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1

Introduction

1.1 Reflection Seismology

The objective of reflection seismology is to collect information about the
Earth’s subsurface, without having to resort to drilling. It has been and con-
tinues to be a major asset in identifying geologic structures and rock proper-
ties for the hydrocarbon exploration and production industry, but also finds
applications in civil engineering (shallow subsurface) and global seismology
(deep subsurface). The underlying principle behind this methodology is rel-
atively straightforward. Active seismic sources and an array of detectors
(usually hydrophones or geophones) are placed at or near the surface. When
the sources are excited, they generate elastic waves that propagate through
the Earth’s interior. The strength and frequency of the source dictates how
deep the waves penetrate. For a depth of investigation of 10km (sufficient
for oil and gas exploration purposes) a bandwidth of 100Hz is acceptable
[Yilmaz, 1987]. As these waves travel in the subsurface they refract, diffract,
and reflect due to the variations in elastic properties in the subsurface. The
detectors record the waves that make it back to the surface, similar to when
we hear echoes in a cave. Figure 1.1 schematically shows the methodology
on a subset of the 2007 BP TTI Velocity-Analysis Benchmark model. 1 By

1The model is created by Hemang Shah and is provided courtesy of BP Explo-
ration Operation Company Limited.
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processing and careful interpretation of the acquired seismic data, one is able
to shed some light on the subsurface. Typical subsurface properties that are
obtained are the reflectivities and the propagation velocities of the subsur-
face. These distributions can be used to further understand the local geology.
Dobrin and Savit [1988] and Telford et al. [1990] provide a comprehensive
overview of reflection seismology.

Seismic 

Source  
Detectors Detectors 

Figure 1.1: Schematic representation of a seismic experiment.

Traditionally, reflection seismology has been used to get a general idea of
the Earth’s reflectivity; recently however, it is used to obtain a plethora of
subsurface properties, such as velocities, anisotropic parameters, and porosity
to name a few. The method is constantly advancing from the acquisition
side, from building more powerful broadband sources to commissioning more
geophones for use in a single survey. The method is also constantly evolving
from the processing side, more parts of the measured wavefields are being
utilized and better inversion algorithms are constantly being developed in
order to estimate the subsurface properties in complex geological settings.
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1.2 Seismic Imaging

One of the most crucial attributes obtained from reflection seismology is the
seismic image. It maps the reflected seismic data to its correct position in
the subsurface. For this reason the seismic image has become a crucial part
of exploration and reservoir monitoring. For homogeneous horizontal lay-
ers the reflections will originate from a reflection point directly underneath
the midpoint between source and receiver. However, if the subsurface is not
layered or not laterally homogeneous, as in the case of dipping layers, the
reflected events will not necessarily map to the midpoint. Imaging resolves
this issue by mapping or ‘migrating’ the reflections to their correct positions
[Robinson, 1983], which is why imaging is often referred to as migration in
reflection seismology. Therefore, seismic imaging can be defined as a map-
ping process where the reflected events are mapped to their true subsurface
location. The main advantages of seismic imaging can be summarized as:

• Mapping dipping layers to their true subsurface position.

• Collapsing diffractions to their origin at the diffraction points.

• Resolving any conflicting dips if the geology is complicated.

Figure 1.2 exemplifies the effects of imaging, given the true velocity model.
The true subsurface reflectivity resembles a syncline (figure 1.2a). Figure
1.2b shows the zero-offset section where we assume that reflection is gener-
ated underneath the midpoint of the source and receiver. Note that for the
horizontal layers the zero-offset section is adequate. However, for the dipping
structures the dip is incorrect in the zero-offset section. Furthermore, there
are many diffractions that are not focused in the zero-offset section. Figure
1.2c shows the image after the imaging process is applied to the recorded
data. Note that the reflections are at their true subsurface position and the
diffractions are collapsed at their apex. Imaging algorithms can be catego-
rized in terms of two categories: integral methods and wavefield continuation
methods [Biondi, 2006].

1.2.1 Integral methods

Integral methods (also referred to as Kirchoff methods) are usually based
on calculating arrival times in the subsurface (via ray tracing or eikonal
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Figure 1.2: The effects of imaging. a) The true reflectivity. b) The zero-offset
section. c) The imaging result.

solver for example) and a weighted summation over surfaces [Schneider, 1978].
The idea behind them is that every point in the subsurface is a potential
scatterer that can generate a diffraction. Therefore, at every image point we
integrate the data over a diffraction time surface in order to focus the events
to the apex. The integral surface is defined by the subsurface parameters
(such as velocity and anisotropy) and is usually computed numerically via the
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Eikonal equation [Bleistein, 1987]. Since it uses travel times, a high frequency
approximation of the wave equation is assumed. Therefore, the maximum
source wavelength should be less than 1/3 of the minimum wavelength of
velocity variation [Bleistein, 1984]. Integral methods are attractive because
they can handle irregularly sampled data [Biondi and Shan, 2002] and are less
computationally expensive to compute compared to wavefield continuation
methods in general [Gray et al., 2001].

1.2.2 Wavefield Continuation Methods

Wavefield continuation methods [Claerbout, 1971; Stolt, 1978; Berkhout,
1980; Claerbout, 1985] can be described by three steps:

[1] Forward propagate the source wavefield.

[2] Back propagate the receiver wavefield.

[3] Apply the imaging condition at each point in the subsurface.

Wavefield continuation methods (also referred to as wave-equation migration
(WEM) methods) can yield better results than integral methods because
they take into account the whole range of seismic frequencies. They also
handle multi-pathing better than integral methods, since the whole wavefield
is taken into account. The method in which the wavefields are propagated
(extrapolated) can further define the type of wavefield continuation method.
Two of the most common methods employed, that will be visited frequently
in this thesis, are Reverse Time Migration (RTM) and recursive extrapolation
(alternatively called downward-continuation methods).

Reverse Time Migration

Reverse Time Migration (RTM) is a wavefield continuation method that
can potentially image all dips [Baysal et al., 1983; McMechan, 1983]. The
forward- and back-propagation of the source and receiver wavefield respec-
tively are carried out along the time axis via finite-differences (FD), as an
example. FD methods are based upon computing the solution to the wave-
equation via finite-difference approximations of the involved spatial deriva-
tives [Robertsson et al., 1994; Virieux, 1986], they provide an implicit solution



6 Introduction

to the Green’s function for wavefield propagation. One can apply the method
to different types of wave-equations. For example, Igel et al. [1995] show that
it is possible to apply it to an anisotropic elastic wave-equation. A unique
property of FD is that the extrapolation is done in time, which allows the
waves to propagate in all directions. For the source wavefield extrapolation,
FD is run in a forward mode where time increases. However, for the receiver
wavefield extrapolation, FD is run in a reverse mode where time decreases
(hence, the name reverse time migration). Since it allows waves to propa-
gate in all direction it can image all dips with great accuracy. However, the
drawback is that this usually comes at a significant computational cost [An-
derson et al., 2012]. Another issue with RTM is that sharp discontinuities in
the velocity model cause internal reflections, which can further manifest as
crosstalk artifacts in the image [Biondi, 2006].

Recursive Extrapolation

Recursive extrapolation methods propagates the source wavefield and the re-
ceiver wavefield along the depth axis as opposed to the time axis in RTM. It
utilizes one-way operators, often referred to as phase-shift operators, to ex-
trapolate the wavefields along the depth axis [Gazdag, 1978; Berkhout, 1980].
The computations can be carried out in the temporal-frequency domain which
substantially reduces the computational cost. It also provides more flexibil-
ity in that sharp discontinuities of the velocity model do not cause internal
reflections, because the propagation is independent from the reflection. We
will revisit this property when formulating the inversion strategy in chapter
3. The main drawback of recursive methods is that they do not propagate
the wavefield in all directions naturally, which limits the range of dips that
are imaged. Therefore, overturned events such as diving waves will not be
accounted for nor will they contribute to an image. Methods have been de-
veloped to extend the imaged dips [Shan and Biondi, 2004; Davydenko and
Verschuur, 2014], they usually involve a change in coordinate system.

Closed-loop Migration

Imaging in general can be formulated as a closed-loop process, were it is
possible to iterate with the reflectivity as unknown as done in so-called least-
squares imaging [Nemeth et al., 1999]. For each iteration, forward modeling
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Figure 1.3: Results of imaging the syncline of figure 1.2a in a closed-loop
approach. Note that the reflectors are sharper compared to figure 1.2c.

generates synthetic seismic data, a residual is computed from the difference
between the observed and the synthetic data. The residual is back prop-
agated and the imaging condition is applied. Finally a scaled version of
the image gradient is added to the image obtained from the previous iter-
ation. Although, computationally more expensive (since each iteration in-
volves imaging) it increases the resolution of the reflectors and allows for
more accurate amplitudes [Nemeth et al., 1999; Plessix and Mulder, 2004;
Aldawood et al., 2015]. Figure 1.3 demonstrates the effects of closed-loop
imaging on the same model as in figure 1.2a. Note that a sharper image is
obtained with a closed-loop process.

Full Wavefield Migration (FWM) is a recently developed closed-loop imag-
ing method that falls within the recursive extrapolation category [Berkhout,
2014b; Davydenko and Verschuur, 2017]. It utilizes recursive one-way oper-
ators to propagate both the source and receiver wavefields along the depth
axis. FWM considers not only primaries in imaging but multiple scatter-
ing as well, without having to define multiples generating surfaces. Utilizing
multiples usually broadens the subsurface illumination and attenuates the
effect of shadow zones, which provides a more balanced illumination of the
subsurface [Kumar et al., 2014; Davydenko and Verschuur, 2017]. Further-
more, they provide a better vertical resolution of the subsurface [Jiang et
al., 2007]. Its inversion-based formulation enables the method to take into
account the true-amplitudes and the transmission effects. Finally, since it
is an recursive extrapolation method it avoids scattering the wavefields at
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Figure 1.4: The true velocity model.

velocity discontinuities, which reduces the amount of crosstalk appearing in
the image. Moreover, the velocity model does not need to be smooth in order
to avoid the scattering.

1.3 Velocity

Velocity estimation is a crucial step associated to the imaging process. In
order to get an accurate image one needs an accurate velocity model, which is
especially the case for the more advanced imaging techniques (such as RTM).
To better understand the effect of velocity on imaging, imaging is applied to a
simple model with and without the correct velocity model. Figure 1.4 shows
the true velocity model. Figure 1.5 shows the imaging result at 1000m lateral
location using the correct velocity model, while figure 1.6 shows the imaging
result at the same location using an erroneous velocity model. Notice that
the image of the second reflector is at an incorrect depth and has a signif-
icantly weaker amplitude. Another example showing the significance of the
velocity model on imaging is demonstrated on the syncline model from figure
1.2. The velocity model used for imaging in 800m/s faster than the true
velocity model. Note that the reflections are not in the correct locations and
the syncline is not focused.
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a) b) 

Figure 1.5: Imaging with the true velocity model. a) The true velocity model
in blue and the velocity model used for imaging is in red. b) The true image
in blue while the estimated image is in red.

Velocity estimates can be categorized in two categories: The first is direct ve-
locity estimates, an example of which is the velocity obtained from sonic logs.
The second category is the so-called processing velocity (or pro-velocity),
which is an indirect estimate of velocity obtained from processing seismic
data [Al-Chalabi, 2014]. Usually direct velocity estimates provide more ac-
curate estimates compared to pro-velocities. However, they require a well to
be drilled, which is rarely satisfied. In this thesis the velocities refer to the
pro-velocities in that they are indirect estimates.
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a) b) 

Figure 1.6: Imaging with the wrong velocity model. a) The true velocity model
in blue and the velocity model used for imaging is in red. b) The true image
in blue while the estimated image is in red.

1.3.1 NMO Velocity Analysis

Traditionally, velocity is estimated as a separate step from imaging. For a
horizontally layered medium velocity analysis displays (semblance plots) are
generated and a user picks the Normal Move-Out (NMO) velocity function
that generates the maximum coherence from these plots. Picking the cor-
rect NMO velocity is always a challenge since the maximum coherence is not
necessarily attributed to the correct velocity. Furthermore, the method is
prone to user bias and is time consuming, as it has to be done for a wide
range of lateral locations. The NMO velocity can be equated to the Root
Mean Square (RMS) velocity for short spreadlength (i.e. short offsets). Using
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Figure 1.7: Result of imaging the syncline of figure 1.2 with the wrong velocity
model. The true velocity is 2000m/s whereas the imaging velocity is 2800m/s.

the Dix formula [Dix, 1955] the RMS velocity can be translated into inter-
val velocities that can be used for imaging. For an extensive overview on
traditional velocity analysis methods and strategies the reader is referred to
Robein [2003], Jones [2010], and Al-Chalabi [2014]. Note, however, that for
dipping structures with strong lateral velocity changes a Dix-type inversion
process may neither be appropriate nor sufficient to estimate the interval
velocities.

1.3.2 Model-domain Velocity Estimation

For more complex media, one can take advantage of imaging to estimate ve-
locities [Al-Yahya, 1989; Symes and Carazzone, 1991] as done in Migration
Velocity Analysis (MVA). MVA methods consist of imaging the data with an
approximate velocity model, followed by updating the corresponding velocity
model such that it produces a better focused image. Common Image Gath-
ers (CIGs) are usually evaluated to asses the velocity model. CIGs can be
defined as variations between partial images at a fixed image point [Biondi,
2006]. The flatness of the CIGs usually indicate a suitable velocity model
that will generate a high quality image. However, if the CIGs are curved
it is an indication that the velocity model is incorrect and subsequently the
image will not be focused. Utilizing image domain methods enables updating
the velocity model in more complex velocity structures with lateral velocity
variations, since they make use of imaging to focus the events. The draw-
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back lies in that extracting the kinematic information from the image is not
straightforward. Furthermore, the nonlinear relationship between the image
and the velocity poses a challenge in arriving at the correct solution.

Similar to MVA, Wave-Equation Migration Velocity Analysis (WEMVA) is
an image domain velocity estimation method that uses the focusing capa-
bilities of migration to extract the kinematic information [Symes and Kern,
1994; Sava and Biondi, 2004a,b]. However, WEMVA uses the wavepaths
rather than rays to model the reflections, which take into account the broad
range of frequencies involved. Furthermore, the wavepaths also take into ac-
count multipathing. As in the MVA case, the nonlinearity of WEMVA can
hinder the convergence to the correct solution. Therefore, the Born scattering
series is truncated to the first-order term in order to linearize the relation-
ship between the velocity error and the image. A shortcoming of WEMVA is
that this linearization of the Born series limits the method to primaries-only.
Hence, multiples are considered as noise.

1.3.3 Full Waveform Inversion

Recently, we have seen a shift in the industry to utilize the full waveforms to
automatically estimate the velocities. Full Waveform Inversion (FWI), which
can be summarized as a reconstruction of the seismic experiment in our simu-
lation tools [Tarantola, 1987; Virieux and Operto, 2009]. The reconstruction
encompassing the proper description of the physics of wave-propagation in the
subsurface, the acquisition geometry, and the medium parameters needed to
obtain the synthetic data that resembles the observed data. FWI is generally
considered to be a data domain method, where the objective is to minimize
the error between the observed and calculated data sets. FWI methods are
able to invert for the long-wavelength (smooth) components of the velocity as
well as the short-wavelength (sharp) components. The long-wavelength com-
ponent is encoded in the kinematic part of the wavefield. On the other hand,
the short-wavelength (high resolution features) component is encoded in the
amplitudes of the wavefield. Separation of the long- and short-wavelengths
is not easily achievable in traditional FWI, consequently the method suffers
from a high degree of nonlinearity. Therefore, FWI is applied in a hierar-
chical multi-scale approach where the low-frequencies of the transmitted and
diving waves are first used to update the long-wavelength component of the
model. Thereafter, higher-frequencies and more reflections come in to update
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the short-wavelength component. Although theoretically feasible, in reality
updating the long-wavelength is seldom achieved, since the low-frequencies
are usually not recored in the data [Bunks et al., 1995]. Furthermore, the
diving waves need to be recorded at very large offsets in order to update the
deeper parts of the model [Pratt, 1999].

Nevertheless, methods from both the acquisition and the processing sides
have been developed in order to mitigate these effects. From the acquisition
side more low-frequency sources are being developed [Bagaini, 2006] as well
as larger offsets being recorded to facilitate the acquisition of diving waves.
Recently we have seen a survey where 50km offsets were recorded [Yang et al.,
2016]. From the processing side numerous approaches have been developed
that facilitate the convergence of FWI. Integrating MVA with FWI can help
reduce the high degree of nonlinearity of the objective function [Biondi and
Almomini, 2014; Alkhalifah and Wu, 2016]. Another promising approach is
adaptive FWI [Warner and Guasch, 2014], which utilizes Wiener filters to
match the observed and calculated data sets. Although, the velocity model
estimated can be very detailed, it is usually smoothed and used as input for
a linear depth migration method that does not utilize the velocity details.

1.4 Anisotropy

The seismic wave velocity usually changes with a change in the direction of
propagation, in which the velocity is considered to be anisotropic. Velocity
anisotropy is usually caused by a certain structure (order) at a much smaller
scale than the dominant wavelength. Gerchka [2009] defines anisotropy on
a macroscale as order heterogeneity on a microscale. Therefore, anisotropy
and heterogeneity are closely related. For reflection seismology the frequen-
cies that are used are generally in the tens of Hertz, therefore, the ordered
microscale heterogeneity appears as effective anisotropy. In his classical pa-
per Backus [1962] presents an effective-medium theory that represent this
microscale heterogeneity as an effective medium that is more homogeneous
and anisotropic. It can be used to calculate the effective anisotropy as done
in Liner and Fei [2006]. The ordered microscale heterogeneities, or more
appropriately anisotropy, can be caused by a plethora of different geologic
scenarios [Tsvankin, 2012]:

• Intrinsic anisotropy due to preferred orientation of the mineral grains.
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Shales exhibit this type of anisotropy due to their aligned plate-shaped
clay particles [Banik, 1984; Thomsen, 1986].

• Thin bedding of isotropic layers on a small scale compared to the wave-
length. This is the case for thin isotropic sedimentary layers with dif-
ferent properties, which is commonly encountered in the North Sea
area [Levin, 1979].

• Vertical or dipping fractures, ordered fractures cause a preferred wave
propagation [Schoenberg and Sayers, 1995]. This type of anisotropy
becomes useful for fractured reservoirs where the predominant fracture
direction needs to be identified in order to drill [Alshuhail, 2006].

• Nonhydrostatic stress [Nur and Simmons, 1969; Sarkar et al., 2003].
Uniaxial stress changes the elastic properties of certain rocks, which
can cause velocity anisotropy, due to the microcracks.

Anisotropy manifests at different extents. The most generalized form of
anisotropy is triclinic media. This type of anisotropy model is seldom used
for seismic reflection imaging, due to the large number of variables needed
to describe it. A more manageable and simpler type of anisotropy is Trans-
versely Isotropic (TI) media [Alkhalifah, 1997]. It is arguably the most com-
monly used and studied type of anisotropy for seismic exploration [Tsvankin,
2012]. It is suitable for describing thinly bedded sedimentary sequences and
for bedded shales of arbitrary dip. This is the type of anisotropy that will be
mainly discussed in this thesis. A more detailed definition and explanation
of these types of anisotropy is presented in chapter 2. However, for the time
being we would like to examine how the anisotropic effects manifest in seis-
mic data. Figure 1.8 shows a comparison between wavefronts in an isotropic
medium and a TI medium, VTI with δ = −0.2 and ε = 0.2 [Thomsen, 1986],
in polar coordinates. Note that the TI wavefront is no longer circular due to
the variation of velocity with angle.

Ignoring seismic anisotropy, when present, causes mispositioning of reflectors
and unfocused images in migration [Byun et al., 1989; Lynn et al., 1991]. This
is because the wavefronts deviate from a sphere for homogeneous media, and
assuming spherical wavefronts in imaging is no longer adequate. One needs
to account for the true propagation effects to arrive at a well-focused image.
To illustrate the effect of anisotropy on the kinematics, the model in figure
1.4 is updated to contain anisotropic coefficients in the second layer (VTI
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with δ = 0.1 and ε = 0.2) as shown in figure 1.9a. Figure 1.9b shows a
comparison between isotropic (red) and anisotropic (black) waveforms. The
first reflection does not change, however, the second reflection has a different
arrival time as a function of angle and offset. Also note that the multiples
have different arrivals times as well. This is of particular interest, since
they can be potentially used to help the inversion process in estimating the
anisotropic parameters.

1.5 Multiples

Multiples are reflected events that have bounced more than once in the sub-
surface. If subsurface contrasts are large enough then multiples start to be
more significant in the recorded data. The events that happen after 0.75s
in figure 1.9b are all multiples. Multiples can be categorized in two cat-
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Figure 1.8: The wavefronts for a) an isotropic medium b) an anisotropic
medium.
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egories: Surface-related multiples and internal multiples. Surface-related
multiples usually have larger energy than internal multiples, because they
are reflected at the surface (reflectivity at the surface is approximately -1
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Figure 1.9: a) An anisotropic model. b) The associated reflection data in
black and the its isotropic counterpart in red.
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in the marine case). For the marine case with no shallow water, they are
often removed from the seismic data via Surface-Related Multiple Elimina-
tion (SRME) [Verschuur et al., 1992; Verschuur, 2006]. The method works
by predicting the surface-related multiples by data-driven convolutions and
eliminating them via subtraction in an adaptive way. Internal multiples on
the other hand are more difficult to eliminate, since the multiple generating
surface is usually unknown. Nevertheless, there have been internal multiple
elimination methods based on a prior information of the multiple generating
surface. Examples include removal via the inverse scattering integral [Coates
and Weglein, 1996; Matson and Weglein, 1996] or via the Internal Multiple
Elimination (IME) method [Berkhout and Verschuur, 1999, 2000]. Remov-
ing multiples will always be sub-optimal since the acquisition geometries are
neither dense enough nor are the multiple elimination algorithms efficient
enough to handle the complete multiple coda.

Estimation of Primaries by Sparse Inversion (EPSI) uses the same funda-
mental equation as SRME, however, instead of estimating the multiples and
iteratively subtracting them from the data, it estimates the primaries [van
Groenestijn and Verschuur, 2009a,b]. Like SRME it is a data-driven method
that does not require a subsurface model. Unlike SRME it does not require
interpolating the data beforehand, if the near offsets are missing, since recon-
struction is done simultaneously via the multiples. Furthermore, the source
signature is also estimated since the parametrization was based on primary
responses (spiked reflections) and the wavelet. Lopez and Verschuur [2015]
propose a combination of SRME and EPSI, where the multiples are estimated
in a closed-loop inversion approach similar to EPSI.

Recently however, there has been a drive to utilize multiples rather than
eliminating them. Multiples generally spend more time in the subsurface,
compared to primaries, therefore, have a higher vertical resolution of the
subsurface parameters [Zhang and Schuster, 2013; Berkhout, 2014c; Zuberi
and Alkhalifah, 2014; Berkhout and Verschuur, 2016]. Utilizing them also
broadens the subsurface illumination and attenuates the effect of shadow
zones [Davydenko and Verschuur, 2017], hence, providing a more balanced
illumination of the subsurface [Kumar et al., 2014; Lu et al., 2015]. Another
benefit that comes out of using internal multiples is that it enables imag-
ing structures from below as shown by Davydenko and Verschuur [2013] and
Davydenko and Verschuur [2017]. Different imaging conditions can be ap-
plied, since the incident field and scattered field are separable, to image the
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reflector from above and below. A significant issue that arises when imaging
with multiples is that an accurate velocity model is needed. Multiples are
generally more sensitive to the velocity model because they spend more time
in the subsurface compared to primaries. Therefore, the velocity model must
be accurate in order to image the multiples correctly [Jiang et al., 2007].

1.6 Joint Migration Inversion

Obtaining an accurate reflectivity and velocity model of the subsurface is
essential for seismic exploration. However, as we have seen in the previ-
ous sections, in order to obtain an accurate reflectivity model one needs an
accurate velocity model, and vice versa. Joint Migration Inversion (JMI) pro-
posed by Berkhout [2012, 2014c] and implemented by Staal and Verschuur
[2012, 2013]; Staal [2015] inverts for these two parameters in a full waveform
approach, such that both the dynamics and kinematics of the data are taken
into account. The approach is based on parameterizing the modeling and
inversion in terms of scattering and propagation operators (which can be
translated into reflectivities and velocities, respectively). It is a data-driven
full waveform approach that minimizes the error between the observed and
modeled data in an iterative manner.

Perhaps the most significant and unique property of JMI is that it strictly
separates scattering and phase information of the seismic measurements. The
scattering information is encoded in the reflectivity operators while the phase
information is encoded in the propagation operators. This strict separation
enables the JMI method to decrease the degree of nonlinearity and, in turn
mitigates the effect of cycle-skipping [Staal et al., 2014; Alshuhail and Ver-
schuur, 2015; Berkhout et al., 2015; Verschuur et al., 2016].

JMI utilizes all types and orders of multiples, both surface and internal mul-
tiples. It was argued in the previous section that multiples generally spend
more time in the subsurface and, therefore, are more sensitive to the subsur-
face parameters. Utilizing them also broadens the subsurface illumination
and attenuates the effect of shadow zones. However, since they spend more
time in the subsurface and have bounced multiple times they are usually
weak when they are recorded. Finally, since the multiples are naturally ex-
plained in the forward model for JMI, their crosstalk is automatically modeled
[Berkhout, 2014b; Davydenko and Verschuur, 2017]. By utilizing the joint
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Figure 1.10: The true values for a) the reflectivity and b) the velocity [m/s].
The initial values for c) the reflectivity and d) the velocity [m/s].
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Figure 1.11: The estimated values for a) the reflectivity and b) the velocity
[m/s].

inversion of reflectivity and velocity and including all multiples in a full wave-
form, data-driven way, JMI is able to produce a sharp reflectivity model and
a smooth but accurate velocity model of the subsurface. Figures 1.10 and
1.11 illustrate the capability of JMI on a similar syncline model as the one
presented in figure 1.2. Figures 1.10a and b show the true reflectivity and
velocity models, while figures 1.10c and d show the initial reflectivity and
velocity models. Figure 1.11 shows the estimated reflectivity and velocity
after applying JMI.

In its current implementation JMI assumes the subsurface to be isotropic
(velocity is not a function of propagation direction). However, in reality
there are a plethora of geologic scenarios where anisotropy (velocity is a
function of propagation direction) is evident and significant. In these cases
ignoring anisotropy leads to poor results. Hence estimating and accounting
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for anisotropy becomes essential [Alkhalifah and Tsvankin, 1995; Lee et al.,
2010; Vigh et al., 2010]. Moreover, we have seen a shift in the seismic indus-
try to obtain wide-azimuth and wide-aperture seismic data [Michell et al.,
2006], where the anisotropic signatures are more evident compared to narrow
azimuth surveys [Prieux et al., 2011]. Hence, taking anisotropy into account
becomes essential to correctly explain the data at far offsets, and, thereby,
create more accurate and reliable subsurface images.

1.7 Thesis Objective and Outline

The objective of this thesis is motivated by the presence of anisotropy. Clearly,
we live in an anisotropic world (depending on the observers wavelength),
therefore we should treat it as anisotropic. This thesis aims at incorporat-
ing anisotropic kinematics in the JMI scheme, in order to make JMI better
applicable in realistic geologic settings.

We present a data-domain inversion-based imaging and anisotropic velocity
analysis approach that utilizes primary reflections as well as multiple reflec-
tions, without any a priori information of the multiple generating boundaries.
The method is flexible in that inaccurate starting models can be handled,
where the strict separation of the reflectivity from the anisotropic velocity
models promotes this flexibility. The method is relatively hands off in terms
of user interference once the initial setup is defined. The remainder of this
thesis consists of six chapters.

• Chapter 2 presents an overview of velocity anisotropy in reflection seis-
mology. It provides the basic assumptions and the fundamental equa-
tions that will be used throughout this chapter. We then introduce
JMI’s modeling method Full Wavefield Modeling (FWMod) that uti-
lizes integral operators to model the reflections. FWMod strictly sepa-
rates the scattering information from the kinematics via the reflectivity
and propagation operators respectively. We then include VTI kinemat-
ics in the propagation operators via replacing the dispersion relation
with the acoustic anisotropic dispersion relation. We address some of
the limitations of the acoustic anisotropic dispersion relation in order
to increase the flexibility of the modeling method. We incorporate the
anisotropic propagation operators in the FWMod scheme.
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• Chapter 3 is split into two parts. In the first part we review a number
of different parameterizations proposed for anisotropic inversion. After
that we evaluate the cost function associated with chosen parameter-
ization. Using the cost function we analyze the effects of including
reflectivity estimation and the effects of internal multiples in inversion.
We show that estimating the reflectivity reduces the nonlinearity and
including internal multiples reduces the trade-off between the different
parameters. In the second part we formulate the theory of anisotropic
JMI. The method is data-driven in that we minimize the difference
between the observed and calculated data sets in a least-squares sense.
Since the nonlinearity is reduced (via estimating the best fit reflectiv-
ity) we optimize the method via a steepest decent approach. We derive
the gradients associated with the different parameters and finally up-
date the inversion strategy to accommodate anisotropic inversion.

• Chapter 4 illustrates the capabilities of anisotropic JMI on a number of
different synthetic models. Each example attempts to isolate and show
a specific property of anisotropic JMI. We first examine the effects of
including anisotropy in inversion as opposed to ignoring it on lens-
shaped model. We then demonstrate the method in updating all the
parameters simultaneously (reflectivity and anisotropic velocity) for a
simple model. Next, we test the method in converging for exceedingly
poor initial models. After that we investigate the elastic effects in
inversion. Subsequently, we examine the effect of internal multiples
in updating the parameters on a model that generates strong internal
multiples. Finally, we validate the method on a realistic synthetic
model (the HESS VTI model) that resembles Gulf of Mexico geology.

• Chapter 5 shows the application of the method on marine data from the
Viking Graben in the North Sea. We illustrate the effectiveness of the
method in estimating the reflectivities and the anisotropic velocities.
We corroborate our inverted results via examining the Angle-Domain
Common Image Gathers (ADCIGs).

• Chapter 6 extends the method towards TTI media. As in the VTI
case we first update the modeling engine to include TTI kinematics.
We then include TTI kinematics in the imaging engine of JMI, Full
Wavefield Migration (FWM). FWM includes, besides transmission ef-
fects, internal multiples in imaging. Therefore, we examine the effect
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of internal multiples in imaging a TTI medium. Finally, we analyze the
effect of errors in the different TTI parameters on the image quality.

• In Chapter 7 we present our main conclusions and our recommenda-
tions for future research.
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2

Anisotropic Full Wavefield
Modeling

Only in the last two decades anisotropy has become an important and recog-
nizable topic in seismic exploration. Perhaps the reason for the delay lies in
that isotropy is simpler. The basic idea of isotropy is obvious and the funda-
mental equations are straightforward compared to the complex ideas behind
anisotropy and the abstruse equations associated with it. However, with re-
cent advancements in acquisition and the expected efficiency of hydrocarbon
exploration and production monitoring we must move beyond an isotropic
view on the Earth and welcome an anisotropy view of it. The first part of
this chapter presents an overview of anisotropy in seismic exploration. This
will provide the basic building blocks for the modeling and inversion theories
in later chapters.

The second part presents JMI’s unique modeling method, Full Wavefield
Modeling (FWMod). It is unique in that it does not solve the wave-equation
but rather utilizes integral operators. These operators enable the distinction
between the kinematics and dynamics, which will play an imperative role
in inversion. Afterwards, anisotropic kinematics will be incorporated in the
modeling scheme in a relatively straightforward manner.
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2.1 Theory of Anisotropy in Seismic Exploration

2.1.1 Anisotropic Parameters

For elastic media stress is linearly related to strain through Hooke’s law:

τij = CijmnEmn, (2.1.1)

where τij is the stress tensor, Emn is the strain tensor, and Cijmn is a 3x3x3x3
tensor that describes the elasticity [Aki and Richards, 1980; Wapenaar and
Berkhout, 1989]. In order to simplify notation and manipulation, we use the
elasticity tensor representation given by a 6x6 matrix according to the Voigt
scheme [Thomsen, 2002]. The Cijkl matrix can be written as:

C(trc) =



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66


. (2.1.2)

This is the most general anisotropic model, it has 21 independent stiffness
coefficients. Materials that exhibit this type of anisotropy are referred to as
triclinic. The large number of independent variables hinders its application
in seismology [Tsvankin, 2012].

Fortunately, many geologic scenarios contain a plane of mirror symmetry
[Winterstein, 1990]. If the geology contains a plane of mirror symmetry, it
is possible to arrive at an elasticity matrix with a reduction in the number
of independent variables. Orthorhombic media are systems that have three
orthogonal planes of mirror symmetry, the number of independent parame-
ters in the stiffness matrix greatly reduces to nine. In practice, sedimentary
sequences with two or three orthogonal fracture systems can be described as
orthorhombic. The stiffness matrix for orthorhombic media can be written
as:
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C(ort) =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


. (2.1.3)

Transversely isotropic media are a special case of orthorhombic media, with
a more simplified description. TI media can be defined as having one axis
of symmetry, where the media is invariant to any rotation around this axis.
An example would be thinly dipping bedded sequences, such as shales. Fur-
thermore, the angle of the symmetry axis classifies the type of TI media.
Having non-vertical symmetry axis defines the medium as Tilted Transverse
Isotropy (TTI), which is the case for the flanks of salt diapirs and dipping
shale sequences. On the other hand having vertical symmetry axis defines
the media as Vertical Transpose Isotropy (VTI), which is the case for thinly
bedded sedimentary sequences and for horizontally bedded shales. The num-
ber of independent parameters reduces to five and the stiffness matrix for
VTI media is given by:

C(V TI) =



C11 (C11 − 2C66) C13 0 0 0

(C11 − 2C66) C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66


. (2.1.4)

In this thesis chapters 2 through 5 will focus on the VTI case and chapter
6 will focus on the TTI case. Figure 2.1a shows a schematic representation
of a VTI model, while figure 2.1b shows a schematic representation of a TTI
model. Not that the difference lies in the symmetry axis.
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Figure 2.1: Schematic representation of a) a VTI medium and b) a TTI
medium.

For completeness’ sake, the stiffness matrix for isotropic media is given as:

C(iso) =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


, (2.1.5)

where λ and µ are Lamé’s constants with C44 = C55 = C66 = µ, C12 =
C13 = C23 = λ, and C11 = C33 = λ + 2µ. They can be directly equated to
the P-wave velocity Vp and the S-wave velocity Vs via:

Vp =

√
λ+ 2µ

ρ
, (2.1.6)
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and

Vs =

√
µ

ρ
, (2.1.7)

where ρ is the density.

The choice of parametrization is of utmost importance in multiparameter in-
version problems [Menke, 2012]. Traditionally, anisotropy was parametrized
in terms of stiffness coefficients. However, the stiffness coefficients parametriza-
tion is not ideal to describe seismic wavefields in anisotropic media. The
stiffness coefficients do neither give immediate insight on wave-propagation
properties nor on the strength of anisotropy. In his iconic paper Thomsen
[1986] proposed a different parametrization that relates anisotropy imme-
diately to wave-propagation. He suggested describing anisotropy using the
P- and S-wave velocities along the symmetry axis and three dimensionless
parameters. The dimensionless parameters are:

• ε: the fractional difference between the horizontal and vertical P-wave
velocities. It is given by:

ε ≡ C11 − C33

2C33
, (2.1.8)

• γ: the fractional difference between the horizontal and vertical S-wave
velocities. It is given by:

γ ≡ C66 − C44

2C44
, (2.1.9)

• δ: is responsible for the curvature or angular dependence of the P-wave
velocity in the vicinity of the symmetry axis. It is given by:

δ ≡ (C13 + C44)2 − (C33 − C44)2

2C33(C33 − C44)
. (2.1.10)

The Thomsen parameters vanish for the case of isotropy. Hence, they can
be a good measure to estimate the strength of anisotropy. They also bring
immediate insight regarding the effects of anisotropy on wave propagation.
Moreover, it is possible to equate the Thomsen parameters to different mea-
surable velocities in seismic exploration. One crucial parameter that is es-
timated in almost all surface seismic experiments is the normal moveout
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velocity, abbreviated as Vnmo. It can be expressed by the P-wave velocity
along the symmetry axis and δ parameter via:

Vnmo = Vv
√

1 + 2δ. (2.1.11)

The δ parameter dictates how far or how close the NMO velocity is to the
vertical velocity. If the medium has a non-zero δ and if one were to use the
NMO velocity to estimate depths, one will definitely arrive at an erroneous
depth. Another important parameter is the horizontal velocity Vh, which
can be expressed by the P-wave velocity along the symmetry axis and the ε
parameter via:

Vh = Vv
√

1 + 2ε. (2.1.12)

These relations make the Thomsen parameterization attractive to describe
anisotropy. Note that although the Thomsen parameters were introduced in
the context of the weak anisotropy approximation, they are convenient for
use regardless of the magnitude of anisotropy as shown by Tsvankin [2012].
If we consider P-wave kinematics only, we find that they are insensitive to the
S-wave along the symmetry axis and γ in the VTI case, hence, the number of
parameters needed to describe it further reduces to three, namely Vv, δ, and
ε [Alkhalifah, 1998]. Moreover, for time processing the number of parameters
further reduces to two, namely Vnmo and a new parameter η [Alkhalifah and
Tsvankin, 1995]. η is defined as the anellipticity, it quantifies the deviation
of the travel-time function from a hyperbola. It is given as:

η =
ε− δ

1 + 2δ
=
V 2
h − V 2

nmo

2V 2
nmo

. (2.1.13)

We analyze the kinematic effects of the different Thomsen parameters on the
P-wave wavefront. Figure 2.2a shows the P-wave wavefront for the isotropic
case while figures 2.2b-f show the P-wave wavefront for a number of differ-
ent anisotropic scenarios. Note that many of scenarios are not commonly
encountered in the subsurface. However, these examples provide insights on
how the Thomsen parameters affect wave propagation.
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2.1.2 Acoustic Anisotropic Dispersion Relation

Anisotropy normally does not exist in acoustic media (except for the special
case of elliptic anisotropy). Therefore, full elastic modeling is needed to ac-
curately model the anisotropic kinematics. However, due to the complexity
and computational cost involved with full elastic modeling, a simple alter-
native was desired. Alkhalifah [2000] derived an acoustic wave-equation for
VTI media, which was done by setting the vertical shear velocity to zero in
the stress-strain relation then deriving the wave-equation. The dispersion
relation is the kernel for the anisotropic wave-equation, which can be written
as:

k2
z =

V 2
nmo

V 2
v

(
ω2

V 2
nmo

− ω2k2
x

ω2 − 2V 2
nmoηk

2
x

)
, (2.1.14)

where kz is the vertical wavenumber, ω is the angular frequency, and kx is the
horizontal wavenumber. Using the identities in equations 2.1.11 and 2.1.12
it is possible to rewrite the dispersion equation in terms of Vv, δ, and Vh:

k2
z =

ω2

V 2
v

−
(

ω2(1 + 2δ)k2
x

ω2 − V 2
h k

2
x + V 2

v (1 + 2δ)k2
x

)
. (2.1.15)

The acoustic anisotropic dispersion relation will introduce VTI kinematics.
However, one needs to note that the acoustic anisotropic dispersion relation
has limitations if one were to use it directly. Two limitations were docu-
mented by Alkhalifah [2000] when deriving the anisotropic acoustic wave-
equation. The first one was a pseudo S-wave (diamond shaped shear wave
mode) that manifested if the source or receivers were in or near anisotropic
media (figure 2.4a). The second limitation was an exponentially increasing
solution for negative values of η. For the first limitation, which was the
pseudo S-wave, he proposed placing the sources and receivers in an isotropic
layer, where the pseudo S-wave does not manifest itself. As for the second
limitation Alkhalifah [2000] concluded that this equation is not suitable for
negative values of η due to the exponential growth in solution. It is possible
to place the sources and receivers in an isotropic layer and avoid models with
negative η. However, this limits the applicability of the dispersion relation.
Grechka et al. [2004] studied the pseudo S-wave in more detail and showed
that the pseudo S-waves are ironically SV-waves that propagate in acoustic
VTI media.
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Figure 2.2: P-wave wavefront. a) For the isotropic case, where V = 2000
[m/s]. b) For the anisotropic case, where Vv = 2000 [m/s], δ = 0.2, and
ε = 0. c) For the anisotropic case, where Vv = 2000 [m/s], δ = −0.2, and
ε = 0. d) For the anisotropic case, where Vv = 2000 [m/s], δ = 0, and
ε = 0.2. e) For the anisotropic case, where Vv = 2000 [m/s], δ = 0, and
ε = −0.2. f) For the anisotropic case, where Vv = 2000 [m/s], δ = −0.2, and
ε = 0.2.
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Figure 2.3: A slice of the amplitude spectrum of the phase shift operator at
10Hz for: a) An isotropic medium with V = 2000m/s. b) A VTI medium
with Vv = 2000, ε = 0.2, and δ = 0 (η > 0). Note that it is possible to
clearly distinguish and eliminate the pseudo S-wave in this domain. c) a
VTI medium with Vv = 2000, ε = 0, and δ = 0.2 (η < 0).
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Figure 2.4: a) Modeled wavefields in a VTI medium with Vv = 2000m/s,
ε = 0.2, and δ = 0 (η > 0), note the diamond shaped event that corresponds
to the pseudo S-wave. b) Suppressing the pseudo S-wave using the same model
as in a). c) Modeled wavefield in a VTI medium with Vv = 2000m/s, ε = 0,
and δ = 0.2 (η < 0). Note the different curvature at the apex. d) Modeled
wavefield in an isotropic medium with Vv = 2000m/s for comparison.
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A number of different methods were developed to eliminate the pseudo S-wave
for finite-difference modeling [Fei and Liner, 2008; Duveneck et al., 2008].
However, these methods are neither straightforward to implement nor do they
solve the issue of negative values of η. These limitations can be alleviated
when using phase shift extrapolation [Bale, 2007]. For the first limitation,
the pseudo S-wave, two propagating waves manifest in the extrapolator for
η > 0. These propagating waves were attributed to the P-wave and pseudo
S-wave. As a reference, figure 2.3a shows the absolute value of the phase
shift operator at 10Hz in an isotropic medium with V = 2000m/s. There
are two distinct regions attributed towards the propagating P-wave and the
evanescent wave. Figure 2.3b shows the absolute value of the same phase
shift operator at 10Hz, however, in a VTI medium with Vv = 2000, ε = 0.2,
and δ = 0 (η > 0). We notice three distinct regions, the propagating P-
wave, the evanescent wave, and an extra propagating wave attributed to the
pseudo S-wave. The extra propagating wave can be clearly distinguished
in the extrapolation operator. Bale [2007] suggested writing the anisotropic
dispersion relationship as:

k2
z =

ω2

V 2
v

(
A

B

)
, (2.1.16)

where A = ω − V 2
nmo (1 + 2η) k2

x and B = ω − 2V 2
nmoηk

2
x. If A and B are

both positive then we get the propagating P-wave. However, if A or B is
negative we get the evanescent wave. Finally, if A and B are both negative,
we get another propagating wave, which was attributed to the pseudo S-wave.
Therefore, it is possible to eliminate the pseudo S-wave by muting the result
when A ≤ 0 and B ≤ 0.

We have noticed that it is common practice to eliminate the pseudo S-wave in
finite-difference modeling by placing the sources and receivers in an isotropic
region. We tested the technique for surface seismic acquisition and we noticed
that we do not get the pseudo S-wave in the data because the pseudo S-wave
does not propagate in the isotropic layer. However, this sets a limitation
that the near surface should be isotropic. This also limits the extension of
the method to Vertical Seismic Profile (VSP) geometries where the receivers
can be located in an anisotropic layer. Finally, the pseudo S-waves can be
converted back to a P-wave in the isotropic layer as shown by Grechka et al.
[2004]. Therefore, we prefer eliminating the pseudo S-wave in the phase shift
operator, even if the near surface is isotropic. This avoids converted waves



36 Anisotropic Full Wavefield Modeling

from the pseudo S-wave and provides flexibility in extending the method to
VSP geometries. Figures 2.4a and 2.4b show the suppression of the pseudo
S-wave in the x-t domain for the same anisotropic model as in figure 2.3b.
Note that the P-wave kinematics are not affected.

As for the second limitation, which is the exponential growth of solution for
negative values of η, we notice that the phase shift operators do not suffer
from this instability. Bale [2007] shows that by having control of the sign
of the exponent in phase shift operators it is possible to ensure evanescent
decay, even for η < 0. Figure 2.3c shows the absolute value of the phase shift
operator at 10Hz in a VTI medium with Vv = 2000m/s, ε = 0, and δ = 0.2
(η < 0). Figure 2.4c shows the modeled wavefield in the x-t domain, while
figure 2.4d shows the isotropic case. Note that the curvature near the apex
is different, although the flanks of the wave arrive at almost the same time
(due to ε = 0).

2.2 Full Wavefield Modeling in VTI media

Full Wavefield Modeling (FWMod) is an integral based approach that mod-
els reflection type events [Berkhout, 2012, 2014b; Davydenko and Verschuur,
2013, 2017]. It explains the seismic reflection response in terms of two inde-
pendent operators, a scattering operator denoted by R and a local propaga-
tion operator denoted by W. R contains the reflection information of the sub-
surface while the kinematics of wave propagation (velocity and anisotropy) is
encoded in the W operators. Using R and W we can model primary, inter-
nal multiple, and surface-related multiple reflections. It consists of two main
operations that are done sequentially, scattering and extrapolation. Note
that the vector and matrix notation used in this chapter is the same notation
introduced by Berkhout [1980]. It describes wavefields as a function of space
for one frequency component as a vector.

Our modeling derivation and its subsequent implementations are for the 2D
case. Taking a 2D assumption simplifies the equations and substantially
reduces the computational cost involved. However, for complex 3D structures
in subsurface a 2D assumption is not enough and out of plane reflections can
cause discrepancies. Theoretically, the method can be extended to the 3D
case as done by Marhfoul and Verschuur [2016] for the isotropic JMI case
and [Davydenko and Verschuur, 2017] for the isotropic FWM case. The
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complexity lies in optimizing the algorithms to handle the large amount of
data being recorded as well as in compensating for the sparse and irregular
spatial sampling of many 3D surveys in imaging and velocity estimation.

2.2.1 Scattering

To illustrate the method, assume a set of scatterers in the subsurface along
a depth level zm (figure 2.5). That depth level can have two wavefields
approaching it, namely a downgoing wavefield, represented by ~P+(zm; zs),
and an upgoing wavefield, represented by ~P−(zm; zs), where zs refers to the
location of the source that created these wavefields. The outgoing wavefields
just above, represented by ~Q−(zm; zs), and below, represented by ~Q+(zm; zs),
are given by:

~Q−(zm; zs) = R∪(zm)~P+(zm; zs) + T−(zm)~P−(zm; zs), (2.2.17)

and

~Q+(zm; zs) = T+(zm)~P+(zm; zs) + R∩(zm)~P−(zm; zs). (2.2.18)

In these equations R∪ and R∩ are the reflectivity operators acting from above
and below, respectively. Similarly, T+ and T− are the transmission operators
acting from above and below, respectively. The transmission operator is
defined as T = I+δT, where δT ≈ R for small S-wave contrasts. Substituting
this expression we get:

~Q−(zm; zs) = ~P−(zm; zs) + δ~S(zm; zs) (2.2.19)

~Q+(zm; zs) = ~P+(zm; zs) + δ~S(zm; zs) , (2.2.20)

where

δ~S(zm; zs) = R∪(zm)~P+(zm; zs) + R∩(zm)~P−(zm; zs), (2.2.21)

with δ~S being defined as the secondary sources along the depth level zm. Note
that the scattering and propagation are strictly separated, hence, the trans-
mission effects are included in the scattering and not in the propagation. In
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Figure 2.5: Schematic representation of the incoming and outgoing wavefields
acting on a scattering depth level zm.

this formulation the reflectivity R can be parametrized as angle-independent
or angle-dependent. For the angle-independent case the reflectivity matrix R
is a diagonal matrix with scalar coefficients. In order to reduce the number
of parameters we assume that R∪ = − [R∩]T .

Anisotropy not only affects the traveltimes but also has an influence on the
polarization and amplitudes of the seismic waves [Rüger, 2002]. The angle-
dependent effects manifest as off diagonal components in the reflectivity op-
erator as described in de Bruin et al. [1990] and in Berkhout [1997]. Not
only does one need to analyze the off-diagonal components of the reflectivity,
but also needs to go beyond the 2D assumption and into a 3D assumption
in order to correctly describe polarizations and amplitudes. Davydenko and
Verschuur [2017] incorporate angle-dependent reflectivity in the images of
FWM by making use of the linear Radon domain. However, for this thesis
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the reflectivity is assumed to be angle-independent. For the 2D case this
means that the angle-independent reflectivity is given as (i = 1, 2, ..., I):

R∪(zm) = diag (R(x1, zm), R(x2, zm), ..., R(xi, zm), ...R(xI , zm)) , (2.2.22)

with R(xi, zm) being the angle-dependent reflectivities at xi and depth level
zm. The angle-independent reflectivities will only provide structural knowl-
edge of the subsurface.

2.2.2 Extrapolation

Extrapolating the outgoing wavefields ~Q−(zm; zs) and ~Q+(zm; zs) to the next
scattering depth level is done via the operator W(zm+1, zm). W(zm+1, zm) is
a forward propagation operator. Each column is associated with the deriva-
tive of Green’s function dictating wave propagation from one depth level zm
to the next zm+1. For the 2D isotropic homogeneous case the scalar expres-
sion can be defined as [Berkhout, 1980; Wapenaar and Berkhout, 1989]:

~W (zm+1, zm) = F−1
x

[
e−jkz∆ze−jkxxs

]
, (2.2.23)

where ∆z = |zm+1 − zm|, xs is the source position of the Green’s function,
and F−1

x indicates taking the inverse spatial Fourier transform and organizes
the result in a vector. The isotropic dispersion relation is given as:

kz =
√
k2 − k2

x for |kx| ≤ |k|

kz = −j
√
k2
x − k2 for |kx| > |k| ,

(2.2.24)

where k = ω
V , ω is the angular frequency, and V is the isotropic P-wave

velocity. For heterogeneous media the local velocity is used to evaluate each
column of the propagation operator, however, this assumes that the velocity
model is smooth. It is possible to relax this constraint and extend the method
to handle more prominent laterally changing velocity models, as done in
Hammad and Verschuur [2016]. Also note that the superscripts indicate the
direction of extrapolation, where W+ indicates a downward extrapolation
operator and W− indicates an upward extrapolation operator. They are
related to each other via W+(zm+1, zm) = [W−(zm, zm+1)]

T
.
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In order to include VTI kinematics we need to substitute the isotropic dis-
persion relation (equation 2.2.24) with the anisotropic dispersion relation
(equation 2.1.15) and apply the remedies described in the previous subsec-
tion (2.1.2). Utilizing FWMod and the W operators provides us with an
immense advantage over other modeling methods in terms of choosing any
desired VTI model (even for negative η) and the ability to directly eliminate
the pseudo S-wave rather than having it implicitly there.

We base our modeling engine on an anisotropic acoustic approximation of the
subsurface, although its validity is questionable when comparing it with real
elastic data. Full elastic modeling requires much more parameters to describe
it and subsequently more parameters to invert for. Hence, an accurate start-
ing model is essential for inversion in order to avoid the null space. Starting
with an acoustic approximation can help identify and estimate the essential
parameters for subsequent inversion. Moreover, three or sometimes four com-
ponent data is required for elastic inversion. Frequently, single component
pressure or vertical displacement data are all that is recorded. Therefore,
in this thesis, we assume that the data we are dealing with mainly consists
of P-wave arrivals. We also assume that the contrasts are relatively weak.
Hence, the S-wave and converted waves are weak. Furthermore, if the elastic
effects are prominent we will rely on preprocessing that mitigates the elastic
effects.

2.2.3 Forward Modeling Equations

Combining the scattering and extrapolation operations, we arrive at the gov-
erning equations for FWMod [Berkhout, 2014a]. For downgoing wavefields
(m = 1, 2, ...,M):

~P+(zm; z0) = W+(zm, z0)~S(z0) +
m−1∑
k=0

W+(zm, zk)δ~S(zk; z0), (2.2.25)

for upgoing wavefields (m = 0, 1, ...,M − 1):

~P−(zm; z0) = W−(zm, zM )~P−(zM ; z0) +

M∑
k=m+1

W−(zm, zk)δ~S(zk; z0).

(2.2.26)
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~S(z0) represents the source wavefield generated at the surface level. Note
that W+ and W− are the upgoing and downgoing VTI one-way scatter
free-operators, respectively. The modeling is done iteratively in so-called
roundtrips. Each roundtrip adds an order of scattering by updating the
scattering wavefields δ~S, according to equation 2.2.21. Hence, for the first
roundtrip only primaries without transmission effects are modeled. However,
for the second roundtrip primaries and first-order multiples are modeled and
so on for subsequent roundtrips. With more roundtrips the transmission
effects become more accurate. The recursive modeling method is akin to the
Bremmer series [Bremmer, 1951; de Hoop et al., 2000], where each iteration
adds a new order of scattering. Note that in this description we do not take
into account diving waves nor do we consider surface waves such as direct
wave and ground rolls. The recorded data is assumed to consist of upgoing
wavefields only, hence, deghosting must me done prior to inversion.

2.3 Forward Modeling Examples

In this section the anisotropic modeling method is demonstrated on a 2D
synthetic model and is compared to its isotropic counterpart. Figure 2.6
shows the reflectivity, vertical velocity, δ, and ε models used for modeling.
Equations 2.2.25 and 2.2.26 are used to generate reflection data using a split
spread geometry. The source is a Ricker wavelet with a dominate frequency
of 10Hz located at lateral location 2000m. No free surface multiples were
modeled, however, internal multiples were taken into account. Figure 2.7a
shows the primaries and figure 2.7b shows the primaries and first-order mul-
tiples, while figure 2.7c shows the difference between a and b, i.e. the 1st
order multiples only. Similarly, figure 2.7d shows the primaries and first-order
multiples (i.e. same as figure 2.7b), while figure 2.7e shows the primaries,
first-order multiples, and second-order multiples. Finally, figure 2.7f shows
the difference between d and e, i.e. the second-order multiples. Note that the
multiples exponentially increase the amount of events in the data with each
successive roundtrip, however, their amplitudes decrease dramatically. Also
note that the sources and receivers are in an anisotropic layer, which could
cause the pseudo S-wave to be recorded. However, they do not exist in the
recorded data due to the flexibility of the modeling method in eliminating
them.

In order to compare the effects of anisotropy on the multiples, we update the
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model (in figure 2.6) to be isotropic (i.e δ = ε = 0). Figure 2.8 shows the
isotropic counterpart to figure 2.7. It is possible to analyze the anisotropic
effects by comparing both data sets. The isotropic shot gather is shown in
red while and the anisotropic shot gather is shown in black in figure 2.9.
FWMod allows us to separate the primaries from the multiples, therefore,
we can analyze the isotropic (red) and anisotropic (black) primaries (Figure
2.10). Note that the first reflection shows the maximum difference, this is
because the anisotropy is largest for the first layer and the first reflection has a
broader range of angles compared to the deeper reflectors (due to its position
and the acquisition geometry). Figure 2.11 shows a comparison between the
isotropic (red) and the anisotropic (black) first-order internal multiples. Note
that as in the previous case (Figure 1.9b) the deviation is happening away
from the apex.

Also note that the difference in primaries is much greater than in the first-
order multiples when looking at the same offset. This is because the first-
order multiples are associated with smaller angles compared to primaries
and in this anisotropic model, the greater the angle the larger the effect of
anisotropy. However, note that the number of events that are deviating from
their isotropic counterparts has increased drastically. Thus, the residual has
more data in it. However, one should note that the multiples generally have
a lower amplitude than the primaries. Hence, in practice the added value of
using multiples for anisotropic analysis will be dependent on their relative
strength compared to the primaries. In Chapter 3 and 4 we study the effect of
multiples on the residual more meticulously, and try to understand whether
they add extra information or not in inversion.
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Figure 2.6: The values for a) the reflectivity, b) the vertical velocity Vv [m/s],
c) the δ model, and d) the ε model.
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Figure 2.7: Modeled data via anisotropic FWMod. a) The primary reflections.
b) The primary reflections and first-order multiples. c) The first-order multi-
ples obtained via the difference between a) and b). d) The primary reflections
and first-order multiples. e) The primary reflections, first-order multiples,
and second-order multiples. f) The second-order multiples obtained via the
difference between d) and e).
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Figure 2.8: Modeled data via isotropic FWMod. a) The primary reflections.
b) The primary reflections and first-order multiples. c) The first-order multi-
ples obtained via the difference between a) and b). d) The primary reflections
and first-order multiples. e) The primary reflections, first-order multiples,
and second-order multiples. f) The second-order multiples obtained via the
difference between d) and e).
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Figure 2.9: The anisotropic (black) and isotropic (red) shot gathers related to
figure 2.7e and 2.8e.
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Figure 2.10: The anisotropic (black) and isotropic (red) primaries related to
figure 2.7a and 2.8a.
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Figure 2.11: The anisotropic (black) and isotropic (red) first-order multiples,
related to figure 2.7c and 2.8c.
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3

Theory of JMI in VTI media

Unlike modeling, the choice of parametrization in inversion is of utmost im-
portance in multi-parameter inversion problems. Joint Migration Inversion
is unique in its chosen parametrization, as it ideally provides a solution for
the reflectivity operator R and the propagation operator W. It is unique in
that other methods (e.g. FWI) do not make this distinct separation between
scattering and propagation. In its current implementation W is isotropic,
with W being further parameterized in terms of the velocity [Staal, 2015].
Extending the method to handle anisotropic kinematics one needs to re-
parametrize the propagation operator W. One must also take into account
the sensitivity and trade-off of the different parameters in order to stabilize
the inversion. In this chapter we review a number of different parameteriza-
tions proposed for inversion. We then evaluate the associated cost function
for our chosen parameterization. The cost function gives insights on how the
chosen parametrization behaves in inversion. It also allows us to analyze the
sensitivity of the method to multiples. With the parameterization in hand we
then derive the anisotropic gradients and refine the JMI algorithm to handle
VTI kinematics.
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3.1 Parametrization

With the abundance of different parameterizations available for VTI inver-
sion, one needs to analyze the sensitivity and trade-off between the different
parameters on the data. The resolution possibilities and limitations associ-
ated must be investigated before inversion. Many authors analyze different
parameterizations for anisotropic FWI applications and we rely on their work
to understand the advantages and disadvantages of the different parameter-
izations.

Plessix and Cao [2010] studied the VTI parametrization of acoustic FWI
and analyzed which parameters can be retrieved. They did this by applying
eigenvalue decomposition analysis on the Hessian. The parametrization they
analyzed was Vnmo, δ, η and Vnmo, δ, Vh. They concluded that δ can not be
retrieved due to the intrinsic ambiguity between this parameter and depth.
However, the other parameters can be retrieved with different degrees of
accuracy from different parts of the data. For instance the η parameter
and Vh are predominately sensitive to the diving wave, while the Vnmo is
predominantly sensitive to the short offset reflections. Nonetheless, trade-off
is still apparent in both parameterizations especially in the middle part of
the gathers. Therefore, they suggested using a hierarchical approach where
they limit the cable length in subsequent iterations to alleviate some of the
trade-off.

Gholami et al. [2013b] also investigated which parametrization is suitable
for FWI in VTI media. They analyzed different parameter classes on the
modeled data as a function of the scattering angle. Their primary analysis
is done via computing the radiation patterns of virtual sources for different
parameterizations. The radiation patterns show the sensitivity of each pa-
rameter as a function of angle. By analyzing the different radiation patterns
for the different sets of parameters they conclude that the choice of param-
eterization highly depends on the acquisition geometry. For narrow azimuth
surveys a Vv, δ, and ε parameterization is suitable. However for wide azimuth
surveys Vv, δ, and Vh is more suitable, since the velocity parameterization
has considerably less trade-off. The wide aperture data updates the large
to intermediate wavelengths of the horizontal velocity, whereas the narrow
aperture data updates the short to intermediate wavelengths of the vertical
velocity. They supported their findings by inverting with a number of dif-
ferent parameterizations and then analyzing their accuracy [Gholami et al.,
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2013a].

Alkhalifah [2014] investigates many aspects of anisotropic FWI, he devotes a
whole chapter towards choosing an optimal parametrization for VTI media.
He arrives at two notable sets of parameterizations, the first consists of Vnmo,
δ, and η. It facilitates inverting for reflections and diving waves. The second
consists of Vh, η, and ε. It accommodates the need for FWI to start with
diving waves. Alkhalifah and Plessix [2014] evaluate the sensitivity kernels
(the response of the model space to perturbations in the data) to study
the angular dependency of these two parameterizations. By evaluating the
associated radiation pattern for each parametrization set they are able to
understand which parts of the wavefield will update which parameters. For
the Vnmo, δ, η parameterization, the NMO velocity has an angle-invariant
radiation pattern while η is mostly associated with the horizontal component.
The angle-invariant radiation pattern associated with Vnmo is attractive since
it facilitates a hierarchal approach where one inverts for the isotropic case
before moving towards a VTI case. It also enables all parts of the wavefields
short and long offsets to update the NMO velocity. However, significant
trade-off exists between Vnmo and η, for which they suggest obtaining Vnmo
from reflection velocity analysis then updating it with FWI. Since δ is weakly
resolvable from the geometrical aspects of the wavefield they categorize it as
a secondary parameter that is used to compensate for the deficiency of the
acoustic assumption. The second parameterization set of Vh, η, and ε is of
little interest to us since in our current implementation we will not use the
diving waves to update the model parameters.

Other anisotropy parameterizations are provided by Kamath and Tsvankin
[2016], where they investigate a velocity parameterization (Vv,Vnmo,Vh, and
the shear velocity) for the elastic VTI case, while Lee et al. [2010] update the
elastic coefficient in the elasticity matrix for inversion for the elastic VTI case.
There is no general consensus on which parametrization is ideal for acoustic
VTI inversion. However, we can conclude that the parametrization chosen
highly depends on the inversion method, acquisition geometry, accuracy of
the starting model as well as any priori information that can be used for
inversion.

For our setup we assume that we have wide aperture surface seismic data,
we will also mainly rely on reflections to update our model. We also want
to minimize the trade-off effects. Hence, we chose to use the Vv, δ, and Vh
parameterization for anisotropic JMI. It facilitates reflection type events and
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Figure 3.1: The model used to evaluate the cost function.

it minimizes the trade-off between the parameters. It also avoids scaling
issues, since the inverted parameters are of the same scale. Note that δ is
often called the depthing parameter, because it ties Vv with Vnmo (equation
2.1.11). δ suffers from intrinsic ambiguity between it and depth, as shown in
Alkhalifah and Tsvankin [1995] and later in Plessix and Cao [2010]. Due to
the intrinsic ambiguity we will not estimate δ from surface seismic data; its
estimates will be reserved for other sources of information, such as well-logs.

3.2 Misfit Function Analysis

The cost function is analyzed in order to understand the nonlinearity associ-
ated with the chosen parametrization (Vv, Vh, and δ). We consider a simple
2000m wide by 650m deep model with an anomaly in the middle (figure
3.1). The anomaly has a vertical velocity of Vv = 3300m/s and a horizon-
tal velocity of Vh = 3905m/s, which corresponds to an ε of 0.2. There are
two prominent reflectors at the top and bottom of the anomaly. There are 41
sources located at equal intervals at the surface. Receivers are also located at
the surface at 20m intervals. A dense source and receiver acquisition geome-
try is used in order to reduce the effect of extending the illumination caused
by the multiples. The misfit function is evaluated over different values of Vv
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Figure 3.2: a) The cost function when the reflectivity is fixed. b) The cost
function when the reflectivity is estimated. c) The cost function when the
offset is doubled. d) The cost function when primaries and multiples are
included, the offset is restored to it’s original value as in figure 3.2b.

and Vh. The misfit function is given as:

J =
∑
shots

∑
ω

∥∥∥~P−obs(z0)− ~P−mod(z0)
∥∥∥2

=
∑
shots

∑
ω

∥∥∥ ~E−(z0)
∥∥∥2

, (3.2.1)

where ~P−obs(z0) represents the monochromatic component of the observed or

measured wavefield at the surface and ~P−mod(z0) is the monochromatic com-
ponent of the modeled or calculated wavefield at the surface z0. Note that in
this example no direct waves were considered only upgoing reflections were
recorded (i.e. deghosted data). The misfit function is analyzed by evaluat-
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Figure 3.3: Shot gathers involved in evaluating the cost function for a fixed
reflectivity (see Figure 3.2a). a) The observed or true shot gather. b) The
modeled or trial shot gather pertaining to trial velocities of Vv = 2300m/s
and Vh = 2905m/s. c) The residual between the two. Note that the residual
shows that the events are more than half a cycle away, hence cycle-skipping
occurs (figure 3.2a).

ing different sets of vertical and horizontal velocities. Note that we do not
estimate the reflectivity but rather fix it to the correct value and position.
Furthermore, in this example only the primaries are modeled. Figure 3.2a
shows the associated misfit function. The Vv parameter is very well defined
compared to Vh, as there is no vertical valley. On the other hand there is a
large horizontal valley along the Vh parameter. Perhaps the most prominent
issue that is apparent are local minima that are caused by cycle-skipping.
When the reflectivity is fixed and not updated, the reflected events in the
data might appear more than half a cycle away from each other (depending
on the trial velocities), and therefore a meaningful update is not obtained.
Figure 3.3 exemplifies this case in the shot gather domain. Note that the
second event in the trial gather arrives very late compared to the true one.
The trial velocities, corresponding to Vv = 2300 and Vh = 2905, cause the
second reflection to be more than half a cycle away from the true one. If one
were to use gradient decent methods it would be very difficult to converge to
the global solution from a highly erroneous starting model without modifying
the inversion technique.
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Figure 3.4: Shot gathers involved in evaluating the cost function when the
reflectivity is estimated (see Figure 3.2b). a) The observed or true shot gather.
b) The modeled or trial shot gather pertaining to trial velocities of Vv =
2300m/s and Vh = 2905m/s. c) The residual between the two. Note that
the residual shows that the events are now interacting due to estimating the
reflectivity (figure 3.2b).

We re-evaluate the misfit function, we use the same model and the same
geometry as in the previous experiment. However, for each trial point (Vv
and Vh pair) the best fit reflectivity is evaluated as well via Full Wavefield
Migration (see section 3.3.1 for more information over FWM). Hence, we do
not assume a fixed reflectivity. The reflectivity moves the reflected event to
the location that produces the least error between the observed and calcu-
lated data. Figure 3.2b shows the associated misfit function for the second
experiment. What is noteworthy is that the local minima are no longer there.
By allowing the reflectivity to move, it is possible to drastically reshape the
misfit function and enable it to be more suitable for gradient descent meth-
ods. This is corroborated by the findings of Alkhalifah [2016b], where he
analyzes the role of a non-fixed reflector on the radiation parameters. Figure
3.4 shows a shot gather that corresponds to the same trial velocities (Vv and
Vh) as in figure 3.3, however, the best fit reflectivity is estimated. Note that
the second reflection in the trial gather falls on top of the second reflection
in the observed gather (around the apex). Hence, updating the reflector is
more manageable than in the previous case. Despite the absence of local min-
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Figure 3.5: Shot gathers involved in evaluating the cost function when inter-
nal multiples are included (see Figure 3.2d. a) The observed or true shot
gather. b) The modeled or trial shot gather pertaining to trial velocities
(Vv = 2300m/s and Vh = 2905m/s). c) The residual between the two. The
multiple events add the extra sensitivity in the cost function (figure 3.2d).

ima, there is a degree of trade-off happening between Vv and Vh (the slanted
valley). This trade-off would cause issues in arriving at a unique solution,
because many solutions fulfill the misfit function fairly well. Without a priori
information it is difficult to arrive at a unique solution, especially when there
is noise in the data.

One would like to reduce the trade-off as much as possible. Therefore, one
obvious attempt to reduce it is by redesigning the acquisition survey such
that more horizontally traveling waves are acquired. The same experiment
is repeated, however, the maximum offset is extended to double its initial
value. The receivers span 4000m with the same sources as in the previous
experiment. Figure 3.2c shows the new misfit function, where we can note
that the valley is much narrower in the Vh parameter than in figure 3.2b.
The reason is because there are more horizontally traveling waves acquired
in the data, which help in better defining the horizontal velocities. However,
the accuracy of the vertical velocity does not improve much.

Another attempt to reduce the trade-off is to include internal multiples. The
acquisition is restored back to the original case of receivers only spanning
2000m (the same geometry as in the first and second experiments). However,
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internal multiples are introduced in modeling. In the previous experiments
only primaries are considered in both the observed and modeled data. In
this particular experiment the observed and modeled data include internal
multiples, in order to understand their effects on the cost function. The setup
is the same as in the second experiment, with figure 3.2d being the new re-
sult. Both the vertical velocity and horizontal velocity are more uniquely
defined, compared to the primaries-only case (figure 3.2b versus figure 3.2d).
Surprisingly, they are also more uniquely defined compared to the third ex-
periment where the offset was doubled (figure 3.2c versus figure 3.2d). Figure
3.5 shows a shot gather that corresponds to the same Vv and Vh as in figure
3.3, however, the internal multiples are included and the best fit reflectivity
is estimated. In this experiment, the multiples are mostly associated with
vertical events. This is because multiples usually have a smaller propagation
angle compared to primaries at the same offset. Hence, they bring in the
extra sensitivity to the Vv parameter. However, in order to obtain accurate
Vh estimates one must have accurate Vv estimates for surface seismic geome-
tries. Therefore, although the internal multiples are mostly associated with
smaller angles than primaries, their influence leaks onto the Vh parameter in
an indirect way. The more accurate the Vv estimate, the more accurate the
Vh parameter is in turn.

Finally, for the sake of completion we evaluate the cost function associated
with a different parametrization, namely Vnmo, δ, and η. As in the previous
parameterization δ will not be estimated but rather it will be obtained from
other sources of information. We translate both ranges of Vv and Vh into
their corresponding Vnmo and η ranges. Figure 3.6a shows the cost function
associated with Vnmo and η while figure 3.6b shows the cost function associ-
ated with Vv and Vh. Note that only primaries were considered in evaluating
both cost functions. Analyzing them shows that the low error range (the
blue colored valley in figure 3.6) of Vv and Vnmo is similar. However, the
low error range (blue colored valley in figure 3.6) of Vh and η are drastically
different. Although both misfit functions have a degree of trade-off we can
see that for the Vv and Vh parameterization the trade-off is localized around
the true solution compared to the Vnmo and η parameterization, where the
trade-off is smeared over a larger range. By employing all the strategies ex-
emplified, one may reduce the nonlinearity and the trade-off, via estimating
the reflectivity separately, choosing a suitable parametrization, opting for a
wider acquisition geometry, and taking internal multiples into account.
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Figure 3.6: Cost function associated with a (a) Vnmo and η parameterization
and a (b) Vv and Vh parameterization.

3.3 Theory of Joint Migration Inversion in VTI media

Anisotropic JMI simultaneously inverts for scattering and propagation opera-
tors, which can be directly parametrized in terms of reflectivity and anisotropic
velocities. This is done by minimizing the error between the observed and
calculated data and linearly updating the parameters via a gradient descent
method as done in Berkhout [2012, 2014c] and Staal and Verschuur [2012] for
the isotropic case. Note that the scattering and propagation operators are
treated as separate entities in JMI. Therefore, the dynamics will be attributed
towards the reflectivity, while the kinematics will be attributed towards the
anisotropic velocities. We expect the estimated anisotropic velocities will
be smoothed versions of their true counterparts since the kinematics will be
used to update them. On the other hand, the reflectivities will be of high
resolution because the dynamics are used to update them.

We follow an iterative gradient descent method in arriving at a solution,
where the calculated measurements are compared to the observed measure-
ments in a least-squares sense. For each iteration we compute the misfit
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function and its gradient, then we update the reflectivity, vertical velocity,
and horizontal velocity. As in FWMod, each iteration or roundtrip adds an
order of scattering. In the first iteration only the primaries are addressed.
However, for subsequent iterations multiples will be modeled and compared
to the observed data’s multiples. Hence, they will contribute towards an up-
date for the reflectivity, the vertical velocity, and the horizontal velocity. As
indicated in the previous section, multiples can potentially add extra sensi-
tivity in estimating the subsurface parameters. In the following sections we
will derive the anisotropic JMI gradients and modify the inversion strategy
in order to incorporate VTI kinematics.

3.3.1 Reflectivity

The reflectivity is updated in each iteration via Full Wavefield Migration
[Berkhout, 2014b; Davydenko and Verschuur, 2017]. FWM is based on min-
imizing the error between the observed and calculated reflections at the sur-
face (equation 3.2.1), assuming that the migration velocity is correct. In our
implementation each point in the subsurface will be characterized as a scalar
reflector. Therefore, the reflectivity matrix R is a diagonal matrix with the
scalar reflectivity ∆~r values along its diagonal. We can write the reflectivity
as:

R∪(zm) = R∪0 (zm) + ∆R∪(zm), (3.3.2)

where R∪ is the true reflectivity, R∪0 is background reflectivity which is the
current estimate of the reflectivity, and ∆R∪ is the update that tries to
make the background reflectivity equal to the true reflectivity. The gradient
of reflectivity is given as:

∆R∪(zm) =
∑
shots

∑
ω

[
W−(z0, zm)

]H ~E−(z0)
[
~P+(zm)

]H
, (3.3.3)

where W is the VTI propagation operator that is based on equation 2.1.15.
∆R∪ is a square matrix that has the gradient values of the reflectivity ∆~r
along its diagonal. The superscript H represents the Hermitian, note however
that in practice we approximate it by the transpose. Only scalar reflectivity
is considered, therefore, all off-diagonal elements of ∆R∪ are discarded in
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the following steps, yielding a diagonal matrix for ∆R∪. The gradient is
computed by cross-correlating the back-propagated residual and the forward
propagated source field and then summing over frequency at each depth level.
With more iterations we include more roundtrips, hence, internal multiples
are included in our forward modeled data and can be matched with observed
internal multiples in the back-propagated residual when we apply our imaging
condition. Hence, the multiples will contribute towards imaging a point in
the subsurface. A prominent issue in imaging with multiples is the cross-talk
between primaries and higher-order multiples (cross-correlating a primary
event with a second-order multiples, for example). The cross-talk would cause
noise for the initial iterations, however, with more iterations the multiples
are naturally explained via the modeling engine. Therefore, the cross-talk
(residual of the multiples) naturally decays in the closed-loop approach. With
the reflectivity gradient computed for each depth level zm, we can define the
wavefield perturbation associated with the update in R at each level by:

∆~P−∆r(z0) =
M∑
m=1

W− (z0, zm) ∆R∪ (zm) ~P+ (zm; z0) . (3.3.4)

The step length or the scaling parameter αr is given by:

αr = argminαr

(∑
shots

∑
ω

∥∥∥ ~E−(z0)− αr∆~P−∆r(z0)
∥∥∥2
)
. (3.3.5)

Taking the derivative with respect to αr and equating the expression to zero,
we arrive at:

αr =

∑
shots

∑
ω

([
∆~P−∆r

]H
~E(z0) +

[
~E(z0)

]H
∆~P−∆r

)
∑

shots

∑
ω 2
[
∆~P−∆r

]H
∆~P−∆r

. (3.3.6)

Note that a true line search is required in order to obtain accurate values of
αr, however, we assume that the linearization error is low in order to reduce
the computational cost for each iteration. However, taking this simplified
approach to calculating αr does not guarantee that the objective function will
be lowered at each iteration. The reflectivity is updated for each iteration
(i) as:
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R∪(i) = R∪(i−1) + αr∆R∪(i), (3.3.7)

where we usually start the process by setting R∪(0) = 0. In our derivation

we assume that R∪ = −R∩ in order to reduce the number of parameters
estimated for each depth level. However, one can derive a separate gradient
for R∩ in order to incorporate imaging from below, as was done in Davydenko
and Verschuur [2013, 2017].

3.3.2 Vertical Velocity

In section 3.1 we have chosen to parametrize the W operator in terms of a
vertical velocity (Vv), a horizontal velocity (Vh), and δ. In this section we
formulate the theory for estimating the Vv parameter. The process is fairly
similar to the reflectivity, where we compute a gradient and a step length and
then update the parameter. We start by defining a vertical velocity contrast
parameter βv as:

βv(x, z) = 1− V 0v(x, z)
2

Vv(x, z)2
, (3.3.8)

where V 0v is the background vertical velocity, while Vv is the true vertical
velocity. The extrapolation operators in the true medium for the upgoing
and downgoing wavefields are then defined as:

W−(zm, zm+1) = W−
0 (zm, zm+1) + ∆W−(zm, zm+1), (3.3.9)

and

W+(zm+1, zm) = W+
0 (zm+1, zm) + ∆W+(zm+1, zm), (3.3.10)

where W∓
0 are the extrapolation operators defined in the background medium

and ∆W∓ are the differences between the true and background operators.
The linearization of a single column of ∆W∓ with respect to βv is given as:

∆ ~W− (zm, zm+1) ≈

[
∂ ~W−

∂βv

]
βv=0

βv(x, zm) = ~G−v (zm, zm+1)βv(x, zm),

(3.3.11)
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and

∆ ~W+ (zm+1, zm) ≈

[
∂ ~W+

∂βv

]
βv=0

βv(x, zm) = ~G+
v (zm+1, zm)βv(x, zm),

(3.3.12)

where the anisotropic-medium ~Gv is given as:

~Gv (zm, zn) ≈ F−1
x

[
j∆z

2kz + σ
(Dv)e

−jkz∆ze−jkxxi
]
, (3.3.13)

where F−1
x indicates taking the inverse spatial Fourier transform and orga-

nizes the result in a vector. σ is a stabilization term to avoid dividing by
zero. Dv is given by:

Dv =

(
ω

V 0v

)2

− ω2V 02
v(1 + 2δ)2k4

x(
ω2 − (V 2

h − V 02
v(1 + 2δ))k2

x

)2 . (3.3.14)
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Figure 3.7: The scaling parameter Dv. Note that it decays for larger values
of |kx|.
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A detailed derivation of the gradient is provided in appendix A. Upon further
investigation we find that Dv is a scaling term that prioritizes the vertically
traveling events (events located close to kx = 0) in updating the βv gradient.
Figure 3.7 shows the Dv scaling parameter at 10Hz for a VTI medium with
Vv = 2000, ε = 0.2, and δ = 0.1. Note that as |kx| increases the scaling
decreases. Hence, vertically traveling waves have a greater effect in updating
the gradient compared to horizontally traveling waves. We limit the scaling
effect of Dv to span the domain of the real part of kz, since we are mostly
interested in the propagating waves. With the linearization at hand, we can
define the total vertical velocity contrast gradient ∆~βv as a summation of:

∆~βv(zm) = ∆~β−v (zm) + ∆~β+
v (zm), (3.3.15)

where ∆~β−v (zm) is the contrast gradient utilizing upgoing waves and ∆~β+
v (zm)

is the contrast gradient utilizing downgoing waves. They are given by:

∆ ~β−v (zm) = diag

(∑
shots

∑
ω

[
G−v (zm, zm+1)

]H ~E−(zm)
[
~Q−(zm+1)

]H)
,

(3.3.16)

and

∆ ~β+
v (zm) = diag

(∑
shots

∑
ω

[
G+
v (zm+1, zm)

]H ~E+(zm+1)
[
~Q+(zm)

]H)
,

(3.3.17)

with ~E−(zm) being the upgoing back-propagated residual and ~E+(zm) being
the downgoing back-propagated residual obtained via the reflectivity esti-
mate. They are given by:

~E−(zm) =
[
W−(z0, zm)

]H ~E−(z0), (3.3.18)

while

~E+(zm) =
∑
n>m

[
W+(zn, zm)

]H
R∪(zn) ~E−(zn). (3.3.19)
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The velocity gradient is fundamentally different from the reflectivity gradient.
The reflectivity gradient is computed by examining wavefields propagating
in opposite directions (upgoing and downgoing) at a certain depth level in
the subsurface. However, for the the velocity contrast gradient we examine
wavefields propagating in the same direction (both upgoing or both down-
going) at a certain depth level in the subsurface. Figures 3.8 and 3.9 show
schematically the wavefields used to compute each gradient. The associated
perturbation for the vertical velocity contrast can be defined as:

∆P−∆βv(z0) =

M∑
m=1

W− (z0, zm) G−v (zm, zm+1) ∆βv (zm) ~Q− (zm+1) +

M∑
m=1

M∑
n>m

W−(z0, zn)R∪(zn)W+(zn, zm+1)G+
v (zm+1, zm)∆βv (zm) ~Q+ (zm) ,

(3.3.20)

where ∆βv is a square matrix with gradients ∆~βv(zm) along its diagonal.
Finally, the new vertical velocities will be updated as:

V (i)
v =

V
(i−1)
v√

1− αv∆βv
, (3.3.21)

where i is the iteration number and αv is the step length.

𝑧𝑚 

𝑄+(𝑧𝑚)𝑾− (𝑧0, 𝑧𝑚) 𝐻 𝐸− (𝑧0)

Figure 3.8: Schematic representation of the downgoing and upgoing wavefields
contributing towards a reflectivity update at depth level zm.
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Figure 3.9: Schematic representation of the two upgoing wavefields contribut-
ing towards a velocity update at depth level zm.

3.3.3 Horizontal Velocity

As in the vertical velocity case, we define a contrast parameter associated
with the horizontal velocity as:

βh(x, z) = 1− V 0h(x, z)2

Vh(x, z)2
, (3.3.22)

where V 0h is the background horizontal velocity, while Vh is the true hori-
zontal velocity. The extrapolation operators can be written as:

W−(zm, zm+1) = W−
0 (zm, zm+1) + ∆W−(zm, zm+1), (3.3.23)

and

W+(zm+1, zm) = W+
0 (zm+1, zm) + ∆W+(zm+1, zm), (3.3.24)

where W∓
0 is the extrapolation operator defined in the background medium.

∆W∓ is the difference between the true and background operators. We
linearize ∆W∓ with respect to βh, where each column can be written as:
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∆ ~W− (zm, zm+1) ≈

[
∂ ~W−

∂βh

]
βh=0

βh(x, zm) = ~G−h (zm, zm+1)βh(x, zm),

(3.3.25)
and

∆ ~W+ (zm+1, zm) ≈

[
∂ ~W+

∂βh

]
βh=0

βh(x, zm) = ~G+
h (zm+1, zm)βv(x, zm).

(3.3.26)

The anisotropic-medium ~Gh is given as:

~Gh (zm, zn) ≈ F−1
x

[
j∆z

2kz + σ
(Dh)e−jkz∆ze−jkxxi

]
, (3.3.27)

where F−1
x indicates taking the inverse spatial Fourier transform and σ is a

stabilization term to avoid dividing by zero. Dh is given by:

Dh =
ω2V 02

h(1 + 2δ)k4
x(

ω2 − (V 02
h − V 2

v (1 + 2δ))k2
x

)2 . (3.3.28)

A detailed derivation of the gradient is provided in the appendix A. Similar to
Dv, Dh is a scaling parameter (or more appropriately radiation parameter).
However, Dh prioritizes the events traveling horizontally in updating the βh
gradient. Figure 3.10 shows the Dh scaling parameter at 10Hz for a VTI
medium with Vv = 2000, ε = 0.2, and δ = 0.1. Compared to Dv in figure 3.7,
Dh increases the weight of events traveling with large |kx|. We also limit the
scaling effect to be bound by the domain of real kz values, to avoid boosting
the evanescent wave. The horizontal velocity contrast gradient ∆~βh is then
defined as a summation of:

∆~βh(zm) = ∆~β−h (zm) + ∆~β+
h (zm), (3.3.29)

with

∆ ~β−h (zm) = diag

(∑
shots

∑
ω

[
G−h (zm, zm+1)

]H ~E−(zm)
[
~Q−(zm+1)

]H)
,

(3.3.30)
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Figure 3.10: The scaling parameter Dh. Note that it decays for smaller values
of |kx|.

and

∆ ~β+
h (zm) = diag

(∑
shots

∑
ω

[
G+
h (zm+1, zm)

]H ~E+(zm+1)
[
~Q+(zm)

]H)
,

(3.3.31)

where ~E−(zm) and ~E+(zm) are the upgoing and downgoing extrapolated
residual wavefield. They are defined as:

∆ ~E−(zm) =
[
W−(z0, zm)

]H
∆ ~E−(z0), (3.3.32)

and

∆ ~E+(zm) =
∑
n>m

[
W+(zn, zm)

]H
R∪(zn)∆ ~E−(zn). (3.3.33)

As in the vertical velocity case we can write the associated perturbation for
the horizontal velocity contrast as:
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∆P−∆βh(z0) =

M∑
m=1

W− (z0, zm) G−h (zm, zm+1) ∆βh (zm) ~Q− (zm+1) +

M∑
m=1

M∑
n>m

W−(z0, zn)R∪(zn)W+(zn, zm+1)G+
h (zm+1, zm)∆βh (zm) ~Q+ (zm) ,

(3.3.34)

where ∆βh is a square matrix with gradients ∆~βh(zm) along its diagonal.
The update for the horizontal velocities are given as:

V
(i)
h =

V
(i−1)
h√

1− αh∆βh
, (3.3.35)

where i is the iteration number and αh is its associated step length.

3.4 Inversion Strategy

Isotropic JMI inverts for the reflectivity and velocity sequentially in the same
iteration. With the addition of an extra parameter for the VTI case we need
to update the inversion strategy to include the extra parameter. We are
interested in reflections that are acquired at the surface. R and Vv usually
have a greater influence on the surface seismic reflections than Vh. Starting
with an initial R and Vv that are far from their true values will cause highly
erroneous Vh updates for the initial iterations. However, arriving at a close
enough solution for R and Vv greatly facilitates the convergence of the Vh
parameter. Therefore, we prefer to employ a hierarchal approach where we
invert for R and Vv initially and only switch to R, Vv, and Vh inversion
when we achieve convergence. Plessix and Cao [2010] and later on Cheng et
al. [2014] formulate a similar hierarchal inversion strategy for their chosen
parameterizations for FWI applications. The δ parameter will not be esti-
mated in our approach due to the intrinsic ambiguity between it and depth.
Therefore, it will be estimated from other sources of information if available.

Vv and Vh are associated with the same operator W and they have a degree
of trade-off happening in between them, as shown in figure 3.2. Finding two
different step lengths (αv and αh) associated with Vv and Vh respectively in
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a flip-flop manner is not ideal since it oscillates the update between the two
parameters, for the later iterations. Finding both step lengths and updating
the parameters simultaneously helps in alleviating this issue. We solve for
αv and αh simultaneously by solving the following set of equations:

[
A B

C D

][
αv

αh

]
=

[
F

G

]
, (3.4.36)

where

A =
∑
shots

∑
ω

2
[
∆~P∆βv

]H
∆~P∆βv , (3.4.37a)

B =
∑
shots

∑
ω

[
∆~P∆βv

]H
∆~P∆βh , (3.4.37b)

C =
∑
shots

∑
ω

[
∆~P∆βh

]H
∆~P∆βv , (3.4.37c)

D =
∑
shots

∑
ω

2
[
∆~P∆βh

]H
∆~P∆βh , (3.4.37d)

F =
∑
shots

∑
ω

([
∆~P∆βv

]H
∆ ~E(z0) +

[
∆ ~E(z0)

]H
∆~P∆βv

)
, (3.4.37e)

G =
∑
shots

∑
ω

([
∆~P∆βh

]H
∆ ~E(z0) +

[
∆ ~E(z0)

]H
∆~P∆βh

)
. (3.4.37f)

With the step lengths at hand we first update the reflectivity R then we
update Vv and Vh simultaneously in each iteration. A single iteration can be
summarized as:

[1] Update ~P+ and ~P− via equations 2.2.25 and 2.2.26.

[2] Calculate the reflectivity gradient ∆R∪ via equation 3.3.3.

[3] Calculate the reflectivity perturbation ∆~P−∆r via equation 3.3.4.

[4] Calculate the step length αr associated with the reflectivity gradient
via equation 3.3.6.
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[5] Update the reflectivity R∪ via equation 3.3.7.

[6] Update ~P+ and ~P− with the new reflectivity R∪ via equations 2.2.25
and 2.2.26.

[7] Calculate the vertical velocity contrast gradient ∆~βv via equation 3.3.15.

[8] Calculated the vertical velocity perturbation ∆P−∆βv via equation 3.3.20.

[9] Calculate the horizontal velocity contrast gradient ∆~βh via equation
3.3.29.

[10] Calculated the horizontal velocity perturbation ∆P−∆βh via equation
3.3.34.

[11] Calculate the step lengths αv and αh associated with the vertical and
horizontal velocities respectively via equation 3.4.36.

[12] Update the vertical (Vv) and horizontal (Vh) velocities via equations
3.3.21 and 3.3.35.

Finally, we follow a multi-scale approach where we start with a limited low
frequency band then ramp up to wider bands for later iterations. The reason
is because the rate of convergence and the stability of the algorithm is better
for the low frequency bands than the higher frequency ones. It also reduces
the computational cost, arriving at a solution is faster when starting with
the lower frequencies (as shown in Staal and Verschuur [2013]).



4

Synthetic Examples

In this chapter, we test the effectiveness of JMI on a number of synthetic VTI
models. The first example demonstrates the significance of incorporating
anisotropy in inversion. We assume a known anisotropy model and invert for
the vertical velocity (Vv) given the anisotropic model. We then invert the
same anisotropic data under an isotropic assumption, in order to analyze the
effects of anisotropic data on isotropic inversion.

The second example is a step further where we not only invert for the ver-
tical velocity (Vv), but the horizontal velocity (Vh) is updated as well along
with the reflectivity. In the third example we show an even more challenging
situation where we invert for all three parameters, however, using a different
modeling engine to generate the observed data (anisotropic elastic FD mod-
eling), thus avoiding the “inverse crime” situation. We also investigate the
convergence of the method. The initial velocities are chosen to have more
than 1000m/s difference between the initial and the true velocities. In this
example we aim to show the flexibility of the method in inverting for a wider
range of initial models.

The fourth example tests the effectives of the method to invert for a more
complex elastic dataset that was generated using an anisotropic elastic mod-
eling method (FD). Angle-dependent reflectivities and elastic effects such as
converted waves are apparent in the data. Therefore, we preprocess the data
to attenuate the elastic effects before inversion.
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The fifth example analyzes the effects of internal multiples on the inversion.
We invert for a model that generates strong internal multiples that reverber-
ate thought the seismic record. We include internal multiples in inversion.
Then with the same starting parameters we run the inversion again, however,
now we ignore internal multiples in inversion.

For the final example we test the method on the HESS VTI model. The model
is a more realistic model that resembles Gulf of Mexico geology. In it we invert
for both the vertical and horizontal velocities, along with reflectivity.

4.1 Example 1: Lens-shaped Model

For this example we make use of a modified version of the lens-shaped model
presented by Staal [2015] in order to analyze the effects of anisotropy in
inversion. We chose this model in particular because it has been studied
extensively for isotropic JMI applications. Hence, we can see the effects
of anisotropy and compare them with previous JMI results. The model is
2000m wide and 620m deep and it contains a lens anomaly with flat layers
underneath. We add anisotropic coefficients (δ and ε) to most of the features
in the model. Figure 4.1 shows the reflectivity, vertical velocity, ε, and δ
distributions. Note that we purposely made the surface anisotropic, meaning
that the source and receivers are in an anisotropic region. The pseudo S-wave
could manifest itself in the recorded data in some modeling codes. However,
here we used phase shift extrapolators in our modeling engine (FWMod),
which attenuate the effects of the pseudo S-wave. Also note that the lens
anomaly is anisotropic with a negative value of ε and δ = 0, resulting in
negative values for η, that can cause an exponentially growing solution for
some modeling methods. However, due to the flexibility of FWMod and the
remedies described in chapter 2 it is possible to remove both limitations.

We generate a Ricker wavelet with a peak frequency of 30Hz as the source
wavelet. There are 101 equally spaced sources and the receivers span the
2000m at 20m intervals. The lens anomaly has a high reflectivity compared
to the flat target layers underneath, therefore, it will generate strong internal
multiples that mask the reflections of the flat layers if not taken into account.

The initial reflectivity is set to zero (figure 4.2a), while the initial vertical
velocity model is a linearly increasing model as given in figure 4.2b. In this
example a smoothed version of the anisotropic model is assumed to be known
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(known δ and ε) and the inversion will be focused around estimating the Vv
parameter along with R. Figures 4.2c and 4.2d show the resulting image and
Vv model after inversion. The velocity model is a smoothed version of the
true velocity model due to it relying on the kinematics for inversion. The
results also show that the lens and the layers underneath were well recovered
in both the reflectivity and the velocity.

In order to illustrate the effect of ignoring anisotropy we invert a second
time, however, we assume an isotropic medium. Hence, we assume that
δ = 0 and ε = 0. We invert for the vertical velocity following the same
initial model and the same number of iterations as before. Figures 4.3a
and 4.3b show the inverted reflectivity and isotropic velocity. Interestingly,
the lens still appears, however, as low velocity anomaly due to the negative
value of ε. Also note that the region around the lens appears with a higher
velocity due to the positive values of δ and ε. These anomalies appear because
the method is trying to explain the anisotropic effects as isotropic velocity
changes. Subsequently, the estimated image suffers due to the erroneous
velocity model. This is especially evident from the anticline appearing in the
image where the flat layers were supposed to be at 400m depth. Surprisingly
enough, we do not observe an imprint from the internal multiples. So the
wrong model was still accurate enough to explain the internal multiples.

Finally, we invert for R and Vv assuming a given smooth anisotropic model.
However, we account for primaries-only, therefore, internal multiples are con-
sidered as noise. For this model the lens causes strong internal multiples that
reverberate and mask other weaker events. Figures 4.3c and 4.3d show the
inverted reflectivity and vertical velocity. Ignoring the multiples in this case
causes severe cross-talk in the image, apparent underneath the lens. The ve-
locity update is also inferior due to the multiples interfering with the layers
below. The velocities below the lens appear faster than the true velocities.
This is because the internal multiple are associated with the fast velocity in
the lens, which leaks into the slower velocity layers underneath the lens.
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Figure 4.1: The true values for a) the reflectivity, b) the vertical velocity Vv
[m/s], c) the ε model, and d) the δ model.
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Figure 4.2: The initial values for a) the reflectivity and b) the vertical velocity
Vv [m/s]. The inverted values for c) the reflectivity and d) the vertical velocity
Vv [m/s] assuming a known anisotropic parameter distribution for δ and ε.
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Figure 4.3: The inverted values for a) the reflectivity and b) the vertical
velocity Vv [m/s] assuming an isotropic subsurface (δ = 0 and ε = 0). The
inverted values for c) the reflectivity and d) the vertical velocity Vv [m/s]
when only primaries are considered in the inversion (δ and ε are known),
such that multiples are not accounted for and are treated as noise.
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4.2 Example 2: Layered Model

For the second example we test the entire inversion algorithm where we es-
timate R, Vv, and Vh, while a smooth version of δ is assumed to be known.
The model is a layered model that is 2000m wide and 500m deep, the first
layer is isotropic while the rest of the model is anisotropic (figure 4.4).

A total of 101 shots were generated at the surface at equal intervals. As in
the previous example we generate a Ricker wavelet with a peak frequency of
30Hz as the source wavelet. The receivers span the 2000m section at 20m
intervals. We place a 500m taper on each side of the model in order to reduce
the edge effects and and minimize the effect of insufficient illumination.

the initial reflectivity is set to zero, while the initial velocity models are
linearly increasing (figure 4.5). Note that the initial model is very different
from the true model. For example, at the bottom of the model there is more
than 1000m/s difference between the true and initial Vh.

Following the proposed hierarchal approach, we initially invert for R and
Vv, and only after achieving convergence we include Vh inversion. Figure 4.6
shows the inverted results. Both the vertical and horizontal velocities are a
smooth version of their true counterparts, as expected, while the reflectivity
is an accurate band-limited representation of the true model. Thus, it is
demonstrated that the initial model can be quite wrong, while still satisfac-
tory inversion results are obtained. Finally, note that no correct velocity is
estimated below the deepest reflector, as expected, as JMI uses only reflection
energy.
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Figure 4.4: The true values for a) the reflectivity, b) the vertical velocity Vv
[m/s], c) the horizontal velocity Vh [m/s], and d) the δ parameter.



4.2 Example 2: Layered Model 79

lateral location [m]

de
pt

h 
[m

]

Initial Reflectivity

 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500 −0.4

−0.2

0

0.2

0.4

a)

lateral location [m]

de
pt

h 
[m

]

Initial Vertical Velocity

 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

2000

2500

3000

3500

[m/s]

b)

lateral location [m]

de
pt

h 
[m

]

Initial Horizontal Velocity

 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

2000

2500

3000

3500

[m/s]

c)

Figure 4.5: The initial values for a) the reflectivity, b) the vertical velocity Vv
[m/s], and c) the horizontal velocity Vh [m/s].
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Figure 4.6: The inverted values for a) the reflectivity, b) the vertical velocity
Vv [m/s], and c) the horizontal velocity Vh [m/s].
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4.3 Example 3: Elastic Anisotropic Model

The acoustic anisotropic dispersion relation (equation 2.1.15) provides a good
approximation for the VTI P-wave kinematics. However, it does not address
some of the elastic effects. In the next two examples we analyze and better
understand the elastic effects on the inverted results. We generate the ob-
served data via a different modeling method, namely Finite-Difference (FD)
modeling. In our simulations we make use of the open source software Seis-
mic Unix for FD modeling. The FD implementation was elastic anisotropic
2D modeling that is 4th order in space, it is primarily based on the algorithm
presented by Juhlin [1995]. Our FWMod implementation is under the acous-
tic assumption, while the FD implementation is under an elastic assumption.
Hence, we will observe the discrepancies between the acoustic and elastic
data sets in inversion.

We generate a simple elastic VTI model with constant values of VP0 =
4000m/s, VS0 = 2309, ε = 0.2, δ = 0.1. The model has a density change
at 800m, where the density changes from ρ = 2500 to ρ = 3000. Figure
4.7 shows the parameters that we are interested in inverting for, namely the
reflectivity, the vertical velocity, and the horizontal velocity. A total of 150
shots were generated at the surface at equal intervals. The source wavelet is
a Ricker wavelet with an average frequency of 20Hz as the source wavelet.
The receivers span the surface at 20m intervals. The FD modeled data will
contain converted waves as well as angle-dependent reflectivities, which will
not be properly explained by the acoustic angle-independent assumption. We
eliminate the direct wave and the converted waves, in order to focus on the
reflected P-wave. Figure 4.10a shows the FD shot gather while figure 4.10b
shows the corresponding FWMod shot gather. We normalize the energy of
the FD gathers as a function of offset in order to attenuate some of the elastic
effects before attempting to invert for the subsurface parameters. This model
is the best case scenario, because after pre-processing the elastic data closely
resembles acoustic data.

Figure 4.8 shows the starting models. Note that the vertical velocity dif-
ference is 800m/s over 800m and the horizontal velocity difference is over
1500m/s over the same 800m interval. This will create large discrepancies
between the reflection arrival times between observed and calculated data
sets, which will create issues in inversion if the reflectivity is not estimated at
each iteration. Figure 4.9 shows the inversion results. The inversion results
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are accurate except at the edges due to the poor illumination. It is interesting
to note the difference between the edges and the middle of the model. We
can see the effect of updating the velocities on the image. By comparing the
reflector at the edges and in the middle of the model, we can see that the
reflector was shifted more than 200m.
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Figure 4.7: The true values of a) the reflectivity, b) the vertical velocity Vv
[m/s], and c) the horizontal velocity Vh [m/s].
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Figure 4.8: The initial values for a) the reflectivity, b) the vertical velocity Vv
[m/s], and c) the horizontal velocity Vh [m/s].
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Figure 4.9: The inverted values for a) the reflectivity, b) the vertical velocity
Vv [m/s], and c) the horizontal velocity Vh [m/s].
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Figure 4.10: Modeled shot gathers related to the model in figure 4.7. a) The
FD shot gather. b) The FWMod shot gather.

4.4 Example 4: Layered Elastic Anisotropic Model

The elastic model presented in this section is similar to the model presented
in example 2 (figure 4.4). However, we convert the model from an acoustic
model to an elastic model. In order to translate the acoustic FWMod pa-
rameters into elastic finite-difference parameters we make use of Gardner’s
relation to estimate the density via the P-wave velocity values [Gardner et
al., 1974]. As for the S-wave velocity we take it to be half the P-wave veloc-
ity. The rest of the parameters can be directly translated into their elastic
finite-difference counterparts. Figure 4.11 shows the density, P-wave velocity,
S-wave velocity, and ε used to generate the elastic anisotropic finite-difference
data. Note that δ is the same as in figure 4.4d.

Figure 4.12a shows one shot gather (in the middle of the section) obtained
via elastic anisotropic finite-difference modeling (after surface wave removal).
There are some significant elastic features, chief among them is the angle-
dependent reflectivities and the presence of converted waves (a prominent
converted wave arrives at t ≈ 0.58). The variations in amplitude in the
elastic data would cause significant errors in inversion. This is because the
method is based on minimizing the error between the observed and modeled
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data and it will allocate more effort in minimizing the large amplitudes while
ignoring weaker events. Running anisotropic JMI on the raw data sets pro-
duces inferior results. Analyzing the estimated data’s shot gather generated
from the last iteration we can see that many of the elastic effects are not ex-
plained. Figure 4.12b shows the estimated shot gather from the last iteration
of JMI. It corresponds to the same shot gather in figure 4.12a.

In order to understand the elastic effects we take the τ −p transform of both
the observed data used for inversion and the estimated data provided from
the final iteration of anisotropic JMI. Figure 4.12a shows the observed data
and figure 4.12b estimated data in the time space domain, while figure 4.12d
and figure 4.12e show their τ − p transforms respectively.

In this domain the angle-dependent features are better identifiable. We can
also distinguish the converted wave from the P-wave arrivals. We normalize
the observed data, to make it more comparable to the estimated data (figure
4.12f), then we convert it back to the time-space domain (figure 4.12c). We
use this normalized data as input for anisotropic JMI and rerun the inversion.

The initial reflectivity and velocities are the same as the ones used in the
previous example (figure 4.5). Figure 4.13 shows the inverted reflectivity,
vertical velocity, and horizontal velocity. We note that the layering is visible
in the velocity models, both the first and second layers are comparable to their
true counterparts. However, the third layer is of much lower quality, and we
see that the estimated horizontal velocity is lower than its true counterpart.

Looking at the shot gather we can see that the flanks of the primary event
associated with the third reflector intertwine with the flanks of the primaries
from the first and second reflectors at the far offsets. We believe that the
strong amplitude elastic effects in the flanks overshadows a significant portion
of the anisotropic kinematics of the third layer. Nevertheless, the image is
accurate and the layering is visible in both VV and Vh despite the simplified
modeling algorithm.
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Figure 4.11: The true values for a) the density [kg/m3], b) the P-wave velocity
along the symmetry axis [m/s], c) the S-wave velocity along the symmetry axis
[m/s], and d) the ε field.
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Figure 4.12: Normalizing the data. a) The observed shot gather obtained via
anisotropic elastic finite-difference. b) The estimated shot gather obtained
via anisotropic JMI. c) The observed shot gather after normalization. d) The
τ − p transform of the observed shot gather in a). e) The τ − p transform of
the estimated shot gather in b). f) The normalization in the τ − p domain of
the observed shot gather in d).
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Figure 4.13: The inverted values for a) the reflectivity, b) the vertical velocity
Vv [m/s], and c) the horizontal velocity Vh [m/s] using elastic data.
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4.5 Example 5: Internal Multiple Model

In order to analyze the effects of internal multiples in this inversion, we gener-
ate a model that promotes the generation of strong internal multiples. Figure
4.14 shows the true reflectivity, vertical velocity, horizontal velocity, and δ
values. The strong internal multiples are generated by the high reflectivity of
the second layer (between 160m and 350m). The multiples mask the weaker
primaries that are generated underneath (from 350m and onwards). A total
of 151 shots were generated at the surface at equal intervals. The source
wavelet is a Ricker wavelet with a peak frequency of 30Hz. The receivers
span the 3000m section at 20m intervals.

The initial velocity models are 1D linearly increasing models as given in
figure 4.15, while the initial reflectivity is set to zero. As in the previous case
we initially only invert for R and Vv, and after achieving convergence we
include Vh inversion. Figure 4.16 shows the inversion results. The estimated
velocity models are a smoothed version of their true counterparts. Note
that a smoothed version of the high velocity anomaly and the low velocities
underneath are recovered. Also note that the results degrade towards the
edges of the model due to the limited illumination.

We repeat the inversion using the same initial model. However, we limit the
inversion to primaries-only. Although, internal multiples are present in the
observed data, they will not be addressed in inversion and will be considered
as noise. In this example the multiples ring through the record and mask
the weak primaries. Figure 4.17 shows the primaries-only inversion results.
Comparing the primaries-only inversion velocities with the full wavefield in-
version velocities, we note that the velocities in the area below the high
velocity anomaly are overestimated.

We believe that this is due to the cross-talk between the primaries and in-
ternal multiples. Since the internal multiples have larger amplitudes than
the deeper primaries, they will contribute more towards a velocity update
compared to the deep primaries. The velocities are generally overestimated
below layer 2. Consequently, the corresponding image shows that the inter-
nal multiples are well focused but at the wrong location. Furthermore, they
are masking the primaries.



4.5 Example 5: Internal Multiple Model 91

True Reflectivity

lateral location [m]

de
pt

h 
[m

]

 

 

200 400 600 800 1000 1200 1400 1600 1800 2000

0

200

400

600

−0.5

0

0.5

a)

True Vertical Velocity

lateral location [m]

de
pt

h 
[m

]

 

 

200 400 600 800 1000 1200 1400 1600 1800 2000

0

200

400

600 2000

2500

3000

[m/s]

b)

True Horizontal Velocity

lateral location [m]

de
pt

h 
[m

]

 

 

200 400 600 800 1000 1200 1400 1600 1800 2000

0

200

400

600 2000

2500

3000

[m/s]

c)

lateral location [m]

de
pt

h 
[m

]

True δ

 

 

200 400 600 800 1000 1200 1400 1600 1800 2000

0

200

400

600

0

0.02

0.04

0.06

0.08

0.1

d)

Figure 4.14: The internal multiples model. a) The reflectivity, b) the vertical
velocity Vv [m/s], c) the horizontal velocity Vh [m/s], and d) the δ values.
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Figure 4.15: The initial values used for inversion. a) The reflectivity, b) the
vertical velocity Vv [m/s], and c) the horizontal velocity Vh [m/s].

Finally, we consider the case where only primaries are modeled and inverted.
There are no internal multiples in the observed data, i.e. we assume that they
were perfectly removed and, therefore, they will not have any contribution
in the inversion. We recompute the observed data and limit it to a single
roundtrip of FWMod in order to model the primaries-only.

We then start the inversion with the same set of starting parameters as in
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Figure 4.16: The inverted values using primaries and internal multiples. a)
The reflectivity, b) the vertical velocity Vv [m/s], and c) the horizontal velocity
Vh [m/s].

the previous examples. Figure 4.18 shows the inverted reflectivity, vertical
velocity, and horizontal velocity. There are a couple of interesting features.
First, it appears that the trade-off issue is still there, meaning that the verti-
cal velocity is overestimated while the horizontal velocity is underestimated
compared to figure 4.16.
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Figure 4.17: The inverted values when only primaries are considered in in-
version. a) The reflectivity, b) the vertical velocity Vv [m/s], and c) the
horizontal velocity Vh [m/s].

This suggests that the internal multiples added the extra sensitivity in both
the velocity estimates. Note that the image suffers due to the trade-off, the
events are a bit deeper compared to their true counterparts. The second ob-
servation is that the reflections underneath the high velocity layer are mapped
too deep because of the vertical velocity being overestimated. Despite the
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Figure 4.18: The inverted values when only primaries are modeled in the
observed data. a) The reflectivity, b) the vertical velocity Vv [m/s], and c)
the horizontal velocity Vh [m/s].

absence of internal multiples in the observed data, the invertion results are
of lower quality. This is due to the trade-off occurring between the vertical
velocity and the horizontal velocity.



96 Synthetic Examples

4.6 Example 6: HESS VTI Model

The previous examples demonstrate the performance of the inversion algo-
rithm on a number of simplified models in order to understand and analyze
isolated effects. In this section we validate our theory on a more realistic and
complex model, the so-called Hess VTI model. This model was generated in
the late 1990s by the Amerada Hess Corp, who consider it to be represen-
tative of several exploration areas in the Gulf of Mexico. The magnitude of
anisotropy is considered to be moderate to strongly anisotropic [Tsvankin,
2012]. We consider only part of the model containing the fault. We disregard
the salt due the limited recording aperture, which causes limited illumina-
tion on some parts of the salt [Han et al., 2000; Tsvankin, 2012]. We also
subsample and rescale the model in order to reduce the computational cost
involved in inversion.

Figures 4.19 shows the true reflectivity, vertical velocity, horizontal velocity,
and δ models. The acquisition configuration is a fixed spread survey with
87 equally spaced shots at the surface, the receivers are also located at the
surface at 20m intervals. We generated a Ricker wavelet that has a peak
frequency at 30Hz as the source wavelet. Note that the minimum frequency
used in inversion is 5Hz while the maximum frequency used is 80Hz, we
zeroed-out any frequencies that were not in that range.

We generated two 1D linear models as the initial velocity models for the
vertical and horizontal velocities, while the initial reflectivity was set to zero
(figure 4.20). We invert for the reflectivity and vertical velocity first, and we
include the horizontal velocity estimation only after we achieve convergence.
Figures 4.21 shows the final inversion results. We notice that the image is
band-limited but corresponds well to the true image, whereas the velocities
are a smoothed version of their true counterparts, as expected. Note that
internal multiples were addressed in the inversion method, as they no longer
appear as significant artifacts in the image or the velocities. Also note that
the fault is reasonably well represented in both velocity models.

Thus, we conclude that anisotropic JMI delivers good models for both the
vertical and horizontal velocities (where δ is assumed to be known). Note
that the method allows internal multiples to contribute towards the estimated
models and that initial models can have large velocity errors.
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Figure 4.19: Subset of the Hess VTI model. a) The reflectivity, b) the vertical
velocity Vv [m/s], c) the horizontal velocity Vh [m/s], and d) the δ values.
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Figure 4.20: The initial values used for inversion. a) The reflectivity, b) the
vertical velocity Vv [m/s], and c) the horizontal velocity Vh [m/s].
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Figure 4.21: The inverted values, a) The reflectivity, b) the vertical velocity
Vv [m/s], and c) the horizontal velocity Vh [m/s].
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5

Field Data Example

This chapter illustrates the application of anisotropic JMI on a 2D marine
field data set from the North Sea. Our aim is to automatically estimate the
reflectivities, vertical velocities, and horizontal velocities of the subsurface.

5.1 Pre-processing

The seismic reflection data that we invert is a 2D streamer data that was
acquired from the North Viking Graben in the North Sea [Keys and Foster,
1994]. The data is publicly available (courtesy of SEG and ExxonMobil) and
is commonly referred to as the “Mobil AVO dataset”. The data consists of
1001 shots with a shot spacing of 25m. The receiver spacing is also 25m.
The recording time is 6s and the sampling time is 0.004s. The acquisition
geometry is an off-end spread with a minimum offset of 262m while the max-
imum offset is 3237m. We make use of reciprocity in order to transform the
off-end geometry to a split-spread geometry. Furthermore, we interpolate in
order to generate the near offsets via Radon interpolation [Kabir and Ver-
schuur, 1995]. In our formulation we assume that the recorded data consists
of upgoing waves only, therefore, we deghost the data. Finally, due to the
large size of the data we consider a 4km subsection, consisting of 161 shots.
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In order to get a general idea of the geology in the region we generate a zero-
offset section. Figure 5.1 shows the zero-offset section. The shallow layers
are flat while the the deeper layers are gently dipping. We believe that a VTI
model can be considered since most of the events are flat. We note that many
of the events appearing past 1s are discontinuous and are of lower quality
than the shallower events.

The next step lies in estimating a suitable source wavelet for inversion. We
applied Estimation of Primaries by Sparse Inversion (EPSI) in order to es-
timate the primaries and the best fit source wavelet [van Groenestijn and
Verschuur, 2009a,b]. We do not require a subsurface model at this stage since
EPSI is a data-driven method. Figure 5.2a shows the estimated wavelet via
EPSI. Note that we add 0.04s to the beginning of the seismic data in order
to make it causal. Also note that we disregard the primaries in the EPSI
result, we prefer a Surface-Related Multiple Elimination (SRME) approach
to attenuate the surface-related multiples [Verschuur et al., 1992; Verschuur,
2006]. Therefore, we attenuate the surface-related multiples via SRME, as
it turns out for these data SRME provides better surface multiple suppres-
sion, probably due to 3D amplitude effects in the data. Figures 5.2b and
5.2c show a shot gather (at the beginning of the section) before and after
applying SRME. Note that many of the strong ringing surface-related mul-
tiples are suppressed. Figure 5.2c shows the residual (i.e. the surface-related
multiples).

A vertical well is located at approximately the middle of the section (indicated
by the drilling rig in figure 5.1). Vp, Vs, and ρ measurements were acquired
starting at 1000m depth. Therefore, the vertical velocities are quite accurate
beyond 1000m at the well location. However, the velocities above 1000m are
relatively unknown. We analyze previous work done by Kabir and Verschuur
[1996] in the same region. Their aim was to estimate the macro velocity
model, in an isotropic framework. They corroborate their results by analyzing
the Common Image Gathers (CIGs) and compare their results with the well-
logs. Although they find an accurate representation for the velocity model in
most parts of the section, the shallow region that we are interested in (less
than 1000m near well A) shows inaccurate velocities, indicated by curved
CIGs. Even though they estimate the best fit isotropic velocity, the CIGs
are still curved which may indicate the presence of anisotropy. In this chapter
we will attempt to estimate the velocities in this region under an anisotropic
JMI framework, as well as investigate whether an anisotropic velocity model
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Figure 5.2: a) The estimated source wavelet, via EPSI. b) Shot gather with
multiples. c) Application of SRME on the same shot gather. d) The surface-
related multiples that were attenuated.

explains the reflection data better than an isotropic velocity model.
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5.2 Anisotropic JMI

The initial isotropic velocity model for inversion is a 1D model that was gen-
erated by setting the water velocity to 1450m/s while the rest of the first
1000m is set to a constant value of 1700m/s. Finally, we smooth the Vp ve-
locities obtained from the well to fill the region beyond the first 1000m. The
initial isotropic model is shown in figure 5.3a. We image the data (via FWM)
using the initial velocity model. Figure 5.3b shows the resulting FWM im-
age. Note that many of the reflectors are discontinuous and are unfocused.
We also generate the corresponding Angle-Domain Common Image Gathers
(ADCIGs) in order to analyze the accuracy of the starting model [Sava and
Fomel, 2003]. Figure 5.4 shows the ADCIGs for the initial model. Note
that many of the events are curved upwards, indicating an erroneous veloc-
ity model. Also note that the deeper events, beyond 1000m are also curved
although their values were obtained from well-logs. This may indicate erro-
neous overburden velocities.

We apply anisotropic JMI given the isotropic initial model in figure 5.3. We
follow the same methodology presented in the synthetic examples in chapter
4. We run anisotropic JMI several times, each time taking the smoothed
version of the previous result as the starting model. In total we run approx-
imately 160 iterations of anisotropic JMI that include frequency bands that
range from 2Hz to 40Hz. In this example δ was set to be zero, there was
no a priori information about it. Figure 5.5 shows the estimated vertical
and horizontal velocity models. Figure 5.6 shows the estimated FWM image
using the estimated anisotropic velocities of figure 5.5. Comparing the FWM
image in figure 5.6 with the initial models image in figure 5.3b we find an im-
provement in the continuity and focusing of the reflectors (at approximately
800m). Also note that the two faults are more clearly visible in the deep part
of the section. The velocity models also slightly show the effect of the faults.

Figure 5.7 shows the associated ADCIGs obtained via conventional anisotropic
depth migration with our estimated model. Note that the ADCIGs are fairly
flat (but not perfect), indicating a suitable model. The ADCIGs are com-
puted after anisotropic JMI in order to analyze the accuracy of inversion.
They are not utilized in the inversion as in MVA. Also note that the AD-
CIGs still contain internal multiples, which appear as weak curved events
(downward) in the background.

Figure 5.8 shows the observed data and modeled data after anisotropic JMI.
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Figure 5.3: The initial values for the isotropic velocity [m/s]. b) The FWM
image obtained via the isotropic initial velocity model.
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Figure 5.4: ADCIGs associated with the initial model at lateral locations of
1000m, 2000m, and 3000m.

Note that most of the main reflections are explained. However, it is inter-
esting to analyze the events that were not explained. Chief among them is
a refracted wave (indicated by the arrows). The modeling method FWMod
does not take it into account, therefore, it is ignored during inversion. The re-
fracted waves can hold valuable information on the Vh parameter if one were
to included them in inversion [Alkhalifah, 2016a]. Angle-dependent reflectiv-
ities and converted waves are also not explained by the method. Therefore,
they do not appear in the calculated data set. Although we resort to an
acoustic assumption, it adequately explains many of the events in this data
set.

With the same initial model, we rerun the inversion under an isotropic as-
sumption. We strive to keep the same procedure as in the anisotropic in-
version. Hence, the number of iterations and frequency bands are the same
as previously. The only difference is that the isotropic velocities will be
estimated. Figure 5.9 shows the resulting isotropic velocity model and its
resulting FWM image. Note that the isotropic velocity model is faster than
the anisotropic velocity model at the shallow layers. This is most likely due
to the isotropic assumption trying to explain the anisotropic effects. Figure
5.10 shows the associated ADCIGs. We note that the ADCIGs are very sim-
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Figure 5.5: The estimated values for a) the vertical velocity Vv [m/s] and b)
the horizontal velocity Vh [m/s].
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Figure 5.6: The estimated FWM image obtained from the anisotropic models
in figure 5.5.

ilar to the anisotropic ADCIGs (figure 5.7), however, they are more curved
towards higher angles. This indicates that the anisotropic velocity model was
more adequate in describing the subsurface.

Finally, we analyze the effects of internal multiples. Surface-related multiples
were attenuated, however, internal multiples are in the data. Anisotropic JMI
will utilize them in inversion. We believe in this example the internal mul-
tiples are relatively weak due to the weak reflection coefficients. Therefore,
their impact on updating the velocities is relatively weak. However, we can
analyze their effects in the image. We take advantage of the imaging engine
to examine different orders of scattering, such as primaries-only or primaries
and internal multiples. We consider a primaries-only imaging, where we limit
FWM to primary wavefield imaging (PWM) [Berkhout, 2014b; Davydenko
and Verschuur, 2017]. The method will explain the primaries, but will not
properly explain the internal multiples. As a consequence they will be treated
as primaries, yielding cross-talk in the final image. Figure 5.11a shows the
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Figure 5.7: ADCIGs associated with the anisotropic model (figure 5.5) at
lateral locations of 1000m, 2000m, and 3000m.
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Figure 5.9: The estimated values for the velocity V [m/s] and b) the FWM
image obtained via an isotropic assumption.
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Figure 5.10: ADCIGs associated with the isotropic model (figure 5.9) at lat-
eral locations of 1000m, 2000m, and 3000m.

image after applying PWM. More events are imaged in the PWM image
compared to the FWM image of figure 5.6. We compute the residual (figure
5.11b) in order to see the fine scale effects. We notice the cross-talk associ-
ated with the PWM image. Another interesting observation is that in FWM
transmission effects are properly handled, whereas, the PWM image sufferers
from inaccuracies in handling transmission effects. Hence, these appear in
the residual on the reflectors.

This example demonstrates the effectiveness of anisotropic JMI in inversion of
marine field reflection data. Our initial model was generated with the aid of
well-logs. However, the well-logs only provided information beyond a certain
depth (beyond 1000m) and localized at the well location. Using anisotropic
JMI we obtain estimates of the reflectivities, vertical velocities, and horizontal
velocities. Analyzing the ADCIGs we find that most of the events are flat,
which indicates that a suitable model was used. We rerun the inversion with
an isotropic assumption and we note that the results are inferior, as indicated
by the ADCIGs. Finally, we analyzed the effects of internal multiples in the
image. The residual between the PWM and FWM image shows that internal
multiples and transmission effects have a considerable imprint on the image
if not taken into account properly.
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Figure 5.11: a) The estimated images using primaries-only PWM. b) The
residual between the PWM image (figure 5.11a) and the FWM image (figure
5.6).
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6

Beyond VTI

In the previous chapters, we limited ourselves to the special case of VTI
media, which is the case when the symmetry axis is vertical. It is a fair
assumption for many undisturbed geologic environments, where the layering
remained horizontal since deposition. However, when tectonic forces act upon
the medium it can deform it in many different ways. The deformation in these
complex geologic structures may cause the symmetry axis to be reoriented
in a direction other than the vertical axis. Hence, effectively creating a TTI
medium that must be considered in imaging. Examples of deformed geologic
settings that behave as effective TTI media are folds, shale flanks of salt
diapir, and overthrust dipping shales. Effective TTI media can also be caused
by a system of parallel dipping fractures [Tsvankin et al., 2010]. Ignoring TTI
kinematics can cause mis-positioned structures and blurred images.

In this chapter we will include TTI kinematics in the FWMod scheme. We
then incorporate TTI kinematics in FWM. We show the advantage of includ-
ing internal multiples in imaging TTI media. Finally, we will analyze the
effects of perturbations of TTI parameters on the estimated image.
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6.1 Full Wavefield Modeling in TTI media

Full Wavefield modeling (FWMod) utilizes two types of operators to model
the reflection response of the subsurface. The first is the scattering operator
R, which dictates the reflection and transmission properties at each point
in the subsurface. The second is the propagation operator W, which dic-
tates the kinematics associated with a propagating wave at each point in the
subsurface. In chapter 2 we extended the W operator to include VTI kine-
matics by using the acoustic anisotropic dispersion relation for VTI media
(equation 2.1.15). However, since it was an approximation, it did come with
limitations. Namely, the pseudo S-wave and the exponential growth in solu-
tion for negative η. Since we are using phase shift operators, we were able to
reduce the effects of these limitations in a relatively straightforward manner.

Similar to the VTI case we need to update the dispersion relation to account
for TTI kinematics. There are two approaches for introducing TTI kinemat-
ics. The first is sticking with an acoustic approximation, where the shear
velocity is set to zero along the symmetry axis in the stress-strain relation
(as done in chapter 2 for the VTI case). The concept is still the same as VTI,
however, the tilt makes the algebra more complex. Zhou et al. [2006] follow
this approach and derive pseudo-acoustic titled transversely isotropic wave-
equations for their implementation. As in the VTI case there are limitations
in implementing the TTI acoustic dispersion equation, namely the pseudo
S-wave still exists and numerical instabilities happen for negative values of η.
As we have seen in chapter 2, we can attenuate their effects if we use phase
shift operators.

The second approach solves the TTI dispersion relation directly without any
approximations or assumptions. Zhang et al. [2001] derive a quartic dis-
persion equation for TTI media, which gives the qP-wave and qSV-wave
kinematics for arbitrary amount of anisotropy. Their solution is not an ap-
proximation as in the acoustic anisotropic dispersion relation, but rather they
solve for kz analytically. Despite the increase in the parameter space com-
pared to the acoustic version, the analytic solution facilitates elastic inversion
for future research. Since it is no longer an approximation, six parameters
are needed to describe the wavefield. VP0 is the qP-wave velocity along the
symmetry axis. VS0 is the qS-wave velocity along the symmetry axis. θ is
the dip of the symmetry axis with respect to the vertical axis. Finally ε, δ,
and γ are the Thomsen parameters [Thomsen, 1986]. The quartic dispersion
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relation for the vertical wavenumber kz can be written as:

k4
z + a3k

3
z + a2k

2
z + a1kz + a0 = 0, (6.1.1)

where

(6.1.2a)a3 = [f(ε− δ)sin(4θ) + 2ε(1− f)sin(2θ)]kx/a4,

(6.1.2b)a4 = f − 1 + 2ε(f − 1)sin2(θ)− f

2
(ε− δ)sin2(2θ),

(6.1.2c)a2 =

[
b2k

2
x +

(
ω

VP0

)2

(2 + 2εsin2(θ)− f)

]
/a4,

(6.1.2d)b2 = f(ε− δ)sin2(2θ)− 2(1− f)(1 + ε)− 2f(ε− δ)cos2(2θ),

(6.1.2e)a1 =

[
b1k

3
x − 2εsin(2θ)

(
ω

VP0

)2

kx

]
/a4,

(6.1.2f)b1 = 2ε(1− f)sin(2θ)− f(ε− δ)sin(4θ),

(6.1.2g)a0 = b0/a4,

(6.1.2h)b0 = (2 + 2εcos2(θ)− f)

(
ω

VP0

)2

k2
x −

(
ω

VP0

)4

−
[
(1− f)(1 + 2εcos2(θ))− f

2
(ε− δ)sin2(2θ)

]
k4
x,
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and

(6.1.2i)f = 1− V 2
S0/V

2
P0.

Solving equation 6.1.1 analytically is not straightforward, as one must rewrite
the quartic equation in terms of two quadratic equations and then solve
for them (as done in Zhang et al. [2001]). The four solutions or the four
roots of the quartic equation are associated with the upgoing and downgoing
qP-wave and the upgoing and downgoing qS-wave. Figure 6.1 shows the
dispersion relation pertaining to the downgoing qP-wave at 25Hz, it was
generated in a TTI medium with VP0 = 4000m/s, VS0 = 2000m/s, ε = 0.2,
δ = 0, γ = 0, θ = −30o. Note that the apex is no longer at kz = 0 but
rather shifted due to the non-vertical symmetry axis. Substituting the new
dispersion curve in the propagation operator W incorporates TTI kinematics
in FWMod. Figure 6.2 shows a snapshot of the qP-wave propagating in a
homogeneous model with VP0 = 2000m/s, VS0 = 1000m/s, ε = 0.2, δ = 0.1,
γ = 0, and θ = 30o. The wave propagation is asymmetric due to the TTI
kinematics. Also note that the source and receivers are located inside an
anisotropic layer, however, no pseudo S-waves are observed since we are no
longer using an acoustic approximation. Hence, we do not need apply the
remedies described in chapter 2. Note that since we have complete control
over the explicit propagation operator and the solutions of the dispersion
relation, we can separate the different solutions. In our case, we are mostly
interested in the upgoing and downgoing qP-wave. Therefore, we will limit
the solutions to the qP-waves only. With the new extrapolation operators
that handle TTI media we can update the FWMod equations (equations
2.2.25 and 2.2.26) to handle the TTI kinematics. Note that we have control
over the order of scattering being generated in the TTI model, hence, each
roundtrip will add an order of scattering in the recorded data.

6.2 Full Wavefield Migration in TTI Media

Assuming a known subsurface velocity and anisotropy model, JMI reduces
to FWM since there is no tomography associated. As in the VTI case, we
only consider scalar reflectivities, hence, angle-independent reflectivities will
be estimated. The imaging will only take into account the kinematics of TTI
media. We update the reflectivity gradient (equation 3.3.3) by including the
TTI propagation operators W. We also update the linearized perturbation
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Figure 6.1: The qP-wave dispersion relation in a homogeneous TTI medium
with VP0 = 4000m/s, VS0 = 2000m/s, ε = 0.2, δ = 0, γ = 0, and θ = −30o.
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2000m/s, VS0 = 1000m/s, ε = 0.2, δ = 0.1, γ = 0, and θ = 30o.
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(equation 3.3.4) with the TTI propagation operators to get an appropriate
step length αr.

We test the effectiveness of TTI FWM on the 2007 BP TTI Velocity-Analysis
Benchmark model. We consider only a subset of the model containing the
anticline, after which we subsample and rescale it due to its large size. Figure
6.3 shows the true reflectivity, true VP0, true δ, true ε, and true θ. The shear
velocity VS0 was set to half of VP0 while γ was set to zero. We generated 74
equally spaced shots at the surface and receivers are placed at the surface
at 20m intervals. We model the data via FWMod while taking into account
the TTI kinematics. Figure 6.4a shows the primary arrivals for one shot
gather in the middle of the model. Figure 6.4b shows the same shot gather
with primaries and internal multiples. Note that internal multiples consti-
tute a significant portion of the recorded data. The first two reflectors have
high reflectivity and, hence, create strong internal multiples that reverberate
through the record. These internal multiples will obscure the image if not
taken into account properly.

Given the anisotropic model we migrate the data following the FWM method
[Berkhout, 2014b; Davydenko and Verschuur, 2017]. However, we include
the TTI extrapolators for the forward and inverse extrapolation in order to
handle TTI kinematics. As in the previous VTI examples we can take advan-
tage of the imaging engine to examine different orders of scattering such as
primaries-only or the full wavefield (primaries and internal multiples). The
first case we consider is primaries-only imaging, where we limit FWM to
primary wavefield imaging (PWM) [Berkhout, 2014b; Davydenko and Ver-
schuur, 2017]. The method will explain the primaries, but will not properly
explain the internal multiples. Figure 6.5a shows the image after applying
PWM. We notice that extra reflectors appear in the image due to the mul-
tiples being explained as primaries. We also note that there is great deal of
cross-talk appearing underneath the anticline, which degrades the quality of
the image. The second case we consider is FWM where primaries as well as
internal multiple are properly taken into account. Hence, FWM is applied to
the scattered data without limitations. Figure 6.5b shows the the image after
applying FWM. Note that many of the extra reflectors have been suppressed
since the associated multiple energy was addressed properly. The reflectors
are also of a higher quality since the cross-talk is minimized. We do note
that some cross-talk still survives in the FWM image, however, it is highly
attenuated compared to the primaries-only image.
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Figure 6.3: Subset of the 2007 BP TTI Velocity-Analysis Benchmark model:
a) the reflectivity, b) the P-wave velocity along the symmetry axis VP0 [m/s],
c) ε, d) δ ,and e) θ [o] values.
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reflections only. b) The full wavefield (primaries and internal multiples).
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Figure 6.5: The estimated images for the BP TTI model. a) The estimated
image accounting for primaries-only. b) The estimated image accounting for
primaries and internal multiples.
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6.3 Sensitivity Analysis in TTI Media

The quality of the image strongly relies on the accuracy of the anisotropic ve-
locity models used. In this section we analyze the influence that the different
TTI parameters have on the image. We start by perturbing some of the TTI
parameters (VP0, δ, ε, and θ) and evaluating the associated FWM image.
We perturb the VP0 parameter by decreasing its value to be 20% lower than
its true values, while keeping the other paramters fixed to their true values.
Figure 6.6a shows the resulting image when the perturbed velocity model is
used for imaging, while the original data is used. The image is significantly
worse, which shows the significant influence of VP0 on imaging.

Figure 6.6b shows the effect of perturbing δ, where we set its value to zero.
We note that the reflectors are slightly blurred. However, it is not that
significant due to the low value of δ in this model (with an average value
of approximately 0.05) and the fact that VP0 is correct. Next, we analyze
the effect of the ε parameter on the image. Figure 6.6c shows the estimated
image when ε is set to zero. We note that a large part of the image is blurred
due to the effect of not flattening the reflectors at the far offsets. Hence, the
well-known “hockey stick” effect is present and causes imperfect focusing.
Finally, we perturb the θ parameter. Figure 6.6d shows the estimated image
when θ is set to zero. θ has a significant impact on the position and dip
of the reflectors, especially on the flanks of the anticline where its value is
maximum. The shape of the anticline is now more gentle compared to the
true image.

6.4 Towards TTI Parameter Estimation

In its current implementation JMI estimates the reflectivity, velocity, and
even anisotropie models for VTI media. However, when it was first pro-
posed by Berkhout [2012], it was envisioned that the parameterization is
constrained to the reflectivity R and propagation operators W. The ad-
vantage of using this type of generalized parametrization is that it avoids
defining a certain model that the data should adhere to. If we consider the
case of anisotropie kinematics, we assume a certain anisotropic model before
starting the inversion (VTI or TTI in our case). The inversion is limited in
terms of the anisotropic model, if some parts of the model do not obey this
assumed model then there will be errors in inversion. An operator descrip-
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Figure 6.6: The FWM image after perturbing a) the velocity (VP0), b) δ, c)
ε, and d) θ.
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tion of the subsurface does not impose any anisotropic models. The data
is explained by the operators which increases the flexibility of the method.
Another advantage lies in that the trade-off between the different parameters
during inversion is no longer an issue. During inversion there is a degree of
trade-off happening between the different TI parameters that might cause an
oscillation of the solution between the parameters to be inverted. An oper-
ator that explains the data will not suffer as much from the trade-off issue
during inversion. In this approach the TI parameterization is postponed to
the end of inversion when the most accurate operator is estimated.

Coming back to the TTI problem at hand and looking at the dispersion
relation we can see that this is not a straightforward linearization problem
as in the VTI case. One could add different constraints in order to reduce
and stabilize the inversion process. One common constraint is the structural
transverse isotropy (STI) constraint, where the θ parameters is obtained by
finding the reflectors dip in the image. However, the image used to obtain
the dip of the reflectors is computed under an isotropic or a VTI assumption,
which could result in erroneous dips in the first place. This can cause mis-
positioning of reflectors even if the other parameters were correct, as we have
seen in figure 6.6d. Using a more advanced constraint such as dip-constrained
transverse isotropy (DTI) can mitigate many of the structural issues as shown
in Alkhalifah and Sava [2010].

Inverting directly for the propagation operator W, as suggested in Berkhout
[2014c], address many of the issues encountered in inversion. The operator W
will implicitly contain information on the anisotropic parameters absorbed in
it. However, this approach greatly expands the parameter space, which makes
the inversion a highly under-determinate problem. Having prior knowledge
of the operator can help steer the update and reduce the number of unknowns
in the W matrix. It is definitely an interesting and fruitful approach that
should be investigated in more scrutiny. Hence, this topic is left for further
research.
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7

Conclusions and
Recommendations

When Full Wavefield Migration (FWM) was developed it was clear that it
could provide superior images compared to traditional imaging. However, it
was soon realized that if the velocity model was inaccurate then the image was
of subpar quality. The need to include a tomographic component was evident.
Joint Migration Inversion (JMI) combined imaging (typically FWM) with
tomography. Although the tomographic component was limited to isotropic
velocities it enabled imaging to be more applicable even when the velocity
model was unknown. In our never ending strive to include more physics in
modeling and inversion, I present a JMI approach that handles anisotropy.

The aim of this thesis was to include anisotropic kinematics to the JMI
method. In chapter 1 and in more detail in chapter 2 we analyzed the ef-
fect of anisotropie kinematics on seismic reflection data. Furthermore, we
saw in chapter 4 the effect of ignoring these anisotropic effects in inversion,
where the isotropic velocities appear to be slower or faster (depending on
the anisotropy), resulting in a degraded image. Clearly, anisotropy must be
taken into account when it is present. In this thesis we consider two of the
most commonly encountered anisotropic models namely, Vertical Transpose
Isotropy (VTI) and Tilted Transpose Isotropy (TTI). Chapters 2 through 5
consider the VTI case while chapter 6 considers the TTI case. In this chapter
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we discuss the main conclusions and explore future recommendations.

7.1 Conclusions

7.1.1 Anisotropic FWMod in VTI media

Before inversion we had to include anisotropie kinematics in our modeling
engine (FWMod). We made use of the anisotropic dispersion relation as-
sociated with the acoustic wave-equation for VTI media. It enabled us to
describe the anisotropic kinematics without having to resort to full elastic
modeling. This reduced the number of parameters needed for inversion. It
also simplifies the equations and reduced the computational cost involved
in modeling and subsequently in inversion. Since it is an approximation, it
came with two main limitations: the generation of a pseudo S-wave when
the medium is anisotropic and an instability occurring with negative values
of η. Attenuating these limitations for a implicit modeling method is not
straightforward.

However, utilizing an explicit modeling method, such as FWMod, granted an
immense flexibility in alleviating these limitations in a straightforward man-
ner. We were able to distinguish and eliminate the pseudo S-wave directly
from the propagation operators. Having explicit control over the propaga-
tion operator enabled us to diminish the exponentially increasing solution
for negative values of η. With the new VTI extrapolators we are able to
model reflections (primaries and multiples) in VTI media. The multiples are
modeled iteratively, where each iteration adds an order of scattering (similar
to the so-called Bremmer series) based on the reflectivity image. The nonlin-
earity of the modeling engine is the key in incorporating internal multiples in
inversion. Since internal multiples are included, transmission effects are also
naturally incorporated in the modeling engine. Although, angle-dependent
reflection effects were not included for the implementation used in this thesis,
it provides an accurate enough scheme for inversion.

7.1.2 Robustness of Anisotropic JMI

Anisotropic JMI is based on integrating anisotropic velocity estimates with
reflectivity estimates, thus, making the process of inversion very robust. In
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Chapter 3 we analyzed this robustness in converging to a solution more metic-
ulously. For a layered model we evaluated the cost function for a number of
different cases and different solutions. When the reflectivity is fixed the cost
function starts oscillating, which increases the chance of getting stuck in a
local minimum. However, estimating the best fit reflectivity between each it-
eration of velocity updates drastically changes the shape of the cost function.
The cost function becomes less cyclic. Even when the discrepancy between
the true and initial starting models are large the solution converges in an
appropriate direction.

Hence, estimating the reflectivity along with the anisotropic velocities facili-
tates the convergence to a suitable solution. We corroborate this observation
with synthetic examples. The most prominent ones are the layered model
(example 2 in chapter 4) and the elastic model (example 3 in chapter 4).
In these examples the initial velocity models were chosen to be far from the
true models. However, anisotropic JMI was able to reconstruct an accurate
image, velocity velocity model, and horizontal velocity model.

7.1.3 Multiples

Initially, the main reason to address internal multiples was to reduce the
cross-talk appearing in the image. However, we soon realized that if the
internal multiples were prominent, they not only create cross-talk in the
image, but they also incorrectly influence the velocity update. The lens-
shaped model (example 1 in chapter 4) and internal multiple model (example
5 in chapter 4) showed that internal multiples can obscure not only the image
but also the velocity update if not taken into account. Since internal multiples
were of high amplitudes compared to the primaries, they were picked up by
the inversion algorithm as primaries for the primaries-only inversion case.
Moreover, internal multiples constitute a significant amount of the energy in
the reflection data for certain models. For example, the forward modeling
example in chapter 2 shows that a significant part of the reflections in the
record are internal multiples.

Addressing internal multiples during inversion will reduce the imprint of the
cross-talk in the image as well as introduce extra sensitivity in updating
the velocities. Analyzing internal multiples shows that they are more than
redundant information. In the cost function analysis in chapter 3 we com-
pared the cost function when multiples are modeled and when they are not
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modeled. The trade-off between the parameters is much more constrained
when multiples are considered. Internal multiples generally spend more time
in the subsurface, therefore, they generally have more of an imprint of the
subsurface parameters in them. This in turn helps in uniquely defining the
subsurface parameters and subsequently reduce the trade-off. Although mul-
tiples will not generally generate wider offset data, they bring in the extra
sensitivity in the Vv parameter, which in turn better constrains the Vh esti-
mate.

In the internal multiple model (example 5 in chapter 4) we verify the extra
sensitivity that internal multiples bring in. We see that when multiples are
in the data and are ignored they can produce erroneous images that priori-
tize focusing the internal multiples at the wrong location at the expense of
defocusing the primaries. We also note that the anisotropic velocities are
overestimating due to the interference from the internal multiples. However,
when they are properly addressed they produce a focused image that repre-
sents the subsurface reflectivities more accurately. Furthermore, it generates
suitable corresponding anisotropic velocity models that focus the primaries
and the internal multiples. Finally, using the same model we generate only
primaries in the observed data and proceeded to invert for the primaries-
only. We simulate a case where internal multiples are perfectly eliminated
in the recorded data. We note that for the primaries-only inversion results
the trade-off between Vv and Vh is more significant compared to the JMI
approach where internal multiples are not eliminated and are taken into ac-
count properly. In this example the internal multiples reduce the trade-off
between the inverted parameters (namely, Vv and Vh).

7.1.4 Synthetic Inversion Results

We test the method on a number of synthetic models. The first five models
(examples 1-5 in chapter 4) are simple models that facilitate analyzing a sin-
gle effect, such as isotropic inversion versus anisotropic inversion, inversion
of data generated via FD versus FWMod, and inversion of primaries and in-
ternal multiples versus primaries-only inversion. However, the final synthetic
model (example 6 in chapter 4) demonstrates the method on a realistic model
that resembles a conventional exploration play. The model is the HESS VTI
model. Anisotropic JMI estimates the reflectivity and anisotropic velocities
in each iteration. We initially only estimate the angle-independent reflectiv-
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ities and the vertical velocities. Only after a couple of iterations we include
the horizontal velocity in the inversion. This approach stabilized the inver-
sion. The reflectivity estimates are sharp band-limited versions of the true
reflectivities. The vertical and horizontal velocities are generally a smooth
representation of their true counterparts. The reason behind this is that the
modeling method (Anisotropic FWMod) strictly separates these two quan-
tities, where the reflectivity generates the scattering while the anisotropic
velocities propagate the wavefields. Hence, the dynamic effects are mapped
to the image while the kinematic effects are mapped to the anisotropic ve-
locities. Moreover, the transmission effects and the internal multiples are
addressed naturally. Therefore, they do not appear as significant artifacts in
the image nor as unusual velocity updates.

7.1.5 Field Data Examples

We test anisotropic JMI on a marine field data set acquired in the North Sea.
A well was drilled in the middle of the section and well-logs were acquired.
However, the logs were only acquired beyond 1000m depth. Hence, the first
1000m were relatively unknown. We make use of a smoothed version of
the well-logs to build the initial velocity model beyond 1000m, while the
velocities between the water bottom and 1000m were set to a constant value
of 1700m/s. We generate the FWM image associated with the initial velocity
model. We note that many of the events are not focused and many of the
reflectors are discontinuous. Furthermore, the ADCIGs showed curved events
indicating that the velocity model is erroneous.

Applying anisotropic JMI we find the best fit anisotropic velocity model and
the best fit reflectivity model. We note that the reflectivity is more continuous
and the faults at the deep parts of the section are better visible. Analyzing
the ADCIGs shows that the majority of the events have been flattened. We
also compare the measured shot gathers versus the calculated shot gathers.
Many of the reflection events are explained. However, in this domain we
can analyze the limitations of the method. Refraction arrivals were ignored
since they are not included in the modeling engine (FWMod). Furthermore,
the Amplitude Versus Offset (AVO) effects and the converted waves are not
explained either. Nevertheless, the majority of the events recorded were
explained by the inversion method.

We also run JMI in an isotropic mode with the same set of initial parameters
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as the anisotropic inversion. We note that although the resulting image is ac-
ceptable, the large offsets and angles are not quite contributing, as indicated
by the curved ADCIGs. Although surface-related multiples were eliminated
via SRME, internal multiples are still present in the data. We showed that
they appear as considerable artifacts in the estimated image if they are not
taken into account properly.

7.1.6 TTI Modeling and Imaging

Chapter 6 is dedicated to go beyond a VTI assumption and into a TTI
assumption. We started by introducing TTI kinematics in the modeling
method. For this implementation we decided to apply the TTI dispersion
relation directly without any acoustic approximation. Solving for the quartic
TTI dispersion relation is computationally intensive compared to the acous-
tic VTI dispersion relation. However, it provides us with more flexibility in
the future if one were to move beyond acoustic inversion. The TTI extrap-
olators account for the tilt, which can produce non-symmetric wavefields in
homogeneous media.

With the extrapolators, we can extend the method to account for TTI kine-
matics in FWM. We tested the method on a subset of the 2007 BP TTI
velocity-analysis Benchmark model. We can see that taking multiples into
account (as done in FWM) yields better results compared to taking primaries-
only in TTI media. Finally, we tested the sensitivity of the different anisotropic
parameters on the imaging results. We can conclude that the θ parameter
in particular has a significant effect on the position of the reflectors in the
image. Hence, a VTI assumption is not sufficient for imaging.

7.1.7 Automation

Anisotropic JMI is relatively hands-off compared to more traditional velocity
analysis methods. Anisotropic JMI does not require a user to pick the veloc-
ities. Hence, avoiding user bias during picking velocities. Furthermore, with
the ever increasing amount of seismic data being recorded in each survey the
process of manually picking velocities becomes cumbersome. This is exac-
erbated when the user must not only pick isotropic velocities but also pick
anisotropic parameters along with the velocity. After initial setup anisotropic
JMI runs automatically without the need for a user to intervene.
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7.2 Recommendations for Future Research

7.2.1 Other Arrivals

JMI relies on all types of reflections (primaries and multiples) to explain
the subsurface parameters. However, other modes (such as surface waves
and diving waves) also travel in the subsurface. These events could provide
more information of the subsurface parameters. Diving waves in particular
could help in better defining the horizontal velocity since they travel mostly
in a horizontal direction. FWI implementations actually make use of the
diving wave to update the velocities with great success [Alkhalifah, 2016a].
Including diving waves in inversion, one must update the modeling engine to
include diving waves first. Davydenko and Verschuur [2013] and Berkhout
[2014b] introduce an omni-directional implementation of FWMod where they
include horizontally traveling waves. It is an initial step that incorporates
more of the recorded data. However, since diving waves have a significant
part traveling in both an up and down sense and in a left and right sense,
it was not yet fully resolved how these different propagation directions can
communicate with each other, while maintaining conservation of energy.

7.2.2 Angle-dependent R

In our implementation we assume that R is angle-independent. Hence, we
discard the off-diagonal elements of the matrix. The off-diagonal components
in the reflectivity operator can be considered as subsurface offsets of the
reflectivity and are routinely used for Amplitude Versus Offset (AVO) studies.
AVO analysis can shed light on the density, porosity, and even fluid content
[Aki and Richards, 1980]. The off-diagonal components will also introduce
more physics in the inversion. Hence, the seismic reflection data will be better
explained.

For the FWM implementation, Davydenko and Verschuur [2017] show that
angle-dependent reflectivities can be estimated by making use of the linear
Radon domain. The transformation in the linear Radon domain allows the
off-diagonal components of the reflectivity matrix to map into angle gathers,
after which they sum over frequencies. Mapping to the linear Radon domain
and summing over frequencies facilitates a more compact representation that
avoids over-parameterizing the problem.
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Extending this towards a JMI application where the velocity model is es-
timated along with the angle-dependent reflectivity is not straightforward.
One can run the risk of over-parameterizing the problem, such that the angle-
independent reflectivities leak into the velocity estimates and vice versa. Ad-
ditional constraints, such as flattening CIGs, are being investigated in order
to minimize this trade-off.

7.2.3 Elastic Effects

We base our modeling engine on an anisotropic acoustic approximation of the
subsurface, although its validity is questionable when comparing it with real
elastic data. Full elastic modeling requires much more parameters to describe
it and subsequently more parameters to invert for. Hence, an accurate start-
ing model is essential for inversion in order to avoid the null space. Starting
with an acoustic approximation can help identify and estimate the essential
parameters for subsequent inversion. Moreover, three or sometimes four com-
ponent data is required for elastic inversion. Frequently, single component
pressure or vertical displacement data is all that is recorded.

Nevertheless, elastic effects can be significant, inverting the layered elastic
anisotropic model (example 4 in chapter 4) was challenging because the elas-
tic effects were significant in the recorded data. However, our VTI imple-
mentation is based on an acoustic assumption. Therefore, when we blindly
inverted the raw data we did not get satisfactory results. However, by pre-
processing the raw data we were able to mitigate the elastic effects and rerun
the inversion with better final results. Although, preprocessing helped in
mitigating the elastic effects the optimal solution is to include the elastic ef-
fects in modeling and inversion. The ultimate goal is to use all the recorded
data to describe the subsurface. In this way, one must include PS reflectivity
operators and S-wave propagation operators in the FWMod scheme, then at-
tempt to invert for them in a JMI-type approach. The converted waves can
contribute towards an update for the image and velocities. Note that when
converted waves are included in FWMod, the angle-independent reflection
approach does not provide a reasonable approximation, since the converted
wave reflectivity has a strong angle-dependent behavior.
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7.2.4 Anisotropy Parametrization

As in all anisotropic inversion techniques the choice of parametrization is
critical in obtaining an accurate solution. Also the trade-off between the dif-
ferent parameters must be taken into account. Although, we did not meticu-
lously test the different parameterizations we were fortunate enough to rely
on the work of others to better understand the different effects of parame-
terization. We use a Vv, Vh, and δ parametrization. With δ being excluded
from inversion due to the intrinsic ambiguity between it and depth, it’s esti-
mates are obtained from other sources of information. Hence, we focus the
kinematic part of the inversion to be between Vv and Vh. For our imple-
mentation we believe that this choice of parameters strives to minimize the
trade-off between the parameters as much as possible. One can chose a dif-
ferent parameterization that consists of different combinations of velocities,
Thomson parameters, and η. Translating the new parameterization is rela-
tively straightforward. However, one must re-derive the gradients and apply
some scaling in the case of the unitless parameters (Thomsen parameters and
η) parameterizations.

7.2.5 Extension towards 3D

The development of the method is limited to the 2D case. If one where to
image prominent 3D objects in the subsurface, inaccuracies would build up
in the image due to out of plane reflections. Furthermore, a 3D application
would increase the amount of information and accuracy of the image and the
model.

Conceptually, the 3D extension of the 2D theory should follow a path similar
to the JMI’s isotropic 3D extension presented by Marhfoul and Verschuur
[2016]. In practice the challenge lies in addressing the sparse and irregular
sampling that is usually accompanied with 3D surveys. However, surface-
related multiples can be utilized as secondary sources in order to fill up the
illumination gaps as was shown by Kumar et al. [2014] and Davydenko and
Verschuur [2017].
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7.2.6 Propagation Operator Estimation

I leave the most encouraging recommendation for last. Currently, we linearize
the propagation operator W in terms of a vertical velocity Vv and a hori-
zontal velocity Vh. In doing so we greatly reduce the number of parameters
being estimated in each iteration. However, we limit ourselves in terms of an
anisotropic model and we are prone to parameter trade-off during inversion.

Estimating directly the propagation operator W, allows the data, albeit com-
plex it may be, to be explained directly by the operator. It avoids defining
a certain propagation model that the data should obey. In most anisotropic
inversion methods the model needs to be set before inversion. If parts of the
model do not obey this assumed model then there will be errors in inversion.
An operator description of the subsurface does not impose any anisotropic
models (VTI or TTI). The data is explained by the operators, with fully
flexible phase functions, which increases the applicability of the method to
a wider range of anisotropic models. The other advantage lies in that the
trade-off between the anisotropic parameters in inversion is no longer an
issue. The inverted operator will be estimated such that it explains the re-
flection data. In this approach parameterization in terms of more traditional
anisotropic parameters is postponed to the end of inversion when the most
accurate operator is estimated.

Although inverting directly for the propagation operator W addresses many
of the issues encountered in inversion. This approach greatly expands the pa-
rameter space, which makes the inversion a highly under-determinate prob-
lem. However, having prior knowledge of the operator via constraints can
help steer the update and reduce the number of unknowns in the W opera-
tors.
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Derivation of the Gradients

A.1 Vertical Velocity Gradient

We linearize the propagation operator (equations 3.3.11 and 3.3.12) with
respect to the contrast parameter βv. Each element can be written in the
wavenumber frequency domain as:
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Note that we are using the acoustic anisotropic dispersion relation to express
kz (equation 2.1.15). Taking the first expression and substituting the contrast
parameter with velocities (equation 3.3.8) we arrive at,
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The second expression can be calculated by applying the quotient rule
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Finally, we can write the linearization of equation A.1.1 as
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A.2 Horizontal Velocity Gradient

We also linearize the propagation operator (equations 3.3.25 and 3.3.26) with
respect to βh. Each element can be written in the wavenumber frequency
domain as:
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Note that, as in the previous case, we are using the acoustic anisotropic
dispersion relation to express kz (equation 2.1.15). Taking the first expression
we find that,
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The second expression can be calculated by applying the quotient rule (equa-
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Finally, we can write the linearization of equation A.2.8 as
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Plessix, R. É., and Mulder, W. A., 2004, Frequency-domain finite-difference
amplitude-preserving migration: Geophys. J. Int., 157, no. 3, 975–987.

Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, part
1: Theory and verification in a physical scale model: Geophysics, 64, no.
3, 888–901.

Prieux, V., Brossier, R., Gholami, Y., Operto, S., Virieux, J., Barkved, O. I.,
and Kommedal, J. H., 2011, On the footprint of anisotropy on isotropic
full waveform inversion: The Valhall case study: Geophys. J. Int., 187,
no. 3, 1495–1515.



BIBLIOGRAPHY 149

Robein, E., 2003, Velocities, time-imaging and depth imaging: Principles and
methods: EAGE Publications BV.

Robertsson, J. O., Blanch, J. O., and Symes, W. W., 1994, Viscoelastic
finite-difference modeling: Geophysics, 59, no. 9, 1444–1456.

Robinson, E. A., 1983, Migration of geophysical data: Springer.
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Summary

One of the most crucial estimates obtained from reflection seismology is the
seismic image. It provides a map of the subsurface reflectivities. However, in
order to construct an accurate map an accurate propagation velocity model
is needed. For simple geologic environments an isotropic velocity model is
sufficient, however, for complex geologic environments an anisotropic velocity
model is more appropriate and more realistic in describing wave propagation.
Ignoring the anisotropic kinematics in these geologic environments will most
definitely lead to sub-optimal or even poor imaging results, especially with
the tendency of today’s acquisition geometries that include measurements at
large source-receiver offsets.

This thesis extends the theory of the Joint Migration Inversion (JMI) method
to include anisotropic kinematics. In its isotropic implementation, JMI is a
full waveform approach that inverts for the subsurface reflectivities and ve-
locities. The scattering information is encoded in the reflectivity operators,
while the phase information is encoded in the propagation operators. This
strict separation enables the JMI method to decrease the degree of nonlin-
earity in inversion. JMI utilizes both the primaries and internal multiples in
updating the subsurface parameters. Hence, multiples are not considered as
noise.

This thesis first considers the case of Vertical Transpose Isotropic (VTI) me-
dia. The forward modeling engine Full Wavefield Modeling (FWMod) is
updated to include VTI kinematics. This is done through the use of the
acoustic anisotropic dispersion relation. Choosing an acoustic anisotropic
approximation reduces the number of parameters needed for inversion, thus
reduces the null space. However, it does come with some drawback, namely
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the pseudo S-wave and the instabilities happening for negative η. Usually,
attenuating these artifacts is challenging in standard, so-called finite differ-
ence modeling schemes. Utilizing the explicit phase-shift extrapolators (as
in FWMod) it is possible to distinguish and attenuate these artifacts in a
relatively straightforward manner.

The choice of parameterization is critical in multi-parameters anisotropic in-
version problems. The chosen parameterization for this thesis consists of a
vertical velocity Vv, a horizontal velocity Vh, and a δ parameterization. This
parameterization is convenient in that it reduces the trade-off between the
different parameters. Note that δ is not estimated due to its intrinsic ambi-
guity between it and depth, so its estimates are obtained from other sources
of information. Analysis of the cost function gives some insight on its the
behavior. We show that estimating only the anisotropic velocities is not ideal
(due to the existence on many local minima). However, estimating the best fit
reflectivity between anisotropic velocity estimation significantly reshapes the
cost function and makes it more suitable for gradient decent methods (due to
the absence of most of the local minima). Finally, internal multiples are in-
cluded in evaluating the cost function. Depending on their relative strength,
internal multiples can help in uniquely defining the anisotropic velocities,
thus, further reducing the trade-off between the anisotropic parameters.

The method is tested on a number of different synthetic models. The chosen
numerical tests become increasingly complex in order to test the limitations
of the method. After that, the method is then demonstrated on a 2D marine
field data set from the North Sea. Even for a far from correct initial velocity
model the method converges to a satisfactory anisotropic solution and the
inverted results significantly improve the continuity and focusing of the final
image.

Finally, the Tilted Transverse Isotropic (TTI) case is addressed. TTI kine-
matics are first included in the FWMod scheme. More parameters are needed
in order to describe TTI kinematics than in the VTI case, which makes the in-
version more challenging. Given the anisotropic model the reflectivity gradi-
ent and imaging are updated to include TTI kinematics. We demonstrate the
effectiveness of the method in estimating the reflectivities (using primaries
and internal multiples) on a subset of the 2007 BP TTI Velocity-Analysis
Benchmark model. Furthermore, we analyze the sensitivity of the different
TTI parameters on the estimated image. We find that the tilt in particular
affects the image significantly, which suggests that it can be incorporated in
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inversion. However, one needs to analyze the trade-off between it and the
other parameters before inversion. This is left for further research.

The anisotropic JMI methodology presented is a hands-off method that es-
timates the best fit subsurface reflectivities and anisotropic velocities. It’s
inherit decoupling of scattering and propagation reduces the nonlinearity and
in turn facilitates the inversion process, even with highly erroneous start-
ing models. Furthermore, the methodology aims at explaining more of the
physics encountered in the subsurface, therefore, all orders of scattering (pri-
maries and multiples) are included in inversion. Hence, multiples are no
longer considered as noise in the data, but rather they are a crucial part
of the data that assists in estimating the reflectivities and the anisotropic
velocities.
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Samenvatting

Een van de meest cruciale schattingen die verkregen wordt uit reflectie seis-
mologie is het seismische beeld. Het geeft een nauwkeurige representatie
van de reflectiviteiten van de ondergrond. Echter, om een accuraat seis-
misch beeld te maken is een accuraat model van de voortplantingssnelheid
essentieel. Voor simpele geologische omgevingen is een isotropisch snelhei-
dsmodel voldoende. Echter, voor complexere geologische omgevingen is een
anisotropisch model geschikter en realistischer voor het beschrijven van prop-
agatie van de golf. Buiten beschouwing laten van anisotropische kinematica in
deze geologische omgevingen leidt hoogstwaarschijnlijk tot een sub-optimaal
of zelfs slecht seismisch beeld, in het bijzonder met de tendens van heden-
daagse acquisitie geometrien die metingen omvatten met grote afstanden
tussen bron en ontvanger.

Deze thesis breidt de theorie van Joint Migration Inversion (JMI) methode
uit, zodat het anisotropische kinematica omvat. De isotropische implemen-
tatie vam JMI is een volledige golfveld methode die inverteert voor de on-
dergrondse reflectiviteiten en snelheden. De verstrooiingsinformatie is ver-
sleuteld in de reflectiviteit operatoren, terwijl de fase informatie versleuteld
is in de propagatie operatoren. Deze strikte scheiding maakt het mogelijk dat
de JMI methode de mate van niet-lineariteit in de inversie vermindert. JMI
gebruikt zowel de enkelvoudige als meervoudige reflecties in het updaten van
de parameters van de ondergrond. Daarom worden de meervoudige reflecties
niet beschouwd als ruis.

Deze thesis beschouwt allereerst Vertical Transpose Isotropic (VTI) media.
Het voorwaartse modellering programma Full Wavefield Modeling (FWMod)
is bijgewerkt, zodat VTI kinematica worden meegenomen. Dit wordt gedaan
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door het gebruik van de akoestische anisotropische dispersie relatie. Het
maken van een akoestische anisotropische schatting vermindert het aantal
parameters dat nodig is voor de inversie sterk, en verkleint zodoende de
nulruimte. De keerzijde is echter de pseudo S-golf en de instabiliteiten die
ontstaan door een negatieve η. Normaal gesproken is demping van deze
artefacten lastig in standaard, zogenaamde eindige differentiemethoden. Met
het gebruik van de expliciete fase-verschuiving extrapolatoren (in FWMod)
is het mogelijk onderscheid te maken tussen de artefacten en deze op een
simpele manier te dempen.

De keuze van de parametrisering is cruciaal in multiparameter anisotropische
inversie problemen. De gekozen parametrisering voor deze thesis bestaat uit
een verticale snelheid Vv, een horizontale snelheid Vh en een δ parametris-
ering. Deze parametrisering is handig omdat het de wisselwerking tussen
de verschillende parameters vermindert. Merk hierbij op dat δ niet geschat
wordt door de intrinsieke ambiguteit tussen δ en de diepte, dus de schattin-
gen hiervoor worden verkregen door andere informatiebronnen. Een anal-
yse van de kostenfunctie geeft inzicht in het gedrag van de kostenfunctie.
We laten zien dat het schatten van alleen de anisotropische snelheden niet
ideaal is (door het bestaan van lokale minima). Echter, het schatten van de
best passende reflectiviteit met de geschatte anisotropische snelheid hervormt
de kostenfunctie aanzienlijk en maakt het geschikter voor gradint optimal-
isatie methoden (door de afwezigheid van lokale minima). Ten slotte worden
interne meervoudige reflecties meegenomen in het bepalen van de kosten-
functie. Afhankelijk van hun relatieve gewicht, kunnen interne meervoudige
reflecties helpen bij de unieke bepaling van anisotropische snelheden en kun-
nen zodoende helpen bij het verminderen van de wisselwerking tussen de
anisotropische parameters.

De methode wordt getoond voor verschillende synthetische modellen. De
gekozen numerieke tests worden steeds complexer om de beperkingen van
de methode te testen. Daarna wordt de methode getoond op 2D mariene
data uit een veld in de Noordzee. Zelfs voor een verre van correct initieel
snelheidsmodel convergeert de methode tot een bevredigende anisotropische
oplossing en de genverteerde resultaten verbeteren de continuteit en de focus
van het uiteindelijke beeld significant.

Ten slotte wordt de Tilted Transverse Isotropic (TTI) casus behandeld. TTI
kinematica worden eerst in het FWMod schema gentegreerd. Meer parame-
ters zijn nodig om de TTI kinematica te beschrijven dan in het geval van VTI,
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hetgeen de inversie moeilijker maakt. Gegeven het anisotropische model, wor-
den de reflectiviteits gradient en beeld bijgewerkt zodat de TTI kinematica
inbegrepen zijn. We demonstreren de effectiviteit van de methode in het
schatten van de reflectiviteiten (enkelvoudige en meervoudige reflecties inbe-
grepen) op een gedeelte van het 2007 BP TTI Velocity-Analysis Benchmark
model. Bovendien analyseren we de gevoeligheid van de verschillende TTI
parameters voor het geschatte beeld. We merken dat de schuine helling in
het bijzonder het beeld sterk benvloedt, wat suggereert dat het in de inversie
opgenomen kan worden. Men moet echter voor de inversie de wisselwerk-
ing tussen deze en andere parameters analyseren. Dit laten we voor volgend
onderzoek.

De anisotropische JMI methodiek die hier gepresenteerd wordt is een hands-
off methode die de best passende ondergrondse reflectiviteit en anisotropische
snelheid schat. De inherente loskoppeling van verstrooiing en propagatie
reduceren de niet-lineariteit en helpen het inversie proces, zelfs voor zeer
onjuiste beginmodellen. Bovendien probeert de methodiek de fysica van de
ondergrond beter te beschrijven en daarom worden alle ordes van verstrooiing
(enkelvoudige en meervoudige reflecties) meegenomen in de inversie. Dus
meervoudige reflecties worden niet langer beschouwd als ruis in de data, maar
gelden als een cruciaal onderdeel van de data die helpen bij het schatten van
de reflectiviteit en de anisotropische snelheden.
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