The process of skipping steps was already described in Section 5.1, and uses
the fact that object pairs might be so far apart that they can never reach
each other in some n upcoming time steps. At these steps the objects can
then skip the sieves process, until the number of steps that could be skipped
have passed.

The downfall of implementing this process is that extra information (an
integer) has to be stored for each pair, through which the system has to
loop at the start of the analysis of each time instance. Each number of steps
to be skipped is then decremented by 1, until it reaches 0, and the pair has
to be analysed again.

Furthermore, the r2 sieve would have to calculate the steps to be skipped,
and store this extra information, when a pair is discarded.

Although some extra calculations and processes are involved here, the step
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Figure 8.20: Schematic of the forming of pairs with ascendingly sorted arrays
with respect to one of the three coordinates. (Healy, 1995)

skipping looks promising. In particular since now, each pair, after the cal-
culation of the steps to be skipped, only has to be checked for an integer,
instead of determining its distance each time instance.

Sorting

A sorting theory, set up in Healy (1995), could also improve the computation
time of the sieves.

When applied to the X sieve for instance, all objects would have to be
sorted ascendingly according to their x coordinate. Then, the now sorted
list will move along a copy of this list, like indicated in Figure 8.20, to form
the pairs that need to be analysed. In the figure, the bottom array will move
one step to the right each time, until the end is reached. In this way, each
possible combination of pairs is analysed one time.

There will be a point at which all pairs formed by the the combination of
the sorted lists are rejected by the sieve, and thus also all following pairs
will be rejected by the sieve, due to the sorting. The sieve can thus stop
when this point has been reached.

Although this improvement could be applied to the X, Y and Z sieves, it
can unfortunately not be used for any of the other sieves, as these involve
testing by use of more than one coordinate, and thus have to be calculated
for each pair independently.

Furthermore, it can neither be applied to the perigee-apogee filter, as
this depends on both the perigee and apogee radius of both objects in a
pair.

Since the X, Y and Z sieves were proven to slow the conjunction process
down, this sorting method would have to be so effective in order to make
the X, Y and Z sieves efficient enough to take part again.
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Two Other Filters

Next to the perigee-apogee filter, there are two other filters initially set up
in Hoots et al. (1984), namely, the geometrical filter (also called orbit path
filter) and the time filter, which are both much more complex.

It has been shown in Woodburn et al. (2009) and stated in Alarcon-
Rodriguez et al. (2002) as well, that these filters are not reliable in their
application: they do not guarantee that all conjunctions will be found. In
other words, pairs might be discarded by these filters which do have a con-
junction in the time interval which is analysed.

In Woodburn et al. (2009) these filters were improved for a reliable ap-
plication however, but without a detailed description of how this was done.
It is therefore not fairly easy to implement these complex filters. Further-
more, it was also stated that at least the time filter would bring a larger
computational burden than the amount of pairs it would reject.

Also, in Ting & Hai (2008), a description of a new improvement to the
geometrical filter was described, but also not into great detail. This improve-
ment looks promising however, as it is shown to not miss any conjunction
while decreasing the CPU time needed substantially.
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Chapter 9

Conclusions

A complete and successful orbital debris conjunction analysis system has
been set up in C++, which partly was integrated in Tudat as well. This
system combines a TLE reader, an SGP4 propagator and a conjunction
analysis process which makes use of a perigee-apogee filter and multiple
sieves.

The conjunction analysis process was verified by a so-called ‘brute force’
method, to test if it filters out pairs of objects which do have a conjunction
event in the time interval under analysis.

Furthermore, improvements were made to existing filtering methods and
sieves, leading to lower CPU times.

9.1 TLE Reader

A TLE reader has been set up and integrated into Tudat, which makes use of
publicly available TLE catalog files, which are updated twice a day and can
be downloaded with a program called TLERetriever (Kelso, 2010a). This
program needs one’s account details to gain access to SpaceTrack (USSTRAT-
COM, 2004), from which the TLE data is retrieved.

The TLE reader can read in a catalog file with 2- or 3-line TLE data,
which contains one element set for every object. Variables like the objects’
name, ID, launch date and orbital parameters, as well as the epoch of the
TLE for which the orbital elements hold, are included. These variables are
then stored in a data container, which also stores new variables that have
been derived from the TLE variables.

The TLE reader also contains a file integrity check, to test if all TLEs
within the catalog file are valid. This is done with a number of rules that
have to apply for each TLE. If a TLE is not valid, it will be removed from
the database.

Furthermore, a TLE manager was included, which can write selectable TLE
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data to a file, for analysis. Using the output data of the variables within
the TLEs, histograms can be drawn, and multiple variables can be plotted
versus each other in one figure.

Besides, it can sort the database with respect to a certain variable, count
the number of rocket bodies versus debris or payload objects, and count the
amount of objects with the same source or orbital regime.

Furthermore, it can group the TLEs in orbital regimes and make new
catalog files from them, as well as take a random percentage or number of
objects from the catalog to make a new, smaller database to work with.

9.1.1 Result Examples

A nice example of a histogram can be seen in Figure 6.9, which shows the
abundance of different ranges of the mean motion n. The peak at 1 rev/day
represents the GEO objects, while the peak around 2 rev/day is due to the
satellite constellations and GTO objects. The peaks around 12.5, 13.8 and
14.5 rev/day are LEO objects corresponding to preferred orbital heights for
science, weather and remote sensing satellites, respectively.

A good example of a plot of multiple variables is shown in Figure 6.12,
where the eccentricity e of each object versus its semi-major axis a is rep-
resented with one dot, which is coloured per orbital region. The graph can
be seen to have an upper limit, which can be explained to be the limit of
eccentricity that an object can have for a certain semi-major axis, for else it
would decay towards the Earth and burn up in the atmosphere. The LEO,
GTO and GEO objects can be clearly seen in their semi-major-axis bands,
with corresponding eccentricities.

Record sources for the amount of debris in the catalog of 2011.01.10 are
identified to come from TLE object names ‘FENGYUN 1C DEB’ (2791 ob-
jects), ‘COSMOS 2251 DEB’ (1313) and ‘IRIDIUM 33 DEB’ (462), which
resulted from the Chinese anti-satellite test (Jan 2007) and the collision of
an active and decommissioned payload (Feb 2009).

Categorised into three groups, this catalog contained 9807 (fragmented)
debris objects, 1083 rocket bodies, and 3748 other objects, the latter includ-
ing active and decommissioned payloads. The largest orbital regime is the
LEO region, containing 11358 out of 14638 objects in this particular catalog.

The above numbers dropped significantly in a catalog of three months
later, due to the decay of objects, as the collision events creating large
amounts of debris had occurred only recently.

Sorting the catalog with respect to the apogee radius ra showed the record
holder to be ‘PROGNOZ 6’, which is located more than half-way to the
Moon when situated in the apogee of its orbit (201460 km on the 10th of
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April 2011).

9.2 SGP4 Propagator

Following the TLE reader, an SGP4 propagation system was implemented,
which can be used to determine the ephemerides and orbital elements of an
object or entire catalog of objects at any given date and time. SGP4 code
already available in C was found online, described in Vallado et al. (2006),
which is an improved version of the original SGP4 theory published in Hoots
& Roehrich (1980).

This C code was subsequently researched and understood, after which
an SGP4 handler was written to provide the proper input/output and func-
tionality for the conjunction analysis.

Different options could now be selected for the version of the SGP4 code,
the set of constants used, the time step, and the type of time interval pa-
rameters. The latter can be set as minutes from TLE epoch, date and time,
or year and day. Also, the combination of output parameters could now be
selected, like the epoch type, Cartesian state vector and orbital elements.

Furthermore, different functions to call the SGP4 propagator were imple-
mented.

For instance, one function can process an entire catalog file and deter-
mine the ephemerides of all its objects at all time instances within the set
time interval separated by the time step. The output could then be listed
in the output file in groups per object, or per time instance.

Another functionality needed for conjunction analysis was to determine
the ephemerides of one object at one time instance. Also, a function was
needed to determine the minimum and maximum radius in a time interval,
using a certain time step, for all objects in a catalog, as quickly as possible.

9.2.1 Result Examples

The implementation of the SGP4 propagator has been verified with tables
and plots from references, which could be reproduced, if enough data for the
creation of these plots was available.

An example of such a verification can be seen in Figures 7.5 and 7.6,
where the position components of an object using the improved (corrected)
SGP4 theory were recreated.

Next to this verification, orbital parameters and ephemerides of objects from
current catalog could now be determined and plotted.

One example of what can be done is shown in Figure 7.12, which shows
all objects of a catalog propagated to one time instance. Using a North pole
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view, the GEO ring and the LEO region are clearly visible to be heavily
crowded with objects.

9.3 Conjunction Analysis

After the TLE reader and SGP4 propagator were successfully implemented,
a conjunction analysis system was set up. The final goal here was to design
a conjunction analysis process which is as efficient as possible.

Therefore, filters and sieves were tested in terms of performance sepa-
rately first, in order to build up the best combination and order of these
filters and sieves. Such that an entire catalog could be tested all-vs-all for
a time interval of one full day, as fast as possible. All methods were timed
with a CPU timer, in order to test their computational performance.

All analysis was done with the catalog of 2011.10.20.am, analysed from
2011.10.21 00:00:00 until 2011.10.22 at the same time. Of this catalog 14603
objects were used in the analysis.

9.3.1 Brute-Force Method

In order to verify the results of the final process, a baseline conjunction
analysis process was setup first, which was called the ‘brute-force’ method.
This method generated the ephemerides of all objects with a time step of 1
second, after which the positions of all possible unique pairings of objects
were compared, to determine which conjunction events took place during
one day. The method was designed in such way, that all possible conjunc-
tions with a relative minimum distance of less than 25 km were found.

Due to the fact that one conjunction event could be found at multiple time
instances (an object pair can have a distance of less than 25 km for the du-
ration of more than one second), these multiple defined conjunction events
were filtered out.

Furthermore, for each conjunction event, the minimum distance at the
time of closest approach, was determined with a Taylor series approxima-
tion, in order to define each conjunction event within the time steps.

The final brute-force analysis resulted in 255712 conjunction events found,
while the CPU time needed for this analysis was 83109 seconds in total,
which can be subdivided in SGP4 propagation (10793 seconds), conjunction
analysis (71742 seconds), and post-processing (575 seconds).
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9.3.2 Perigee-Apogee Filter

The first option to reduce the computation time of the conjunction analysis
process that was analysed, is the perigee-apogee filter. In essence the filter
works by discarding pairs of the database, when the perigee radius of one
object is larger than the apogee radius of the other.

The difference between both actually has to be larger than the set con-
junction distance. Since the goal of the filter is to eliminate pairs for the
entire time interval under analysis, it has to account for perturbations in
the orbits of both objects as well.

Four different implementations of this filter were studied in this report, of
which two were purposely designed for this thesis (number 1 and 4), one
is an improvement of an existing method (3), and one an adjustment of a
here-designed method using theory from an earlier method (2).

Directly from TLE

The first method simply determines the apogee and perigee radii of each
object directly from the orbital parameters in the TLE. Since the TLE
epoch differs from the time interval that is analysed, and the average value
determined from the TLE does not always match the ‘real’ value defined
by the ephemerides, the error that is made by this method can be quite
significant.

The maximum error that is made in this way was 339 km for the apogee
radius and 135 km for the perigee radius. These errors were then used as
a patch for all apogee and perigee values of all objects, in order to safely
apply the perigee-apogee filter. This resulted in 29.56% of all pairs being
filtered out.

Modifications for Perturbations

For the second implementation, an improvement to the first method was
made, by approximating the perturbations affecting the apogee and perigee
radii, using the theory of Hoots et al. (1984). Equations describing the mean
deviation due to atmospheric drag and the oblateness of the Earth were used
to determine the perigee and apogee radii at the start and end points of the
time interval in a linear fashion.

Now using the minimum and maximum of these values respectively, in
the perigee-apogee filter, resulted in 36.36% of all pairs being discarded, as
still the maximum error made was 189 km and -80 km for the apogee and
perigee radii, respectively.
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Sampled from Osculating Elements

For the third option the method described in Woodburn et al. (2009) was
analysed, which determined the apogee and perigee radii of each object
by determining the minimum and maximum of the osculating perigee and
apogee distances based on the ephemerides at the start and end points of
the time interval.

It was shown however, that the error that could be made in this way is
still at least 46 km for an apogee example, and thus, by using patches of
50 km (the reference suggested patches of 30 km), this method resulted in
45.57% pairs being filtered out.

Determined from Ephemerides

The fourth and last method that was analysed, determined the ephemerides
of each object with a certain time step, and from this the minimum and
maximum radii of each object in the time interval was determined directly.
Then after quantifying the error made in this way for a certain time step,
the method can be applied in a safe way.

Furthermore, a trade-off can now be made with respect to the amount
of pairs filtered out versus the CPU time needed to apply the entire filter.
When generating similar results as the previous three in terms of pairs dis-
carded, this final method only needed slightly more CPU time. However, if
needed, it has the ability to go up to 57.47% of all pairs being filtered out.

Results

The latter two methods were found to be the most reliable in long-term
application. The fourth method was selected for future analysis, as it is
adjustable, and can be tuned to the needs of the entire conjunction analysis
process. According to the CPU time needed by the rest of the conjunc-
tion analysis process, a trade-off can be made for a suitable time step and
resulting percentage of pairs discarded by this method.

9.3.3 Sieves

Then, following the perigee-apogee filter, the sieves described in Alarcon-
Rodriguez et al. (2002) were analysed and improved. The strength of the
above filter lies in the fact that it can be applied pre-hand and only once,
while the now following sieves need to be applied at each time instance.

However, a coarse time step can be used here, after which all pairs that
pass all sieves for a certain time instance, go through a fine conjunction
detection method, which determined whether or not the pair has a conjunc-
tion event within this coarse time step. This method loops the Taylor series
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approximation with the SGP4 propagator, in order to define a conjunction
event with the same accuracy as the brute-force method did.

Sieve Descriptions

Six sieves were tested in terms of performance with respect to the average
percentage of filtered pairs, and the CPU time needed for their application.

The first three, the X, Y and Z sieves, compared the difference between
these coordinates of both objects, with a so-called threshold radius. This
threshold radius is a combination of the critical radius (25 km is used here)
and a safety patch, which is set up using the time step and the maximum
velocity an object can attain in orbit about the Earth: the escape velocity.
Applied in this way, the filtered objects cannot enter the critical sphere, at
least, until the next time instance occurs.

The fourth sieve uses the same technique but now the actual distance
between the objects is used, instead of just one coordinate.

The fifth sieve compares the minimum distance between two objects
determined by the Taylor series approximation, with the acceleration radius,
which is a combination of the critical radius and the maximum deflection
the objects could make under the influence of Earth’s gravity, using the
standard gravity at sea-level.

The sixth and final sieve uses the actual approach velocity of the object
pair at each time instance, which is used in an addition to the acceleration
radius, and is then compared to the distance between the objects.

Improvements

Eight (possible) improvements were made to the theory, application and im-
plementation of the sieves.

The first removed the use of the X, Y and Z sieves, as this proved to be
more efficient.

The second and third were improvements to the theory for the set up of
the threshold and acceleration safety volumes, leading to more pairs being
discarded by all sieves.

The fourth and fifth improvements used the maximum velocity and max-
imum gravitational acceleration attained by each object at a certain time
interval, for the determination of the threshold and acceleration radius. This
could be done easily, as the minimum and maximum radii were already de-
termined for each object for the perigee-apogee filter.

The sixth (4a) and seventh (5a) improvements, determined these two
values for velocity and gravitational acceleration per object at each time
instance using the ephemerides at that point.
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These last four improvements (4-5a) resulted in a less conservative ap-
proach, compared to the application of the escape velocity and standard
gravity. This resulted in more pairs being discarded, albeit at a sometimes
high costs in terms of CPU time needed.

After the near completion of this thesis, another improvement (6) was
tried, which scaled the difference (instead of addition) of the gravitational
accelerations of improvement 5a of an object pair. However, a better imple-
mentation of this method still needs to be researched in-depth.

Results

The optimum combination of improvements, after optimising the time step
for each method (which resulted in 150 seconds here), turned out to be
‘All+1+2+3+5a’. This combination resulted in almost a twice as low value
for the computation time needed for the total conjunction analysis process
(751 seconds), compared to the original sieves (1422)!

This was due to the fact that, for the same time step, the new combi-
nation filtered out a higher percentage of the analysed pairs, compared to
the original sieves. And, since for a smaller time step more time instances
needed to be analysed, the new optimised method proved to be much more
efficient, while still finding the same conjunction events as had been deter-
mined by the brute-force method.

The newly designed improved conjunction analysis including the setup of
the perigee-apogee filter with an optimised time step of 120 seconds, re-
sulted in a total CPU time of less than 800 seconds. Compared to the
brute-force method, this is a decrease by a factor of more than 100 in terms
of computation time.

Scaling the difference of the gravitational accelerations of improvement 5a
with a factor 20 resulted in a computation time of only 494 seconds, for an
optimum time step of 200 seconds, while still being able to find all conjunc-
tions. This is almost three times as fast as the original method.

Leaving the reader with a concluding note: If the original method was called
‘Smart-Sieve’, what should this improved method be called (pun intended)?
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Chapter 10

Recommendations

When designing or applying a new conjunction analysis process, it is rec-
ommended to take note of the improvements suggested in this thesis. They
could be of great benefit to the efficiency of a new or existing conjunction
analysis system.

For the perigee-apogee filter the 4th method described in this document is
recommended. Although it takes slightly more CPU time than other meth-
ods, is it more reliable and accurate in long-term applications. Furthermore,
it can be tuned to the needs of a certain system, in terms of percentage of
filtered pairs versus CPU time needed.

When using the sieve system, the combination ‘All+1+2+3+5a’ per-
formed best in the analysis for this thesis. However, for different implemen-
tations of a conjunction detection system, other combinations of sieves and
improvements might perform better. The approach followed in thesis can
then be a guide in determining the best options.

10.1 Future Research

Next to the research done in this thesis, other research that could benefit the
conjunction analysis process could be done, which was considered outside
the scope of this assignment. Furthermore, research that can be done in
neighbouring areas was found as well, which could benefit conjunction anal-
ysis as a whole, or together form a larger analysis spectrum with respect to
the understanding of orbital debris conjunctions.

10.1.1 Conjunction Analysis

In Subsection 8.3.9, some suggestions for other improvements not deeply
researched in this thesis were given. These include the skipping of steps in
the sieve process, or sorting the objects with respect to a coordinate.
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Furthermore, two other potential filters could be researched: the geom-
etry and time filter. References to different implementations of these filters
were given throughout Section 5.1 and Subsection 8.3.9.

For the perigee-apogee filter, or any other analysis for that part, the TLEs
could be categorised into subgroups, like the orbital regions, and according
to this be treated differently in the application of the filters and sieves, as
the GTO and HEO objects were often seen to create the largest errors.

Furthermore, the fine conjunction detection method used in this thesis was
different from the one used in Alarcon-Rodriguez et al. (2002), which were
both different from the one used in Ting & Hai (2008). A comparison of the
different possibilities here could bring performance increases, as this final
method of the conjunction analysis process is the most complex one and
thus uses the most CPU time per analysed pair.

Also, the type of implementation here could be seen to greatly influence
the optimal time step versus the total amount of pairs rejected.

When all possible filters would be researched, and the best fine con-
junction detection method would be found, the ultimate and most efficient
conjunction analysis process could be formed in the future.

Just before completion of this thesis, a last improvement was found, which
still needs to be analysed more in-depth. When using the difference of the
gravitational accelerations of two objects, it was found that other acceler-
ations (most certainly due to drag) are larger in a relative sense. When
fine-tuning the sieves that make use of relative acceleration, to gain optimal
performance, one has to look at these accelerations as well.

10.1.2 Tudat Additions

Due to time constraints, it was unfortunately not possible to integrate the
entire conjunction analysis process, which was designed and implemented in
this thesis, in Tudat. If new MSc students pick up this subject however, they
for instance might need the SGP4 propagator as well, and could integrate
it in Tudat, as a next step.

All code implemented and used in this thesis is available on request, so
feel free to contact the author. For contact details see the beginning of this
report.

10.1.3 TLE Accuracy

In Section 4.5, the accuracy of TLEs and their propagation was treated
briefly. The underlying references found on this subject were not brief how-
ever. In fact, this subject could easily span an entire MSc thesis.
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The accuracy of the TLEs at epoch and of the ephemerides resulting
from propagating with the SGP4 theory, versus time from this epoch, greatly
influence the conjunction analysis process as a whole. If one knows the ac-
curacy of the position of an object at certain time, a better judgement on
the probability of a collision with respect to a certain conjunction event can
be given.

The accuracy could be researched by comparing the propagation data with
high-precision ephemerides from tracking data, once they have been con-
verted to a common reference frame. All objects of which this information
is freely available (GPS, GLONASS, GRACE, GOCE, etc.), or available to
our department, could be used in this research.

Other ways to determine the accuracy, also for non-active objects, are
to take as much following TLEs of an object as possible, propagate them to
the same time instances, and compare the results.

The last method found to determine the accuracy of TLEs, based on
pseudo-observations, might prove a little more challenging however, as this
involves the process of simulating inverted tracking station models, which
are often not freely available.

10.1.4 Collision Probability

When the accuracy of all TLEs is known, which might be categorised for
different object groups, covariance matrices can be set up, which can be used
in collision probability analysis. In the literature research Leloux (2010a) on
which this thesis was based, this subject was treated as well, and so a large
amount of references can be found there. As this research was unpublished,
it is available on request.

By combining the accuracy of the propagated TLEs with the conjunction
analysis process and the collision probability theory, a nice system could
be set up which could result in fast determination of the probability of all
conjunctions on a certain day, and could thus single out potential high-risk
events.

Furthermore, if the probability of all conjunction events would be added,
an estimation of the number of collisions per year could for instance be made.
If the evolution of this number throughout history would be determined,
an estimation of the start of the Kessler syndrome (e.g. a self-sustaining
exponential increase of the amount of space debris) in the future could be
predicted.
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Table A.1: TLE Format: Field/Column Definition, Description (partly
adapted from Kelso (2010a)) and Example

Line 0
Field Columns Description Example

0.1 01-24 SatCat Common object name CRYOSAT 2

Line 1
Field Columns Description Example

1.1 01 TLE Line Number 1
1.2 03-07 Object Identification Number 36508
1.3 08 TLE Classification U
1.4 10-11 Int. Designator (Launch year) 10
1.5 12-14 Int. Designator (Launch number of year) 013
1.6 15-17 Int. Designator (Piece of launch) A
1.7 19-20 TLE Epoch Year 10
1.8 21-32 TLE Epoch Day 130.46204870
1.9 34-43 1st Time Derivative of Mean Motion / 2 .00000003
1.10 45-52 2nd Time Derivative of Mean Motion / 6 00000-0
1.11 54-61 B* drag term 00000+0
1.12 63-63 Ephemeris Type 0
1.13 65-68 TLE number 35
1.14 69 Checksum (Modulo 10) 6

Line 2
Field Columns Description Example

2.1 01 TLE Line Number 2
2.2 03-07 Object Identification Number 36508
2.3 09-16 Orbit Inclination rdegs 92.0231
2.4 18-25 Right Ascension of Ascending Node rdegs 294.5305
2.5 27-33 Eccentricity 0013120
2.6 35-42 Argument of Perigee rdegs 162.0732
2.7 44-51 Mean Anomaly rdegs 198.1059
2.8 53-63 Mean Motion rrev{days 14.52323328
2.9 64-68 Revolution Number at Epoch rrevs 462
2.10 69 Checksum (Modulo 10) 5
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improvements by Lane and Cranford12 in 1969. Fitzpatrick gives a
brief account of Lane’s density modeling technique in Ref. 13.

A very important contribution to analytic satellite theory was
made by Lyddane14 in 1963. Lyddane showed that the Brouwer5,6

solution based on Delaunay variables could be reformulated in terms
of Poincaré variables to avoid the small divisors of eccentricity and
the sine of inclination while maintaining the first-order character of
the theory.

Operational Implementations: 1964–1979
The transition from journal article to operational implementation

took two paths. The tracking operation of NAVSPASUR adopted
the entire 1959 solution of Brouwer5,6 with the modifications de-
veloped by Lyddane14 to avoid small divisors of eccentricity or the
sine of inclination. This analytic satellite prediction model is now
known as Position and Partials as functions of Time (PPT3). The
equations of the original PPT model were implemented on an IBM
7090 computer in 1964 under the guidance of Richard H. Smith,
who also provided supplemental equations to account for atmo-
spheric drag. At that time, the results of Brouwer and Hori8,9 could
not be implemented operationally because of computer limitations,
and the results of Lane and Cranford12 were not yet available. Smith
adapted ideas from King-Hele15 in a simple original model that is
still in use. His semi-empirical drag model assumes that the effect
of atmospheric drag on the mean motion can be represented as a
quadratic time function. The linear and quadratic coefficients are
treated as solved-for parameters during the orbit determination pro-
cess. A time rate of change of the eccentricity is represented in terms
of the mean motion rate by the following equations:

ė0 = e0

(
1 − e2

0

)
ȧ0/a0, ȧ0 = −(4/3)a0/n0(ṅ0/2)

The integral of the mean motion equation provides the model for
along-track drag effect.

PPT retains all long-periodic terms, including the ones with a
zero divisor at the critical inclination. However, PPT handles these
critical terms in a special way, as described in Appendix A.F. A
special feature of PPT is that the “mean” mean motion is defined
differently from Brouwer’s quantity5,6 of the same name. Brouwer
defined mean motion in terms of mean semimajor axis by essentially
the Keplerian formula. However, for PPT, it was decided for compu-
tational reasons to define the mean motion as the entire coefficient
of time in the linear term of the perturbed mean anomaly. That is,
the PPT mean motion includes the zonal secular perturbation rate
of mean anomaly that Brouwer derived. As a result, the expression
for PPT mean motion explicitly contains perturbation parameters
and functions of the other mean elements, similarly to the definition
adopted by Kozai.7 Numerically, the PPT mean motion is closer to
Kozai’s value than to Brouwer’s.

The other path from journal article to operational implementation
took place in Colorado Springs. In 1961, the NSSCC was relocated
to Colorado Springs, Colorado, and became known as the Space De-
tection and Tracking System (SPADATS) Center. The NSSCC algo-
rithms were rehosted on a Philco Model 211 computer, and the group
at Hanscom began to serve as the backup for the SPADATS Cen-
ter. Following the rehosting in Colorado Springs, Hilton16 provided
updated documentation of the NSSCC algorithms. In 1960, Aeronu-
tronic had begun developing the astrodynamics basis for a new sys-
tem. The analytic orbit prediction model was based on the works of
Brouwer5,6 and Kozai.7 To avoid small divisors of eccentricity or the
sine of inclination, Arsenault et al.17 transformed the solution to a
series in non-singular parameters, keeping only the most important
terms. They included from Brouwer only those long- and short-
period terms in position that do not contain eccentricity as a factor.
They also adopted from Kozai the non-Keplerian convention relating
mean motion to semimajor axis. The model is known as the simpli-
fied general perturbations (SGP) model. A complete documentation
of SGP is provided by Hilton and Kuhlman.18 Atmospheric drag
was included in a manner similar to that of Smith except that the
time rate of change of eccentricity was derived based on the assump-
tion that perigee height remains constant as semimajor axis shrinks.
In addition to becoming the principal analytic prediction model for

centralized processing, SGP was also implemented at many of the
satellite tracking sites around the world. In 1964, the SGP model be-
came the primary orbital prediction model for the SPADATS system.

The improvement offered by an analytic rather than an empirical
density model led to a decision to implement the development of
Lane and Cranford.12 However, by 1969 the number of satellites
in the catalog had grown to a point that computers would not be
able to manage the extensive terms in the model. Consequently, a
simplified version of the Lane and Cranford work, known as SGP4,
was developed and implemented operationally in 1970.

The simplifications leading to SGP4 were accomplished by re-
taining only the main terms that modeled the secular effect of drag.
Similarly, the gravitational modeling was shortened by retaining
from Brouwer5,6 only those long- and short-periodic terms in posi-
tion that do not contain eccentricity as a factor. The details of the
derivation of SGP4 from the complete development of Lane and
Cranford12 were documented in 1979 by Lane and Hoots.19 The
SGP4 model was used side by side with the SGP model until 1979
when it became the sole model for satellite catalog maintenance.

Deep-Space Modeling: 1965–1997
In 1965, the first highly-eccentric, 12-h-period satellite was

launched. Soon it became apparent that a theory was needed that in-
cluded terms to account for lunar and solar gravitation, as well as the
resonance effects of Earth tesseral harmonics. A semianalytic treat-
ment of this special class of orbits, which included lunar and solar
gravity as well as geopotential resonance effects, was developed by
Bowman20 in 1967. By 1977, Hujsak21 had incorporated portions of
Bowman’s work in a new first-order model, which included all per-
turbations treated by Bowman and an extension to geosynchronous
satellites. This new model was fully integrated with the SGP4 model
for near Earth satellites. This work completed the SGP4 model in use
today. A complete listing of the equations was provided by Hoots
and Roehrich22 and is repeated in Appendix B.

In 1997 the lunar, solar, and resonance terms from the SGP4
model were added to the Naval Space Command PPT model to pro-
vide improved prediction of higher altitude satellites. This modified
model became known as PPT3 and is documented in the work of
Schumacher and Glover.23 A complete listing of the equations is
provided in Appendix C.

Conclusions
For nearly a half century the U.S. Space Surveillance system has

been tracking and maintaining a catalog of manmade Earth orbiting
satellites, now consisting of more than 10,000 objects. The tremen-
dous success of this endeavor has been due in part to independent
but complementary efforts by both the U.S. Navy and the U.S. Air
Force at their mission centers in Dahlgren, Virginia and Colorado
Springs, Colorado, respectively. Today the operational centers still
depend largely on the original orbit models and applications of the
pioneers of the 1950s and 1960s.

Appendix A: Deep Space Equations
A. Initialization for Secular and Long-Period Coefficients
of Lunar and Solar Gravity

The first step in the initialization process is to compute the position
of the moon and sun at the epoch time of the satellite element set
using the following equations:

�mε
= [

�mε0 + �̇mε
�t + �̈mε

�t2 + ...
�mε

�t3
]

mod2π

cos Im = cos ε cos Imε
− sin ε sin Imε

cos �mε

The lunar longitude of perigee referred to the ecliptic is

γ = u0ε
+ u̇ε�t + üε�t2 + ...

uε�t3

where u0ε
is the epoch longitude of perigee (with respect to the

ecliptic).
The lunar right ascension of the ascending node referred to the

equator is

sin �m = sin Imε
sin �mε

sin Im
, cos �m =

√
1 − sin2 �m
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Then

sin � = sin ε sin �mε

sin Im

cos � = cos �m cos �mε
+ sin �m sin �mε

cos ε

� = tan−1

(
sin �

cos �

)
, ωm = γ − �mε

+ � = Gom

Ms = M0 + Ṁ�t + M̈�t2 + ...
M�t3

where �t is the time since the lunar/solar ephemeris epoch and
where the elements of the moon and sun are obtained from equa-
tions supplied in Ref. 24 (pages 107 and 98 for the moon and sun,
respectively). The constants for calculating lunar and solar positions
are defined as follows.

The moon’s inclination with respect to the ecliptic, in degrees:
Imε

= 5.145396374.
The obliquity of the ecliptic, in degrees: ε = 23.4441.
Lunar eccentricity: em = 0.05490.
Solar eccentricity: es = 0.01675.
Lunar mean motion, in radians per minute:

nm = 1.583521770 × 10−4.
Solar mean motion, in radians per minute: ns = 1.19459 × 10−5.
Solar inclination, in degree: Is = ε = 23.4441.
Constants, in degrees:

�s = 0, ωs = 281.2208 = G0s

Lunar perturbation coefficient, in radians per minute:
Cm = 4.796806521 × 10−7.

Solar perturbation coefficient, in radians per minute:
Cs = 2.98647972 × 10−6.

The lunar and solar elements are epoched at 0.5 January 1900
(Julian date 2415020.0).

For each body X , either the sun or the moon, terms are calculated
that depend solely on the epoch satellite orbital elements �0, ω0, and
I0 and the orbital elements of the moon and sun. In the calculations
of these terms, the following conventions apply:

1) Quantities on the right side of the equation with subscript 0
refer to mean elements of the satellite orbit.

2) Quantities on the right side of the equation with subscript X
refer to the orbit of body X .

3) Quantities on the left side of the equation refer to the satellite’s
orbit as affected exclusively by body X .

4) Here nx = mean motion of perturbing body X .
5) All orbital elements of the moon and sun, except mean anomaly,

are treated as constant at the epoch of the satellite.
Calculate the constants:

a1 = cos ωx cos(�0 − �x ) + sin ωx cos Ix sin(�0 − �x )

a3 = − sin ωx cos(�0 − �x ) + cos ωx cos Ix sin(�0 − �x )

a7 = − cos ωx sin(�0 − �x ) + sin ωx cos Ix cos(�0 − �x )

a8 = sin ωx sin Ix

a9 = sin ωx sin(�0 − �x ) + cos ωx cos Ix cos(�0 − �x )

a10 = cos ωx sin Ix , a2 = a7 cos I ′′
0 + a8 sin I ′′

0

a4 = a9 cos I ′′
0 + a10 sin I ′′

0 , a5 = −a7 sin I ′′
0 + a8 cos I ′′

0

a6 = −a9 sin I ′′
0 + a10 cos I ′′

0

X1 = a1 cos ω0 + a2 sin ω0, X2 = a3 cos ω0 + a4 sin ω0

X3 = −a1 sin ω0 + a2 cos ω0, X4 = −a3 sin ω0 + a4 cos ω0

X5 = a5 sin ω0, X6 = a6 sin ω0

X7 = a5 cos ω0, X8 = a6 cos ω0

Z31 = 12X 2
1 − 3X 2

3, Z32 = 24X1 X2 − 6X3 X4

Z33 = 12X 2
2 − 3X 2

4, Z1 = 6
(
a2

1 + a2
2

) + (
1 + e2

0

)
Z31

Z2 = 12(a1a3 + a2a4) + (
1 + e2

0

)
Z32

Z3 = 6
(
a2

3 + a2
4

) + (
1 + e2

0

)
Z33

Z11 = −6a1a5 + e2
0(−24X1 X7 − 6X3 X5)

Z13 = −6a3a6 + e2
0(−24X2 X8 − 6X4 X6)

Z21 = 6a2a5 + e2
0(24X1 X5 − 6X3 X7)

Z23 = 6a4a6 + e2
0(24X2 X6 − 6X4 X8)

Z22 = 6a4a5 + 6a2a6 + e2
0(24X2 X5 + 24X1 X6 − 6X4 X7 − 6X3 X8)

Z12 = −6a1a6 − 6a3a5 − e2
0(24X2 X7 + 24X1 X8

+ 6X3 X6 + 6X4 X5)

The secular rates are computed separately for both the sun and moon
and then are combined into a single third-body secular rate. The
secular rates due to the third-body perturbation are

ȧx = 0, ėx = −15Cx nx
e0η0

n0
(X1 X3 + X2 X4)

İx = −Cx nx

2n0η0
(Z11 + Z13)

Ṁx = −Cx nx

n0

(
Z1 + Z3 − 14 − 6e2

0

)

�̇x =






Cx nx

2n0η0 sin I ′′
0

(Z21 + Z23) if I ′′
0 ≥ 3 deg

0 if I ′′
0 < 3 deg

ω̇x =






Cx nxη0

n0
(Z31 + Z33 − 6) − �̇x cos I ′′

0 if I ′′
0 ≥ 3 deg

Cx nxη0

n0
(Z31 + Z33 − 6) if I ′′

0 < 3 deg

B. Initialization for Resonance Effects of Earth Gravity
If the satellite period in minutes is in the closed interval [1200,

1800], then it is assumed to be in a 1-day resonance condition.
The following constants are satellite independent for 1-day period
satellites:

Q22 =
√

C2
22 + S2

22, Q31 =
√

C2
31 + S2

31

Q33 =
√

C2
33 + S2

33

where

Q31 = 2.1460748 × 10−6, Q22 = 1.7891679 × 10−6

Q33 = 2.2123015 × 10−7

The three phase angles are

λ22 = 1
2 tan−1(S22/C22), λ31 = tan−1(S31/C31)

λ33 = 1
3 tan−1(S33/C33)

where

λ31 = 0.13130908, λ22 = 2.88431980, λ33 = 0.37448087

The functions of inclination, F , and eccentricity, G, for 1-day pe-
riod satellites (which are dependent solely on epoch quantities) are
calculated as follows:

F220 = (3/4)
(
1 + cos I ′′

0

)2

F311 = (15/16) sin2 I ′′
0 (1 + 3 cos I ′′

0 ) − (3/4)(1 + cos I ′′
0 )

F330 = (15/8)(1 + cos I ′′
0 )3

G200 = 1 − (5/2)e
′′2
0 + (13/16)e

′′4
0 , G310 = 1 + 2e

′′2
0

G300 = 1 − 6e
′′2
0 + (423/64)e

′′4
0
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Compute the following coefficients of the resonance terms:

δ1 = (
3n2

0

/
a3

0

)
F311G310 Q31, δ2 = (

6n2
0

/
a2

0

)
F220G200 Q22

δ3 = (
9n2

0

/
a3

0

)
F330G300 Q33

If the satellite period in minutes is in the closed interval [680, 760]
and the eccentricity is greater than or equal to 0.5, then it is assumed
to be in a 0.5-day resonance condition. The following constants are
satellite-independent for 0.5-day period satellites:

√
C2

22 + S2
22 = 1.7891679 × 10−6

√
C2

32 + S2
32 = 3.7393792 × 10−7

√
C2

44 + S2
44 = 7.3636953 × 10−9

√
C2

52 + S2
52 = 1.1428639 × 10−7

√
C2

54 + S2
54 = 2.1765803 × 10−9

Dlmpq = 3n2
0

al
0

√
C2

lm + S2
lm FlmpGlpq

for the following (l, m, p, q) quadruples: (2,2,0,1), (2,2,1,1),
(3,2,1,0), (3,2,2,2), (5,2,2,0), (5,2,3,2), (4,4,2,2), (5,4,2,1), (5,4,2,3),

G211 =
{

3.616 − 13.247e′′
0 + 16.29e

′′2
0 e′′

0 ≤ 0.65

−72.099 + 331.819e′′
0 − 508.738e

′′2
0 + 266.724e

′′3
0 e′′

0 > 0.65

G201 = −0.306 − 0.44(e′′
0 − 0.64)

G310 =
{

−19.302 + 117.39e′′
0 − 228.419e

′′2
0 + 156.591e

′′3
0 e′′

0 ≤ 0.65

−346.844 + 1582.851e′′
0 − 2415.925e

′′2
0 + 1246.113e

′′3
0 e′′

0 > 0.65

G322 =
{

−18.9068 + 109.7927e′′
0 − 214.6334e

′′2
0 + 146.5816e

′′2
0 e′′

0 ≤ 0.65

−342.585 + 1554.908e′′
0 − 2366.899e

′′2
0 + 1215.972e

′′3
0 e′′

0 > 0.65

G410 =
{

−41.122 + 242.694e′′
0 − 471.094e

′′2
0 + 313.953e

′′3
0 e′′

0 ≤ 0.65

−1052.797 + 4758.686e′′
0 − 7193.992e

′′2
0 + 3651.957e

′′3
0 e′′

0 > 0.65

G422 =
{

−146.407 + 841.88e′′
0 − 1629.014e

′′2
0 + 1083.435e

′′3
0 e′′

0 ≤ 0.65

−3581.69 + 16178.11e′′
0 − 24462.77e

′′2
0 + 12422.52e

′′3
0 e′′

0 > 0.65

G520 =






−532.114 + 3017.977e′′
0 − 5740.032e

′′2
0 + 3708.276e

′′3
0 e′′

0 ≤ 0.65

1464.74 − 4664.75e′′
0 + 3763.64e

′′2
0 0.65 < e′′

0 < 0.715

−5149.66 + 29936.92e′′
0 − 54087.36e

′′2
0 + 31324.56e

′′3
0 e′′

0 ≥ 0.715

G521 =
{

−822.71072 + 4568.6173e′′
0 − 8491.4146e

′′2
0 + 5337.524e

′′3
0 e′′

0 < 0.70

−51752.104 + 218913.95e′′
0 − 309468.16e

′′2
0 + 146349.42e

′′3
0 e′′

0 ≥ 0.70

G532 =
{

−853.666 + 4690.25e′′
0 − 8624.77e

′′2
0 + 5341.4e

′′3
0 e′′

0 < 0.70

−40023.88 + 170470.89e′′
0 − 242699.48e

′′2
0 + 115605.82e

′′3
0 e′′

0 ≥ 0.70

G533 =
{

−919.2277 + 4988.61e′′
0 − 9064.77e

′′2
0 + 5542.21e

′′3
0 e′′

0 < 0.70

−37995.78 + 161616.52e′′
0 − 229838.2e

′′2
0 + 109377.94e

′′3
0 e′′

0 ≥ 0.70

and (4,4,1,0). The functions of inclination (dependent on epoch
quantities) are as follows:

F220 = (3/4)(1 + cos I ′′
0 )2, F221 = (3/2)(sin I ′′

0 )2

F321 = (15/8) sin I ′′
0

(
1 − 2 cos I ′′

0 − 3 cos2 I ′′
0

)

F322 = (−15/8) sin I ′′
0

(
1 + 2 cos I ′′

0 − 3 cos2 I ′′
0

)

F441 = (105/4) sin2 I ′′
0 (1 + cos I ′′

0 )2, F442 = (315/8) sin4 I ′′
0

F522 = (315/32)
{

sin3 I ′′
0 − 2 sin3 I ′′

0 cos I ′′
0 − 5 sin3 I ′′

0 cos2 I ′′
0

+ sin I ′′
0

[
(−2/3) + (4/3) cos I ′′

0 + 2 cos2 I ′′
0

]}

F523 = (105/16) sin I ′′
0

{
1 + 2 cos I ′′

0 − 3 cos2 I ′′
0

− (3/2) sin2 I ′′
0

[
1 + 2 cos I ′′

0 − 5 cos2 I ′′
0

]}

F542 = (945/32) sin I ′′
0

{
2 − 8 cos I ′′

0

+ cos2 I ′′
0

[−12 + 8 cos I ′′
0 + 10 cos2 I ′′

0

]}

F543 = (945/32) sin I ′′
0

{
cos2 I ′′

0

[
12 + 8 cos I ′′

0 − 10 cos2 I ′′
0

]

− 2 − 8 cos I ′′
0

}

and the functions of eccentricity are
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C. Secular Updates for Effects of Lunar and Solar Gravity
The secular effects of lunar and solar gravity are included by the

following equations:

M = M + ṀLS(t − t0), ω = ω + ω̇LS(t − t0)

� = � + �̇LS(t − t0), e = e0 + ėLS(t − t0)

I = I0 + İLS(t − t0)

where the rates with subscript LS are the sum of the effects of lunar
and solar perturbations.

D. Secular Update for Resonance Effects of Earth Gravity
Define an auxiliary variable λ for the resonance treatment as

λ = M + � + ω − θG

for orbits in the 1-day-period band and

λ = M + 2� − 2θG

for orbits in the 0.5-day-period band where θG is the longitude
of Greenwich. Simultaneously, numerically integrate the resonance
equations for mean motion and the resonance variable λ. The nu-
merical integration scheme is the Euler–Maclaurin method with a
step size of 12 h (720 min).

At epoch

λi = λ0, ni = n0

the Euler–Maclaurin equations are

λi = λi − 1 + λ̇i (�t) + (λ̈i/2)(�t)2

ni = ni − 1 + ṅi (�t) + (n̈i/2)(�t)2

The derivatives are computed as follows.
For 1-day-period orbits:

λ̇1 = ni + λ̇0

ṅi = δ1 sin(λi − λ31) + δ2 sin(2λi − 2λ22)

+ δ3 sin(3λi − 3λ33)

λ̈i/2 = ṅi/2

n̈i/2 = (λ̇i/2)[δ1 cos(λi − λ31) + 2δ2 cos(2λi − 2λ22)

+ 3δ3 cos(3λi − 3λ33)]

For the 0.5-day-period orbits [using the 0.5-day resonance (l, m,
p, q) quadruplets]:

λ̇i = ni + λ̇0

ṅi =
∑

(i,m,p,q)

Dlmpq sin

[
(l − 2p)ωi + m

2
λi − Glm

]

λ̈i

2
= ṅi

2

n̈i

2
= λ̇i

2

{ ∑

(l,m,p,q)

m

2
Dlmpq cos

[
(l − 2p)ωi + m

2
λi − Glm

]}

where

G22 = 5.7686396, G32 = 0.95240898, G44 = 1.8014998

G52 = 1.0508330, G54 = 4.4108898

and ωi = ω0 + ω̇0�t is the secularly updated argument of perigee.

The 1-day-period initial conditions are

λ0 = M0 + ω0 + �0 − θ0

λ̇0 = Ṁ0 + ṀLS + �̇0 + �̇LS + ω̇0 + ω̇LS − θ̇

where θ is the Greenwich hour angle.
The 0.5-day initial conditions are

λ0 = M0 + 2�0 − 2θ0

λ̇0 = Ṁ0 + ṀLS + 2�̇0 + 2�̇LS − 2θ̇

When λi , ni are obtained at the time of interest, compute

n = ni

M =
{

λi − �s − ωs + θt for 1-day period

λi − 2�s + 2θt for 1/2-day period

and �s and ωs are the mean elements updated with the secular rates
of the other perturbations.

E. Update for Long-Period Periodic Effects of Lunar
and Solar Gravity

The true anomaly of the perturbing body is approximated by

fX = MX + 2eX sin MX

Define

F2 = 1
2 sin2 fX − 1

4 , F3 = − 1
2 sin fx cos fX

We have, for each perturbing body,

δex = −(30η0Cx e0/n0)[F2(X2 X3 + X1 X4) + F3(X2 X4 − X1 X3)]

δ Ix = −(Cx/n0η0)[F2 Z12 + F3(Z13 − Z11)]

δMx = −(2Cx/n0)
[

F2 Z2 + F3(Z3 − Z1) − 3ex sin fx

(
7 + 3e2

0

)]

(δωx + cos Ixδ�x ) = (2η0Cx/n0)[F2 Z32 + F3(Z33 − Z31)

− 9ex sin fx ]

sin Ixδ�x = (Cx/n0η0)[F2 Z22 + F3(Z23 − Z21)]

The long-period periodics are computed separately for both the sun
and moon and then combined into a single third-body long-period
term.

F. Critical Inclination in PPT3
Brouwer6 showed that the perturbation theory should remain valid

for all inclinations except for an interval of about 1.5 deg on either
side of the critical inclination. Within this narrow range, special
procedures are required in any implementation of a Brouwer-type
theory. In PPT3, the procedure is as follows. First, compute the
critical factor

x = 1 − 5 cos2 I ′′

This factor vanishes at about I ′′ = 63.43 deg. Then all occurrences
of 1/x are replaced by the approximation

1/x ≈ [1 − exp(−100x2)]/x ≡ C(x)

Away from the critical inclination, C(x) tends rapidly to 1/x . How-
ever, in the neighborhood of the critical inclination, C(x) is bounded
and in fact vanishes at x = 0. It can be shown that C(x) has a maxi-
mum amplitude of about 6.382 and that there are two extrema having
this amplitude, a minimum near I ′′ = 61.86 deg and a maximum near
I ′′ = 65.08 deg.

The value of C(x) is not computed directly from the preceding
expression because of numerical ill conditioning. Even the direct
power-series expansion of the exponential function exhibits poor
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convergence because of the factor of 100. Both problems are avoided
by repeatedly factoring the numerator of C(x), expanding one fac-
tor in series, and formally canceling x from the denominator. In
particular, repeatedly factor the difference of squares to obtain the
exact expression

C(x) = 1

x
[1 − exp(−βx2)]

10∏

m = 0

[1 + exp(−2mβx2)]

where β = 100/211. Then the first factor is computed by a series
expansion truncated to a practical number of terms, which is feasi-
ble because of the smallness of β. PPT3 currently uses a 12-term
expansion:

[1 − exp(−βx2)]

x
∼= βx

12∑

n = 0

(−1)n βn x2n

(n + 1)!

Appendix B: SGP4 Model
The U.S. Space Command two-line element sets can be used for

prediction with SGP4. All equations are taken from Ref. 22. The
element set consists of the following:

t0 = epoch time
n0 = mean motion, revolutions/day
e0 = eccentricity
i0 = inclination, deg
ω0 = argument of perigee, deg
�0 = right ascension of ascending node, deg
M0 = mean anomaly, deg
B∗ = atmospheric drag coefficient, 1/Earth radii

where all orbital elements except mean motion are the mean double-
prime quantities defined by Brouwer6 and where the subscript 0 will
indicate the value of a quantity at epoch. The mean motion on the
two-line element set follows the convention of Kozai.7

A. Initialization
Many terms used in the prediction of SGP4 are independent of

time. Thus, the algorithm begins with computation of numerous
constant terms. The first step in the initialization is the recovery
of the Brouwer mean motion from the Kozai mean motion by the
equations

a1 =
(

ke

n0

) 2
3

, δ1 = 3

2

k2

a2
1

(
3 cos2 i0 − 1

)

(
1 − e2

0

) 3
2

a2 = a1

(
1 − 1

3
δ1 − δ2

1 − 134

81
δ3

1

)
, δ0 = 3

2

k2

a2
2

(
3 cos2 i0 − 1

)

(
1 − e2

0

) 3
2

n′′
0 = n0

1 + δ0
, a′′

0 =
(

ke

n”
0

) 2
3

where

k2 = 1
2 J2a2

E, (Earth radii)2

J2 = 1.082616 × 10−3

ke =
√

G M = 0.0743669161, (Earth radii)1.5/min
G = universal gravitational constant
M = mass of the Earth
aE = equatorial radius of the Earth

The SGP4 model is set in the Fundamental Katalog 4 (FK4) and
World Geodetic Survey 72 (WGS72) reference standards, referred
to the Julian 2000 (J2000.0) epoch.

From this point on, the mean motion n′′
0 and the semimajor axis

a′′
0 follow the Brouwer convention. Also, all quantities on the right-

hand side of equations are understood to be double-prime mean
elements.

1. Initialization for Secular Effects of Atmospheric Drag

Atmospheric drag modeling is based on a power-law density
function10 given by

ρ = ρ0(q0 − s)4/(r − s)4

where r is the radial distance of the satellite from the center of
the Earth with q0 and s being altitude parameters of the power-law
density function. The parameter q0 is a constant equal to 120 km plus
one Earth radius, whereas s is determined based of epoch perigee
height above a spherical Earth. If perigee height is greater than or
equal 156 km, the value of s is fixed to be 78 km plus one Earth
radius. For altitudes greater than or equal to 98 km but less than
156 km, s is defined to be perigee height minus 78 km plus one
Earth radius. For altitudes below 98 km, s is 20 km plus one Earth
radius. In the following equations, the parameters q0 and s should
be in units of Earth radii:

θ = cos i0, ξ = 1

a0 − s

β0 = (
1 − e2

0

) 1
2 , η = a0e0ξ

C2 = (q0 − s)4ξ 4n0(1 − η2)− 7
2

[
a0

(
1 + 3

2
η2 + 4e0η + e0η

3

)

+ 3

2

k2ξ

(1 − η2)

(
−1

2
+ 3

2
θ 2

)
(8 + 24η2 + 3η4)

]

C1 = B∗C2, C3 = (q0 − s)4ξ 5 A3,0n0aE sin i0

k2e0

C4 = 2n0(q0 − s)4ξ 4a0β
2
0 (1 − η2)− 7

2

{[
2η(1 + e0η) + 1

2
e0 + 1

2
η3

]

− 2k2ξ

a0(1 − η2)

[
3(1 − 3θ 2)

(
1 + 3

2
η2 − 2e0η − 1

2
e0η

3

)

+ 3

4
(1 − θ 2)

(
2η2 − e0η − e0η

3
)

cos 2ω0

]}

C5 = 2(q0 − s)4ξ 4a0β
2
0 (1 − η2)− 7

2

[
1 + 11

4
η(η + e0) + e0η

3

]

D2 = 4a0ξC2
1 , D3 = 4

3
a0ξ

2(17a0 + s)C3
1

D4 = 2

3
a2

0ξ
3(221a0 + 31s)C4

1

where

A3,0 = −J3a3
E , J3 = −0.253881 × 10−5

2. Initialization for Secular Effects of Earth Zonal Harmonics

The secular effects of gravitation are included through the equa-
tions

Ṁ =
[

3k2(−1 + 3θ 2)

2a2
0β

3
0

+ 3k2
2(13 − 78θ 2 + 137θ 4)

16a4
0β

7
0

]
n0

ω̇ =
[
−3k2(1 − 5θ 2)

2a2
0β

4
0

+ 3k2
2(7 − 114θ 2 + 395θ 4)

16a4
0β

8
0

+ 5k4(3 − 36θ 2 + 49θ 4)

4a4
0β

8
0

]
n0

�̇ =
[
− 3k2θ

a2
0β

4
0

+ 3k2
2(4θ − 19θ 3)

2a4
0β

8
0

+ 5k4θ(3 − 7θ 2)

2a4
0β

8
0

]
n0
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where

k4 = − 3
8 J4a4

E , J4 = −1.65597 × 10−6

3. Initialization for Secular and Long-Period Coefficients
of Lunar and Solar Gravity

For satellites with periods greater than or equal to 225 min, ad-
ditional terms are included to model the effect of lunar and solar
gravitation on the satellite. Such satellites are referred to as deep
space satellites. The equations for calculation of the orbital element
secular rates and long-period coefficients due to the moon and sun
gravitation are provided in Appendix A.A.

4. Initialization for Resonance Effects of Earth Gravity

For orbits with periods that result in repeating satellite position
in relation to the Earth’s figure, the effects of the nonzonal har-
monics can be significant. This resonance condition is treated in the
SGP4 model for orbits with 0.5-day (semisynchronous and highly
eccentric) and 1-day (geosynchronous) periods. The equations for
initialization of the resonance effects of Earth gravity are provided
in Appendix A.B.

B. Update
Predictions of satellite motion are performed using the constants

computed in the initialization.

1. Secular Update for Earth Zonal Gravity and Partial
Atmospheric Drag Effects

The angles M , ω, and � are first updated to include the effects of
the Earth zonal harmonics and atmospheric drag effects,

MDF = M0 + n0(t − t0) + Ṁ(t − t0), ωDF = ω0 + ω̇(t − t0)

�DF = �0 + �̇(t − t0), δω = B∗C3(cos ω0)(t − t0)

δM = − 2
3 (q0 − s)4 B∗ξ 4(aE/e0η)

[
(1 + η cos MDF )3

− (1 + η cos M0)
3
]

M = MDF + δω + δM, ω = ωDF − δω − δM

� = �DF − (21/2)
(
n0k2θ

/
a2

0β
2
0

)
C1(t − t0)

2

where (t − t0) is time since epoch in minutes. Note that when epoch
perigee height is less than 220 km or for deep space satellites, the
terms δω and δM are dropped.

2. Secular Updates for Effects of Lunar and Solar Gravity.

For satellites with periods greater than or equal to 225 min, the
secular effects of lunar and solar gravity are included as detailed in
Appendix A.C.

3. Secular Update for Resonance Effects of Earth Gravity

The resonance effects are applied to mean anomaly, mean motion,
and semimajor axis using a numerical integration scheme as detailed
in Appendix A.D.

4. Secular Update for Remaining Atmospheric Drag Effects

e = e0 − B∗C4(t − t0) − B∗C5(sin M − sin M0)

a = (ke/n)
2
3
[
1 − C1(t − t0) − D2(t − t0)

2

− D3(t − t0)
3 − D4(t − t0)

4
]2

I L = M + ω + � + n0

[
3
2 C1(t − t0)

2 + (
D2 + 2C2

1

)
(t − t0)

3

+ 1
4

(
3D3 + 12C1 D2 + 10C3

1

)
(t − t0)

4

+ 1
5

(
3D4 + 12C1 D3 + 6D2

2 + 30C2
1 D2 + 15C4

1

)
(t − t0)

5
]

β =
√

1 − e2, n = ke/a
3
2

where (t − t0) is time since epoch in minutes. Note that when epoch
perigee height is less than 220 km or for deep space satellites, the
equations for a and I L are truncated after the linear and quadratic
terms, respectively, and the term involving C5 is dropped.

5. Update for Long-Period Periodic Effects of Lunar and Solar Gravity

The long-period effects due to the third-body perturbation depend
on the position of the sun or moon in its orbit. The mean anomaly
of the perturbing body at the prediction time is

MX = MOX + nX�t

where �t is the time since the lunar/solar ephemeris epoch. The
remaining equations for computation of the long-period periodic
effects of lunar and solar gravity are provided in Appendix A.E.

The contributions of the sun and moon are combined for each
term computed earlier and are applied as follows:

e = e + δeLS, i = i + δiLS

For i > 0.2 rad,

� = � + δ�LS/ sin i

ω = ω + (δωLS + cos iδ�LS) − δ�LS cos i/ sin i

M = M + δMLS

For i ≤ 0.2 rad,

α = sin i sin � + sin i cos �δ�LS + cos i sin �δiLS

β = sin i cos � − sin i sin �δ�LS + cos i cos �δiLS

� = tan−1(a/β), M = M + δMLS

ω = ω + (δωLS + cos iδ�LS) − � sin iδiLS

6. Update for Long-Period Periodic Effects of Earth Gravity

Add the long-period periodic terms,

ax N = e cos ω, I L L = A3,0 sin i

8k2aβ2
(e cos ω)

(
3 + 5 cos i

1 + cos i

)

ayN L = A3,0 sin i

4k2aβ2
, I LT = I L + I L L

ayN = e sin ω + ayN L

7. Update for Short-Period Periodic Effects of Earth Gravity

Solve Kepler’s equation for (E + ω) by defining

U = I LT − �

and using the iteration equation

(E + ω)i + 1 = (E + ω)i + �(E + ω)i

with

�(E + ω)i = U − ayN cos(E + ω)i + ax N sin(E + ω)i − (E + ω)i

1 − ayN sin(E + ω)i − ax N cos(E + ω)i

(E + ω)1 = U

The following equations are used to calculate preliminary quan-
tities needed for short-period periodics:

e cos E = ax N cos(E + ω) + ayN sin(E + ω)

e sin E = ax N sin(E + ω) − ayN cos(E + ω)

e = (
a2

x N + a2
yN

) 1
2 , pL = a(1 − e2), r = a(1 − e cos E)
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ṙ = ke

√
a

r
e sin E, r ḟ = ke

√
pL

r

cos u = a

r

[
cos(E + ω) − ax N + ayN (e sin E)

1 + √
1 − e2

]

sin u = a

r

[
sin(E + ω) − ayN − ax N (e sin E)

1 + √
1 − e2

]

u = tan−1

(
sin u

cos u

)
, �r = k2

2pL
(1 − cos2 i) cos 2u

�u = − k2

4p2
L

(7 cos2 i − 1) sin 2u, �� = 3k2 cos i

2p2
L

sin 2u

�i = 3k2 cos i

2p2
L

sin i cos 2u, �ṙ = − k2n

pL
(1 − cos2 i) sin 2u

�r ḟ = k2n

pL

[
(1 − cos2 i) cos 2u − 3

2
(1 − 3 cos2 i)

]

The short-period periodics are added to give the osculating
quantities,

rk = r
[
1 − 3

2 k2

(√
1 − e2

/
p2

L

)
(3 cos2 i − 1)

] + �r

uk = u + �u, �k = � + ��, ik = i + �i

ṙk = ṙ + �ṙ , r ḟk = r ḟ + �r ḟ

Then unit orientation vectors are calculated by

U = M sin uk + N cos uk, V = M cos uk − N sin uk

where

M =






Mx = − sin �k cos ik

My = cos �k cos ik

Mz = sin ik





, N =






Nx = cos �k

Ny = sin �k

Nz = 0






Then position and velocity are given by

r = rkU, ṙ = ṙkU + r ḟkV

Appendix C: PPT3 Model
The Naval Space Command two-line element sets can be used

for prediction with PPT3. All equations to follow are adapted from
Schumacher and Glover.23 The element set consists of

t0 = epoch time
n0 = mean motion, revolutions/day
e0 = eccentricity
I0 = inclination, deg
ω0 = argument of perigee, deg
�0 = right ascension of ascending node, deg
M0 = mean anomaly, deg
decay1 = ṅ/2, revolutions/day2

decay2 = n̈/6, revolutions/day3

where all orbital elements except mean motion are the mean double-
prime quantities defined by Brouwer6 and where the subscript 0 will
indicate the value of a quantity at epoch. The mean motion on the
two-line element set follows the convention of Kozai,7 although
PPT3 uses its own convention for mean motion, which is slightly
different from Kozai’s, as explained in the main text and as will
be shown explicitly. (This mathematical incompatibility has long
been noted in space surveillance operations and is periodically re-
discovered by newcomers. Because the two types of mean motion
are numerically close together, the potential incompatibility is easily
overcome by special processing at Naval Space Command before
two-line elements are transmitted. However, the processing details

are beyond the scope of this paper.) The two drag parameters, decay1
and decay2, are empirically determined during the orbit correction
process.

The PPT3 orbit theory as implemented at Naval Space Command
uses a specific value of the gravitational constant that defines the
canonical units of the system:

ke =
√

G M = 0.0743669161, (Earth radii)1.5/min
G = universal gravitational constant
M = mass of the Earth

The PPT3 model is set in the FK4 and WGS72 reference standards,
referred to the J2000.0 epoch.

We define the variables that will be used throughout the mathe-
matical development. These definitions also provide the values used
in PPT3 for the zonal coefficients. The notation closely follows that
used by Brouwer5,6:

γ2 = k2/a′′2, γ3 = A3.0/a′′3, γ4 = k4/a′′4, γ5 = A5.0/a′′5

γ ′
2 = γ2/η

4, γ ′
3 = γ3/η

6, γ ′
4 = γ4/η

8, γ ′
5 = γ5/η

10

where

k2 = 1
2 J2 R2

⊕ = 0.54130789 × 10−3

A3.0 = −J3 R3
⊕ = 0.25388100 × 10−5

k4 = − 3
8 J4 R4

⊕ = 0.62098875 × 10−6

A5.0 = −J5 R5
⊕ = 0.21848266 × 10−6

η =
√

1 − e′′2, θ = cos I ′′

A. Initialization
Many terms used in the prediction of PPT3 are independent of

time. Thus, the algorithm begins with computation of numerous
constant terms. The first step in the initialization is the recovery
of the Brouwer semimajor axis from the Kozai-type PPT3 mean
motion. Form the initial semimajor axis from the Kozai-type PPT3
mean motion

ai = n
′′− 2

3
0

The semimajor axis is transformed by iterating the following se-
quence five times. The second and fourth Brouwer gamma prime
variables are formed from the current semimajor axis value. Then
the semimajor axis is recomputed, using the zonal secular variation
of the mean anomaly M defined directly as follows.

For i = 1, 5

γ ′
2 = k2

/
a2

i − 1η
4, γ ′

4 = k4

/
a4

i − 1η
8

ai = [
(1 + δs M)

/
n′′

0

] 2
3

After the fifth iteration, the result is defined as the Brouwer semi-
major axis a′′

0 . From this point on, the semimajor axis a′′
0 follows

the Brouwer convention. Also, all quantities on the right-hand side
of equations are understood to be double-prime mean elements.

1. Initialization for Secular Effects of Earth Zonal Harmonics

The secular effects of gravitation are included through the
equations

δs M = (3/2)γ ′
2η(−1 + 3θ 2) + (3/32)γ ′2

2 η[−15 + 16η + 25η2

+ (30 − 96η − 90η2)θ2 + (105 + 144η + 25η2)θ4]

+ (15/16)γ ′
4ηe′′2(3 − 30θ 2 + 35θ 4)
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