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Abstract
In the last few years, a new aircraft configuration has been developed: the electric Vertical Take-
off/Landing aircraft (eVTOL). To improve aircraft efficiency, structures are lighter and more flexible,
and therefore are prone to aeroelastic interaction with the aerodynamic forces. Due to the structure’s
flexible nature and the use of propellers for propulsion, eVTOL aircraft are prone to whirl flutter, which
consists of a dynamic instability produced by the propeller aerodynamics and structure interaction.

This thesis aims to assess whirl flutter in a multirotor VTOL, considering rigid propellers in thrusting
conditions. A semi-analytical model was developed for two types of configurations: one propeller and
two counter-rotating propellers at the tip of a cantilever beam structure. The model is comprised of
three parts: steady propeller aerodynamics, unsteady whirl forces and structure dynamics.

The steady propeller aerodynamics in thrust conditions were obtained through blade element mo-
mentum theory (BEMT) for a rigid propeller. Somemodifications were included on the BEMT to account
for the effects of the front propeller on the rear propeller in a counter-rotating configuration. The BEMT
flow characteristics were coupled to a quasi-steady aerodynamics perturbation model using strip the-
ory, based on Houbolt and Reed [1]. The model includes lift and drag effects of the blades to obtain
the forces produced by the whirl motion of the propeller. Rotational symmetry was used to obtain the
propeller whirl forces.

Additionally, the beam structure was modeled using a space frame finite element model with 12
degrees of freedom per element, in combination with an independent two-degrees of freedom system
model of the propeller-pylon structure. Then, the structure dynamics were derived for the propeller-
pylon structure and included in the system structural dynamics. Afterward, the unsteady whirl forces
were coupled to the structural dynamics using state-space representation, which allowed the stability
analysis of the system using eigenanalysis.

The model developed in this thesis was used to analyze whirl flutter on an octocopter designed
by the company Betronka SPA for all the designed flight conditions. The flow was considered to be
always perpendicular to the propeller plane of rotation and the only independent variables were the
inflow velocity and propeller angular velocity. Afterward, to study the thrust influence on whirl flutter,
flow velocities and propeller angular velocities above the designed limit were studied, in order to find
the main trends of thrust effects for conventional and counter-rotating configurations.

The main findings of the stability analysis show that the evaluated multirotor does not suffer from
whirl flutter for both configurations (conventional and counter-rotating propellers). The counter-rotating
propeller configuration is more stable compared to the default configuration, increasing the whirl flutter
speeds. Thrust conditions stabilize the default configuration, increasing the propeller angular speed
to encounter whirl flutter by 4%. It was also found that thrust conditions are negligible for counter-
rotating propeller configuration considering variable angular velocity. On the contrary, thrust effects are
destabilizing for both configurations when considering variable propeller inflow speed.
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1
Introduction

With the development of electric propulsion, new aircraft design possibilities are now feasible. Air
transportation’s contribution to the climate change, which is 2% of global 𝐶𝑂2 emissions [2], makes
electric and hydrogen propulsion very attractive for the new aircraft generations. In this context, for
short-distance transportation, a new concept called ”air taxis” is being developed, which provides peo-
ple with short flights on demand. One of the key features needed for air transport in cities is vertical
take off and landing. This can be accomplished by electrically driven vehicles with the capabilities for
Vertical Take-off/Landing aircraft (eVTOL) [3].

Different companies have been developing eVTOLs, such as Volocopter, Joby Aviation, Lilium and
Airbus. Some of them are in concept development, while others are in the certification stage, such as
Joby Aviation.

To improve the efficiency of electrically driven aircraft (propellers and electric motors), the wing
aspect ratio can be increased, which reduces the induced drag, and the propellers can be distributed
along the aircraft wings to maintain the landing and take-off performance [4]. But, due to the higher
wing aspect ratios, higher wing flexibility is expected, and as a consequence, aeroelastic interactions
arise between the structure and the aerodynamic forces.

The previously mentioned aeroelastic forces can produce instability problems in the analyzed sys-
tem, which can be static or dynamic. In the case of wings, the main static aeroelastic instability is
torsional divergence [5], while the main dynamic instability is flutter. Flutter can be described as self
excited-vibrations that are produced by oscillatory aerodynamic loads that rise from the aeroelastic
system [5]. For wings, the flutter phenomena is known as classical flutter, and for a motor nacelle with
propellers, the oscillatory dynamic instability is called whirl flutter [6].

Whirl flutter was discovered in 1938 by Taylor and Browne [7] and it gained importance in 1960 due
to fatal accidents caused by whirl flutter of a Lockheed L-188C Electra [8]. After the 60s, whirl flutter
research continued to develop, considering that other aircraft types, like helicopters and tiltrotors, could
suffer from it.

The currently developed whirl flutter models can be divided into two subcategories: analytical and
numerical. The former model considers propeller aerodynamics in windmilling conditions, because the
influence of thrust on whirl flutter forces is very small at high speeds [5] where whirl flutter is expected to
occur in fixed-wing aircraft. On the other hand, numerical methods are needed for other aircraft config-
urations, such as tiltrotors. This type of aircraft has diverse flight conditions such as hover, transition,
and forward flight, and therefore, relies upon complex multibody numerical methods, or CFD-based
methods in combination with finite elements models for the assessment of the aeroelastic response of
whirl flutter. This is computationally expensive, making it less suitable to implement in the preliminary
phase of the design.

Now, with the ”electric boom” in aviation, whirl flutter will have a big impact on the development of
the new aircraft concepts. Propeller size and number can largely vary in these new designs, which will
change the whirl flutter behavior of the aircraft. Therefore, it is desirable to assess whirl flutter in an
early stage, so the design can consider whirl flutter restrictions when optimized and modified. To be
able to include this instability in an early design stage or for concept optimization, the model needs to
be fast and have low-computational costs.

1



2 1. Introduction

In this context, a new eVTOL concept has been studied, called multirotor aircraft. To improve the
efficiency and assess the safety of this aircraft, whirl flutter should be analyzed. Multirotor aircraft do
not operate just in the high speed region, but instead, they have a large variety of flight modes [9],
relying on the propellers’ thrust to achieve the vehicle lift and thrust. Therefore, to assess whirl flutter,
the model should consider that propellers are working in high thrust conditions even at cruise speeds.

In general, there are two types of multirotor configurations: a default configuration with one pro-
peller per tip and a counter-rotating configuration with two coaxial propellers per tip. This thesis aims
to improve the understanding of the aeroelastic propeller-structure interaction in multirotor drones by
modeling and predicting whirl mode flutter in thrusting conditions for a beam-propeller configuration,
including counter-rotating propeller configuration. To accomplish this goal, a semi-analytical model,
which can be applied in the preliminary stages of the VTOL design, is developed for a cantilever beam
with a tip propeller, using a conventional propeller configuration or counter-rotating configuration. This
research finalized with the stability analysis for whirl flutter of a five meters diameter octocopter.

1.1. Document outline
This thesis consists of eight chapters. The document introduction was already presented in . After-
ward, a summary of the literature review of the whirl flutter phenomena and propeller aerodynamics is
presented in , including the main research questions and objectives. Next, in , the propeller aerody-
namics and whirl forces in thrusting conditions are derived for a conventional and a counter-rotating
propeller configuration. In , the structural beam finite element model is presented. Subsequently, in
the aeroelastic model is developed, the propeller-nacelle equations of motion are derived and coupled
to the propeller aerodynamics and structural model. In , the whirl flutter analysis of the multirotor and
results are presented. Finally, the main conclusions and findings of the thesis are shown in .
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This chapter contains a summary of the research on whirl flutter phenomena, explaining the history of
the development, mathematical description, importance, relevance of different parameters, and current
state of the art. Then, different methods to determine the aerodynamics of propellers in thrust conditions
are discussed, including counter-rotating propellers, with an emphasis on blade element momentum
theory. Finally, the main research questions and objectives are presented.

2.1. Whirl Flutter
Whirl flutter is defined as a dynamic instability that can occur in flexibly mounted motor nacelle with
propellers [1], which involves the coupling of the gyroscopic and aerodynamic forces of the propeller
with the inertial, elastic and damping forces of the structure [10]. It was first introduced by Taylor and
Brown in 1938 [7]. Then, in the 60s, the concept of whirl flutter was studied more exhaustively in aircraft
by NASA [10], as this aeroelastic phenomenon gained importance due to two accidents of a Lockheed
L-188 C Electra II [5].

In 1962 Houbolt and Reed [1, 11] proposed a simple mathematical model that describes the gyro-
scopic precession of a flexible propeller-nacelle system which can lead to whirl flutter instability in a
relatively simple system, composed by a rigid propeller and a rigid power plant with two flexible de-
grees of freedom: pitch and yaw. Houbolt and Reed showed the influence of key parameters of whirl
flutter and found that increasing the pitch and yaw stiffnesses increases the flutter speed. They also
found that generally, structural damping has a stabilizing effect. In addition, they found that increasing
the pivot location to propeller radius ratio (𝑒/𝑅), increases the stability boundary and decreases the
damping sensibility.

Houbolt and Reed’s model was compared with experimental results by Bland and Bennet [12].
They performed wind tunnel experiments with rigid propellers and flexible power plants, operating the
propellers in windmilling conditions. Bland and Bennet [12] observed that theoretical whirl flutter speeds
and frequencies were in agreement with experimental data, with the theoretical approach being more
conservative (lower whirl flutter speeds) when theoretical aerodynamic stability forces were used. They
also found that the theoretical stability forces had the same trend as the measured stability forces, but
differed in magnitude in some cases.

In 1966, Reed presented a state of the art review of whirl flutter [13] for NASA. The reviewed math-
ematical model consists of a rigid propeller-nacelle structure with pitch and yaw degrees of freedom,
similar to Houbolt and Reed [1], but also considered new degrees of freedom to represent flapping
blades and flexible blades, based on the mathematical model proposed by Richardson [14]. Then,
in 1977, Kvaternik and Kohn [15] presented an experimental parametric investigation of whirl flutter, a
study motivated by the need for more data to assess the predictability of whirl flutter. This study consid-
ered a flexible power plant with pitch and yaw degrees of freedom and also considered flapping hinges
and flexible blades. The results obtained by Kvaternik and Kohn [15] showed that the predicted whirl
flutter frequencies and speed showed excellent agreement with the experiments and thus, whirl flutter
could be predicted using linear stability analysis and two dimensional quasi-steady aerodynamics. It is
important to mention that all the models and experiments previously mentioned consider the propellers

3
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in windmilling conditions (no thrust generated), which can be applied in cases of forward flight, when
the thrust of the propeller is low compared to the maximum thrust [13].

In 1989, the first numerical solver for whirl flutter was implemented by Rodden and Rose [16]. This
preprocessor was developed to include the aerodynamic and gyroscopic forces of a propeller/nacelle
system to MSC/NASTRAN, to assess whirl flutter analysis with the software. The implemented aero-
dynamic and gyroscopic forces were based on the model of Houbolt and Reed [1] .

Later on, whirl flutter continued to develop. In 2005, Kunz [17] presented an analytical approach for
whirl flutter stability analysis that unifies the models of propellers, prop-rotors, tiltrotors, and helicopter
rotors. In 2015, an extensive review of the whirl flutter phenomena was done for turbo-propellers
aircraft, including tiltrotor aircraft by Jiří [5], including the airworthiness regulations FAR/CS 23, FAR/CS
25. In 2020, Liu Xu [18] did an extensive parametric analysis using an analytical whirl flutter model of
the X-57 Maxwell by NASA, which is a small experimental electric airplane with a large number of
electric motors used to increase the overall lift produced by the wing [19].

2.1.1. Whirl flutter accidents
As mentioned before, the whirl flutter phenomenon gained importance due to the aircraft accidents that
occurred in the 60s. Whirl flutter was the direct cause of the Lockheed L-188C Electra II fatal accidents
in 1959 and 1960, which killed everyone on board [5]. It was found that the engine mounts were not
able to damp the whirl mode vibrations of the aircraft because of a reduction of the overall stiffness and
thus, after the accidents, they were reinforced and redesigned to withstand higher stresses [5].

The Beechcraft 1900C also suffered from an accident produced by whirl flutter in 1991 [20]. The
accident occurred due to a damaged engine bed, caused by fatigue cracks and defects on the engine
mount isolators, decreasing the whirl flutter speed envelops of the aircraft [5].

Also, the amphibious aircraft Grumman Turbo Mallard GF73T crashed because of whirl flutter in
2005, due to fatigue cracks damage [5].

The latest two mentioned accidents occurred during a time when whirl flutter was already studied
and implemented in the design, but without considering parameters such as damage. Thus, it is im-
portant to address whirl flutter in new configurations ( such as the multirotor that inspired this research)
and to have a reliable model that can ensure the airworthiness of these configurations.

2.1.2. Whirl flutter model
The most elemental model to analyze whirl flutter consists of an idealized rigid power plant that is
contained by an elastic spring-damper system in 𝜃 (pitch) and 𝜓 (yaw) degrees of freedom, located
behind a rigid propeller [13], as shown in Figure 2.1.

Figure 2.1: Idealized gyroscopic model [21].

With this simple model, ignoring aerodynamic forces and propeller rotation, two whirl modes can
be distinguished: backward and forward [1]. The forward mode consists of the propeller precessing in
the same direction of the propeller rotation and in the backward mode, on the contrary, the propeller
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precesses in the opposite direction to the blade rotation [13]. Comparing both modes, the backward
mode has a lower frequency than the forward mode, they have a phase shift of 90∘ and with increasing
propeller angular velocity, the frequency difference between the modes also increases [5]. The modes
are shown in Figure 2.2.

Figure 2.2: Backward mode (a) and forward mode (b) [21].

Conventional aircraft propellers (turbo-propellers) are generally considered rigid due to their high
natural frequencies, hence only the backward mode is present [13]. On the other hand, for helicopter
rotors and some tiltrotors, propellers are considered flexible [17] or to have flapping hinges, and there-
fore, the backward and forward modes can be observed [13].

The gyroscopic motion of the propeller produced by these shape modes are responsible for the
whirl flutter instability, as they change the blade’s angle of attack and thus, non-stationary aerodynamic
forces are generated, which could potentially induce the flutter instability [5]. As in classical flutter, whirl
flutter has a correspondent speed or flight condition in which flutter is reached. For lower speeds than
the flutter speed, the gyroscopic oscillations are stable. For higher speeds than the flutter speed, the
system is unstable, as shown in Figure 2.3.

Figure 2.3: Stable (a) and unstable gyroscopic oscillation (b) [21].

Different methods have been developed through the years to study whirl flutter. These methods
can be classified into two different categories: analytical and numerical methods.

Analytical methods have been developed first with rigid models for blades and wing, such as Houbolt
and Reed [1] and later has been expanded to model flapping hinges and flexible blades, but still con-
sidering a rigid wing, such as the work of Kvaternik and Kohn [15] and Kunz [17]. The latter one has
the advantage of presenting a unified model for studying whirl flutter for propeller-driven aircraft, tiltro-
tors and helicopters. A more advanced and recent model which includes wing flexibility is the MSc
thesis presented by Liu Xu [18]. The methods mentioned previously use windmilling conditions for
the propeller calculations, which means that there is no thrust generated by the propellers. For the air-
craft configuration evaluated in these studies, thrust can be neglected, because the difference between
windmilling and thrusting whirl aerodynamic forces in high speed flight condition is less than 5% [13].
This does not hold for low speeds flight conditions [13].

Numerical methods have been also developed to study whirl flutter. For the development of the
𝑋−57Maxwell by NASA, two different numerical models were used to assess whirl flutter, CAMRAD II
and Dymore [22]. CAMRAD II is an aeromechanical analysis of helicopters and rotorcraft that includes
multibody dynamics, nonlinear finite elements, structural dynamics, and rotorcraft aerodynamics [23].
Dymore is a finite element based multibody dynamics code for the comprehensive modeling of flexible
multibody systems [24]. The main differences between CAMRAD II and Dymore are the aerodynamics
calculation and aeroelastic damping calculation for flutter analysis. Both softwares use lifting line theory
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coupled with linear inflow model, but in the case of Dymore, the propeller aerodynamics can be also
calculated externally and then coupled to the software[22] . In CAMRAD II, the damping is obtained
directly through eigenvalue and eigenmode analysis [22], on the other hand, Dymore uses the Prony
method to identify the damping based on the transient response [22].

There is also an additional package to MSC/NASTRAN for rigid propellers that uses the analytical
model of Houbolt and Reed [1], developed by Rodden and Rose [16]. A deeper investigation of high
fidelity numerical methods will not be included in this research as it is not considered as part of the
thesis objective.

2.1.3. Whirl flutter aerodynamics

To account for whirl flutter and stability boundaries, it is necessary to consider the gyroscopic motion
of the propeller and characterize the aerodynamics forces that appear due to the pitching and yawing
motion. Without considering the aerodynamics, there is no divergent whirl instability, as the net energy
input in the system due to gyroscopic motion is zero [1].

Figure 2.4: Whirl forces respect to gyroscopic system degrees of freedom (adapted from [5]).

As mentioned before, the pitching and yawing motion produce aerodynamic forces,which can be
conveniently decomposed in terms of Py, My, Pz, and Mz as shown in Figure 2.4, to be later coupled to
the system degrees of freedom 𝜃 (pitch) and𝜓 (yaw). As the pitching and yawingmotion are symmetric,
Py, My, Pz, and Mz can be explained from the pitching deflection, yawing velocity, and pitching angular
velocity, which are analogous to the yawing deflection, pitching velocity, and yawing angular velocity.

The pitching deflection produces a induces a higher angle of attack in the left half of the propeller disk
and a lower angle of attack in the right half of the propeller disk , and thus, higher thrust is produced in
one half of the propeller disk with respect to the other, producing a moment Mz, as shown in Figure 2.5.
Also, the pitching deflection induces a vertical component change on the thrust, from which the force
Pz arises, shown as Δ𝐻 in Figure 2.5.
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Figure 2.5: Aerodynamics forces arising from pitching deflection, (c) retreating blade at the left side of the propeller propeller
disk and (d) advancing blade blade at the right side of the propeller propeller disk [5].

The yawing velocity increases the inflow velocity perceived by the blades of the right half of the
propeller disk and decreases the inflow velocity perceived by the left half of the propeller disk, having
a similar effect on the blade angle of attack as the pitching deflection, generating the force Pz and
moment Mz, as shown in Figure 2.6.

Figure 2.6: Aerodynamics forces arising from yawing velocity, (c) retreating blade at the left side of the propeller propeller disk
and (d) advancing blade blade at the right side of the propeller propeller disk [5].

The pitching angular velocity increases the blades’ perceived inflow velocity of the bottom half of
the propeller disk and decreases the blades’ perceived inflow velocity of the top half of the propeller
disk. As a consequence, a moment, My, and a force, Py, arise, as shown in Figure 2.7.
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Figure 2.7: Aerodynamics forces arising from pitching angular velocity, (c) retreating blade at the top side propeller propeller
disk and (d) advancing blade blade at the bottom side of the propeller propeller disk [5].

The first analytical model that describes the aerodynamic forces caused by the gyroscopic motion
of the propeller (Py, Pz, My, Mz) was published by Ribner [25] and then Houbolt [1]. These models
permitted the analytical assessment and prediction of whirl flutter [12, 13, 15].

Both models rely on similar assumptions and lead to comparable results [13]. The models use
strip theory and assume quasi-steady aerodynamics and a small inflow angle[13]. The main difference
between Houbolt’s and Ribner’s model is that Ribner’s work lacks the simplicity of Houbolt’s theory [13]
as Ribner’s model includes drag, uses trigonometric functions, and uses an inflow factor. As both lead
to similar results, Houbolt’s method has been generally preferred.

2.1.4. Influence of major parameters in whirl flutter
The most important structural and flight condition parameters that affect whirl flutter considering rigid
blades and a rigid power plant restrained by elastic pitch and yaw degrees of freedom are: the stiffness
of the power plant spring attachments (𝐾𝜃 , 𝐾𝜓), the stiffness ratio (𝐾𝜃/𝐾𝜓),the propeller advance ratio 𝐽
[5], the structural damping and the propeller angular velocity (Ω). These parameters have been analized
by Bland and Reed [11], Houbolt and Reed [1], Sewall [26], Kvaternik and Kohn [15] and Cerdle [5].

The effect of the stiffness of the power plant is shown in Figure 2.8. It can be inferred that increasing
the overall stiffness increases the whirl flutter velocity [5].

The effect of the stiffness ratio is shown in Figure 2.8. The most critical stiffness ratio is found for
𝐾𝜃/𝐾𝜓 = 1 [1, 5], which means that for a constant advance ratio, 𝐾𝜃 and 𝐾𝜓 required for the system
to be stable are maximized. It is also important to notice the divergence of the system is driven by the
minimum stiffness of both stiffnesses (𝐾𝜃, 𝐾𝜓) [1].

Figure 2.8 also shows that increasing the propeller advance ratio, 𝐽, increases the necessary stiff-
ness for the system to be stable and therefore, this factor tends to destabilize the system [5].

The structural damping affects the instability boundary by having a stabilizing effect, as shown
in Figure 2.9. Thus, it can lead to considerable underestimation of the whirl flutter speed, if it is not
considered properly [5]. In Figure 2.9, it can also be seen that the further the pivot is located (ratio 𝑎/𝑅),
the less effect the damping has on the stability boundary. This behavior can be explained because
increasing the pivot distance increases the aerodynamic damping, which has a stabilizing effect on the
system [5]. It is also important to mention that increasing the structural damping decreases the required
stiffness for system stability [1].

For high propeller angular velocity, Ω, and considering constant structural stiffness, the instability
boundary is not significantly affected by Ω [5], as shown in Figure 2.10. This does not hold for low
propeller angular velocity, because at this point, the instability boundary is primarily limited by static
divergence [5].
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Figure 2.8: Whirl flutter boundary and divergence for different advance ratios [21].

2.1.5. Thrust effect
As indicated previously, windmilling conditions were used for the analytical evaluation of whirl flutter.
Reed [13] mentioned that thrust has an insignificant effect on whirl flutter stability for conventional
rigid propellers under high-speed flight conditions. For fixed wing aircraft, whirl flutter is expected to
occur at high forward speeds and thus, thrust can be neglected in the analysis. This conclusion was
also supported by the analytical work of Ravera [27] and Kvaternik [28], who stated that thrust has a
negligible effect on the aerodynamic forces responsible for whirl flutter. It is important to outline that
the previous statements are further supported with experimental results by Bennet and Reed [29].

There is an important difference between fixed wing and multirotor aircraft. Fixed wing aircraft
encounter whirl flutter at high forward speed and, in this flight condition, the propellers are lightly loaded.
On the other hand, for multirotor aircraft, all the lifting force is produced by the propellers and therefore,
it is necessary to evaluate low-speed, high thrust conditions, such as hovering and forward flight, where
thrust can cause larger changes in the whirl flutter aerodynamic forces [27]. Additionally, in hovering
and forward flight, thrust changes the propeller trim conditions, affecting the stability boundaries [30].

In general, thrust has a stabilizing effect, when it is considered for a system with hinged blades
and rigid pylon (without considering non-linearities) because it increases the damping of the system,
as mentioned by Kvaternik [28]. When non-linearities are introduced, such as control stiffness non-
linearity and free-play, thrust needs to be considered, as mentioned by Masarati [31] and Krüger [32].

2.1.6. Tiltrotor whirl flutter
Tiltrotor aircraft can change the inflow angle and loading condition of the propellers depending on the
flight conditions, and thus, whirl flutter analysis should include the helicopter flight regime (inflow angle
of 90∘), transition flight regime, and forward flight regime [5]. Even though whirl flutter is expected in
forward flight because of the high airspeed, it is necessary to evaluate the other regimes to be certain
that there is no dynamic instability.

Studies of whirl flutter in tiltrotor aircraft have been developed since the 60s. Edenborough [33]
developed an analytical model for forward flight and experimental full-scale model validation, confirming
the possibility of stable configurations for VTOL tiltrotor aircraft. It is important to note that windmilling
conditions were used for this study.

As tiltrotors provide thrust and lift in the helicopter and transition regime, with large propeller blades,
it is necessary to account for the flexibility of the blades or flapping hinge blades, which introduce two
extra vibration modes, blade flapping and lead-lag motion [18, 34].

Kvaternik [15, 28] did an extensive study in tiltrotor aircraft aeroelasticity including an analytical and
experimental study (using flapping blades). Kvaternik demonstrated that due to the flapping hinges,
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Figure 2.9: Influences of structural damping and propeller – pivot point distance on whirl flutter (𝛾 is the system structural
damping) [21].

tiltrotor aircraft can suffer from backward and forward whirl flutter.
As mentioned before, thrust has a stabilizing effect for whirl flutter boundary, with the assumption

of rigid propellers [5]. The assumption of rigid propellers is sufficient for standard propellers, as the
eigenfrequencies of conventional propellers are much higher than the engine/mount-structure vibration
modes [5]. This characteristic makes the assumption suitable to be applied in the modeling of small
aircraft, commuters, etc. On the other hand, as an example, in the case of large military transport
aircraft, tiltrotors, and helicopters, flexible propellers need to be considered to assess whirl flutter.

In conclusion, tiltrotor whirl flutter is a highly complex phenomenon, which considers flexible pro-
protors and therefore, includes new degrees of freedom to account for the propeller blade flexibility and
movement, which also leads to different modes and mechanisms of whirl flutter. Complicated equations
model the tiltrotor dynamics, and they include the rotor swash plate motions. In tiltrotors, whirl flutter is
one of the limiting factors [35] and thus, an extensive study of whirl flutter is necessary. Aerodynamics
models using CFD are used to study tiltrotor flutter, and these models consider time-dependent aero-
dynamics forces. Generally, complex numerical methods have been intensively used to determine the
whirl flutter boundaries [5]. Acree, Peyran, and Johnson [36] used the stability conditions for whirl flut-
ter to optimize certain parameters of the rotor and the aircraft itself. It is important to mention that in
tiltrotors, there is a strong interaction between the wing and the propeller, because the latter is placed
in the wing tip.

In this thesis, for the analysis of multirotor aircraft, propellers are considered rigid, and therefore,
there is no purpose of further investigation of tiltrotor whirl flutter, which considers flexible and flapping
blades. In addition, the wing-propeller aerodynamics interactions of the evaluated multirotor is not
important, as the multirotor body aerodynamic effect is assumed negligible, and there are no wings.
Thus, the only aerodynamic effects considered are produced by the propellers.

2.2. Propeller aerodynamics
An important aspect that influences the study of whirl flutter is aerodynamics. As explained earlier, the
multirotor propellers operate in high thrust conditions. For this reason, it is necessary to study a model
that can predict the aerodynamic forces and moments that the propellers produce in this state. Two
types of models can be distinguished for blade aerodynamics: high and low fidelity models [37].

High-fidelity models are based on computational fluid dynamics (CFD), which is available commer-
cially in software such as ANSYS CFX, Fluent and OpenFoam. This type of model is computationally
expensive [37], which makes high fidelity models not suitable for the preliminary design stages [38].
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Figure 2.10: Whirl flutter boundary (stiffness remains constant) [21].

Low-fidelity models for thrusting conditions are based on blade element momentum theory (BEMT).
This algorithm is fast and it can be used for the design and optimization of blades, as shown by Kummel
[39]. The combination of low-computational cost, good accuracy, and the use of strip theory which can
be coupled with Houbolt’s model, makes low-fidelity models good candidates to be used for whirl flutter
assessment in the design process.

2.2.1. Blade element momentum theory
BEMT consists of a combination of blade element theory and momentum theory [40].

Blade element theory was introduced by Froude [41] and it divides the propeller blade into sections,
referred to as elements. The element theory assumes that the elements can be represented by the
2-D airfoil geometry and the respective local flow conditions, from which the blade element forces can
be obtained. Then, by summing the different elements forces, the total forces can be obtained [42].

Momentum theory was first presented by Rankine [43] based on a disk actuator. Later, Froude
[44] developed the correct dynamic interpretation, in which half of the acceleration takes part before
the propeller and the other half after the propeller disk, using Bernoulli equations for the energy and
momentum balance [45]. The momentum theory was further developed by Lanchester [46], Betz [47]
and Joukowsky [48].

The combination of both theories into BEMT was introduced by Glauert [49] in 1926. BEMT con-
siders steady aerodynamics with an inviscid, irrotational, and incompressible flow with uniform velocity
and static pressure over every cross-section of the propeller disk and stream-tube [50, 51]. Since the
annular elements shown in Figure 2.11 are independent of each other, there is no radial flow [52].

Figure 2.11: Discretization of rotor disk [53].

As explained earlier in this section, the element theory divides the propeller disk into independent
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Figure 2.12: Blade element diagram [50].

differential annular elements, shown in Figure 2.11, and the aerodynamic forces of these elements
can be calculated by the 2-D airfoil characteristics and local flow conditions, shown in Figure 2.12.
Then, using momentum theory, the induced velocities in the different elements of the propeller can
be calculated (axial and tangential). These induced velocities also affect the forces calculated by the
element theory and thus, an iterative process that relates the element and momentum theory is needed
to obtain the element forces [54]. After obtaining converged results, the different element forces can
be added together to get the overall forces, the propeller thrust, and propeller torque.

Two different types of momentum equilibrium are considered through the propeller stream-tube: ax-
ial momentum and angular momentum (sometimes called tangential momentum) [50, 51]. The former
is responsible for the thrust component of the force, the latter for the torque component of the force.

BEMT assumes an infinite number of blades in the propeller disk. In the case of finite blades, Prandtl
showed that the circulation over the blade tends to zero on the tip [55], and thus, the lift produced by the
tip tends to zero. Prandtl [56] developed a correction factor to include the tip losses and later, models
based on the Prandtl factor were developed to provide more realistic loads in the blades tip of wind
turbines [55, 57]. Examples of these models are Wilson and Lissaman [58] and de Vries [59].

Hub losses can also be included in a similar fashion as tip losses, using the Prandlt correction factor
[50, 54].

Implementation of the improved BEMT algorithm shows good results compared to experimental
results, as shown by Gud and Rosen [60] and Loureiro, et al. [37]. Additionally, use of the BEMT algo-
rithm also shows good agreement with CFD results, even when considering flexible propeller blades
[38]. Even though it is not a very complex method, BEMT is still widely used in the design of propellers
and wind turbines, as the computational cost of this method is low and the aeroelastic implementation
straightforward.

2.2.2. Counter rotating propellers BEMT
In general, the aerodynamics of counter-rotating propellers are more complicated to analyze than single
rotor propellers. The wake of the upstream propeller significantly influences the performance of the
propeller located downstream, and in some cases, unsteady aerodynamic effects arise. In the case of
coaxial wind turbines, CFD simulations or Navier-Stokes numerical solvers, such as RANS, are usually
used to analyze the system efficiency and forces [61–64].

For parametric and preliminary studies, counter-rotating propellers have beenmodeled using BEMT
[64]. As shown by Siddappaji and Turner [65], some modifications can be included on the conventional
BEMT to account for the downstream propeller.

The main assumptions and modifications of Siddappaji and Turner’s model [65] are: the rear pro-
peller is located at the fully developed wake of the front propeller and therefore, the axial and tangential
induced velocities generated by the front propeller are considered as part of the inflow velocity of the
rear propeller; the rear propeller does not affect the front propeller flow conditions; the rear propeller
axial and tangential induction factors are introduced; and four new equations arise from the momentum
and element theory of the rear propeller.

In the rear propeller, BEMT considers that the flow stream tube is fully developed [66, 67], which,
in the case of wind turbines, can lead to underprediction of inflow velocity of the rear rotor [67], and
overprediction in the case of thrusting propellers. It also considers that the wake of the front rotor only
affects the rear rotor and the wake of the rear rotor does not affect the flow of the front rotor [66].

A more complex model is presented by Thiele, Obster and Hornung [68], which includes azimuthal
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inflow and induced velocity components, specifically to model VTOL UAVs counter-rotating propellers.
This model is in good accordance with measured data [68].

2.3. Research Questions and Objectives
This thesis aims to study the whirl flutter phenomenon and to expand the existing mathematical models
into a newmodel that could be applied to flight vehicles without wings or the complex rotor system of he-
licopters. With the electric propulsion advancements, eVTOLs and ”flying taxi” designs and prototypes
are arising. To achieve safe and successful designs, thrusting conditions in the propellers need to be
considered in the aeroelastic model, whereas the existing analytical models use windmilling conditions
due to the nature of whirl flutter in airplanes.

The main goal of the thesis can be summarized by the following:

“ To improve the understanding of the aeroelastic propeller-structure interaction in mul-
tirotor drones by modeling and predicting whirl mode flutter in thrusting conditions for a
beam-propeller configuration, including counter-rotating propeller configurations, applied
to a human size octocopter ”.

The main research question that needs to be solved with this thesis is:

“ Which is the whirl flutter boundary for a multirotor configuration considering thrusting
conditions? “

This question leads to different sub-questions, which are necessary to address the whole topic, as
well as to support to support the main question:

1. How to describe the propeller aerodynamics for thrusting conditions?

• Which is the most appropriate model to capture thrusting conditions in propellers?
• How to capture the unsteady behavior of the gyroscopic motion due to whirl?
• Which is the most appropriate model to capture thrusting conditions in counter-rotating pro-
pellers?

2. Which is the simplest model that can be considered to assess the whirl flutter boundary of the
multirotor structure?

• Which aerodynamic and structural degrees of freedom need to be considered?
• Is it possible to couple current propeller models that consider thrusting conditions with the
structural model used to assess whirl flutter? How this can be done?

• How does the counter-rotating propeller configuration influence the whirl flutter boundary?

3. Do any flight conditions exist that can lead to whirl flutter for the different configurations of the
human size octocopter? If yes, which are these conditions and can they be reached during flight,
considering the drone specifications given by Betronka SPA?





3
Propeller aerodynamics

In chapter 2, the literature review and objective of the thesis were presented. To achieve this objective,
a mixed analytical-numerical model for the propeller aerodynamics in thrusting conditions is presented
in this chapter. The model assesses two different configurations: one propeller and counter-rotating
propellers.

First, the aerodynamics of a propeller considering thrust conditions are modeled and afterwards,
coupled to a quasi-steady perturbation aerodynamic model that considers the effects of the gyroscopic
movement of a propeller-pylon structure, to obtain the unsteady aerodynamic forces produced by the
whirl motion, responsible for the whirl flutter instability.

3.1. Blade element momentum theory (BEMT)
To model the propeller aerodynamics in thrusting conditions, the BEMT model presented by Rwigema
[50] is used and implemented in MATLAB. The main assumptions of BEMT are steady aerodynamics
with an inviscid, irrotational, incompressible flow with uniform velocity and static pressure over every
cross-section of the propeller disk and stream-tube. Additionally, the annular elements are independent
from each other and the forces produced by the elements depend only in the 2-D blade geometry and
local flow characteristics [50].

As explained in section 2.2, BEMT is comprised of two parts: the momentum theory and the element
theory. The momentum theory considers axial and tangential momentum balance for every annular ele-
ment of the propeller disk, while element theory considers the 2-D geometry of the element to calculate
the thrust and torque produced by every element. This provides enough equations to calculate both
induction factors and the thrust and torque of every element of the propeller.

r

Figure 3.1: Right: Blade annular elements [53]. Left: propeller stream tube [50].

3.1.1. Momentum theory
First, the momentum conservation of an annular element of the propeller is derived. The mass con-
servation of the flow that passes through an annular element shown in Figure 3.1 can be expressed

15
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as:

𝑑𝑚̇∞ = 𝑑𝑚̇ = 𝑑𝑚̇𝑠 (3.1)

Where 𝑑𝑚̇∞ represents the free stream mass flow, 𝑑𝑚̇ represents the mass flow at the propeller disk,
and 𝑑𝑚̇𝑠 is the mass flow of the fully developed flow stream after the propeller.

The mass flow can also be written as:

𝑑𝑚̇ = 𝜌𝑉 𝑑𝐴 (3.2)

Where 𝜌 is the flow density, 𝑉 is the flow velocity at the propeller disk, and 𝑑𝐴 is the propeller annular
element area. Using Equation 3.2 the mass conservation can be written as:

𝑉∞ 𝑑𝐴∞ = 𝑉 𝑑𝐴 = 𝑉𝑠 𝑑𝐴𝑠 (3.3)

Where 𝑉∞ and 𝑑𝐴∞ are the velocity and annular element area of the free stream flow, 𝑉 and 𝑑𝐴 are
the velocity and annular element area at the propeller plane, and 𝑉𝑠 and 𝑑𝐴𝑠 are velocity and annular
element area of the fully developed flow stream after the propeller, respectively.

Considering the axial momentum conservation, the thrust produced by an annular element is:

𝑑𝑇 = 𝑑𝑚̇ (𝑉𝑠 − 𝑉∞) = 𝜌𝑉 (𝑉𝑠 − 𝑉∞) 𝑑𝐴 (3.4)

In addition, the propeller produces a discontinuous rise in pressure from 𝑝− to 𝑝+, with a constant
velocity 𝑉, which is the velocity at the propeller plane. Therefore, the thrust can be written as:

𝑑𝑇 = (𝑝+ − 𝑝−) 𝑑𝐴 (3.5)

As the flow is inviscid, the free stream pressure, 𝑝∞, is equal to the pressure of the fully developed
flow stream after the propeller, 𝑝𝑠. Therefore, applying Bernoulli’s equation upstream and downstream
the propeller plane:

𝑝+ + 12 𝜌𝑉
2 = 𝑝𝑠 +

1
2 𝜌𝑉

2
𝑠 (3.6)

𝑝− + 12 𝜌𝑉
2 = 𝑝∞ +

1
2 𝜌𝑉

2
∞ (3.7)

𝑝∞ = 𝑝𝑠 (3.8)

Subtracting Equation 3.7 on Equation 3.6, and then replacing on Equation 3.8:

𝑝+ − 𝑝− = 1
2 𝜌 (𝑉

2
𝑠 − 𝑉2∞) (3.9)

Combining Equation 3.5, Equation 3.9 and Equation 3.4, the velocity at the propeller rotor can be
obtained:

𝑉 = 𝑉∞ + 𝑉𝑠
2 (3.10)

Furthermore, defining the axial induction factor 𝑎, which can be interpreted as a measure of the
propeller effect on the flow axial velocity, 𝑉 and 𝑉𝑠 can be rewritten as:

𝑉 = 𝑉∞ (1 + 𝑎)
𝑉𝑠 = 𝑉∞ (1 + 2𝑎)

(3.11)

Additionally, the area of an annular element is:

𝑑𝐴 = 2𝜋 𝑟 𝑑𝑟 (3.12)

Then, the thrust produced by an annular element can be written as:

𝑑𝑇 = 4𝜋 𝑟 𝜌 𝑉2∞ (1 + 𝑎) 𝑎 𝑑𝑟 (3.13)
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In a similar fashion, a tangential induction factor, 𝑎′ (sometimes called angular induction factor),
is defined. As the upstream flow only has an axial velocity component, 𝜔∞ is zero, and therefore,
analogous to Equation 3.11 :

𝜔∞ = 0
𝜔𝑠 = 𝑎′ Ω
𝜔𝑠 = 2𝑎′ Ω

(3.14)

Where Ω is the propeller angular speed.
In addition, the angular momentum conservation is:

𝑄 = 𝑑𝐿
𝑑𝑡 =

𝑑𝐼 𝜔
𝑑𝑡 = 𝑚̇𝜔 𝑟2 (3.15)

Using Equation 3.14 and Equation 3.15, the torque produced by an annular element can be calcu-
lated as:

𝑑𝑄 = 𝑑𝑚̇ 2𝑎′ Ω𝑟2
𝑑𝑄 = 4𝜋 𝑟3 𝜌𝑉∞ Ω (1 + 𝑎) 𝑎′ 𝑑𝑟

(3.16)

3.1.2. Blade element theory

Ωr

Ωra'

V∞

V∞a

U

Φ

β

α

Thrust

Torque 

Lift

Drag

Figure 3.2: Blade element diagram.

Momentum theory provides two equations with four different unknown variables: 𝑑𝑇, 𝑑𝑄, 𝑎 and
𝑎′. Thus, two new equations are needed to solve the system of equations. These new equations
are provided by the blade element theory, in which the forces produced by the annular elements are
calculated using the 2-D airfoil geometry and local flow conditions of the element, shown in Figure 3.2.

To obtain the forces produced by an element, the local velocity 𝑈 and the local angle of attack 𝛼
need to be determined. 𝑈 and 𝛼 depend on the local inflow angle 𝜙, which can be obtained from
Figure 3.2 and expressed as:

tan𝜙 = 𝑉∞ (1 + 𝑎)
Ω 𝑟 (1 − 𝑎′) (3.17)

In addition, the local total velocity 𝑈 and local angle of attack 𝛼 can be obtained using the following
relations:

𝑈 = 𝑉∞ (1 + 𝑎)
sin𝜙

𝛼 = 𝛽 − 𝜙
(3.18)

Where 𝛽 is the geometric twist angle of the annular element. From the the 2-D airfoil geometry, the
lift 𝐶𝐿 and drag 𝐶𝐷 coefficients can be obtained as a function of 𝛼. Then, the thrust and torque can be
calculated:
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𝑑𝑇 = 1
2 𝐵 𝜌𝑈

2 (𝐶𝐿(𝛼) cos𝜙 − 𝐶𝐷(𝛼) sin𝜙 𝑐) 𝑑𝑟

𝑑𝑄 = 1
2 𝐵 𝜌𝑈

2 (𝐶𝐿(𝛼) sin𝜙 + 𝐶𝐷(𝛼) cos𝜙 𝑐 𝑟) 𝑑𝑟
(3.19)

Where 𝐵 is the number of blades, 𝑐 is the element chord length, and 𝑑𝑟 is the element width.

3.1.3. Correction factors
As mentioned in section 2.2, considering a finite number of blades in a propeller, the circulation at the
blades’ tips tends to zero. To account for the tip losses, Prandlt developed a correction factor [56] which
can be implemented on the BEMT model as in the case of Rwigema [50]. The tip loss correction factor
is:

𝐹𝑡𝑖𝑝 =
2
𝜋 cos

−1(𝑒−𝑓𝑡𝑖𝑝)

𝑓𝑡𝑖𝑝 =
𝐵
2
𝑅𝑡𝑖𝑝 − 𝑟
𝑟 𝑠𝑖𝑛𝜙

(3.20)

Where 𝑅𝑡𝑖𝑝 is the propeller tip radius and 𝐵 is number of blades. In a similar fashion, Rwigema [50]
implemented the hub loss correction factor:

𝐹ℎ𝑢𝑏 =
2
𝜋 cos

−1(𝑒−𝑓ℎ𝑢𝑏)

𝑓ℎ𝑢𝑏 =
𝐵
2
𝑟 − 𝑅ℎ𝑢𝑏
𝑟 𝑠𝑖𝑛𝜙

(3.21)

Where 𝑅ℎ𝑢𝑏 is the hub radius. The total correction factor is obtained by multiplying the tip and loss
correction factor:

𝐹 = 𝐹𝑡𝑖𝑝 𝐹ℎ𝑢𝑏 (3.22)

Then, the tip and hub losses can be included in the momentum balance by including the total cor-
rection factor in Equation 3.13 and Equation 3.16:

𝑑𝑇 = 4𝜋 𝐹 𝑟 𝜌 𝑉2∞ (1 + 𝑎) 𝑎 𝑑𝑟
𝑑𝑄 = 4𝜋 𝐹 𝑟3 𝜌𝑉∞ (1 + 𝑎)Ω𝑎′ 𝑑𝑟

(3.23)

3.1.4. Extrapolation of lift and drag coefficients for an airfoil
In general, the lift coefficient, 𝐶𝐿, and drag coefficient, 𝐶𝐷, are not available for the whole range of angles
of attack (−180∘ to 180∘) . For angles above or lower than the ones provided by the airfoil 𝐶𝐿 and 𝐶𝐷
diagrams, the flat plate theory assumption in post-stall lift and drag is used [69]:

𝐶𝐿 = 2 sin𝛼 cos𝛼
𝐶𝐷 = 2 sin2 𝛼

(3.24)

This will permit the evaluation of the thrust and torque forces generated by the propeller in the
whole range of angles of attack, which is a function of the induction factors, flow conditions, and blade
geometry, guaranteeing the convergence of the BEMT code.

3.1.5. Final equations
Finally, the system of equations for every element is presented:

𝑑𝑇 = 1
2 𝐵 𝜌𝑈

2 (𝐶𝐿(𝛼) cos𝜙 − 𝐶𝐷(𝛼) sin𝜙) 𝑐 𝑑𝑟

𝑑𝑄 = 1
2 𝐵 𝜌𝑈

2 (𝐶𝐿(𝛼) sin𝜙 + 𝐶𝐷(𝛼) cos𝜙) 𝑐 𝑟 𝑑𝑟
𝑑𝑇 = 4𝜋 𝐹 𝑟 𝜌 𝑉2∞ (1 + 𝑎) 𝑎 𝑑𝑟
𝑑𝑄 = 4𝜋 𝐹 𝑟3 𝜌𝑉∞(1 + 𝑎)Ω𝑎′ 𝑑𝑟

(3.25)
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This system of equations can be solved numerically to obtain 𝑎 and 𝑎′, and then 𝑑𝑇 and 𝑑𝑄. Due to
the non-linear behavior of these equations, brute-force method was used. It consisted of minimizing a
residue 𝑅, composed by the absolute value of the differences of 𝑑𝑇 from element theory andmomentum
theory and 𝑑𝑄 from the element and momentum theory, as a function of 𝑎 and 𝑎′:

𝑅(𝑎, 𝑎′) = |𝑑𝑇𝑒𝑙 − 𝑑𝑇𝑚𝑜𝑚| + |𝑑𝑄𝑒𝑙 − 𝑑𝑄𝑚𝑜𝑚|
[𝑎, 𝑎′] = 𝑚𝑖𝑛{𝑅(𝑎, 𝑎′)} (3.26)

With 𝑑𝑇𝑒𝑙, 𝑑𝑇𝑚𝑜𝑚 the thrust of an annular element obtained through element and momentum the-
ory respectively, and 𝑑𝑄𝑒𝑙, 𝑑𝑄𝑚𝑜𝑚 the torque of an annular element obtained through element and
momentum theory respectively.

After 𝑑𝑇 and 𝑑𝑄 is obtained for every annular element 𝑖 of the propeller , the overall thrust and
torque of a propeller with 𝑛 elements is:

𝑇 =
𝑛

∑
𝑖=1
𝑑𝑇(𝑖)

𝑄 =
𝑛

∑
𝑖=1
𝑑𝑄(𝑖)

(3.27)

3.1.6. Validation of BEMT
In order to validate the BEMT code implemented in MATLAB, NASA Technical Report 594 [70] was
used, which consists of a extensive experimental wind tunnel study of six full-scale propellers in the
normal and high-speed flight range [70]. The main experimental results show by NASA report [70] are
the thrust coefficient 𝐶𝑇, the power coefficient 𝐶𝑃 and the efficiency 𝜂 against the propeller advance
ratio 𝐽, which can be defined as:

𝐽 = 𝑉
𝑛𝐷 (3.28)

Where 𝑉 is the free stream velocity, 𝑛 is the propeller angular velocity in revolutions per second (RPS),
and 𝐷 is the propeller diameter.

To validate the BEMT code, the 𝐶𝑡 and 𝐶𝑝 experimental results of the three bladed propeller C were
compared against the BEMT results. The propeller geometry characteristics were obtained from the
report and a 18 elements discretization with an element width of 10% of the propeller radius was used
for the BEMT code. Three different geometrical twist angles of propeller C were compared : 25∘, 30∘,
and 35∘ at 0.75𝑅, with 𝑅 the blade radius. The flow conditions used were: air density 𝜌 = 1.22 𝑘𝑔/𝑚3
and air viscosity 1.81𝐸-5 𝑘𝑔/(𝑚𝑠). The propeller airfoil corresponded to a CLARK-Y airfoil. The lift 𝐶𝐿
and drag 𝐶𝐷 coefficients for a Reynold’s number of 𝑅𝑒 = 50000 were used [71], shown in Figure 3.3
and Figure 3.4 respectively.

As shown in Figure 3.5 and Figure 3.6, the BEMT model shows good agreement with the experi-
mental results for the linear part of 𝐶𝑇 and 𝐶𝑃, sightly underpredicting 𝐶𝑇 and 𝐶𝑃. On the other hand,
the non-linear behavior at low advance ratio of 𝐶𝑇 and 𝐶𝑃 differs between the experiments and the
model. As the airfoil coefficients were obtained for static conditions, at low advance ratio, some ele-
ments in the propeller operate in stall conditions due to high inflow angles and thus, a boundary-layer
separation from the airfoil occurs. But in a propeller, this boundary-layer separation is delayed by the
Coriolis effect, due to the flow angular speed induced by the propeller [72]. BEMT does not capture
this boundary-layer effect and tends to under predict 𝐶𝑇 and 𝐶𝑃 for low advance ratios.
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Figure 3.3: Lift coefficient 𝐶𝐿 of CLARK-Y [71]

D

Figure 3.4: Drag coefficient 𝐶𝐷 of CLARK-Y [71]

Figure 3.5: Thrust coefficient for propeller C [70] Figure 3.6: Power coefficient for propeller C [70]

3.1.7. Extension of BEMT to counter-rotating propellers
The extension of BEMT to include counter-rotating propeller configuration is based in the BEMT model
developed by Siddapaji and Turner [65]. The model proposed by Siddapaji and Turner [65] con-
sists of a modification of Rwigema BEMT model [50] to account for the downstream propeller of the
counter-rotating configuration.Apart from the BEMT inherent assumptions, two new assumptions are
introduced: the rear propeller is situated in the fully developed stream of the front propeller, and only
the front propeller wake affects the inflow of the rear propeller, without the rear propeller affecting the
front propeller flow conditions.

A schematic model of the counter-rotating BEMT is shown in Figure 3.7. In this model, four induction
factors are introduced: the front propeller axial 𝑎𝑓 and tangential 𝑎′𝑓 induction factors , and the rear
propeller axial 𝑎𝑟 and tangential 𝑎′𝑟 induction factors respectively. Then, the velocities of Figure 3.7 can
be defined in terms of the induction factors:

𝑉2 = 𝑉∞ (1 + 𝑎𝑓) 𝑉2 = 𝑉3
𝑉4 = 𝑉∞ (1 + 2𝑎𝑓) 𝑉′4 = 𝑉∞ (1 + 2𝑎𝑓𝑥)
𝑉5 = 𝑉′4 (1 + 𝑎𝑟) 𝑉5 = 𝑉6
𝑉7 = 𝑉4 (1 + 2𝑎𝑟)

(3.29)

Where 𝑉∞ is the free-stream inflow velocity.
As the rear propeller does not affect the front propeller, the momentum theory and element theory

applied to the front propeller lead to the same result of section 3.1:
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V∞ Vs

Figure 3.7: counter-rotating propeller model (adapted from [65]).

tan𝜙𝑓 =
𝑉∞ (1 + 𝑎𝑓)
Ω𝑓 𝑟 (1 − 𝑎′𝑓)

𝑈𝑓 =
𝑉∞ (1 + 𝑎𝑓)
sin𝜙𝑓

(3.30)

𝑑𝑇𝑓 =
1
2 𝐵 𝜌𝑈

2
𝑓 (𝐶𝐿(𝛼𝑓) cos𝜙𝑓 − 𝐶𝐷(𝛼𝑓) sin𝜙𝑓) 𝑐 𝑑𝑟

𝑑𝑄𝑓 =
1
2 𝐵 𝜌𝑈

2
𝑓 (𝐶𝐿(𝛼𝑓) sin𝜙𝑓 + 𝐶𝐷(𝛼𝑓) cos𝜙𝑓) 𝑐 𝑟 𝑑𝑟

𝑑𝑇𝑓 = 4𝜋 𝐹𝑓 𝑟 𝜌 𝑉2∞ (1 + 𝑎𝑓) 𝑎𝑓 𝑑𝑟
𝑑𝑄𝑓 = 4𝜋 𝐹𝑓 𝑟3 𝜌𝑉∞ (1 + 𝑎𝑓) Ω𝑓𝑎′𝑓 𝑑𝑟

(3.31)

On the other hand, the rear propeller inflow is affected by the front propeller wake. Due to mass
conservation and the assumption of incompressible flow, the acceleration of the flow produced by the
front propeller generates a wake contraction effect. To account for this effect on the rear propeller inflow
characteristics, Leishman and Ananthan [73] developed a correction factor 𝑎, which corrects the inflow
velocity in the rear propeller of coaxial rotors. The correction factor 𝑥 developed in this thesis is based
in 𝑎 and it can be derived from mass conservation:

𝑑𝑚̇3 = 𝑑𝑚̇4
𝜌𝐴3 𝑉3 = 𝜌𝐴4 𝑉4

(3.32)

𝑥 = 𝐴4
𝐴3

= 𝑉3
𝑉4
=
1 + 𝑎𝑓
1 + 2𝑎𝑓

𝑥 ≈
1 + 𝑎0.75𝑅𝑓
1 + 2𝑎0.75𝑅𝑓

(3.33)

Where 𝑎0.75𝑅𝑓 is the front propeller axial induction factor of the element located at the three-quarter
propeller radius. Using the correction factor 𝑥, the adjusted inflow velocity in the rear propeller 𝑉′4 can
be obtained:

𝑉′4 = 𝑉∞ (1 + 2𝑎𝑓𝑥) (3.29 revisited)

Also, the front propeller induces an angular velocity in the wake. Therefore, the inflow in the rear
propeller, which is located in the fully developed wake, has an angular velocity 𝜔′4, equal to the front
propeller wake angular velocity 𝜔4:
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Figure 3.8: Blade element diagram for a counter-rotating propeller.

𝜔4 = 𝜔′4 = 2Ω𝑓 𝑎′𝑓 (3.34)

Now, having the inflow characteristics for the rear propeller, shown in Figure 3.8, the local inflow
angle 𝜙𝑟 and local inflow velocity 𝑈𝑟 of the rear propeller can be calculated:

tan𝜙𝑟 =
𝑉′4 (1 + 𝑎𝑟)

2 𝑟 Ω𝑓 𝑎′𝑓 + 𝑟Ω𝑟 (1 − 𝑎′𝑟)

𝑈𝑟 =
𝑉′4 (1 + 𝑎𝑟)
sin𝜙𝑟

(3.35)

Using the blade momentum theory explained in subsection 3.1.1, the thrust and torque of an annular
element can be obtained:

𝑑𝑇𝑟 = 4𝜋 𝐹𝑟 𝑟 𝜌 𝑉′24 (1 + 𝑎𝑟) 𝑎𝑓 𝑑𝑟
𝑑𝑄𝑟 = 4𝜋 𝐹𝑟 𝑟3 𝜌𝑉′4 (1 + 𝑎𝑟) (Ω𝑓 𝑎′𝑓 + Ω𝑟 𝑎′𝑟) 𝑑𝑟

(3.36)

Additionally, using the blade element theory explained in subsection 3.1.2,the thrust and torque of
an element can be written as:

𝑑𝑇𝑟 =
1
2 𝐵 𝜌𝑈

2
𝑟 (𝐶𝐿(𝛼𝑟) cos𝜙𝑟 − 𝐶𝐷(𝛼𝑟) sin𝜙𝑟) 𝑐 𝑑𝑟

𝑑𝑄𝑟 =
1
2 𝐵 𝜌𝑈

2
𝑟 (𝐶𝐿(𝛼𝑟) sin𝜙𝑟 + 𝐶𝐷(𝛼𝑟) cos𝜙𝑟) 𝑐 𝑟 𝑑𝑟

(3.37)

Then, a total of eight equations are obtained, four for the front propeller and four for the rear propeller.
To solve the system of equations, first it is solved separately for the front propeller, using the same
numerical approach as subsection 3.1.5:

𝑅𝑓(𝑎𝑓 , 𝑎′𝑓) = |𝑑𝑇𝑒𝑙𝑓 − 𝑑𝑇𝑚𝑜𝑚𝑓 | + |𝑑𝑄𝑒𝑙𝑓 − 𝑑𝑄𝑚𝑜𝑚𝑓 |
[𝑎𝑓 , 𝑎′𝑓] = 𝑚𝑖𝑛{𝑅𝑓(𝑎𝑓 , 𝑎′𝑓)}

(3.38)

Afterward, using the results of the front propeller, the inflow conditions of the rear propeller can
be obtained. with the inflow conditions defined, the rear propeller thrust and torque equations can be
solved in the same manner as in subsection 3.1.5:

𝑅𝑟(𝑎𝑟 , 𝑎′𝑟) = |𝑑𝑇𝑒𝑙𝑟 − 𝑑𝑇𝑚𝑜𝑚𝑟 | + |𝑑𝑄𝑒𝑙𝑟 − 𝑑𝑄𝑚𝑜𝑚𝑟 |
[𝑎𝑟 , 𝑎′𝑟] = 𝑚𝑖𝑛{𝑅𝑟(𝑎𝑟 , 𝑎′𝑟)}

(3.39)

Using the BEMT aerodynamic results for the fixed propeller, next the aerodynamics produced by
the propeller gyroscopic motion will be derived.
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3.2. Whirl flutter aerodynamics
As mentioned in section 2.1, whirl flutter is produced by the interaction between the propeller aerody-
namics and the structure of the nacelle. The gyroscopic motion of the propeller, sometimes called whirl
motion, causes unsteady aerodynamics which could lead to whirl flutter. The unsteady aerodynamic
forces of the propeller can be represented by the forces 𝑃𝑦, 𝑃𝑧 and the moments 𝑀𝑦, 𝑀𝑧, shown in
Figure 3.9.

To obtain these forces and moment, various analytical models have been developed. It has been
shown that the analytical models are able to predict the whirl flutter speeds, but with conservative
results [12]. It is important to point out that the analytical models already developed use windmilling
conditions to obtain the propeller aerodynamic forces.

For this thesis, a linear perturbation analysis is used to derive the whirl forces, as was done by
Houbolt and Reed [1], but introducing some modifications to include thrust conditions. Houbolt-Reed’s
model and BEMT are based on strip theory, which allows the coupling of BEMT with Houbolt-Reed’s
model to obtain the aerodynamic whirl forces, including the thrust conditions. Additionally, Houbolt-
Reed’s model is a reliable model to calculate whirl flutter boundaries, as it has been extensively used
in the literature and validated against experimental results [12], which makes it a perfect candidate for
the semi-analytical model generated in this thesis.

The model from which the whirl forces are obtained is shown in Figure 2.1 and Figure 3.9. It consists
of a rigid propeller attached to a rigid truss with flexible pitch (𝜃) and yaw (𝜓) degrees of freedom.

Figure 3.9: Whirl forces of the gyroscopic system [5].

3.2.1. Perturbation quantities
As already mentioned, a linear perturbation analysis will be used to derive the whirl forces generated
by the gyroscopic motion. Three perturbation quantities arise from the gyroscopic motion produced by
the gyroscopic motion of 𝜃 and 𝜓. The perturbation quantities shown in Figure 3.10 are composed by
a velocity 𝑠̇ in the same plane as the propeller disk, a velocity 𝑤̇ perpendicular to the propeller disk,
and a geometric change of the angle of attack 𝛼1 [1].

As the perturbation quantities depend on radial position, it is necessary to define them for an arbitrary
point P located in one of the blades and positioned at a distance 𝑟 from the propeller center. Considering
the coordinate system and model of Figure 3.11 and Figure 3.12, and using small angle approximation,
the coordinates of point P can be expressed as:

𝑦 = 𝑦1 + 𝑟 cos(Ω𝑡)
𝑧 = 𝑧1 + 𝑟 sin(Ω𝑡)
𝑥 = −𝜓𝑟 cos(Ω𝑡) − 𝜃𝑟 sin(Ω𝑡)

(3.40)

𝑦1 = 𝑒𝜓𝜓
𝑧1 = 𝑒𝜃𝜃

(3.41)

With 𝑒𝜓, 𝑒𝜃 the distances from the degree of freedom pivot location and Ω the propeller angular speed.
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Figure 3.12: Front view of the propeller model with four blades.

Then, the perturbation quantities 𝑠̇, 𝑤̇ and 𝛼1 can be defined as:

𝑠̇ = 𝑧̇1 cos (Ω 𝑡) − 𝑦̇1 sin (Ω 𝑡)
𝑤̇ = 𝑥̇ = Ω𝜓 𝑟 sin (Ω 𝑡) − 𝑟 𝜃̇ sin (Ω 𝑡) − Ω𝑟 𝜃 cos (Ω 𝑡) − 𝜓̇ 𝑟 cos (Ω 𝑡)
𝛼1 = 𝜓 sin (Ω 𝑡) − 𝜃 cos (Ω 𝑡)

(3.42)

With the perturbation quantities defined for an arbitrary point P, the propeller unsteady forces can
be derived using strip theory for an element located at P.

3.2.2. Propeller unsteady forces using strip theory
Using strip theory, the blade can be divided in sections from which the lift and drag can be calculated us-
ing the 2-D geometry and local flow characteristics. To include the thrust effects, BEMT is coupled with
the perturbation model. The coupling consists of including the induced velocities calculated by BEMT
in the calculation of the propeller unsteady forces. Considering the naming convention of Figure 3.10,
the velocities already include the induced velocities calculated by BEMT. Therefore:

𝑉 = 𝑉∞(1 + 𝑎)
Ω = Ω𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟(1 − 𝑎′)
𝑈 = √𝑉2 + (Ω 𝑟)2

(3.43)

Where 𝑎,𝑎′ are the radial and tangential induction factors respectively, and 𝑟 is the radial position of
the element.

To get the unsteady forces, it is necessary to first calculate the perturbed lift and drag. The lift and
drag will depend directly on the angle of attack and inflow velocity. The perturbation velocities 𝑠̇ and 𝑤̇
generate a normal component and a parallel component to the local inflow velocity 𝑈.

The normal component to 𝑈 for an element is:

− 𝑤̇Ω𝑟𝑈 + 𝑠̇ 𝑉𝑈 (3.44)

The parallel component to 𝑈 is:
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𝑤̇ 𝑉𝑈 + 𝑠̇
Ω𝑟
𝑈 (3.45)

The perturbed inflow velocity 𝑈𝑝 can be calculated as:

𝑈𝑝 = 𝑈 + Δ𝑈

Δ𝑈 = 𝑉 𝑤̇
𝑈 + Ω𝑟 𝑠̇𝑈

𝑈𝑝 =
𝑈2 + 𝑉 𝑤̇ + Ω𝑟 𝑠̇

𝑈

(3.46)

Then, the first order approximation for the perturbed angle of attack can be calculated. Considering
the normal components due to 𝑠̇ and 𝑤̇, the perturbed angle of attack can be written as:

𝛼 = 𝛼0 + Δ𝛼

Δ𝛼 = 𝛼1 +
𝑉 𝑠̇
𝑈2 −

Ω𝑟 𝑤̇
𝑈2

𝛼 = 𝛼0 + 𝛼1 +
𝑉 𝑠̇
𝑈2 −

Ω𝑟 𝑤̇
𝑈2

(3.47)

Where 𝛼0 is the steady state angle of attack. Consequently, the perturbed lift for a section can be
expressed as:

𝑑𝐿 = 1
2 𝜌 𝑐 𝑈

2
𝑝 𝐶𝐿(𝛼) 𝑑𝑟 (3.48)

Where 𝜌 is the flow density, 𝑐 is the element blade chord, 𝐶𝐿 is the lift coefficient of the airfoil, and 𝑑𝑟 is
the element width. Additionally, 𝑈2𝑝 can be written as:

𝑈2𝑝 = 2𝑉 𝑤̇ + 𝑈2 + 2Ω𝑟 𝑠̇ +
𝑉2 𝑤̇2
𝑈2 + Ω

2 𝑟2 𝑠̇2
𝑈2 + 2Ω𝑉 𝑟 𝑠̇ 𝑤̇𝑈2

Ignoring higher-order terms:

𝑈2𝑝 ≈ 𝑈2 + 2𝑉 𝑤̇ + 2Ω 𝑟 𝑠̇ (3.49)

As the lift coefficient 𝐶𝐿 is a function of 𝛼, a linear approximation can be used to represent 𝐶𝐿 [28]
to get the lift of a section without implicit dependence on 𝛼:

𝐶𝐿(𝛼) ≈ 𝑎0 + 𝑎1𝛼 (3.50)

Where 𝑎0 and 𝑎1 are the adjusted coefficients of the linear approximation.
Replacing in Equation 3.48:

𝑑𝐿 = 1
2 𝜌 𝑐 (𝑈

2 + 2𝑉 𝑤̇ + 2Ω 𝑟 𝑠̇) (𝑎0 + 𝑎1 𝛼0 + 𝑎1 (𝛼1 +
𝑉 𝑠̇
𝑈2 −

Ω𝑟 𝑤̇
𝑈2 ))𝑑𝑟 (3.51)

Ignoring higher-order terms:

𝑑𝐿 ≈ 1
2𝜌𝑐𝑈

2𝑑𝑟 [𝑎0 + 𝑎1(𝛼0 + 𝛼1)] +
1
2𝜌𝑐𝑑𝑟 [2𝑉 𝑎0 + 2𝑉 𝑎1 𝛼0 − Ω𝑎1 𝑟] 𝑤̇

+ 12𝜌𝑐𝑑𝑟 [𝑉 𝑎1 + 2Ω𝑎0 𝑟 + 2Ω𝑎1 𝛼0 𝑟] 𝑠̇ (3.52)

Replacing Equation 3.42 in Equation 3.52, the section lift can be written as:

𝑑𝐿 = 𝐿𝑠𝑡𝑒𝑎𝑑𝑦 + 𝐿𝑠 sin(Ω𝑡) + 𝐿𝑐 cos(Ω𝑡) (3.53)

Where 𝐿𝑠𝑡𝑒𝑎𝑑𝑦, 𝐿𝑠 and 𝐿𝑐 are:
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𝐿𝑠𝑡𝑒𝑎𝑑𝑦 =
1
2𝜌𝑐𝑈

2(𝑎0 + 𝑎1𝛼0)𝑑𝑟

𝐿𝑠 = 𝐶𝐿,𝜓 (𝜓 −
̇𝑦1
𝑉 ) + 𝐶𝐿,𝜃̇𝜃̇

𝐿𝑐 = 𝐶𝐿,𝜃 (𝜃 −
̇𝑧1
𝑉 ) + 𝐶𝐿,𝜓̇𝜓̇

(3.54)

Where 𝐶𝐿,𝜓, 𝐶𝐿,𝜃 and 𝐶𝐿,𝜃̇ are:

𝐶𝐿,𝜓 =
1
2𝜌 𝑐 𝑉 (𝑉𝑎1 + 2Ω𝑟𝑎0 + 2Ω𝑟𝑎1𝛼0)𝑑𝑟

𝐶𝐿,𝜃 = −
1
2𝜌 𝑐 𝑉 (𝑉𝑎1 + 2Ω𝑟𝑎0 + 2Ω𝑟𝑎1𝛼0) 𝑑𝑟

𝐶𝐿,𝜓̇ = −
1
2𝜌𝑐(2𝑉𝑎0 + 2𝑉𝑎1𝛼0 − Ω𝑟𝑎1) 𝑑𝑟

𝐶𝐿,𝜃̇ = −
1
2𝜌 𝑐 (2𝑉𝑎0 + 2𝑉𝑎1𝛼0 − Ω𝑟𝑎1) 𝑑𝑟

(3.55)

The drag of a section can be calculated in the same way as the lift:

𝑑𝐷 = 1
2 𝜌 𝑐 𝑈

2
𝑝 𝐶𝐷(𝛼) 𝑑𝑟 (3.56)

Where 𝜌 is the flow density, 𝑐 is the element blade chord, 𝐶𝐷 is the drag coefficient of the airfoil, and
𝑑𝑟 is the element width.

In the case of the drag coefficient, a quadratic approximation is used for the drag coefficient [28] to
get the drag of a section without implicit dependence on 𝛼:

𝐶𝐷(𝛼) ≈ 𝑑0 + 𝑑1 𝛼 + 𝑑2 𝛼2 (3.57)
Where 𝑑0, 𝑑1 and 𝑑2 are the adjusted coefficients of the quadratic approximation.

Replacing in Equation 3.56:

𝑑𝐷 = 1
2 𝜌 𝑐 (𝑈

2 + 2𝑉 𝑤̇ + 2Ω 𝑟 𝑠̇)

(𝑑0 + 𝛼0 𝑑1 + 𝛼02 𝑑2 + 𝑑1 (𝛼1 +
𝑉 𝑠̇
𝑈2 −

Ω𝑟 𝑤̇
𝑈2 ) + 𝛼0 𝑑2 (𝛼1 +

𝑉 𝑠̇
𝑈2 −

Ω𝑟 𝑤̇
𝑈2 )) 𝑑𝑟 (3.58)

Ignoring higher-order terms:

𝑑𝐷 ≈ 1
2𝜌 𝑐 𝑈

2 𝑑𝑟 [𝜎1 + (𝑑1 + 𝛼0 𝑑2)] 𝛼1 +
1
2𝜌 𝑐 𝑑𝑟 [2Ω𝑟𝜎1 + 𝑉𝑑1 + 𝑉𝛼0𝑑2] 𝑠̇

+ 12𝜌 𝑐 𝑑𝑟 [2𝑉𝜎1 − Ω𝑟𝑑1 + Ω𝑟𝛼0𝑑2] 𝑤̇ (3.59)

𝜎1 = 𝑑2 𝛼20 + 𝑑1 𝛼0 + 𝑑0
Replacing Equation 3.42 in Equation 3.59:

𝑑𝐷 = 𝐷𝑠𝑡𝑒𝑎𝑑𝑦 + 𝐷𝑠 sin(Ω𝑡) + 𝐷𝑐 cos(Ω𝑡) (3.60)
Where 𝐷𝑠𝑡𝑒𝑎𝑑𝑦, 𝐷𝑠 and 𝐷𝑐 are:

𝐷𝑠𝑡𝑒𝑎𝑑𝑦 =
1
2 𝜌 𝑐 𝑈

2 (𝑑0 + 𝑑1𝛼0 + 𝑑2𝛼20) 𝑑𝑟

𝐷𝑠 = 𝐶𝐷,𝜓 (𝜓 −
̇𝑦1
𝑉 ) + 𝐶𝐷,𝜃̇𝜃̇

𝐷𝑐 = 𝐶𝐷,𝜃 (𝜃 −
̇𝑧1
𝑉 ) + 𝐶𝐷,𝜓̇𝜓̇

(3.61)
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Where 𝐶𝐷,𝜓, 𝐶𝐷,𝜃, 𝐶𝐷,𝜓̇ and 𝐶𝐷,𝜃̇ are:

𝐶𝐷,𝜓 =
1
2 𝜌 𝑐 𝑉 (𝑉(𝑑1 + 𝛼0𝑑2) + 2Ω𝑟(𝑑0 + 𝛼0𝑑1 + 𝛼0

2𝑑2)) 𝑑𝑟

𝐶𝐷,𝜃 = −
1
2 𝜌 𝑐 𝑉 (𝑉(𝑑1 + 𝛼0𝑑2) + 2Ω𝑟(𝑑0 + 𝛼0𝑑1 + 𝛼0

2𝑑2)) 𝑑𝑟

𝐶𝐷,𝜓̇ = −
1
2 𝜌 𝑐 (2𝑉(𝑑0 + 𝛼0𝑑1 + 𝛼

2
0𝑑2) − Ω𝑟(𝑑1 + 𝛼0𝑑2)) 𝑑𝑟

𝐶𝐷,𝜃̇ = −
1
2 𝜌 𝑐 (2𝑉(𝑑0 + 𝛼0𝑑1 + 𝛼

2
0𝑑2) − Ω𝑟(𝑑1 + 𝛼0𝑑2)) 𝑑𝑟

(3.62)

Afterward, the thrust and torque of a blade element can be calculated as:

𝑑𝑇 = 𝑑𝐿 cos(𝜙) − 𝑑𝐷 sin(𝜙)
𝑑𝑄 = 𝑟 (𝑑𝐿 sin(𝜙) + 𝑑𝐷 cos(𝜙)) (3.63)

In Figure 3.10, it can be seen that sin(𝜙) and cos(𝜙) can be expressed as:

sin(𝜙) = 𝑉
𝑈 cos(𝜙) = Ω𝑟

𝑈 (3.64)

Combining Equation 3.64 with Equation 3.63, the blade element thrust and torque can be written
as:

𝑑𝑇 = 𝑑𝐿 Ω𝑟𝑈 − 𝑑𝐷 𝑉𝑈

𝑑𝑄 = 𝑟 (𝑑𝐿 𝑉𝑈 + 𝑑𝐷
Ω𝑟
𝑈 )

(3.65)

Replacing Equation 3.53 and Equation 3.60 in Equation 3.65, the blade element thrust and torque
can be be also expressed as:

𝑑𝑇 = 𝐿𝑠𝑡𝑒𝑎𝑑𝑦
Ω𝑟
𝑈 − 𝐷𝑠𝑡𝑒𝑎𝑑𝑦

𝑉
𝑈 + (𝐿𝑠

Ω𝑟
𝑈 − 𝐷𝑠

𝑉
𝑈) sin(Ω𝑡) + (𝐿𝑐

Ω𝑟
𝑈 − 𝐷𝑐

𝑉
𝑈) cos(Ω𝑡)

𝑑𝑄 = 𝑟 [𝐿𝑠𝑡𝑒𝑎𝑑𝑦
𝑉
𝑈 + 𝐷𝑠𝑡𝑒𝑎𝑑𝑦

Ω𝑟
𝑈 + (𝐿𝑠

𝑉
𝑈 + 𝐷𝑠

Ω𝑟
𝑈 ) sin(Ω𝑡) + (𝐿𝑐

𝑉
𝑈 + 𝐷𝑐

Ω𝑟
𝑈 ) cos(Ω𝑡)]

(3.66)

As shown in Figure 3.13, in a propeller with two blades, one blade has a rotational angle of Ω𝑡 and
the second Ω𝑡+𝜋 (blade 2 in Figure 3.13). Also, in Figure 3.13, it can be deduced that the forces 𝑃𝑦 and
𝑃𝑧 are produced by the torque component of the blades. On the other hand, 𝑀𝑦 and 𝑀𝑧 are produced
by the blades thrust component. Considering a 2-blade propeller, the unsteady aerodynamic forces for
a blade element can be calculated as:

𝑑𝑃𝑦 =
1
𝑟 (𝑑𝑄(Ω𝑡) − 𝑑𝑄(Ω𝑡 + 𝜋)) sin(Ω𝑡)

𝑑𝑃𝑧 = −
1
𝑟 (𝑑𝑄(Ω𝑡) − 𝑑𝑄(Ω𝑡 + 𝜋)) cos(Ω𝑡)

𝑑𝑀𝑦 = −𝑟(𝑑𝑇(Ω𝑡) − 𝑑𝑇(Ω𝑡 + 𝜋)) sin(Ω𝑡)
𝑑𝑀𝑦 = −𝑟(𝑑𝑇(Ω𝑡) − 𝑑𝑇(Ω𝑡 + 𝜋)) cos(Ω𝑡)

(3.67)

Where 𝑑𝑇 and 𝑑𝑄 are the element thrust and torque respectively. Replacing Equation 3.66, Equa-
tion 3.54, and Equation 3.61 in Equation 3.67, and using the coordinate system of Figure 3.9:
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Figure 3.13: Whirl forces of the propeller related to blade thrust and torque

𝑑𝑃𝑦 =
2 sin(Ω𝑡)

𝑈 [𝐴𝜓 + 𝐵𝜓̇ + 𝐶𝜃 + 𝐷𝜃̇]

𝑑𝑃𝑧 = −
2 cos(Ω𝑡)

𝑈 [𝐴𝜓 + 𝐵𝜓̇ + 𝐶𝜃 + 𝐷𝜃̇]

𝑑𝑀𝑦 = −
2𝑟 sin(Ω𝑡)

𝑈 [𝐸𝜓 + 𝐻𝜃̇ + 𝐹𝜓̇ + 𝐺𝜃]

𝑑𝑀𝑧 =
2𝑟 cos(Ω𝑡)

𝑈 [𝐸𝜓 + 𝐻𝜃̇ + 𝐹𝜓̇ + 𝐺𝜃]

(3.68)

𝐴 = sin (Ω𝑡) [𝐶𝐿,𝜓𝑉 + 𝐶𝐷,𝜓Ω𝑟] 𝐵 = cos (Ω𝑡) [𝐶𝐿,𝜓̇𝑉 + 𝐶𝐷,𝜓̇Ω𝑟]

𝐶 = cos (Ω𝑡) [𝐶𝐿,𝜃𝑉 + 𝐶𝐷,𝜃Ω𝑟] 𝐷 = sin (Ω𝑡) [𝐶𝐿,𝜃̇𝑉 + 𝐶𝐷,𝜃̇Ω𝑟]

𝐸 = sin(Ω𝑡) [𝐶𝐷,𝜓𝑉 − 𝐶𝐿,𝜓Ω𝑟] 𝐹 = cos(Ω𝑡) [𝐶𝐷,𝜓̇𝑉 − 𝐶𝐿,𝜓̇Ω𝑟]

𝐺 = cos(Ω𝑡) [𝐶𝐷,𝜃𝑉 − 𝐶𝐿,𝜃 Ω𝑟] 𝐻 = sin(Ω𝑡) [𝐶𝐷,𝜃̇𝑉 − 𝐶𝐿,𝜃̇Ω𝑟]

Equation 3.68 is written using aerodynamic effective angles and ignoring second time derivatives:

𝜓 = 𝜃 − 𝑦̇
𝑉

𝜃 = 𝜃 − 𝑧̇
𝑉

(3.69)

It can be seen that in Equation 3.68, the unsteady forces explicitly depend on Ω𝑡, which is a repre-
sentation of the position of the blade at a time 𝑡. This time dependence adds complexity to the stability
analysis because eigenvalue analysis cannot be directly used. Therefore, it is convenient to have an
expression that does not depend on the position of the blades so the stability analysis can be done
using eigenanalysis. The condition for the forces to be independent of blade position is called rota-
tional symmetry of the propeller rotor, and it can be derived from a four-bladed propeller and applied
to propellers with three or more blades [28].

Considering a four-bladed propeller, shown in Figure 3.12, the thrust and torque of the blades can
be calculated depending on the propeller rotational angle:
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Blade 1 ∶ 𝑑𝑇1, 𝑑𝑄1 ∶ Ω𝑡
Blade 2 ∶ 𝑑𝑇2, 𝑑𝑄2 ∶ Ω𝑡 + 𝜋

Blade 3 ∶ 𝑑𝑇3, 𝑑𝑄3 ∶ Ω𝑡 +
𝜋
2

Blade 4 ∶ 𝑑𝑇4, 𝑑𝑄4 ∶ Ω𝑡 +
3𝜋
2

(3.70)

Then, the unsteady aerodynamic forces for a four bladed propeller can be written as:

𝑑𝑃𝑦 =
1
𝑟 ((𝑑𝑄1 − 𝑑𝑄2) sin(Ω𝑡) + (𝑑𝑄3 − 𝑑𝑄4) cos(Ω𝑡))

𝑑𝑃𝑧 =
1
𝑟 (−(𝑑𝑄1 − 𝑑𝑄2) cos(Ω𝑡) + (𝑑𝑄3 − 𝑑𝑄4) sin(Ω𝑡))

𝑑𝑀𝑦 = 𝑟 (−(𝑑𝑇1 − 𝑑𝑇2) sin(Ω𝑡) − (𝑑𝑇3 − 𝑑𝑇4) cos(Ω𝑡))
𝑑𝑀𝑧 = 𝑟 (−(𝑑𝑇1 − 𝑑𝑇2) cos(Ω𝑡) + (𝑑𝑇3 − 𝑑𝑇4) sin(Ω𝑡))

(3.71)

Replacing Equation 3.66, Equation 3.54, and Equation 3.61 in Equation 3.71 and using the coordi-
nate system of Figure 3.9, the unsteady forces are:

𝑑𝑃𝑦 =
2
𝑈 [(𝐶𝐿,𝜓𝑉 + 𝐶𝐷,𝜓Ω𝑟)𝜓 − (𝐶𝐿,𝜃̇𝑉 + 𝐶𝐷,𝜃̇Ω𝑟)𝜃̇]

𝑑𝑃𝑧 = −
2
𝑈 [(𝐶𝐿,𝜓̇𝑉 + 𝐶𝐷,𝜓̇Ω𝑟)𝜓̇ − (𝐶𝐿,𝜃𝑉 + 𝐶𝐷,𝜃Ω𝑟)𝜃]

𝑑𝑀𝑦 =
2𝑟
𝑈 [(𝐶𝐿,𝜓Ω𝑟 − 𝐶𝐷,𝜓𝑉)𝜓 − (𝐶𝐿,𝜃̇Ω𝑟 − 𝐶𝐷,𝜃̇𝑉) 𝜃̇]

𝑑𝑀𝑧 = −
2𝑟
𝑈 [(𝐶𝐿,𝜓̇Ω𝑟 − 𝐶𝐷,𝜓̇𝑉) 𝜓̇ − (𝐶𝐿,𝜃Ω𝑟 − 𝐶𝐷,𝜃𝑉) 𝜃]

(3.72)

As mentioned earlier, the rotational symmetry condition can be applied for propellers with three or
more blades [28]. Then, Equation 3.72 can be adjusted for different number of blades:

𝑑𝑃𝑦 =
𝐵
4
2
𝑈 [(𝐶𝐿,𝜓𝑉 + 𝐶𝐷,𝜓Ω𝑟)𝜓 − (𝐶𝐿,𝜃̇𝑉 + 𝐶𝐷,𝜃̇Ω𝑟)𝜃̇]

𝑑𝑃𝑧 = −
𝐵
4
2
𝑈 [(𝐶𝐿,𝜓̇𝑉 + 𝐶𝐷,𝜓̇Ω𝑟)𝜓̇ − (𝐶𝐿,𝜃𝑉 + 𝐶𝐷,𝜃Ω𝑟)𝜃]

𝑑𝑀𝑦 =
𝐵
4
2𝑟
𝑈 [(𝐶𝐿,𝜓Ω𝑟 − 𝐶𝐷,𝜓𝑉)𝜓 − (𝐶𝐿,𝜃̇Ω𝑟 − 𝐶𝐷,𝜃̇𝑉) 𝜃̇]

𝑑𝑀𝑧 = −
𝐵
4
2𝑟
𝑈 [(𝐶𝐿,𝜓̇Ω𝑟 − 𝐶𝐷,𝜓̇𝑉) 𝜓̇ − (𝐶𝐿,𝜃Ω𝑟 − 𝐶𝐷,𝜃𝑉) 𝜃]

(3.73)

With 𝐵 blades. Finally, the total forces for a propeller divided in ′𝑛′ sections can be obtained:

𝑃𝑦 =
𝑛

∑
𝑖
𝑑𝑃𝑦 = 𝐶1𝜓 + 𝐶2𝜃̇ 𝑃𝑧 =

𝑛

∑
𝑖
𝑑𝑃𝑧 = 𝐶3𝜓̇ + 𝐶4𝜃

𝑀𝑦 =
𝑛

∑
𝑖
𝑑𝑀𝑦 = 𝐶5𝜓 + 𝐶6𝜃̇ 𝑀𝑧 =

𝑛

∑
𝑖
𝑑𝑀𝑧 = 𝐶7𝜓̇ + 𝐶8𝜃

(3.74)

As shown in Appendix C, Equation 3.68 and Equation 3.73 lead to nearly identical results for the
analyzed 2-bladed propeller in this thesis. Then, Equation 3.73 will be used for the aeroelastic model
because it does not explicitly depend on time and therefore, it can be directly used for stability analysis
using eigenanalysis.

3.2.3. Unsteady forces extension for counter-rotating propellers
In this section, the unsteady aerodynamic forces are extended for counter-rotating propellers, using
the rotational symmetry approximation derived in subsection 3.2.2.
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To obtain 𝑃𝑦, 𝑃𝑧, 𝑀𝑦 and 𝑀𝑧 for counter-rotating propellers, the unsteady forces are evaluated sep-
arately for the two propellers. One propeller is spinning counterclockwise, for which the forces were
already derived in subsection 3.2.2. But the second propeller is spinning clockwise, for which the forces
are derived in this section.

The velocities of the rear propeller are also obtained from the BEMT model:

𝑉 = 𝑉′4(1 + 𝑎𝑟)
Ω = Ω𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟(1 − 𝑎′𝑟 + 2𝑎′𝑓)
𝑈 = √𝑉2 + (Ω 𝑟)2

(3.75)

For a propeller rotating clockwise, the coordinates of the center of the propeller remain the same as
in the counterclockwise configuration, described by Equation 3.41. But the coordinates of the arbitrary
point P changes to:

𝑦 = 𝑦1 + 𝑟 cos(Ω𝑡)
𝑧 = 𝑧1 − 𝑟 sin(Ω𝑡)
𝑥 = −𝜓𝑟 cos(Ω𝑡) + 𝜃𝑟 sin(Ω𝑡)

(3.76)

Also, due to the clockwise configuration the perturbation quantities change to:

𝑠̇ = −𝑧̇1 cos (Ω 𝑡) − 𝑦̇1 sin (Ω 𝑡)
𝑤̇ = 𝑥̇ = 𝑟 𝜃̇ sin (Ω 𝑡) − 𝜓̇ 𝑟 cos (Ω 𝑡) + Ω𝑟 𝜃 cos (Ω 𝑡) + Ω𝜓 𝑟 sin (Ω 𝑡)
𝛼1 = 𝜃 cos (Ω 𝑡) + 𝜓 sin (Ω 𝑡)

(3.77)

With the perturbation quantities defined, the process to obtain the unsteady forces is exactly the
same as in subsection 3.2.2. The resultant forces are:

𝑑𝑃𝑦 =
𝐵
4
2
𝑈 [(𝐶𝐿,𝜓𝑉 + 𝐶𝐷,𝜓Ω𝑟)𝜓 + (𝐶𝐿,𝜃̇𝑉 + 𝐶𝐷,𝜃̇Ω𝑟)𝜃̇]

𝑑𝑃𝑧 =
𝐵
4
2
𝑈 [(𝐶𝐿,𝜓̇𝑉 + 𝐶𝐷,𝜓̇Ω𝑟)𝜓̇ + (𝐶𝐿,𝜃𝑉 + 𝐶𝐷,𝜃Ω𝑟)𝜃]

𝑑𝑀𝑦 = −
𝐵
4
2𝑟
𝑈 [(𝐶𝐿,𝜓Ω𝑟 − 𝐶𝐷,𝜓𝑉)𝜓 + (𝐶𝐿,𝜃̇Ω𝑟 − 𝐶𝐷,𝜃̇𝑉) 𝜃̇]

𝑑𝑀𝑧 = −
𝐵
4
2𝑟
𝑈 [(𝐶𝐿,𝜓̇Ω𝑟 − 𝐶𝐷,𝜓̇𝑉) 𝜓̇ + (𝐶𝐿,𝜃Ω𝑟 − 𝐶𝐷,𝜃𝑉) 𝜃]

(3.78)

Finally, exactly the same as the whirl forces for a counterclockwise propeller, Equation 3.74, is used
to get the total forces for a propeller divided in ′𝑛′ sections.

3.2.4. Comparison with previous models and experiments
To validate the model, Bland and Bennet’s [12] experiments and measurements were used. Bland and
Bennet measured the static aerodynamic stability derivatives of the propeller in windmilling condition
for different propeller pitch angles 𝛽. Then Bland and Bennet compared the measured derivatives to
the theoretical stability derivatives, calculated using Houbolt and Reed’s model[1] and Ribner’s model
[25] .

Houbolt and Reed’s model include the oscillatory wake effects due to the propeller gyroscopic mo-
tion [1]. The oscillatory wake induces a lag on the lift compared to the quasi-steady theory, which has
a significant impact on the stability derivatives. Houbolt and Reed’s model include the wake effects
using Theodorsen function, a function that models the wake effects of an oscillatory wing.

The Theodorsen function assumes straight wake, a supposition that can be considered valid in the
case of the wake of a propeller in fixed-wing aircraft. This is because whirl flutter is encountered at
high forward speeds, where the propellers have high advance ratios and therefore, the wake close to
the blades can be considered straight. On the contrary, in a multirotor, the propeller advance ratios
are smaller than for a fixed-wing aircraft and therefore, the wake close to the propeller blades needs to
be considered helical, which means the Theodorsen function is not applicable. For these reasons, the
oscillatory wake effects were neglected and proposed to be analyzed in future work.
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The propeller unsteady forces, obtained in Equation 3.74, can be also expressed using the aerody-
namic stability derivatives of Bland and Bennet [12] as:

𝑃𝑦 =
1
2𝜌𝑉

2𝑆 (𝐶𝑦,𝜓𝜓 + 𝐶𝑦,𝜃𝜃 + 𝐶𝑦,𝑟
𝜓̇𝑅
𝑉 + 𝐶𝑦,𝑞

𝜃̇𝑅
𝑉 )

𝑃𝑧 =
1
2𝜌𝑉

2𝑆 (𝐶𝑧,𝜓𝜓 + 𝐶𝑧,𝜃𝜃 + 𝐶𝑧,𝑟
𝜓̇𝑅
𝑉 + 𝐶𝑧,𝑞

𝜃̇𝑅
𝑉 )

𝑀𝑦 = 𝜌𝑉2𝑆𝑅 (𝐶𝑚,𝜓𝜓 + 𝐶𝑚,𝜃𝜃 + 𝐶𝑚,𝑟
𝜓̇𝑅
𝑉 + 𝐶𝑚,𝑞

𝜃̇𝑅
𝑉 )

𝑀𝑧 = 𝜌𝑉2𝑆𝑅 (𝐶𝑛,𝜓𝜓 + 𝐶𝑛,𝜃𝜃 + 𝐶𝑛,𝑟
𝜓̇𝑅
𝑉 + 𝐶𝑛,𝑞

𝜃̇𝑅
𝑉 )

(3.79)

Due to the symmetry of the gyroscopic motion, some propeller aerodynamic derivatives are identical
when drag is neglected:

𝐶𝑦,𝜓 = −𝐶𝑧,𝜃 𝐶𝑦,𝜃 = 𝐶𝑧,𝜓 𝐶𝑦,𝑟 = −𝐶𝑧,𝑞 𝐶𝑦,𝑞 = 𝐶𝑧,𝑟
𝐶𝑚,𝜓 = −𝐶𝑛,𝜃 𝐶𝑚,𝜃 = 𝐶𝑛,𝜓 𝐶𝑚,𝑟 = −𝐶𝑛,𝑞 𝐶𝑚,𝑞 = 𝐶𝑛,𝑟

(3.80)

Where 𝜌 is the free stream flow density, 𝑉 is the free stream flow velocity, 𝑅 is the propeller radius, and
𝑆 = 𝜋𝑅2 is the propeller area.

As previously mentioned, the model proposed for the forces in Equation 3.74 did not consider os-
cillatory wake effects, leading to eight aerodynamic derivatives, instead of the sixteen presented in
Equation 3.79. The terms shown in Equation 3.74 can be expressed in terms of some of the stability
derivatives, shown in Equation 3.79, when drag is neglected and windmilling conditions are considered:

𝐶1 =
1
2𝜌𝑉

2𝑆𝐶𝑦,𝜓 𝐶2 =
1
2𝜌𝑉

2𝑆𝑅𝑉𝐶𝑦,𝑞

𝐶3 =
1
2𝜌𝑉

2𝑆𝑅𝑉𝐶𝑧,𝑟 𝐶4 =
1
2𝜌𝑉

2𝑆𝐶𝑧,𝜃

𝐶5 = 𝜌𝑉2𝑆𝑅𝐶𝑚,𝜓 𝐶6 = 𝜌𝑉2𝑆𝑅
𝑅
𝑉𝐶𝑚,𝑞

𝐶7 = 𝜌𝑉2𝑆𝑅
𝑅
𝑉𝐶𝑛,𝑞 𝐶8 = 𝜌𝑉2𝑆𝑅𝐶𝑛,𝜃

(3.81)

Considering the results available from Bland and Bennet [12], only 𝐶𝑧,𝜃, 𝐶𝑚,𝜓, and 𝐶𝑚,𝑞 can be
compared.

The results for 𝐶𝑧,𝜃, 𝐶𝑚,𝜓, and 𝐶𝑚,𝑞 are shown in Figure 3.14, Figure 3.15, and Figure 3.16 respec-
tively. Experimental results for 𝐶𝑚,𝑞 were not available. The geometry and propeller parameters were
obtained from Bland and Bennet report[12], windmilling conditions were considered, propeller angu-
lar velocity Ω = 1800 𝑅𝑃𝑀, 𝜌 = 1.22 [𝑘𝑔/𝑚3], drag was ignored, and the theoretical lift coefficient
𝐶𝐿 = 2𝜋𝛼 was adjusted by the compressibility and finite-length correction factor:

𝐶𝐿 = 2𝜋
𝐴𝑟

2 + 𝐴𝑟√1 −𝑀2𝑟
𝛼 (3.82)

Where 𝐴𝑟 is the blade aspect ratio and 𝑀𝑟 is the Mach number at each section. It can be concluded
that 𝐶𝑧,𝜃 and 𝐶𝑚,𝑞 tend to follow the same trend as the values obtained by Bland and Bennet [12], but
with higher values. The higher values can be explained by the omission of the unsteady oscillatory
wake effects. Accounting for the oscillatory wake and thus, for the phase lag effect, would reduce the
aerodynamic derivatives as the lift is not instantaneous anymore. This will also lead to new aerodynamic
derivatives shown in Equation 3.79. For the model presented in this thesis, 𝐶𝑚,𝜓 was not able to capture
the trend of the experimental value, but this discrepancy might also arise from the lift lag effect.
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Figure 3.14: Comparison for aerodynamic derivative 𝐶𝑧,𝜃 Figure 3.15: Comparison for aerodynamic derivative 𝐶𝑚,𝜓

Figure 3.16: Comparison for aerodynamic derivative 𝐶𝑚,𝑞



4
Structural model

To model the multirotor beam structure, the finite element method was chosen, as it has been widely
used in the literature and because it can be easily coupled in the aeroelastic models [74].

More specifically, as the objective of this thesis is to generate a semi-analytical model to assess
whirl flutter with low computational costs, finite elements with high number of degrees of freedom are
avoided and a Euler-Bernoulli beam model is preferred. Additionally, beam models have been widely
used to assess flutter in wings [74] and whirl flutter [75], which makes them a perfect candidate to model
the multirotor beam structure.

For a finite element model, the structural equation of motion can be written as:

𝑀𝑞̈ + 𝐶𝑞̇ + 𝐾𝑞̇ = 𝐹 (4.1)
Where 𝑀 is the mass matrix, 𝐶 is the mass matrix, 𝐾 is the stiffness matrix, and 𝐹 is the external nodal
forces.

A beam finite element code was developed in MATLAB to be used in the stability analysis of the
multirotor, which will be explained in the next section.

4.1. Beam model
The beam model is based on the space frame model of Katsikadelis [76] and Rao [77]. It considers a
frame element with 6 degrees of freedom per node. Three axial DOF’s 𝑢, 𝑣, 𝑤, one torsional DOF 𝜃,
and two bending DOF’s 𝜙,𝜓 were considered, as shown in Figure 4.1. It is important to mention that
the element has a constant cross section and the material used is assumed to be isotropic.

uj
vj

ψj

θj

φj

wj

uk

vk

ψk

θk

φk

wk

Figure 4.1: Frame element degrees of freedom (modified from [76])

The element vector of degrees of freedom, shown in Figure 4.1, is:

33
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𝑞 = [𝑢𝑗 𝑣𝑗 𝑤𝑗 𝜃𝑗 𝜙𝑗 𝜓𝑗 𝑢𝑘 𝑣𝑘 𝑤𝑘 𝜃𝑘 𝜙𝑘 𝜓𝑘]
𝑇

(4.2)

According to the space frame model derived by Katsikadelis [76], the element stiffness matrix and
consistent mass matrix can be written as:

𝑘𝑙𝑒 = [
𝑘𝑗𝑗 𝑘𝑗𝑘
𝑘𝑘𝑗 𝑘𝑘𝑘] (4.3)

𝑘𝑗𝑗 =
𝐸
𝐿3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐿2𝐴 0 0 0 0 0
0 12𝐼𝑧 0 0 0 6𝐿𝐼𝑧
0 0 12𝐼𝑦 0 −6𝐿𝐼𝑦 0
0 0 0 𝐺𝐽

𝐸 𝐿
2 0 0

0 0 −6𝐿𝐼𝑦 0 4𝐿2𝐼𝑦 0
0 6𝐿𝐼𝑧 0 0 0 4𝐿2𝐼𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.4)

𝑘𝑘𝑗 = (𝑘𝑗𝑘)𝑇 =
𝐸
𝐿3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−𝐿2𝐴 0 0 0 0 0
0 −12𝐼𝑧 0 0 0 −6𝐿𝐼𝑧
0 0 −12𝐼𝑦 0 6𝐿𝐼𝑦 0
0 0 0 −𝐺𝐽𝐸 𝐿

2 0 0
0 0 −6𝐿𝐼𝑦 0 2𝐿2𝐼𝑦 0
0 6𝐿𝐼𝑧 0 0 0 2𝐿2𝐼𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.5)

𝑘𝑘𝑘 =
𝐸
𝐿3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐿2𝐴 0 0 0 0 0
0 12𝐼𝑧 0 0 0 −6𝐿𝐼𝑧
0 0 12𝐼𝑦 0 6𝐿𝐼𝑦 0
0 0 0 𝐺𝐽

𝐸 𝐿
2 0 0

0 0 6𝐿𝐼𝑦 0 4𝐿2𝐼𝑦 0
0 −6𝐿𝐼𝑧 0 0 0 4𝐿2𝐼𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.6)

𝑚𝑙𝑒 = [
𝑚𝑗𝑗 𝑚𝑗𝑘
𝑚𝑘𝑗 𝑚𝑘𝑘] (4.7)

𝑚𝑗𝑗 =
𝜌𝐴𝐿
420

⎡
⎢
⎢
⎢
⎢
⎣

140 0 0 0 0 0
0 156 0 0 0 22𝐿
0 0 156 0 −22𝐿 0
0 0 0 140𝑟2𝑔 0 0
0 0 −22𝐿 0 4𝐿2 0
0 22𝐿 0 0 0 4𝐿2

⎤
⎥
⎥
⎥
⎥
⎦

(4.8)

𝑚𝑘𝑗 = (𝑚𝑗𝑘)𝑇 =
𝜌𝐴𝐿
420

⎡
⎢
⎢
⎢
⎢
⎣

70 0 0 0 0 0
0 54 0 0 0 13𝐿
0 0 54 0 −13𝐿 0
0 0 0 70𝑟2𝑔 0 0
0 0 13𝐿 0 −3𝐿2 0
0 −13𝐿 0 0 0 −3𝐿2

⎤
⎥
⎥
⎥
⎥
⎦

(4.9)

𝑚𝑘𝑘 =
𝜌𝐴𝐿
420

⎡
⎢
⎢
⎢
⎢
⎣

140 0 0 0 0 0
0 156 0 0 0 −22𝐿
0 0 156 0 22𝐿 0
0 0 0 140𝑟2𝑔 0 0
0 0 22𝐿 0 4𝐿2 0
0 −22𝐿 0 0 0 4𝐿2

⎤
⎥
⎥
⎥
⎥
⎦

(4.10)

Where 𝐿 is the element length, 𝐴 is the area of the cross section of the element, 𝐼𝑦 is the cross sectional
moment of inertia around y axis, 𝐼𝑧 is the cross sectional moment of inertia around z axis, 𝐽 is the polar
moment of inertia, 𝑟𝑔 = √ 𝐼𝑦+𝐼𝑧

𝐴 is the radius of gyration, 𝜌 is the material density, 𝐸 is the Young’s
modulus, and 𝐺 is the shear modulus.
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To get the global stiffness and mass matrix, the rotation matrix for every element needs to be calcu-
lated, and then the element matrices can be transformed into global coordinates. The method shown
in Rao [77] is used. The rotation matrix for the frame element can be expressed as:

𝑘𝑔𝑒 = 𝑅𝑇𝑘𝑙𝑒𝑅
𝑚𝑔𝑒 = 𝑅𝑇𝑚𝑙𝑒𝑅

(4.11)

𝑅 =
⎡
⎢
⎢
⎣

𝜆 0 0 0
0 𝜆 0 0
0 0 𝜆 0
0 0 0 𝜆

⎤
⎥
⎥
⎦

(4.12)

𝜆 = 𝜆1𝜆2 (4.13)

𝜆1 =
1
𝑑𝑥
[
𝑙0𝑥𝑑𝑥 𝑚0𝑥𝑑𝑥 𝑛0𝑥𝑑𝑥
−𝑙0𝑥𝑚0𝑥 𝑑2𝑥 −𝑚0𝑥𝑛0𝑥
−𝑛0𝑥 0 𝑙0𝑥

] (4.14)

𝑙0𝑥 =
𝑋𝑘 − 𝑋𝑗
𝐿

𝑚0𝑥 =
𝑌𝑘 − 𝑌𝑗
𝐿

𝑛0𝑥 =
𝑍𝑘 − 𝑍𝑗
𝐿

𝑑𝑥 = √𝑙20𝑥 + 𝑛20𝑥

(4.15)

𝜆2 = [
1 0 0
0 cos𝛼 sin𝛼
0 − sin𝛼 cos𝛼

] (4.16)

Where 𝑋𝑘, 𝑌𝑘, and 𝑍𝑘 are the global coordinates of node 𝑘, 𝑋𝑗, 𝑌𝑗, and 𝑍𝑗 are the global coordinates
of node 𝑗, and 𝛼 is the angle of rotation of the beam cross section with respect to the default position.
Then the global stiffness matrix for a beam of ′𝑛′ elements can be assembled as:

𝐾 =
⎡
⎢
⎢
⎢
⎣

𝑘𝑔𝑒 (1, 𝑗) 0 0 0 0
0 ⋱ 0 0 0
0 0 𝑘𝑔𝑒 (𝑖, 𝑘) + 𝑘𝑔𝑒 (𝑖 + 1, 𝑗) 0 0
0 0 0 ⋱ 0
0 0 0 0 𝑘𝑔𝑒 (𝑛, 𝑘)

⎤
⎥
⎥
⎥
⎦

(4.17)

𝑀 =
⎡
⎢
⎢
⎢
⎣

𝑚𝑔𝑒 (1, 𝑗) 0 0 0 0
0 ⋱ 0 0 0
0 0 𝑚𝑔𝑒 (𝑖, 𝑘) + 𝑚𝑔𝑒 (𝑖 + 1, 𝑗) 0 0
0 0 0 ⋱ 0
0 0 0 0 𝑚𝑔𝑒 (𝑛, 𝑘)

⎤
⎥
⎥
⎥
⎦

(4.18)

Where 𝑘𝑔𝑒 (𝑖, 𝑗) and 𝑚𝑔𝑒 (𝑖, 𝑗) are the stiffness and mass matrix of the node 𝑗 of the element 𝑖 respec-
tively.

4.1.1. Damping
The structural damping of Equation 4.1 can be modelled using Rayleigh damping. Rayleigh damping
consists of a linear combination of the structural mass and the stiffness matrix to model the structure
internal damping. Rayleigh damping equation is:

𝐶 = 𝜇𝑀 + 𝜆𝐾 (4.19)
Where 𝜇 is the mass proportionality term and 𝜆 is the stiffness proportionality term. 𝜇 increases the

damping in the lower frequency modes and rigid body modes, while 𝜆 increases the damping of the
high frequency modes.
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4.1.2. Validation
To validate the beam model implemented in MATLAB, the cantilever beam model shown in Figure 4.2
was first comparedwith the analytic solution for the tip deflection. Then the first eight natural frequencies
of the finite element model were compared against Ansys. The parameters of the cantilever beam
model used are listed in Table 4.1 and Table 4.2.

F
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d

b
t

z

y

z

x

Figure 4.2: Clamped beam model for validation of finite element code

Table 4.1: Beam material properties

Properties Value
𝜌 [kg/m3] 2800
𝐸 [MPa] 70
𝜈 [-] 0.325

Table 4.2: Beam parameters

Parameter Value
𝐿 [mm] 1073.8
𝑏 [mm] 25.4
𝑑 [mm] 50.8
𝑡 [mm] 1.57
𝐹 [N/m] 100

Tip deflection validation
The tip deflection was compared between the finite element model and the analytic solution shown in
Equation 4.20.

𝛿𝑡𝑖𝑝 =
𝐹𝐿3
3𝐸𝐼 𝜃𝑡𝑖𝑝 =

𝐹𝐿2
2𝐸𝐼

(4.20)

Where 𝛿𝑡𝑖𝑝 is the tip deflection,𝜃𝑡𝑖𝑝 is the slope of the tip, 𝐹 is a point load located at the tip, 𝐸 is the
elastic modulus, and 𝐼 is the moment of inertia. In this case:

𝐼 = 𝑏𝑑3
12 − (𝑏 − 2𝑡)(𝑑 − 2𝑡)

3

12 = 7.6876 ⋅ 10−8 [𝑚4]

As shown in Table 4.3, the tip deflection and slope angle calculated by the finite element model are
the same as the analytical model.

Table 4.3: Static results

Model 𝛿𝑡𝑖𝑝 [mm] 𝜃𝑡𝑖𝑝 [rad]
Analytical 7.7 0.0107

Finite element 7.7 0.0107

Frequency validation
First, a convergence study for the first eight modes of natural frequencies was performed, with the
results shown in Appendix A. It can be concluded that 15 elements is enough for the model to be
considered converged.

Second, to validate the finite element model, the natural frequencies of the first eight modes for 15
elements were compared to a modal analysis using Ansys with 1712 solid elements and 3240 nodes.
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The mode shapes are presented in Appendix B. It can be inferred from the frequency results shown
in Table 4.4 that the model has good agreement with the results shown by Ansys modal analysis and
therefore, the model is validated.

Table 4.4: Model and Ansys result comparison

Mode Model freq. [Hz] Ansys freq. [Hz] Error [%]
First bending x-axis 25.61 25.66 0.18
First bending z-axis 44.35 44.32 0.07

Second bending x-axis 160.50 158.53 1.24
Second bending z-axis 277.96 272.52 2.00
Third bending x-axis 449.40 434.03 3.54

First torsion 544.04 558.98 2.67
Third bending z-axis 778.32 741.54 4.96
Fourth bending x-axis 880.69 822.58 7.06





5
Aeroelastic model

In this chapter, the aeroelastic model using thrust condition is developed. The aerodynamic equations
shown in chapter 3 and the equations of chapter 4 are coupled to get the aeroelastic model.

A scheme of the aeroelastic analysis is presented in Figure 5.1. This scheme contains an overview
from the flight condition and geometry inputs to the stability results. It can be summarized in five steps:

The first step consists of the definition of the inputs of the system. In this step, the blade geometry
(including the number of sections of the annular discretization), the airfoil 𝐶𝐿 and 𝐶𝐷, the free stream
flow conditions, and the propeller angular velocity need to be defined. If it is a counter-rotating system,
the angular velocities of the front and rear propellers are assumed to be equal. Additionally, the beam
geometry and material properties are defined for the finite element model, and the propeller inertia and
nacelle properties are defined to be included in the system dynamic equations.

In the second step, the BEMT functions evaluate the conditions previously defined for the propeller.
This allows the determination of the propeller axial induction factor, the tangential induction factor, and
the angle of attack for every section of the discretized propeller. In the case of a counter-rotating
propeller system, the solution contains the same results as the conventional or default system, but for
two propellers: front and rear.

In the third step, the induction factors and angles of attack previously calculated with BEMT are
used to calculate the non-steady whirl forces of the propeller. Additionally, the structural beam finite
element model is defined using the beam geometry and material properties, and the system dynamic
equations are calculated by using the propeller inertia properties, the propeller angular velocity, and
nacelle properties.

In the fourth step, all the system equations are represented inmatrix form. Therefore, the aeroelastic
system is defined with respect to the different degrees of freedom to be solved afterward. Then, the
whirl forces, the structural finite element model, and the system dynamic equations matrices are re-
arranged into a state-space representation matrix, which will allow a straightforward stability analysis.

The fifth and final step consists of the stability analysis via eigenvalue and eigenmode analysis.
In this step, the eigenvalues and eigenmodes are extracted from the state-space matrix. Then, the
damping coefficients and frequencies of the eigenmodes are calculated.

If a damping coefficient is negative, the system is unstable, and if all damping coefficients are
positive, the system is stable. If there is a damping coefficient equal to zero while all other damping
coefficients are positive, the system is critically stable.

39
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Aeroelastic model

Input
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Output
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Figure 5.1: Diagram of the aeroelastic model.

The aeroelastic model developed in this section is shown in Figure 5.2. It consist of a cantilever
beam model attached to a propeller-nacelle structure with two elastic degrees of freedom (𝜃, 𝜓). The
unsteady forces and moments 𝑀𝑦 , 𝑃𝑦 , 𝑀𝑧 , 𝑃𝑧 are the same as in Figure 3.9, with the axis 𝑋′, 𝑌′, 𝑍′ of
Figure 5.2 corresponding to the coordinate system of Figure 3.9. A more detailed view of the degrees
of freedom of the propeller node is shown in Figure 5.3.

5.1. Equations of motion
The beam will be modeled as a cantilever beam with a clamped end (𝑛1) and the other end attached
to a propeller-nacelle (𝑛2). The structural beam equations were already derived in chapter 4, but as
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Figure 5.2: Propeller-beam system model.
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Figure 5.3: Propeller-beam system degrees of freedom.

a propeller and nacelle are added to the system, it is needed to derive the propeller-nacelle dynamic
equations.

In this section, the propeller-nacelle dynamic equations are derived and then the structural dynamic
equations of the beam are added. A variational calculus approach was used to derive the propeller-
nacelle equations. The Euler-Lagrange equation including damping was applied for the different de-
grees of freedom of the system, which can be written as:

𝐿 = 𝑇 − 𝑈
𝑑
𝑑𝑡 (

𝜕𝐿
𝜕 ̇𝑞𝑖

) − 𝜕𝐿
𝜕𝑞𝑖

+ 𝜕𝐷
𝜕 ̇𝑞𝑖

= 𝑄𝑖
(5.1)

Where 𝑇 is the kinetic energy, 𝑈 is the potential energy, 𝐷 is the dissipation (non-conservative) energy,
𝑄𝑖 is the non-conservative external forces applied to the degree of freedom, and 𝑞𝑖 is the degree of
freedom.

5.1.1. Kinetic energy
The kinetic energy can be divided in two: kinetic energy of the non-rotating system and the kinetic
energy of the rotating propeller. The non-rotating system is constituted by the nacelle structure and
non-rotating propeller. Thus, the kinetic energy can be written as:

𝑇 = 𝑇𝑛 + 𝑇𝑟 (5.2)

Where 𝑇𝑛 is the kinetic energy of the non-rotating system and 𝑇𝑟 is the kinetic energy of the rotating
propeller.
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The non-rotating kinetic energy is:

𝑇𝑛 =
1
2 ∫(𝑢̇

2
𝑝 + 𝑣̇2𝑝 + 𝑤̇2𝑝) 𝑑𝑧 (5.3)

For a point P located at the center of the propeller the displacement 𝑢𝑝, 𝑣𝑝, 𝑤𝑝, considering the
degrees of freedom and coordinate system of Figure 5.3, can be written as:

𝑢𝑝 = 𝑢 + 𝑧𝛼 − 𝜃(𝑙𝜃 − 𝑧)
𝑣𝑝 = 𝑣 − 𝑧𝛽 + 𝜓(𝑙𝜓 − 𝑧)
𝑤𝑝 = 𝑤

(5.4)

And the velocities 𝑢̇𝑝, 𝑣̇𝑝, 𝑤̇𝑝 :

𝑢̇𝑝 = 𝑢̇ + 𝑧𝛼̇ − 𝜃̇(𝑙𝜃 − 𝑧)
𝑣̇𝑝 = 𝑣̇ − 𝑧𝛽̇ + 𝜓̇(𝑙𝜓 − 𝑧)
𝑤̇𝑝 = 𝑤̇

(5.5)

Then, the non-rotating energy can be expressed as:

𝑇𝑛 =
𝑆𝛼 𝛼̇2
2 + 𝑆𝛼,𝜃 𝛼̇𝜃̇ + 𝑆𝑢,𝛼 𝛼̇𝑢̇

𝑆𝛽 𝛽̇2
2 + 𝑆𝛽,𝜓 𝛽̇𝜓̇ − 𝑆𝑣,𝛽 𝛽̇𝑣̇ +

𝑆𝜓 𝜓̇2
2

− 𝑆𝑣,𝜓 𝜓̇𝑣̇ +
𝑆𝜃 𝜃̇2
2 + 𝑆𝑢,𝜃 𝜃̇𝑢̇ +

𝑀𝑝 𝑢̇2
2 +

𝑀𝑝 𝑣̇2
2 +

𝑀𝑝 𝑤̇2
2 (5.6)

Where 𝑆𝑖 are the inertia terms and 𝑀 is the mass of the nacelle:

𝑆𝛼 = 𝑆𝛽 = ∫𝑧2𝑚(𝑧)𝑑𝑧 𝑆𝜃 = ∫(𝑧 − 𝑙𝜃)2𝑚(𝑧)𝑑𝑧 𝑆𝜓 = ∫(𝑧 − 𝑙𝜓)2𝑚(𝑧)𝑑𝑧

𝑆𝛼,𝜃 = ∫𝑧(𝑧 − 𝑙𝜃)𝑚(𝑧)𝑑𝑧 𝑆𝛽,𝜓 = ∫𝑧(𝑧 − 𝑙𝜓)𝑚(𝑧)𝑑𝑧 𝑆𝑢,𝛼 = 𝑆𝑣,𝛽 = ∫𝑧𝑚(𝑧)𝑑𝑧

𝑆𝑣,𝜓 = ∫(𝑧 − 𝑙𝜓)𝑚(𝑧)𝑑𝑧 𝑆𝑢,𝜃 = ∫(𝑧 − 𝑙𝜃)𝑚(𝑧)𝑑𝑧 𝑀𝑝 = ∫𝑚(𝑧)𝑑𝑧

Where 𝑙𝜃 , 𝑙𝜓 is the distance from node 𝑛2 to the elastic center of the nacelle and 𝑚(𝑧) the mass per
unit length. In the case of the default configuration, these distances are negative due to the Z axis
convention used in Figure 5.2.

For the rotating kinetic energy, the global propeller angular velocity, 𝜔𝑡, is calculated which has a
Z-axis direction, considering the coordinate system of Figure 5.2. As the nacelle is rotating due to the
degrees of freedom of Figure 5.3, the kinematics of the degrees of freedom propagate towards the
propeller, and thus, the effects of the propagated velocities are needed to be taken into account for 𝜔𝑡.
To get 𝜔𝑡, the link velocity propagation equation shown in Craig [78] is used:

𝑖+1𝜔𝑖+1 = 𝑖+1
𝑖 𝑅𝑖𝜔𝑖 + 𝑖𝜃̇𝑖+1𝑖+1𝑍𝑖+1 (5.7)

Where 𝑖 + 1 is the new frame system, 𝑖 is the previous frame system, 𝜔𝑖 is the angular velocity of the
previous frame,𝑖+1𝑖 𝑅 is the rotation matrix from 𝑖 to 𝑖 + 1, 𝑖𝜃̇𝑖+1 is the angular velocity in the new frame,
and 𝑍𝑖+1 is the direction of the angular velocity, 𝑖𝜃̇𝑖+1, in the new frame system [78].

Using Equation 5.7, and starting from a frame located in 𝑛2 with no angular velocity and finalizing
at a frame P located in the center of the propeller, the angular velocity 𝜔𝑡 is derived:

𝜔1 = (
0
𝛼̇
0
) (5.8)

𝜔2 = 𝑅𝑦(𝛼)𝑇𝜔1 + 𝛽̇𝑅𝑦(𝛼)𝑇 (
1
0
0
) = (

𝛽̇
𝛼̇
𝛼 𝛽̇

) (5.9)
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𝜔3 = 𝑅𝑦(𝛼)𝑇𝑅𝑥(𝛽)𝑇𝑅𝑦(𝛼)𝜔2 + 𝛽̇ (
0
1
0
) = (

𝛽̇ (𝛼2 + 1) + 𝛼 𝛼̇ 𝛽
𝛼̇ + 𝜃̇

𝛼 𝛽̇ (𝛼2 + 1) − 𝛼̇ 𝛽
) (5.10)

𝜔4 = 𝑅𝑦(𝜃)𝑇𝜔3 + 𝜓̇(
1
0
0
) = (

𝜓̇ + 𝜃 (𝛼̇ 𝛽 − 𝛼 𝛽̇ (𝛼2 + 1)) + 𝛽̇ (𝛼2 + 1) + 𝛼 𝛼̇ 𝛽
𝛼̇ + 𝜃̇

𝜃 (𝛽̇ (𝛼2 + 1) + 𝛼 𝛼̇ 𝛽) − 𝛼̇ 𝛽 + 𝛼 𝛽̇ (𝛼2 + 1)
) (5.11)

𝜔5 = 𝑅𝑥(𝜓)𝑇 − Ω(
0
0
1
) = (

𝛽̇ + 𝜓̇ + 𝛼2 𝛽̇ + 𝛼 𝛼̇ 𝛽 − 𝛼 𝛽̇ 𝜃 + 𝛼̇ 𝛽 𝜃 − 𝛼3 𝛽̇ 𝜃
𝛼̇ + 𝜃̇ + 𝛼 𝛽̇ 𝜓 − 𝛼̇ 𝛽 𝜓 + 𝛽̇ 𝜓 𝜃 + 𝛼3 𝛽̇ 𝜓 + 𝛼2 𝛽̇ 𝜓 𝜃 + 𝛼 𝛼̇ 𝛽 𝜓 𝜃
𝛼 𝛽̇ − Ω − 𝛼̇ 𝛽 − 𝛼̇ 𝜓 + 𝛽̇ 𝜃 − 𝜓 𝜃̇ + 𝛼3 𝛽̇ + 𝛼2 𝛽̇ 𝜃 + 𝛼 𝛼̇ 𝛽 𝜃

) (5.12)

Where 𝑅𝑥 and 𝑅𝑦 are the rotation matrix for the 𝑥 and 𝑦 axis respectively and Ω is the propeller angular
velocity. Then, the total propeller angular velocity in the direction of the propeller rotation (Z-axis):

𝜔𝑡 = Ω − 𝛼 𝛽̇ + 𝛼̇ 𝛽 + 𝛼̇ 𝜓 − 𝛽̇ 𝜃 + 𝜓 𝜃̇ − 𝛼3 𝛽̇ − 𝛼2 𝛽̇ 𝜃 − 𝛼 𝛼̇ 𝛽 𝜃 (5.13)
Then, the rotating kinetic energy can be expressed as:

𝑇𝑟 =
1
2𝑆Ω𝜔

2
𝑡 (5.14)

Where 𝑆Ω is the propeller mass moment of inertia in the propeller rotation axis. Ignoring high-order
terms:

𝑇𝑟 =
1
2𝑆Ω (Ω

2 + (2𝛽 + 2𝜓)Ω 𝛼̇ + (−2𝛼 − 2𝜃)Ω 𝛽̇ + (2𝜓)Ω 𝜃̇) (5.15)

5.1.2. Potential energy
The potential energy of the propeller-nacelle system is:

𝑈 =
𝐾𝜓 𝜓2
2 + 𝐾𝜃 𝜃

2

2 (5.16)

Where 𝐾𝜓 and 𝐾𝜃 are the elastic spring constants.

5.1.3. Dissipation energy
The dissipation energy of the propeller-nacelle system considering hysteretic structural damping, which
considers that the force is proportional to the velocity of the movement and inverse to the frequency of
the movement, can be written as:

𝐷 =
𝐾𝜓 𝑔𝜓 𝜓̇2
2𝜔 + 𝐾𝜃 𝑔𝜃 𝜃̇

2

2𝜔 (5.17)

Where 𝜔 is the vibration frequency and 𝑔𝜓 and 𝑔𝜃 are the damping coefficients.

5.1.4. Final equations
Finally, using the Euler-Lagrange equation (Equation 5.1), the equations of motion are :

⋯+ 𝑆𝑢,𝛼 𝛼̈ + 𝑀𝑝 𝑢̈ + 𝑆𝑢,𝜃 𝜃̈ = 𝐹𝑢
⋯+𝑀𝑝 𝑣̈ − 𝑆𝑣,𝛽 𝛽̈ − 𝑆𝑣,𝜓 𝜓̈ = 𝐹𝑣

⋯+𝑀𝑝 𝑤̈ = 𝐹𝑤
⋯+ 𝑆𝛽 𝛽̈ + 𝑆𝛽,𝜓 𝜓̈ − 𝑆𝑣,𝛽 𝑣̈ − 2Ω𝑆Ω 𝛼̇ − Ω𝑆Ω 𝜃̇ = 𝐹𝛽
⋯+ 𝑆𝛼 𝛼̈ + 𝑆𝛼,𝜃 𝜃̈ + 𝑆𝑢,𝛼 𝑢̈ + 2Ω𝑆Ω 𝛽̇ + Ω𝑆Ω 𝜓̇ = 𝐹𝛼

𝑆𝛼,𝜃 𝛼̈ + 𝐾𝜃 𝜃 + 𝑆𝜃 𝜃̈ + 𝑆𝑢,𝜃 𝑢̈ + Ω𝑆Ω 𝛽̇ + Ω𝑆Ω 𝜓̇ +
𝐾𝜃 𝑔𝜃 𝜃̇
𝜔 = 𝐹𝜃

𝑆𝛽,𝜓 𝛽̈ + 𝐾𝜓 𝜓 + 𝑆𝜓 𝜓̈ − 𝑆𝑣,𝜓 𝑣̈ − Ω𝑆Ω 𝛼̇ − Ω𝑆Ω 𝜃̇ +
𝐾𝜓 𝑔𝜓 𝜓̇
𝜔 = 𝐹𝜓

(5.18)
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Where … represents the beam structure’s contributions to the equation of motion, which were derived
in chapter 4 and 𝐹𝑖 is the force correspondent to the degrees of freedom located where the propeller-
nacelle system is attached.

5.1.5. Nodal forces
The forces of the different equations of Equation 5.18 can be obtained from Figure 5.2, in which
𝑀𝑦 , 𝑃𝑦 , 𝑀𝑧 and 𝑃𝑧 correspond to the forces derived in chapter 3. Considering 𝑒𝛽 , 𝑒𝛼 , 𝑒𝜃 , 𝑒𝜓, the dis-
tances from the center of the propeller to the pivot point of the degrees of freedom which are positive
in the default configuration, the forces can be written as:

𝐹𝑢 = 𝑃𝑧 𝐹𝑣 = 𝑃𝑦 𝐹𝑤 = 0
𝐹𝛽 = 𝑀𝑧 + 𝑒𝛽𝑃𝑦 𝐹𝛼 = 𝑀𝑦 − 𝑒𝛼𝑃𝑧 𝐹𝛾 = 0
𝐹𝜃 = 𝑀𝑦 − 𝑒𝜃𝑃𝑧 𝐹𝜓 = 𝑀𝑧 + 𝑒𝜓𝑃𝑦

(5.19)

5.2. Matrix form
Equation 5.18 can be represented in matrix form to be later used in the state-pace representation, which
correspond to the node 𝑛2. For other nodes of the beam finite element representation, the matrix form
consists of the structural matrices derived in chapter 4. It is important to note that two new degrees
of freedom 𝜓, 𝜃 were previously introduced for the nacelle, and thus, two new equations arise. The
equation of motion can be expressed as:

⋯+𝑀𝑠𝑠𝑞̈𝑠 + 𝐷𝑠𝑠𝑞̇𝑠 +𝑀𝑠𝑝𝑞̈𝑝 + 𝐷𝑠𝑝𝑞̇𝑝 = 𝐹𝑠
𝑀𝑝𝑠𝑞̈𝑠 + 𝐷𝑝𝑠𝑞̇𝑠 + 𝐾𝑝𝑠𝑞𝑠 +𝑀𝑝𝑝𝑞̈𝑝 + 𝐷𝑝𝑝𝑞̇𝑝 + 𝐾𝑝𝑝𝑞𝑝 = 𝐹𝑝

(5.20)

Where:

𝑞𝑠 = [𝑢𝑛2 𝑣𝑛2 𝑤𝑛2 𝛽 (𝜃𝑛2) 𝛼 (𝜙𝑛2) 𝛾 (𝜓𝑛2)]
𝑇

𝑞𝑝 = [𝜃 𝜓]𝑇

𝑀𝑠𝑠 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑀𝑝 0 0 0 𝑆𝑢,𝛼 0
0 𝑀𝑝 −𝑆𝑣,𝛽 0 0 0
0 0 𝑀𝑝 0 0 0
0 −𝑆𝑣,𝛽 0 𝑆𝛽 0 0
𝑆𝑢,𝛼 0 0 0 𝑆𝛼 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

𝑀𝑠𝑝 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑆𝑢,𝜃 0
0 −𝑆𝑢,𝜃
0 0
0 𝑆𝛽,𝜓
𝑆𝛼,𝜃 0
0 0

⎤
⎥
⎥
⎥
⎥
⎦

𝐷𝑠𝑠 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −2Ω𝑆Ω 0
0 0 0 2Ω𝑆Ω 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

𝐷𝑠𝑝 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0
0 0
0 0

−Ω𝑆Ω 0
0 Ω𝑆Ω
0 0

⎤
⎥
⎥
⎥
⎥
⎦

𝑀𝑝𝑠 = [
𝑆𝑢,𝜃 0 0 0 𝑆𝛼,𝜃 0
0 −𝑆𝑣,𝜓 0 𝑆𝛽,𝜓 0 0] 𝑀𝑝𝑝 = [

𝑆𝜃 0
0 𝑆𝜓]

𝐷𝑝𝑠 = [
0 0 0 Ω𝑆Ω 0 0
0 0 0 0 −Ω𝑆Ω 0] 𝐷𝑝𝑝 = [

𝐾𝜃 𝑔𝜃
𝜔 Ω𝑆Ω

−Ω𝑆Ω
𝐾𝜓𝑔𝜓
𝜔
]

𝐾𝑝𝑝 = [
𝐾𝜃 0
0 𝐾𝜓]

To define the forces 𝐹𝑠 and 𝐹𝑝 of Equation 5.20, it is necessary to define the effective angles on
which this forces will depend, as shown in Equation 3.73. For the system presented in Figure 5.2:
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𝜃 = 𝜃 + 𝛼 − 𝑒𝜃𝜃̇𝑉 − 𝑒𝛼𝛼̇𝑉 + 𝑢̇𝑉

𝜓 = 𝜓 + 𝛽 −
𝑒𝜓𝜓̇
𝑉 −

𝑒𝛽𝛽̇
𝑉 − 𝑣̇

𝑉

(5.21)

Ignoring the second time derivatives, assumption previously validated by Kvaternik and Kohn [15]
to predict whirl flutter, the derivatives of the angles can be written as:

𝜃̇ = 𝜃̇ + 𝛼̇

𝜓̇ = 𝜓̇ + 𝛽̇
(5.22)

Afterward, using Equation 3.74, the aeroelastic forces of Equation 5.19 can be written in matrix form
as:

𝐹𝑠 = 𝐷𝑓𝑠𝑠𝑞̇𝑠 + 𝐾𝑓𝑠𝑠𝑞𝑠 + 𝐷𝑓𝑠𝑝𝑞̇𝑝 + 𝐾𝑓𝑠𝑝𝑞𝑝
𝐹𝑝 = 𝐷𝑓𝑝𝑠𝑞̇𝑠 + 𝐾𝑓𝑝𝑠𝑞𝑠 + 𝐷𝑓𝑝𝑝𝑞̇𝑝 + 𝐾𝑓𝑝𝑝𝑞𝑝

(5.23)

𝐷𝑓𝑠𝑠 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
𝑉𝐶4 0 0 𝐶3 − 𝑒𝛼𝑉 𝐶4 0
− 1
𝑉𝐶1 0 0 − 𝑒𝛽𝑉 𝐶1 𝐶2 0
0 0 0 0 0 0

1
𝑉𝐶8 − 𝑒𝛽

1
𝑉𝐶1 0 0 𝐶7 − 𝑒𝛽

𝑒𝛽
𝑉 𝐶1 − 𝑒𝛼𝑉 𝐶8 + 𝑒𝛽𝐶2 0

− 1
𝑉𝐶5 − 𝑒𝛼

1
𝑉𝐶4 0 0 − 𝑒𝛽𝑉 𝐶5 − 𝑒𝛼𝐶3 𝐶6 + 𝑒𝛼

𝑒𝛼
𝑉 𝐶4 0

0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝐷𝑓𝑠𝑝 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 𝑒𝜃𝑉 𝐶4 𝐶3
𝐶2 − 𝑒𝜓𝑉 𝐶1
0 0

− 𝑒𝜃𝑉 𝐶8 + 𝑒𝛽𝐶2 𝐶7 − 𝑒𝛽
𝑒𝜓
𝑉 𝐶1

𝐶6 + 𝑒𝛼
𝑒𝜃
𝑉 𝐶4 − 𝑒𝜓𝑉 𝐶5 − 𝑒𝛼𝐶3

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝐾𝑓𝑠𝑠 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0 𝐶4 0
0 0 0 𝐶1 0 0
0 0 0 0 0 0
0 0 0 𝑒𝛽𝐶1 𝐶8 0
0 0 0 𝐶5 −𝑒𝛼𝐶4 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

𝐾𝑓𝑠𝑝 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐶4 0
0 𝐶1
0 0
𝐶8 𝑒𝛽𝐶1

−𝑒𝛼𝐶4 𝐶5
0 0

⎤
⎥
⎥
⎥
⎥
⎦

𝐷𝑓𝑝𝑠 = [
− 1
𝑉𝐶5 − 𝑒𝜃

1
𝑉𝐶4 0 0 − 𝑒𝛽𝑉 𝐶5 − 𝑒𝜃𝐶3 𝐶6 + 𝑒𝜃

𝑒𝛼
𝑉 𝐶4 0

1
𝑉𝐶8 − 𝑒𝜓

1
𝑉𝐶1 0 0 𝐶7 − 𝑒𝜓

𝑒𝛽
𝑉 𝐶1 − 𝑒𝛼𝑉 𝐶8 + 𝑒𝜓𝐶2 0] 𝐷𝑓𝑝𝑝 = [

𝐶6 + 𝑒𝜃
𝑒𝜃
𝑉 𝐶4 − 𝑒𝜓𝑉 𝐶5 − 𝑒𝜃𝐶3

− 𝑒𝜃𝑉 𝐶8 + 𝑒𝜓𝐶2 𝐶7 − 𝑒𝜓
𝑒𝜓
𝑉 𝐶1

]

𝐾𝑓𝑝𝑠 = [
0 0 0 𝐶5 −𝑒𝜃𝐶4 0
0 0 0 𝑒𝜓𝐶1 𝐶8 0] 𝐾𝑓𝑝𝑝 = [

−𝑒𝜃𝐶4 𝐶5
𝐶8 𝑒𝜓𝐶1]

5.3. State-space representation
To perform a stability analysis of the beam propeller system, a convenient form called state-space
representation can be used. State-space representation facilitates the stability analysis by doing eige-
nanalysis on the linear space-state matrix. The space-state matrix can transform a linear system of
second-order differential equations into a linear system of first-order differential equations. The space-
state representation with a space-state matrix 𝐴 is :

𝑥̇ = 𝐴𝑥

𝑥 = [𝑥1 𝑥2]
𝑇

𝑥1 = 𝑥̇2

𝐴 = [𝑀 0
0 𝐼]

−1
[−𝐷 −𝐾
𝐼 0 ]

(5.24)

Where 𝑥2 corresponds to the system degrees of freedom, 𝑀 is the aeroelastic system mass matrix, 𝐷
is the aeroelastic damping matrix, 𝐾 is the aeroelastic stiffness matrix, and 𝐼 is the identity matrix.

For the aeroelastic model previously presented, the equivalent state-space matrix is:
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𝑥2 = [𝑢1 𝑣1 𝑤1 𝜃1 𝜙1 𝜓1 … 𝑢𝑛2 𝑣𝑛2 𝑤𝑛2 𝜃𝑛2 𝜙𝑛2 𝜓𝑛2]
𝑀 = ⋯+𝑀𝑠𝑠 +𝑀𝑠𝑝 +𝑀𝑝𝑠 +𝑀𝑝𝑝
𝐷 = ⋯+ 𝐷𝑠𝑠 + 𝐷𝑠𝑝 + 𝐷𝑝𝑠 + 𝐷𝑝𝑝 − (𝐷𝑓𝑠𝑠 + 𝐷𝑓𝑠𝑝 + 𝐷𝑓𝑝𝑠 + 𝐷𝑓𝑝𝑝)
𝐾 = ⋯+ 𝐾𝑝𝑠 + 𝐾𝑝𝑝 − (𝐾𝑓𝑠𝑠 + 𝐾𝑓𝑠𝑝 + 𝐾𝑓𝑝𝑠 + 𝐾𝑓𝑝𝑝)

(5.25)

5.3.1. Counter-rotating configuration
In the case of a counter-rotating configuration, the aeroelastic system consist of the equations previ-
ously developed, but also adding the counter-rotating propeller equations of motion and forces. There-
fore:

𝐸𝑂𝑀 ∶ 𝐹𝑑 + 𝐹𝑐 = 𝐸𝑂𝑀𝑑 + 𝐸𝑂𝑀𝑐 (5.26)

Where 𝐸𝑂𝑀 are the equations of motion (Equation 5.18), 𝐹 is the aerodynamic whirl forces and 𝑑, 𝑐
are the default (front propeller) and counter-rotating propeller (rear propeller) respectively.

For the rear propeller, rotating clockwise, the equation of motion changes because of the geometry
and angular velocity direction. These changes can be summarized by the following:

• Ω = −Ω because the propeller is rotating clockwise.

• 𝑙𝜃 , 𝑙𝜓 are positive in pusher configuration.

• 𝑒𝛽 , 𝑒𝛼 , 𝑒𝜃 , 𝑒𝜓 are negative in pusher configuration.

5.4. Stability analysis
To analyze the stability of the aeroelastic system, an eigenanalysis is performed in the state-space
matrix 𝐴. The eigenanalysis consists of the inspection of the eigenvalues and eigenmodes of thematrix.
For a matrix 𝐴 with dimensions 𝑁𝑥𝑁, 𝑁 eigenvalues can be found with the corresponding eigenmode.
As 𝐴 is the space-state representation of an aeroelastic system, it can be expected that the eigenvalues
and eigenmodes are complex numbers, due to the aeroelastic damping. To find the eigenvalues and
eigenmodes, the following equations need to be solved:

𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖 (5.27)

Where 𝐴 is the state-space matrix, 𝜆𝑖 is the eigenvalue, 𝐼 the identity matrix, and 𝑣𝑖 are the eigenmodes.
There are two important parameters that can be extracted from the eigenvalues that will give insight

on the stability of the system eigenmodes: the damping coefficient and the frequency. The damping
coefficient, sometimes called damping ratio, can be defined as:

𝜁𝑖 =
−ℜ(𝜆𝑖)
|𝜆𝑖|

(5.28)

Where ℜ(𝜆𝑖) is the real part of the eigenvalue, and |𝜆𝑖| is the norm of the complex number. If the
eigenvalue is real, the frequency is zero. In the case of a complex eigenvalue, the frequency can be
obtained as:

𝜔𝑖 = |𝜆𝑖| (5.29)

Then, the stability analysis can be performed. The stability criteria are:

𝜁𝑖 > 0 Stable
𝜁𝑖 = 0 Critically Stable

𝜁𝑖 < 0 Unstable
(5.30)

If an eigenmode is unstable and the eigenvalue is a real number, then divergence occurs. However,
if the an eigenmode is unstable and the eigenvalue is a complex number, then flutter occurs.

It is important to add that the eigenvalue solvers do not guarantee order of the solutions. Thus, to
track the eigenvalues for different flight conditions, the Modal Assurance Criterion (MAC) can be used.
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5.4.1. Mode tracking
To track the aeroelastic modes, the Modal Assurance Criterion is a statistical tool that permits the
comparison between vectors by giving a number between 0 and 1, in which 1 means that the vectors
are identical, while 0 means that the vectors are orthogonal and therefore, not related. The MAC
equation for the two vectors 𝑣1 and 𝑣2 is:

𝑀𝐴𝐶(𝑣1, 𝑣2) =
|𝑣𝑇1𝑣∗2|2

|𝑣𝑇1𝑣∗1||𝑣𝑇2𝑣∗2|
(5.31)

With 𝑣∗𝑖 the vector complex conjugate.





6
Analysis and results

6.1. Octocopter Parameters
An octocopter designed and manufactured by Betronka SPA was analyzed for aeroelastic stability. The
model developed in the previous chapters consists of a clamped beam model with a propeller attached
to the tip, as shown in Figure 6.1 for the default configuration or Figure 6.2 in the case of counter-rotating
propellers.

Additionally, Betronka SPA provided the dimensions of the octocopter frame used for the whirl flutter
analysis, shown in Figure 6.3, the frame material properties and geometry listed on Table 6.1 and
Table 6.2, the motor nacelle mass and height listed on Table 6.3, the propeller characteristics tabulated
on Table 6.4, the blade geometry tabulated on Table 6.5, the blade CAD model, and the blade lift
coefficient 𝐶𝐿 and blade drag coefficient 𝐶𝐷, shown in Figure 6.4 and Figure 6.5.
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h

Figure 6.1: Simplified model geometry.

L

d

b

t

h

h

Figure 6.2: Simplified model geometry for the counter-rotating configuration.
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Figure 6.3: Octocopter beam geometry.

Table 6.1: Aluminum 7075-T6 properties

Properties Value
𝜌 [kg/m3] 2800
𝐸 [MPa] 70
𝜈 [-] 0.325

Table 6.2: Beam parameters of Figure 6.1

Parameter Value
𝐿 [mm] 1073.8
𝑏 [mm] 25.4
𝑑 [mm] 50.8
𝑡 [mm] 1.57

Number of elements 15
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Figure 6.4: Lift coefficient 𝐶𝐿 of the propeller airfoil
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Figure 6.5: Drag coefficient 𝐶𝐷 of the propeller airfoil

The following assumptions were made for the multirotor stability analysis:

• The beam material is considered isotropic.

• The nacelle is comprised of a propeller shaft and motor. These components are considered to
be rigid in comparison to the beam, and thus, the nacelle degrees of freedom 𝜃, 𝜓 are neglected
for this analysis.

• The nacelle moments of inertia are calculated as a solid cylinder of constant density. Then, the
moment of inertia are:

𝑆𝛼 = 𝑆𝛽 = 𝑆𝛼,𝛽 =
𝑚ℎ2
3 𝑆𝑢,𝛼 = 𝑆𝑣,𝛽 = −

𝑚ℎ
2

Where 𝑚 is the mass and ℎ is the height of the cylinder.

• The propellers are considered rigid, an assumption made due to the smaller dimensions of the
propeller compared to fixed-wing aircraft propellers, which are also considered rigid in the whirl
flutter studies, as mentioned in chapter 2.
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Table 6.3: Nacelle properties

Parameter Value
𝑀 [kg] 1.5
𝑆𝛼 [kgm2] 0.0048
𝑆𝑢,𝛼 [kgm] -0.07345
ℎ [mm] 97.95

Table 6.4: Propeller properties

Parameter Value
Number of Blades 2

𝑀 [kg] 0.3
𝑆Ω [kgm2] 0.0306
𝑅ℎ𝑢𝑏 [mm] 72
𝑅𝑡𝑖𝑝 [mm] 479

Max thrust [N] 340
Max Ω [RPM] 5000

Table 6.5: Blade geometry

𝑟/𝑅𝑡𝑖𝑝 Chord length Geometric angle
[-] 𝑐 [mm] 𝛽 [∘]
0.17 7.34 20.57
0.21 8.41 21.40
0.26 9.16 19.87
0.30 9.58 17.58
0.34 9.75 16.03
0.38 9.73 14.94
0.43 9.56 13.80
0.47 9.33 12.82
0.51 9.08 12.01
0.55 8.77 11.29
0.60 8.43 10.71
0.64 8.02 9.98
0.68 7.57 9.55
0.73 7.10 8.94
0.77 6.63 8.38
0.81 6.15 8.15
0.85 5.67 7.96
0.90 5.17 7.52
0.94 4.62 7.14
0.98 3.75 6.90

• The propeller is considered to work only in thrusting and windmilling conditions.

• There is no aerodynamic interaction between adjacent propellers as BEMT and the perturbation
model for the whirl forces do not account for the aerodynamic interactions between the adjacent
propellers. The study of this interaction is out of the scope of this thesis.

• The aerodynamic interference between propellers and the beam structure is not considered, as
the BEMT and the perturbation model do not account for the interference of the beam structure
on the propeller aerodynamics.

• An air density 𝜌 = 1.22 kg/m3 and viscosity 𝜇 = 1.81𝐸 − 5 kg/ms were used.

• As all the structures have material damping. The results are shown for a beam with Rayleigh
damping (Equation 4.19) with 𝜇 = 0 and 𝜆 = 0.0005. These low values were adopted to be
conservative and only affect the structural modes with high frequencies.

6.1.1. Propeller conditions for the multirotor designed flight conditions
The BEMTmodel and the whirl forces model used assume that the free stream flow has a perpendicular
direction to the propeller plane of rotation. Therefore, just two variables are independent: themagnitude
of the free stream flow velocity and the propeller angular velocity.

As previously mentioned, only thrust and windmilling conditions are going to be evaluated. For this
reason, it is necessary to evaluate the combination of flow velocities and propeller angular velocities
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that correspond to thrust or windmilling conditions. A way to know that the propeller is operating in
thrust conditions is by using BEMT to get the thrust coefficient 𝐶𝑇. When 𝐶𝑇 > 0, the propeller is
operating in thrust conditions and for 𝐶𝑇 = 0, the propeller is operating in windmilling conditions.

For a specific propeller, 𝐶𝑇 is a function of the advance ratio 𝐽 and the flow properties. Therefore,
the advance ratio will be used to determine the propeller thrust conditions. The 𝐶𝑇 diagram against
advance ratio 𝐽 for the propeller used in the octocopter is presented in Figure 6.6. For advance ratios
lower than approximately 0.38, the propeller is working in thrusting conditions, and with 𝐽 = 0.38, the
propeller can be considered to be working in windmilling conditions.

Additionally, as listed on Table 6.4, the propeller maximum thrust is 340 N, which occurs at the
maximum propeller angular speed of 5000 RPM, and the thrust coefficient can be written as:

𝐶𝑇 =
𝑇

𝜌𝑛2𝐷4 (6.1)

Where 𝑇 is the propeller thrust, 𝜌 is the flow density, 𝑛 is the propeller angular speed, and 𝐷 is the
propeller diameter. Then, using Equation 6.1 the maximum propeller thrust of 340 N is obtained for
𝐶𝑇 = 0.047, which corresponds with 𝐽 = 0.12. As the propeller cannot produce more thrust than 340
N, for this study the minimum advance ratio is limited to 𝐽 = 0.12.

Figure 6.6: Thrust coefficient 𝐶𝑇 against propeller advance ratio 𝐽

Finally, the propeller conditions for the multirotor flight conditions can be summarized as a propeller
angular speed, Ω, between 0-5000 RPM and an advance ratio, 𝐽, between 0.12-0.38. Using the ad-
vance ratio equation (Equation 3.28), the inflow velocity for the for the multirotor flight conditions can
be calculated.

6.2. Results and discussion
6.2.1. Whirl flutter analysis for the multirotor flight conditions
In this section, the results of the whirl flutter analysis for the multirotor flight conditions previously intro-
duced are presented. These conditions consist of advance ratios, 𝐽, between 0.12-0.38 and propeller
angular speeds lower or equal to 5000 RPM.

All the aeroelastic modes were analyzed for whirl flutter. The stability analysis explained in sec-
tion 5.4 shows that all the aeroelastic modes had a positive damping coefficient for the designed flight
conditions, and it can be concluded that the multirotor designed by Betronka SPA does not suffer from
whirl flutter. The modes with the lowest damping coefficient are shown next for further analysis.

The damping and frequency diagrams for the first lowest damping mode, which is the x-axis first
bending mode of the conventional configuration are shown in Figure 6.7 and Figure 6.8, and for the
counter- rotating configuration are shown in Figure 6.9 and Figure 6.10. The damping and frequency
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diagrams for the second lowest damping mode, which is the z-axis first bending mode of the conven-
tional configuration are shown in Figure 6.11 and Figure 6.12, and Figure 6.13 and Figure 6.14 for the
counter-rotating configuration.

From Figure 6.7, Figure 6.9, Figure 6.11, and Figure 6.13, it can be inferred that the inflow velocity
does not significantly change the damping coefficient for a constant angular velocity. Therefore, the
thrust conditions, considering the octocopter flight conditions, do not have a big impact on the system
stability. This behavior is similar to the case of fixed-wing aircraft with lightly loaded propellers, where
thrust is negligible [5].

By comparing the default configuration frequencies, shown in Figure 6.8 and Figure 6.12, to the
counter-rotating configuration frequencies, shown in Figure 6.10 and Figure 6.14, it can be seen that
both bending modes of the counter-rotating configuration have lower frequencies compared to the
default configuration, which could be explained by the increase of the moment of inertia because of the
addition of a motor, shaft and propeller.

To improve the understanding of the whirl flutter phenomena in the multirotor, the next sections
analyze conditions outside the designed flight conditions.

Figure 6.7: First bending x-axis damping coefficient for default
propeller configuration

Figure 6.8: First bending x-axis frequency for the default
propeller configuration

Figure 6.9: First bending x-axis damping coefficient for the
counter-rotating propeller configuration

Figure 6.10: First bending x-axis mode frequency for the
counter-rotating propeller configuration
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Figure 6.11: First bending z-axis mode damping coefficient for
the default propeller configuration

Figure 6.12: First bending z-axis frequency for the default
propeller configuration

Figure 6.13: First bending z-axis damping coefficient for the
counter-rotating propeller configuration

Figure 6.14: First bending z-axis frequency for the
counter-rotating propeller configuration

6.2.2. Modal analysis with respect to the inflow velocity
To better understand the stability analysis, it is necessary to evaluate whirl flutter in a wider range
of velocities, without the octocopter flight condition restrictions. By increasing the range of studied
velocities, whirl flutter can be encountered by the system, and trends can be shown for the stability
analysis.

The results shown in Figure 6.15 and Figure 6.16 correspond to the damping and frequency diagram
for five modes with 𝐽 = 0.12 for a default configuration. The five modes correspond to the x-axis first
bending, z-axis first bending, x-axis second bending, z-axis second bending, and first torsion. The only
mode that can be unstable is the first bending of the z-axis, which will reach flutter at a inflow velocity
of 25 𝑚/𝑠. At the flutter speed, this aeroelastic mode is mainly comprised of z- axis first bending and
y-axis first bending, as shown in Figure 6.17. The frequency of this mode is the lowest of the of the
system at the flutter speed at around 5 Hz.

It is important to mention that when the frequencies of the first bending modes cross in Figure 6.16,
a small interaction occurs between the modes, which can be seen in Figure 6.15. This interaction
disappears again when the frequencies of the mode start to distance from each other.
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Figure 6.15: Damping coefficient for constant advance ratio
𝐽 = 0.12 and variable inflow velocity for a default propeller

configuration
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Figure 6.16: Frequency for constant advance ratio 𝐽 = 0.12
and variable inflow velocity for a default propeller configuration
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Figure 6.17: Mode shape of the unstable mode at the flutter speed.

In the case of the counter-rotating configuration, the damping and frequency diagram are shown in
Figure 6.18 and Figure 6.19. These diagrams show the following modes: the x-axis first bending, z-axis
first bending, x-axis second bending, z-axis second bending, and first torsion. As shown Figure 6.18,
the counter-rotating configuration is more stable and did not suffer from flutter for velocities below
100 𝑚/𝑠. Also, it can be concluded from Figure 6.18 and Figure 6.19, that the torsion mode is over-
damped, and therefore, the eigenvalue is a real negative number. Also, it can be seen in Figure 6.19
that in the counter-rotating configuration, the z-axis bending mode always has a higher frequency than
the x-axis first bending mode, which is not the case for the default configuration.
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Figure 6.18: Damping coefficient for constant advance ratio
𝐽 = 0.12 and variable inflow velocity for a counter-rotating

propeller configuration
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Figure 6.19: Frequency for constant advance ratio 𝐽 = 0.12
and variable inflow velocity for a counter-rotating propeller

configuration

6.2.3. Influence of different advance ratios considering variable inflow velocity

To understand the influence of the thrusting conditions on the stability analysis, advance ratios from
high thrust conditions (𝐽 = 0.12) to low thrust conditions (𝐽 = 0.35) were assessed. The only mode
that can reach whirl flutter is the z-axis first bending mode, therefore, in this section only the z-axis first
bending mode will be analyzed.

The damping and frequency for different advance ratios of the z-axis first bending mode for the de-
fault configuration are shown in Figure 6.20 and Figure 6.21, and for the counter-rotating configuration
are shown in Figure 6.22 and Figure 6.23. From Figs. 6.20–6.23 it can be inferred that increasing the
thrust of the propeller decreases the damping of the z-axis first bending mode for a particular inflow
velocity, decreasing the stability of the system for both configurations. For the default configuration, the
whirl flutter speed can vary from 25 𝑚/𝑠, corresponding to high thrust conditions with 𝐽 = 0.12, to flutter
speeds above 50 𝑚/𝑠, for propeller flow conditions close to windmilling with 𝐽 = 0.35. It can also be
deducted that the counter-rotating configuration is always more stable than the default configuration,
which can be attributed to the opposition between the whirl moments of the clockwise propeller and the
counterclockwise propeller.

It is important to add that the studied multirotor uses fixed-pitch propellers. Therefore, by comparing
different advance ratios for a variable inflow velocity, the angular speed of the propeller will also be
proportional to the inflow velocity, as it can be inferred from Equation 3.28. This means that for a
particular inflow velocity, increasing the advance ratio will decrease the propeller angular velocity. Then,
the significant increase in whirl flutter speed for decreasing thrust condition, shown in Figure 6.20 and
Figure 6.22, is highly influenced by the propeller angular speed Ω and not necessarily by the thrust
condition itself. This statement is supported by the fact that the unsteady aerodynamic forces produced
by the propeller gyroscopic motion, derived in subsection 3.2.2, depend directly on Ω.
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Figure 6.20: First bending z-axis mode damping coefficient for
different advance ratios 𝐽 and variable inflow velocity a default

propeller configuration
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Figure 6.21: First bending z-axis mode frequency for different
advance ratios 𝐽 and variable inflow velocity a default propeller

configuration
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Figure 6.22: First bending z-axis mode damping coefficient for
different advance ratios 𝐽 and variable inflow velocity for a

counter-rotating propeller configuration
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Figure 6.23: First bending z-axis mode frequency for different
advance ratios 𝐽 and variable inflow velocity for a

counter-rotating propeller configuration

6.2.4. Influence of different advance ratios considering variable propeller angu-
lar velocity

Another way of showing the thrust influence on the system stability is to analyze the damping and
frequency of the aeroelastic modes for different constant advance ratios 𝐽, while varying the propeller
angular velocity. By using constant advance ratios and variable propeller angular speed, the thrust
condition of the propeller will remain constant, and it can give a better understanding about the influence
of the thrust conditions on the system. The analysis will focus on the z-axis first bending mode as is
the only mode that was found unstable on the evaluated conditions.

It can be inferred from Figs. 6.24–6.27 that the z-axis first bending mode damping coefficient and
frequency of the default and counter-rotating configuration is highly dependent on the angular velocity
of the propeller.

Figure 6.24 shows that for a default configuration, the advance ratio increases the damping of the
z-axis first bending mode for a particular propeller angular speed. Therefore, the thrust conditions have
a stabilizing effect on the system, which also translates to an increase of the whirl flutter speed. For
the default configuration, the high thrust conditions increase the propeller angular velocity of the whirl
flutter boundary by approximately 4% in comparison to the low thrust conditions.

It can be concluded that for a default configuration, using windmilling conditions leads to conser-
vative whirl flutter boundaries. On the contrary, for the counter-rotating configuration, thrust has a
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negligible destabilizing effect, as can be seen in Figure 6.26, even considering high thrust conditions.
With respect to the flutter frequencies, as shown in Figure 6.25, in the case of the default configu-

ration, thrust conditions tend to decrease the first bending z-axis mode flutter frequency. On the other
hand, Figure 6.27 shows that for a counter-rotating configuration, thrust conditions have a negligible
effect on the first bending z-axis mode frequency.
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Figure 6.24: First bending z-axis mode damping coefficient for
different advance ratios 𝐽 and variable propeller angular

velocity for a default propeller configuration

Figure 6.25: First bending z-axis mode frequency for different
advance ratios 𝐽 and variable propeller angular velocity for a

default propeller configuration
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Figure 6.26: First bending z-axis mode damping coefficient for
different advance ratios 𝐽 and variable propeller angular
velocity for a counter-rotating propeller configuration

Figure 6.27: First bending z-axis mode frequency for different
advance ratios 𝐽 and variable propeller angular velocity for a

counter-rotating propeller configuration



7
Conclusions

In the current work, a semi-analytic aeroelastic model was developed and implemented on MATLAB
to predict the whirl flutter of a multirotor configuration in thrusting conditions. The model consists of
a cantilever beam with a propeller-nacelle system attached to the free end. Two configurations were
successfully evaluated for whirl flutter: a default configuration with one propeller at the free end of the
beam, and a counter-rotating configuration with two propellers at the free end of the beam.

The propeller aerodynamics in thrusting conditions were modeled using BEMT, then the flow condi-
tions in the propeller disk calculated with BEMT were coupled to a linear perturbation model to calculate
the unsteady aerodynamic forces produced by the gyroscopic motion, which are the forces responsible
for causing whirl flutter. Next, the propeller-nacelle equations of motion, the finite element beam struc-
ture equations of motion, and the propeller unsteady aerodynamic forces produced by the gyroscopic
motion were coupled into the aeroelastic model in state-space form. For the default configuration,
the different parts of the aeroelastic model were validated: The blade element momentum theory, the
unsteady aerodynamic forces produced by the gyroscopic motion, and the beam finite element model.

After the development, the aeroelastic model was used to perform a stability analysis and predict
whirl flutter in a multirotor designed by Betronka SPA. Whirl flutter was assessed for the multirotor
designed flight conditions, considering the propeller in thrust and windmilling conditions. Later, whirl
flutter was evaluated for propeller conditions above the designed limits, to further investigate the whirl
flutter phenomena.

The main findings of this thesis can be summarized as follows:

• The multirotor manufactured by Betronka SPA does not reach whirl flutter speeds for all the de-
signed flight conditions. At these conditions, increasing the propeller speed increases the aero-
dynamic damping of the z-axis first bending, which increases the stability of the system, as it is
the first mode to be unstable.

• The counter-rotating configuration tends to be more stable than the conventional propeller config-
uration. The aerodynamic damping significantly increases by using the counter-rotating configu-
ration. This stabilizing effect of the counter-rotating configuration can be caused by the propeller’s
torque direction opposition, which reduces the overall unsteady forces perceived by the structure,
as one propeller torque component opposes the other.

• Thrust conditions have a stabilizing effect for the default configuration. For themultirotor designed
by Betronka, it was found that high thrust conditions increased the propeller angular velocity of
the whirl flutter boundary by 4% compared to flow conditions close to windmilling. Therefore,
using windmilling conditions to assess whirl flutter on the multirotor will lead to a conservative
whirl flutter speed boundary.

• For a counter-rotating configuration, thrust conditions have a negligible effect on the whirl flutter
boundary and the system aerodynamic damping. This observation suggests that windmilling
conditions can be used to assess whirl flutter in the case of two rigid counter-rotating propellers.
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• For the model studied, the thrust conditions significantly decrease the whirl flutter boundary for
inflow velocity. This occurs because close to the whirl flutter boundary, the z-axis first bending
mode damping decreases with increasing propeller angular velocity. And as the multirotor pro-
peller is a fixed-pitch propeller, increasing the thrust condition will increase the angular velocity
of the propeller for a particular inflow velocity. Therefore, increasing the thrust will lead to a de-
crease in the z-axis first bending mode damping at a particular inflow velocity, decreasing the
whirl flutter boundary for inflow velocity.

• It was found that in the case of the studied rigid and fixed-pitch propeller, the rotational symme-
try approximation could be used even though the propeller had only two blades. This finding
simplifies the aeroelastic stability analysis of rigid 2 blades propellers as there is no explicit time
dependence on the unsteady aerodynamic forces produced by the gyroscopic motion when using
the rotational symmetry approximation, allowing the use of eigenvalue and eigenmode analysis
directly.

• The use of BEMT to capture the thrust conditions, the use of an analytical perturbation model
for the unsteady forces produced by the propeller gyroscopic motion, and the use of a beam
element finite element model kept low-computational costs in the aeroelastic stability analysis.
This makes the developed model a good candidate to be applied in the preliminary design stages
of multirotor aircraft.

Future work
As the model is theoretical and only the subsystems of the default configuration were validated with
experimental data obtained from the literature, the validation of the coupled system and experimental
research on whirl flutter using thrusting conditions are left for future research. The main recommenda-
tions for future research are:

• Future research should include the wake effects in the unsteady whirl forces model using thrust
conditions, as the aerodynamic stability derivatives significantly depend on the lag effect produced
by the wake.

• An experimental validation of the unsteady whirl forces for thrust conditions should be carried out.

• Validation of the counter-rotating BEMT is recommended to evaluate the accuracy of the model.

• After the validation of the BEMT, an experimental validation of counter-rotating whirl flutter model
should be investigated.

• An experimental study of the whirl flutter boundaries using thrust conditions should be carried out
considering a structural beam with a propeller at the tip to validate the model developed on this
thesis.

• Flight dynamics of the multirotor coupled with the aeroelastic model should be studied to assess
the interaction between the different propeller-beam structures.

• In the current model, the flow was always considered to be perpendicular to the propeller plane of
rotation. For future research it is recommended to also include angle dependent flow conditions
for the propeller aerodynamics, due to the characteristics of multirotor flight types.

• A comparison of the time response using different 2-bladed propellers to further validate that
rotational symmetry can be applied in general cases of rigid propellers should be completed.



A
Finite element frequency convergence

study
In this appendix, the convergence study for the first 8 modes of the cantilever beam used in sub-
section 4.1.2 is presented. It can be inferred that 15 elements is enough to have the first 8 modes
frequencies converged.
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Figure A.1: Convergence study for first bending x-axis
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Figure A.2: Convergence study for first bending z-axis

2 4 6 8 10 12 14 16 18 20
Number of elements

160.4

160.5

160.6

160.7

160.8

160.9

161

161.1

Fr
eq

u
en

cy
 [

H
z]

Figure A.3: Convergence study for second bending x-axis
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Figure A.4: Convergence study for second bending z-axis
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Figure A.5: Convergence study for third bending x-axis
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Figure A.6: Convergence study for first torsion
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Figure A.7: Convergence study for third bending z-axis
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Figure A.8: Convergence study for fourth bending x-axis



B
Structural mode shapes

In this appendix, the mode shape of the first 8 structural modes of the studied cantilever beam are
presented using software Ansys.

Figure B.1: Mode shape of first bending x-axis Figure B.2: Mode shape of first bending z-axis

Figure B.3: Mode shape of second bending x-axis Figure B.4: Mode shape of second bending z-axis

Figure B.5: Mode shape of third bending x-axis Figure B.6: Mode shape of first torsion
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Figure B.7: Mode shape of third bending z-axis Figure B.8: Mode shape of fourth bending x-axis



C
Comparison between forces using the
exact solution for a 2 blades propeller

and rotational symmetry approximation
Two models were previously obtained for the whirl forces: one for a 2-blade propeller, corresponding to
Equation 3.68, and another using rotational symmetry obtained for a 4-blade propeller, corresponding
to Equation 3.73. The latter can be adapted for different number of blades.

The advantage of using the rotational symmetry approximation over the solution for a 2-blade pro-
peller is that the forces in Equation 3.74 do not have explicit time dependence, but only depend on
the system’s degrees of freedom. Then, as there is no explicit time dependence, the stability analysis
using state-space representation is straightforward.

On the contrary, if the forces depend explicitly on time, as for the 2-blade propeller forces in Equa-
tion 3.68, a time domain analysis will need to be performed and then a post-process will be required to
analyze the system stability.

A comparison between the two models was performed in the time domain using the octocopter
beam parameters and the octocopter propeller characteristics, for a initial deflection of 𝛼𝑡𝑖𝑝 = 10−2,
with Ω = 4000 𝑅𝑃𝑀 and 𝐽 = 0.15. The results shown in Figure C.1 and Figure C.2 demonstrate that
the symmetry approximation can be applied to the octocopter propeller, as the error is around 2% and
the overall stability behavior of the oscillations is the same. Thus, Equation 3.73 will be used for the
whirl forces and no time dependence is expected in the aeroelastic matrices.

Figure C.1: Comparison between time domain solution using
whirl forces exact solution for 2 blades or symmetry

approximation
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Figure C.2: Relative error between time domain solution using
whirl forces exact solution for 2 blades or symmetry

approximation
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