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Abstract
Cancer metastasis, the spread of cancer to distant organs, is the major cause of cancer-

related mortality. Hence, understanding the mechanisms underlying cancer metastasis is 

crucial to improve clinical interventions. Despite intensive efforts, the driving mechanisms 

remain ill-understood due to the difficulties posed by studying the different steps of the 

metastatic cascade in patients. Two established models have been proposed to underlie 

the driving mechanisms of metastasis are phenotypic plasticity and collective migration.  

Phenotypic plasticity, i.e. the capacity of the migrating cancer cell to adapt to the different 

cellular contexts that it encounters en route to form a metastasis, revolves around reversable 

transitions from epithelial to mesenchymal (EMT and MET) identities. The collective 

migration model denotes migrating cancer cells can overcome barriers by coordinated 

cooperation. Recently, these views have been integrated in a model where partial (EMT) is 

believed to mediate collective migration.  

Here, we will investigate critical assumptions of this integrated model by focusing on different 

steps along the invasion-metastasis cascade. Using an unsupervised approach based on 

complete transcriptomes, we unravel single cell EMT-related transcriptional differences in 

colorectal cancer cell lines and map different phenotypes on the EMT spectrum to identify 

E/M sub-states that might underlie collective invasion. Next, we have developed and 

evaluated 3D collagen models to facilitate collective migration studies both in vitro and ex 
vivo. Preliminary data obtained using this approach highlights how EMT induction can alter 

the dominating tumor migration type. 

Taken together, our results support a case for phenotypic plasticity and collective migration 

as complementary and functionally correlated mechanisms, and could serve as point of 

engagement for further studies aimed at clarifying the role of partial EMT in collective 

migration.

Key words: single-cell RNA sequencing, epithelial-mesenchymal transition, E/M sub-state, collagen, 
collective migration, circulating tumor cell
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Chapter 1. Introduction

	 Colorectal cancer (CRC) is the third most common cancer worldwide, and its incidence is expected 
to rise in the coming years1. Despite advancements in treatment options and improvements in 
surgical procedures, CRC remains a lethal disease for a substantial group of patients. In particular, 
CRC becomes lethal when the cancer spreads over the body, referred to as metastatic CRC. About 
half of the cases involve metastatic CRC, with the liver and lungs as the main sites of metastasis 
formation. Patients suffering from metastatic CRC are difficult to treat, and have a poor prognosis 
with a five-year survival of only 15%2. 

The adenoma-carcinoma sequence in colorectal cancer
	 While the process of metastasis formation is still far from being fully understood, the cascade 
of genetic alterations ultimately resulting in colon carcinomas has been well characterized in the 
past decades and has served as a unique model to elucidate the molecular and cellular mechanisms 
underlying tumor onset and progression to malignancy3,4. In a normal, healthy, colon the intestinal 
epithelium is organized in crypts, and, in the small intestine, in villi and crypts , which provide the 
lower gastrointestinal tract a large surface for extraction and absorption of energy and nutrients. 
Along the crypt-villus axis, different cellular lineages with distinct functional roles are found at 
conserved positions. At the bottom of the crypts, intestinal stem cells (ISCs) are intermingled with 
secretory Paneth cells (PCs). Together, ISC and PCs constitute the stem cell niche responsible for the 
high regenerative turnover of the intestinal tract. The progeny of ISCs progressively moves upwards 
by first undergoing a proliferative burst (transient-amplifying or TA cells) to then eventually 
differentiate into enterocytes and 4 other specialized intestinal lineages, namely entero-endocrine, 
Tuft, goblet, and the above-mentioned secretory Paneth cells. At the top of the villus, these post-
mitotic lineages detach from the epithelial lining when a programmed cell death occurs.

In the adenoma-carcinoma sequence of colon cancer, the normal epithelium develops into precursor 
lesions followed by increasingly more invasive stages through the accumulation of sequential 
mutations at tumor suppressors and oncogenes. Most of the sporadic colorectal cancer cases are 
initiated by loss of function mutations in the APC gene, found in over 80% of colon adenocarcinomas5. 
Loss of APC function leads to constitutive Wnt signaling activation, which provide the cell with a 
growth advantage and result in abnormal proliferation. As a consequence, an adenomatous polyp  or 
adenoma can arise as first indication of abnormal cell growth.

The steps following adenoma onset underlie its growth and accordingly include mutations that result 
in growth stimulation and apoptosis inhibition. Gain of function mutations of the KRAS oncogene 
occur in 50% of colorectal adenomas larger than 1 cm3, and result in activation of the Ras signaling 
pathway that stimulates transcriptional activation of genes involved in proliferation and apoptosis 
inhibition6.

Further progression towards malignancy is accompanied by the loss of the TP53 tumor suppressor 
gene, a crucial transcription factor involved in cell cycle arrest and apoptosis. Deletions leading to loss 
of TP53 occur in over 75% of colorectal carcinomas7, and embark the transition from benign to invasive 
cancer . While APC, KRAS, and P53 play a central role in the adenoma-carcinoma sequence, they are 
not the only genes involved. They make part of a larger pool of genes that contribute to the adenoma-
carcinoma sequence resulting in alternative genetic paths by which cancer can progress. Together, 
these genetic changes represent requirements for colon cancer onset and progression, and represent 
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the full set of hallmarks of cancer8. Interestingly, while these genetic alterations ultimately result 
in invasive carcinomas, they are unlikely to provide the cancer cells with the capacity to invade the 
stromal microenvironment and form distant metastases. In fact, the process of metastasis formation 
is highly inefficient and only a very small fraction of the primary cancer cells is capable of completing 
the multi-step route to metastasis formation9. Moreover, the multi-step genetic progression model 
carries a conceptual inconsistency when trying to explain the metastasis process, which has been 
debated as a progression puzzle10. That is, there is no reason to think that genes specifying the final 
step in tumor progression – metastasis – enable cells to proliferate more efficiently in the primary 
tumor. Hence, following Darwinian evolution, the fraction of cells in the tumor mass to acquire 
metastatic potential would remain rare. Given the extraordinary low success rate of individual cells 
undertaking metastasis, it is unlikely metastasis could ever proceed.  So what makes some cells 
‘more equal than others’: why do cells with identical genotype  have different metastatic potential? 

In the absence of genetic mutations explaining the transition from carcinoma at the  
primary site to the metastasis, it is plausible to think that epigenetic modifications  
underlie the dissemination of cancer cells into the tumor microenvironment and their long journey 
to a distant organ. From this perspective, phenotypic plasticity, i.e. the capacity of the migrating 
cancer cell to adapt to the different cellular contexts that it encounters en route to form a metastasis, 
represents a key feature and a central issue in this thesis. 

The second aspect of colon cancer metastasis addressed in this thesis and highly relevant for the above-
mentioned phenotypic plasticity, is collective cell migration. To date, it is not entirely clear whether 
metastases are preferentially initiated by single migrating cancer cells or by cell clusters shed from 
the primary tumor. Here, evidence will be highlighted in support of both views and an integrated 
model will be discussed that integrates phenotypic plasticity with the two migration modalities. This 
thesis will question several assumptions underlying the integrated model, and aims to contribute to 
the debate on whether phenotypic plasticity and collective migration are complementary mechanisms, 
or alternative views that compete to explain the process of cancer metastasis. 

Phenotypic plasticity as the main hallmark of the metastasizing carcinoma cell
	 Phenotypic plasticity has been argued as the clinically most relevant hallmark of cancer cells11. 
The capacity to undergo transient and reversable changes in morphology and functionality can 
provide a cell with the necessary means to survive its journey to metastasis formation. In particular, 
the reversable transitions from epithelial to mesenchymal (EMT and MET) identities, representing 
loss of adhesive traits and the acquisition of migratory phenotypes, has gained a central role in 
the literature (Figure 1A). Different signaling cascades (Tgf-β, Wnt, Notch) trigger the epigenetic 
activation of specific transcription factors (ZEB1/2, SNAI1/2, TWIST1/2), the so-called EMT-TFs, 
which control the expression if key downstream target genes regulating epithelial and mesenchymal 
cell identity. 

Hence, epithelial cancer cells can undergo EMT to acquire mesenchymal phenotypes thus facilitating 
the process of dissemination and intravasation. Upregulation of mesenchymal-specific genes (e.g. 
vimentin, fibronectin, metalloproteinases) enable degradation of extracellular matrix (ECM) and 
changes in cell polarity and shape. Vice versa, downregulation of epithelial-specific genes (e.g. 
E-cadherin, claudins, and cytokeratins) affects cell adhesion and cytoskeletal organization. At the 
organ site of metastasis, the reverse process, mesenchymal to epithelial transition (MET), converts 
the cancer cell back to the epithelial phenotype, stimulating proliferation and enabling colonization. 

Thus, the EMT/MET model of metastasis formation can explain the epithelial characteristics shared 
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between primary tumor and metastasis notwithstanding the inherently non-invasive features of 
epithelial cells. To bridge the gap, a migratory phenotype, which bears similarity to mesenchymal cells, 
is proposed to function as temporary state enabling invasion in the stroma, intra- and extravasation, 
and colonization of a distant organ site12. 

Evidence supporting a role for EMT in cancer metastasis has come from different studies. For example, 
conditional knock out of important EMT transcription factors, including Zeb1 and Snai1, has been 
shown to be critical for metastasis formation13,14, while conditional knock out of miR-200s, known 
to target Zeb1/2, was found sufficient to drive metastasis15. Moreover, inducible overexpression of 
Twist116 and Snai114 was shown to be promote cells to undergo EMT and disseminate into the blood 
circulation, but that these transcription factors need to be turned off in order for disseminated cells 
to proliferate and form metastases.

Given the above, the question arises on how the EMT/MET model explains why only a small 
subpopulation of the cancer cells have the potential to form metastasis. Induction of EMT cannot be 
explained by the genetic alterations observed along the adenoma-carcinoma sequence. As example, 
deletion of the APC gene should  switch on the Wnt signaling pathway (Figure 1B). APC is involved 
in the phosphorylation of β-catenin which triggers its degradation and resembles the state of the Wnt 
pathway during homeostasis. When this process is hampered, β-catenin is recruited to the nucleus 
where it can induce the expression of Wnt target genes. While deletion of the APC gene should result 
in accumulation of nuclear β-catenin, this is only observed in cells at the invasive margin of the tumor, 
a phenomenon referred to as the β-catenin paradox17.  Hence, it was proposed that secreted factors 
from the tumor microenvironment are needed to elicit full blown Wnt signaling and trigger EMT18. 
EMT is a complex, non-autonomous, and context-dependent cellular program that can be triggered 
by different factors12. These observations were conceptualized in a model where stationary cancer 
stem cells could transiently develop into migratory cancer stem cells when localized in the proximity 
of EMT-inducing cues19, and that the latter acquire stem-like features upon EMT activation20.
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Collective migration and efficient metastasis formation
	 Although metastasis formation has been traditionally regarded as an event initiated by a single 
cell, evidence is accumulating in support of the view according to which cancer cells can invade, 
disseminate, and colonize collectively. The circulating tumor cell (CTC) cluster model in metastasis 
formation relies on the survival advantage of CTC clusters along the route to metastasis formation 
when compared to single CTCs. For example, CTCs clusters may avoid apoptotic programs due to loss 
of adhesion-dependent survival signals21. Moreover, cooperative efforts of cells in clusters could shield 
inner cells from immune assault or other toxic agent in circulation. It has also been hypothesized 
that heterotypic clusters, thus composed of different cell types, may benefit from different cellular 
functions22. Here below, selected examples in support of the CTC cluster model will be highlighted 
along the sequence of events in the invasion-metastasis cascade. 

Experimental evidence has indicated that cells can invade in the tumor stroma in different migration 
modalities, separating single cell migration from multi-cellular strand formation and migration of 
cell clusters23. Collective migration is usually initiated by the mesenchymal-like tumor cells24,25 and 
can be facilitated by cancer associated fibroblasts26,27. Clinical studies have suggested a link between 
clusters of tumor cells invading the stroma28 and poor clinical outcome. Thus, the presence of de-
attached cell clusters might result in more CTC clusters in the circulatory system, which resembles 
a subsequent step along the invasion-metastasis cascade. 

In the circulatory system, the presence of CTC clusters has been associated to worse clinical 
outcome29, which suggest their presence makes a distinct contribution to metastasis formation. By 
intravenous injections in mice, it was shown that CTC clusters were more efficient than single cells 
in metastasis formation. Moreover, using a mouse with mixed GFP/mCherry mammary tumors, 
Aceto et al. classified metastases as derived from single CTCs (GFP or mCherry) or as derived from 
CTC-clusters when the metastasis showed expression of both markers. Following this approach and 
normalizing to the number of CTCs and CTC clusters in the blood of mice, they computed that CTC 
clusters can have up to 50 fold increased metastatic potential30. 

Subsequent steps along the invasion-metastasis cascade include extravasation and colonization. If 
CTC clusters are to colonize collectively, one may expect multi-clonal heterogeneity in the metastasis. 
Considering this reasoning, studies have focused on the heterogeneity of the metastases. For 
example, by performing deep sequencing analyses of primary tumors and metastases, it was shown 
that metastases were frequently composed of multiple clones31, indicating polyclonal seeding from 
the primary tumor. Similar results were obtained from studies that created multi-colored primary 
tumors, and observed multi-colored metastases at distant organs30,32,33. Taken together, these results 
suggest that CTC clusters could form an efficient path to metastases formation.

An integrated model for phenotypic plasticity and collective migration
	 At first, integration of EMT and collective migration may sound counterintuitive, because EMT is 
expected to result in cells with poor adhesive features. These models appear especially irreconcilable 
when EMT is seen as binary switch distinguishing two distinct cellular populations34, and when 
collective migration is defined with requirements for stable physical contacts throughout migration. 

However, recent studies have shown that different intermediate EMT stages exist35. In particular, 
hybrid E/M sub-states were studied along a broad spectrum of intermediate phenotypes36,37,38. 
Moreover, hybrid E/M states have been associated to increased stemness39, plasticity40 and metastatic 
potential38, suggesting a prevalent role in metastasis formation. Of note, while full EMT was found 
to be irreversible, partial EMT was shown to be reversible. A partial EMT state was obtained by 
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exposing cells to a low dose of hTGFβ-1 (0.5 ng/mL), but this state reverted back to epithelial when 
cells were recultered in absence of stimulus37. Furthermore, it was shown that these hybrid E/M-
states can be stabilized by phenotypic stability factors such as, indicating distinct phenotypes along 
the EMT spectrum41,42.

In parallel, the definition of collective cell migration has loosened into the more complex notion 
of ‘fellow travelers’43, which can cooperate and differ in adhesion, signaling and force-dependent 
interactions. Interestingly, it was shown that even mesenchymal cells can achieve collective 
migration through mutual chemotaxis44, indicating the varying degrees of interactions that can keep 
cells together.

These developments opened room for integrated models where partial EMT and collective migration 
are proposed as mutually beneficial12,45,46. In these models, it was suggested that partial EMT could 
facilitate dissemination of cell clusters from primary tumors, as cells acquire more migratory 
capacities while maintaining a certain degree of adhesion. Hence, the combination of epithelial and 
mesenchymal features would provide the integrity of CTC clusters and promote their migratory 
capacity46. 

However, the notion of an integrated model does not exclude mechanisms based on one of the models 
without dependency of the other. Partial EMT could also occur at the single cell level, and similarly, 
cell clusters could also be obtained by ‘leader/follower’ invasive modes with stromal cells, and 
hence excluding the need for EMT. Overall, this combined view distinguishes three mechanisms of 
metastasis formation (Figure 2): 1) an EMT-independent dissemination of heterotypic cell clusters; 
2) a single cell dissemination through EMT and MET and 3) collective cell migration facilitated by 
partial EMT.

Heterotypic cell cluster
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Epithelial cell

Par�al EMT

Mesenchymal cell

CAF

EMT-dependent single cell

Primary tumour Metastasis
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Figure 2. EMT and collective migration as complementary mechanisms. Schematic overview of the integrated model based on Nieto 
et al. (2017). Metastasis can proceed following an EMT-dependent manner, either via single cell or collective migration. Alternatively, 
metastasis can proceed according to an EMT-independent manner based on the heterotypic cell clusters.
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Research objective and approach
	 The present study aims to contribute to the ongoing debate on the role of phenotypic plasticity 
and collective migration in cancer metastasis. The main research question is:

Are phenotypic plasticity and collective migration complementary and functionally 
correlated mechanisms during cancer metastasis? 

We believe this is a relevant question in need of further research for different reasons. First, 
clarification of this question can influence clinical management of late stage cancer patients. If EMT 
can be held responsible for the modus operandi of tumor invasion, there is a potential to interfere 
with invasion mechanisms to hamper or delay a crucial step in the process of metastasis formation. 
Alternatively, if these mechanisms act independently, it is plausible that in specific cancer types or 
patient groups one mechanism is prevalent. Ultimately, this could be exploited to stratify patients, and 
adjust treatment decisions depending on the dominating mode of invasion. Second, from a scientific 
point of view, answering this question may result in crucial insights in the process of metastasis 
formation. Traditionally, major focus has been on stem cells, and their unique properties allowing 
them to overcome hurdles along the way to metastasis formation. However, if collective cell clusters 
can indeed benefit from an organized EMT hierarchy, we may have underestimated the complexity 
by which cancer spreads. To unravel this process at single cell resolution and elucidate whether 
migrating cancer cells overcome barriers by coordinated cooperation will substantially contribute to 
our understanding of metastasis.

To address this question, we will focus on the assumption that collective cell migration results 
from partial EMT. From this perspective, three sub-questions arise with distinct approaches for 
investigation (Figure 3). One of the key assumptions of the integrated model is that EMT progresses 
through intermediate E/M states which enable cells to simultaneously encompass both mesenchymal 
and epithelial characteristics. Until now, E/M sub-states have been identified based on expression 
of few EMT markers or based on comparisons between pools of cells. Here, we aim to contribute 
to the characterization of the EMT spectrum by comparing complete transcriptomes of single cells 
(scRNAseq).

1.	 How is EMT controlled in colorectal cancer cell lines, and can partial EMT cells be 
identified based on single cell transcriptomes?

To answer this question, we will take advantage of earlier work in the laboratory aimed at the 
characterization of CD44highEpCAMlow cells in comparison to CD44highEpCAMhigh cells in conventional 
immortalized colon cancer cell lines (HCT116, SW480, SW620). The labels high and low refer 
to predefined gates used in the fluorescent activated cell sorter (FACS) that have been set to 
distinguish a mesenchymal (EpCAMlow) from an epithelial (EpCAMhigh) state, both in presence of 
stem-like characteristics (CD44high). To address the distinctive functional features of these distinct 
subpopulations, we showed that CD44highEpCAMlow cells are EMT-competent, invasive, chemo 
resistant, and highly metastatic in vivo (Box 1). Furthermore, CD44highEpCAMlow are plastic, as 
shown by their ability to reconstruct the cellular composition of the parental cell line. As such, these 
cell lines represent an appropriate model to study the dynamic and reversible EMT process at high 
resolution. We perform single-cell RNA sequencing (scRNA-seq) to investigate the EMT state across 
and within subpopulations of CD44highEpCAMlow cells and CD44highEpCAMhigh cells.
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Box 1. Previous work in the lab showed that1 ... 

•	 highly motile 
An assay based on the differential ability to migrate through a membrane, showed 
a significantly increased migratory (HCT116: P< 0.05; SW480: P < 0.05) ability of 
the CD44highEpCAMlow cells in both colon cancer cell lines when compared with 
CD44highEpCAMhigh cells

•	 invasive 
An assay based on the differential ability to migrate through an extracellular matrix (collagen)-
coated membrane, showed a significantly increased invasive (HCT116: P< 0.05; SW480: P < 
0.05) ability of the CD44highEpCAMlow cells in both colon cancer cell lines when compared 
with CD44highEpCAMhigh cells.

•	 chemoresistant 
Oxaliplatin and 5-fluorouracil, among the most commonly employed chemotherapeutic 
drugs in the treatment of colon cancer, preferentially affect non-EMT cells while the EMT-
competent and stem-like CD44highEpCAMlow cells are resistant.

•	 metastatic 
In both HCT116 and SW480, injection of CD44highEpCAMlow cells resulted in significantly 
more liver metastases than with CD44highEpCAMhigh cells. Notably, IHC analysis of the liver 
metastases revealed a heterogeneous pattern of intracellular β-catenin, with membranous and 
cytoplasmic localization in cells from within the center of the lesion, and nuclear β-catenin 
accumulation in cells localized in the periphery, thus recapitulating the situation in primary 
colon carcinomas.

•	 phenotypically plastic 
To investigate the stem-like properties of CD44highEpCAMlow colon cancer cells, their capacity 
to differentiate into more epithelial cell types and reconstitute the heterogeneous composition 
of the parental cell lines was investigated. CD44highEpCAMlow and CD44highEpCAMhigh cells 
from HCT116 and SW480 were sorted and grown separately under conventional culture 
conditions, and analyzed by FACS at different time points. After 1-3 months in culture, both 
subpopulations were capable of re-establishing the complex and heterogeneous composition 
of the parental cell lines.

•	 predictive for CMS4 subtype 
Expression of the RNA seq signatures derived from CD44highEpCAMlow cells in HCT116 and 
SW480 correlate with the consensus molecular subtype 4 of human colon cancers, which has 
the greatest propensity to form metastases.

CD44highEpCAMlow cellsCD44highEpCAMhigh cells
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0

Colorectal cancer cell lines encompass two distinct populations: CD44highEpCAMhigh cells and 
CD44highEpCAMlow cells. When compared to CD44highEpCAMhigh cells,  
CD44highEpCAMlow cells are …
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C
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D
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1 Sacchetti, A., Teeuwssen, M., et al. Phenotypic plasticity of CD44highEpCAMlow cells underlies local invasion and distant metastasis in colon 
cancer. (In preparation)
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Next, we aim to investigate the effect of EMT on the tumor invasion modalities. It is widely accepted 
that a mesenchymal cell has enhanced migratory capacity when compared to its epithelial equivalent. 
However, whether induction of EMT will alter the modalities of tumor invasion in a dosage-dependent 
fashion still remains elusive. Our aim is to develop in vitro models that enable comparison of tumor 
migration strategies. Hence, the sub-question:

2.	 Will ectopic expression of the EMT-TF ZEB1 affect the CTC migration modality?

To date, most of the published work on tumor invasion has either been based on observational data 
from paraffin embedded sections of patient-derived cancers, or on in vitro (e.g. collagen; 3D vs. 2D) 
models taking advantage of immortalized cell lines, tumor-derived organoids or even freshly resected 
primary cancers. While in vitro models enable accurate spatiotemporal monitoring of migration 
mechanisms, they have poor representation of the in vivo situation. In our approach, we have 
combined in vitro models (i.e. collagen scaffolds) to study tumor migration ex vivo, balancing the 
level of control with the complexity found at tumors in vivo. 

To this aim, we have employed mouse intestinal organoids carrying mutations (in Apc, Kras, Tp53 
genes) matching the later stages of the adenoma-carcinoma sequence, which can be transplanted 
orthotopically in the mouse caecum to develop invasive tumors in vivo. The corresponding organoid-
derived tumors can be employed in ex vivo migration experiments in 3D collagen models. Previous 
studies have shown that ZEB1 is a crucial EMT inducer in many cancer types. Here, we have taken 
advantage of inducible ZEB1 overexpression vectors to elicit the complete EMT program in the 
organoid-derived tumors and compare the migration strategies of these tumors to the ones without 
the EMT stimulus.

Finally, we have focused on the subsequent step in the invasion-metastasis cascade, namely the 
survival of CTCs in circulation. The main hypothesis here is that collective migration results 
from partial EMT and that CTC clusters encompassing E/M cells have high phenotypic plasticity.  
In order to address this issue we question:

3.	 Do circulating tumor cell clusters consist of E/M hybrid cells, and do they show an 
organized or stochastic arrangement of EMT-related inter-cellular heterogeneity?

Attempts will be made to isolate CTC clusters from human patients and mouse models of metastatic 
colon cancer. In the past decades, CTCs have been isolated with increasing efficiency from the 
peripheral blood of patients affected by various cancer types. Some of the newly developed methods 
have even been standardized and commercialized, such as CellSearch and VyCAP. While these 
method have delivered valuable insights from liquid biopsies, they suffers from a number of pitfalls. 
The use of EpCAM as positive isolation marker has its limitations given that quasi-mesenchymal 
cells are expected to have low expression of this marker. Furthermore, these methods rely on single 
cells that are punched across microwells, which hampers detection of CTC clusters. More recently, 
novel microfluidic devices have been developed, such as the HB-chip47 and its successor48, which have 
been successfully employed to capture CTCs and CTC clusters. In contrast to these positive selection 
methods, we have mainly relied on negative depletion of white and red blood cells as purification step 
of the liquid biopsy. 
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Thesis structure
	 The remainder of this thesis will be structured as following. Chapter 2 describes the procedures 
and materials used for the experiments. In Chapter 3, results will be presented from the three projects 
described above. Finally, in Chapter 4, the results from the projects will be discussed to debate the 
research question and propose avenues for further research.
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Chapter 2. Methods

Cell culture 
Cell lines
Human colon cancer cell lines (ATCC) employed in this thesis are listed in Table 1. Cells were cultured 
in Dulbecco’s Modified Eagle medium (DMEM, Gibco) with 10% fetal calf serum (FCS, Gibco), 100 U/
mL penicillin (Invitrogen) and 100 µg/mL streptomycin (Invitrogen), 2mM L-Glutamine (Invitrogen). 
When the cells reached 80% confluency, cells were washed in PBS and trypsinized for 2 min. at 
37C˚. Subsequently, cells were passaged at 1:10 and incubated in a humidified atmosphere at 37C˚ 
and 5% CO2. Medium was replaced once every 2/3 days. For experiments, cells were trypsinized at 
80% confluency and counted using the Fuchs-Rosenthal counting chamber. Where indicated, cell 
aggregates were produced by incubating single cells in low-attachment plates for 3 days at 37C˚ and 
5% CO2. 

Table 1. Overview of cell lines employed in this study.

Label Type Disease origin

HCT116 human colon cancer cell line Colorectal carcinoma (primary)

SW480 human colon cancer cell line Dukes' type B, colorectal adenocarcinoma (primary)

SW620 human colon cancer cell line Dukes' type C, colorectal adenocarcinoma (lymph 
node metastasis)

HT29 human colon cancer cell line Colorectal adenocarcinoma

HCT5.3 Human immortalized cancer 
associated fibroblasts (CAFs)

Inactivation of CAFs
From a confluent layer of immortalized HCT5.3 cancer associated fibroblasts (CAFs), medium was 
removed and replaced with 10 µg/mL Mitomycin C in DMEM FCS for 2 hrs. in order to mitotically 
inactivate the cells. Next, cells were washed for 3 times in PBS. Trypsin was added for 2 min at 37C˚ 
to resuspend the cells. Hereafter, cells were counted using the Fuchs-Rosenthal chamber and frozen 
at 1.0x106 cells/vial until use for subsequent experiments. 

Organoids
In this thesis, the label organoids is used to refer to cells in spheroids, grape-like or dense aggregates, 
and aggregates with luminal organization. The different organoids used in this MSc thesis are listed 
in Table 2. Organoids were cultured in different media depending on their origin (Table 3). CSC08, 
DN08, G605, L145 and CRC48 were cultured in low attachment flasks and passaged 1:10 every 3 
days. The patient-derived CMS4 organoids a nd the mouse AK/AKP organoids were incubated in 
droplets of 30-50 µl Matrigel. Matrigel was dissolved by adding Cell Recovery Solution (Corning) 
to the wells followed by 20 min. on ice. Subsequently, the organoids were resuspended and washed 
in 5 mL DMEM 10% FCS. Organoids were spun down at 1000 rpm for 3 min. and supernatant was 
removed before pipetting up and down 30-50 times with a p200 pipette to reduce the size of the 
organoids. Depending on the structure of the organoids (e.g. DN08), trypsin was added for 2 min. at 
37C˚ to further dissociate the organoids. After dissociation, cells were passaged 1:10, resuspended in 
cold Matrigel and plated in droplets. Matrigel was polymerized at 37C˚ for 20 minutes before medium 
was added. Depending on the organoid type, medium was refreshed every 2-4 days, and organoids 
were passaged every 3-7 days. 
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Table 2. List of organoids employed in this study and their origin.

Label Description References Medium

AK mOrg Intestinal mouse organoids, mutant in Apc and Kras.  
(Apcfl/fl::KrasG12D/+)

49 A

AKP mOrg Intestinal mouse organoids, mutant in Apc, Kras, and Tp53  
(Apcfl/fl::KrasG12D/+::Trp53fl/R172H)

49 A

AKP-Zeb1 
mOrg

Intestinal mouse organoids with APC and KRAS and P53 mutations, 
and conditional ZEB1 overexpression

Our lab A

AKP-Zeb1-
GFP mOrg

Intestinal mouse organoids with APC and KRAS and P53 mutations, 
conditional ZEB1 overexpression, and constitutive GFP expression

Our lab A

TOR8 Human organoids derived from a CMS4 colon cancer patient 50 B

TOR9 Human organoids derived from a CMS4 colon cancer patient 50 B

TOR10 Human organoids derived from a CMS4 colon cancer patient 50 B

CSC08 Human organoids derived from a colon cancer patient - C

DN08 Human organoids derived from a colon cancer patient 51 C

G605 Human organoids derived from a colon cancer patient 52 C

CRC48 Human organoids derived from a colon cancer patient 53 C

L145 Human organoids derived from a colon cancer patient 53 C

Table 3. Composition of the culture media used in this study.

Medium A Medium B Medium C

DMEM/F12 DMEM/F12 1:7.5 H20

1:50 B27 1:50 B27 1:1.7 DMEM/F12

1:100 N2 1:1000 SB202180 1% Glucose

1:8 mL N 1:10000 A8301 0.023% Sodium Bicarbonate

1:2000 EGF 1:167 NAC 1 mM Hepes

1:1000 Y 2 mM Glutamine

3.5 nM Heparin 

60 nM BSA

0.3 nM b-FGF

3.0 nM EGF

FACS 
For live cell sorting, cells were trypsinized for 2 min. at 37C˚, washed and were stained with 
fluorescent antibodies diluted in PBS with 4% FCS for 30 min. on ice. After two washes in PBS with 
4% FCS, DAPI (Sigma) was added at 1 µg/mL to distinguish dead from live cells. Samples were sorted 
in PBS with 4% FCS. Sorting and analysis was performed with a BD FACSAria III machine (BD 
Biosciences).

Immunohistochemistry (IHC)
4 µm sections were cut from formalin-fixed paraffin embedded tissues and deparaffinized Xylene 
at RT twice for 5 min.. Following hydration of the tissue by subsequent steps of 100%, 70% and 0% 
ethanol in water, antigen retrieval was performed by heating sections with the pressure cooker in 
either in 0.01M Tris or 0.001M EGTA depending on the antibody. After two washes in PBS-Tween, 
sections were incubated for 10 min. at RT in 3% peroxide to block endogenous peroxidase. Sections 
were washed twice in PBS-tween before incubation in 5% milk in PBS for 30 min. at RT. Cells were 
then washed twice in PBS-Tween and incubated overnight at 4°C with the primary antibody diluted 
in 5% milk PBS. After 2 washes in PBS-tween, sections were counterstained with polymer-HRP 
for 30 min at RT. Following two washes in PBS-tween, sections were stained by DAB in 1 mL DAB 
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substrate, washed in water, stained in hematoxylin for 10 sec. and washed again in water. Following 
dehydration by subsequent steps of 70% and 100% ethanol in water, sections were incubated 2x 
5min. in Xylene and dried in Pertex with coverslip. 

Immuno-fluorescence (IF)
Glass slides containing 4 µm thick tissue sections were circled with PAP Pen to earmark the samples. 
Next, samples were permeabilized by 1x Triton (0.25%) in PBS for 20 min at RT before being washed 
twice with PBS-Tween. Slides were blocked with 5% BSA in PBS-Tween for 30 min. at RT, to be 
then incubated overnight at 4˚C in primary antibodies in 5% BSA PBST. The next day, samples were 
washed twice in PBS-Tween, and secondary antibodies were added together with DAPI to stain the 
cells. Last, 1 droplet of VectaShield was added to the samples and slices were covered with glass 
slides. Prior to microscopy, slices were incubated for 30 min. at 37˚C to solidify the VectaShield and 
stabilize the coverslip.  

Protein lysates and western blot
For western analysis, cultured cells (including organoids) were washed once in PBS and recovered 
from Matrigel using Cell Recovery Solution (Corning). Whole protein lysates were made in Laemli 
buffer, and boiled for 5 min. before gel separation using SDS-Page (SDS-Polyacrylamide Gel 
Electrophoresis). For each sample, 35 µl aliquots of the lysates were run at 100-150V and 15-20mA 
for 1.5 h. After separation, proteins were blotted to Polyscreen PVDF transfer membranes using a 
transfer apparatus according to the manufacturer’s protocols (Bio-Rad). The membrane was then 
blocked in 5% milk in PBS, washed in PBS-Tween, and stained with the primary antibody diluted in 
3% BSA-PBS overnight at 4˚C. Membranes were washed twice in PBS-Tween and incubated for 1h 
with diluted secondary antibody at RT. 

RNA extraction and qPCR
RNA was extracted by resuspending the dissociated organoids or cells in Trizol (15596018, ThermoFisher 
Scientific) according to the manufacturer’s instructions. RNA concentration was measured with the 
Nanodrop spectrophotometer (Thermo Scientific) at O.D. 260 (quality controls OD260/OD280 and OD260/
OD240 ratios). Next, cDNA was synthetized by reverse transcription from random primers using 
the high-capacity cDNA reverse transcription Kit (4368814, Life Technologies). Hereafter, 500 ng 
cDNA was diluted in primer- and fast SYBR Green Master Mix (Applied Biosystems). Plates were 
centrifuged for 1 min at 1000 rpm before the start of the qPCR program (Applied Biosystems 7500 
Fast) where 40 thermal cycles repeated denaturation (95 ̊ C) and annealing (60 ̊ C). The obtained dCt 
values were normalized against GAPDH and the control sample to show relative differences.

scRNA-seq 
For the single-cell RNA seq experiment, three colorectal cancer cell lines were used: HCT116, SW480 
and SW620. These cell lines were used during the characterization of CD44highEpCAMlow cells, which 
formed the basis of this experiment (Box 1). HCT116 is a model for microsatellite  instability (MIN) with 
a near-diploid genotype, and carries mutation in mismatch repair genes (MSH6). In contrast, SW480 
is a model for chromosomal instability (CIN), resulting in aneuploidy. SW480 carries mutations in 
the APC gene, which causes high Wnt-signaling. SW620 is derived from the same patient as SW480, 
but from a lymph node metastasis. Cell lines were cultured up to 60-70% confluency before being 
collected (by trypsinization) for single cell RNAseq analysis. For each sample, between 50k-100k 
CD44highEpCAMlow and CD44highEpCAMhigh cells were FACS sorted and processed using the 10X 
Genomics Chromium Single Cell Controller according to the manufacturer’s instructions. Samples 
were deep-sequenced (Illumina) to a depth ranging 49k-65k reads/cells (Table 4). 
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Bioinformatics
Bulk RNA seq
The gene-sample matrix containing four biological replicates for each cell line was imported in R for 
analysis. Reads were converted to counts per million and filtered based on a minimal expression in four 
samples using edgeR package54. The limma package was used to perform multidimensional scaling 
in scatter plots that approximate the typical log2 fold change between samples55. Heatmaps were 
made using stats package and gplots package56. Signatures were produced with edgeR differential 
expression analysis, setting absolute value of logFC > 1, and p.val < 0.01. Pathway analysis was 
performed using Enrichr based on KEGG 2019 Human pathways57.

Single cell RNAseq
Gene-cell matrices were obtained by conversion of the raw data using the Cell Ranger pipeline58. 
Loupe cell browser was used to explore the samples and perform general quality checks including UMI 
distribution, reads per cell and sequencing saturation. Filtered gene-cell matrices were merged in R 
using the Seurat package59. Dimension reduction was performed using PCA and tSNE or UMAP60. 
CMS classification was done using the CMScaller Package61, and epithelial and mesenchymal scores 
were computed using the Rmagic62 and Gsva63 packages. Heatmaps were created using the Pheatmap 
package64. Pseudotime analysis was performed in R using SCORPIUS65 and Monocle366 and in Python 
using Palantir67. Kaplan Meier curves were created in R2 bioinformatics server68. Cluster specific 
signatures were used as input for k-means clustering on different cohorts of colon cancer bulk RNA 
seq data coupled to survival. Pathway analysis was done in IPA (Qiagen)69.

Table 4. Sequencing information per sample.

Collagen models
For the collagen models, distinct protocols were used. In brief, rat tail collagen type 1 (8-10 mg/mL) 
was resuspended in 5x neutralization buffer A at 1:5. When indicated, collagen was diluted in PBS 
before neutralization to vary the final collagen concentration between 4 mg/mL – 8 mg/mL. After 
resuspension in neutralization buffer A (Table 5), organoids were mixed in the collagen slurry and 
collagen was plated in 30-50 µl drops on a preheated 24-well dish. Collagen was polymerized at 37˚C 
for 20 minutes before medium was added to the droplets. Dishes were then incubated at 37˚C / 5% 
CO2 in culture medium refreshed every other day for 3-7 days. 

Alternatively, the protocol had an additional pre-polymerization step to enhance the thickness of 
collagen fibers and thus the stiffness of the gel. In brief, 340 µl low-density rat tail collagen type 
1 (3.52 mg/mL, Corning) was diluted in Neutralization buffer B to obtain a final volume of 600 µl 
and a concentration of 2mg/mL collagen. The slurry was carefully mixed with a p1000 avoiding the 
formation of bubbles and then incubated on ice for 2 hours. Cells were resuspended in the dish and 30 
µl droplets were plated on preheated 24-well plates. Plates were incubated for 15 min at 37˚C, before 
the collagen was immersed in 0.5 mL DMEM-FCS.

Sample Reads/cell Seq Sat (%) Median genes Number of cells
HCT116 CD44highEpCAMlow 51891 40.5 3941 1637
HCT116 CD44highEpCAMhigh 65584 42.7 4435 1246
SW480 CD44highEpCAMlow 48996 40.5 4105 1069
SW480 CD44highEpCAMhigh 51446 39.2 4082 1596
SW620 Bulk 50172 43.5 3588 6676

1
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Table 5. Collagen neutralization buffers

Neutralization buffer A (5x) Neutralization buffer B

50 mg/mL αMEM powder 1.73x PBS

2% (wt/vol) NaHCO3 0.03N NaOH

0.1M HEPES 1:4.5 H20

H2O 1:1.7 DMEM-FCS

1:2000 EGF 1:167 NAC

For the freezing model, a mold was designed that enables temperature conductance from a single 
point (Figure 4). Molds were 3D-printed in stainless steel (Shapeways). Rat tail collagen type 1 (1% 
wt.) was mixed with 0.05 M acetic acid at 4˚C, and centrifuged for 3 min. at 1000 rpm to remove air 
bubbles. Next, 400 µl of homogenized collagen slurry was gently pipetted in the molds and covered 
with a glass coverslip. The molds were placed in a -20˚C cooling shelf for 1.5 hours to ensure complete 
freezing of the collagen slurry. Subsequently, scaffolds were gently loosened from the mold and placed 
in a vacuum freezer overnight to sublimate the ice. The next day, scaffolds were fully immersed in 
crossing-linking solution containing 33 mM 1-ethyl3-(3-dimethylaminopropyl)-carbodiimide and 6 
mM N-hyrdroxysuccinimide for 20 minutes at RT. Scaffolds were washed in 70% ethanol and stored 
at RT until use for subsequent experiments.

Figure 4. Fabrication of anisotropic collagen scaffolds. 

Blood samples
Human blood sample was acquired from surgery. The sample containing 7 mL blood was deidentified 
prior to receipt and obtained with limited clinical information. Before the start of the experiment, 
the sample was maintained in EDTA tubes. Mouse blood was collected post-mortem using a syringe. 
In brief, red blood cells were lysed using 10 mL red blood cell lysis buffer containing 0.8% NH4Cl. 
Samples were rotated at 4˚C for 10 min and centrifuged for 3 min at 1000 rpm. Supernatant was 
removed and this procedure was repeated one more time. Following this, cells were stained in 200 
µl with primary antibodies TER119 (1:100), CD31 (1:100), CD45 (1:200) and incubated for 10 min at 
4C˚. Following this, samples were washed with 1 mL 2% PBS FCS and spun down at 1000 rpm to 
remove the supernatant. Hereafter, cells were resuspended in 1 mL PBS FCS with pre-washed 25 µl 
DynaBeads and incubated for 30 min at 4˚C. Magnetic beads were removed by carefully collecting the 
supernatant of the sample in a magnetic holder. Last, samples were fixed in 2% PFA and spotted on 
glass slides in 70% ethanol, to be used for IHC or IF. 
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Ex vivo migration assays
Human tumors
Human primary colorectal tumor or liver metastasis samples were acquired from the Pathology 
department after surgical resection. Each tumor sample was obtained anonymously with very 
limited clinical information. Before the start of the experiment, the tumor sample was maintained in 
Advanced DMEM/F12 (Gibco) at 4 ̊ C for 1 hour. In brief, tumors samples were reduced in small pieces 
with a sterilized blade and washed three times in PBS. Following incubation in 300 µl collagenase 
diluted in 10 mL Advanced DMEM/F12 for 30 min at 37˚C, samples were resuspended in 50 mL 
Advanced DMEM/F12, and centrifuged for 5 min at 1000 rpm. Pellets were resuspended in 50 mL 
Advanced DMEM/F12 and either filtered using a 100 µm filter, or left for 30 min at RT to resolve 
the larger tumor fragments from the smaller ones by sedimentation. Subsequently, the supernatant 
was transferred to a different tube. Following this, the pellet, containing tumor fragments in the 
range of 100 µm, was resuspended in 0.5 mL Advanced DMEM/F12 in a FCS-coated low-binding 
Eppendorf tube. Samples were centrifuged for 5 min. at 1000 rpm and the pellet was resuspended in 
neutralized 4 mg/mL rat tail collagen type 1 before being plated in 15-30 µl droplets on pre-heated 
24-well plates. After polymerization for 30 min at 37˚C, 500 µl of stem cell medium (1:10 N, 1:100 N2, 
1:50 B27, 1:2000 EgF, diluted in Advanced DMEM/F12) was added to the wells. The culture medium 
was refreshed every other day until collagen droplets were fixed in 4% PFA and stored in at 4˚C in 
PBS for tissue processing and paraffin embedding. 

Mouse tumors
AKP-ZEB1 mouse organoids were resuspended in 15 µl of neutralized high-concentration (8-10 mg/
mL) collagen type 1. Subsequently, collagen droplets were transplanted in the caecum of recipient 
mice according to procedures described elsewhere70. After 5-6 weeks, mice were euthanized by CO2, 
and tumors were resected from the caecum and washed in PBS. Small fragments (+/- 1 mm3) were 
cut from the tumor and placed on preheated (37˚C) collagen freeze scaffolds in medium (DMEM-FCS, 
gentamicin). Medium supplemented with doxycycline (1 µg/mL) was replaced every other day until 
samples were fixed in 4% PFA, and stored at 4˚C in PBS until used for clearing. 

Clearing of collagen scaffolds
To facilitate the study migration behavior in 3D, a clearing protocol was used according to described 
procedures71. In brief, fixed scaffolds were dehydrated in methanol PBS gradients (1:0, 0.50:0.50, 
0.25:0.75, 0:1 PBS in methanol), and blocked overnight in 5% H2O2 and 20% DMSO in methanol 
at 4˚C. Scaffolds were washed three times in methanol, and rehydrated up to 100% PBS before 
overnight incubation in 0.3M Glycine, 0.2% Triton X100 and 20% DMSO in PBS at 37˚C. Hereafter, 
scaffolds were blocked overnight in 3% milk, 0.2% Triton X100 and 20% DMSO in PBS at 37˚C. 
Following a 24 hrs. wash in PTwH (5% DMSO, 0.2% Tween-20 and 10 µg/ml Heparin in PBS) at 37 
˚C, scaffolds were stained with primary antibodies (β-catenin, E-cadherin, α-SMA) diluted in PTwH-
D-M (0.2% Tween, 5% DMSO, 10 µg/ml Heparin and 3% milk in PBS) and incubated for 3-5 days at 
37 ˚C. This was followed by additional washes in PTwH for 24 hrs. and by incubation of secondary 
antibodies (anti-mouse 647, Anti-rabbit 647, Anti-mouse 488) diluted 1:200 and DAPI in PTwH-
D-M for 1-4 days at 37 ˚C. When indicated, collagen was stained with 1 mg/mL Picro Sirius Red in 
picric acid (2,4,6-trinitrofenol, C6H3N3O7.) for 2h at RT and washed two times in 0.1% acetic acid. 
Subsequently, scaffolds were dehydrated again in methanol and incubated in 50% methanol 50% 
BABB (67% benzyl-benzoate, 33% benzyl-alcohol) for 20 min at RT and stored in 100% BABB at 4˚C 
until use for microscopy.
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Microscopy
Fluorescent microscopy on glass slides was performed at 20X using a Zeiss LSM-700 confocal 
microscope. Collagen fibers were visualized by refraction imaging at 40X and 60X using a Zeiss LSM-
880 confocal microscope. For 3D imaging, two approaches were used at 20x magnification: upright 
microscopy (Leica SP5 intravital) and inverted microscopy (Opera Phenix HCS system). Samples 
were fully immersed in BABB and mounted on a glass chamber. For the Leica SP5, freezing scaffolds 
were supported by the extremities of pipette tips and covered with glass slides and droplet of water. 
For the Opera Phenix HCS, a droplet of water was covered with glass slide before scaffolds were 
placed with the scaffold seeding area facing the glass slide. Time lapse imaging was done using the 
Opera Phenix HCS by measuring endogenous GFP present in AKP-Zeb1-GFP mouse organoids. In 
brief, organoids were seeded on fragments of collagen freezing scaffolds and incubated in DMEM-
FCS at 37˚C. After 48 hrs., scaffolds were inverted and attached on glass by polymerization of a thin 
Matrigel coating for 10 min at 37˚C. In each well, 200 µl of DMEM-FCS and Dox (1 µg/mL) were 
added. Samples were imaged every 2 hours for a total duration of 48 hours. 

Image analysis
Image analysis was done in ImageJ (version 1.52n). Hyperstacks were imported in Fiji and merged 
into multi-channel z-stack with corresponding colors. For 2D visualizations, contrast was adjusted for 
each channel for the specific z-slice. Multiple z-slices were aggregated using z-projection with either 
maximum or medium intensity as projection type. In order to obtain 3D visualization, 3D projection 
was used with interpolation and projection based on brightest point. Multichannel overviews were 
created using the 3D viewer plugin. Hyperstacks acquired with the Opera Phenix HCS were analyzed 
using accompanied Harmony 4.9 software (PerkinElmer). Overviews were presented as global max 
z-projections, and smaller areas were investigated with 3D projection or local max z-projection.
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Chapter 3. Results

	 In this chapter, the experimental results of my MSc internship will be presented. The results are 
relative to 1. the in silico analysis of transcriptional heterogeneity of EMT-competent cells in cancer 
cell lines, and 2. the development and optimization of 3D collagen models for the in vitro and ex vivo 
study of collective vs. single cell migration in cancer invasion and dissemination. These models and 
the preliminary results obtained to date will form the basis for future experiments aimed at the 
elucidation of the role of EMT transcription factor ZEB1 in tumor invasion mechanisms. The results 
also include my efforts towards the isolation of circulating tumor cell clusters from liquid biopsies.

Resolving inter-cellular transcriptional heterogeneity along the EMT spectrum
To zoom in on the transcriptional heterogeneity in EMT, we have chosen as experimental model 
the subpopulations of colon cancer cell lines previously characterized for their EMT status and 
metastatic capacity (see Box 1; Chapter 1). Starting from bulk RNA sequencing, the major differences 
in gene expression among these subpopulations and their specific expression signatures have been 
determined. Given that the EMT-competent subpopulations are phenotypically plastic, i.e. they can 
convert to one another and reconstruct the heterogeneity of the parental cell line, it is likely that 
individual cells feature different sub-states reflecting this dynamic process. Single cell expression 
profiling is therefore necessary to dissect the heterogeneity within individual subpopulations and to 
identify intermediate E/M sub-states across the EMT spectrum.

Bulk RNA sequencing analysis of CD44highEpCAMlow and CD44highEpCAMhigh populations
	 To investigate the gene expression differences between the CD44highEpCAMlow and 
CD44highEpCAMhigh subpopulations, whole transcriptome RNA sequencing (RNAseq) was performed 
on samples sorted from the HCT116 and SW480 colon cancer cell lines by Illumina technology. 
For each of the HCT116 and SW480 cell lines, the distinct subpopulations were isolated by FACS 
resulting in 7 samples from which total RNA was isolated for sequencing purposes. The following 
were sorted: CD44highEpCAMlow cells (from here on referred to as “low”); CD44highEpCAMhigh cells 
(“high”); CD44lowEpCAMhigh cells (“spheres”; specific for the SW480 cell line and consisting of cells 
which grow in suspension as small aggregates), and the “bulk” as control, i.e. the parental cell line 
processed and sorted by FACS in the same fashion as the subpopulation samples. RNAseq results 
were aggregated into a gene-sample matrix imported in R for analysis.

An overview of the variability across the samples was portrayed by performing multi-dimension 
scaling (MDS) as depicted in Figure 5A. MDS is an analysis technique that is based on principal 
component analysis (PCA) but includes an iterative algorithm which results in a more versatile 
mapping technique compared to PCA alone. As observed from the leading dimension (logFC dim1 
axis) of the MDS plots, the variance between samples from different subpopulations was dominant 
over the variance between samples from the same subpopulation. Furthermore, the variance between 
cell lines was dominant over the variance across subpopulations. For HCT116, the bulk samples 
localize in between the low and high samples. For SW480, the bulk samples deviated strongly from 
both high and low samples though this is possibly due to the presence of the third subpopulation in 
this specific cell line, namely the CD44lowEpCAMhigh cells (spheres).  Since these cells fell beyond the 
scope of our current study, we excluded this subpopulation in subsequent analyses. 

We continued the analysis by focusing on the differences between the CD44highEpCAMlow and 
CD44highEpCAMhigh subpopulations (Figure 5B). Differential expression analysis resulted in 228 and 
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465 differentially expressed genes for HCT116 and SW480, respectively (FDR < 0.01, abs(LogFC) > 
1.0; Supplementary Table 1). The comparison performed with similar parameters between the spheres 
vs. the low and high SW480 subpopulations revealed 336 and 260 differentially expressed genes, 
respectively. To identify the genes with the highest expression difference between the subpopulations, 
we computed heatmaps showing the 15 most differentially expressed genes between high and low 
subpopulations. The top-15 differential expressed genes between high and low populations included 
both mesenchymal (e.g. COL13A1, CDH11) and epithelial (e.g. EPCAM, KRT13) genes, suggesting 
distinct EMT phenotypes in these subpopulations.

Next, we investigated the overlap among the different gene expression signatures of the various 
subpopulations (Figure 5C). To narrow down the list of genes characterizing high and low differences, 
we computed the intersection of three comparisons: 1) high vs. low in HCT116, 2) high vs. low in 
SW480, and 3) combined high vs. low from both cell lines. This analysis revealed 32 genes which 
most characterize the differences between the low and high populations (Supplementary Table 2), 
and included EMT-TF ZEB1, as well as epithelial genes, such as EPCAM and CDH1.
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20

Single cell RNA sequencing of CD44highEpCAMlow and CD44highEpCAMlow populations
	 We performed single cell RNA sequencing using the chromium controller (10X Genomics) on 
FACS sorted subpopulations of CD44highEpCAMlow cells and CD44highEpCAMhigh cells from HCT116 
and SW480, together with the bulk population of SW620 (Figure 6). We analyzed >1000 cells for 
each subpopulation, and sequenced to a depth of approx. 50000 reads per cell with the MiSeq System 
(Illumina). Sequencing distributions appeared in accordance with good practice, evidenced by the 
knee-elbow plots of the samples (Supplementary Figure 1). Data was processed using the CellRanger 
Pipeline and imported in R for downstream analysis.

To compare variable expressed genes across subpopulations, we used the FindVariableGenes 
function in Seurat (parameters: LogVMR, bottom cutoff average expression = 0.1, top cutoff 
average expression = 8, bottom cutoff dispersion = 1, top cutoff dispersion = Inf, 

num.bin = 20). We detected 1717 and 2178 variable expressed genes across the CD44highEpCAMlow 
cells compared with 1638 and 1783 genes across CD44highEpCAMhigh cells in the SW480 and HCT116 
cell lines, respectively; instead, the bulk of SW620 showed 1019 variable expressed genes. Next, 
we compared differentially expressed genes between the CD44highEpCAMlow and CD44highEpCAMhigh 
cells by performing differential expression analysis (parameters: thresh.use = log(2), test: 
likelihood-ratio test for single cell gene expression). This analysis revealed genes similar 
to those revealed by the bulk RNA-seq analysis (HCT116: VIM, EPCAM, DKK1, RAB25, CLDN7, 
S100A14; SW480: WFDC2, LCN2,  IFI27, CLDN7, ATP6AP1L) as well as novel genes (HCT116,  N 
= 53; SW480, N = 94) (Figure 7A). As validation, we computed box plots for VIM and EPCAM, and 
observed differential expression of these genes between CD44highEpCAMlow and CD44highEpCAMhigh 
cells (HCT116: VIM P < 0.001, EPCAM P < 0.001; SW480: VIM P < 0.001, EPCAM P < 0.001)(Figure 
7B). 

To further investigate the heterogeneity within the CD44highEpCAMlow cells and CD44highEpCAMhigh 
cells, we performed unsupervised clustering using shared neighbor (SSN) modularity optimization, 
which is a powerful clustering method that overcomes problems associated to finding clusters with 
different densities72. After dimension reduction using the first 30 principal components and computation 
of tSNE (Barnes-Hut implementation), the CD44highEpCAMlow cells and CD44highEpCAMhigh cells 
clustered in separate groups in HCT116 (Figure 7C). While HCT116 cells clearly separated in two 
distinct populations, SW480 cells showed a partial overlap between the CD44highEpCAMlow and 
CD44highEpCAMhigh cells, with a distinct CD44highEpCAMhigh subpopulation (Figure 7D). Using a 
signature derived from our bulk RNA-seq experiments, we identified that this distinct population 
represented the SW480 non-adherent subpopulation (“spheres”) (Supplementary Figure 2A). 
Because the study of this particular subpopulation was beyond the scopes of this thesis and because 
it interfered with the dimension reduction of the CD44highEpCAMlow and CD44highEpCAMhigh cells, this 
cluster was removed from the subsequent analyses. When dimension reduction was performed on the 
SW480 bulk RNAseq gene signature, the two partially overlapping clusters were now clearly resolved. 
These results are indicative of the presence of EMT-related transcriptional variance between these 
subpopulations (Supplementary Figure 2B). 

As a strong correlation between the CD44highEpCAMlow cells and the CMS4 subtype was observed in 
the bulk RNA-seq experiments, we were interested to investigate this association at the single-cell 
level. To this aim, we used a previously described CMS classifier to allocate each cell to a consensus 
molecular subtype61. The CMS classifier uses filtered signatures, intrinsic to the cancer cells (i.e. not 
immune and stromal compartments), derived from the CMS subtypes based on public bulk RNA seq 
databases, to apply a nearest template prediction and allocate CMS labels to input samples. To cope 
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with the low-quality data of single cells compared to bulk RNAseq samples, the algorithm was forced 
to allocate labels independent of significance test. While this increases the chance of false allocations, 
the predictions can still be indicative at a subpopulation level. The CD44highEpCAMlow cells were 
more often classified as CMS4 (HCT116: 38%, SW480: 35%) compared to the CD44highEpCAMhigh cells 
(HCT116: 9%, SW480: 17%)(Figure 7E). Notably, 28% of the SW620 bulk cells were classified as 
CMS4, suggesting that a large fraction of the SW620 cell line share a similar expression signature 
with the CD44highEpCAMlow cells. Indeed, when aggregating the SW480 CD44highEpCAMlow and 
CD44highEpCAMhigh cells with the SW620 bulk, the SW480 CD44highEpCAMlow cells overlapped 
with the cells of SW620 that were classified as CMS4 (Supplementary Figure 3). Thus, even at 
the single cell level, the expression of CD44highEpCAMlow cells associates with expression profiles 
of colon tumors from patients with poor clinical outcome. Accordingly, we derived signatures from 
clusters of CD44highEpCAMlow cells by doing differential expression analysis (parameters: thresh.
use = log(2), ident.1 = EpCAM_low_cluster_i, ident.2 = EpCAM_high_cluster_i:n, test: 

likelihood-ratio test for single cell gene expression), and showed that they can be used 
to stratify patient tumors according to survival and consensus molecular subtype (Supplementary 
Figure 4). 

Competition on variance: cell cycle, apoptosis and batch effects
	 The overlap between SW480 CD44highEpCAMhigh cells and CD44highEpCAMlow on the tSNE 
plot (Figure 7D) indicated the presence of strong EMT-independent transcriptional heterogeneity. 
Because, genes that do are not different between the low and high subpopulations appear to dominate 
in variance, resulting in a tSNE plot with overlapping populations. We first questioned whether 
the presence of the ‘sphere’ subpopulation (CD44lowEpCAMhigh cells) interfered with the dimension 

Figure 7. Overview of single cell RNA sequencing results. (a) Venn diagram denoting the number of DE genes between the 
subpopulations for scRNAseq versus bulk RNAseq. (b) Boxplots showing expression of EPCAM and VIM for both subpopulations 
in HCT116 and SW480. (c)(d) tSNE plots with annotation from FACS sorting. (e) CMS predictions for different subpopulations in 
HCT116, SW480 and SW620.
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reduction. Given that cells from this subpopulation are so much different from the other cells, the 
principal components can be dominated by differences caused the sphere subpopulation, which would 
suppress more nuanced differences between CD44highEpCAMhigh cells and CD44highEpCAMlow cells. 
Repeating the dimension reduction on SW480 without the spheres, however, did not reveal clear 
separation of the two subpopulations. 

Next, we aimed to characterize the effect of other cellular programs on dimension reduction and 
unsupervised clustering results. To this aim, we compared the effect of corrections on the localization 
of cells on the tSNE plot of HCT116 while maintaining the cluster labels as provided by scaling 
without corrections. Differences in apoptotic states were compared by measuring the percentage of 
mitochondrial RNA expression. Cell cycle phase were estimated based on the expression of cycle-
dependent genes73, and cell doublets were assessed by comparing nUMI counts (because doublets are 
expected to yield a significantly higher number of detected RNA molecules). We used these proxies 
to investigate their effect on unsupervised clustering results using linear regression models (Figure 
8). This procedure removes all signal associated with a transcriptional program by modeling the 
relationship with all genes to the score derived from a signature list and scaling the residuals in a 
corrected matrix. Since we observed strong association between the assigned cell-cycle phases and 
the unsupervised clustering results, we corrected for cell-cycle effects to assess the effect of cell cycle 
(Supplementary Figure 5). It appeared that, cluster 5 disappeared and distributed over the newly 
generated tSNE when performing this procedure, suggesting that this cluster was established by 
cell cycle differences. This procedure can be used to reveal EMT differences within subpopulations 
that remain hidden in presence of dominant cell cycle effects (Supplementary Figure 5). However, 
it should be noted that cell cycle can strongly be related to EMT74. Hence, diminishing cell cycle 
effects can also negatively impact downstream analysis as cell cycle correction can blur differences 
between EMT states. A way to overcome this limitation may be to look at cell cycle score differences 
(S.score – G2m.score): the signal from non-cycling and cycling cells is retained but differences among 
proliferating cells due to cell cycle will be reduced73. This diminished the relation between cluster 6 
and cluster 7, but also caused the loss of cluster 5. 

Figure 8. Effect of correction using linear regression models. Location of unsupervised cluster labels on the HCT116 tSNE plot after 
different types of corrections.

None Apoptosis (% mito) Doublets (nCount RNA)

Cell cycle (G2M, S score) Cell cycle (GS.difference)
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In view of the above, unsupervised clustering results appeared to be considerably robust after nUMI 
correction and apoptosis correction. Cell cycle effects play a role in the unsupervised clustering 
process, but correcting for this can also introduce bias. Because these effects did not explain the 
overlap of subpopulations in the samples of SW480, we concluded that these corrections were not 
imperative for the scaling procedure of our data. Therefore, in subsequent analyses, unsupervised 
clustering without correction is used as basis for subsequent steps.  

A small cluster of HCT116 consists of E and M cells that associate with metastatic signature
	 From the tSNE plot of HCT116, it appears that cluster 7 encompasses cells originating from 
both CD44highEpCAMlow cells and CD44highEpCAMhigh cells (Figure 9A). Because this E/M cluster may 
reflect a plastic state in between the other states, we went on to study this cluster in further depth. 

Earlier, it was shown that the iso-clonal variants HCT116 and HCT116b, derived from the same 
primary tumor, have a significant difference in ability to form metastatic deposits in vivo75. 
Comparison of gene expression revealed striking difference in their gene signature, with 3587 genes 
being differentially expressed across the variants (1777 up and 1809 down in HCT116 compared to 
HCT116b)76. We questioned whether some cells of HCT116 have a gene signature shifted toward 
HCT116b, which could provide them with enhanced metastatic potential. From the 3587 differentially 
expressed genes, we identified 668 genes in the scRNA seq data (236 up and 432 down in HCT116b 
compared to HCT116). To investigate the association with the signature, a score was computed by 
subtracting the average scaled values of genes overexpressed in HCT116 from the set downregulated in 
HCT116 compared to HCT116b. Clusters containing cells from the CD44highEpCAMlow subpopulation, 
and especially cluster 6 and cluster 7, appeared to have most association with this signature (Figure 
9B). To investigate the transcriptional differences of cluster 7 cells depending on the subpopulation 
origin, we dissected this cluster into two separate clusters, cluster 7 (CD44highEpCAMhigh cells) and 
cluster 8 (CD44highEpCAMlow cells) (Figure 9C). Next, we computed a similar score from an expression 
signature previously obtained by profiling the invasive front of colon carcinomas (Supplementary 
table 3)77. Cluster 8 showed most association with this mesenchymal signature (Figure 9D). 

Next, we questioned whether cells derived from cluster 8 can play a role in the observed plasticity of 
CD44highEpCAMlow cells. To this aim, we employed Palantir, an algorithm that models differentiation 
as a stochastic process where stem cells differentiate to terminally differentiated cells by a series 
of steps through a low dimensional phenotypic manifold, to align the cells along differentiation 
trajectories67. Cluster 8 localized at the corner of a tSNE in embedded space, and when appointed as 
approximate early cell, Palantir indicates cluster 8 as origin of a differentiation trajectory (Figure 
9E).

Hence, cluster 8 shows characteristics of E/M cells and may have a role in the plasticity of the 
metastatic subpopulations of these colon cancer cell lines. Nevertheless, the cells from cluster 7 
(CD44highEpCAMhigh) also show distinct expression of EMT genes, e.g. EPCAM and VIM. Therefore, 
we questioned whether these cells were truly E/M, or whether they are mesenchymal cells that 
cluster with epithelial cells because of other, EMT-independent, common features. To investigate 
this, we developed a computational approach to inspect the EMT-state for single cells and clusters.

Characterization of the EMT spectrum
	 While various EMT scores have been developed that can accurately distinguish EMT profiles 
from bulk RNA samples78–80, these approaches cannot be reliably copied to single-cell RNAseq data. 
Most importantly, the technical noise and drop out, which is still an inherent feature of single cell 
RNAseq data, requires flexible approaches that do not rely too much on few key EMT markers. 
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Regression-based approaches based on ratio-metric values of key EMT regulators may be useful for 
stratifying distinct RNA pools, but are problematic at the single cell level. 

Here, we have applied a mixed approach for the characterization of EMT sub-states using single-
cell RNA sequencing data. Unsupervised clustering is used as input for two parallel computational 
approaches (Figure 10). Subsequently, three computational approaches are intertwined: 1) the 
mapping of single cells on epithelial and mesenchymal axes to obtain a general overview of the 
spectrum and assess the robustness of unsupervised clusters, and 2) the evaluation of cluster-specific 
differences across the input EMT genes to obtain cluster profiles and study genes with low expression, 
and 3) the ordering of cells along dynamic trajectories to study differentiation paths. Below, we will 
discuss our efforts on both approaches and use HCT116 as sample for comparison.

Figure 9. Characterization of cluster 7 in HCT116. (a) A small subpopulation clusters together, and contains cells from 
CD44highEpCAMlow cells and CD44highEpCAMhigh cells. (b) Categorical scatter plot showing association between cluster 7 
and HCT116-HCT116b signature. (c) tSNE plot after subdividing cluster 7 into cluster 7 (CD44highEpCAMhigh) and cluster 8 
(CD44highEpCAMlow). (d) Categorical scatter plot showing association with Xavier budding signature. (e) Palantir pseudo-time analysis 
pointing cluster 8 as the origin of a dynamic differentiation path.
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Assigning EMT scores to single cells
	 First, we studied the principal components to identify the genes responsible for most variance 
(Figure 11, panel 1-2). As the first two principal components resolved the two subpopulations, the 
product of the two can be used to model the ‘EMT axis’. Accordingly, we computed an EMT score 
for each cell by multiplying the principal component 1 (PC_1) values by principal component 2 
(PC_2). This approach revealed cluster 6 as most mesenchymal and cluster 0 as most epithelial, with 
the other clusters in between (Figure 11A, panel 3). While this approach can be useful to identify 
markers associated with distinct phenotypes, it has several limitations. First of all, there is a non-
linear contribution to the variance so that specific genes may highly contribute to variance while 
their  contribution to EMT functionality is marginal. Furthermore, these highly-variable genes can 
differ across cell lines, which makes this approach sensitive to the input sample. In view of this, we 
opted for a different approach based on EMT input genes. 

Genes were included based on a 40-genes EMT panel described previously81. From this list, we 
identified four mesenchymal genes (VIM, ACTA2, FN1, COL1A1) and twenty-two epithelial genes 
(EPCAM, CDH, OCLN, TJP1-3, COL4A5, CLDN12/23, CLDN1/3-4/6/7/9, KRT7/8/10/15/18-20). First 
we determined the average value of the epithelial and mesenchymal genes using the scaled expression 
matrix (Figure 11B, panel 2). The majority of CD44highEpCAMhigh cells had a mesenchymal score 
equal to zero, which made it problematical to compare these cells based on their EMT score (Figure 
11B, panel 3). To tackle this problem, we extended the approach with an imputation step during 
preprocessing of the data. Markov affinity-based graph imputation of cells (MAGIC), an algorithm 
that smooths the features and restores the structure of the data, was applied to the count expression 
matrix prior to calculation of the scores62. This resulted in a graph showing gradual transition of 
epithelial to mesenchymal phenotypes (Figure 11B, panel 4). Interestingly, cluster 6 and cluster 
8, earlier shown to associate with mesenchymal (Figure 11A) and E/M characteristics (Figure 9), 
aligned with the diagonal of the axis suggesting co-expression of epithelial and mesenchymal markers 
(Figure 11B, panel 4-5). It must be noted that this approach is highly sensitive to input genes, and 
especially to genes with high expression. 

A way to enhance the robustness of this approach is to extend the number of input genes and correct for 
the weights by which genes can contribute to the variation of the score. Following this reasoning, the 
input list was replaced with 180 EMT genes from the nCounter® PanCancer Progression Panel. From 
this list, 52 epithelial genes and 55 mesenchymal genes were identified resulting in a score composed 
of 107 different markers (Supplementary Table 4). In addition, prior to averaging the epithelial and 
mesenchymal values, genes were scaled between 0 and 1 to equalize the relative contribution of all 
the genes. This approach resulted in a continuous near-linear landscape of phenotypic states, where 
epithelial scores showed a clear negative correlation with mesenchymal scores (Pearson Correlation 
-0.75)(Figure 11C, panel 1-2). To assess the robustness of the procedure, we overlaid cluster labels 
and computed averages and standard deviations for each cluster. In support of the robustness of this 
approach, clusters mapped coherently on the EMT plot. Cluster 6 and cluster 7 appeared as most 
mesenchymal while cluster 4 appeared as most epithelial, matching the far opposite location of these 
clusters on the tSNE plot (Figure 11C, panel 3).

To highlight the E/M cells on a dimension reduction plot, we implemented an algorithm previously 
developed by Tan et al. (2014)79 with some modifications. We used two gene sets, 52 and 55 epithelial 
mesenchymal genes respectively, to perform a gene set variation analysis and a two-sample 
Kolmogorov-Smirnov test (Figure 11D, panel 1). Then, the absolute difference of these scores was 
subtracted from one, resulting in 1D scores where values close to one denote an E/M state, and lower 
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values correspond to either epithelial or mesenchymal states. Moreover, we extended the dimension 
reduction of HCT116 using a novel uniform manifold approximation and projection (UMAP) 
algorithm. When compared to tSNE, UMAP optimizes the layout of data in a low dimensional space 
to minimize the error between the two topological representations. In other words, the distance of the 
clusters have more accurate representation of the underlying variation, and thus may better reflect 
biological difference. As appeared from the UMAP plot, the E/M cells tend to cluster on opposite sides 
of the plot, suggesting distinct paths by which a E/M-state can be obtained (Figure 11D, panel 2-3). 
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Figure 11. Computation of EMT scores in HCT116. (a) Score based on the principal components. (b) Score based on 40 input 
genes shows improvement after MAGIC, and points cluster 6 and 8 as hybrid E/M sub-states. (c) Score based on 100 input genes 
with MAGIC shows gradual transition in EMT with coherent mapping of unsupervised clusters. (d) Conversion to 1D score by 
gene-set-variation analysis and 2KS statistic to produce E/M hybrid scores on UMAP dimension reduction plot.



27

This brought us to question whether distinct configurations of genes sets can result in similar E/M 
scores. And thus, whether E/M-states can be acquired through different transcriptional configurations. 
To examine this, the analysis was continued with cross-cluster comparison of EMT-related gene 
expression.

Comparing EMT profiles across clusters
	 Due to updates in software packages at this time of the analysis, including improvements in 
normalization and data processing, the tSNE plot as well as the unsupervised clusters changed 
slightly (Figure 12A). Unsupervised clustering revealed 7 clusters: 2 consisting of CD44highEpCAMhigh 
cells; 4 consisting of CD44highEpCAMlow cells; and 1 composed of cells from either subpopulation. 
Evaluation of EMT marker expression revealed again that this E/M cluster showed dichotomous 
behavior relative to the expression of EMT genes, and thus we subdivided this cluster according to 
the CD44highEpCAMhigh (cluster 6) and CD44highEpCAMlow (cluster 7) profiles. 

To obtain a comparable value for EMT genes in each cluster, normalized expression values of the 
cells were averaged for the clusters. Following this, z-scores were computed for the EMT genes by 
subtracting the global gene average from the cluster gene average and dividing by the standard 
deviation. Next, complete clustering was used on Euclidian distances to reconstruct a hierarchical tree 
of the clusters and cluster the EMT genes. This procedure resulted in a heatmap showing the average 
expression values of EMT genes across the different clusters (Figure 12B). As shown in the heatmap, 
the EMT genes clustered in two sets of epithelial and two of mesenchymal genes. Surprisingly, cluster 
5 and cluster 7, originating from the CD44highEpCAMlow cells, showed co-expression of an epithelial 
gene set and mesenchymal gene set, in opposite manner when compared to each other. This suggests 
that E/M-states can be obtained by two distinct configurations of epithelial and mesenchymal gene 
expression. In view of this, we computed average values of the z-scores for the gene sets, enabling 
comparison of gene set expression per cluster. As appears from the graph, cluster 1, cluster 2 and 
cluster 3 show high expression of mesenchymal gene sets, and lower expression of epithelial gene 
sets. In contrast, cluster 6 shows high expression of epithelial gene sets while low expression of 
mesenchymal gene sets (Figure 12C). Clusters 0, 4, and 5 show high expression of epithelial gene set 
2 (epi2) and mesenchymal gene set 2 (mes2), with lower values of the other gene sets (epi1, mes1), 
while cluster 7 shows the opposite profile. Hence, the HCT116 E/M-states can result from different 
configurations of gene sets (Figure 12D).

To highlight the complexity of these configurations, we employed Ingenuity Pathway Analysis (IPA) 
to portray the underlying EMT signaling networks. As for the list of EMT genes here employed, we 
took the 2log-values of the ratio of z-scores for cluster 7 compared to the other clusters, and then 
imported this list in IPA. The top pathway based on this input “cell-to-cell signaling and interaction” 
was visualized in hierarchical manner, annotating the different components with their gene set origin 
(EPI1, EPI2, MES1, and MES2). As can be seen from the network, ZEB1 fulfills a crucial role in this 
pathway and is upregulated in this cluster compared to others, as well as several transcription factors 
associated with both mesenchymal (TWIST) and epithelial (GHRL2) development, thus indicating a 
state of transition in the EMT program (Figure 12E).  

Next, the above procedure was repeated for the SW480 and SW620 cell lines. In SW480, as 
mentioned, unsupervised clustering gave mixed clusters consisting of both CD44highEpCAMlow and 
CD44highEpCAMhigh cells (Supplementary Figure 6A). Restricting the clustering to the EMT input list 
revealed separation of both populations and clusters, with prevalence for either CD44highEpCAMlow 
or CD44highEpCAMhigh cells (Supplementary Figure 6B). The derived heatmap showed no clear 
segregation of epithelial and mesenchymal identities, with strong opposing expression values for 
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cluster 5 and cluster 6 (Supplementary Figure 6C). We reasoned that these clusters interfered with 
the gene clustering, and thus repeated it using all cluster except clusters 5 and 6 (Supplementary 
Figure 6D). As shown in the heatmap, the remaining clusters showed improved separation of 
epithelial and mesenchymal genes, with cluster 0 and cluster 3 being more epithelial opposing the 
mesenchymal clusters 1, 2 and 4. 

Overall, it appears that a gradual transition from epithelial to mesenchymal states depending 
on gene expression intensity of EMT genes is characteristic of the SW480 cell line. Moreover, 
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additional sub-populations (cluster 5 and cluster 6) accounting for 5% of the CD44highEpCAMlow and 
CD44highEpCAMhigh cells (i.e. by excluding the CD44lowEpCAMhigh cells), show deviating expression 
patterns with co-expression of epithelial and mesenchymal genes (Supplementary Figure 6E).

As for SW620, the mechanism by which E/M-states occur is comparable to SW480. From the 12 
clusters identified using unsupervised clustering (Supplementary Figure 6F), all but one show similar 
gradual transition from epithelial expression to mesenchymal gene expression matching the increase 
of predicted CMS4 fractions (Supplementary Figure 6G). In contrast, cluster 11 is characterized by a 
striking co-expression of epithelial and mesenchymal genes, including EPCAM, CLDN7, VIM, ZEB1, 
and SNAI2 (Supplementary Figure 6H).

In conclusion, this analysis revealed different mechanisms by which an E/M-state can be acquired: 
1) through coordinated switch of gene set expression (HCT116); 2) through gradual shift in gene 
expression intensity from one state to the other (SW480, SW620) and 3) via co-expression of both 
mesenchymal and epithelial genes (SW480, SW620, HCT116).
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Figure 13. Pseudo-temporal analysis of HCT116. (a) UMAP plot with unsupervised clusters, and E/M hybrid score indicating two 
E/M sub-states. (b) SCORPIUS analysis reveals two paths by which CD44hiEpCAMlo cells transition into CD44hiEpCAMhi cells. (c) 
Palantir reveals two points with CD44hiEpCAMlo that can be the start of dynamic trajectories.
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Pseudo-temporal ordering of single cells
	 Our findings suggest that E/M-states can be acquired from CD44highEpCAMlow and 
CD44highEpCAMhigh cells via several ways of transcriptional alteration. Thus, we speculate that 
multiple differentially activated paths underlie the transcriptional heterogeneity observed in these 
cell lines. To elucidate on this reasoning, cells were aligned on hierarchical paths enabling comparison 
of progression along EMT across clusters. For this purpose, unsupervised trajectory inference was 
performed on all the cells using SCORPIUS65. This analysis was visualized for HCT116 using UMAP 
dimension reduction, with a clustering procedure slightly differing from former analyses (Figure 
13A, panel 1). Four CD44highEpCAMlow clusters (0, 1, 5, and 6) and three CD44highEpCAMhigh clusters 
(2, 3, and 4) were identified. As shown in the UMAP plot with E/M scores, cluster 0, 5, and 1 have 
intermediate E and M scores and correspond to E/M clusters (Figure 13A, panel 2-3). 

Notably, the E/M-clusters from HCT116 CD44highEpCAMlow cells (cluster 0 and cluster 5) appeared at 
both ends of the process, suggesting that E/M-hybrid states can initiate different paths (Figure 13B, 
panel 1-2). Cluster 4, the E/M clusters from HCT116 CD44highEpCAMhigh cells, mapped in between 
these end points, as well as clusters 3 and 2, that gradually transitioned in pseudo-time values to 
cluster 5. Thus, it seems that E/M-states from CD44highEpCAMlow cells can initiate two trajectories 
that proceed across the different clusters from CD44highEpCAMhigh cells (Figure 13B, panel 3). 

To test the robustness of these results, we repeated the trajectory analysis using Palantir, an 
algorithm that models trajectories of differentiating cells by treating cell fate as a probabilistic 
process and leverages entropy to measure cell plasticity along the trajectory67,82. We found again the 
two E/M-hybrid states (cluster 0 and cluster 5) from CD44highEpCAMlow cells as initiation points of 
different dynamic paths (Figure 13C). 

A similar analysis on the SW480 cell line (Supplementary Figure 7) revealed 6 clusters, of which 
E/M-cluster 2 mapped in between CD44highEpCAMhigh cluster 4 and CD44highEpCAMlow cluster 3. 
Cluster 3 transitioned in cluster 6, 5, and 1. This suggests that CD44highEpCAMlow cells can convert 
in CD44highEpCAMhigh cells and vice versa via distinct biological paths.

	 Altogether, our single cell RNAseq analysis reveals considerable heterogeneity in the 
CD44highEpCAMlow and CD44highEpCAMhigh subpopulations across 3 colon cancer cell lines. While our 
results show a strong association between CD44highEpCAMlow cells and the mesenchymal phenotype, 
they also indicate that within this subpopulation cells are present that co-express epithelial and 
mesenchymal genes. We identified E/M-states in all cell lines, and found they can occur by different 
mechanisms of transcriptional activity. Lastly, E/M-states could play an important role in phenotypic 
plasticity of the cell lines since they can be the start of different trajectories. 
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Screening and optimization of collagen models for collective migration in vitro
	 In this section, results will be presented on three different collagen models that we tested for the 
study of collective migration studies in vitro and ex vivo: 1) a collagen droplet model, 2) a collagen 
chamber model that enables directional incentives, and 3) a collagen freeze model with aligned pores. 

Migration of cell aggregates in a collagen droplet model
	 Our initial experimental set up bears a close resemblance to approaches previously used in 
breast24 and brain cancer62. Starting from cellular aggregates of HCT116 and SW480, we monitored 
invasion in three-dimensional rat tail collagen type 1 (4µg/mL) droplets. After 2 days of culturing, 
cells started to invade the collagen, either as single cells detaching from the aggregate, or by budding 
sites as predominantly observed in SW480 (Figure 14A). 

We used the same set up to study invasion of fragments of human primary colorectal tumors. To 
trigger EMT and invasion, fragments were exposed to compounds that have been shown to trigger 
migration or invasion: CHIR63 (Wnt pathway), TGFβ64 (TGFβ-pathway), SCF (SCF/c-KIT-pathway), 
JAG165 (Notch pathway), HGF66 (HGF/c-MET pathway). This resulted in events where cells invaded 
in the collagen either as long, stretched single cells, or as multi-cellular strands (Figure 14B). We 
questioned whether the non-directional approach of this set up would hamper cells from directed 
invasion. A stimulus from a source can give the cells an incentive to invade in certain direction, 
which may increase the frequency of invasion, and could thus be an improvement of the set up. Since 
we did not observe any detachment of migrating cell clusters using this approach, we decided to 
change the experimental set up and include directional incentive.

Migration of organoid-derived multicellular layers in a collagen chamber model
	 We adapted an experimental set up previously applied in skin cancer67 with some variations 
(Figure 15A). Human (CSC08) and intestinal mouse (APK) organoids were seeded on top of a collagen 
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human colorectal cancer celllines
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5d, HGF 5d, HGF

human primary colorectal tumor

dissect

add growth factors

HCT116 SW480

human colorectal cancer celllines

low-attachment culture collagen invasion

Figure 14. Collagen droplet model. (a) Invasion of cells from cellular aggregates of HCT116 and SW480. (b) 
Invasion of cells by fragments of human primary colorectal tumors.
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gel at 0.5*106 cells/well and placed in a Boyden chamber. Inactivated cancer associated fibroblasts 
(CAFs) were co-cultured in 2D monolayer on the bottom of the well to provide a continuous source 
of EMT induction. Following 7 days of incubation, gels were harvested, processed, and sectioned for 
immunohistochemistry and immunofluorescence.

Organoid-derived multilayers appeared on top of the collagen gel (Figure 15B). We did observe, 
although scarcely, events of single and collective cell invasion in the collagen (Figure 15C). When using 
immunofluorescence, it appeared that the multilayer from human organoids showed non-homogenous 
expression of E-cadherin. Surprisingly, cells on top of the multilayer showed perpendicular alignment 
of their nuclei and were characterized with lower levels of E-cadherin expression (Figure 15D). 

colorectal cancer organoids

Human (CSC08) org. Mouse (APC-KRAS-P53) org.

DAPI
E-cadherin

collagen invasiona

b

c

d

Figure 15. Collagen chamber model. (a) Schematic experimental set up of the collagen chamber model. (b) HE showing multi-
cellular layers on top of the collagen gels. (c) Events of single/collective invasion in the collagen gel. (d) IF showing E-cadherin (green) 
and DAPI (blue). 
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Although we did see sporadic events of invasion as either single cells or small cell clusters, we 
considered this experimental set up as suboptimal for experiments assessing collective cell migration 
in qualitative and quantitative fashion. Next, we attempted to alter the architecture of the collagen 
matrix to facilitate and orient cell invasion/migration. Earlier studies have successfully shown that 
collagen stiffness, i.e. its relative concentration, can strongly influence the migration type64. Other 
parameters include polymerization temperature68, pre-polymerization steps69, and aligned collagen 
fibers by mechanical stretching70. Recently, a novel approach has been developed in breast cancer 
based on a freezing step to create aligned fibers in the collagen72,73. Based the observed increased 
frequency of cell clusters and multi-cellular tendrils obtained with this approach, we decided to 
further implement this method. 

Migration of mouse organoids in a collagen freeze model
	 We produced anisotropic collagen scaffolds according to procedures described elsewhere73 (Figure 
16A). In brief, collagen (10 mg/mL) was acidified and vortexed to produce a slurry that was frozen at 
-20C˚ using a mold enabling freezing from one focal point. Subsequently, ice crystals were removed 
by sublimation for 18 hours and scaffolds were cross-linked to enhance stability. When compared 
to the collagen matrices without freezing, clear differences in matrix architecture can be observed 
due to the freezing procedure. Using bright field imaging, we observed the presence of aligned pores 
(Figure 16B). 

One of the key characteristics of collagen is its structural organization. The amino acids of three 
peptides interact to form a triple helix (tropocollagen, 300 nm) that gather in fibrils (1 µm) to form 
fibers (10µm), or bundles of fibers. To study the collagen organization at the µm scale, we used 
reflection imaging. By capturing fluorescent light, close the wavelength of excitation, an image can be 
produced that reflects the structure of the scaffolds. In collagen that is polymerized without freezing, 
fibers can be recognized in a isotropic manner (Figure 16C). In the scaffolds that were created using 
the freezing procedure, thick bundles were observed that were composed of aligned fibers (Figure 
16D). Thus, the freezing procedure has a strong impact on the microscopic organization of the collagen.

To study the behavior of cells on the freezing scaffolds, mouse AKP organoids were seeded on top of 
the scaffold and incubated for 7 days. Next, 4µm sections were made, and stained for hematoxylin, 
eosin and Sirius red to stain the cells and collagen respectively. We observed a thick multi-cellular 
layer on top of the scaffold, where the morphology of the spheroids can still be recognized (Figure 16E). 
Deeper in the scaffold, multi-cellular strands were migrating along the thick bundles of collagen. 
Similar observations were made using immunofluorescence in confocal microscopy (Figure 16F). 

Implementation of the embedding and sectioning procedures implied problems with sectioning due 
to the fragility of the scaffolds. Moreover, 2D planes can be misleading as cross-sections of cellular 
strands can give the impression of freely migrating cell clusters while in reality they were attached 
to the multi-cellular mass. Therefore, we put effort on fluorescent 3D imaging as method of choice for 
evaluation of migration.
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Figure 16. Collagen freeze model. (a) Schematic experimental set up of the collagen freeze model. (b) Brightfield imaging showing 
aligned bundles of collagen in the collagen freeze model. Reflection imaging showing difference in fiber organization in the (c) 
collagen droplet model with 2 hours pre-polymerization on ice and (d) the collagen freeze model. (e) HE sections after 7 days 
incubation of AKP organoids in the collagen freeze model showing multi-cellular strands migrating along the collagen bundles. (f) 
Immunofluorescence using confocal microscopy showing a section of the AKP organoids on the collagen freeze model.
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3D imaging of organoids in the collagen freeze model
	 We repeated the migration assay with mouse AKP organoids incubated for 3, 5, and 7 days 
on the collagen scaffolds prepared according to the freeze protocol. Scaffolds were then fixed and 
processed using a clearing protocol47. The Leica SP5 intravital and the Opera Phenix were employed 
to visualize the samples, and Hyperstacks were acquired with a depth in the range of 400-1000 µm. 
We observed clear migration after 5- and 7-days incubation, predominantly by multi-cellular strand 
formation but also found examples of de-attached cell clusters (Figure 17). in view of these results, 
we decided to continue with the collagen freeze model as scaffold for subsequent experiments, and 
use clearing and 3D imaging as method of choice to evaluate migration events. 

Evaluation of tumor migration mechanisms upon induction of Zeb1
	 Next, and illustrated in this section, exploratory experiments were performed aimed at 
understanding the role of EMT transcription factor ZEB1 in tumor invasion. The AKP mouse 
organoids was employed as experimental study model of migration and invasion when coupled with 
the collagen freeze model. The experiments below are anecdotical, and performed to show how the 
employed systems can be used to study migration modalities ex vivo. 

Validation of conditional ZEB1 overexpression in mouse organoids
	 First, the mouse AKP organoids were transduced with a vector to conditionally induce mouse 
Zeb1 expression (Supplementary Figure 8). Ten clones were evaluated for inducible Zeb1 expression. 
To this aim, organoids were cultured in matrigel and exposed to doxycycline (dox, 1µg/mL) for 48 hrs. 
(Figure 18A). RTqPCR analysis revealed a Zeb1 mRNA increase of 65-, 70-, and 40-fold for clones 4, 
6 and 10, respectively (Figure 18B). Accordingly, western blot analysis showed an increase of Zeb1 
protein in these clones upon dox-induction (Figure 18C). 

To assess migratory changes upon dox-induction, we seeded AKP-Zeb1-GFP clone 10 organoids 
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Figure 17. 3D imaging approaches for the collagen freeze model. Top: Leica SP5 acquisition for migration of AKP 
organoids in the collagen freeze model after 3, 5, and 7 days incubation. Bottom: Opera Phenix HCS acquisition of 
AKP organoids in the collagen freeze model after 7 days incubation
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on collagen freeze scaffolds and followed them over time by imaging every 2 hours over 48 hours. 
Unfortunately, the organoids died over time, probably due to the intensive imaging schedule (i.e. 
outside the incubator). Yet, some cells – both in the dox-induced and uninduced samples, can be 
recognized with mesenchymal-like morphology, as well as sharp deformations in the organoid 
suggesting initiating events of migration (Supplementary Figure 9).

Comparison of ex vivo tumor migration mechanisms upon induction of Zeb1
	 Ex vivo migration assays were implemented with ±1 mm3 tumor fragments resected from 
immune-deficient mice orthotopically (i.e. caecum) transplantated with AKP-Zeb1 mouse organoids 
(clones 4, 6, or 10). These fragments were seeded on collagen freeze models and incubated in DMEM-
FCS for 7 days in the presence of gentamicin to prevent intestinal microbial contaminations, and in 
wells pre-coated with matrigel to improve attachment of the collagen scaffolds. 

Scaffolds were imaged after 3 and 7 days of incubation. Sirius red was employed to stain collagen type 
I, while β-catenin or E-cadherin antibodies were used to stain the tumor cells by IF. 3D visualization 
of tumor fragments was focused on regions of contact with the collagen scaffolds (Figure 19A). In the 
3-day sample without doxycycline, multi-cellular strand formation was observed (Figure 19B), not 
observed in the 3-day sample exposed to doxycycline. In both samples, single cell migration along 
collagen bundles as well as small clusters consisting of few cells were observed (Figure 19C). 

In the samples incubated for 7 days, we long strand formation was observed in the absence of 
doxycycline, which were not seen with doxycycline (Figure 19D). Interestingly, a cell cluster was 
found in the no-dox sample at approx. 2 mm from the seeding area. In the +dox sample, we did not 
observe similar events. Instead, a prevalence of single cell migration from the tumor center was 
noticed.
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In order to quantify these migration modes, we extracted the center point for each nucleus (Figure 
19E), and computed a 2D kernel density to represent the tumor mass of the samples, and annotate 
migratory cells (Figure 19F). Subsequently, k-nearest neighbor distance was computed for the 
migratory cells against the tumor mass to approximate the migrated distances. The sample exposed 
to Doxycycline had a higher number of single migratory cells (+dox: 184, -dox: 99), but where found 
closer to the tumor mass than the migrated cells from the sample without Doxycycline exposure 
(Figure 19G). Since we performed this experiment only once, it is impossible to dissect conclusions 
from the observations. Yet, this serves as anecdotical example to illustrate how this system can be 
employed to study and quantify migration modalities upon culturing tumor fragments ex vivo. 

Figure 19. Tumor migration mechanism upon Zeb1 induction. (a) 3D projections of organoid derived tumors seeded on the 
collagen freeze model. (b) Multi-cellular strand formation in the No Dox sample. (c) Examples of single cell migration and de-
attached cell clusters in the collagen freeze model. (d) Comparison of Dox and No Dox sample after 7d incubation ex vivo. (e) 
Segmentation of nuclei based on relative DAPI intensities. (f) Quantification of single cell migration based on distance of cells to 
nearest cell that falls within the contour line. 
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Tumor invasion mechanisms in vivo
	 To compare the results of the in vitro models to the situation in vivo, we performed two 
exploratory experiments. First, we did a β-catenin IHC staining to identify the invasion modalities in 
the orthotopic transplantated caecum tumor in mice. This revealed different migration types at the 
invasive front: i) single cells, 2) cell clusters and 3) multi-cellular strands (Figure 20). 

Next, we aimed to reconstruct a 3D image of the tumor invasion in vivo. To this aim, we punched 
small cylinders of 1 mm in diameter out of the Paraffin Embedded tumor front. Following this, 
cylinders containing tumor tissue were cleared similar to the procedures used for the visualization 
of collagen freeze scaffolds. This was followed by a staining of E-cadherin and α-SMA to distinguish 
epithelial cells from fibroblasts. This experiment revealed that a considerable resolution, sufficient 
to distinguish single cells, was maintained until deep in the tumor tissue. To illustrate this, 3D 
projections of epithelial cells and fibroblasts versus only fibroblast shows the presence of fibroblast 
deep in the tumor (Supplementary Figure 10). 

i

ii

iii

i ii iii

Mouse caecum (caecum transplantation APC-KRAS-P53-ZEB1 mOrg clone 6 +dox) 

β-catenin

Tumor center Invasive front

Figure 20. Invasive front of AKP mOrg derived ceacum tumor. Invasion can be observed by i) single cell migration, ii) de-attached 
cell clusters and, iii) multi-cellular strand formation.
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Toward isolation of circulating tumor cell clusters from liquid biopsies
	 Last, and exemplified in this section, we analyzed blood samples with the aim to identify and 
quantify CTC and CTC clusters.

Prior to peripheral blood collection, 3 mice carrying organoid-derived (AKP-Zeb1-GFP mOrg) caecum 
tumors were imaged in the IVIS to identify potential metastases. Mouse MI-11574-03 appeared to 
have one metastasis, which was not apparent for mouse MI-11574-01 and MI-11574-07 based on this 
acquisition (Figure 21A). We isolated 240 µl, 900 µl, and 740 µl of blood from mouse MI-11574-01, 
MI-11574-03, and MI-11574-07 respectively. Next, we performed a red blood cell (RBC) lysis and 
PBS wash before fixation in 2% PFA in BSA for 20 min. at RT. Then, the remaining pool of cells 
were distributed over glass slides in 70% ethanol, and stained for DAPI and anti-GFP to visualize 
the CTCs. 

As initial experiment, the OPERA Phenix was employed to scan four glass slides (2x MI-11574-
03, 1x MI-11574-01 and 1x MI-11574-07). Whole glass slides were scanned at 20x magnification in 
two channels, 488 nm and 405 nm. Hereafter, the software was tasked to identify all nuclei on the 
glass slides. This revealed 10.000 cells on the glass slides from MI-11574-01, 75.000 and 49.000 cells 
from the samples of MI-11574-03, and 3.000 cells in the sample from MI-11574 (Figure 21B). The 
variability in these numbers indicated that this procedure requires optimization. As a reference, 
others have reported that on average, NOD scid-gamma (NSG) mice have a white blood cell count 
in the range of 1.0-7.0*103/µl94. Hence, this would imply that on a slide representing few hundred 
µl of blood, in the range of 105-106 cells should be identified. Thus, the samples of MI-11574-03 and 
MI-11574-01 approach the lower limit of what would be expected, but the sample of MI-1157407 is 
not representative and probably many cells were lost during the RBC lysis and washing procedures.

We continued by measuring the average GFP intensity in both the nuclei (DAPI segmentation) and 
the cytoplasm (DAPI region subtracted from GFP segmentation). Next, thresholds were set for both 
parameters (4*103 for nucleus, 4*103 for cytoplasm) to separate white blood cells (WBC) from CTCs. 
In mouse MI-11574-03, we identified 283 and 225 CTCs in the two glass slides. We did not find CTCs 
in the other two mice.

To further investigate the CTC pool, we computed nearest-neighbor (NN) distances for all the cells 
that were annotated as GFP+ (CTC). Then, we distinguished CTCs from CTC clusters by establishing 
a threshold for the NN distance. Cells with distances > 20µm were annotated as single cells, while 
cells with distances smaller or equal to 20 µm were labeled as part of CTC cluster. In the first 
acquisition of MI-11574-03, we observed 282 CTCs of which 30 cells (12%) were part of three different 
CTC clusters (Figure 21C). In the second acquisition of MI-11573-03, we observed 225 CTCs, which 
were all single cells. 

To improve the resolution of the image, the glass slide that was found to contain CTC clusters was 
imaged under using the Zeiss LSM-700 microscope. We searched for one of the three CTC clusters and 
captured the DAPI and GFP channel at 63x magnification. One of the three cluster was composed of 
five cells (Figure 21C, left). As can be seen from the DAPI channel, the nuclei of the CTCs was bigger 
than the white blood cells, and showed occasionally a spotted pattern, different than the DAPI signal 
from the white blood cells (Figure 21D). 

Taken together, we show that an automated imaging approach using the OPERA system can be 
suitable for the detection and quantification of CTCs and CTC clusters.  
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Chapter 4. Discussion

	 This thesis attempted to contribute to the current debate about the role of EMT in collective 
cell migration. Although there is an increasing number of studies indicating that E/M cells and CTC 
clusters play an important role in metastasis formation, a cause-effect relationship between the two, 
despite several conceptualizations, has not been demonstrated yet. In Chapter 1, we dissected this 
relationship into different questions demanding investigation. The first question revolved around 
EMT and the existence of E/M sub-states. We assessed this question experimentally by employing 
single cell RNA sequencing technology on CD44highEpCAMlow cells, a metastatic subpopulation of 
colorectal cell lines that was intensively characterized in the lab before the start of this thesis (see 
Chapter 1, Box 1). The two other questions focused on different steps along the invasion-metastasis 
cascade, i.e. invasion and survival in circulation, and need clarification in order to establish or deny 
a cause-effect relationship between partial EMT and collective migration. Efforts in this regard have 
been devoted to the optimization of approaches useful for studying the interplay of these models (see 
Chapter 2). While these approaches remain far from being ‘state-of-the-art’, we have showed that 
they can be used to address specific questions on phenotypic plasticity and the allegedly underlying 
partial EMT and collective migration. 

Main findings
	 We zoomed in on subpopulations of CD44highEpCAMlow cells and CD44highEpCAMhigh cells, which 
were characterized by several functional assays indicating that  CD44highEpCAMlow cells have 
enhanced metastatic potential and stemness (see Chapter 1, Box 1). In HCT116, the transcriptional 
difference between these subpopulations was responsible for most of the variance, while in SW480 
additional variance was present as evidenced by the overlap of populations in the dimension reduction 
plot (see Chapter 3, Figure 7D). This could relate to the genetic differences of the cell lines, as the 
chromosomal instability status of SW480 may result in increased inter-cellular epigenetic differences 
when compared to the HCT116 cell line that is classified with microsatellite instability75.  

We developed a computational pipeline suitable for investigating EMT at the single cell RNA level. 
This pipeline was used to show that colon cancer cell lines are composed of several subpopulations 
that map differently on the EMT spectrum. Our analysis indicates E/M sub-states based on the 
mapping of unsupervised clusters, that contribute to the plasticity of the cell line as they can initiate 
different paths of differentiation. In HCT116, these E/M sub-states proceeded by coordinated switch 
of gene sets via either high expression of SNAI2 or ZEB1, which is in accordance to the notion of the 
distinct feedback loops of these transcription factors36, and may relate to the two ZEB1-dependent 
steady-state attractor states as described before76. In SW480 and SW620, we observed E/M sub-states 
showing strong co-expression of epithelial and mesenchymal genes including key EMT regulators 
such as ZEB1, SNAI2 and TWIST, suggesting a different dynamic transition by which EMT proceeds. 

Overall, these results indicate that EMT states cannot be arrayed along a linear spectrum that starts 
with fully epithelial phenotype and ends with a fully mesenchymal one, but that states can branch 
off in different cell fates, which can be different for each cell line (Figure 22).

We did observe coherent mapping of unsupervised clustering on the EMT plots, and distinct EMT 
expression across clusters, suggesting preference for certain states along the possible phenotypes. 
However, one should be cautious with claims about the number of EMT sub-states, because the 
identified number of sub-states depends on the number of groups that were initially clustered. 
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In the second part of this thesis, we explored approaches to study collective migration in vitro/ex 
vivo and ways to identify CTC clusters from liquid biopsies.  We evaluated different collagen models 
with respect to their ability to capture collective migration events. Over the course of the project, we 
varied both collagen models and biological samples to increasingly complex experimental designs 
(Figure 23). Based on the exploratory experiments performed in this project, the results showed most 
resemblance to the situation in vivo when tumor fragments were seeded on the collagen freeze model. 
This set up resulted in events of single cell migration, as well as collective clusters and multi-cellular 
tendril formation, and was therefore selected for subsequent experiments.

To demonstrate the use of this experimental design in studying collective migration and EMT, we 
compared tumor migration ex vivo after 7 days of Zeb1 ectopic expression. From this anecdotical 
experiment, we observed an apparent shift to single cell migration upon induction of Zeb1. Moreover, 
our results suggest a reduction of multicellular-tendril formation upon Zeb1 induction. However, 
these results should be taken with caution given the low experimental numbers.  Interestingly, in 
the sample without Zeb1 induction, we observed a collective migrating cell cluster 2 mm away from 
the scaffold seeding area. This event illustrates the ability of this model, as well as its employed 
evaluation, to capture and study migration events at a relatively large scale.

Finally, we focused on the liquid biopsies to study the circulating tumor cells. A shift from single 
CTCs versus clusters, and the arrangement of EMT-related inter cellular heterogeneity in clusters, 
would provide ultimate proof for the association between E/M and collective migration. To study 

epithelial mesenchymal

a

b

Figure 22. Schematic diagram proposing EMT progression along multiple paths. (a) Different mechanisms of E/M sub-state transition 
in colorectal cancer cell lines. (b) Schematic diagram showing the non-linear array of EMT phenotypes that are connected via 
multiple paths.
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these questions, we are in need of methods that can accurately identify CTC clusters from liquid 
biopsies. In this regard, we have chosen to deviate from standardized methods because they may 
preferentially detect single CTCs and hamper detection of CTC clusters. Our approach is rather 
simple, and is solely based on a red blood cell lysis and one wash with PBS. To aid in the identification 
of the “needle in the haystack”, we have developed an automated approach to detect rare events. This 
approach was used to show that we could detect 3 CTC clusters in a pool of 75.000 white blood cells. 

Limitations
	 The presented approaches suffer from a number of pitfalls. We used cell lines to study the 
spectrum of EMT at the single cell RNA level. Indeed, a cell line is a strong simplification of the in vivo 
situation. This is of relevance since EMT has been described as context-dependent, non-autonomous 
cellular program that is greatly influenced by the tumor microenvironment11. The influence of these 
factors was neglected in our model.

As migration assays we used a collagen freeze model to assess collective migration. Due to the 
freezing procedure, anisotropic pores were produced that result in holes in the scaffolds. In contrast 
to the collagen droplet model and the collagen chamber model, this allows cells to migrate in the 
scaffolds without active degradation of the collagen fibers. While collagen architecture in vivo is 
also strongly heterogeneous with 30 to 50 µm thick sheets of collagen fibers and gap diameters 
often exceeding 10-20 µm97, it remains unclear to what extent this feature influences experimental 
outcome. Further experiments need to assess the phenotype of the migratory cells and compare their 
features to invading cells in vivo. 

In the organoid transplantation experiments, we induced constitutive Zeb1 expression in the majority 
or possibly all cells. Considering that in vivo Zeb1 expression is usually found in a minority of cells, 

1 conventional
a b

3 anisotropic pores

droplet model chamber model freezing model

2 directional stimulus

Complexity

High-throughput

1 cell aggregates 3 tumor fragment2 organoids

Figure 23. Overview of experimental designs used for migration studies.
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the ectopic expression may lead to artifacts. Given our interest in collective migration, which may 
be established by intersection of epithelial and mesenchymal-like tumor cells through a ‘leader/
follower’-mechanism43, our approach may hamper us from identifying these events. 

Avenues for future research
	 The current study highlight the need for future research. Below, suggestions for continuation 
will be discussed for the different aspects of this project.  

CD44highEpCAMlow project
	 In view of the CD44highEpCAMlow project, a challenging but rewarding direction would be to couple 
the scRNA seq data to FACS. If E/M sub-states could be isolated from the pool of CD44highEpCAMlow 
cells, there is an opportunity to further characterize partial EMT, and study the functional aspects of 
E/M sub-states in colorectal cancer cell lines. Our scRNA seq data can be used to identify candidate 
(membrane) markers for each cluster, that can be tested in FACS to see their profile in the different 
CD44highEpCAMhigh and CD44highEpCAMlow populations (Supplementary Figure 11). 

Further optimization of collective migration models
	 An interesting avenue would be the further development of collagen scaffold for the use of ex 
vivo tumor migration experiments. For example, and extension could be the pre-seeding of scaffolds 
with cancer associated fibroblasts (CAFs) to mimic tumor-stroma interactions. Alternatively, hybrid 
models could be explored to combine benefits from different models. For example, scaffolds from 
the collagen freeze model, perhaps even after pre-seeding with CAFs, could serve as molds for 
polymerization of the collagen droplet model to fill the pores. This could result in complex matrices 
with local architecture similar to the collagen droplet model, but a global architecture that provides 
structure and drives cells to invade in coordinated direction. 

Alternatively, an intriguing approach could be to establish “mixed” organoids (Figure 23), containing 
labeled cells from both inducible and non-inducible organoids. This would enable induction in a 
fraction of the cells, increasing the likelihood of an induced cell to have non-induced neighbor cells. 
Hence, the induction of these organoids may reflect better the situation in vivo, and could provide 
examples of ‘leader/follower’ migration, where Zeb1 induced cells initiate collective migration and are 
followed by non-induced cells.

Figure 23. Example of bicolored organoids. Transduction of HCT116 with LegoGFP and mCherry. Cells can be 
used to form green, red or bicolored clusters by mixing different ratio’s in low-attachment culture



45

Establishing a cause-effect relationship between partial EMT and collective migration
	 Our approaches for collective migration and CTC isolation provide a basis for further studies 
aimed at the establishment of a cause-effect relationship between partial EMT and collective 
migration. Subsequent studies could take advantage of phenotypic stability factors (PSF), such as 
NUMB, GRHL2, OVOL that have been described to promote and stabilize hybrid E/M sub-states41,98. 
Using these transcription factors, collective migration may be promoted as well as the presence of 
CTC clusters in the circulation. Furthermore, using a panel of EMT markers, the EMT related inter-
cellular heterogeneity in CTC clusters could be studied using the approach described here. 

Conclusion 
	 Our results indicate the existence of E/M sub-states at the single cell level, which is in line 
with the notion that cells can remain in partial EMT, where they benefit from both epithelial and 
mesenchymal features. Moreover, our anecdotical results from ex vivo migration assay suggest that 
EMT induction can alter the migration modality, supporting a case for phenotypic plasticity and 
collective migration as mutually beneficial mechanisms. 

While our results apply to context of colorectal cancer, the methodological approaches can be exploited 
to other types of solid cancer, and may provide points of engagements for further studies addressing 
the link between EMT and collective migration. Further studies need to address these issues in a 
systematic manner to clarify details about the complex mechanisms by which cancer metastasis 
proceeds.
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Appendix
Supplementary Figures

HCT116 low

SW620 bulk

SW480 low

UMI Barcode Plots

Supplementary Figure 1. UMI barcode plots of scRNAseq results.
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PCA on var.genes PCA on SW480 signature

Vars.regress = orig.ident Sphere-like score

Supplementary Figure 2. Identification of “spheres” in SW480 scRNAseq. (a) Top: two markers for 
adherent cells and “sphere” population derived from DE analysis in the bulk RNA seq. Down: gene set 
score based on: Av_score = Average(UP_markers) - Average(DOWN_markers) for all markers found 
by DE analysis between spheres and adherent cells. (b) CD44highEpCAMlow cells and CD44highEpCAMhigh 
cells are resolved once the dimension reduction (here PCA) is performed on the input list of DE 
markers derived from the bulk RNA seq by comparing CD44highEpCAMlow cells to CD44highEpCAMhigh 
cells.
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Supplementary Figure 3. Aggregated tSNE plot. SW480 CD44highEpCAMlow cells locate in proximity of 
SW620 cells that were predicted as CMS4 using the CMScaller algorithm.
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Supplementary Figure 4. ScRNAseq data and patient RNA data. (a) Barplot showing number of up- and down-regulated 
genes for different clusters among the pool of HCT116 cells (comparison: cluster versus low_and_high, low, and high). (b) 
Example of Kaplan-Meijer curve showing relapse-free survival for patient groups in the Vermeulen cohort (accessed in R2 
server) that were stratified using k-means clustering based on an input signature from CD44highEpCAMlow cluster 1. (c) tSNE 
plot showing patients with their classification of CMS1-4. Dimension reduction was done on i) random 100 genes (left), ii) the 
input signature derived from CD44highEpCAMlow cluster 1 (middle), and iii) the input signature derived from CD44highEpCAMlow 
cluster 8 (right).
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Supplementary Figure 5. Effect of cell cycle correction on scRNA seq results. (a) Panel 1: tSNE plots showing orig.ident 
for each of the cell lines. Panel 2: assigned cell cycle phases based on Seurat cell cycle scoring. Panel 3: tSNE after cell cycle 
correction, and for SW480 removal of “sphere” population. Panel 4: assigned cell cycle phases after cell cycle correction. 
(b) Top: unsupervised clustering results of SW620 before cell cycle correction, and prediction of CMS. on tSNE Bottom: 
unsupervised clustering results for SW620 after cell cycle correction and prediction of CMS on UMAP. CMS4 cells cluster 
together after cell cycle correction.
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Supplementary Figure 6. Cross-cluster comparison in SW480 and SW620 (a) Unsupervised clustering results for SW480 
and SW620 using Seurat v3. (b) Distribution of orig.ident and CMS predictions across unsupervised clusters. (c) Heatmap for 
SW480, focused on cluster 5 and cluster 6. (d) Heatmap of SW480 clusters without cluster 5 and cluster 6. (e) Schematic 
diagram for SW480 cluster profiles across EMT. (f) Heatmap showing SW620 clusters for the EMT gene list. (g) Scatterplot 
showing ZEB1 expression in clusters versus their VIM and EPCAM expression.

11 5 10 2 8 0 7 9 1 3 4 6

CDH1
SCNN1A
LAD1
ST14
OVOL2
CDS1
F11R
EPCAM
S100A14
SORD
CYB561
ESRP1
HDHD3
SPDEF
MUC1
RBM47
SLC44A4
MEOX2

DDR2
PMP22
PTRF
FERMT2
FHL1
CAV1
AKAP12
WWTR1
EMP3
VIM
AGR2
TSPAN1
LHFP
CEACAM1
LY96
COL6A2
PTK6
SERPINF1
SDC4
BICC1
ERBB2
KRT7
SPINT1
TOM1L1
MYO5C
CXADR
OCLN
CLDN7
FAM174B
ELF3
CKMT1A
IRF6
CYP1B1
MYLK
AKAP2
ZFPM2
AP1M2
GDF15
SNAI2
SYNE1
CXCR4
CLIC4
ZEB1
NR3C1
TCF4
CD2AP
TPM2
EPN3
PLS1
GALNT7
CEP170

AKT3
PPL
FN1
ERBB3
FGFR3
ZCCHC24
SH3YL1
ARHGAP32
WIPF1
CTSK
SACS
GREM1
CALD1
GLYR1
ECM2
COL6A1
PLEKHO1

KCNJ8
TMPRSS2
ANGPTL2
SRGN
CRISPLD2
CD24
HEG1
KRT19
CEACAM6
DPYSL3
TNC
FBLN1
FXYD6
EPS8L1
TJP2
KIAA1462
QKI
VAMP8
PCOLCE

sample
gene
sample

10% CMS4
20% CMS4
30% CMS4
40% CMS4
50% CMS4
60% CMS4

gene
Epithelial
Mesenchymal

−2

−1

0

1

2

3

6 5 1 2 4 0 3

ZEB1
CAV1
CDH11
QKI
MYLK
ERBB2
TPM2
KRT7
FHL1
CALD1
HDHD3
CXCR4
HEG1
COL6A2
MAF
FERMT2
SDC4
PDGFC

CD2AP
TCF4
MMP2
LHFP
SACS
PRR15L
DPYSL3
AKT3
TNC
CBLC
FAM174B
PLS1
RBM47
TOM1L1
TNS1
BNC2
KCNJ8
LY96
CYB561
SORD
IGF1
CEP170

CKMT1A
EPN3
BICC1
CLIC4
CDH1
KIAA1462
CD24
SPARC
C1S
FN1
FBLN1
MUC1
ELF3
ARHGAP32
FGFR3
CRISPLD2
CEACAM1
IRF6
EPS8L1
SH3YL1
CXADR
ESRP1
AP1M2
GDF15
PTGDS
F11R
ERBB3
TMPRSS2
S100A14
SCNN1A
SPINT1
MYO5C
OVOL2
TSPAN1
WIPF1
LAD1
PTK6
EPCAM
ST14
CLDN7

PTRF
AKAP12
EMP3
VIM
PCOLCE
KRT19
WWTR1
OCLN
TJP3
VAMP8
TMEM30B
SERPINF1
SERPING1
CTSK
CDS1
TJP2
GREM1
PLEKHO1
PMP22
PLXNC1
NR3C1
GLYR1
SNAI2
FXYD6
SYNE1
SLC44A4
GALNT7
PPL
COL6A1
ZFPM2
ZCCHC24

sample

gene

sample
20% Low
40% Low
80% Low
Low

gene
Epithelial
Mesenchymal

−2

−1

0

1

2

1 2 4 0 3

VAMP8
TMEM30B
TSPAN1
S100A14
WIPF1
CXADR
OVOL2
MUC1
ELF3
CRISPLD2
TMPRSS2
MYO5C
CBLC
GDF15
PTGDS
ESRP1
SCNN1A
AP1M2
EPS8L1
SH3YL1
CEACAM1
IRF6
TJP2
GREM1
CYB561
SORD
EPCAM
LAD1
PTK6
F11R
ERBB3
CDS1
ST14
SPINT1
CLDN7

OCLN
TJP3
MMP2
TCF4
FBLN1
LHFP
CD24
FAM174B
C1S
TNS1
SLC44A4
GALNT7
EMP3
VIM
PTRF
AKAP12
PCOLCE
PPL
SERPING1
CTSK
SERPINF1
KRT19
WWTR1

QKI
TPM2
MYLK
ZEB1
CALD1
HEG1
MAF
SDC4
COL6A2
PDGFC
FERMT2
HDHD3
CXCR4
ERBB2
KRT7
FHL1
TOM1L1
SNAI2
CAV1
CDH11
FXYD6
SYNE1
COL6A1
LY96
PLEKHO1
PMP22
NR3C1
PLXNC1
GLYR1
FN1
CLIC4
KIAA1462
SACS
AKT3
TNC
RBM47
FGFR3
PRR15L
CDH1
DPYSL3
ZFPM2
ZCCHC24
KCNJ8
CD2AP
BNC2
IGF1
BICC1
ARHGAP32
CKMT1A
EPN3
PLS1
SPARC
CEP170

sample

gene

sample
20% Low
40% Low
80% Low
85% Low
90% Low

gene
Epithelial
Mesenchymal

−2

−1

0

1

2

d

6 5 1 2 4 0 3

ZEB1
CAV1
CDH11
QKI
MYLK
ERBB2
TPM2
KRT7
FHL1
CALD1
HDHD3
CXCR4
HEG1
COL6A2
MAF
FERMT2
SDC4
PDGFC

CD2AP
TCF4
MMP2
LHFP
SACS
PRR15L
DPYSL3
AKT3
TNC
CBLC
FAM174B
PLS1
RBM47
TOM1L1
TNS1
BNC2
KCNJ8
LY96
CYB561
SORD
IGF1
CEP170

CKMT1A
EPN3
BICC1
CLIC4
CDH1
KIAA1462
CD24
SPARC
C1S
FN1
FBLN1
MUC1
ELF3
ARHGAP32
FGFR3
CRISPLD2
CEACAM1
IRF6
EPS8L1
SH3YL1
CXADR
ESRP1
AP1M2
GDF15
PTGDS
F11R
ERBB3
TMPRSS2
S100A14
SCNN1A
SPINT1
MYO5C
OVOL2
TSPAN1
WIPF1
LAD1
PTK6
EPCAM
ST14
CLDN7

PTRF
AKAP12
EMP3
VIM
PCOLCE
KRT19
WWTR1
OCLN
TJP3
VAMP8
TMEM30B
SERPINF1
SERPING1
CTSK
CDS1
TJP2
GREM1
PLEKHO1
PMP22
PLXNC1
NR3C1
GLYR1
SNAI2
FXYD6
SYNE1
SLC44A4
GALNT7
PPL
COL6A1
ZFPM2
ZCCHC24

sample

gene

sample
20% Low
40% Low
80% Low
Low

gene
Epithelial
Mesenchymal

−2

−1

0

1

2



56

Supplementary Figure 7. EMT and pseudotemporal analysis of SW480. (a) Unsupervised 
clustering results for SW480 and the orig.ident of CD44highEpCAMhigh and CD44highEpCAMlow 
cells. (b) EMT plot for SW480 showing individual cells with their orig.ident (left) and mapping 
of unsupervised clustering results (right). Here, cluster 2 appears in E/M-hybrid state, cluster 
4 appears most epithelial and cluster 1 most mesenchymal. (c) In pseudo-time, cluster 2 
maps in between cluster 4 and the other, more mesenchymal clusters. Left: trajectory plot 
from Scorpius. Right: Pseudotimes for individual cells, categorized according to unsupervised 
clusters.
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Supplementary Figure 8. Lentiviral vector for Tet-based inducible Zeb1.
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mOrg AKP-ZEB1-GFP clone 10, 2d DMEM-FCS

No dox Dox

T = 6h

T = 4h T = 4h T = 14h

Supplementary Figure 9. Snapshots from 48h timelapse imaging of AKP-Zeb1-GFP mOrg on the collagen freeze scaffold.
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Supplementary Figure 10. Experimental approach for 3D imaging of paraffin embedded tissue. Cylinders were punched out of the 
invasive front of a paraffin embedded tumor. Cylinders were cleared and stained for E-cad and aSMA to seperate epithelial cells (green) 
from fibroblasts (red).
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Supplementary Figure 11. Three approaches to visualize candidate markers, specific for one of the unsupervised clusters (in this 
case cluster 8, HCT116). (a) Scatterplots with imputed values using MAGIC show a switch between S100A14 and S100A4 over 
CD44highEpCAMlow and CD44highEpCAMhigh cells. (b) Average cluster values for cluster 8 specific markers. (c) Categorical scatter for 
candidate markers to isolate cluster 8.
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Supplementary Tables

ABCB1 AL121944.1 CDH11 FGF19 KRT32 MUCL1 RF00019 STEAP2

ABCB4 AL163952.1 CDH3 FGF3 KRT35 MYO16-AS1 RF00019 STYK1

ABCG2 AL354861.2 CDS1 FHDC1 KRT36 MYO1F RF00019 SUSD2

ABHD12B AL357033.2 CFAP161 FOXA2 KRT37 MYO5B RF00190 SYDE1

AC002076.2 AL390719.1 CHN2 FP236240.1 KRT38 NACAP1 RFTN1 SYK

AC003958.2 AL391840.1 CHST2 FRMD6 KRT4 NANOS1 RGL3 SYT12

AC004066.2 AL512488.1 CLDN7 FRY KRT41P NCAM1 RGS5 SYT13

AC004540.1 AL683807.1 CMTM3 FRZB KRT43P NIPAL1 RGS7 SYT8

AC004540.2 ALK CNTNAP3 GABRE KRT71 NPM1P38 RIMS4 TBC1D30

AC004830.1 ALOXE3 CNTNAP3B GFI1 KRTAP2-5P NPTX2 RIPK3 TC2N

AC004947.1 ALPK2 CNTNAP3P2 GGT5 LAD1 NREP RIPK4 TCAF2

AC005865.1 ALPP COBL GJB2 LAMA3 NT5DC4 RLBP1 TCIM

AC005865.2 ALPPL2 COBLL1 GJB3 LAMB3 NTRK2 RN7SL678P TESC

AC006042.1 ALS2CL COL1A1 GLS2 LAMC2 NTSR1 RNA5SP479 TESMIN

AC006511.1 AMOTL1 CPA4 GNAI1 LARGE2 NUAK1 RNU2-32P TG

AC007952.2 ANP32BP3 CPA5 GNAL LCK OGFRL1 RNU4ATAC18PTGFB2

AC007952.6 AP000943.1 CPQ GNAO1 LCN12 OLR1 RNU6-1153P TGFB2-AS1

AC008013.1 AP000943.2 CPVL GNG11 LHX1 OVOL2 RNU6-1161P TH

AC008610.1 AP001631.1 CPXM1 GPRC5A LIMS2 PARM1 RNU6-1238P THAP12P8

AC008957.1 AP002800.1 CRB3 GULP1 LINC00460 PDE10A RNU6-1318P TKTL1

AC010503.4 AP1M2 CRISPLD2 GYG2 LINC01116 PDGFRB RNU6-531P TMC4

AC010768.4 APBA1 CST1 HCG9P5 LINC01173 PDZRN3 RNU6-80P TMEM125

AC022126.1 AR CST6 HDAC9 LINC01356 PELI2 RNU6-91P TMEM30B

AC026316.2 AREG CTTNBP2 HKDC1 LINC02041 PGM5 RPL32P33 TMEM52B

AC034206.1 ARHGAP8 CXCL14 HLA-V LINC02320 PHACTR3 RPS14P4 TNNC1

AC068491.2 ARHGEF16 CYP24A1 HMGCS2 LINC02331 PHLDA3 SCNN1A TNNT2

AC068491.3 ARHGEF38 DAB2 HMX3 LINC02457 PIP5K1B SDR16C5 TNS1

AC068580.2 ARL15 DACT1 HOOK1 LLGL2 PKP3 SEL1L3 TPD52L1

AC080037.1 ASCL2 DCDC2 HOXD10 LOXL3 PLA2G4D SEMA5A TPK1

AC084346.1 ASTN2 DENND1C HOXD8 LTBP1 PLCE1-AS1 SERPINB5 TPRXL

AC092138.2 ATP6AP1L DMBX1 HSD11B2 LYG1 PLEK2 SERPINF2 TRBC2

AC092299.1 B3GALT5 EDN3 HSD17B2 MAL2 PLEKHN1 SGPP2 TRBV30

AC092807.2 B3GNT3 EFNA5 HSH2D MAOA PLPPR4 SH2D3A TREML2

AC092807.3 BDNF ELMO3 ICA1 MAP7 PMEPA1 SHANK2 TRIM15

AC093162.2 BICDL2 ELOVL7 IFIH1 MAPK13 PPARG SIGIRR TSPAN1

AC093673.2 BSPRY ENTPD2 IFITM1 MARVELD3 PPM1H SIGLEC6 TSPAN11

AC098934.3 BST2 ENTPD8 IGFBP7 MBNL3 PRICKLE1 SLA TSPAN15

AC106017.2 BTBD16 EPCAM IGFBPL1 MBP PRKAR2B SLC12A7 TUBBP5

AC114296.1 BX322635.1 EPHA1 IL23A MCTP2 PRRG2 SLC1A3 VIL1

AC114550.2 C1orf210 EPHB6 ILDR1 MDFI PRRG4 SLC22A17 VWA2

AC119427.1 C1S EPPK1 INHBB MELTF PRSS16 SLC22A20P VWDE

AC121764.3 C2orf54 ERBB3 IQANK1 MIR10B PRSS22 SLC25A48 WFDC2

AC124319.1 C4BPB ESAM IRF6 MIR200CHG PRSS23 SLC40A1 WNT10A

AC127521.1 C6orf132 ESPN ISM1 MIR2355 PRSS56 SLCO4A1-AS1 WNT7A

AC215522.2 C9orf84 ESPNP ITGB4 MIR3179-2 PSG9 SNHG18 XDH

AC231657.2 CACNG6 ESRP1 ITGB6 MIR3179-4 PTK6 SNORA22C YPEL2

ACOXL CADPS ESRP2 ITGB8 MIR3677 QPRT SNORD117 Z69720.2

ACP7 CADPS2 F11R ITIH3 MIR429 RAB17 SPARC ZAP70

ADAMTS8 CALD1 F2RL1 KCND3 MIR4477A RAPGEF5 SPINT1 ZDHHC20-IT1

ADAP1 CAMK1D FA2H KDF1 MIR4635 RASAL1 SPINT1-AS1 ZEB1

ADGRG1 CAPN8 FAM131B KITLG MISP RASGEF1C SPNS2 ZNF165

ADORA2B CASC18 FAM157A KLF7 MITF RASGRF1 SPTLC3 ZNF204P

AF064858.2 CAV1 FAM183A KLK10 MPP4 RF00019 ST14 ZNF521

AFF3 CAVIN2 FAM84B KRT13 MPZL2 RF00019 ST3GAL5 ZSCAN12P1

AL021920.2 CD70 FBLN1 KRT15 MROH6 RF00019 ST6GAL1

AL034376.1 CDC42BPG FBN3 KRT16P6 MRPL35P2 RF00019

AL049836.1 CDH1 FGD4 KRT19 MST1R RF00019

SW480 Low vs High DE genes FDR < 0.01, LogFC > 1.5

ST6GALNAC3

STARD4-AS1

Supplementary Table 1A. SW480 DE gene list bulk RNA seq.
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Supplementary Table 1B. HCT116 DE gene list bulk RNA seq.

ABCG1 AL590399.4 CNTNAP3P2 FXYD3 LAMB1 MIR6730 RGS6 ST14

AC005046.1 ALOXE3 COL13A1 GALNT3 LAMC2 MIR6856 RNA5SP152 ST8SIA6

AC009237.6 ANK1 COL9A3 GLIS3 LIMS2 MORC4 RNU4-78P SUSD2

AC009237.9 ANK3 CR2 GPR176 LINC01405 MRC2 RNU5E-10P SYDE1

AC009238.1 ANKRD1 CRIP2 GRB14 LINC01468 MSRB3 RNU6-268P SYK

AC009238.2 AP000346.3 CRYBG1 GRHL2 LMO7 MT-TF RNU6-757P SYNM

AC018761.1 AP1M2 CRYBG2 GRIK2 LOXL2 NEBL RNU6-833P SYTL2

AC026468.1 ARHGEF6 CTGF GRPR LOXL4 NEURL1B RNU6-840P TGFB1I1

AC027338.2 ARL4C DACT1 HAS3 MACC1 NMRAL2P RPL7AP49 TGM2

AC068580.2 ATP2C2 DCLK1 HEG1 MAL2 OLFML2A S100A14 THBS1

AC078993.1 ATP5F1AP1 DDIT4L HMCN1 MAL2-AS1 OVOL1 SAMD3 THSD4

AC084033.3 ATP5F1AP10 DENND5B HMGN1P12 MAMDC2 PALM3 SAMD4A TMC4

AC087857.1 ATP5F1AP7 DKK1 HOXB-AS2 MAML2 PBX1 SAMD5 TMEM125

AC090617.9 ATP5F1AP8 DNM3 HTR1B MAP1B PDLIM5 SEMA3A TMEM200A

AC108174.1 ATP8B1 DRAXIN IFIT1 MAP7 PGM5P2 SERPINA1 TMTC1

AC108463.1 BCL2L15 EBF4 IGFBP3 MARVELD3 PMEPA1 SERPINA5 TNFRSF19

AC108463.2 BICDL2 EFR3B IL32 MDGA1 PNPLA5 SERPINE1 TNFSF18

AC109309.2 BSPRY EPAS1 IQANK1 MEF2C PROM2 SESN3 TNFSF4

AC123788.2 C1orf116 EPCAM IQGAP2 MGAT5B PRSS22 SGK1 VCAN-AS1

ACOXL C1orf210 EPHA1 ITGB8 MIR10B PRSS33 SLC16A6 VIM

ACSL5 CASC10 EPN3 KCND3 MIR1915 PRSS8 SLC1A3 VIM-AS1

ADAMTS2 CD99L2 ESRP1 KDF1 MIR196A1 RAB25 SLC2A14 ZCCHC12

ADGRF1 CDH1 ETV1 KLK10 MIR320C1 RBM24 SLC2A3 ZCCHC24

AFAP1L2 CDH3 FAM83B KRT13 MIR4701 RF00019 SLC4A8 ZEB1

AL049555.1 CLDN2 FAT4 KRT32 MIR4766 RF00019 SNORA79 ZNF608

AL157786.1 CLDN7 FGF18 KRTCAP3 MIR544B RF00019 SP5

AL353763.2 CNTNAP3 FGFBP1 LAD1 MIR548AK RF00019 SPARC

AL354718.1 CNTNAP3B FN1 LAMA3 MIR5692A1 RGS5

HCT116 Low vs High DE genes FDR < 0.01, LogFC > 1.5

SPINT1-AS1
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List of overlapping genes from bulk RNA seq.

ACOXL, ALOXE3, AP1M2, BICDL2, BSPRY, C1orf210, CDH1, CDH3, CLDN7, EPCAM, EPHA1, ESRP1, 
IQANK1, ITGB8, KCND3, KDF1, KLK10, KRT32, LAD1, LIMS2, MAL2, MAP7, MARVELD3, PMEPA1, 
SPARC, SPINT1-AS1, ST14, SYDE1, SYK, TMC4, TMEM125, ZEB1

List of identified genes from Xavier budding signature.
Genes up

A4GALT, AHNAK2, AKAP12, ANXA1, APC, ARHGAP29, ARNTL2, CALD1, CD109, CDC42BPA, CEP170, 
DCBLD2, ELK3, FAT1, FER, FERMT2, FGFR1, GLTSCR2, GULP1, KIFC3, KLF6, MALT1, MAP1B, MEIS2, 
NIN, PALLD, PCDH7, PDE4B, PDLIM7, PHLDB2, PLK2, PLK3, PPFIBP1, RAI14, RGS2, SVIL, TAGLN, TLN1, 
TUBA1A, VIM, WWC2

Genes down

BDH1, BIRC5, CDCA7, CDX2, CKAP2, EBP, FGFR4, GGCT, GPR160, H2AFX, HMMR, HOOK1, KHK, 
KIF11, MGST1, MLXIPL, MMAB, POC1A, PPARG, RAVER2, RPL14, RPL36A, SAPCD2, SCD, SLC25A5, 
SNRPF, SRI, SUCLG1, TFAP4, THRA, TOP1MT, TPD52

Gene list of EMT M5930 signature
ABI3BP, ACTA2, ADAM12, ANPEP, APLP1, AREG, BASP1, BDNF, BGN, BMP1, CADM1, CALD1, CALU, 
CAPG, CD44, CD59, CDH11, CDH2, CDH6, COL11A1, COL12A1, COL16A1, COL1A1, COL1A2, 
CTGF, CTHRC1, CXCL1, CXCL12, CXCL6, CYR61, DAB2, DCN, DKK1, DPYSL3, DST, ECM1, ECM2, 
LOXL2, LRP1, LRRC15, LUM, MAGEE1, MATN2, MATN3, MCM7, MEST, MFAP5, MGP, MMP1, MMP14, 
SERPINH1, SFRP1, SFRP4, SGCB, SGCD, SGCG, SLC6A8, SLIT2, SLIT3, SNAI2, SNTB1, SPARC, SPOCK1, 

TAGLN, TFPI2, TGFB1, TGFBI, TGFBR3, TGM2, THBS1, THBS2, THY1, TIMP1, TIMP3, TNC, TNFAIP3, 
TNFRSF11B, TNFRSF12A, TPM1, TPM2, TPM4, VCAM1, VCAN, VEGFA, VEGFC, VIM, WIPF1, WNT5A

Supplementary Table 2. Intersection gene list from bulk RNA seq.

Supplementary Table 3. Gene list in Xavier budding signature.

Gene list Nano String EMT signature

Epithelial

AGR2, AP1M2, ARHGAP32, BCAS1, CBLC, CD24, CD2AP,FGFR3, FUT3, GALNT7, GDF15, GPR56, GRHL2, HDHD3, IRF6, KRT19, KRT7, LAD1, MUC1, MYO5C, 
OCLN, CDH1, CDS1, CEACAM1, CEACAM5, CEACAM6,CKMT1A, CLDN7, CXADR, CYB561, ELF3, EPCAM, EPN3, EPS8L1, ERBB2, ERBB3, ESRP1, F11R, 
FAM174B,OVOL2, PLS1, PPL, PRR15L, PRSS8, PTK6, RAB25, RBM47, S100A14, SCNN1A, SDC4, SH3YL1, SLC44A4,SORD, SPDEF, SPINT1, ST14, TJP2, TJP3, 
TMEM30B, TMPRSS2, TMPRSS4, TOM1L1, TSPAN1, VAMP8, VAV3

Mesenchymal

AKAP12, AKAP2, AKT3, ANGPTL2, ASPN, BGN, BICC1, BNC2, C1S, CALD1, CAV1, CCL8, CD163, CDH11, CDH2, CDK14, CEP170, CHRDL1, CLEC2B, CLIC4, 
COL5A2, COL6A1, COL6A2, CRISPLD2, CSF2RB, CTSK, CXCL12, CXCL13, CXCR4, CYP1B1, DCN, DDR2, DPT, DPYSL3, ECM2, EMP3, ENPP2, EVI2A, FAP, 
FBLN1,FBN1, FERMT2, FGL2, FHL1, FLI1, FN1, FSTL1, FXYD6, GIMAP4, GIMAP6, GLYR1, GREM1, GZMK, HEG1,IGF1, IL10RA, ISLR, ITM2A, JAM2, JAM3, KCNJ8, 
KIAA1462, LHFP, LOX, LY96, MAF, MEOX2, MFAP4, MMP2, MPDZ, MRC1, MS4A4A, MS4A6A, MYLK, NAP1L3, NR3CSFRP1, SLIT2, SNAI2, SPARC, SPARCL1, 
SRGN, SYNE1, TCF4, TNC, TNS1, TPM2, TWIST1, VCAM1, VCAN,1, OLFML2B, PCOLCE, PDGFC, PLEKHO1,PLXNC1, PMP22, PTGDS, PTGIS, PTPRC, PTRF, 
PTX3, QKI, RUNX1T1, SACS, SAMSN1, SERPINF1, SERPING1,VIM, VSIG4, WIPF1, WWTR1, ZCCHC24, ZEB1, ZEB2, ZFPM2

Detected genes from Nano String EMT signature in scRNAseq

Epithelial

ERBB2, CEACAM1, CXADR, F11R, SPINT1, OVOL2, FGFR3, PRSS8, CDH1, DC4, ARHGAP32, CDS1, CYB561, ESRP1, GALNT7, LAD1, OCLN, PPL, PTK6, 
S100A14, SCNN1A, ST14, TJP2, TJP3, TSPAN1, VAMP8, CD24, CD2AP, EPCAM, MUC1, RAB25, ERBB3, CLDN7, AP1M2, CKMT1A, EPN3, EPS8L1, HDHD3, 
KRT19, KRT7, MYO5C, PLS1, RBM47, SH3YL1, TOM1L1, ELF3, GRHL2, CBLC, GDF15, SORD, IRF6

Mesenchymal

PDGFC, FN1, CLIC4, QKI, CAV1, GREM1, ERPINF1, SLIT2, SPARC, HEG1, SERPING1, NR3C1, TWIST1, CYP1B1, COL6A1, COL5A2, COL6A2, CRISPLD2, 

FBLN1, FBN1, FXYD6, IL10RA, LHFP, OLFML2B, PCOLCE, PLEKHO1, PTRF, SYNE1, CXCR4, AKAP12, DDR2, CDK14, EMP3, FHL1, PMP22, VCAN, CALD1, 
VIM, AKAP2, C1S, CEP170, CTSK, FSTL1, GLYR1, KIAA1462, PTGDS, SACS, TPM2, ZCCHC24, DPYSL3, MYLK, WWTR1, SNAI2, FERMT2, TNS1, ZEB1

Supplementary Table 4. EMT genes nanostring panel.
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