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Abstract. Although rainfall-triggered landslides are initi-
ated by subsurface hydro-mechanical processes related to
the loading, weakening, and eventual failure of slope mate-
rials, most landslide early warning systems (LEWSs) have
relied solely on rainfall event information. In previous
decades, several studies demonstrated the value of integrat-
ing proxies for subsurface hydrologic information to improve
rainfall-based forecasting of shallow landslides. More re-
cently, broader access to commercial sensors and telemetry
for real-time data transmission has invigorated new research
into hydrometeorological thresholds for LEWSs. Given the
increasing number of studies across the globe using hydro-
logic monitoring, mathematical modeling, or both in com-
bination, it is now possible to make some insights into the
advantages versus limitations of this approach. The exten-
sive progress demonstrates the value of in situ hydrologic in-
formation for reducing both failed and false alarms through
the ability to characterize infiltration during — as well as the
drainage and drying processes between — major storm events.
There are also some areas for caution surrounding the long-
term sustainability of subsurface monitoring in landslide-
prone terrain, as well as unresolved questions in hillslope
hydrologic modeling, which relies heavily on the assump-
tions of diffuse flow and vertical infiltration but often ignores
preferential flow and lateral drainage. Here, we share a col-
lective perspective based on our previous collaborative work
across Europe, North America, Africa, and Asia to discuss
these challenges and provide some guidelines for integrating
knowledge of hydrology and climate into the next generation

of LEWSs. We propose that the greatest opportunity for im-
provement is through a measure-and-model approach to de-
velop an understanding of landslide hydro-climatology that
accounts for local controls on subsurface storage dynamics.
Additionally, new efforts focused on the subsurface hydrol-
ogy are complementary to existing rainfall-based methods,
so leveraging these with near-term precipitation forecasts is
a priority for increasing lead times.

1 Subsurface hydrologic information improves
landslide forecasting

Hydrology plays an important role in shallow-landslide ini-
tiation (Campbell, 1975; Lu and Godt, 2013; Bogaard and
Greco, 2016); this has been demonstrated through many
decades of monitoring hydrologic response and slope sta-
bility on individual hillslopes and zero-order basins around
the world (e.g., Sidle and Swanston, 1982; Sidle and Tsub-
oyama, 1992; Torres et al., 1998; Godt et al., 2009; De Vita et
al., 2013; Liang, 2020; Marino et al., 2020; Ashland, 2021).
These observations are supported by well-established theory
in soil physics and geomechanics, whereby the addition of
water to porous media changes their strength and weight,
contributing to a force imbalance and triggering slope fail-
ure (e.g., Terzaghi, 1943). Theoretical advances have sup-
ported the development of mathematical models to numer-
ically simulate — with varying degrees of complexity — the
conditions leading up to these critical conditions (e.g., Mont-
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gomery and Dietrich, 1994; Terlien, 1997; Van Beek, 2002;
Brien and Reid, 2008; Baum et al., 2010; Lehmann and Or,
2012). Despite this conceptual understanding and advanced
model development, most local and regional landslide early
warning systems (LEWSs) rely on rainfall inputs alone, typ-
ically with the well-worn intensity-duration (ID) threshold
approach (Cain, 1980; Saito et al., 2010; Guzzetti et al.,
2008; Brunetti et al., 2010; Segoni et al., 2018) and the re-
lated event-duration (ED) threshold (Innes, 1983; Guzzetti
et al., 2020). These are built upon the assumption that if it
rains hard enough for long enough in a landslide-prone area,
the storm event will trigger slope failures. When event-based
rainfall thresholds are used alone, the hydrologic conditions
preceding the triggering and the associated antecedent wet-
ness have no bearing on predicted slope stability. The negligi-
ble role of previous rainfall, evapotranspiration, and hillslope
drainage may or may not be true based on local variations
(e.g., Thomas et al., 2020). Furthermore, these underlying
assumptions must be questioned in the context of a changing
climate and non- static (a-)biotic terrain conditions (Ehret et
al., 2014), where multiple competing factors related to infil-
tration, drainage, and evapotranspiration interact to influence
predisposing factors and triggering conditions (Gariano and
Guzzetti, 2016; Jakob, 2022).

Although broadly applicable, with many centuries of rain-
fall data underpinning its implementation, the generalized ID
approaches rely on several conceptual flaws (refer to Bogaard
and Greco, 2018) and lack specificity. As the benchmark
standard, these approaches have succumbed to inertia with
few novel methodological advances since their early incep-
tion (e.g., Caine, 1980). Still, a handful of studies over many
decades and across a variety of settings have shown that us-
ing rainfall data to develop well-informed proxies for season-
ality or hillslope antecedent wetness can improve landslide
prediction with ID thresholds (e.g., Campbell, 1975; Wilson
and Wiezorek, 1995; Crozier, 1999; Glade, 2000; Godt et
al., 2006; Napolitano et al., 2016). The calculation of these
proxies often reflects the basics of infiltration and soil water
storage but consistently falls short of capturing the complex
wetting and drainage dynamics observed in the variably sat-
urated near surface. Similarly, satellite and remote sensing
products capture the seasonal shifts in landscape wetness that
are broadly relevant for landslide potential (Felsberg et al.,
2021; Zhao et al., 2021; Stanley et al., 2021; Distefano et al.,
2023), but their coarse resolution and considerable latency
fail to capture the rapid subsurface dynamics on hillslopes
that are critical for forecasting landslide potential (Thomas
et al., 2019). Electrical resistivity tomography has revealed
nuances related to subsurface moisture patterns in landslide
settings (e.g., Perrone et al., 2014; Uhlemann et al., 2017),
but these hydrogeophysical methods remain cumbersome to
implement and their sampling rates are currently too slow
to capture the rapid unsaturated zone responses that trigger
shallow landslides (Nimmo et al., 2021). Recent progress
with automated empirical modeling shows some promise in
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recreating hillslope hydrologic response (Orland et al., 2020)
and highlights the importance of rainfall over specific terrain
attributes in predicting spatiotemporal populations of land-
slides (Mondini et al., 2023). However, in an uncertain fu-
ture with increasing landscape disturbances, climate change,
and non-stationary responses in hydrologic systems, the next
generation of LEWSs can be advanced through incorporat-
ing a mechanistic understanding of the hydroclimatology of
triggering conditions.

Recently, the emergence of the “internet of things” has
provided further motivation for integrating hydrologic infor-
mation to improve LEWSs’ predictive performance because
subsurface monitoring data can be accessed in real time to
understand evolving hillslope wetness conditions (Mirus et
al., 2018; Abraham et al., 2020; Piciullo et al., 2022). This
approach has the potential to outperform rainfall-based esti-
mates of antecedent wetness and imminent triggering con-
ditions because in situ data can capture the true hillslope
hydrologic response associated with landslide initiation. A
handful of studies that integrate different types of subsur-
face measurements directly into landslide initiation thresh-
olds show some promising results (Mirus et al., 2018; Zhao
et al., 2019; Marino et al., 2020; Wicki et al., 2020; Abraham
et al., 2021; Pecoraro and Calvello, 2021); their success re-
flects the understanding of the relevant hydrologic processes
for their region of interest. Despite the many advances and
limitations of current approaches to LEWSs (refer to reviews
by Guzzetti et al., 2012, 2020; Stihli et al., 2015; Piciullo
et al., 2018), new research on real-time hydrometeorologi-
cal thresholds is still an emerging field (Greco et al., 2023).
No guidelines have been established for developing a reliable
LEWS that is informed, at least in part, by real-time hydro-
logical information. Considering the first action in the Kyoto
Landslide Commitment 2020 involves improving the preci-
sion and reliability of landslide warning (Sassa et al., 2023),
we propose that integrating insights from in situ hydrologic
measurements into LEWSs is essential.

Continuous field monitoring for comprehension of
triggering processes

The complex interaction between hydrological and mechan-
ical processes results in many possible ways of adding wa-
ter to transition from stable to unstable conditions, leading
to very different types of triggering conditions for seem-
ingly similar settings (e.g., Fusco et al., 2022). These depend
largely on how geology, climate, geomorphology, vegetation,
and landscape disturbances have influenced the geometry
and hydromechanical properties of soils, vegetation distribu-
tion, and the geometry of hillslope source areas where land-
slides initiate (Sidle et al., 2017). Every hillslope is unique,
so we cannot characterize the true subsurface heterogeneity
and corresponding controls on landslide triggering across a
landscape, but hydrological information provides a founda-
tion of comprehension to inform landslide forecasting across
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contrasting locations. For example, in areas with strong sea-
sonality the antecedent soil moisture conditions may be crit-
ical for refining landslide initiation thresholds (e.g., Godt et
al., 2006; Mirus et al., 2018; Wicki et al., 2020; Marino et
al., 2021). In contrast, some regions typically remain quite
wet, and prior conditions seem to add very limited value in
constraining landslide potential (e.g., Thomas et al., 2020;
Patton et al., 2023). During the most recent decades, soil
moisture has become increasingly easy to monitor in situ,
but other measured variables such as groundwater levels have
also been used quite effectively (Wei et al., 2019, 2020; II-
lien et al., 2021; Marino et al., 2021; Uwihirwe et al., 2022;
Roman Quintero et al., 2023). As a state variable, the analy-
sis of volumetric water content profiles can reveal whether
the soil is accommodating infiltration through changes in
storage or if it has exceeded field capacity and is allowing
more rapid vertical fluxes to the saturated zone below. In
contrast, shallow-groundwater fluctuations (when they can
be measured) reflect not just water added from vertical infil-
tration, but also the three-dimensional (3D) subsurface flow
field from upslope accumulation to downslope drainage. Of
course, other hydrologic state variables may be used as prox-
ies for antecedent conditions such as snowmelt (Mostbauer
et al., 2018; Wayllace et al., 2019) and catchment storage
(Ciavolella et al., 2016; Marino et al., 2022).

It is difficult to know a priori which conditions and vari-
ables are important for an area of interest, but even a few
years of hydrologic monitoring can improve understanding
of the variably saturated hillslope responses in stormflow
generation (e.g., Beven, 2012; Blume and van Meerveld,
2015) and landslide initiation or reactivation (e.g., Godt et
al., 2009; Mirus et al., 2017). Accounting for regionally spe-
cific controls on infiltration and hillslope drainage dynamics
could help improve hydrometeorological thresholds by re-
ducing failed alarms, such as those produced by relatively
modest storms on already very wet soils, as well as lowering
the number of false alarms, such as those related to heavy
precipitation on dry soils. Therefore, to develop the next gen-
eration of LEWSs, expanding hillslope hydrologic monitor-
ing from a handful of existing networks to a wider variety
of landslide prone terrain worldwide would be highly bene-
ficial. The potential value of long-term hydrologic measure-
ments can be inferred from recent advances in characterizing
landslide triggering based on identifying rainfall anomalies
or recurrence intervals (e.g., Kirschbaum and Stanley, 2018;
Marc et al., 2022). A greatly expanded and openly accessi-
ble network of hydrologic observations would further sup-
plement such approaches, using relative hillslope wetness to
support new inferences about triggering potential.

However, established guidelines for landslide hydrological
monitoring are lacking, and providing general advice on how
to select appropriate sites and instrumentation equipment
is exceptionally difficult. This challenge is compounded
by subsurface heterogeneity that cannot be known a pri-
ori and logistical considerations that often influence instru-
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ment placement (e.g., site access and safety considerations
on steep slopes). These nuances are not emphasized in publi-
cations or presentations, so in practice the many seemingly
subjective elements in such studies reflect the crucial role
of expert judgment. Theoretically, each individual hillslope
has a critical pore water pressure (or saturated thickness) that
triggers failure, but this critical state is difficult to identify for
any given hillslope, and there are a multitude of hydrologic
responses to spatially variable rainfall across a heterogeneous
landscape. Additionally, the precise calibration of sensors to
measure accurate volumetric water contents is important for
some modeling calculations but may be of limited value for
warnings compared to capturing the range of responses to
multiple storms (e.g., Wicki et al., 2020). Thus, a first step
for hydrologic monitoring is developing a strong conceptual
model of local conditions at the site of interest, based on
available observations including geologic maps, soil classi-
fications, landscape morphology, climate, and even records
of rainfall and streamflow from the region. We also stress
that the measurement of the specific hydrologic state vari-
ables (i.e., soil moisture versus groundwater levels versus
soil suction) or the precise values is not critical. Instead, we
conclude that identifying a suitable monitoring location and
selecting measured variables that capture the relative change
in hillslope wetness conditions across the landscape provide
the most informative variables. In particular, site installations
that reflect the widest variability during and between land-
slide events reveal the most about hillslope storage dynam-
ics.

The influence of spatial variability — as well as the diffi-
culty in deciding what to measure and where — can be demon-
strated anecdotally using data from the USGS landslide mon-
itoring site in Sitka, Alaska (Smith et al., 2023). This includes
volumetric soil water content and positive pore water pres-
sures measured in two shallow soil pits that are less than 10 m
apart from each other on a steep hillslope. The period shown
(Fig. 1) encompasses responses to several major storm events
that triggered landsliding across the region, one of which ul-
timately culminated in a fatal landslide in Haines, Alaska
(refer to Darrow et al., 2022), roughly 200 km to the north-
east of the monitoring site in Sitka. In Soil Pit 1, the matric
potential and soil moisture sensors show some variations in
near-surface conditions and flashy piezometer response only
during peak rainfall. Less than 10 m downslope, the near sur-
face in Soil Pit 2 is persistently wet with continuous shallow-
groundwater fluctuations throughout the period. Thus, for in-
forming LEWS development, the largely absent pore pres-
sure measurements in Soil Pit 1 might seem of limited value
compared to the soil moisture record for assessing antecedent
conditions. In contrast, Soil Pit 2 clearly shows the grad-
ual elevation in groundwater levels for successive landslide-
producing storms, but consistently high soil moisture values
exhibit limited dynamics with no valuable information for
LEWSs. Thus, the value of soil moisture in the unsaturated
zone versus pore water pressures in the shallow saturated
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zone would depend entirely upon the location of the soil pit
within the landscape, which is difficult to assess from the
landscape position alone. However, together, instrumentation
in these two soil pits reveals a potential mechanistic explana-
tion for the shallow landslides and debris flows around Sitka:
well-drained hillslopes remain consistently wet and support
disconnected zones of perched saturation, so landslides tend
to occur once these perched saturated zones connect across
broader areas of steep hillslopes and their drainage capacity
is overwhelmed by consistently high rainfall input.

From another perspective, the same hydrologic data can
be plotted within a probabilistic framework to illustrate the
importance of the relative wetness of selected measurement
records rather than absolute values of all the different state
variables. Here, we compare the landslide occurrence data
relative to the cumulative frequency distributions of volu-
metric water content and pore water pressure values from
both soil pits, as well as the established rainfall threshold for
Sitka, Alaska, for a period from September 2019 through De-
cember 2023 (Fig. 2). The rainfall threshold uses the daily
maximum rainfall accumulation during any 3 h period and
was established with extensive calibration and validation us-
ing many decades of continuous records and landslide oc-
currence data (Patton et al., 2023). In contrast the hydro-
logic data reflect just a few years of discontinuous monitor-
ing records (Smith et al., 2023). A comparison of the three
plots underscores the value of the shallow-water-table fluc-
tuations relative to the rainfall threshold and soil moisture
for this location. In particular, the mere presence of shallow
groundwater in Soil Pit 1 apparently exhibits the strongest
correlation with landslide occurrence (Fig. 2), even for distal
locations well beyond the area considered for the calibration
of the rainfall threshold (refer to Patton et al., 2023).

2 Understanding the current limits to
hydrometeorological thresholds

The major benefits of hydrologic data for improving com-
prehension and capturing landslide-triggering conditions
(Figs. 1 and 2) can be tempered by acknowledging sev-
eral underappreciated issues with using in situ monitoring
for landslide forecasting. First, the return period of rela-
tively infrequent (but highly destructive) landslide events is
often longer than the typical life expectancy of subsurface
hydrologic monitoring equipment. Broad estimates of the
rainfall recurrence needed to trigger widespread landsliding
events across the globe range from a variable 95th percentile
(Kirschbaum and Stanley, 2018) to 10-year anomalies (Marc
et al., 2022), but on these timescales, instrumentation often
requires substantial maintenance that is resource-intensive
or may exceed their manufacturer-reported life expectan-
cies, experiences the onset of electronic drift, or succumbs
to destruction from wildlife or vandalism. Indeed, along with
solid expert judgment in site selection, there are also sub-

Nat. Hazards Earth Syst. Sci., 25, 169-182, 2025

stantial elements of chance that allowed previous researchers
to capture the hydrologic conditions during a natural land-
slide initiation event (Montgomery et al., 2009; Godt et al.,
2009; Mirus et al., 2017; Liang, 2020). Whereas instruments
to measure groundwater tables, streamflow, and precipita-
tion can potentially be replaced as needed, volumetric water
content sensors must be placed in relatively undisturbed soil
(Caldwell et al., 2022), which means that when sensors fail,
they cannot be readily exchanged in the same place with-
out disturbances to the porous medium itself. Installation of
pore pressure sensors varies, with some favoring direct con-
tact with the porous media (e.g., Smith et al., 2023) and oth-
ers using standpipe piezometers (e.g., Montgomery et al.,
2009) that potentially allow sensors to be exchanged more
easily. Although interoperability across measurement types
presents a potential challenge to the long-term sustainability
of a global near-real-time hydrologic monitoring network to
inform LEWSs, useful hydrometeorological thresholds can
be developed by intelligently leveraging existing hydrologic
monitoring networks. In particular, observed records can
be extended with a measure-and-model approach, whereby
shorter periods of data along with measured hydraulic and
mechanical properties can inform robust models of the hy-
drologic conditions related to slope failure (e.g., Ebel et al.,
2008; Wicki et al., 2021; Uwihirwe et al., 2022). Even if hill-
slope hydrologic modeling has its own problem areas (refer
to the discussion below) it is likely the most sustainable way
to synthesize hydrologic information across space and time.
Second, we accept that in situ subsurface instrumentation
favors monitoring precise variations in time rather than cap-
turing broader spatial patterns, and it therefore shares sim-
ilar limitations to any other point measurements, such as
rain gages. As with all measurement networks, some expert
judgment is needed to design and select a site for subsur-
face instrumentation, which influences the data collected and
corresponding conclusions that can be inferred. Numerous
studies related to subsurface stormflow response used dis-
tributed measurements to identify very localized processes
that govern hillslope hydrologic responses such as the role of
irregular subsurface topography on “fill-and-spill” processes
(Tromp-van Meerveld and McDonnell, 2011), heterogeneous
soil profiles and weathering (Zimmer and Gannon, 2018),
and preferential flow (Beven and Germann, 1982). However,
the same is the case for rainfall measurements, which must
rely on radar and satellite estimates of rainfall variability to
determine spatial patterns at relatively coarse scale.

2.1 Extrapolating across spatial and temporal scales

It may be even more difficult to extrapolate subsurface hydro-
logic response dynamics derived from one soil profile across
a heterogeneous landscape than atmospheric processes such
as rainfall intensities, so some clear advances in remote sens-
ing methods may ultimately be informative for landslide
modeling. At the scale of tens to hundreds of meters, cosmic-
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Figure 1. Time series of rainfall and pore water pressure and volumetric water content in two soil pits (SP1 and SP2) recorded on a steep
hillslope above Sitka, in southeast Alaska, observed during a sequence of large storm events in October—-December 2020 (dates in UTC); the
days on which landslides occurred throughout the region are shown by the transparent red bars. Note that data are available for download in
Smith et al. (2023), and near-real-time plots of data are available for situational awareness at https://usgs.gov/programs/landslide-hazards/

science/sitka-ak, last access: 11 November 2024.

ray neutron sensors have the capacity to estimate changes
in relative hillslope wetness between storms (e.g., Francke
et al., 2022), yet these methods remain largely untested for
landslide studies in steep, densely vegetated terrain. At the
scale of tens to hundreds of kilometers, distributed estimates
of soil moisture from remote sensing provides global cov-
erage but falls short of capturing the temporal variations
observed in situ that are critical for precise landslide fore-
casting (e.g., Thomas et al., 2019). Novel space-time ap-
proaches leverage extensive information on timing and lo-
cations of past landslide occurrences to simulate the evolu-
tion of landslide probabilities across a given landscape dur-
ing storm events (e.g., Lombardo et al., 2020; Bordoni et al.,
2021). Although these data-driven approaches are inherently
biased by the available data, emerging approaches for inte-
grating the rainfall triggering with the underlying landscape
characteristics seem quite promising (Steger et al., 2024) and
would likely benefit further from considering local hydro-
logic information. Ongoing efforts to incrementally improve

https://doi.org/10.5194/nhess-25-169-2025

probabilistic thresholds for global nowcasting have leveraged
satellite rainfall and soil moisture products (i.e., Stanley et
al., 2021) but lack a framework for considering the inher-
ently local controls on subsurface infiltration and drainage
processes. Despite the unknowable heterogeneity in the sub-
surface, one of the greatest opportunities for hydrometeoro-
logical threshold improvement is to use accurate temporal
dynamics from in situ observations to inform improved land-
slide modeling across the larger spatial footprints at hillslope,
watershed, and regional scales. A mechanistic understanding
of landslide-triggering conditions associated with different
hydrologic responses would also help constrain the spatial
extent over which different hydrometeorological thresholds
apply. The most promising new approach for this leverages
an intentionally oversimplified bucket model of infiltration
and drainage along with spatially variable rainfall, which is
able to simulate relative hillslope wetness across vast regions
with remarkable accuracy (Perkins et al., 2024).

Nat. Hazards Earth Syst. Sci., 25, 169-182, 2025
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in Wrangell, where six people were killed (Nicolazzo et al., 2024).

2.2 Alternative hydrometeorological threshold
formulations

The selection of statistical optimization criteria can influence
the balance between failed and false alarms for a given hy-
drometeorological threshold formulation (e.g., Conrad et al.,
2021), but a thorough discussion of uncertainty and perfor-
mance criteria (e.g., Piciullo et al., 2020) is outside of the
scope of this perspective. Instead, we address some infor-
mative contrasts between the formats of hydrometeorological
thresholds derived using contrasting methods and data inputs
(Fig. 3). The deterministic threshold (Fig. 3, purple) is based
on millions of simulated events from a one-dimensional (1D)
infiltration model calibrated using a few positive pore water
pressure measurements and evaluated with landsliding events
from the San Francisco Bay Area, California (Thomas et
al., 2018). This threshold lacks a functional format, but one
could theoretically be developed for its convex form, with
rapidly decreasing stability under higher antecedent wetness
and unconditionally unstable conditions above roughly 0.6
saturation. The format of a bilinear threshold (Fig. 3, blue)
was identified empirically and optimized using receiver op-
erating characteristics with numerous landslide events and
years of hydrologic monitoring in the Puget Sound area,
Washington (Mirus et al., 2018; Conrad et al., 2021). It is cer-
tainly oversimplified as well, but the convenient functional
format has led to its implementation in other settings such as
data-sparse Rwanda (Uwihirwe et al., 2022) and the testing
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of satellite-based thresholds in data-rich parts of California
(Thomas et al., 2019).

The insight that the deterministic versus empirical ap-
proaches support entirely different functional formats of hy-
drometeorological thresholds raises the questions of whether
one or the other is more correct and why they vary so dis-
tinctly. The deterministic thresholds reflect our limited abil-
ity to quantify the complex storage dynamics during land-
slide events and not necessarily all the processes relevant to
infiltration and drainage, which results in considerably broad
conditions that are unconditionally unstable. On the other
hand, the empirical threshold format was selected based only
on the conditions we have observed thus far and does not
necessarily represent all the relevant possibilities. In a recent
paper, Palazzolo et al. (2023) propose a hydrometeorologi-
cal threshold using antecedent soil moisture versus rainfall
intensity that exhibits a similar format to our deterministic
threshold at low antecedent wetness combined with a con-
stant rainfall intensity cutoff for higher saturations just like
the empirical bilinear threshold. Earlier studies have tested
linear models, which also led to improvements relative to
rainfall-only thresholds (Mirus et al., 2018; Marino et al.,
2020).

Overall, these sparse examples of contrasting formats re-
flect subjective modeling choices and represent just some of
the results emerging from recent research into hydromete-
orological thresholds, but they raise two important issues:
first that there are observed storage and drainage processes
that our hydrological models do not adequately capture (i.e.,
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Figure 3. Different formats of hydrometeorological thresholds for
landslide initiation developed based on empirical interpretation
(blue), shown with bilinear thresholds optimized using several years
of monitoring data and landslide inventories (Mirus et al., 2018),
versus theoretical understanding (purple) based on a deterministic
method using infiltration modeling and millions of synthetic storm
events (Thomas et al., 2018). The deterministic threshold shows un-
conditionally unstable conditions for excessive rainfall or high sat-
uration levels. In contrast, empirical thresholds indicate that exces-
sive rainfall on dry soils will not trigger failures, whereas even at
the highest observed saturations moderate rainfall is still needed
to trigger failures. Heuristically, a general threshold that accom-
modates both theoretical understanding and empirical observations
seems more reasonable.

known conceptual limitations) and second that there are con-
ditions we have not yet observed that are difficult to predict
(i.e., unknown range of responses). For example, when the
vast majority of both triggering and non-triggering events
exhibit a correlation between antecedent wetness and rain-
fall accumulation (e.g., Palazzolo et al., 2023), it is partic-
ularly difficult to project responses to unprecedented rain-
fall on very dry antecedent soils or rapid snowmelt events
during low-intensity rainfall. Heuristically, we would expect
a more generalized threshold that considers the uncertainty
in triggering conditions and reflects our conceptual under-
standing that either more precipitation or wetter antecedent
conditions should each increase the likelihood of landslid-
ing (Fig. 2, red). However, our hypothesis of this generalized
hydrometeorological threshold remains untested. Further ex-
ploration in different regions with contrasting geologic and
environmental settings should help refine best practices and
guidelines. Conversely, additional studies might also reveal
that there is no universally superior format for hydrometeo-
rological thresholds, and instead local practices and priorities
will determine what is used operationally, depending on data
availability, system expectations, and risk tolerances.

2.3 Limits of process understanding

Three-dimensional, fully coupled surface—subsurface hydro-
logic models emerged as a relatively effective but data-
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intensive method for quantifying the hydrogeomorphic pro-
cesses that contribute to landslide initiation (Loague et
al., 2006; Ebel et al., 2008). Now, extensive databases on
soil geometry and textural classifications (e.g., SSURGO,
2024), novel pedotransfer functions (e.g., Van Looy et al.,
2017; Lehmann et al., 2021), high-resolution continental-
scale DEMs (e.g., 3DEP: US Geological Survey, 2019), and
comprehensive precipitation databases (e.g., IMERG: Huff-
man et al., 2015) could, in theory, facilitate using physics-
based approaches, both conceptual and deterministic, to de-
velop hydrometeorological thresholds for settings all over the
globe (e.g., Lehmann et al., 2019). However, theoretical gaps
in hillslope hydrologic modeling remain a major obstacle.
Well-calibrated infiltration models designed to capture ob-
served landslide initiation processes still struggle to simu-
late the continuous soil moisture dynamics between events
(Wicki et al., 2021; Piciullo et al., 2022) or the influence of
complex soil structures (Mirus, 2015; Fatichi et al., 2020).

Regardless of their high computational expense and data
demands for parameterization, the reality is we still do not
fully comprehend the physics of variably saturated subsur-
face flow through complex landscapes. The equation used to
simulate diffusive flow through variably saturated soils has
been around for quite some time (Richards, 1931), but in-
filtration models based on Richards’ equation cannot pro-
duce results that are consistent with observations of non-
sequential wetting fronts (e.g., Graham and Lin, 2011) or
preferential flow in the unsaturated zone (Nimmo, 2012,
2016; Beven and Germann, 1982, 2013). These localized hy-
drological processes combined with subsurface heterogene-
ity may explain why some hillslopes fail and why other
adjacent slopes remain stable, and hence this may explain
to some degree the variability and uncertainty in landslide-
triggering conditions. Such questions remain largely aca-
demic, as this degree of detail is not necessary (or even
achievable) to provide useful and actionable information for
landslide loss reduction. Instead, we can focus on more
practical modeling and comprehension of hydroclimatology
with representative state variables to reduce failed and false
alarms.

Ultimately, landslides occur at some point after the initia-
tion zones fill up with infiltration at a rate faster than they can
drain. Although the infiltration component of landslide trig-
gering involves the largely vertical 1D percolation of precipi-
tation through unsaturated soils, stormflow responses involve
3D processes including lateral flow diversion and drainage
that can either enhance or reduce landslide potential. These
processes are controlled not just within the soils where shal-
low landslides initiate but by complex flow paths in the un-
derlying saprolite, weathered bedrock, and even fracture flow
through intact bedrock. Although robust physically based
models still struggle to fully capture those two competing
processes due to both a lack of data and a lack of process un-
derstanding, further expansion of simpler conceptual mod-
els that are informed entirely by monitoring data such as a
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leaky bucket (e.g., Wilson and Wiezorek, 1995), wetness in-
dices (e.g., Godt et al., 2006; Perkins et al., 2024), source-
responsive methods (e.g., Nimmo, 2016), or empirical ap-
proaches (e.g., Orland et al., 2020; Bordoni et al., 2021) may
be beneficial. These would have the greatest impact if they
can leverage long-term monitoring data to capture the critical
conditions when vertical infiltration exceeds drainage during
major storm events, as well as the effect of the landscape-
scale storage dynamics during and between such events. Fur-
ther iterations of measurement-model comparisons would be
helpful to determine how we can better represent these two
competing infiltration and drainage processes in a way that is
representative enough to improve landslide forecasting.

2.4 Limits of observational datasets

The wide availability of precipitation records, going back
centuries in many cases, paired with the limited frequency of
landslide events, might lead many to believe that there are no
surprises and that rainfall thresholds are the most robust and
achievable route to inform LEWSs. However, the challenges
with balancing failed and false alarms in virtually all land-
slide forecasts indicate that there are processes we have not
understood and conditions we have not yet observed. For ex-
ample, the hydrometeorological threshold models discussed
in Fig. 3 were developed without any observations of very
large storms on very dry soils, and yet that is potentially the
combination of conditions that may influence shallow lands-
liding in a changing climate (Gariano and Guzzetti, 2016).
Indeed, the literature includes many different assertions
about what to expect in a warming world for different fla-
vors of landslides (Cannon and DeGraff, 2009; Bennett et
al., 2016; Coe et al., 2016, 2018; Parker et al., 2016; Handw-
erger et al., 2019; Kirschbaum et al., 2020). The degree to
which drier soils from elevated evapotranspiration may bal-
ance out the effects of the increased frequency and intensity
of extreme meteorological events remains unclear. Thus, an
important challenge is to develop a mechanistic understand-
ing that would be applicable in a changing climate to in-
form LEWSs (e.g., Ehret et al., 2014). This includes under-
standing how the combination of hydraulic properties such
as water-retention curves, porosity, saturated hydraulic con-
ductivity, and bedrock fractures influences hillslope storage
and drainage dynamics (e.g., Ebel et al., 2008) or how soil
grain size and mineralogy affect mechanical properties such
as suction stress, cohesion, and internal friction angle (e.g.,
Lehmann et al., 2021). Such an understanding can be used to
improve simplified bucket models (e.g., Perkins et al., 2024)
to consider spatially variable hillslope hydrologic responses.
As more studies use a combination of measurements and
modeling to evaluate the local and regional controls on hills-
lope hydrologic conditions, it seems likely that we will iden-
tify specific threshold formulations needed for different types
of hydroclimatic and environmental settings. In the same way
that the rainfall intensity-duration approach does not apply
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universally well across the globe (Caine, 1980; Guzzetti et
al., 2008; Baum and Godt, 2010), we could ultimately learn
more about the variability and applicability of hydrometeo-
rological thresholds.

3 Towards improved landslide forecasting models

Despite these notable challenges, we maintain that integrat-
ing knowledge of hillslope hydrologic processes into land-
slide forecasting tools is a very promising path forward. Con-
sidering that both monitoring systems and models are al-
ways imperfect and that they provide an incomplete picture
of the reality, a major challenge is to find a way, with lim-
ited understanding and even more limited data availability,
to reduce LEWS errors. In some cases, hydrology may not
add valuable information about rainfall alone, but in many
other settings, we expect that further research can identify
hydrologic variables linked to landscape-scale processes that
reflect the geologic, geomorphic, and climatic controls on
predisposing conditions. Capturing those factors would help
improve advance warning for potential landslide conditions
prior to short-term forecasts of the precipitation that could ul-
timately trigger failures locally. With realistic expectations,
careful considerations of the issues we outlined above can
serve as a framework for a systematic and reliable way to in-
tegrate hydrometeorological thresholds into improved local-
scale LEWSs.

In contrast to accurate hyper-localized LEWSs that have
been within reach for some time (e.g., Campbell, 1975;
Chleborad et al., 2008), the transition towards uniform,
regional-scale systems with meaningful spatial coverage
would require further testing and new methods for inter-
polating between, and extrapolating beyond, sparse exist-
ing observations. In this context, the following efforts pro-
vide promising paths towards improving landslide forecast-
ing models worldwide:

1. Determine regional controls on landslide hydroclima-
tology. This involves assessing the potential infiltration
conditions that can influence landslide triggering, in-
cluding snowmelt (Hinds et al., 2019), prolonged storms
(Coe et al., 2015), steady and frequent rainfall (Chleb-
orad et al., 2008), or simply high-intensity bursts of
precipitation (Caine, 1980). This also includes quanti-
tatively characterizing landslide seasonality (e.g., Luna
and Korup, 2022) and how those seasons may change
in the future for different types of slope failure (Jakob,
2022).

2. Develop objective methods to identify the state vari-
ables and timescales of interest (e.g., Conrad et al.,
2021). In particular, how can we most effectively sep-
arate the continuous transition from antecedent to trig-
gering conditions to improve LEWS performance? Be-
cause major obstacles to forecasting subsurface hydro-
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logic conditions remain, it is important to identify which
hydrologic factors can be leveraged effectively with the
timescales supported by quantitative precipitation fore-
casts (e.g., Conrad et al., 2021; Patton et al., 2023).

3. Explore what currently available hydrogeologic infor-
mation can reveal about subsurface responses. This in-
cludes further investigation of important differences be-
tween flat versus steep terrain (e.g., Wicki et al., 2020,
2023) and satellite versus in situ hydrologic informa-
tion (e.g., Thomas et al., 2019) to better leverage exist-
ing worldwide monitoring networks. It may be partic-
ularly important to explore hydrologic information at a
spatial scale that accords with the landslide release ex-
tent (rather than relying on single sensors or remotely
sensed estimates). This may involve further exploration
of emerging technologies (e.g., Franke et al., 2022) or
the use of multiple sensors to characterize variably sat-
urated conditions along both vertical and longitudinal
hillslope profiles (e.g., Mirus et al., 2017). It is certainly
more promising to look at relative changes in hydro-
logic metrics than to seek absolute threshold values.

4. Establish a global repository of rainfall-triggered land-
slide inventories with associated hydrologic information
across different hydroclimatic and environmental condi-
tions. Open access to these data will facilitate research
and synthesis with different conceptual modeling ap-
proaches, from data-driven methods (e.g., Steger et al.,
2024) to simple process-based forecasts (Perkins et al.,
2024). Then, through a coordinated measure-and-model
approach, researchers can test generalized methods to
extrapolate controls on infiltration and drainage dynam-
ics across a range of realistic landslide-triggering con-
ditions.

Beyond these potential research opportunities, we close
with a few practical considerations. There is extensive de-
bate about what “early” means in the context of actionable
information for an operational LEWS, which is a discus-
sion reserved for another venue. Instead, it is important to
consider that any LEWS that relies only on currently ob-
served conditions, whether precipitation, hydrology, or even
detection of incipient slope movement, is largely limited to
“now-casting” rather than forecasting. Hydrologic state vari-
ables reflect the subsurface response to recent water inputs,
and for this reason these observations should be most accu-
rately indicative of failure (Figs. 1 and 2). Precipitation pre-
cedes infiltration and represents the forcing conditions im-
mediately prior to the hydrologic response when landslides
are imminent. To effectively leverage these two sources of
information and maximize the “early” in LEWSs, hydrome-
teorological thresholds ideally would rely on some modeling,
whether simple or complex, that starts with recent hydrologic
conditions and predicts the effects of forecasted precipitation
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on slope stability and that potentially assimilates monitoring
data to update such forecasts in near-real time.

At this point we can definitively state that integrating hy-
drologic information has led to improvements in landslide
forecasting over existing LEWS model formats, but are the
additional investments in data and research needed for these
universally justified for operational systems? Ultimately, it is
unclear how well we can expect any LEWS to perform bar-
ring other scientific advances. For example, we are not aware
of any operational or research-oriented landslide forecasting
approach that successfully accounts for the spatially vari-
able rainfall, triggering conditions, or inherent uncertainties
in short-range quantitative precipitation forecasts. Although
LEWSs may remain an imperfect tool due to the inherently
stochastic and episodic nature of landslide initiation, advanc-
ing our understanding of hillslope hydrology across differ-
ent climatological and geologic settings is well within reach
and could soon lead to improved landslide forecasting mod-
els globally.
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