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Abstract
Neuromorphic sensors, like for example event cameras, detect incremental changes in the sensed quantity
and communicate these via a stream of events. Desired properties of these signals such as high temporal
resolution and asynchrony are not always fully exploited by algorithms that process these signals.
Spiking neural networks (SNNs) have emerged as the algorithms that promise to maximally attain
these characteristics and are likely the key to achieving a fully neuromorphic computing pipeline. But,
this means that if the SNN is to take full advantage, the event stream must be sent directly and unaltered
to the SNN, which in turn implies that all temporal integration should occur inside the SNN. Therefore,
it is interesting to investigate the mechanisms that achieve this. This thesis does so through evaluating
and comparing the performance of different memory mechanisms in SNNs found in the literature, as
well as through an in depth analysis of the inner workings of these mechanisms. The mechanisms
include spiking neural dynamics (leaks and thresholds), explicit recurrent connections, and propagation
delays. We demonstrate our concepts on two small scale generated 1D moving pixel tasks in preliminary
experiments first. After that, we extend our research to compare the memory mechanisms on a real-
world neuromorphic vision processing task, in which the networks regress angular velocity given event
based input. We find that both explicit recurrency and delays improve the prediction accuracy of the
SNN, compared to having just spiking neuronal dynamics. Analysis of the inner workings of the networks
shows that the threshold and reset mechanism of spiking neurons play an important role in allowing
longer neuron timescales (lower membrane leak). Forgetting (at the right time) turns out to play an
important role in memory. Additionally, it becomes apparent that optimizing an SNN with explicit
recurrent connections or learnable delays does not lead to the formation of robust spiking neuronal
dynamics. In fact, spiking neuronal dynamics are largely ignored, as after optimization virtually no
input current is integrated onto the membrane potential in these cases. Instead, we consistently find
that a recurrent SNN prefers to build a state solely with the explicit recurrent connections, while an
SNN with delays prefers to just use the delays. Therefore, our SNNs with explicit recurrent connections
and delays are in fact better described as binary activated RNNs and ANNs, respectively.
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1
Introduction

In recent years, the field of neuromorphic computing has gained significant attention as researchers strive
to create machines that can handle data faster and more efficiently than current computing systems.
The traditional Von Neumann architecture, which is the accepted standard for computing machines,
has significant differences when compared to the human brain in terms of organization, power require-
ments, and processing capabilities (Schuman et al., 2022). This has led to the question of whether it is
possible to design alternative architectures that are inspired by the brain and potentially even superior
to a biological brain.

One promising approach in this field is the use of Spiking Neural Networks (SNNs), which are a family
of algorithms that mimic the biological behavior of neurons and synapses. These algorithms have shown
to be capable of producing competitive performance while significantly improving computational effi-
ciency, particularly when used in settings with time-varying signals and in combinationwith dedicated
hardware (Davies et al., 2021; Göltz et al., 2021; Hagenaars et al., 2021; Yin et al., 2020). As the
integration of algorithms and hardware continues to improve, the potential for SNNs to achieve even
greater performance and efficiency remains enormous.

One area of particular interest is the development of a neuromorphic pipeline that mimics the biolo-
gical way of perceiving. Take for example human visual perception. The retina, a key organ in the
visual system, turns the spatiotemporal information in the visual scene’s light into spike trains and
patterns through adaptive filtering and sampling methods to increase coding efficiency (Posch et al.,
2014). These spike trains are then transferred to the visual cortex, where cognitive perception occurs.
To replicate this process in a neuromorphic pipeline, it is crucial to transfer the spike trains from a
silicon retina to a spiking neural network (SNN) in an unaltered and one-by-one manner, and allow the
network to handle the temporal integration of signals.

Because nature demonstrates that most temporal integration of input signals should occur inside the
neural network, it is important to investigate how to manipulate SNNs to extract spatiotemporal features
of data streams accurately and efficiently. To that end this research will address which architectures,
neuron models, learning procedures and other characteristics promote or prevent the formation of robust
temporal integration of information.

1.1 Research opportunities & research question

Various approaches to incorporating memory in SNNs are found in the existing literature. Many tech-
niques are designed to solve one specific task and the models differ significantly in neuron model,
learning procedure, network size and many other parameters. Until now, no systematic and compre-
hensive research has been carried out in order to fairly compare these approaches and find out which
architectures, neurons models, learning procedures have a positive (or negative) impact on temporal
integration of information inside an SNN. This thesis aims to bridge this knowledge gap. Therefore,
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2 Introduction

the main research question of this thesis is:

Which spiking neural network (SNN) architectures, neuron models, learning pro-
cedures, and potentially other configurations promote or prevent the formation of
robust temporal integration of information?”

Integration of information inside an SNNrequires the saving (buffering) of spikes from previous states
on hardware for later use. This buffering of spikes can, especially when implemented on real-time
neuromorphic hardware devices, incur a significant memory and computing overhead. It would be
interesting which memory mechanism are more affected or less affected by this. Therefore, the first
sub-question is:

To what extent introduce different memory mechanisms in SNNs an overhead in
terms of memory usage and computing power?

Moreover, the temporal integration of information requires that input signals propagate the network
at different rates. Information fromone input time step has to come together with information from
another time step in the same node in the SNN for it to be successful. This implies that potentially
significant latency can arise during inference. Therefore, the second sub-question is:

Which memory mechanisms, and to what extent are different memory mechanisms,
in SNNs accompanied by latency during inference?

Finally, it is interesting to compare memory mechanisms in SNNs (where possible) to equivalentmemory
mechanismimplementations in non-spiking neural networks. The comparison can be done using various
criteria such as accuracy on a certain task, energy efficiency or length ofmemory. Therefore, the third
sub-question is:

How does incorporating spiking neuronal dynamics into a neural network compare
to having no spiking dynamics?

1.2 Structure of this work
This thesis consists of four parts. Part Part I contains a standalone scientific paper that presents the
main contributions of this thesis.

Part II gives an in-depth account of relevant literature on the topics of neuromorphic computing, spiking
neural networks and memory mechanisms in SNNs. In Chapter 2, neuromorphic computing is intro-
duced and in particular the differences and advantadges compared to traditional computing approaches
are highlighted. Subsequently, Chapter 3 elaborates on SNNs. Among others, different neuron models,
learning approaches and performance on neuromorphic hardware are discussed. Finally, Chapter 4
examines the different methods for integrating information inside SNN that are found in the existing
literature.

Next, Part III discusses the preliminary experiments performed to gain a deeper understanding of the
topic. These experiments consist of testing various ANN and SNN models with different forms of in-
ternal memory on two artificially created tasks that require memory to solve. Chapter 5 contains the
methodology of the preleminary experiments where the various models and two tasks are described
in detail. In Chapter 6 presents the results of the preliminary experiments and also discusses them.
Finally, Chapter 7 concludes with the main takeaways of the preliminary experiments.

Finally, Part IV contains the appendices. Appendix A.1 contains the network parameters as used for the
preliminary experiments, Appendix A.2 a very basic PyTorch implementation of a SNN and Appendix
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A.3 the results of a small ablation study to find the optimal settings for gradient clipping.
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An Investigation of Different Memory Mechanisms in Spiking Neural
Networks in the Context of Event-Based Vision

L.D.J. Lammers1, J.J. Hagenaars2, G.C.H.E. de Croon2

Abstract— Neuromorphic vision sensors detect brightness 
changes in individual pixels asynchronously and with high 
temporal resolution. To maximally attain these desirable signal 
characteristics, brightness changes are passed directly as 
‘events’ to spiking neural networks (SNNs) for processing. Since 
these events arrive asynchronously and with low latency, the 
SNN has to integrate information from these events over time. 
In this article, we provide a systematic performance comparison 
and analysis of different memory (integration) mechanisms in 
SNNs. We distinguish three classes of mechanisms with which 
we augment a base neural network architecture: leaks, explicit 
recurrent connections, and synaptic delays. We compare these 
mechanisms on a neuromorphic vision processing task, in which 
the network regresses angular velocity given event based input. 
We find t hat a ll t hree i ntegration m echanisms p rovide enough 
temporal integration to achieve performance competitive with 
previous work. Additionally, we find t hat t he u se o f explicit 
recurrent connections and learnable axonal delays strongly 
inhibits the formation of robust spiking neuronal dynamics 
during optimization, to the point where the SNN approaches a 
binary activation network. Also, the importance of a threshold 
with a membrane potential reset mechanism emerges, even 
for conventional artificial n eural n etworks ( ANNs). A dding a 
thresholded ReLu with reset mechanism to a leaky feedforward 
ANN not only improves speed of convergence, but also improves 
prediction accuracy.

I. INTRODUCTION

Researchers in the fields o f n euroscience, machine
learning, and robotics draw substantial inspiration from
biological species such as winged insects. The ability
of these small animals to perform highly complex tasks,
such as visual perception and rapid movement in cluttered
environments, with extremely limited computational
resources showcases their efficiency. T his d iscipline of
attempting to compute in an efficient m anner t hat closely
resembles the biological way of interpreting and processing
information is known as neuromorphic computing [1, 2].

Efforts to construct an end-to-end neuromorphic
computing pipeline focus primarily on three aspects: (1)
acquiring signals with neuromorphic characteristics such
as sparsity and spike-based information encoding, (2)
developing algorithms for processing these signals in a
brain-like manner, and (3) creating hardware that supports
these neuromorphic characteristics. The event camera is
an example of an innovation aimed at achieving the first
aspect. Event cameras detect per-pixel brightness changes
asynchronously and output these as a stream of events, rather

1Lammers is a MSc student in Aerospace Engineering, Delft University 
of Technology, Netherlands.

2Supervisor at Faculty of Aerospace Engineering, Delft University of 
Technology, Netherlands.

Fig. 1: Schematic representation of our neuromorphic
computing pipeline. Events from the event camera enter the
encoder network without any temporal encoding in the input
representation. The base encoder network can be augmented
with three different memory mechanisms (spiking neurons,
explicit recurrent connections or propagation delays) that
introduce information integration inside the network.

than continuously reporting a value at a fixed frequency [3].
High temporal resolution (on the order of µs), very large
dynamic range (140dB vs. 60dB for CMOS cameras), low
power consumption, and high pixel bandwidth (on the scale
of kHz) are favourable properties that result in reduced
motion blur for event cameras compared to traditional
cameras [3, 4].

Due to the unique characteristics of event-driven
signals, such as sparsity and asynchrony, conventional
signal processing methods often cannot be used without
compromising these hard-earned characteristics. Spiking
neural networks (SNNs), a family of algorithms employing
computational primitives that mimic the biological behaviour
of neurons and synapses, have emerged as a highly promising
alternative. SNNs have been shown to substantially improve
computational efficiency and latency, particularly when used
in conjunction with time-varying signals and dedicated
neuromorphic hardware [5]–[8].

Despite the promise of more efficient computing
and the inherent suitability for time-dependent signals,
SNNs often are not implemented in a manner that
actually takes advantage of these features. Typically, when
processing signals with spatiotemporal dependencies, these
dependencies are encoded in the event representation prior



to entering the (spiking) network [9]–[13], permitting
memoryless networks to perform such tasks. This method
disregards, at least in part, the biological motivation
underlying event-based perception [14], while also
introducing latency in the communication between sensor
and neural network. In order to realize a true neuromorphic
pipeline, spike trains originating from an event-based sensor
should be transferred as-is and one-by-one to the SNN,
and temporal integration of signals should be left to the
network. To accomplish this, it is necessary to investigate
how to manipulate SNNs in order to extract spatio-temporal
features of data streams accurately and efficiently.

In this article, we evaluate and compare three distinct ways
of introducing memory into an SNN. These mechanisms
include the inherent spiking neuronal dynamics (originating
from leaks and thresholds), explicit recurrent connections
and learnable spike propagation delays. In addition to
SNNs, non-spiking equivalent networks are also trained
to function as a reference (explained in more detail in
Sec. III-D). Whereas a significant fraction of SNN research
focusses on problems with limited temporal complexity like
classification and segmentation, we deliberately target an
alternative application with more temporal complexity by
training our memory mechanisms to regress angular velocity
from event-based data. In contrast to classification and
segmentation, where the class can sometimes be determined
on the basis of only a single input and the predicted value
remains constant over time, regression on event-based input
signals requires much more temporal integration as well
as predicting a continuously changing value. We use a
public dataset with real-world motion sequences [15] that
have ground-truth angular velocity information, allowing
supervised learning.

In summary, this article has two main contributions. First,
we present a thorough comparison between different memory
mechanisms in SNN in terms of performance, as well as an
in depth analysis of network parameters including membrane
voltage leaks, recurrent connection weights and delay values.
Second, we report the first implementation of an SNN with
learnable delays to successfully perform a relatively complex
regression task.

II. RELATED WORK

In the field of neuromorphic computation, spiking neural
networks have become a popular research topic, and the
literature offers a variety of architectures that can integrate
information inside the network. Almost all mechanisms can
be classified into one of three categories: (1) networks that
exclusively utilize spiking neuronal dynamics, (2) networks
with explicit recurrent connections, and (3) networks with
propagation delays. Here, we will only discuss works where
one of the previously mentioned mechanisms is optimized
through training. In addition, with spiking neuron dynamics
we denote that it concerns feedforward (i.e., without
recurrency or delays) SNN architectures that exclusively
rely on the dynamics of their spiking neurons for temporal
information integration.

A. Spiking Neuron Dynamics

With the introduction of surrogate gradient
backpropagation [16], neuronal parameters and synaptic
connectivity could be optimized simultaneously. Optimizing
neuronal parameters represented a significant departure from
previous modelling standards, where the error signals were
usually computed on the timing of spikes. The importance
of optimizing spiking neuron parameters was highlighted in
[17]. Perez-Nieves et al. found that increasing heterogeneity
(providing each neuron with a unique membrane and
synaptic time constant) in SNNs improved performance
across a variety of tasks, but particularly for tasks with a
more complex temporal structure.

A number of studies focus specifically on exploiting the
inherent spiking neuronal dynamics to extract information
from spatiotemporal dependencies in input signals. Due
to the fact that only a small proportion of these works
concentrate on regression tasks, we also discuss some
other notable work focussing on other tasks. In [18],
Ponghiran et al. demonstrate the utility of spiking dynamics
for learning long sequences. By improving the inherent
recurrence dynamics, they achieve a 2× reduction in
learnable parameters compared to using LSTMs or GRUs,
while performance is similar. In another work, Pellegrini
et al. [19] show that a feedforward network of dilated
convolutional spiking layers can perform speech command
recognition on par with (non-spiking) deep neural networks
(DNNs), while exhibiting sparse activity. In contrast to
the majority of works that apply SNNs to speech tasks,
where non-trainable mechanisms are required to first encode
the speech input features into a neural encoding, their
approach applies the first convolution layer directly to
real-valued speech features and is trainable just like the
rest of the network. The authors in [20] focus on an
application that appears perfectly suitable for SNNs due
to the importance of minimal energy consumption. They
train a feedforward SNN to accurately recognize human
activity based on time series data from wearable sensors
while reducing energy significantly. Finally, a work by
Viale et al. is certainly noteworthy as they not only utilize
spiking neuronal dynamics to detect vehicle lanes from
event-based camera input, but also successfully implemented
their SNNs on neuromorphic processor Loihi [21]. Their
Loihi implementation demonstrates accuracy comparable to
the SOTA while consuming as little as 1W of power.

One of the earliest (and only) works that exclusively
exploits the intrinsic temporal dynamics of spiking neurons
for regression in the continuous time domain is [22]. The
authors trained a simple, strictly feedforward convolutional
SNN to estimate angular velocity ego-motion using a
generated event-camera dataset. They discovered that with
spiking neuronal dynamics alone, angular velocity could
be regressed with a reasonable degree of accuracy. Early
works that tackle larger scale, dense visual regression tasks
include [23, 24]. Rançon et al. [24] propose StereoSpike,
a fully spiking deep neural network architecture for depth



prediction, while Hagenaars et al. [23] train non-recurrent
(as well as recurrent) SNN architectures to regress dense
optical flow. Finally, the EVSNN model presented in
[25] for event-based video reconstruction demonstrates for
the first time that feedforward SNN can also perform
large-scale regression tasks such as event-based video
reconstruction. Compared to ANN-based models, this model
obtains comparable performance on the IJRR [15], MVSEC
[26], and HQF [12] datasets while consuming 19.36 times
less energy.

B. Recurrent Connections

In addition to the inherent form of memory of spiking
neurons, temporal integration can also be introduced
explicitly through recurrent connections. Non-spiking
recurrent neural networks (RNNs) were introduced in the
late 1980s [27]–[29]. Aside from the neuron type, recurrent
ANNs and recurrent SNNs (SRNNs) operate similarly.
The only distinction is that during subsequent time steps,
spikes are fed back into the spiking neurons of the same
layer rather than floats. One of the earliest publications to
effectively implement recurrency in an SNN in conjunction
with backpropagation through time (BPTT) is [30]. More
recent works such as [31] and [8, 32] for the first time
successfully leverage surrogate gradients in order to train
their recurrent SNNs, although they limited themselves to
classification and recognition tasks. This observation is
actually quite prevalent, as a large proportion of the most
widely-read literary works focus on these types of tasks.
[33]–[37].

Not many works use spiking neuron in combination with
explicit recurrent connection. A notable early implementation
of recurrent connections in a deep SNN in order to solve
a complex continuous time regression problem however
is [23]. Hagenaars et al. use spiking variants of two
common optical flow estimation methods from events
to regress optical flow without any temporal encoding
in the input representation. They show that performance
is comparable to equivalent non-spiking variants at an
estimated 25× increase in energy efficiency. In [38], the
authors extend the classical LSTM formulation to the spiking
domain. The performance of this SLSTM was analysed by
employing a history-dependent isotropic hardening model in
which various load vectors were accurately regressed. The
spiking LSTM reduced energy consumption by 238× during
inference on the Loihi processor.

C. Delays

Numerous studies have demonstrated that synaptic delays
are present in biological neurons and that they contribute
to the richness of neuronal dynamics [39]–[41], so it is
not surprising that research in the neuromorphic computing
domain has laid emphasis on these mechanisms as well. In
SNNs, the learning of delays is typically done via one of
either two methods. We refer to these methods as delay
selection and delay shift. The former is a mechanism in
which a presynaptic and a postsynaptic neuron are connected

via a connection consisting of sub-connections, each having
a distinct delay and weight. By performing gradient descent
on the weights, sub-connections with appropriate delays
are strengthened, while those producing undesirable output
spikes are reduced. Bohte et al. [42] who proposed the
SpikeProp algorithm were the first to present a framework
that achieves delay selection. Numerous researchers have
utilized this algorithm to learn delays in a wide variety
of small scale scenarios since [43]–[47]. However, delay
selection has been applied to complex tasks as well, although
not in a supervised learning context. Paredes-Vallés et al.
[48], for example, used it to successfully regress optical flow
from events in an unsupervised manner.

Alternatively, we have delay shift, a method that optimizes
propagation delays via direct backpropagation of errors on
delays. For this to work, during training larger segments
of a time sequence must be entered into the SNN at a
time. Only then there is an exact defined mathematical
relation between points that bridges time steps in the
input signal (achieved through convolving with a time
shifted Dirac pulse). This is required in order to compute
partial derivatives and realize error credit assignment.
Important is that during inference this is not a requirement
because once the delays are learned, sequential input is
no problem and low latency inference can be realized.
Shrestha and Orchard [49] presented a framework which
accomplishes exactly that, which they called Spike Layer
Error Reassignment (SLAYER). Their approach is capable
of learning simultaneously the weights, leaks and axonal
delay parameters in an SNN, and established a new SOTA on
multiple tasks including image and audio challenges. Axonal
delays can be viewed as a special case of synaptic delays,
where all synapses downstream to neuron i share the same
delay. In other words, all postsynaptic neurons of neuron i
receive spikes at the same (delayed) moment in time. Only
four other works learn axonal delays directly and are all
implemented using the SLAYER framework. Sun et al. [50]
integrate learnable axonal delays into the spiking neuron
model with a static delay cap which they later extend to
an adaptive training scheduler to adjust the delay cap [51].
In [52] axonal delays are learned without constraint. Each
of these implementations have been limited to classification
tasks. A fourth work also focusses on classification but
is notable for a different reason. In [53], the SLAYER
framework is modified such that downstream synapses no
longer share the same delay, but each have their own delay
value. Through learning only synaptic delays (i.e., no weight
learning) in a feedforward SNN, they achieve performance
comparable to the conventional training of synaptic weights.

III. METHODOLOGY

In this section, we describe our approach in detail.
Subsection III-A discusses how the event stream is
partitioned to an input representation. Then, in III-B, we
describe the (spiking) neuron models used. Afterwards, the
base neural network architecture that is used throughout
this research is presented in subsection III-C. The different



Fig. 2: Left: Schematic representation of the output event stream of the event camera. Discrete partitions in the time dimension
are created every ∆t seconds. Right: The resulting frames after the events within each partition are accumulated. Images
are a courtesy of [23].

memory mechanisms are introduced in subsection III-D.
Finally, the methodology is concluded with an elaboration
on the used dataset in subsection III-E and a description of
the training procedure in subsection III-F.

A. Events to Input Representation

The sensor of an event camera consists of a grid of
independent pixels that respond to changes in brightness.
More precisely, they respond to variations in their log
photocurrent L = log(I). An event ek = (xk, tk, pk) is
generated at pixel xk = (xk, yk) and time tk immediately
after the brightness change since the last event at that pixel,

∆L (xk, tk) = L (xk, tk)− L (xk, tk −∆tk)

= pkC,

exceeds a predefined threshold ±C, where C > 0, ∆tk is
the time since the last event at the pixel in question and the
polarity pk ∈ {+1,−1} is the sign of the brightness change
[4].

Since the purpose of this study is to examine temporal
integration capabilities inside SNNs, it is crucial that time
information is not encoded in the input representation.
This is however precisely what many learning-based models
currently proposed for event-based regression do, allowing
memoryless artificial neural networks (ANNs) to take
advantage of time dependencies and to produce precise
estimations.

Our goal is for spiking neural networks (SNNs) to
receive spikes directly at event locations and extract temporal
information by itself. Due to digital hardware limitations,
we cannot enter individual events into the network as
they may be only ∼1 µs apart. Hence, we opt for a
second-best alternative. As shown in Figure 2, we use a
representation, inspired by [23], consisting solely of per-pixel
and per-polarity event counts. This representation contains
partitions of the event sequence that are consecutive and
non-overlapping, with a length of 1 ms per partition.
Additionally, the maximum count per pixel is limited to 1 to
assure minimal temporal encoding.

B. Neuron Models

For our spiking neurons we use the widely used Leaky
Integrate-and-Fire (LIF) neuron model or the Spike Response

Model (SRM). The SRM is only used in the networks that
learn axonal delays because the SLAYER framework [49]
we use for learning axonal delays only features the SRM.
For our non-spiking neurons we draw inspiration from [23].

LIF: Although the LIF neuron is not of the highest
possible biological realism, its simplicity allows for efficient
simulation, while offering enough computational versatility
for most applications. The LIF model, models the biological
neuron as a simple electrical circuit having a membrane
potential U that is excited by an input current I . In
discretized form the dynamics are described as:

I
(l)
i [n] =

∑
j

W
(l)
ij S

(l−1)
j [n] +

∑
r

W
(l)
ir S(l)

r [n− 1] (1)

U
(l)
i [n] = (1−S

(l)
i [n−1])αU

(l)
i [n−1]+(1−α)I

(l)
i [n] (2)

where subscripts j and r denote presynaptic neurons from
the previous layer and current layer (in case of recurrency),
respectively, i denotes postsynaptic neurons and superscript
(l) denotes the layer index. The membrane leak is denoted
by α, spikes by S ∈ {0, 1} and Wij and Wir represent
the weights of the feedforward and recurrent connections,
respectively. Furthermore, the LIF neurons fire when their
threshold ϑ is crossed from below according to

S
(l)
i [n] = Θ

(
U

(l)
i [n]− ϑ

)
, (3)

where Θ represents the Heaviside function. We use a per
neuron learnable threshold, as well as a hard reset mechanism
[54], meaning that the membrane potential returns to zero
after a spike.

As surrogate for the derivative of the spiking function we
use the derivative of the inverse tangent σ′ = 1/(1 + γx2)
[55], where γ defines the width of the surrogate gradient
and x the difference between the membrane potential and
the threshold U − θ. We use γ = 10.

SRM: The networks that employ learnable axonal delays
are build using the lava-dl implementation of SLAYER [49].
This platform uses the Spike Response Model (SRM) instead
of the LIF model. In the SRM, the course of the membrane
potential is described by



Fig. 3: Diagram of the base neural network architecture utilized in this study. The network receives events from an event
camera (input size = 240 × 180), and outputs the rotation rates around the three axes x, y and z. All evaluated variants
inherit from this architecture, differing only in the neuron model, convolutional recurrent or delay layers, or both.

TABLE I: Hyperparameters of the (spiking) neural networks.

Conv 1 Conv 2 Conv 3 Conv 4 Conv 5 Avg Pool Pred
Kernel
Size 4× 4 3× 3 3× 3 3× 3 3× 3 4× 4 —

Channels 16 32 32 64 64 — —
Stride 3 2 1 2 1 3 —

Padding 0 0 same 0 same — —

U
(l)
i (t) =

∑
j

W
(l−1)
ij (ε ∗ Sj) (t) + (ν ∗ Si)(t) (4)

where j denotes presynaptic neurons, i denotes
postsynaptic neurons, ε(t) = t/τs exp (1− t/τs)Θ(t)
is a filter kernel that describes the response to an incoming
spike and ν(t) = −2ϑ exp (1− t/τr)Θ(t) is a kernel that
describes the refractory response to an outgoing spike. The
time constants τs and τr are learnable parameters. The
lava-dl implementation of the SLAYER framework only
allows for shared membrane leakage and axonal delay per
convolutional channel.

The SLAYER framework uses a decaying exponential
as surrogate gradient (SG) that is defined as σ′ =
(1/α) exp(−β|x|). By setting α = 1 and β = 2, the decaying
exponential and the derivative of the inverse tangent of width
γ = 10 become practically identical.

Non-spiking Neuron Model: For a fairer comparison
between spiking and non-spiking neural networks, our
non-spiking neurons receive a leaky state. We adopt the
definition in [23], where the leaky artificial neuron is
analogous to the dynamics of the spiking neuron, except
that no reset mechanism is used and a non-spiking activation
function is applied. By replacing the spiking activation with
ReLu activation, the activation of any neuron becomes

yki = ReLU

αyk−1
i + (1− α)

∑
j

Wff
ijI

k
i

 , (5)

where j and i denote presynaptic and postsynaptic neurons
respectively, α is the neuron leak, k the time step, Wff are
the feedforward weights that are multiplied with the input
current I , and ReLU the rectifying linear unit.

C. Architecture

To ensure a fair comparison between memory
mechanisms, we designed a base neural network architecture
of which we create variants having either one or multiple

memory mechanisms available to it. The base architecture
ConvANN is a feedforward convolutional neural network
inspired by the network proposed in [22]. The base network,
illustrated in Figure 3, consists of 5 convolutional layers,
followed by an average pooling layer and a fully connected
prediction layer that outputs 3 values, one for the rotation
rate around each of the Cartesian axes. The blue blocks
in Figure 3 perform spatial downsampling, while doubling
the number of channels in each layer. The red block
perform spatial downsampling but keep the number of
channels the same to allow for easy implementation of
recurrent connections. Table I provides the exact per layer
hyperparameters.

In the most basic (non-spiking) form, the network does not
possess any integration capabilities. Therefore, this variant
should not be able to regress angular velocities and by
consequence is suitable as a baseline to check that no
temporal information is encoded into the input. From there
the base architecture can be augmented with spiking neurons
in all layers, creating a convolutional spiking neural network
ConvSNN. In addition, the network can be augmented further
by introducing learnable axonal delays or explicit recurrent
connections in layers 3 and 5 (red blocks in Fig. 3).

D. Memory Mechanisms

We evaluate three different memory mechanisms. The first
mechanism is the spiking neuronal dynamics. Due to having
an internal state that is not just dependent on present synaptic
inputs, but also on previous states, we refer to leaks as
implicit recurrency. Implicit recurrency introduces ‘memory’
into the SNN because it integrates previous synaptic input.
The parameters α and θ in equations 2 and 3, ultimately
determine the shape of membrane potential and thus the
spiking activity [57].

In addition to introducing implicit recurrency in the form
of spiking neurons, it is also possible to introduce temporal
dependencies explicitly by adding recurrent connections.
A (spiking) neural network with recurrent connections
introduces memory in the form of internal hidden states
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Fig. 4: (a) The poster scene (b) The boxes scene (c)
The dynamic scene (d) The dynamic scene with events
overlaid [56].

which are updated while time-stepped input feeds in. The
difference with implicit recurrency is that output spikes not
just feed back into the same neuron, but feed back into all
the neurons in the layer.

The third integration mechanism is the propagation delay.
For delay shift we learn axonal delays, meaning that all
presynaptic connections share the same delay (not to be
confused with a synaptic delay, where each synapse has its
own propagation delay). For delay selection we learn the
weights of synaptic delays. The propagation delays introduce
memory into the SNN by letting inputs of different time steps
catch up within the network.

E. ECD Datasets

To assess the accuracy of the memory mechanisms, we
train and test them on three distinct sequences: poster,
boxes, and dynamic rotation [15]. The sequences
poster and boxes are used for training, while the
sequence dynamic is used for testing. The poster scene
consists of a textured wall poster, the boxes scene of
crates on a carpet, and the dynamic scene of a desk
containing objects and a person moving them. In addition
to the event stream, all sequences include ground truth pose
measurements from a motion capture system (mocap), as
well as gyroscope data from the IMU of the Dynamic
and Active-pixel Vision Sensor (DAVIS) [58]. The motion
capture system has a sampling frequency of 200 Hz and the
IMU of 1 kHz. The sequences were manually recorded. Each
sequence is one minute long and comprises approximately
150 million events. Each sequence begins with rotations
around each camera axis, followed by rotations in all three
degrees of freedom. In addition, as the sequence progresses,
the motion accelerates.

F. Training Procedure

Our framework is implemented in PyTorch. All networks,
except for those learning axonal delays, are trained directly
using PyTorch Autograd with an SG. The axonal delay
networks are implemented utilizing the SLAYER framework,
which is based on PyTorch and indirectly employs the
Autograd functionality.

For training, we use the Adam optimizer to jointly update
the synaptic weights, membrane leaks and neuron thresholds
with a constant learning rate of 0.0005 and a batch size of 8.
Networks are trained until convergence. Initialization of the
neuron leaks is done by applying the sigmoid α = 1

1+exp(−a)
to values a, drawn from a normal distribution centred around
-3. This results in small initial leak and thus in little initial
‘memory’, encouraging the spiking neurons to learn such
behaviour instead of giving it from the start. In addition,
during every forward pass the leaks are squished between
0 and 1 using the sigmoid function in order to prevent
instability [55]. The thresholds θ are clamped to [0.05,→)
as implemented in [23].

IV. RESULTS AND DISCUSSION

In this section, we evaluate the performance and the
inner workings of the memory mechanisms. Training is
done on the poster rotation and boxes rotation
ECD sequences [15], while performance is evaluated on the
dynamic rotation dataset (the most diverse and realistic
scene). In addition to comparing our networks with each
other, we also compare performance with the event-based
SNN architecture for angular velocity regression in [22]
and the ego-motion estimation by contrast maximization
algorithm proposed in [4].

A. Performance Evaluation

First, based on Table II we conclude that our input
representation indeed does not encode any temporal
dependencies (in a single frame), as the memoryless
ConvANN does not perform better than a naive mean
prediction. As for the other networks, all have converged.
Our spiking networks show similar or better accuracy
to the SNN from [22] even though that network is
directly trained on the dynamic rotation dataset, while
our networks have never seen the dataset before testing.
The non-spiking equivalent networks achieve smaller error
although never having seen the test data before. The
highest accuracy is clearly achieved by the delay selection
networks. This is expected because the network has more
learnable parameters than the others (not one but six
synapses with different delays for all neurons in the 3rd

and 5th layer). The networks having explicit recurrent
connections (ConvSRNN and LeakyConvRNN) achieve the
second-highest accuracy. Their performance is followed by
the networks employing delays (DelaySNN and DelayANN).
The feedforward ConvSNN having just neuronal dynamics
to achieve temporal integration performs least well.

Secondly, comparing the performance of the SNNs with
their non-spiking equivalents, we conclude that the SNNs



Fig. 5: Qualitative results of the SNN (top row) and ANN (bottom row) on one of the most challenging parts of the dynamic
test sequence, where large pan and roll motion occur simultaneously.

TABLE II: Performance of the proposed ANN and SNN
architectures on the dynamic rotation dataset, as well
as state-of-the-art methods. The highest accuracies are in
bold.

dynamic rotation

εrms [deg/s] εrel [−]

Naive mean 126.3 —

ConvANN 126.4 1

ConvRNN 48.0 0.42

ConvSNN 63.0 0.55

LeakyConvANN 50.9 0.44

ConvSRNN 56.2 0.50

LeakyConvRNN 44.3 0.39

DelayShiftSNN 58.2 0.51

DelayShiftANN 67.0 0.58

DelaySelectSNN 35.8 0.29

DelaySelectANN 32.3 0.27

SNN [22] 53.8 —

CM [59] 9.68 —

in all three cases perform slightly worse. This observation
is consistent with previous work [23, 31, 60]. The reason
that spiking seems to perform consistently less well than
non-spiking highly likely has to do with the neural activation
function right before the prediction layer. Because spiking
activation is binary, the solution space of the SNN is
finite. In fact the SNN can output only N2

pred distinct
values, as it can switch each prediction layer weight
either ’on’ or ’off. The ANN in contrast has an infinite
solution space as the continuous activation allows for

an infinite combination of prediction layer weights. This
fundamental difference between spiking and non-spiking
likely becomes more apparent when regressing continuous
numerical values than for example when attempting a
discrete task like classification. This difference between
spiking and non-spiking is also clearly visible in the
qualitative results in Figure 5, in which the spiking networks
(upper row) give much noisier output. To test whether the
prediction layer is responsible for the noisy output, we also
trained an SNN with a leaky prediction layer. Theoretically,
this could result in a smoother output, as fractions of
preceding outputs are also included in new outputs. The
evaluation demonstrated however that the leaks of the output
neurons do not grow larger than α = 0.3, which is not
large enough to notice a substantial difference in smoothness.
Initializing the leaks of the prediction layer near α = 0.8 also
was not helpful as it actually resulted in the leaks decreasing
during optimization, as well as a serious deterioration in
performance. Further details can be found in Appendix V.

B. Analysis of Neural Parameters

As explained in section III-F, we initialize the leaks α
of our spiking neurons close to 0, corresponding to little to
none initial memory thereby challenging the spiking neurons
to learn such behaviour instead of giving it from the start
(see Equation 2). To investigate whether this has indeed
happened, histograms of the leaks per layer before training
and after training are plotted (Fig. 6). The top row in
Figure 6, corresponding to the leaks of the (feedforward)
ConvSNN, clearly shows that the leaks initially (blue bins)
are distributed around 0 in each layer. After training, we
see that the ConvSNN, which is completely dependent on
spiking neuronal dynamics for information integration, has
indeed transformed a large part of its decay values towards



Fig. 6: Histograms of the distribution of the membrane decay parameter
α per layer, before (blue) and after training (red). A are the distributions
of the decay of the ConvSNN, B the distributions of the LeakyConvANN
and C the distributions of the ConvRecSNN.

Fig. 7: Top row: average size of the
convolutional kernels before training. On
the left kernels that connect to neurons
to themselves (auto-recurrent connections).
On the right kernels that only connect
neurons to other neurons (cross-recurrent
connections). The bottom row: the average
of the same kernels as on top, but after
training.

1, as the red bins are no longer distributed around zero.
Especially layer 2 (the second plot from the left) appears
to be responsible for a lot of integration, based on the
large peak close to 1. In later layers, decay rates are
distributed more uniformly, some choosing for almost no
integration while others a lot. This makes sense as angular
velocity estimation is only possible by concentrating input
information of different time steps to the same point in
time in the network. This requires different spiking neuron
timescales.

If we examine the distribution of the leaks of
LeakyConvANN (middle row of Figure 6), the non-spiking
counterpart of ConvSNN, then we notice that the distribution
looks somewhat different. The α values do not approach 1,
but we see that for the non-spiking variant the maximum α
values approach ≈ 0.5. This difference can be explained by
the difference in neural activation. The non-spiking neurons
do not possess a reset mechanism to ‘clear’ their memory
after a spike is transmitted, whereas spiking neurons do. To
prevent a neuron from becoming worthless after a number
of inputs because it is blocked with an accumulation of old
inputs, the leaks do not exceed about 0.5. Our hypothesis
that the lack of a reset mechanism forces this distribution of
leaks is tested by training the leaky ANN with a thresholded
ReLU and a reset mechanism (details in Appendix V). With
a reset mechanism, the α values of the ANN do indeed
move towards 1 and it even turns out that this neuron
model achieves the highest accuracy of all networks: εrmse =
40.5deg/s (not considering the delay selection networks
because they have more learnable parameter). This highlights
nicely that forgetting is an important aspect of memory.

C. Membrane Voltage Decay with Recurrency

Next we investigate the composition of the parameters in
the SNN with explicit recurrent connections (ConvSRNN)
after training. From Table II we deduce that the accuracy
of the SRNN is greater than that of the feedforward
SNN (56.2 vs 63 deg/s), indicating that the recurrent
connections augment temporal integration capabilities. The
decay rates of the membrane potentials of the spiking
neurons are visualized in the bottom row of Figure 6.
What these histograms show is that nothing changes at all
to the learnable neuronal parameters during the training
process. The recurrent connections did not augment the
temporal integration capabilities of the SNN, but completely
substituted the spiking neuronal dynamics. Even layers
without recurrent connections (L1, L2 and L4) do not
integrate any input spikes. In this form, the network is
better described as a binary activation network with recurrent
connections than as a spiking neural network.

To gain insight into how the explicit recurrent connections
take over the job of the spiking neuronal dynamics, we
analyse the recurrent weight kernels. Similar behaviour to
spiking neural dynamics, would mean that the recurrent
weights connecting the spiking neurons to itself have
a relatively large weight, while the other weights are
relatively small. Figure 7 shows the mean weight size of
the weights connecting neurons to themselves (which we
call auto-recurrent connections) and of weights connecting
to others (which we call cross-recurrent connections). The
top two plots correspond to pre-training, while the bottom
two corresponds to post-training. From the fact that the top
two plots are approximately uniformly blue, we deduce that
all weights are (as expected) uniformly initiated. From the
fact that the middle weight in the plot on the bottom left is



the darkest red, we deduce that it is the largest on average
after training. The weights of auto-recurrent connections are
therefore larger than those of cross-recurrent connections.
This is not to say that feeding back output to other neurons in
the same layer does not happen. After all, the other weights
are also non-zero. Yet, it seems that by feeding neural
output relatively strongly back to themselves, the neurons
no longer need spiking neuronal dynamics. The membrane
voltage decay are simply kept near 0 and the auto-recurrent
connections build a state as a substitute.

To test whether, when using recurrent connections, the
SNN does not want to use the dynamics of the spiking
neurons at all, or if this only occurs when α is initialized near
0, we also trained the network with uniform initialization
between 0 and 1 of decay (see Appendix V for details).
We find that learning becomes extremely unstable with
uniform initialization and that there is a significant reduction
in performance. Despite the fact that there are further
possibilities to tinker with the initialization of the leaks,
thresholds and weights, with which perhaps a little better
performance can be achieved, this clearly indicates that
SNNs do not easily combine explicit recurrent connections
with spiking neuronal dynamics.

D. Axonal Delay vs. Membrane Leak

To investigate what happens to the delays and leaks during
training and whether there is a correlation between the two,
scatter plots of these two parameters were created. The plots
are depicted in Figure 8. The blue data points represent
the conditions prior to training, while the red data points
represent the situation after training. What is immediately
noticeable is that the leaks hardly change during training
when we are learning delays, just like we have seen with
recurrent connections. In fact, the leaks grow smaller through
learning, which indicates even less input current is integrated
onto the membrane potential after learning than before.
The axonal delays in contrast, have changed significantly
during training: from uniform initialization between 0 and
1 millisecond to a maximum of approximately 6 ms after
training. Not all delays have increased, however. Some delays
actually return to 0. This is in fact not very surprising
because eventually it’s important to have input elements
arriving at different times to catch up with one another
inside the network, in order to achieve temporal integration
of information. This requires some delays to be short and
others to be long. Lastly, comparing the delays in layer 3
with the delays in layer 5, we notice that the delays get
slightly larger deeper in the network. This indicates that the
network prefers to focus more on extracting spatial features
in shallower layers to then integrate the feature maps of
different input time steps deeper in the network.

V. CONCLUSIONS

In this paper, we evaluated the performance of three
different memory mechanisms for SNNs on an angular
velocity regression task given events from an event camera.
The evaluated mechanisms include spiking neuronal

Fig. 8: Scatter plots of the delays vs the leaks before training
(blue) and after training (red). The upper plot corresponds
to the delays and leaks layer 3 (L3), while the bottom plot
corresponds to the delays and leaks in layer 5 (L5).

dynamics (implicit recurrency), recurrent connections
(explicit recurrency) and propagation delays. We find that
both explicit recurrency and delays improve the prediction
accuracy of the SNN, compared to having just spiking
neuronal dynamics. Analysis of the inner workings of the
networks shows that the threshold and reset mechanism of
spiking neurons play an important role in allowing longer
neuron timescales (lower membrane leak). Forgetting (at the
right time) turns out to play an important role in memory.
Additionally, it becomes apparent that optimizing an SNN
with explicit recurrent connections or learnable delays
does not lead to the formation of robust spiking neuronal
dynamics. In fact, spiking neuronal dynamics are largely
ignored, as after optimization virtually no input current
is integrated onto the membrane potential in these cases.
Instead, we consistently find that a recurrent SNN prefers to
build a state solely with the explicit recurrent connections,
while an SNN with delays prefers to just use the delays.
Therefore, our SNNs with explicit recurrent connections
and delays are in fact better described as binary activated
RNNs and ANNs, respectively.
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A ABLATION STUDY INFLUENCE RESET MECHANISM

Fig. 9: A Distribution of the membrane potential decays in the LeakyConvANN per layer, after training. B Distribution of
the membrane potential decays per layer, after training when a thresholded ReLu with a reset mechanism is added.

To test our hypothesis that the decays in the non-spiking variant of the ConvSNN do not come close to α = 1 because it
does not have a threshold with reset mechanism, we train a variant of the LeakyConvANN with a thresholded ReLu and
reset. The decay distribution per layer without thresholded or reset are shown in A in Figure 9. The decay distribution per
layer with a thresholded ReLu and reset are shown in B in Figure 9. It is very clear that with a thresholded ReLu and reset
the decay values do go towards 1 during training because in the bottom figure red bins are located near α = 1. What is
also very interesting is that with a thresholded ReLu and reset mechanism the performance of the LeakyConvANN increases
considerably: 40.5 deg/s with vs. 50.9 deg/s without. This highlights elegantly that forgetting is an important aspect of
memory.

B ABLATION STUDY DECAY INITIALIZATION RECURRENT SNN

Fig. 10: Loss curves for uniform initialization of the membrane potential decay rates for different learning rates.

To determine if, when using recurrent connections, the network does not want to use the dynamics of the spiking neurons
at all, or if this only occurs when alpha is initialized near zero, we also run the network with uniform initialization of



decays between 0 and 1. This shows that training is becoming increasingly unstable. All trials except for the green curve
stop training early because of numerical stability issues arising. The green run (lr = 0.0005) does not come close to the
performance of decay initialization near 0.

C ABLATION STUDY PREDICTION LAYER IN SNN

(a) (b)

Fig. 11: (a) Qualitative results of ConvSNN with a regular, stateless prediction layer. (b) Qualitative results of ConvSNN
with a leaky prediction layer.

It became apparent from the qualitative results that the predictions of the spiking networks are noisier than those of the
non-spiking networks. It is believed that this is due to the fact that spiking networks have fewer possible outputs than
non-spiking networks because they can only switch prediction weight ’on’ or ’off’ by spiking or not. A float output cannot
be used to select a fraction of the prediction layer weight. We train an SNN with a ‘leaky’ prediction layer to determine if
this improves the smoothness of the angular velocity prediction. The result is depicted in Figure 11. The left plot has not
used a leaky prediction layer, the right one has. Initializing the prediction layer leaks close to 0 results in leaks no larger
than α = 0.3 (remember α → 1 corresponds to more memory), which based on the noisy signal in the right plot is clearly
not enough to produce a smoother angular velocity estimation. Initialization of the prediction layer leaks much closer to 1
also does not improve the smoothness as it deteriorates performance very substantially.
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2
Neuromorphic Computing

Developing a machine that can process information faster than humans has been a major driver in com-
puting for decades, and the Von Neumann architecture has become the undisputed standard for this
type of machine. Comparisons between this architecture and the human brain, however, reveal major
discrepancies in organisational structure, power requirements and processing capability. This raises the
question whether it is possible to create alternative architectures based on neurological concepts that
are similar or even superior to a biological brain.

The first chapter of this literature review is devoted to the scientific advancements in the field of neur-
omorphic computing. Neuromorphic computing is, simply said, a subfield of computer science that
focuses on attempting to compute in a manner that closely resembles the biological way of interpret-
ing and processing information. In order to clearly describe all aspects of neuromorphic computing,
the subject is broken down into three components: event-based sensing, event-based signal processing
and neuromorphic hardware. The chapter begins with a brief introduction to neuromorphic comput-
ing. After that, in section 2.2 bio-inspired (or event-based) sensing methods are discussed. Section
2.3 addresses methods for processing data streams acquired by event-based sensors. Finally, section
2.4 concludes with a review of some neuromorphic hardware implementations, specifically hardware
designed to facilitate spiking neural networks.

2.1 Introduction to Neuromorphic Computing

It was Mead (1990) who came up with the term neuromorphic computing in the late 1980s. Initially,
it referred to brain-inspired computing solutions that combined analogue and digital components. As
the field evolved however, the term neuromorphic has come to embrace a much broader range of hard-
ware implementations. In this literature review the definition of Schuman et al. (2022) is followed and
neuromorphic computers are defined as non-Von Neumann computers whose design and operation are
inspired by the brain and consist of neurons and synapses with communication though spikes.

Where computers based on the Von Neumann architecture comprise separate central processing units
(CPUs) and memory units, neuromorphic computers aim at bringing the memory and computational
units much closer together. They do not store data and instructions in memory, but the neurons and
synapses comprising them take up this role. Neuromorphic computing programs are often task-specific
and are determined by the topology of the neural network and its parameters. Von Neumann computing
programs in contrast, are defined by explicit instructions and often have more general applicability. In
addition, whereas Von Neumann computers encode numerical data as binary values, neuromorphic
computers accept input as spikes whose timing, shape, and magnitude can encode numerical data.
Figure 2.1 provides a side by side comparison between the traditional Von Neumann architecture and
the neuromorphic architecture. Four fundamental differences between Von Neumann machines and
neuromorphic computers can be identified:

1. Closely integrated processing and memory: Although some metaphors suggest that in
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Figure 2.1: Side-by-side comparison of the Von Neumann architecture with the neuromorphic architecture.
Illustration adapted from Schuman et al. (2022).

neuromorphic computers the neurons serve as processing units (CPUs) and the synapses serve as
the memory units, this is often not true. In most implementations, neurons and synapses both
compute and store values. This so-called colocation of processing and memory avoids the Von
Neumann bottleneck caused by the separation of the two, which restricts the maximum achievable
throughput.

2. Parallel operation: Neuromorphic computers are highly parallel by nature. Numerous neurons
and synapses can compute simultaneously, not least because of the factors mentioned in item one.

3. Inherent scalability: Neuromorphic computing systems are scalable. That is to say, it is possible
to increase the number of neurons and synapses by merely adding more physical chips, so becoming
a single large chip. This feature is advantageous since it allows hardware to be sized according to
the requirements of a specific task. Implementations of this have been published using SpiNNaker
(Furber et al., 2014; Mayr et al., 2019) and Loihi (Davies et al., 2018).

4. Event-driven computation: Neuromorphic computers are known for their event-driven com-
putation and sparse activity. This means that information is only processed when input spikes
are received and no redundant computations are made.

As a result of event-driven computation, massively parallel processing and interneuron communication
by spikes, neuromorphic computers offer the prospect of very low power operation. It is this prospect
that is one of the most appealing elements of neuromorphic computers. One can imagine that low power
operation is advantageous for almost all applications, especially for robotic devices equipped with bat-
teries, such as drones. In addition to these clear advantages, neuromorphic computing has attracted
a great deal of attention in general due to the coming end of Moore’s law, the increasing power de-
mands associated with Dennard scaling1, and the narrow CPU-to-memory bandwidth (Von Neumann
bottleneck) (Schuman et al., 2017). Instead of attempting to continue extending and optimising an
intrinsically constrained design, a point has come that it is more beneficial, at least for some purposes,
to investigate alternative architectures.

The explosive growth of machine learning is also a major driver in the increasing interest in neur-
omorphic computing (Bouvier et al., 2019). Since their introduction almost 40 years ago, machine
learning algorithms have become progressively more complex, to the point where the field is now com-
monly referred to as ’deep learning’ due to the many layers often comprising them. Because of the vast
number of parallel computations required, these algorithms perform particularly poorly on traditional
1A scaling law stating that the power density of transistors remains constant as their size decreases. Since 2004, however,
this is no longer the case, as current and voltage could no longer continue to decrease without compromising the reliability
of integrated circuits (Bohr, 2007).
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(a) (b) (c)

Figure 2.2: (a) Trajectory of a fast moving ball. (b) Measurement of the same moving ball using a frame-based
sensor (c) Measurement of the same moving ball using an event-based sensor. Illustration retrieved from

www.prophesee.ai.

Von Neumann architectures in terms of both time and energy consumption. Invention of hardware ded-
icated to efficiently enabling these types of algorithms would be a significant advancement for machine
learning.

Efforts to construct an end-to-end neuromorphic computing pipeline have in common that they aim to
solve three important challenges. The first challenge is finding a way of acquiring input signals that
exhibit neuromorphic characteristics such as sparsity and spike-based information encoding. The second
is the creation of capable, yet efficient, algorithms with brain-like processing properties. The third and
final challenge is developing dedicated neuromorphic hardware having the five above-mentioned funda-
mentals properties.

The invention of event-based sensors presented the solution to the first challenge associated with con-
structing a fully neuromorphic pipeline and is discussed in more detail in the next section. The rise of
the SNN meant a brain-like computing algorithm was found that embodied the desired characteristics.
SNNs are the central topic of this literature review and are discussed at length in Chapter 3. The final
important element, neuromorphic hardware devices, are discussed in the latter section of this chapter.

2.2 Event-based Sensing

A key principle of neuromorphic computing is event-based sensing. Event-based sensing is inspired
by the ability of sensory neurons in the nervous system to only react to changes in the sensed quant-
ity rather than continuously reporting its value at a fixed frequency (Tayarani-Najaran & Schmuker,
2021). Figure 2.2 illustrates the difference between neuromorphic sensing and traditional sensing. Al-
though the strategy of periodic sampling at a constant rate has proven to be highly effective, it has
some inherent flaws. First, it is constrained to band limited signals in practice due to aliasing, an
issue which can render different signals indistinguishable when sampled. Secondly, sampling signals
on a periodic basis may be energy inefficient when signals change only sporadically. And thirdly, the
sampling interval imposes an intrinsic limitation on the minimum feasible latency. These problems are
not encountered with event-based sensing it is a sampling technique in which the signal dictates the
sampling. When a signal crosses a certain threshold, a sensing element such as a pixel or a filter bank
element emits an event. This kind of sampling is often referred to as ’send-on-delta’ or ’event-driven
sampling’ (Vasyutynskyy & Kabitzsch, 2010). Although event-driven sensing was pioneered in vision,
it has now expanded to other sensory systems such as auditory and olfactory. The same event-based
sensing principles apply to the visual, auditory, and olfactory sensory systems: when a change in the
sensed quantity exceeds a threshold, an event is emitted. For this reason, only event-based vision will
be used to illustrate the operation of event-based sensing. This technique is the most comprehensible
and has the best coverage in the literature. Reiterating theories for the auditory and olfactory systems
would contribute minimally to this literature review and is therefore not explicitly included.

https://www.prophesee.ai/2020/02/19/prophesee-sony-stacked-event-based-vision-sensor/
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2.2.1 Event-based Vision

Event-based cameras, or sometimes called dynamic vision sensors (DVSs), are bio-inspired sensors
that function quite differently compared to traditional frame cameras. Instead of taking images at a
constant rate, they detect per-pixel brightness changes asynchronously and output a stream of events
of the brightness changes. High temporal resolution (on the order of µs), very large dynamic range
(140dB vs. 60dB), low power consumption, and high pixel bandwidth (on the scale of kHz) are
favourable properties that result in reduced motion blur for event cameras compared to traditional
cameras. Therefore, event cameras have a great deal of potential for robotics and computer vision in
conditions that are difficult for conventional cameras, such as low-latency, high speed, and high dynamic
range.

Event Generation

An event camera consists of a grid of independent pixels that respond to changes in brightness. More
precisely, they respond to variations in their log photocurrent L = log(I). An event ek = (xk, tk, pk)
is generated at pixel xk = (xk, yk) and time tk immediately after the brightness change since the last
event at that pixel,

∆L (xk, tk) = L (xk, tk) − L (xk, tk − ∆tk) , (2.1)

exceeds a predefined threshold ±C,

∆L (xk, tk) = pkC, (2.2)

where C > 0, ∆tk is the time since the last event at the pixel in question and the polarity pk ∈ {+1, −1}
is the sign of the brightness change (Gallego et al., 2019).

Event Representation

Quite often neuromorphic computing attempts to emulate the biological approach to problem-solving.
This also applies to the transmission of sensor events to the processing hardware. As we shall see,
precisely mimicking the biological approach results in difficulties. Take for instance the optic nerve
linking the retina to the visual cortex in the brain. It is composed of axons of the approximately one
million retinal ganglion cells, which are considered the retina’s spiking output cells (Posch et al., 2014).
Transferring this to an artificial vision system would mean that every pixel of an image sensor should
have its own wire for transmitting data out of the array. Given the constraints imposed by chip con-
nectivity and manufacturing technologies, it is evident that this strategy is not realistic. Nevertheless,
an alternative approach has been found by inventing an encoding scheme to transmit the events.

The basics of the encoding scheme are the same for all forms of neuromorphic sensing. Once an event
is generated by detecting a threshold crossing, it is emitted as a data structure containing at least two
pieces of information: an address and a time. The first piece, the address, can for example be the
coordinates of the pixel that emitted the event, but also the index of the filter bank that emitted the
event. The second piece of information is the time. It corresponds to the precise timing that the event
was generated. This protocol is typically referred to as address-event representation (AER) (Tayarani-
Najaran & Schmuker, 2021). Depending on the type of neuromorphic sensing, the event representation
can vary slightly. In the case of event-based vision for example, a third piece of data is included in
the event representation: the polarity. An individual event is then represented as the pack of data
ek = (xk, tk, pk). In addition, in a real-time setting, time can be excluded from the event representation
as event addresses are transmitted directly to a processing algorithm.

2.3 Methods for Event Processing
Due to the unique properties of event-driven signals, traditional signal processing techniques cannot
be applied. This leaves the options of creating entirely new techniques or modifying current methods
to make them compatible with these asynchronous events. Regardless of which option is selected, a
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(a) (b) (c) (d)

Figure 2.3: Several (pre-processed) event representations (a) Individual events in space-time, coloured according to
pixel polarity (blue is positive, red is negative) (b) Brightness increment event frame (∆L(x)). A 2D frame is

created by counting polarity pixel-wise. (c) Time surface, in which each pixel corresponds to the last timestamp of
brightness change (darker is more recent). (d) Reconstructed intensity image. Grid-like representations are

compatible with conventional computer vision methods. Images retrieved from (Gallego et al., 2019).

general approach framework can be provided.

Event-driven signals are typically processed in three stages: preprocessing (input adaptation), core-
processing (feature extraction and analysis), and post-processing (output creation) (Gallego et al.,
2019). The first two stages, preprocessing and core-processing, are strongly correlated. That is to say,
the preprocessing approach is often determined based on the core-processing algorithm to be employed.
In turn, the available hardware for running the core-processing algorithm often influences the choice of
core-processing algorithm. For example, when one wants to employ traditional frame-based computer
vision tools, image frames are expected as an input. In this case a form of preprocessing is required
that can generate frames from the event stream (Fig. 2.3a). Such techniques are widely described in
literature and popular approaches include event accumulation (Fig. 2.3b) (Kogler et al., 2009; Liu &
Delbruck, 2018), time surfaces (Fig. 2.3c) (Benosman et al., 2014; Lagorce et al., 2017; Sironi et al.,
2018) and intensity reconstruction (Fig. 2.3d).

Preprocessing the event stream can have a negative impact on the time resolution of the measured
signals and partly disregards the biological motivation underpinning event-based vision. However, it
also provides a number of advantages. A reason to convert to frames, for instance, is that a single event
contains only little information and is susceptible to noise. Processing several events simultaneously
increases the signal-to-noise ratio and reduces computing effort when no hardware is available to benefit
from the sparsity of the measured data. Another reason might be to facilitate the application of tradi-
tional computer vision algorithms that require frames as input. Despite the fact that the advantages of
event cameras may not be fully realised when employing pre-processed frames, improvements are still
frequently achieved compared to conventional cameras, for instance in terms of time resolution. Even
when using spiking neural networks as the core processing method, it might be advantageous to apply
some type of event accumulation. When simulating an SNN on hardware that cannot utilise properties
as sparsity, for example, it can significantly reduce computational load.

As stated earlier, it is not ideal to use a variety of techniques to convert an event stream to frames,
especially when the goal is to create a completely neuromorphic computing pipeline. As Hagenaars et al.
(2021) formulated it quite nicely: “in order to realise the full potential of neuromorphic pipelines, we
must move towards an event-based communication and processing paradigm in which single events are
passed as-is between an event-based sensor/camera and the neuromorphic processor running an SNN,
without any processing or accumulation of any kind in between”. One would be mistaking however
to think that all neural network implementations in literature realise this objective. In practice, a
significant amount of research over the past two decades in one form or another encoded spatio-temporal
information in the event representation (Lee et al., 2021; Lee et al., 2020; Paredes-Vallés & de Croon,
2021; Stoffregen et al., 2020; Zhu et al., 2018)
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(a) (b)

Figure 2.4: (a) A breakdown of the distribution of neuromorphic computing hardware implementations. Image
retrieved from Schuman et al. (2017) (b) Timeline of the introduction of prominent neuromorphic chips for

architectures focusing on neuroscience (spiking) and deep learning (non-spiking). This graph excludes spiking chips
still in development, such as those developed by SynSense, Imec, and Innatera. Image retrieved from Kendall and

Kumar (2020).

2.4 Neuromorphic Hardware

Despite the promise of low power computation with SNNs, a significant discrepancy exists between
most simulations of SNNs and their actual implementation on modern computing hardware (not even
considering the gap with the biological brain). Simulating SNNs on Von Neumann machines is challen-
ging due to the fact that asynchronous network activity demands asynchronous, quasi-random access to
synaptic weights. (Pfeiffer & Pfeil, 2018). This mode of operation is incompatible with characteristics
such as centrally located memory, a very limited CPU-to-memory bandwidth, and a minimally parallel
CPU design. In order to decrease the gap between simulations of SNNs and biological SNNs, numerous
SNN-optimised neuromorphic hardware solutions have been created over the past two decades. Before
discussing a few prominent examples themselves, we introduce a common high level taxonomy for neur-
omorphic hardware systems.

Most taxonomies categorise neuromorphic hardware systems at a high level as analogue, digital, or ana-
logue/digital hybrids. Because not everything is as straightforward as it may appear, it is worthwhile
to consider the features of analogue and digital systems in relation to neuromorphic systems. Digital
systems often rely on Boolean logic-based gates, such as AND, OR, and NOT, for computing, whereas
analogue systems utilise the natural physical characteristics of electronic components (Schuman et al.,
2017). The biological brain, for instance, is an entirely analogue system. Digital systems utilise dis-
crete values, whereas analogue systems employ continuous values. Moreover, digital systems are often
(but not always) synchronous or clock-based whereas analogue systems are typically (but not always)
asynchronous. These properties of digital and analogue systems frequently do not carry over one-to-one
to neuromorphic hardware implementations, as even digital systems are frequently event-driven and
analogue systems utilise clocks for synchronisation.

From Figure 2.4a we deduce that most neuromorphic hardware implementations are either analogue
or digital. In addition, the literature shows that digital implementations are the most prevalent in
the field of SNN. The three most prominent ones are SpiNNaker, TrueNorth, and Loihi. They will be
discussed in the following subsection. In addition to a taxonomy such as analogue vs digital, Figure
2.4b demonstrates that a differentiation may be formed depending on the purpose of the neuromorphic
device. With the emergence of (non-spiking) deep neural networks over the past two decades, the intro-
duction of chips with a focus on deep architectures has increased dramatically. In this literature study,
however, neuromorphic chips designed specifically for deep nets are disregarded, and this serves just to
demonstrate that neuromorphic hardware is not solely designed to accelerate SNNs.
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2.4.1 SpiNNaker

In 2005, Spiking Neural Network Architecture (SpiNNaker) (Furber et al., 2014) was launched as one
of the first large-scale neuromorphic systems. SpiNNaker uses general-purpose CPU cores to simulate
biologically realistic models of the human brain. The processors are compact integer cores though,
that were originally designed for mobile and embedded applications. These embedded processors util-
ise simple microprocessors to manage electrical functions allowing them to consume less power than
conventional processors. SpiNNaker implements neurons as software running on the cores, sacrificing
hardware acceleration to enhance model flexibility. This is different from implementations such as
TrueNorth and Loihi, which embed simplified neuron models in customised transistor circuits. SpiN-
Naker can therefore be considered a somewhat more generalised neurocomputer, as it is not limited
to modelling neural networks alone (Furber, 2016). The design of SpiNNaker was primarily driven by
two factors: scalability and energy efficiency. It was determined that scalability is necessary since the
brain (particularly the human brain) is essentially a computer with a very large number of components.
In order to approximate its behaviour therefore, a neuromorphic system should embody the principle
of scalability was the idea. The second important consideration, energy efficiency, followed naturally
from the first. To allow very large scalability, the system must be extremely efficient in order to remain
economical. When all cores are fully loaded, SpiNNaker consumes no more than 1W of power, hence
it can indeed be said that a considerable efficiency is achieved compared to Von Neumann machines.
It should be noted though that more recent neuromorphic hardware implementations are significantly
more energy-efficient. With regard to scalability, it can also be stated that the goal was achieved as it
is possible to create an almost arbitrarily large surface of tiled SpiNNaker chips (Furber, 2016).

2.4.2 TrueNorth

The IBM TrueNorth chip (Merolla et al., 2014) is the product of the DARPA SYNAPSE project, which
sought to produce a dense, energy-efficient architecture able to serve a variety of cognitive applications
(Furber, 2016). A TrueNorth chip accommodates 4096 neurosynaptic cores made up of 256 neurons with
256 synaptic inputs each. The chip is completely digital. Furthermore, TrueNorth is partially asyn-
chronous and partially synchronous in the sense that some activities do not coincide with the clock, but
the clock controls the system’s fundamental time step. One TrueNorth chip consumes 72mW of energy
at maximum load (Kendall & Kumar, 2020). The TrueNorth chip is backed by a software simulator
that can precisely predict the hardware’s performance. This software also facilitates learning, as on
chip learning is not supported. TrueNorth, like SpiNNaker, supports the stacking of chips to construct
larger systems. A circuit board with 16 chips, comprising 16 million neurons and 4 billion synapses,
has been built.

TrueNorth and SpiNNaker are excellent illustrations of the extreme design decisions that can be made for
digital hardware implementations. TrueNorth has opted for a design with fixed leaky integrate-and-fire
neurons, minimal customizable connectivity and no possibility of on-chip learning. It is highly optimised
for the selected network model and architecture. SpiNNaker in contrast is incredibly adaptable in terms
of neuron model, synapse model, and learning algorithm. All can be programmed to the demands of
a particular task. By permitting this however, the system loses some of its energy efficiency (Schuman
et al., 2017).

2.4.3 Loihi

More recently, Intel Labs introduced a neuromorphic chip called Loihi (Davies et al., 2018). Loihi
is also a fully digital chip and aims to provide operational flexibility for the evaluation of large scale
SNNs (Bouvier et al., 2019). It functions at the intersection of biological realism and machine learning
with SNNs. It combines on-chip learning using several learning rules, complex neuron models, synaptic
delays, and multiple information coding methods. At maximum power, Loihi consumes just 0.45W .
Each of the cores individually iterates across each of its neuron groups to carry out communication.
Each time a core reaches a firing state, the core creates a spike message that is sent to the cores that
are connected to it. All cores must complete their iterations within the same discrete timestamp. To
guarantee that all spikes reach their destinations before the procedure is repeated, Loihi sends a syn-
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chronisation message that eliminates any spikes in transit. Then, it sends a timestep-advance notice to
all the cores to update their timestamp by one step to t + 1, allowing them to update their internal
states (Davies et al., 2018). In 2020 Intel announced the arrival of Pohoiki Springs, a neuromorphic
processor consisting of 768 Loihi chips and 100 million neurons (100 billion synapses), which Intel
claims has the neural capacity of a small mammal’s brain. This device should be able to function with
less than 500W . A figure that is, by the way, still considerably larger than that of the human brain
(±20W for 86 billion neurons and 800 trillion synapses (Balasubramanian, 2021)) (Gallego et al., 2019).

Though certain applications can always point to the use of specific neuromorphic hardware, all in all
Loihi appears to be the most versatile and capable chip yet for learning and inference with SNNs. Loihi
has demonstrated to perform well on numerous applications including event-based vision (Dupeyroux
et al., 2020; Massa et al., 2021), event-based olfaction (Imam & Cleland, 2020), closed loop robotic
control (DeWolf et al., 2020), simultaneous localisation and mapping (SLAM) (Kreiser et al., 2020;
Tang et al., 2019) and other applications (Davies et al., 2021).



3
Spiking Neural Networks

Neuromorphic computing has become a popular field of research. In contrast to von Neumann devices,
brain-inspired processors strive to bring memory and computational components closer together to eval-
uate machine learning algorithms efficiently. Spiking neural networks (SNNs), a family of algorithms
employing computational primitives that imitate the biological behaviour of neurons and synapses, have
recently emerged as a very promising processing algorithm to run on these neuromorphic hardware sys-
tems. So far, SNNs have shown that they can produce competitive performance while significantly
improving computational efficiency, especially when used in a setting with time-varying signals and
in combination with dedicated hardware. Nonetheless, as the integration of algorithms and hardware
continues to improve, the potential for SNNs to achieve even greater performance and efficiency remains
enormous.

This chapter will cover in detail all the components that go into constructing a neural network with
spiking activity. Section 3.1 begins with a brief overview of the evolution of neural networks. After
that, Section 3.2 discusses the computational primitives that comprise a SNN. How spiking neurons
communicate information with each other and how they receive input information is covered in Section
3.3. In Section 3.4, two prominent neuron models are explained that feature in the literature quite
often. Finally, the chapter concludes with a description of different learning strategies employed by
SNNs in Section 3.5.

3.1 History of Neural Networks
Spiking neural networks can be considered the third and latest generation of neural network models, ac-
cording to the taxonomy introduced by Maass (1997) (Fig. 3.1a). His way of distinguishing generations
of neural networks is based on the computational primitives from which a network is built. According
to Maass, the first generation of neural networks utilized threshold gates, also known as perceptrons,
which are based on McCulloch-Pitts1 neurons. The output of these neurons is either 1 or 0 depending
on whether the weighted sum of their inputs is greater than, or less than a certain threshold. These
neural networks are limited to digital output, but are nevertheless capable of modelling every Boolean
function, using just a single hidden layer.

The second generation of neural networks employ neurons that apply a non-linear continuous activa-
tion function to a sum of weighted inputs, hence producing a continuous set of possible output values.
Networks of these kinds of neurons are referred to as artificial neural networks (ANNs). Two very im-
portant characteristics of ANNs are their ability to (1) be universal non-linear approximators (Hornik
et al., 1989) and (2) the possibility to train them. The latter means that without specific prior know-
ledge of how the target function should be described, it is possible to iteratively program them by
back-propagating error gradients, in order to successfully approach the function (Werbos, 1990).

1McCulloch and Pitts, 1943.
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(a) (b)

(c) (d)

Figure 3.1: (a) Overview of the three generations of artificial neurons. Illustration adapted from Wang et al.
(2020). (b) Schematic representation of a fully connected, feedforward neural network. (c) Simplyfied schematic
representation of the biological neuron. Dentdrites receive inputs from upstream neurons. The input voltages are

integrated onto the membrame potential of the soma. If the threshold is exceeded, the neuron ’fires’ and the output
is delivered to downstream neurons through the axon. (d) Schematic representation of the conventional artificial

neuron. The neuron sums all weighted input signals, adds a bias term to it and finally applies a non-linear activation
function.

The most basic type of artificial neural network is the fully connected (FNN). Unless otherwise specified,
future references to ANNs will refer to this most basic form (fully connected FNN). ANNs are composed
of computational units, called neurons (or perceptrons), which are grouped in layers. All neurons in one
layer are connected to all neurons in the following layer via synapses. This characteristic is referred to
as being ’fully connected’. Figure 3.1b depicts a schematic representation of the architecture of the FNN.

Each synapse is connected to precisely one presynaptic and one postsynaptic neuron. Before summing
all contributions, the postsynaptic neuron multiplies all presynaptic activations by their respective
synaptic weight (also known as synaptic efficacy). A bias term b is then added, causing the neuron to
equate to

yj =
n∑

i=1
wi,j · xi + bj . (3.1)

A computational schematic of the just described artificial neuron, together with its biological counter-
part are shown in the bottom row of Figure 3.1. Note that up until now, all calculations have been
linear. A network built of such computational units would never be able to approximate any non-linear
function. To overcome this limitation, a non-linear activation function is applied to the neuron’s output
yj . The neural activation that propagates to the subsequent layer is then described by

xl+1 = ϕ(yl), (3.2)

where ϕ is some non-linear activation function. Common examples of activation functions are the sig-
moid function, the rectifying linear unit (ReLU) and the inverse tangent. For a biological interpretation
of the second generation of neural networks, the activation function can be seen as transforming the
output yj into a proportional output that approximates the average firing rate of the postsynaptic
neuron. This innovation of applying an activation function not only made approximating non-linear
functions possible, but could also be used to ensure neural activation to be bounded (e.g., sigmoid,
arctan). Furthermore, the interpretation that neuronal activations of neurons of the second generation
resemble firing rates in biological neurons, made them much more biologically plausible than the first
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Figure 3.2: Schematic representation of the spiking neuron. (a) Spikes, originating from presynaptic neurons are
multiplied by their synaptic weight. (b) The contributions of all synapses are summed in order to compute the PSP
(c) In the spiking neuron, the PSP is integrated onto the membrane potential. Every time the membrane potential

exceeds the threshold θ, an output spike is emitted and the membrane potential is reset.

generation of neurons, which are limited to binary activation (Maass, 1997).

Throughout the 1980s, ongoing research into the functioning of the human brain revealed an increasing
amount of evidence that undermined the biological plausibility of the second generation. Experiments
on the visual cortex of the brain revealed that the encoding of analogue variables by firing rates in
the brain appeared highly improbable, particularly for extremely rapid computations (Perrett et al.,
1982; Rolls & Tovee, 1994; Thorpe & Imbert, 1989). In addition, research conducted in the 1990s
revealed that the majority of biological neuron systems most likely encode information using the precise
timing of action potentials (also known as spikes). These neurobiological discoveries eventually led
to the creation of the third generation of neural network models, which employ spiking neurons as
computational primitives.

3.2 Spiking Neural Networks
Spiking neural networks are simply networks consisting of spiking neurons. Their architecture is typ-
ically very similar to the architecture of networks of the second generation. However, the manner in
which information flows through the network differs significantly. Spiking neurons behave as integrate-
and-fire units with a binary output, making them actually more comparable to the first generation of
neurons than to the second. The spiking neuron, however, is dynamic and has an internal state that
varies over time. The behaviour of SNNs can be explained as follows. A synapse receives an action
potential, or spike, coming from a pre-synaptic neuron. Depending on the strength of the connection, as
defined by the synaptic weight, the synapse will generate a post-synaptic potential (PSP) that excites
the membrane of its post-synaptic neuron. The membrane potential of the neuron is a function of the
PSPs of all connected synapses and changes over time. When the membrane potential exceeds a certain
threshold, the neuron is said to fire (i.e., it emits an action potential). The behaviour of the spiking
neuron is visualised in Figure 3.2.

3.3 Information Encoding Using Spiking Neurons
The human brain is an extremely powerful, yet very energy efficient computing system. Communication
between neurons in the brain is made possible by transmittance of action potentials (spikes). In an



34 Spiking Neural Networks

Figure 3.3: On the left, in red, four activations of varying intensity are shown. (a) Rate coding encodes activation
with Poisson spike trains. Even though the exact timing between spikes is variable, the overall spike frequency
remains constant. The frequency increases with the magnitude of the activation. (b) TTFS coding encodes all

information in the arrival time of the first spike. Typically, the greater the activation, the shorter is the time to first
spike. (c) Burst coding encodes information in a single burst of spikes. The greater the activation, the greater the

number of spikes in the burst, which reduces the inter-spike interval.

effort to benefit from the mechanisms demonstrated by nature, researchers have attempted to imitate
it. The mimicking of this brain communication scheme, where information is represented using a spike
pattern, is referred to as neural coding. Extensive research has been conducted on neural coding, and
numerous coding schemes have been proposed to represent complex information in spikes (Guo et al.,
2021). Of these proposed neural coding schemes, the three most commonly encountered schemes will
be discussed in this literature study. They are rate coding, temporal coding and burst coding. Figure
3.3 depicts a schematic of the three neural coding schemes.

Rate coding uses mean firing rates to encode information and has been the dominant paradigm in
neuroscience and ANNs for a long time because of its robustness and simplicity. Poison spike trains are
usually employed to accomplish rate coding. For poison spike trains, the precise timing between two
spikes is random, but the average frequency over a period is constant. At least that is when a constant
activation is converted to rate code. The average frequency of a Poisson spike train is proportional to
the strength of the activation. Greater activation corresponds to a higher average frequency. Rate cod-
ing has been experimentally demonstrated in most sensory systems such as the visual and motor cortex
(Guo et al., 2021). Despite the success of rate coding, increasing experimental data suggested that a
definition of firing rate, based on temporal averaging, may be too basic to adequately represent brain
activity. One of the most important arguments is that reaction times in behavioural experiments are
often too quick to permit lengthy averaging of spike-rates. For example, in less than 400 milliseconds,
humans can recognize and respond to visual scenes. If upstream neurons computed an average firing
rate in order to decode the message of presynaptic neurons, response times would be significantly longer
(Gerstner & Kistler, 2002). To explain fast responses of the biological brain, neuroscientist suggested
that an alternative mechanism must be at play and temporal coding was suggested.

Temporal coding encodes information using the precise timing of spikes. Most often Time To First Spike
(TTFS) is applied because it is in line with the aim to mimic rapid responses, though also schemes
such as rank order between spikes (Thorpe & Gautrais, 1998) and relative spike latency (Gollisch &
Meister, 2008) have been proposed. A TTFS coding scheme permits the transfer of information to a
target neuron with the arrival of the first spike. In TTFS coding, the arrival time of the first spike
is typically inversely proportional to the activation. That is, the greater the activation the shorter is
the time to the first spike. This method allows for extremely rapid responses, even within milliseconds.
Numerous studies have confirmed that the arrival of the first spike plays an essential role in various
regions of the nervous system, including the retina and auditory systems (Heil, 1997; Johansson &
Birznieks, 2004). In addition, TTFS coding has been demonstrated to reduce the amount of required
spikes and increase speed during inference for SNNs (Guo et al., 2021).

The third form of neuronal coding is burst coding. As its name suggests, burst coding encodes informa-
tion in a single burst of spikes. Burst coding, like TTFS coding, enables rapid information transmission.
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Figure 3.4: Schematic representation of how an electrical circuit models the biological neuron.

Sending a burst of spikes as opposed to a single spike improves the reliability of communication between
neurons. Both the number of spikes in a burst and the inter-spike interval (ISI) in a burst can carry in-
formation. Burst coding has been observed in numerous nervous system regions, including the thalamus
cortex and the hippocampus (Zeldenrust et al., 2018).

3.4 Neuron Models

So far, it has been demonstrated that spiking neurons are computational primitives that generate
action potentials whenever the membrane potential of the neuron exceeds its threshold from below.
Not the shape, but the timing of the spikes carries the information. This general description of the
spiking neuron still leaves room for many conceptual variations. These variations particularly differ in
degree of biological realism and complexity. On the less complex end of the spectrum are the neuron
models commonly employed in spiking neural networks, because a less complex model requires less
computational resources to simulate, while still offering adequate versatility for a host of applications.
Over the past 20 years, primarily two spiking neuron models have gained true prominence in the realm
of SNNs. These are the interate-and-fire (IF) model and the spike response model (SRM), although
these models, under some circumstances, come down to one and the same as we will see later in this
section. The remainder of this subsection’s explanations and derivations will be based on Gerstner’s
(2014) excellent book on artificial spiking neurons. Accordingly, his book is recommended to the reader
with a deeper level of interest.

3.4.1 Integrate-and-Fire Model

The dynamics of the integrate-and-fire neuron model are characterised by two distinct components.
The first component is a differential equation which represents the membrane potential’s progression
in time. The second component is a threshold-based spike-generation mechanism.

For this derivation we will model the biological neuron as a simple electrical RC-circuit. We start
by identifying the parameters that characterise the membrane potential in time. The instantaneous
membrane potential of neuron i we call Ui. Furthermore, we model synaptic inputs as currents I(t).
When no input currents are present, the neuron’s membrane potential remains at its resting value,
Urest. However, if the neuron does receive a synaptic input current I(t) from an upstream neuron, the
membrane potential Ui is perturbed from its resting value Urest.

To derive a mathematical expression for the relationship between the input current I(t) and the in-
stantaneous membrane voltage Ui(t) − Urest, basic electrical laws can be applied to the RC-circuit
analogue of the biological neuron. As we can see in Figure 3.4, the biological neuron is enclosed by a
cell membrane. The cell membrane can be considered an effective insulator. When a neuron is fed with
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a current I(t), the additional electrical charge will charge the cell membrane. Consequently, the mem-
brane functions as a capacitor with a capacity of C. Due to the fact that the membrane is not an ideal
insulator, some charge will escape through it. The membrane is therefore also characterised by a finite
leak resistance R. These observations lead to a leaky integrate-and-fire (LIF) model characterised by an
electrical circuit consisting of a capacitor C in parallel with a resistor R that is powered by a current I(t).

The law of current conservation allows us to separate the driving current I(t) into its components
flowing through the resistor (IR) and the capacitor (IC). Using Ohm’s law we can write the resistive
current as IR = UR/R, where UR = U − Urest and using the definition of the capacity C = q/U , the
capacitive current can be written as IC = dq/dt = Cdu/dt. Therefore, the circuit’s current can be
expressed as

Ii(t) = Ui(t) − Urest

R
+ C

dUi

dt
(3.3)

Multiplying Equation 3.3 by R and setting the RC-circuit’s time constant to τmem = RC, yields the
formal differential definition of the LIF neuronal dynamics.

τmem
dUi

dt
= − (Ui(t) − Urest ) + RIi(t) (3.4)

Important to note is that not only the membrane potential of the neuron adheres to its own temporal
dynamics, but so does the synaptic current. Modelling their temporal evolution as an exponentially
decaying current, following each presynaptic spike, is the most frequently taken approach. Because
differential equations are involved, it is convenient to represent a spike train as the sum of Dirac delta
functions

S
(l)
j (t) =

∑
s

δ(t − ts
j), (3.5)

where s runs over the firing times of neuron j in layer l. Using this notation and assuming that synaptic
currents add linearly, the dynamics of the synaptic current can be expressed as

dI
(l)
i

dt
= − I

(l)
i (t)
τsyn︸ ︷︷ ︸

exp. decay

+
∑

j

W
(l)
ij S

(l−1)
j (t)︸ ︷︷ ︸

feedforward

(3.6)

where the sum is computed over all presynaptic neurons j and W
(l)
ij are the weights of the synaptic

connections from neurons j to neuron i.

Having derived equation 3.4 and 3.6, we must not forget that when the membrane potential of a neuron
exceeds the firing threshold θ, it sends spikes to downstream neurons. The membrane voltage Ui is
reset to the resting potential Urest after each spike. However, this mechanism is not yet included in our
definition. Only the subthreshold dynamics of the LIF neuron are described by Equation 3.4 and 3.6.
That is, the neuron’s dynamics in the absence of spiking output.

To capture the complete dynamics of the LIF neuron, we must extend our definition and incorporate
the reset of the membrane potential in it. The reset of the membrane potential after an output spike is
considered instantaneous. This enables us to introduce the reset term in equation 3.4 via an additional
term that instantaneously reduces the membrane potential by ϑ − Urest whenever the neuron emits a
spike. The dynamics of the LIF neuron’s membrane potential are then described by

dU
(l)
i

dt
= − 1

τmem

((
U

(l)
i (t) − Urest

)
+ RI

(l)
i (t)

)
+ S

(l)
i (t) (Urest − ϑ) . (3.7)

For purposes of machine learning, it is often necessary to approximate the solutions of equations 3.6
and 3.7 in discrete time. The output spike train S

(l)
i of neuron i, in layer l, at time step n, can be

expressed as a nonlinear function of the membrane potential S
(l)
i [n] ≡ Θ

(
U

(l)
i [n] − ϑ

)
, where Θ is the
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Figure 3.5: Computational graph of SNN. Eeach column depicts one simulation timestep. Information flows
through the graph from the bottom to the top. Synaptic currents I(1) decay by α each timestep and feed into the
membrane potentials U (1). The membrane potentials decay by β. The thresholding function generates spikes S(1)

which causally effect the network states and reset the membrane potential. Illustration is adapted from Neftci et al.
(2019).

Heaviside stepfunction and ϑ is the firing threshold. For readibility and clarity, but without sacrificing
generality, we set Urest = 0, R = 1 and ϑ = 1. Using a sufficiently small simulation time step ∆t, the
solution of equation 3.6 is well approximated by

I
(l)
i [n + 1] = αI

(l)
i [n] +

∑
j

W
(l)
ij S

(l−1)
j [n], (3.8)

where α ≡ exp (− (∆t/τsyn)) is the decay strength. Moreover, for positive values of τsyn applies that
0 < α < 1 and S

(l)
j [n] ∈ {0, 1}. The time step is indicated with n to highlight the discrete dynamics.

The discrete time dynamics of the membrane potential are written As

U
(l)
i [n + 1] = βU

(l)
i [n] + I

(l)
i [n] − S

(l)
i [n] (3.9)

where β ≡ exp (− (∆t/τmem)). The computational graph of this model is shown in Figure 3.5.

3.4.2 Spike Response Model

Neuronal dynamics for LIF neurons have been described thus far in terms of a system of differen-
tial equations. In a second frequently employed model, the parameters are substituted for functions of
time, generally referred to as filters (or kernels). The SRM neuron can be regarded as a membrane filter
coupled with a function that describes the shape of an output spike (the refractory kernel) (Figure 3.6).
Optionally, a time dependent threshold can be introduced. The SRM has more complex sub-threshold
behaviour than the LIF model since it can account for refractoriness and adaptation (Gerstner et al.,
2014).

The membrane potential of a neuron is described by the spike response model using a single variable
u. When the neuron receives no input signals, it remains at its resting potential urest. The filter
k(s) describes the response of the neuron’s membrane potential to a brief current pulse. Due to the
linearity of the SRM neuron’s subthreshold regime, the voltage response to a time dependent stimulating
current Iext may be expressed as h(t) =

∫∞
0 ε(s)Iext(t − s)ds. Furthermore, spike firing is controlled by

a threshold mechanism. An output spike is produced when the membrane potential exceeds the firing
threshold. The manner in which an output spike affects the membrane potential is determined by the
shape of the after-potential ν (refractory kernel). Let’s consider a neuron that has fired previous spikes
at times t(f) < t. The coarse of the membrane potential is described by
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Figure 3.6: Computational graph of the SRM. The input current I(t) is filtered by de membrane filter ε and gives
the PSP. When the threshold θ is crossed from below, the neuron fires. Spikes feed back into the system by causing

a spike afterpotential ν (refractory response) and by temporarily increasing the threshold by θ1 (temporary
adaptation of the threshold is an optional feature of the SRM that is not required).

u(t) = urest +
∫ ∞

0
ε (s) Iext(t − s)ds +

∑
f

ν(t − t(f)). (3.10)

The sum includes all previous firing times t(f), t = 1, 2, 3, ... of the neuron in question. Writing the
output spike train as a sum of Dirac delta functions S(t) =

∑
f δ(t − t(f)), the second term of Equation

3.10 can also be written as a convolution

u(t) = urest +
∫ ∞

0
ε (s) Iext(t − s)ds +

∫ ∞

0
ν(s)S(t − s)ds. (3.11)

Realising that the stimulating current Iext is a sum of weighted spike trains originating from upstream
neurons and setting urest = 0, it is easy to see that the membrane potential is simply the sum of all
PSPs and refractory responses

u(t) =
∑

i

wi (ε ∗ Si) (t) + (ν ∗ S) (t). (3.12)

Finally, the neuronal firing is mathematically defined as the moment when the membrane potential u(t)
crosses the threshold θ(t) from below, according to

t = tf ⇔ u(t) = ϑ(t) and d[u(t) − ϑ(t)]
dt

> 0. (3.13)

3.5 Learning in SNN

Synaptic plasticity is the ability of synapses to modify their synaptic efficacy (strength of connection)
and is believed to be the underlying mechanism for learning and memory in the biological brain. Ac-
tually, numerous forms of synaptic plasticity coexist inside the brain, differing primarily in terms of
the duration of the process, but also in the conditions necessary for modification. To date however,
the precise link between synapse characteristics at the microscopic level and functional outcomes at the
macroscopic scale, remains disputed (Taherkhani et al., 2020).

This biological mechanism of altering synaptic efficacies (weights) in order to learn, was carried over
to SNNs. And just like in the biological brain, for SNNs, various techniques exist to update weights in
order to learn certain tasks too. In general, the learning strategies can be divided into three categories:
supervised learning, unsupervised learning, and reinforcement learning. Because the only form of learn-
ing that will be utilized in this thesis is supervised learning, unsupervised learning and reinforcement
learning will only be discussed briefly. Following that, supervised learning will be covered in depth.
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3.5.1 Unsupervised Learning

Unsupervised learning approaches are considered biologically plausible learning approaches and are
often implemented with exactly that in mind. Unsupervised learning progresses according to local
activities, and local activities have no concept of the problem to be solved, nor do they have any
concept of whether a change is ”good” or ”bad” (Taherkhani et al., 2020). Adaptation to local activ-
ity is all that is involved in the process of learning. Unsupervised learning relies exclusively on the
data’s properties. The network discovers patterns in the data without any external guidance for the
desired goal. By altering the strength of synaptic connections, the learning process results in the re-
arrangement of connections within a neural network and under some conditions, the creation of new
functions, such as input clustering, pattern recognition, source separation and dimensionality reduction
(Ponulak & Kasiński, 2011). Clustering for example, in which data is organized into clusters on the
basis of a particular attribute of the data, is a classic example where unsupervised learning is suited
for. The reasoning is that pieces of data that are comparable with regard to the given attribute should
be grouped together. In 1949, it was Donald Hebb who posed for the first time the subject of how
synapses should alter their efficacy in order to learn or store information (Hebb, 1949). His work has
led to the proliferation of many unsupervised techniques. Of these techniques the most widely used for
learning in SNNs is spike-timing-dependent plasticity (STDP) (Caporale & Dan, 2008). According to
STDP, a synaptic weight is increased (potentiated) if a presynaptic spike directly precedes a postsyn-
aptic spike. Alternatively, a synaptic weight is reduced (depressed) when a presynaptic spike occurs
immediately after a postsynaptic spike. A benefit of unsupervised learning is the reduced computing
workload, as the procedure avoids repeated iterations through a training dataset and backpropagation
of errors, which are usually necessary for supervised learning algorithms such as gradient descent. Fur-
thermore, the data does not need to be labeled, which increases the usable amount of data tremendously.

3.5.2 Reinforcement learning

In addition to supervised and unsupervised learning approaches, there is also reinforcement learning,
whose concept can be effectively illustrated by considering how animals learn. Animals acquire new
skills or behaviour not just through direct instruction, but mostly by exploring possible actions in the
presence of reward signals. In a process of trial and error, desired behaviours are reinforced with positive
reward signals, whilst undesirable behaviours are punished with negative reward signals. Such a learn-
ing scenario has been effectively applied to the field of machine learning and is known as reinforcement
learning (Ponulak & Kasiński, 2011). Reinforcement learning differs from classical Hebbian (unsuper-
vised) learning in that classical Hebbian learning focuses solely on pre- and postsynaptic activity while
ignoring the possible significance of neuromodulators like dopamine, which is known to also influence
synaptic plasticity (Frémaux & Gerstner, 2016). Reinforcement learning approaches incorporate the
role of neuromodulators by modulating the outcome of classical Hebbian learning rules (e.g., STDP)
with a reward term.

3.5.3 Supervised learning

In contrast to approaches like STDP, which strive for a high level of biological plausibility, supervised
learning techniques are typically less concerned with biological plausibility. To train deep SNNs, super-
vised training methods with spikes often employ different variations of backpropagation. Although some
alternative supervised approaches exist, which now and then demonstrate competitive performance on
conventional tasks and benchmarks, the focus of this literature review is on methods involving some
form of backpropagation of error gradients and others are left out.

When backpropagating errors in SNNs, the credit (error) assignment in SNNs offers a significant obstacle
that must be overcome, as a result of the nondifferentiability of the spiking nonlinearity. Recall that the
credit assignment problem in backpropagation with gradient descent is solved by offering explicit ex-
pressions for weight updates through the chain rule for derivatives. This “chain” of derivatives contains
the derivatives of the neural activation function as a multiplicative factor. For a spiking neuron, this
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activation function is S
(l)
i [n] ≡ Θ

(
U

(l)
i [n] − ϑ

)
. The derivative of this expression is zero everywhere,

except at U = ϑ, where it is poorly defined. This characteristic of the derivative of spiking nonlinearity
prevents the gradient from ”flowing” and at first glance appears to renders LIF neurons unsuitable for
gradient-based optimisation (Neftci et al., 2019).

According to Neftci et al. (2019), the most common methods, used to overcome the discontinuous spiking
nonlinearity, can be classified in the following four categories: 1) biologically motivated local learning
rules; 2) converting conventionally trained rate-based ANNs to SNNs; 3) smoothing the network model
to be continuously differentiable; or 4) defining a surrogate gradient (SG) as a continuous relaxation of
the real gradients. The first approach has previously been covered. The second approach technically
falls outside the scope of this study because it does not combine spiking and backpropagation directly.
However, because this is (or has been) a frequently used technique and because it will be addressed
in the following section, it will be discussed briefly. After that, this section’s primary focus will be on
supervised techniques from the third and fourth categories: smoothing techniques and SG techniques.

Conversion of ANN to SNN

By adjusting the weights and properties of the spiking neurons, conventionally trained ANNs can be
turned into SNNs to bypass issues associated with learning in spiking networks. The objective is to
obtain the same input-to-output mapping as the original ANN with a deep SNN. Almost all conversion
methods adhere to the concept of rate-coding, in which analog neuron activations are transformed into
the firing rates of spiking neurons (Pfeiffer & Pfeil, 2018). The primary advantage of the conversion
method is that the entire toolbox of deep learning can be utilized, allowing state-of-the-art deep networks
for classification tasks to be turned into SNNs without much difficulty (Hu et al., 2018). Converting
conventional networks to SNNs is not completely without problems, though. Some ANNs are difficult
to convert to SNNs because negative activations in ANNs and some non-linear operations in ANNs are
challenging to transfer. In addition, SNNs which have been converted from ANNs using rate code tend
to be inefficient in terms of number of spikes being produced, because multiple spikes are required to
encode a single real-valued activation, resulting in less energy-efficient behaviour. Lastly, ANN-to-SNN
coversion cannot learn to exploit spatio-temporal features in spikes trains originating from for example
event-based sensors, because they are limited to mean rate codes, which correspond to real-valued
activations (Pfeiffer & Pfeil, 2018).

Smoothing Approaches

Smoothed SNNs are distinguished by their formulation, which assures well-behaved gradients that are
immediately suitable for optimisation by modifying the network model in its entirety. This differs from
SGs, which are only employed during the backward pass and do not alter the network model itself.

Between the years 2000 and 2010, when research into supervised learning algorithms for SNNs was
relatively young, several gradient-based supervised learning methods were developed that operate only
for single layer networks (e.g. Ponulak & Kasiński, 2010; Urbanczik & Senn, 2009). Since the focus of
this thesis is on multilayer (deep) spiking networks, these methods are omitted and only approaches
that apply gradient-based supervised learning in multiple layer networks will be covered.

Bohte et al. (2002) were the first to suggest a back-propagation training algorithm for multilayer feed
forward SNNs using a smoothing approach, called SpikeProp. They used the SRM for their neurons.
By linearizing the relationship between post-synaptic input and subsequent output spike time, they
were able to avoid the discontinuity caused by thresholding. SpikeProp constructs an error signal used
for backpropagation by defining

E = 1
2

No∑
o=1

(
ta
o − td

o

)2
, (3.14)

where ta
o and td

o are the actual and desired spike times of the oth output neuron, respectively. Equation
3.14 shows that SpikeProp requires a target spike train to compute an error signal and therefore to
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ultimately produce a temporal pattern for a given input. An important characteristic to note that
makes this feasible is that all neurons are restricted to firing only a single spike. Although this for-
mulation can produce well-defined gradients in some instances, it could come with certain limitations.
For example, since each hidden unit is required to generate exactly one spike per trial, it is difficult to
determine the firing time for inactive neurons. Furthermore, such an activity requirement may conflict
with power efficiency, where it is often advantageous to have only a fraction of the neurons active for a
particular task (Neftci et al., 2019). Even though Booij and tat Nguyen (2005) presented an extension
of SpikeProp to multiple spike firings, SpikeProp has not yet been applied to challenges at the scale of
modern deep learning applications (Pfeiffer & Pfeil, 2018).

Gardner et al. (2015) Gardner introduced a novel supervised learning approach called MultilayerSpiker
that can train multilayer feed-forward SNNs to map between spatiotemporal input and output spike
pattern. MultilayerSpiker belongs to a subset of smoothing methods which are considered probabil-
istic. Stochasticity effectively smoothes out the discontinuity of the nonlinearity, hence enabling the
definition of a gradient on expectation values. This particular learning rule optimizes the log-likelihood
of producing a desired output spike train. Even in the presence of input noise, the learning method is
effective and generalizes well to an example dataset.

Lee et al. (2016) were the first to present a spike-based backpropagation rule capable of training deep
SNNs for classification tasks given only labels and no target spike trains. Their solution is to execute
stochastic gradient descent on real-valued membrane potentials. Low-pass filtering is applied to over-
come discontinuities during the times of spikes, making it possible to compute a gradient. In contrast
to the approach of Bohte et al. (2002), the approach of Lee et al. (2016) employs rate code and is not
limited to a maximum of one spike per neuron. This approach, helped by a range of different optim-
isation techniques, produces state-of-the-art performance for deep SNNs on tasks like MNIST 2 and its
event-based equivalent N-MNIST (Wang et al., 2020).

Mostafa (2018) proposed a method that shows parallels to the SpikeProp algorithm in certain respects.
Whereas SpikeProp assumes that connections between neurons consist of several sub-connections, each
with its own delay and weight, Mostafa’s method employs a more traditional network model that does
not rely on pre-specified delays to translate input spike times into output spike times. In this network,
non-leaky integrate-and-fire neurons and exponentially decaying synaptic current kernels were used.
The desired output is determined by the timing of the first spike. Mostafa defined the input-output
relationship of a network as locally linear after transforming the time variable. This formulation, unlike
SpikeProp, results in an analytical relationship between input and output spike times. Furthermore, it
allows the network to be trained via gradient descent directly.

SG Approaches

Surrogate gradient approaches offer an alternate strategy for solving the challenges associated with the
discontinuous nonlinearity. In stead of changing the model formulation in its entirety as in smoothed
approaches, a surrogate gradient is introduced only during the backward pass in these methods. The
SG provides a means to relate the outgoing spike to an internal membrane potential value. Surrog-
ate gradients are constructed in neuronal simulations with a discrete time grid, much like traditional
recurrent neural networks. This also avoids the need to provide a particular coding scheme for spike
propagation in the network’s layers.

Figure 3.7b depicts the loss function of a classifier spiking network (2 input, hidden, and output neur-
ons) as a function of the hidden layer weights from pre-optimisation to post-optimisation. The grey line
represents the true loss and is characterised by plateaus where the gradient is zero, which is troublesome
for gradient descent-based optimisation. As depicted in Figure 3.7c, a nonzero surrogate gradient is
introduced to substitute the actual gradient.

The SG approximates the true gradient while retaining all desirable qualities, including continuity and
finiteness. A natural way to consider the surrogate gradient is to imagine it as the gradient of a virtual
2MNIST is a large database of handwritten digits that is frequently used to train image processing tools.
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(a)

(b)

(c)

Figure 3.7: (a) Common surrogate derivatives. The derivative of the stepfunction (purple) is zero everywhere
except at 0, where it is not well defined. The green, the blue and the orange lines are a piecewise linear function,

the derivative of the fast sigmoid and an exoponential function, respectively. The axis are rescaled for better
illustration and the grey area corresponds to U > θ. (b) True loss (grey) and interpolated loss (red) over the hidden

weights of a SNN classifier with 2 input, hidden and output neurons. (c) Absolute value of gradient (grey) and
surrogate gradient (red) with respect to hidden weights. Illustration are adapted from Neftci et al., 2019

loss function (red line in Figure 3.7b) which, in contrast to the gradient of the true loss function, is
nonzero. It is important to point out that in practise, this surrogate loss function is not computed
because gradients are derived using approximations of gradients in the original network.

Several studies have employed surrogate gradients to train SNNs. From tackling small-scale toy prob-
lems with fractionally predictive neurons (Bohte, 2011), to training convolutional SNNs on challenging
neuromorphic and vision benchmarks (Amir et al., 2017; Esser et al., 2016; Orchard et al., 2015), to
training recurrent SNNs on temporal problems requiring working memory (Bellec et al., 2018; Shrestha
& Orchard, 2018).

The first SG implementation was presented by Bohte (2011), in which he approximated the spiking
nonlinearity as a quadratic function of the form x(t)α for x(t) > 0, yielding a rectifying linear unit as
the surrogate gradient. This concept is comparable to the proposed technique for optimising binary
NNs. A disadvantage of the rectifying linear unit is that the surrogate gradient still vanishes in the
subthreshold regime, restricting its applicability to neurons that are not inactive.

Zenke and Ganguli (2018) solved this limitation by proposing the derivative of the fast sigmoid to serve
as the surrogate gradient. Alternatively, Shrestha and Orchard (2018) used an exponential function
to achieve excellent performance on a variety of benchmarks. More variants for the SG exist, however
without mentioning them all, it can be stated that all well-functioning SGs increase monotonically
towards the firing threshold, as depicted in Figure 3.7a. Nevertheless, for a long time there was no
systematic research on the importance of SG choice and design parameters.

It were Zenke and Vogels (2021) who presented exactly that study. They systematically evaluated
the performance of SGs by repeatedly training the same network on the same task while varying the
surrogate gradient. The authors discovered that surrogate gradient learning is particularly insensitive
to SG shape variations. In contrast, improper scale selection negatively impacted learning performance.
The choice of scale for a derivative can significantly impact learning performance.
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3.6 Influence of Learning Strategy on Neuromorphic Hardware Per-
formance

Training deep ANNs (second generation) with massive pre-collected datasets and the backpropagation
algorithm has proven to be extremely capable of approximating high-dimensional nonlinear models.
Given the success of deep learning (DL), it might seem appropriate to begin SNN research there. Un-
fortunately, it turns out that this is not necessarily the case. There is a common misconception that
SNN chips are developed to accelerate traditional deep learning models, such as MobileNets and Res-
Nets, in an effort to exceed GPUs in terms of energy efficiency and speed on these workloads. On the
basis of this (incorrect) assumption, the attention turns to comparing efficiency and latency in terms
of the number of multiply-and-accumulate (MAC) operations required in ANNs, versus the number of
”synaptic operations” in equivalent SNNs. First of all, this disregards the fact that the SNN in this
context performs redundant operations to compute the internal dynamics of the spiking neurons, which
are pointless because the ANN equivalent does not employ temporal dynamics. And secondly, a single
MAC operation nowadays requires less energy on a dedicated ANN accelerator than a synaptic operation
on a neuromorphic chip, such as Loihi. The reason for this is operating cost associated with supporting
sparse network architectures. Typically, approximating a single MAC in an SNN involves multiple syn-
aptic operations spaced out across time (using rate coding), causing even greater energy consumption
and delay. In summary, it is not desirable to simply copy well-functioning algorithms from the deep
learning literature while searching for algorithms that are suited for spiking chips. The ANN literature
can act as a useful starting point for the search for effective SNN algorithms, but it only represents a
small subset of the algorithmic realm accessible to neuromorphic devices (Davies et al., 2021). Much
of this algorithmic domain is still to be explored, but research suggests that it is effective to design
algorithms that take full advantage of the dynamic features of the spiking neurons. In addition, it ap-
pears to be more favourable to use them for dynamical tasks as opposed to static ones like classification.

Davies et al. (2021) employ a different taxonomy for SNN learning approaches than was previously util-
ised in this literature study. They differentiate between online learning approaches and offline learning
approaches. Although this formulation differs from ours (supervised vs. unsupervised), both taxonom-
ies reconcile well in the majority of cases. Online learning approaches learn as data enters the network
and adjust parameters after each data sample (in real-time and in place). Offline learning approaches
employ a static dataset for learning (often fed to the network in batches). When implemented on neur-
omorphic hardware, online approaches deploy the SNN on the hardware first and then perform learning
on-chip, whereas offline approaches learn the model parameters off-chip first and then transfer them to
the hardware. The on-chip learning in online approaches is carried out using on-chip plasticity features
and are therefore almost always unsupervised approaches (Sec. 3.5.1). Offline learning approaches
include ANN-to-SNN conversion approaches (Sec. 3.5.3) and direct approaches (Sec. 3.5.3) that apply
backpropagation through time on a simulated SNN.

To determine how learning approaches function on neuromorphic hardware, we turn to the thorough
study conducted by Davies et al. (2021). They examined the ’time-to-solution’ (inference delay) and
energy consumption of all benchmarked deep SNN topologies and workloads utilising offline-conversion,
offline-direct, and online approaches for the Loihi chip. In every instance, the precision of the trained
SNNs match the precision of the reference implementations on conventional hardware. Figure 3.8 high-
lights the outcomes of their evaluation of eight workloads ranging from single-core to multi-chip. The
grey dashed line indicates the energy-delay-product (EDP). The region above or below this dashed
line represents a performance increase or decrease on Loihi relative to the reference architecture, re-
spectively. Some tasks are compared to multiple reference architectures and are indicated by distinct
markers in the figure.

3.6.1 ANN-to-SNN Conversion

The majority of the markers below the EDP line in Figure 3.8 are coloured red, indicating an offline-
conversion learning strategy. In addition, the size of these red markers suggests that a considerable
number of Loihi cores were utilised. Recall that conversion approaches often convert continuous artificial
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Figure 3.8: Energy and time-to-solution ratio between eight different tasks implemented on Loihi and to the same
implementation on a reference architecture. Accuracy of trained SNN models implemented on Loihi match the

accuracy of the implementation on reference architectures. Dotted line represents the EDP. Marker shape
corresponds to reference architecture, marker color to learning approaches used and marker size to the number of

Loihi cores required. Loihi always uses batchsize one, but reference architectures are distinguished between one and
more than one. Arrows indicate the movement of a marker when batchsize one is substituted for a larger batch size.

The closer to the top right, the beter EDP is achieved on Loihi.

neural activations in an ANN to a spike rate in a SNN. What happends is that for tasks (in this case
audio keyword spotting (Blouw et al., 2019), CIFAR image classification (Liu et al., 2022) and image
segmentation (Patel et al., 2021)) that ANNs process as single static input vectors through a number
of dense operations, are processed by a SNN as a series of sparse computations over several time steps.
Additional bits of precision require exponentially more encoding time when a spike rate is used to
indicate neural activation, because the spike rate can only be estimated more precisely by extending
the interval over which it is computed. Thus, when computing time increases, so does energy usage.
Despite the fact that at least half of the conversion methods are below the EDP line, operating on
Loihi nevertheless increases efficiency in the majority of instances (up to 100x). For smaller workloads,
Loihi’s delay is comparable to that of the reference architecture. In contrast, inference on Loihi takes
substantially longer when the workload is quite large, particularly when it spans multiple chips. This
is the result of congestion in the interconnections between chips, which have a bandwidth that is up to
thirty times narrower than the bandwidth of on-chip connections.

3.6.2 Direct Deep SNN Training

Direct training of SNNs eliminates the need to explicitly select a particular coding scheme and natur-
ally leads more to a situation in which spike-timing dictates the flow of information, instead of specific
schemes like rate coding or TTFS. Spike-timing promotes lower latency and better energy efficiency and
is therefore of particular interest when input information is contained in the relative timing between
spikes, as is the case for data streams produced by event-based neuromorphic sensors. In addition,
precise spike timing is generally more efficient than rate-coding since it requires fewer spikes, which
reduces latency and energy consumption. It is even possible to design a loss function in such a way as
to minimise latencies and spike counts.

Directly trained SNNs benchmarked on Loihi include networks trained with spike layer error reassign-
ment (SLAYER) (Shrestha & Orchard, 2018), spatiotemporal backpropagation (STBP) (Wu et al.,
2018), and a mix of BPTT with deep rewiring suggested in (Bellec et al., 2018), which builds recurrent
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long short-term SNNs (LSNNs). Since the centre of gravity of the cold-colored markers is located sig-
nificantly further to the upper right than that of the red-colored markers in Figure 3.8, it demonstrates
that direct approaches do indeed lead to a substantially greater reduction in EDP than conversion
approaches. Even when compared to neuromorphic architectures such as IBM’s TrueNorth, SLAYER
exhibits a 50-fold lower EDP on Loihi. When BPTT is applied to an LSNN, an even greater EDP
decrease is realised. 60,000 times less than a GPU for batchsize 1 and 2500 times less than a GPU
for batchsizes bigger than 1, for which they are better suited. Applying BPTT to substantially larger
collections of LSNNs that are interconnected with feedforward sub-networks is the only task where EDP
reduction is notably less than the others. Due to interchip congestion and inefficient rate codes emerging
from the feedforward portions of the network, this application which requires 2320 Loihi cores, loses a
substantial amount of performance gains. Despite the only slight improvements, this implementation
is the largest network successfully deployed on Loihi to date that outperforms conventional topologies.





4
Memory Mechanisms in SNNs

In the case of human visual perception, the retina turns spatio-temporal information contained in the
visual scene’s light into spike trains and patterns by employing adaptive filtering and sampling methods
to increase coding efficiency (Posch et al., 2014). Retinal ganglion cells then transfer the spike trains
to the visual cortex, where cognitive perception occurs. This implies that when attempting to realise a
neuromorphic pipeline that mimics the biological way of perceiving, spike trains coming from a silicon
retina (the sensory organ) should be transferred as-is and one-by-one to the SNN, and leave all temporal
integration of signals to the network in order to perceive. To achieve this, it is important to invest-
igate how to manipulate spiking NNs to extract spatio-temporal features of data streams accurately
and efficiently. Which architectures, neuron models, learning procedures, etc., promote or prevent the
formation of robust temporal integration of information? This chapter examines the available literature
on this topic. Consideration is given not just to implementations of SNNs, but also to implementations
of ANNs of which the concepts show promise that it could be carried over to SNNs.

This chapter will provide a comprehensive overview of the approaches described in the literature that
introduce temporal integration of input signals in SNNs. Section 4.1 begins with a discussion on the
internal dynamics of spiking neurons and how they introduce memory into SNNs. After that, Section 4.2
explains how this inherent form of memory can be augmented by adding explicit recurrent connections
to a SNN. Alternative implementations of explicit connections that introduce memory called temporal
skip connections, which under certain circumstances promote lower latency, are presented in Section
4.3. In Section 4.4, implementations found in the literature that use delays for temporal integration are
elaborated on.

4.1 Inherent Temporal Dynamics Spiking Neuron

Spiking neural networks, as opposed to feedforward artificial neural networks, are naturally well suited
for the processing of spatio-temporal information, due to having an internal state that changes over
time. At any point in time, the internal state (i.e., the membrane potential & synaptic current) of the
spiking neuron is not just dependent on present synaptic inputs, but also on the previous state of the
neuron, which in turn has resulted from prior inputs. We might say that this principle introduces a
form of ’memory’ into a spiking neuron because it ’remembers’ (integrates) previous synaptic input.

In order to gain a better understanding of what exactly determines the behaviour of the spiking neuron,
we revisit the dynamics of the LIF neuron in Equation 4.1. We observe that two discretised differential
equations and a spiking function govern the behaviour. The discretised differential equations describe
the change in time of the synaptic current and the membrane voltage. The parameters α and β are the
decay factors of the synaptic current and the membrane voltage, respectively. The parameter θ is the
threshold of the neuron.

47
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Figure 4.1: The shape of the PSP for varying ratios of the time constants τmem and τsyn. As long as the ratio
remains finite, the neuron can gradually forget pas inputs. Arbitrary units (a.u.) are used for a better comparison.

This illustration is retrieved from Göltz et al. (2021)
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The parameter α is an exponent of the simulation time step and the synaptic time constant (e− ∆t
τsyn ),

while β is an exponent of the simulation time step and the membrane timeconstant (e− ∆t
τmem ). The

choice of τmem and τsyn ultimately influences the shape of membrane potential (Göltz et al., 2021).
Figure 4.1 shows how the response changes for different ratios of the time constants. For τmem ≪ τsyn, a
lot of synaptic current leaks away while barely any voltage of the membrane leaks away. This results in
a membrane potential curve which looks like a graded step function. When τmem and τsyn are similar,
the membrane potential is defined by a difference of exponentials (with a sum of α-functions for the
special case of τmem = τsyn). In the case of τmem ≫ τsyn, a lot of leakage occurs in the membrane, but
almost none in the synapse, which results in simple behaviour of a decaying exponential.

4.1.1 Importance of Multi-Timescale Dynamics

With the introduction of surrogate gradient backpropagation (Neftci et al., 2019), it became possible to
optimise neuronal parameters concurrently with synaptic connectivity. Optimising neuronal parameters
was a significant departure from past modelling standards and paved the way for comprehending the
functional role of the brain’s cellular diversity, which is known to be very heterogeneous at many scales
(Koch & Laurent, 1999). Perez-Nieves et al. (2021) discovered that increasing heterogeneity (provid-
ing each neuron with a unique membrane and synaptic time constant) enhanced overall performance
across a variety of tasks and training methods, but especially for tasks with a more complex temporal
structure. When the learning rule was permitted to modify both time constants and synaptic weights,
a consistent distribution of time constants resembling a log-normal or gamma distribution was seen,
which qualitatively matched time constants measured in experimental data. In addition, heterogeneity
enables a substantial improvement in performance during inference at the expense of a minimal increase
in the number of parameters and without the use of any additional neurons or synapses. Heterogeneity
is thus a computationally efficient technique for neuromorphic computing (adding just O(n) memory
vs. O(n2) memory for adding neurons, because all neurons are connected).

Gehrig et al. (2020)’s study of the applicability of SNNs to do regression of numeric values in the
continuous-time domain from event-based data was one of the earliest attempts to shift the emphasis
away from discrete tasks such as classification. These authors trained a feedforward convolutional SNN
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architecture to estimate the angular velocity (tilt, pan, and roll rates) of a rotating event-camera based
on the events captured during rotation. Because no such real-world dataset was available at the time of
publishing, they created their own using the ESIM (Rebecq et al., 2018) event-camera simulator. The
network architecture they trained to predict angular velocities consists of five convolutional layers and
a fully connected layer, which was inspired by state-of-the-art designs for self-supervised ego-motion
prediction. The idea was that the convolutional structure of the network interprets the spatial aspect
of the input data, while the spiking dynamics account for the temporal dependencies. They found
that the SNN was capable of regressing angular velocity across multiple rates with reasonable accuracy.
A 6-layer ANN equivalent only marginally outperformed the SNN in terms of error. This result led
the authors to the conclusion that it is possible to train SNNs to ANN-competitive accuracy on this
continuous-time regression problem.

4.2 Recurrent Connections
In addition to the inherent form of memory in spiking neurons, it is also possible to introduce temporal
dependencies explicitly: recurrent connections. Non-spiking recurrent neural networks (RNNs) were
introduced in the late 1980s, but truly gained prominence when Hochreiter and Schmidhuber (1997)
proposed the long-short-term-memory (LSTM) structure. In RNNs, recurrency in the network induces
memory in the form of internal hidden states which are updated while time-stepped input feeds in.
RNNs have been shown to be effective for tasks that involve temporal patterns fed into the network
such as sequence to sequence classification, prediction tasks, speech-to-text transcription and other ap-
plications (Sherstinsky, 2020).

Several RNN variations have been created to ease and enhance RNN learning, which is known to suffer
from issues as vanishing/exploding gradients. When the dependencies in the target sequence span many
samples, these issues become particularly obvious. The LSTM unit was developed specifically as an
RNN for sequential machine learning applications such as speech recognition, language comprehension,
and sequence-to-sequence translation (Graves, 2014). Cho et al. (2014) proposed the gated recurrent
unit (GRU) in the context of machine translation, which was later shown to produce comparable per-
formance to the LSTM on sequence processing tasks by Chung et al. (2014). Recent developments, like
the independently recurrent neural network (indrnn) (Li et al., 2020), build on the success of residual
connections in CNNs to promote gradient flow in the network and obtain state-of-the-art RNN per-
formance.

Other than the choice of neuron type and activation function, RNNs and spiking recurrent neural
networks (SRNNs) are identical. The biggest difference is that on subsequent time steps, instead of
floats being fed back into the artificial neurons of the same layer, spikes are fed back into the spiking
neurons of the same layer. When adding explicit recurrent connectivity, the dynamics of the spiking
neuron change to
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where Vij are the weights of the recurrent synaptic connections and S
(l)
j are the output spikes of layer l.

In fact, this formulation of the dynamics is also applicable to feedforward SNNs, where the past state
of the spiking neuron is only fed back into itself, resulting in a Vij matrix with only non-zero elements
on the diagonal. For the sake of clarity, it was decided not to mention this recurrency matrix explicitly
because it may lead to the misunderstanding that it is a recurrently connected SNN.

Yin et al. (2020) developed a simple but effective SRNN that is trained using surrogate gradients in
order to directly apply back-propagation-through-time (BPTT) with auto-differentiation in PyTorch.
They demonstrate that their implementation reaches or sometimes even outperforms artificial RNNs
while exhibiting sparse activity. They report a >100x energy improvement for their SRNNs over clas-
sical RNNs on challenging tasks like the spoken Heidelberg digits (SHD) spiking dataset1. To achieve
1The Spoken Heidelberg Digits spiking dataset was developed specifically for benchmarking spiking neural networks
(Cramer et al., 2022)
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Figure 4.2: Schematic representation of how the voxel-grid representation of the input data is mapped onto 2D
feature maps. These 2D feature maps enter the recurrent cells, where they are convolved with feature maps from

earlier time steps.

this, the authors employ basic LIF neurons and adaptive multiple-timescale spiking neurons (Bellec
et al., 2018), for which the threshold is increased after each emitted spike before decaying exponentially
with time constant τadp.

Another implementation of recurrent connections was devised by Xing et al. (2020). The authors created
a spiking convolutional recurrent neural network (SCRNN) architecture that utilises both convolution
operations and recurrent connections, for hand gesture recognition. By combining convolutions with
recurrent connections, the network can retain both the spatial and temporal relationships of event-
based sequence data. Figure 4.2 shows how this is achieved. The input event stream is segmented into
separate voxel grids. These segments are convolved with 3D convolution kernels with spatial size K and
temporal size equal to the length of the input segment. This way the convolution operation projects
spatio-temporal spiking patterns onto a 2D feature map. This ’processing’ of the input event stream
can be viewed as an alternative to event accumulation for acquiring frames without possibly sacrificing
temporal resolution. Each coordinate of the feature map then corresponds to a spatio-temporal dynamic
pattern in a different 3D volume. These feature maps are then introduced to recurrent cells in which
feature maps of previous time steps are concatenated along the time dimension and convolved again.
Although other researchers attempted spiking recurrent approaches, they never combined convolutions
and recurrency in a complete spiking setting and for dynamic scene inputs. Furthermore, by modifying
the integration duration of the input data sequence and the convolution kernel, SCRNN can accom-
plish arbitrary spatio-temporal resolution in accordance with the task at hand. For training BPTT was
applied using SLAYER. A potential disadvantage of utilizing SCRNN is that as temporal dependencies
in the input become lengthy, inference could be accompanied by significant latency, as input segments
grow in size.

4.3 Skip Connections
As the name implies, skip connections in deep architectures bypass some of the neural network’s layers
and use the output of one layer as the input for deeper layers. Skip connections were initially developed
to address a variety of architectural challenges such as vanishing and exploding gradients and degrad-
ation issues. Skip connections in neural networks can typically be utilised in two ways: addition and
concatenation. Both methods are illustrated in figure 4.3.

He et al. (2015) introduced residual networks (ResNets) to solve the challenge of image classification.
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(a) (b)

Figure 4.3: (a) Skip connection using addition, taken from original ResNet paper (He et al., 2015). (b) Skip
connections using concatenation, taken from original DenseNet paper (Huang et al., 2018).

Using matrix addition, ResNets pass information from initial layers to deeper layers. This procedure
has no additional parameters, as the output of the preceding layer is added to the next layer. Fur-
thermore, backpropagation does not become computationally more expensive because vector addition
simply introduces a gradient of one. Skip connections using concatenation were introduced by Huang
et al. (2018), when they published their paper on densely connected convolutional networks (DenseN-
ets). DenseNets concatenate the output feature maps of one layer with a deeper layer, in order to
preserve high level features for use in deeper layers. Because these high level feature maps are directly
concatenated to deeper layers, convolution layers in between do not need to “let through” or “preserve”
shallowly acquired features for the prediction layer to have access to them. DenseNets therefore actu-
ally require fewer parameters to achieve state-of-the-art performance than Resnets, which may appear
counterintuitive.

The reader might be wondering what skip connections have to do with introducing temporal integration
or memory at this point. This may be accomplished by manipulating the manner in which information
propagates a network with skip connections. By introducing propagation delays with skip connections,
the rollout of the network may be altered to promote temporal integration. Before discussing this in
more depth, the concept of rollout is first elaborated on.

Conventionally, the layers of a network are computed sequentially, resulting in no temporal integration
and possibly lengthy response times. Fischer et al. (2018) presented a paradigm for describing rollouts
and the degree of model parallelization they create. They demonstrate that particular rollouts enable
earlier and more frequent responses, even for networks with only skip connections and no recurrent
connections, and demonstrate empirically that these early responses have superior performance. The
streaming rollout optimises these characteristics and enables a fully parallel execution of the network,
hence decreasing runtime on massively parallel machines.

4.3.1 Streaming Rollout

Rolling out (or unrolling) a neural network is the process of disentangling the recursive dependencies
and transforming the network into a feed-forward network (Fischer et al., 2018). Since unrolling a
network is ill-defined (Liao & Poggio, 2020), various rollouts are possible for the same neural network.
In general, there are two ways to unroll each edge: (1) connecting the source and target nodes at the
same point in time or (2) bridging time steps. For an illustration of the first method, consider the
vertical edges in Figure 4.4b. For an illustration of second method, see Figure 4.4c. Edges are typically
applied in a non-time-bridging (method 1) fashion throughout a rollout and only bridge time steps
when necessary, as is the case with recurrent connections. Fischer et al. (2018) refer to these rollouts
as sequential rollouts. Alternative rollouts result in varying degrees of model parallelism and distinct
network characteristics. In rollouts that induce complete model-parallelism, nodes of a certain time
step in the unrolled network become computationally disentangled and can be computed in parallel
(see Figure 4.4c). Fischer et al. (2018) calls these streaming rollouts.
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(a) (b) (c)

Figure 4.4: (a) Neural network with skip and recurrent connections. (b) Sequential rollout. (c) Streaming rollout.
Nodes correspond to layers, edges represent transformations (e.g., convolution). Just one rollout step is shown.

Illustration is adapted from (Fischer et al., 2018).

In addition to rollouts of RNNs, Fischer et al. (2018) also investigate rollouts of non-recurrent net-
works. They found that different rollout types result in distinct network behaviour, particularly in
networks with skip connections. The rollout pattern effects a network’s response time, which is the
period between the onset of an input and the network’s output. Skip connections can significantly re-
duce response times. A frequently useful property for dealing with spatio-temporal sequences as input
from event-based sensors, for instance.

4.3.2 Temporal Skip Connections

As seen in Figure 4.4b, the combination of skip connections and a more ’traditional’ sequential rollout
does not offer any type of temporal integration. At no point in time can information from different
input times be integrated at a single point in time at the network’s output. When a streaming rollout
is applied, however, information can travel deeper into the network from one time step to the next (or
any other desirable amount of time steps). Now, skip connections bypass not only layers in the depth
direction, but they also bridge time steps, and we can regard them as temporal skip connections.

Using temporal skip connections, Kugele et al. (2020) introduced a novel technique for obtaining ex-
tremely accurate SNNs for sequence processing. Specifically, they utilised ANN-to-SNN conversion to
match the delays caused by ANN rollouts to the propagation delays in the target SNN. Their solution
is based on the concept of streaming rollouts, as introduced by Fischer et al. (2018). They remark that
the streaming rollout is in fact the same as introducing an axonal delay dANN of at least one rollout
frame (i.e., column in the network rollout) to all edges (i.e., connections). The subsequent state of each
neuron can therefore be derived solely from values computed in the preceding rollout frame, enabling
entirely parallel updates inside a single rollout frame.

Figure 4.5 depicts how Kugele et al. (2020) implemented streaming rollouts to achieve temporal integ-
ration for a network graph (Figure 4.5a) with a single block Nb = 1, consisting of Nl = 4 convolutions,
and a fully-connected layer. By giving the four (processed) input frames F1, ..., F4 a distinct colour, the
colour gradients reveal which frames affect which layer at each time step. Observing the green arrows, it
can be seen that the skip connection from layer 1 to layer 4 already causes activity at the output layer at
k = 3, giving the network a latency of just 2 time steps. Furthermore, paths of different length connect
the output to the input frames, with the longest path being marked in red and the shortest path being
marked in blue. The difference between the longest and the shortest path defines the spatio-temporal
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(a) (b)

Figure 4.5: (a) Network graph of feedforward SNN with skip connections consisting of 4 convolutional layers and a
fully connected layer (b) The streaming rollout of the same network. Different path lengths (red and blue path from

F2 and F4 to y6) allow for temporal integration. Illustration is adapted from (Kugele et al., 2020).

receptive field. In the case of the example τ = 3 (hence there is a mix of three colours). This also
suggests that the size of the receptive field can be controlled by selecting a network depth. This allows
for adaptation to the temporal scale of a particular problem at hand.

Kugele et al. (2020) use the DenseNet architecture for all their experiments. A schematic of the
DenseNet architecture is show in Figure 4.3b. Each layer, in each DenseNet block, is connected to all
previous layers. What makes such dense connectivity possible without running out of memory is that
these networks require only very narrow layers of just 9 output feature maps. Reaching state-of-the-art
performance on N-MNIST requires only 3·105 parameters using the DenseNet implementation of Kugele
et al. (2020) compared to approximately 2 · 106 parameters using SNN implementations of Wu et al.
(2019) and Lee et al. (2016). Similar parameter numbers compared to other SNN implementations are
also reported for other datasets including DVS-Gesture and Cifar10-DVS. The DenseNets in Kugele
et al. (2020) use networks with Nb = 3 blocks, containing Nl = 5 layers each. The spatio-temporal
receptive field of implemented DenseNet becomes D = NlNb + 1 = 5 · 3 + 1 = 16. Furthermore, the
latency of DenseNets is equal to Nb rollout frames, compared to D of recurrent networks which com-
pute all D layers for each output. These temporal skip connections in streamingly deployed DenseNets
facilitate rapid approximate network outputs that are improved over time. Finally, a remark is that the
authors used ANN-to-SNN conversion with spike rate encoding in order to train their networks. Des-
pite using relatively few parameters compared to other convolutional SNN approaches, energy efficient
implementation on neuromorphic hardware is not guaranteed this way.

4.4 Delays

Numerous studies have demonstrated that synaptic delays are present in biological neurons (Katz &
Miledi, 1965; Minneci et al., 2012; Wang et al., 1985). For instance, they affect the nervous system’s
capability to process information. In SNNs, the concept of learning delays for processing spatio-temporal
input streams is typically implemented using two distinct methods. These methods can be referred to
as “delay selection” and “delay shift”.

4.4.1 Delay Selection

Delay selection is a mechanism in which a presynaptic and a postsynaptic neuron are connected via
a connection consisting of a fixed number of synaptic terminals, each of which functions as a sub-
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Figure 4.6: Schematic representation of a synapse between presynaptic neuron i and postsynaptic neuron j,
consisting of k sub-connections. Each sub-connection has its own delay and own weight (red dot).

connection with a distinct delay and weight. This configuration is depicted schematically in Figure 4.6.
Throughout the learning process, the weights are modified and the sub-connections with appropriate
delays are strengthened, while those producing undesirable output spikes are reduced. It were Bohte
et al. (2002) who proposed the SpikeProp algorithm (sec. 3.5.3), which was the first framework to
perform delay selection in conjunction with error backpropagation. Numerous researchers have utilised
this algorithm to learn delays in a wide variety of scenarios since (e.g., Ghosh-Dastidar & Adeli, 2007,
2009; McKennoch et al., 2006; Shrestha & Song, 2015; Sporea & Grüning, 2013; Xu et al., 2013).
Using sub-connections with multiple synaptic delays increases learning performance by facilitating the
production of output spikes at various desired timings. This, however, increases the number of learning
parameters (synaptic weights) and, consequently, the computing cost, as updating a large number of
parameters at each learning epoch is required.

4.4.2 Delay Shift

The delay shift technique is a delay-learning approach used to train a coincidence detector (CD). A CD
is a neuron model that is biologically realistic, in which the neuron fires in response to simultaneous
input spikes. A key element of the learning method is the adjustment of the synaptic delay in the
model and not the synaptic weights (examples of these implentations include: Adibi et al., 2005; Pham
et al., 2008; Taherkhani et al., 2015, 2018). These implementations, however, are suitable for learning
a desired spike train from an input spike train. A restriction in which we have less interest. In addi-
tion, all approaches employ local learning rules rather than error backpropagation. Due to these factors,
these approaches fall outside the scope of this literature review and will not be discussed in greater detail.

4.4.3 Delay using Backpropagation

In order for a network to learn a delay shift via error backpropagation, an entire time sequence must
be introduced at once. The reason for this is that at the time of the backward cycle, spatio-temporal
error credit has to be assigned to the parameters of the network. This error can only be assigned to
connected nodes in the computational graph; otherwise, the chain of derivatives would be broken. Com-
puting a gradient towards a delay suggests a change in delay and, thus, an alteration to a connection
in the computational graph. In practice, however, this is not possible because the network has never
computed alternative paths during a forward pass. It has no means of knowing how changing a delay
would have affected the network retroactively. For a network to learn the delays with backpropagation,
a longer sequence must be introduced all at once so that it retains access to all time dependencies during
backpropagation. A backpropagation framework which meets the criterion was introduced by Shrestha
and Orchard (2018). Their framework, named SLAYER, takes time sequences as inputs as a whole. To
illustrate how SLAYER learns delays, an example network with an event-based input data stream are
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Figure 4.7: Schematic respresentation of how a segmented input event stream propagates a fc feedforward network
when using the SLAYER framework. {1, 1, 1} 3D convolutions allow the spikes to propagate as if it were fc and at

the same time allow spikes to be shifted within the segment through error backpropagation.

presented.

Consider an input sequence S(n), n = 0, 1, 2, ..., N as illustrated in Figure 4.7. At each time step, S(n)
is a 4D tensor with shape {C, H, W, t}, where C is the number of channels, H and W denote the height
and the width of each frame and t corresponds to a predefined time resolution. A given event-based
video stream can be freely segmented into multiple tensors according to the desired temporal resolution.
For instance, a 3 second 32x32 spatial resolution event data stream, with a 300ms temporal window and
a 1ms sampling time, can form an input sequence S(n), n = 0, 1, 2, ..., 10, where each individual segment
is a tensor of shape {2, 32, 32, 300} (one channel for positive events and one channel for negative events).

Segments of S(n) are fed into the network sequentially. After a segment enters the network, a delay
is applied along the time dimension. More precisely, we regard the spikes at every spatial position
{H, W}, in every channel C, in the segment as the spike train sC,H,W (t) within the temporal resolution
window t. These spike trains are causally shifted in time, according to

sl
d(t) = δ(t − dl) ∗ sl(t) (4.3)

dl =

{
0 d < 0
d d ≥ 0

(4.4)

where δ is the Dirac delta function, sl
d(t) is the shifted spike train and d is a certain delay which is

clipped at zero (for causality). In order to extract temporal features, the shifted spike trains then are
to be forwarded into a fully connected layer, while preserving the time dimension. However, it is not
readily apparent how this might be accomplished. Here, the authors of SLAYER have devised a clever
trick, since they employ a 3D convolution for this purpose. Each spike train sC,H,W (t) is assigned to its
own channel in the tensor, and the height and width dimensions are flattened. This results in C · H · W
spike trains of length t. By applying a 3D convolution with a kernel size of {1, 1, 1} and C · H · W input
channels, a fully connected layer can be imitated.

To understand why this is the case, we will first review the mathematics underlying the 3D convolutional
operator in neural networks. Suppose that we have a 3D convolutional layer with NC input channels
and a convolution kernel of size {m, n, o}. In the simplest case (stride of 1, no padding, etc.) every
output channel (feature map) can be described as

Cl
i,j,k = biasl +

NC∑
γ=1

(
m−1∑
a=0

n−1∑
b=0

o−1∑
c=0

wl
γ,a,b,cCl−1

γ,i+a,j+b,k+c

)
, (4.5)



56 Memory Mechanisms in SNNs

where biasl is the bias of that output channel, Cl−1
γ is the γth input channel and wl

γ is the 3D kernel
for that input channel. What Equation 4.5 does can be summarised as follows: it describes kernels
that slide through all three dimensions of the input tensor, in each channel, after which all channels’
contributions are summed together. Lastly, a bias is added. Because SLAYER uses a kernel of size
{1, 1, 1}, and because the height and width of the input tensor are also equal to 1, Equation 4.5 reduces
to a single weight sliding along the time dimension, in each channel:

Cl
1,1,k = biasl +

NC∑
γ=1

wl
γCl−1

γ,1,1,k (4.6)

Equation 4.6 shows that in this context, applying a 3D convolution to the input tensor, is the same as
weighting all input spike trains and then summing them, which in fact is equivalent to the operation
of a fully connected layer. To convert the resulting spike trains into response signals, the spike trains
are convolved with the spike response kernel. The SRM neuron state is updated by the sum of the
postsynaptic potential and refractory response, according to

ul
i(t) =

∑
j

wl
ji

(
ε ∗ sl−1

j

)
(t) +

(
ν ∗ sl

)
(t)

=
∑

γ

wγ

(
ε ∗ Cl−1

γ

)
(t) +

(
ν ∗ sl

)
(t)

=
(
ε ∗ Cl

)
(t) +

(
ν ∗ sl

)
(t)

(4.7)

where we have used that the weight of the {1, 1, 1, } convolution kernel, times the output channel of the
3D convolution, is equal to a weighted spike train, as in the SRM.

Coming back to the delay layer in the example network, we notice that we learn one delay per spike train
sC,H,W (t) and thus one delay per neuron. Such a delay is considered to be an axonal delay and not a
synaptic delay, which were discussed in the previous subsection (the difference is that with axon delays,
each neuron’s outgoing synapse has the same delay, as opposed to different delays for each synapse.).
Synaptic delays can also be learned in a similar fashion using SLAYER (Shrestha & Orchard, 2018),
but for the sake of simplicity only axonal delays were considered here.

Due to spike buffering, implementing synaptic transmission delays in real-time neuromorphic devices
incurs a significant memory and computing overhead. Moreover, only a handful of neuromorphic devices
allow synaptic transmission delays. We will discover in the following part that there are ways to avoid
this.

4.4.4 Delays as Temporal Convolutions

An alternative way of implementing delays to achieve temporal integration was suggested by Weidel
and Sheik (2021). They proposed ’WaveSense’, a spiking neural network that utilises the time constant
of the neuron’s spiking dynamics as an alternative to (dilated) temporal convolutions. The authors
argue that compared to buffering spikes or employing synaptic delays, this reduces the memory needs
for temporal spiking algorithms, despite the absence of quantitative evidence. WaveSense is based on
the WaveNet architecture (van den Oord et al., 2016), which was designed to spot keywords. Temporal
input data, such as audio streams, are continuously processed without buffering, making WaveSense
potentially suited for processing other event-based data streams.

The central concept is to model the delay periods in WaveNet’s dilated convolutions as synaptic time
constants in spiking neurons for efficient implementation on neuromorphic hardware. For this goal,
the authors extend the original WaveNet architecture to the spiking domain and train the network
with the well-known spiking backpropagation method SLAYER. They accomplish the implementation
of synaptic time constants by using exponential kernels for synaptic ϵsyn(t) = e(−t/τsyn) and membrane
ϵmem(t) = e(−t/τmem) dynamics and then convolving these kernels to arrive at the PSP kernel according
to
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(a) (b)

Figure 4.8: (a) Projection in time with convolution kernel of size 2, when implemented with delays. (b) Projection
in time when implemented with chosen synaptic time constants, as in WaveSense. Note that the colored dots are

located where the response reaches its maximum, 1 and 3 time steps from the input spike time for τ = 1 and τ = 3,
respectively.

ϵ(t) = (ϵsyn ∗ ϵmem) (t) =
τsynτmem

(
e

− t
τsyn − e− t

τmem

)
τsyn − τmem

. (4.8)

Figure 4.8 illustrates how the concept of WaveSense differs from ’normal’ delays. Where in Figure 4.8a
the spiking input is delayed by one simulation time step after which the PSP is computed, Figure 4.8b
shows that the PSP starts rising immediately after the input spike, reaching its maximum value only
after τ time steps.

The study demonstrates that the time constant of the LIF neuron can in fact be utilised to successfully
incorporate time delays, as necessary for temporal convolution. Because WaveNet does not buffer any
spikes from the past explicitly, it should be very efficient in terms of memory compared to WaveNet
(Weidel & Sheik, 2021). Furthermore, during inference, the WaveSense architecture accepts spike
streams directly and not buffered frames as input. A favourable characteristic when trying to achieve
brain-like computing. A final remark is that the authors propose that the synaptic time constants be
manually changed based on the task, as opposed to learning the ideal time constants for a given activity,
a choice that potentially leads to suboptimal results.





III
Preliminary Evaluation of Memory
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5
Methodology

Before starting the actual research for this thesis, preliminary experiments have been carried out in
order to gain a good understanding of the concepts and challenges that are associated with designing
and training spiking neural networks, on tasks that require memory, in a simulation environment. To
that end several spiking and non-spiking neural network models found in literature that posses different
forms of memory mechanisms have been trained on two variants of an artificial dataset. The simulation
of the experiments is done in Pytorch.

This chapter is structured as follows. In the first section (5.1), two variations of an artificial task in
which a pixel moves along a 1D trajectory at varying speeds are discussed. Both of these datasets
require memory in order for a neural network to successfully solve them. After describing these tasks,
section 5.2 discusses ten neural network models that will be trained to solve these tasks, as well as
what their respective memory mechanisms are. An emphasis will be placed on pairing spiking and
non-spiking networks.

5.1 The Artificial Tasks

For the preliminary evaluation of memory mechanisms in spiking neural networks, a task was needed
that requires memory to solve. A task that can only be solved by integrating multiple timesteps of the
input, in order to produce the correct output. To that end, two variants of a 1D moving pixel task have
been devised. The first variant can be compared to observations made by a tradional frame-based video
camera. The second variant can be compared to observations made by an event-camera of which the
events are accumulated in small equally sized time intervals. By feeding the classic and accumulated
event frames of the moving pixel, timestep-by-timestep, into a network, the network must estimate the
pixel’s velocity.

5.1.1 The classic 1D Moving Pixel

The classic 1D moving pixel task is an artificially generated dataset of a pixel moving at a variable
speed along a straight line. Several realisations of the trajectory of the pixel are depicted in Figure
5.1a. Every slice of a generated sequence can be considered as the (simplified) equivalent of a light
intensity measurement made by a traditional fixed framerate video camera of a small object, moving
up and down. The field of view of the imaginary camera sensor is 30 pixels. As can be seen in Figure
5.1a, a different width of the pixel is picked randomly for each sequence. The possible widths range
between 1 and 5. The velocity of the pixel varies continuously within a sequence and changes sign when
it reaches the edge of the field of view of the ’sensor’. Available velocities range between -2 and 2 (only
integer values). In addition to varying in width and velocity, the edge contrast of the moving pixel also
varies, simulating the low contrast of edges captured by a real camera (see red pixel edges in Fig. 5.1a).
Similarly, normally distributed noise is added to the background.
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(a)

(b)

Figure 5.1: (a) Randomly generated dataset of a 1D moving pixel in a field of view of 30 pixels with a variable
speed over 100 time steps. (b) Randomly generated event dataset of a 1D moving pixel in a field of view of 30

pixels with a variable speed over 100 time steps.

5.1.2 The event-based 1D Moving Pixel

With traditional fixed framerate observations of a small moving object, a network only requires two
consecutive frames to estimate the pixel’s velocity since, the velocity is already well approximated by
the difference in position between the two frames. This prevents evaluating the longer term memory
capabilities of networks. In order to address this need, a second artifical task has been compiled. This
task represents observations from an event camera, observing the same small object moving along a 1D
trajectory (see Figure 5.2). Events captured by this fictitious event sensor are accumulated over fixed
time intervals as opposed to a fixed number of events. This is done because, under the condition that
the object’s velocity is tiny in comparison to the size of these intervals, this introduces empty frames in
between frames that do contain events (see Fig. 5.2). This method of constructing our artificial task
enables us to evaluate the memory mechanisms in our networks over longer timescales because velocity
estimation requires the integration of more than one timestep. Note that the lower the velocity, the less
frequent the events and the longer their temporal dependencies. To simulate a real-world environment,
noise events are also added to the sequences. Note that as velocity decreases, events become less
frequent and their temporal dependencies become longer. Noise events are also added to the sequences
to simulate real-world observations.
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Figure 5.2: Illustration of how the event dataset is realised. On the right: a small object moving through the field
of view of an event sensor of size four pixels. On the left: equally sized time bins that accumulate the events,

captured by the fictitious event sensor. The assumption is that the object moves slow, relative to the bin size dt, so
that even at the largest speed at least one empty bin is in between events. Faster motion of the object thus results
in faster successive events and slower motion in a greater number of empty bins in between events. Blue and red

denote positive and negative events, respectively.

5.2 Network Models

This section describes the neural network models that are trained to solve the moving pixel tasks. All
these networks, both spiking and non-spiking, were simulated in PyTorch. PyTorch provides a very
customizable and intuative framework for performing gradient-based optimisation. It benefits from fast
tensor computing with strong acceleration via the GPU and has an automatic differentiation system
built in. Standard neural network layers such as the fully-connected feedforward layer, the convolu-
tional layer and LSTM block layers are easily customised to their spiking equivalents. Additionally,
surrogate gradients for the spiking non-linearity can simply be defined mathematically and the auto-
differentiation function of PyTorch does the rest. Code listing A.1 provides a very basic example of an
SNN implementation in PyTorch. SNN implementations in PyTorch are to a large extend analogous
to non-spiking ANN implementations in PyTorch. The only difference is an added spiking mechanism
and a variable that keeps track on the spiking neuron’s state.

Eleven neural networks have been implemented for the preliminary experiments in total. One of those
does not have the ability for temporal integration, while all others do. Section 5.2.1 features three
very common NN architectures that will acts as baselines. Afterward, the focus is placed on four
pairs of spiking neural networks and their non-spiking counterparts. By implementing the non-spiking
counterparts as well, we will have access to a good baseline and may discover interesting things when
comparing between the two. Further details of the networks that are discussed in the following can be
found in Appendix A.1 on page 83.

5.2.1 ANN & RNN & GRU

The non-recurrent, non-spiking ANN is the first neural network trained to solve the moving pixel tasks.
The ANN has a single hidden layer comprising 60 neurons. Because this type of network lacks internal
memory mechanisms, it should be incapable of learning both the classic and the event task. It is used
to verify that temporal integration is indeed required to complete the tasks.

The next architecture is the basic non-spiking RNN. It comprises a single hidden layer of 60 recurrently
connected neurons. The explicit recurrent connections should give the RNN plenty of temporal integ-
ration capability to learn the classic moving pixel task. The event based moving pixel task will most
likely prove more difficult, but it is still expected that the RNN is capable of learning it.
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(a) (b)

Figure 5.3: The sEMD as proposed in D’Angelo et al. (2020). (a) A vertical field of view consisting of three pixels.
Neighboring pixels are connected by a sEMD. For all pairs of neighboring pixels there is a top-bottom (TB) detector

and a bottom-top (BT) detector. (b) Internal functioning of the TDE. A spiking input to the facilitator (fac)
results in an exponentially decaying gain. The EPSC is the product of the gain and the trigger (trig). The EPSC

feeds into the LIF neuron. Three situation can occur: (1) the trigger receives an input spike right after the
facilitator, resulting in a high EPSC; (2) the trigger recieves an input spike long after the facilitator, resulting in a

low EPSC; (30) the trigger receives input before the facilitator, resulting in zero EPSC.

As the name suggests, the GRU network is a network consisting of 60 GRUs in a single hidden layer.
The GRU, which is particularly suited for learning long-range dependencies in input data due to its use
of update and reset gates to avoid the vanishing gradient problem, is anticipated to perform well on both
moving pixel tasks. The GRU is regarded as a state-of-the-art architecture for processing sequences
and serves as a benchmark for the highest possible performance on moving pixel tasks.

5.2.2 SNN & Leaky ANN

In addition to the non-spiking neural networks previously mentioned, four pairs of equivalent spiking/non-
spiking networks are trained on the moving pixel tasks. The basic feedforward SNN and its non-spiking
counterpart, the leaky feedforward ANN, encompass the first of these four pairs. Due to the fact that
spiking neurons and leaky artificial neurons have an internal state, it is anticipated that they will be
able to make a meaningful, albeit imprecise, velocity estimate in the case of the classic moving pixel
task. The SNN and LeakyANN are only capable of temporal integration by decaying the states of their
neurons at different rates. Due to the fact that two timesteps of temporal integration are sufficient for
estimating velocity in the classic task, it should still be able to make useful estimations. However, the
event task with longer dependencies will likely prove to be extremely challenging.

The introduction of implicit temporal dynamics for the leaky, non-spiking neurons, follows the definition
of Hagenaars et al. (2021). Their definition of the leaky artificial neuron is analogues to the dynamics
of the spiking neuron, except that no reset mechanism is used and a non-spiking activation function is
applied. By replacing the spiking activation with ReLu activation, the activation of any neuron becomes

yk
i = ReLU

αyk−1
i + (1 − α)

∑
j

W ff
ijIk

i

 , (5.1)

where j and i denote presynaptic and postsynaptic neurons respectively, α is the neuron leak, k the
timestep, and W ff are the feedforward weights that are multiplied with the input signal I.
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5.2.3 Leaky RNN & recurrent SNN

The recurrent SNN and leaky RNN are the the next pair of spiking/non-spiking networks. These
networks also feature a single hidden layer containing sixty neurons. The literature has repeatedly
demonstrated that the SNN with explicit recurrent connections is highly capable of temporal integration
(Hagenaars et al., 2021; Huh & Sejnowski, 2017; Li et al., 2020; Xing et al., 2020; Yin et al., 2020).
Despite the theoretical promise of excellent temporal integration capabilities, vanishing gradients could
pose a problem when training these networks.

5.2.4 Delay ANN & Delay SNN

A spiking and non-spiking network pair utilising synaptic delays for temporal integration is also trained
to solve the moving pixel task. The type of delay learning is delay selection (see Sec. 4.4.1). The
maximum synaptic delay multiplied by the number of hidden layers determines the temporal receptive
field of delay networks. Temporal dependencies in input data longer than this receptive field cannot be
learned by the non-spiking delay network. In contrast, the spiking delay network can, in addition to the
synaptic delays, use its spiking dynamics to further expand its temporal receptive field and still make
accurate predictions when dependencies exceed the synaptic delays’ receptive field. In order to study
these effects, the temporal receptive field of the synaptic delays is set to be sufficient for the classic
task but insufficient for the event task. Under the latter conditions, the delay ANN can only observe
the greater speeds, and its performance should suffer. The delay SNN should be less affected due to its
spiking dynamics.

5.2.5 sEMD & LIFsEMD

The fourth pair of networks consists of two variants of the spiking elementary motion detector (sEMD).
The sEMD was originally designed to encode optic flow using event-based visual sensors (D’Angelo
et al., 2020). 1 The principle of the sEMD is depicted in Figure 5.3. The edge of an object moving
in the field of view from one pixel to the next one generates a spike in each pixel with a given time
difference. This time difference depends on the velocity of the edge (and the distance from the pixels).
An sEMD is composed of two pixels and a time difference encoder (TDE). What the TDE essentially
does is converting a time interval between two spikes into a number of output spikes generated in re-
sponse to the second input spike. There are two types of synapses connecting the inputs to the TDE:
facilitator and trigger. The facilitator synapse regulates the TDE neuron’s activity. Only if the trigger
synapse’s input event occurs after the event from the facilitator synapse does the trigger synapse induce
a response from the TDE neuron (compare (1) and (2) in Figure 5.3b). As depicted in Figure 5.3b, the
output current of the trigger synapse raises the membrane potential of the TDE neuron. The strength
of the current is dependent on the gain variable of the facilitator synapse, which decays exponentially.

A limitation of the sEMD is that it requires a minimum temporal resolution of the input data in order
for edges not to move more than one pixel per timestep. If this does occur, the sEMD will either detect
motion events incorrectly or not at all. This presents a problem for learning the classic moving pixel
task, as the pixel can sometimes move multiple pixels from input to input. This is not a problem for
the event task because the pixel never jumps more than one pixel from input to input.

1Even though the ’s’ in the abbreviation sEMD denotes ’spiking’, in this work the ’sEMD’ is considered as the non-spiking
variant and the LIFsEMD as the spiking variant.





6
Results & Discussion

Here the results of the preliminary evaluation of memory mechanisms in (spiking) neural networks are
presented. For this evaluation, ten networks capable of integrating temporal information, and one that
is not, have been trained to solve two variants of a moving pixel task. This chapter is built up as
follows. First the network parameters and simulation settings are discussed in Section 6.1. After that,
the training process and the final accuracy of the networks on the classic and event task are assessed
in Section 6.2 and Section 6.3, respectively. Following this general analysis, Section 6.4, Section 6.5
and Section 6.6 will dive deeper under the hood of these networks and explore the temporal integration
mechanisms that arise as a result of training by back propagating errors through time.

6.1 Network Parameters & Simulation Settings

All simulations have for this preliminary evaluation have been done in PyTorch. The networks are
trained using the Adam optimizer, for 100 epochs. To mitigate problems associated with exploding
gradients, which is of particular concern for recurrent networks, the gradient norm of all parameters is
clipped at 10.

Initialisation of the neuron leaks is done by applying the sigmoid α = 1
1+exp(−a) to values a, drawn

from a normal distribution centred around -4. This results in small initial leak and thus in little
initial ’memory’, encouraging the spiking neurons to learn such behaviour instead of giving it from the
start. In addition, during every forward pass the leaks are squished between 0 and 1 using the sigmoid
function in order to prevent instability (Fang et al., 2021). The thresholds θ are clamped to [0.05, →)
as implemented in Hagenaars et al. (2021). The thresholds are initialised by drawing from a normal
distribution centred around 0.8. To initialise the weights in the spiking layers, values are drawn from
the uniform distribution which is delimited by the square root of the number of input neurons to ensure
enough activity. No biases are included (Hagenaars et al., 2021).

Table 6.1: SNN parameter initialisation

Init

a N(−4, 0.1)
θ N(0.8, 0.01)
weights U(− 1√

Nin
, 1√

Nin
)

biases None
arctan ′ width 10
Grad Norm 10

Table 6.2: Simulation parameters

Epochs 100
Optimizer Adam
Learning Rate 0.002
Batch size 1
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Figure 6.1: Training loss for the classic moving pixel task. For better readability
the running average of the loss of two subsequent epochs are plotted. Artificial

(non-spiking) networks and their spiking counterparts have the same colour. The
non-spiking networks are plotted as solid lines and the spiking networks as dashed

lines.

Table 6.3: Test loss for the
classic moving pixel dataset.

Evaluated with seed over
600 sequences.

Ltest

ANN 0.48
RNN 0.21
GRU 0.20
LeakyANN 0.30
SNN 0.36
LeakyRNN 0.21
SNNrec 0.22
sEMD 0.35
LIFsEMD 0.39
DelayANN 0.21
DelaySNN 0.21

6.2 The Classic Moving Pixel

From Figure 6.1 and Table 6.3, we can conclude that, except the ANN, all networks were able to learn
the moving pixel task. This is to be expected given that the ANN is the only network incapable of
temporal integration. In arranging the networks, we find that explicit recurrency and delays perform
the best. These are followed by the sEMD networks, which perform marginally poorer. The networks
that rely solely on leaks to achieve temporal integration have the poorest performance (but have still
learned something). Note that the temporal receptive field of the delay networks is large enough to
cover all time dependencies in the input data.

It is notable that the sEMD and LIFsEMD networks start converging significantly faster than their
purely feedforward competitors, the LeakyANN and the SNN. Ultimately however, they don’t achieve
as low of a test loss. Remember that by definition, the sEMD networks are not fully connected, but
the input neurons are neighbour connected. The smaller number of parameters, in conjunction with
the automatic detection of a motion direction, likely makes it easier for the network to determine the
initial direction of the negative gradient. Eventually, this initial advantage becomes a limitation: due
to the smaller solution space (only movements of at most 1 pixel), the accuracy cannot be improved
after approximately 20 epochs.

Figure 6.1 also reveals that, for each non-spiking and spiking network pair, the final test loss of the
spiking network is either greater than or equal to that of the non-spiking network. This observation
is consistent with previous reports in the literature by, among others, Hagenaars et al. (2021), Kugele
et al. (2020) and Xing et al. (2020). In addition to having comparable or slightly inferior performance,
spiking networks also converge more slowly than their non-spiking counterparts. This is the case at least
for three out of four pairs. The delay networks however convergence approximately at the same rate.
Both reach 80% of their final loss after just two epochs. For comparison: the LeakyRNN reaches 80%
of its final loss after three epochs versus six for its spiking counterpart the recurrent SNN. It appears
as if explicit recurrency increases the difference in convergence speed between non-spiking to spiking
neurons. An explanation for this might be that the recurrency emphasizes the already more difficult
flow of gradients in spiking networks. The lengthy BPTT derivative chain causes gradients of less active
neurons, which are already small, to decrease even further until they eventually vanish.
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Figure 6.2: Training loss for the event-based 1D moving pixel task. For better
readability the running average of the loss of two subsequent epochs are plotted.

Artificial (non-spiking) networks and their spiking counterparts have the same
colour. The non-spiking networks are plotted as solid lines and the spiking networks

as dashed lines.

Table 6.4: Test loss for the
event-based moving pixel

dataset. Evaluated with seed
over 600 sequences.

Ltest

ANN 0.35
RNN 0.28
GRU 0.22
LeakyANN 0.35
SNN 0.38
LeakyRNN 0.23
SNNrec 0.37
sEMD 0.32
LIFsEMD 0.35
DelayANN 0.34
DelaySNN 0.29

6.3 The Event-Based Moving Pixel
Figure 6.2 displays the training loss curves for the event-based 1D moving pixel task. Remember that
the temporal dependencies are longest in this dataset when the pixel speed is lowest. In this case, at
lowest pixel speed ±1, the minimum memory required is four simulation steps. In order to encourage
the use of leaks in the spiking delay network, the maximum synaptic delay for the DelayANN and
DelaySNN was set to 2.

In addition to the networks clearly finding it more difficult to estimate the correct velocity with these
longer temporal dependencies, it is quite remarkable that the memoryless ANN and the stateless Delay-
ANN (without sufficient temporal receptive field) are still able to learn the task to some degree. On the
surface, this does not make sense. These networks have no (or insufficient) knowledge of the past to
make an accurate estimate. To determine what is occurring, we revisit the images of some realisations
of the event-based moving pixel task, depicted in Figure 5.1b. A more detailed analysis clarifies the
situation at hand. Each time the moving pixel triggers an event, the events come twofold: one posit-
ive and one negative. In this extremely basic 1D setting, this pair of events gives away the direction
of motion, which is always from the negative to the positive event. The reason for this is that the
moving pixel is darker than the background. If the pixel travels upwards, this results in a negative
event with a positive event above it. Despite never actually integrating input information or learn-
ing to estimate the exact pixel velocity, the ANN and DelayANN can minimize the loss function to a
certain degree by reacting to a pair of positive and negative events within the same simulation time step.

Moreover, Figure 6.2 demonstrates how spiking dynamics can compensate for a lack of temporal re-
ceptive field produced by synaptic delays. This follows from the fact that the pink dashed line of the
DelaySNN is notably below the solid pink line of the DelayANN. In a setting where the temporal re-
ceptive field of the synaptic delays matches up to the largest time dependencies in the input data, the
DelaySNN performs on par with the DelayANN. However, when the temporal receptive field of the
synaptic delays does not match the longest dependencies in the data, the DelaySNN is substantially
more accurate than the DelayANN.

Turning our attention to the SNN and its non-spiking analogue the LeakyANN, it becomes evident that
spiking and leak dynamics have considerable difficulty learning the task’s longer dependencies. They
even perform worse than the ANN. This is somewhat surprising, as the additional memory capacity
associated with spiking neurons and artificial leaks should theoretically result in slightly improved per-
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formance. What has happened here is that the aforementioned phenomenon, in which events in a single
step already reveal the direction of motion, has distracted the SNN and the LeakyANN from their
true learning objective. Further examination reveals that all membrane leaks of the trained models are
approximately equal to α = 0, indicating that no memorization occurred. By setting all leaks to zero,
the networks found a clever way to respond quickly to single frames revealing the direction of motion
with two events. After reaching this local minimum of the loss function, the networks are unable to
approach the global minimum of the loss function.

Also intriguing is the fact that both sEMD and LIFsEMD outperform SNN and LeakyANN. All of these
networks are purely feedforward, although the EMD networks are only connected to their neighbours,
unlike the SNN and LeakyANN which are fully connected. In this instance, reducing the dimensional-
ity of the solution space actually improves the final performance. By design, the TDEE in the sEMD
converts an interval between two spikes in adjacent pixels into a specific number of output spikes. Due
to the fact that for this event task, events never skip a pixel, this neighbour connectivity constraint
actually benefits the network rather than constraining it. The noise-resilience of the sEMD is another
factor contributing to its superior performance. Only if a trigger input is received after a facilitator
input in an adjacent pixel is an EPSC generated. As noise is random, this dramatically reduces the
likelihood of noise occurrences infiltrating the network.

Finally, we observe that the recurrent SNN is an outlier. Its non-spiking counterpart, the LeakyRNN,
has remarkable accuracy; therefore, based on what we have observed thus far, the recurrent SNN should
be capable of approaching this level of performance. The training loss curve contains some unusual peaks
indicating that learning was very unstable. After retraining the recurrent SNN across a grid of various
learning rates and gradient norm clipping points, we were able to achieve a minimum test loss of 0.30
(see Appendix A.3 for further details). The fact that this network initially failed to converge illustrates
clearly the challenges involved with back propagating errors in recurrently connected SNNs.

6.4 Analysis of Leaks in LeakyANN and SNN

Figure 6.3 displays qualitative results and an analysis of the leakage for the LeakyANN (top row) and
the SNN (bottom row). The qualitative results (Fig. 6.3a & Fig. 6.3b) illustrate the estimated pixel
velocities for four test samples. The blue line indicates the estimation, while the red line represents the
true velocity. It is clear that both networks are capable of producing meaningful velocity estimates.
However, it should also be mentioned that the estimate is extremely volatile. This is unsurprising,
given that the only form of temporal integration is leakage, and we have seen that the accuracy of such
networks is significantly poorer than that of networks with, for instance, recurrency or delays.

To gain insight into how a network with leaks integrates information, we begin by creating a histo-
gram of the hidden layer leaks (red histograms in Fig. 6.3e and Fig. 6.3f for the non-spiking and
spiking, respectively). At first look, it appears that the distribution of leaks in the LeakyANN is sig-
nificantly different from the distribution of leaks in the SNN. For the non-spiking leak network, leaks
are bimodally distributed around α = 0 and α = 0.4, but for the SNN, leaks are bimodally distributed
around α = 0 and α = 0.8 (remember: α → 0 equals high leakage and α → 1 equals no leakage).
The bimodality is not unexpected because the pixel velocity can be approximated by comparing two
snapshots of the input taken at separate times but at the same network time point. Consequently, it
makes sense that the network’s leaks generate two unique timescales: one timescale generates memory
neurons (smaller leak) while the other generates fast neurons (large leak). The memory neurons store
input data from prior times for comparison with the current activations of fast neurons. Why do the
leaks of the spiking and non-spiking leak networks differ so drastically? The answer to this question
can be found in the neural activation function definition. Non-spiking neurons do not possess a reset
mechanism to ”clear their memory” once a spike is released, whereas spiking neurons do. To avoid being
stuck with the first input it receives for many time steps afterward, non-spiking neuron need to find a
balance between remembering and forgetting, and this balance turns out to lie around a leak of α = 0.4.

To test the claim that leak networks route the activation of each input pixel to a memory neuron and
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(a) ANN (b) SNN

(c) ANN (d) SNN

(e) ANN (f) SNN

Figure 6.3: (a) Pixel velocity estimate of the LeakyANN. The red line represents the true velocity and the blue line
is the predicted velocity. (b) Pixel velocity estimate of the SNN. (c) Scatter plot of the two preferred leaks in the

hidden layer, per input pixel of the LeakyANN; ’preferred’ in this context meaning: connections with largest weight.
Colour represents index of input neuron. (d) Scatter plot of preferred hidden leaks, per input pixel of the SNN. (e)
Histogram of the leaks in the hidden layer (red) of the LeakyANN and histograms of the preferred leaks by strength

of the connection (yellow, green, blue). (f) Histogram of hidden leaks and preferred hidden leaks of the SNN.
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(a) (b) (c)

Figure 6.4: (a) Pixel velocity estimate of the DelayANN. (b) Pixel velocity estimate of the DelaySNN. (c)

a fast neuron, scatter plots are created to examine the leaks. Specifically, the leaks associated with the
largest weight of each input pixel. On the basis of the hypothesis, one would anticipate that the majority
of points would be located near (α1, α2) = (0, 0.4) for the LeakyANN and (α1, α2) = (0, 0.8) for the
SNN, as these correspond to differing timescales. However, looking at the scatter plots in Figure 6.3c
(non-spiking) and in Figure 6.3b (spiking) this turns out not to be the case. Almost all combinations are
situated at 0.4, 0.4 and 0.8, 0.8 for LeakyANN and SNN, respectively. Apparently, the claim was too
easy. To determine what actually occurs in the leak networks, we examine the distribution of the
preferred leaks for various weight sizes. These distributions are plotted in Figure 6.3e and 6.3f in
yellow, green, and blue. The yellow histogram represents the leaks associated with the sixty largest
weights of the hidden layer, the green histogram represents the leaks associated with the second sixty
largest weights of the hidden layer, and the blue histogram represents the leaks associated with the
third sixty largest weights of the hidden layer. The largest weights (yellow histograms) have a strong
bias for memory neurons, which follows from larger bins close to α = 1 and absence of bins near α = 0.
In the non-spiking leak network, none of the sixty largest weights are connected to a fast neuron. Upon
further consideration, this makes perfect sense. At the time of pixel velocity estimation, the prediction
layer requires neural activations from memory neurons and fast neurons. At that moment, however,
contributions to a memory neuron from an earlier input will have leaked, whereas contributions to a
fast neuron from the current time step have not yet leaked. To have equal sized contributions in the
output layer, contributions to the memory neurons therefore require a larger weight than contributions
to fast neurons.

6.5 Delays Analysis
The qualitative results of the non-spiking and spiking delay networks are shown in Figure 6.4a and 6.4b,
respectively. The velocity traces appear reasonably accurate, as reflected by the relatively low test loss
in Table 6.3. However, these qualitative results do not reveal a great deal of useful information and are
consequently less intriguing as an analytical subject. Instead, we concentrate on the internals of the
networks and how they accomplish temporal integration.

To understand how these delay networks integrate information, the weights for the different synaptic
delays are compared and the membrane leaks of the spiking neurons are analysed. Starting with the
latter, what became instantly clear was that all spiking neurons had α very close to 0, meaning no
memory of the spiking neurons is being exploited. This is due to the fact that the network’s synaptic
delays already give it sufficient temporal integration capacity for the task at hand. Therefore, it be-
comes redundant to leverage the spiking neuron’s dynamics. Realizing this, the DelaySNN must in this
context be viewed as a stateless delay network with a spiking activation function and a reset mechan-
ism. The emphasis is therefore shifted to how the weights “choose” particular delays to arrive at an
estimate of velocity. To facilitate a fair comparison between spiking and non-spiking, sigmoid activation
was used for this analysis in the DelayANN This corresponds most closely to a spiking activation.

We start by examining the weights associated with a delay of δ = 0 and δ = 1 separately, in the
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(a) τ = −30 (b) τ = −5 (c) τ = 0 (d) τ = +5 (e) τ = +30

Figure 6.5: Weight matrices of the delay layer plotted as pixels in an image. The colour of the pixel corresponds to
the size of the weight. The weights of synapses with delay 0 (blue stroke in (a)) are kept centred. The weights of

synapses with delay 1 (green stroke in (a)) slide over the weights of synapses with delay 0. The plotted line beneath
each image corresponds to the squared difference (Eq. 6.1) between the two weight matrices for the given offset.

The x-axis of the image corresponds to the index of the hidden neuron.

DelayANN. The weight matrices are plotted as an image in Figure 6.4c, where the colour of the pixel
located at (i, j) corresponds to the size of the weight wi,j that connects input neuron i to hidden neuron
j. Because the number of input neurons (field of view) is 30 and the number of hidden neurons is 60,
both images have size (30, 60). Notable is that the size of the weights of the hidden neurons varies
significantly. For some neurons, nearly all synaptic weights are close to zero (low efficacy), whereas
others have numerous synaptic connections with high efficacy. These synapses with higher efficacy also
seem to be spatially correlated in the sense that if a synapse connecting neuron i to neuron j has high
efficacy, then it appears likely that synapses in the vicinity i − k < i < i + k that are also connected
to hidden neuron j, have high efficacy too (for small k). This is best seen in 6.4c as the emergence of
vertical pixel stripes. Moreover, this suggests that distinct hidden neurons detect motion in distinct
regions of the input field of view. Having discovered this, it is still unclear how exactly these hidden
neurons “detect” this motion. However, we have a hunch as to how this principle operates, as a closer
examination of the weights for delays 0 and 1 in Figure 6.4c reveals that the weights of both delays
appear large and small in exactly the same places. To determine whether this observation is accurate,
the weight matrices for synaptic delay 0 and 1 are quantitatively compared.

The quantitative similarity analysis is done by sliding the weight matrices for the different synaptic
delays over each other while computing the average correlation coefficient of the synaptic weights asso-
ciated with a hidden neuron. Figure 6.5 depicts the results of this analysis for a moving pixel of width
2. The blue-framed pixels in (a) have synaptic delay of 0 and the green-framed pixels have synaptic
delay 1. The offset ranges from no overlap in (a), to full overlap in (c), to no overlap again in (e). The
average correlation coefficient over the hidden neurons is calculated according to

cave[τ ] = 1
Nh

Nh∑
j

(∑
i

wk
j [i] · wk−1

j [i + τ ]

)
, (6.1)

where wk
j are the weights of the synapses with delay 0 connected to hidden neuron j, wk−1

j are the
weights of the synapses with delay 1 connected to hidden neuron j and cave is the average correlation
coefficient. The values for the correlation coefficient are always in the interval [−1, 1], with +1 meaning
strong positive correlation, 0 meaning no correlation and −1 meaning strong negative correlation.

The curves underneath the images in Figure 6.5a t/m 6.5e represent the average correlation coefficient
cave as a function of the offset τ . We notice that for certain τ there is indeed a degree of similarity
between the weights of synaptic delay 0 and synaptic delay 1. It appears that the network is using its
hidden neurons to select small portions of the input field of view for both delay 0 and 1, establishing
a type of motion-detecting “gates”. Distinct hidden neurons are covering distinct regions of the input
vision field.
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Next, we investigate whether these gates are sensitive to the width and velocity of the pixel and if so,
which hidden neurons responds to which metric. Figure 6.6 displays four plots of the average correlation
between the weights of synapses having delay d = 0 and delay d = 1 of the ten most active hidden
neurons per pixel width and per pixel velocity. The top two plots are correlations for different speeds
(Fig. 6.6a) and widths (Fig. 6.6c) in the DelayANN. The bottom two plots are correlations for different
speeds (Fig. 6.6b) and widths (Fig. 6.6d) in the DelaySNN. The solid lines take into account the
sign of the correlation when averaging over the ten most active neurons. Thus, five strongly positively
correlated together with five strongly negatively correlated can result in net no correlation. In order
to still be able to observe correlation if such a case occurs, the averages of the absolute values of the
correlations have also been plotted with the dotted lines.

The first thing that attracts the eye is that Figure 6.6c looks to be missing several plot lines. However,
this appearance is deceptive, as all lines are in fact plotted; some are just superimposed. That these
curves overlap means that the DelayANN prefers the exact same hidden neurons for these widths. In
other words, the width of the pixel has no impact on how the network estimates velocity. If we take the
10 most active neurons for each of the six different pixel widths, we find that just twelve distinct hidden
neurons are utilised (where sixty would have been possible if each pixel width had used different hidden
neurons). When we count the number of unique hidden neurons used if we take the ten most active for
six different pixel widths, we see that only twelve different ones are used (where sixty would have been
possible if each pixel width had used different hidden neurons). This observation is consistent with the
correlation of the weights of the DelaySNN in 6.6d. The correlation curves are quite similar, indicating
that the network chooses the same hidden neurons for estimating velocity across all pixel widths (only
15 used in total). Given that the width of the pixel has little to no effect on how the network determines
the pixel velocity, we conclude that the network uses the pixel’s edges to do so. This would be consistent
with optical flow estimation theory, which implies that only velocity components perpendicular to a
contrast gradient are observable.

Secondly, we see that the weights of the synaptic delays of the non-spiking (Fig. 6.6a) and spiking (Fig.
6.6b) delay network correlate very differently, for varying pixel velocities. The correlation between the
synaptic delay weights of the DelayANN appears comparable for various pixel velocities and is also
nearly symmetrical in the vertical axis. In contrast, the weights of the DelaySNN correlate consider-
ably differently with different pixel velocities and are completely asymmetric in zero. The most notable
aspect of these asymmetric correlations is that the spiking network for positive and negative velocities
has completely opposing correlation curves (yellow and green lines vs. purple and pink lines in 6.6b),
indicating that positive and negative pixel velocities use completely separate hidden neurons. Compar-
ing this to the correlations for different pixel velocities of the DelayANN (Fig. 6.6a), we initially fail
to see this tendency. Yet, on closer inspection, the same maxima at shifts τ = ±2 are observable for
the dotted lines, which arise when taking the absolute value of the correlation. Because the correlation
in τ = 0 does not change noticeably when absolute values are considered, this indicates that the signal
contains asymmetrical, negatively correlated components.

To get more insight into the difference between the delay ANN and SNN, we inspect the prediction
weights associated with the most active hidden neurons, per pixel velocity in Figure 6.6e and 6.6f.
The partly overlapping points denote the same hidden neuron, but for illustration purposes they are
slightly shifted in the horizontal direction. We notice primarily two differences between the plots for
the non-spiking (6.6e) and spiking (6.6f) delay networks. The first is consistent with what we have
already deduced from the correlation plots, namely that the non-spiking network uses the same hidden
neurons for both positive and negative pixel velocities, whilst the spiking network keeps them com-
pletely distinct. This follows from the fact that the warm and cold colours in Figure 6.6e of the ANN
are mixed, while the warm and cold colours in Figure 6.6f of the SNN are separated completely. The
second important difference is that the non-spiking network utilises both positive and negative predic-
tion weights for positive and negative pixel velocities (warm and cold colours for positive and negative
weight values), while the spiking network only employs positive prediction weights for positive pixel
velocities and negative ones for negative velocities (warm colours all negative weight and cold colours
all positive). The answer for this must lay in the difference in neuron activation. The spiking network
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(a) ANN, differing velocities (b) SNN, differing velocities

(c) ANN, differing widths (d) SNN, differing widths

(e) ANN (f) SNN

Figure 6.6: (a,b,c,d) Average correlation between the synaptic weights having delay δ = 0 and δ = 1, over the ten
most active hidden neuron as defined by Equation 6.1. The solid lines take into account the sign of the correlation

(positive and negative correlations can cancel each other out). The dotted lines take the absolute value of the
correlation for each hidden neuron. (e,f) Prediction weights of the ten most active hidden neurons, per pixel

velocity. Partly overlapping points correspond to the same hidden neuron, meaning that for different pixel velocities,
the same hidden neuron is active.

can switch its prediction weights ’on’ or ’off’ by either exceeding or not exceeding a neuron’s threshold.
The non-spiking network lacks this ability. There will always be activation greater than zero (sigmoid
after all) because subthreshold inputs cannot be suppressed. It therefore becomes much more difficult
to take, for example, only a small selection of hidden neurons with positive prediction weights to es-
timate positive pixel velocity. Instead, the network opts for a linear combination of more and larger
weights. By exchanging a small proportion of the most active neurons for varying pixel speeds, the
correct speed can be estimated for all speeds. The spiking network only sums over a small number of
weights of the same sign. The fact that the spiking network chooses a much simpler and more insightful
approach is, on second thought, not that surprising, because the solution space of the spiking network
is very limited. It can only turn on or off 60 weights, which equates to just 602 = 3600 possible outcomes.
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Figure 6.7: Two examples of how a pixel of width 2, moving through a part of a field of view, gives rise to a
velocity estimate for two different sets of synaptic weights. (1) In red: pixel moving to the right with 1

px/timestep. In black: synaptic weights. In blue: same pixel moving to the left with 1 px/timestep. Synaptic delay
weights with asymmetrical correlation (3) between them give rise to different activations (2) for different directions
of motion. For synaptic delay weights with symmetrical correlation between them, the direction of motion does not

change the activation.

Finally, to illustrate the importance of asymmetrically correlating weights between synaptic delay δ = 0
and δ = 1 in order for a hidden neuron to recognise the direction of motion, Figure 6.7 displays two
very basic example of a pixel moving through a small part of a field of view. The synaptic weights of
the top example in (1) correlate asymmetrically (3) and therefore the resulting activation is direction
dependent. In contrast, the synaptic weights of the bottom example in (1) correlate symmetrically (3)
and therefore the resulting activation is direction invariant. The latter situation is obviously problematic
for the network and additional mechanisms are needed to determine the direction of motion.

6.6 Explicit Recurrency
In line with our finding concerning the leaks in the delay networks, we notice that after training, all the
leaks in both the LeakyRNN and the SNNrec have converged to zero, meaning no temporal integration
is achieved using the spiking dynamics. Consequently, we regard the spiking network as a recurrent
BNN and have opted for this analysis to use sigmoid activation in the non-spiking RNN.

Figure 6.8 displays the prediction layer weights of the ten most active hidden neurons, per pixel velocity.
Overlapping points correspond to the same hidden neuron. Comparing Figures 6.8a and 6.8b of the
recurrent networks with Figures 6.6e and 6.6f of the delay networks, we recognise exactly the same
characteristics between non-spiking and spiking. For non-spiking the warm colours (negative velocity)
and the cold colours (positive velocity) are shared and distributed over both positive and negative
weights, while for spiking the warm colours are separated from the cold colours and have the same sign
each time. This means that the spiking network prefers certain hidden neurons for positive velocities
and others for negative velocities (and a mix of the two for velocity 0), while the non-spiking prefers the
same neurons for multiple velocities, whether positive or negative. In addition, the size of the weights
tends to be larger for the non-spiking network. The size of the weights for the spiking network can be
smaller as most of the contributions to each estimation have the same sign.
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(a)

(b)

Figure 6.8: The prediction weights of the ten most active hidden neurons, per pixel velocity for the DelayANN.
Markers which partly overlap represent the same hidden neuron. For improved readability the markers are slightly

jittered in the horizontal direction. (a) LeakyRNN (b) SNNrec





7
Conclusions

The goal of this preliminary evaluation of memory mechanisms in spiking neural networks was to get
a grasp of the concepts and challenges associated with designing and training SNNs in a simulation
environment. To that end, eleven neural network architectures were trained on two variations of an
artificial 1D moving pixel dataset. The analysis can be divided into three distinct sections. The first
section evaluated the performance of the networks on the classic moving pixel task. The second evalu-
ated the performance of the networks on the event-based moving pixel task. The third section was an
in-depth assessment of three pairs of spiking/non-spiking networks trained on the traditional moving
pixel dataset. Following is a summary of the lessons learned from each of these sections of the analysis.

Based on the results obtained by training the networks on the classic moving pixel task we conclude
that:

◦ Explicit recurrent connections and synaptic delays (provided that their temporal receptive field is
sufficiently large to cover all time dependencies in the input data) reach comparable performance
to the well known GRU architecture on the classic moving pixel dataset. This applies to both
spiking and non-spiking.

◦ Spiking networks perform similarly or somewhat worse than their non-spiking counterparts. In
addition, learning is slowed by the combination of spiking activation and recurrence.

◦ The neighbour connectivity of the sEMD prohibits it from reliably predicting velocity when motion
exceeds 1 pixel every simulation time step, as is the case for this test.

◦ Training SNNs with SG decent does not promote the utilisation of membrane leaks. As long as
recurrence and delays provide adequate temporal receptive field, spiking networks tend to main-
tain their leaks at 0.

Similarly, based on the outcomes of training the networks on the event-based moving pixel problem, we
reach the following conclusions:

◦ In a simple 1D scenario, event-based observations of motion reveal the direction of motion within
a single simulation time step. This creates the false impression that networks are integrating input
data, but in reality they merely respond to current inputs.

◦ Increasing time dependencies from two time steps in the standard moving pixel task to four time
steps in the event-based moving pixel job has a significant effect on both convergence speed during
training and final accuracy.

◦ Due to its inherent characteristics, the sEMD is the only network that achieves greater accuracy
on the event-based task than on the conventional task.

79
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◦ When hyperparameters are not appropriately tuned, error backpropagation in SNNs with recur-
rent connections can be highly unstable.

Finally, based on a comprehensive analysis of spiking/non-spiking neural network pairs trained on the
classic moving pixel task, we reach the following conclusions:

◦ A reset mechanism has a significant impact on the behaviour of leaks. Without a reset mechan-
ism, a neuron is not capable of forgetting previous input. Consequently, the leaks only reach a
maximum value of approximately α = 0.5.

◦ Different hidden neuron detect different speeds in SNNs. The same is not true for ANNs. An SNN
can simply ’switch’ on and off the hidden neurons to come to a velocity estimation. Continuous
activation requires an ANN to account for a great deal more hidden activation in order to make
an accurate estimate.

◦ The activity of hidden neurons is pixel width invariant for both spiking and non-spiking. Just the
pixel edges carry the information.
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Listing A.1: A very basic, single hidden layer, SNN implemented using Pytorch in Python.

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as f
4
5
6 class SNN(nn.Module):
7 def __init__(self, Ninput=2, Nhidden=4, Noutput=1):
8 super().__init__()
9 self.hidden = LinearLIF(Ninput, Nhidden)

10 self.output = nn.Linear(Nhidden, Noutput)
11 self.state = None
12
13 def forward(self, x):
14 s_out, self.state = self.hidden(x, self.state)
15 pred = self.output(s_out)
16 return pred
17
18
19 class LinearLIF(nn.Module):
20 def __init__(self, Nin, Nout):
21 super().__init__()
22 self.leak, self.thres = 0.5, 1
23 self.ff = nn.Linear(Nin, Nout)
24 self.spike_fn = self.ArctanSpike.apply
25
26 def forward(self, x, prev_state):
27 ff = self.ff(x)
28 if prev_state is None: # generate if None

provided↪→

29 prev_state = torch.zeros(2, *ff.shape)
30 v, s = prev_state # unstack output
31 v_out = (1 - s) * self.leak * v + (1 - self.leak) * ff # compute membrane

potential↪→

32 s_out = self.spike_fn(v_out, self.thresh) # compute output spikes
33 return s_out, torch.stack([v_out, s_out]) # stack states
34
35 @staticmethod
36 class ArctanSpike(torch.autograd.Function):
37 @staticmethod
38 def forward(ctx, x, width=10):
39 ctx.save_for_backward(x, width)
40 return x.gt(0).float()
41
42 @staticmethod
43 def backward(ctx, grad_output):
44 x, width = ctx.saved_tensors
45 grad_input = grad_output.clone()
46 sg = 1 / (1 + width * x * x)
47 return grad_input * sg, None

A.2 Spiking NN in Pytorch
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A.3 Optimzing Hypers for SNNrec
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