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Abstract

Additive manufacturing allows material structuring, supporting the fabrication of multiple-level
structures or metamaterials. Through the lens of classical stress reduction, nature’s cellular solid
structures feature stress-homogenizing nodal topologies. Avian long bones are an example. Research
into the mechanics of open cell cellular solids seems focused on the effectiveness of unit cell
architecture and neglects the detailed behavior of constituent nodes. Several specimen series were
printed on the nodal- and cellular solid-levels of analysis, all with varying nodal topologies. A
discussion of force-displacement and digital image correlation experimental data is had; the cellular
solid deflection rigidity seems highly sensitive to nodal topology under quasi-static compression. It is
thought that bioinspired profiles successfully homogenize stress and improve load transfer, mitigating
nodal softening: peak stresses and the propagation of nodal torsion into adjoining strut deflection
decreased. This sensitivity is relevant for lightweight strain energy absorption and stiffness provision,
and demands further research.
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Chapter 1

Introduction

Fig. 1.1 Physics Nobel laureate and best-selling
author Richard P. Feynman (Feynman et al., 2018)

Richard Feynman, once said of a flower: “it’s
not just beauty at this dimension, at one centime-
ter; there’s also beauty at smaller dimensions,
the inner structure, also the processes.” Feyn-
man, portrayed in Figure 1.1, had an admiration
of natural beauty and a powerful belief that the
scientific method could add to its many wonders.

Our conceptualizations of ‘cellular solids’
are no exception. The phrase itself stems from
mankind’s abstractions of biology. Organic tis-
sues are made up of many microscopic cells,
coming together to form millimeter-long organ-
isms like the nematode worm — one is depicted
in 1.2 — to the biggest 173 metric ton Blue
whale ever observed. Cellular solids as a knowl-
edge area has expanded to include artificial struc-
tures whose material is shaped at a sub-structural scale through various manufacturing processes.

Additive manufacturing is a group of fabrication technologies, wherein material is incrementally
deposited to the target substrate according to digital instructions. Classical engineering structures are
the result of many simplifying functional idealizations. Some are being challenged by new potential
to support more intelligent idealizations, partly through the elimination of classical manufacturing
constraints. Although additive manufacturing technologies are in their infancy of industry adoption,
their impact on cellular solid research has already been felt.

To do away with the engineering design handbooks and to articulate one’s own technology from
scratch is a highly enticing technical challenge. Yet to ignore the empirical truths of yesterday is
naïve; applying them to new conditions, however, is not. To paraphrase the words of Thomas S. Kuhn,
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Fig. 1.2 Scanning electron micrograph of a root-knot nematode penetrating a tomato root (Agricultural
Research Service, 2006).

‘paradigm shifts’ in science are often the result of spotting anomalies against the backdrop of ‘normal
science’, meaning that they are at odds with mainstream scientific understanding.

Fig. 1.3 Examples of energy-absorbing blast struc-
tures produced with selective laser sintering, an
additive manufacturing process with a penny for
scale (Harris, 2014).

Cellular solids such as those in Figure 1.3
comprise of slender struts joined together at
nodal intersections. Broadly, the current scien-
tific understanding of their mechanical properties
is based on idealized strut behavior on the cell
level, where strut lengths are assumed equal to
the distance between idealized lattice nodes; the
nodal intersections themselves are reduced to
one-dimensional entities. At most, they have an
implicit stiffness which are articulated as strut
boundary conditions.

Yet some of nature’s designs seem to con-
tradict this simplification: strut joints in natural
cellular solids are smooth and streamlined. So-

too does the application of classical stress-reduction design principles. Filleting nodal junctions would
surely improve load transfer and distribute stress more evenly. The following question seems justified,
therefore: How sensitive are cellular solids to nodal topology?

This thesis is a preliminary diagnostic investigation of this sensitivity. Using stereolithography
– an additive manufacturing process – several sets of specimens are fabricated and then tested in a
comparative framework. Bioinspired nodal filleting is juxtaposed with the sharp notches that are
typical in today’s metamaterials. The aim of the investigation is to support a synthesizing multiscaled
discussion of the results, to identify any current short-comings in the scientific understanding of
cellular solid mechanics, and to identify possible routes towards a more enlightened glimpse of our
world.
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Chapter 2

Background information

2.1 Looking to nature

Nature has inspired the creation of countless artificial structures. As mankind’s powers of observation,
conceptual understanding and modeling abilities grow, new layers of the world are peeled into
existence.

Natural structures are the harsh result of wearing conditions and or natural selection. For organ-
isms: processes of reproducible mortality in a complex environment. These repeated bouts of success,
some of which are more than a million years old, are correspondingly fascinating.

2.1.1 Mattheck’s stress-homogenizing curve

The endless fractal geometry of trees; forest boundary profiles; stag antlers; trabecular bone; glacier
cavities; and water-eroded rock. According to Claus Mattheck, the unifying theme of the elements
in this list is a specific stress-homogenizing topology (Mattheck, 2011). Independent biological
growth processes, mechanical wear, and evolution, all play their part in shaping natural structures.
The common shape in question can apparently be approximated by a common construction, and
its algorithm is defined geometrically in Figures 2.1 a) and b). Mattheck calls this construction his
“Method of Tensile Triangles” (Mattheck et al., 2007). For the sake of brevity, it shall henceforth be
referred to as Mattheck’s curve.

Figure 2.1 a) shows the construction of Mattheck’s curve. For a given filleting base length, a
circular arc is drawn to bisect the target line. From this new intersection, an arc of radius r1 equal to
half of the length of the newly constructed slope is drawn to create a new bisection. From this new
bisection, an arc of radius r2 can be defined. This pattern continues to the nth order, at the discretion
of the designer. (Mattheck et al., 2007)

Figure 2.1 b) shows how Mattheck’s curve can be applied to joints. The degree of relative loading
must be known or assumed, such that a stress-homogenizing topology may be constructed. In this case,
the angles subtended by the node and the apex of the curve and each target line are directly proportional
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to their relative loads (Mattheck, 2011). This simple method of producing stress-homogenizing notch
fillets could be a particularly efficient concept when applied to an iterative finite elements (FE) model
where network branches are being stress-homogenized. Mattheck’s motivation to teach his non-FE
methods seems to be focused on developing intuition and understanding of the natural world and
optimization solutions. He has also researched more expensive optimization methods that mimic tree
growth in response to its load cases (Mattheck and Haller, 2013).

2.1.2 Bone structure and functional grading

Fig. 2.1 Construction of Mattheck’s curve
for a) a branch junction where angle ra-
tio θ1/θ2 is equal the relative load of
each branch F1/F2 (Mattheck, 2007) and b)
for a simple right-angled notch (Mattheck,
2011).

To succeed in life, organisms must deal with a multi-
variate existence. Correspondingly, their designs are
subject many compromises. It is this point that makes
the list at the beginning of Section 2.1.1 so important.
Mammalian bones are no exception, themselves a sys-
tems engineering marvel: bones have varying topologies
according to zonal functionality. Functional grading
is hereby defined as “the gradual variation in composi-
tion and structure over a volume resulting in changes
in the mechanical properties of the material” (Birman
and Byrd, 2007; Genin et al., 2009). In bone structures,
functional grading is the result of addressing stiffness
mismatches, usually at bone ends where they interface
with others within joints, or with other bodily tissue
(Sola et al., 2016).

Generally, mammalian long bones can be divided
into three distinctive zones: the epiphyses, the metaph-
ysis and the diaphysis (OpenStax, 2016). Figure 2.2
provides an overview of the three regions. The epiphy-
ses are located at either end of the bone and are made
up of cancellous spongy or trabecular bone topologies
with porosities in the region of 60-95 [%] (Mullen et al.,
2009; Zhang et al., 2016). A large part of their func-
tionality is to transfer load. The trabecular structures
allow the bone’s base material produced by the body to take on a broad range of stiffnesses, thereby
tailoring it to the specific nature of the joint (Hayes and Keaveny, 1993). It should be noted that
osteoclasts and osteoblasts are key to understanding bone topology, and are not necessarily well-suited
to non-adapting engineering designs.
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Fig. 2.2 A diagram of a mammalian long bone (OpenStax, 2016)
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Fig. 2.3 Knee implant prototype with a porous inner structure (Murr et al., 2012)

The biomedical implant industry is undergoing a radical transformation, with some of its latest and
most innovative products being designed for bone ‘in-growth’. Conventional solid-cast parts are made
from biologically inert metals like Titanium, and are tightly fixed to patient host bones using stiff
fasteners and adhesives (Mullen et al., 2009). A well-known mantra in structural analysis and design
is that “stiffness attracts load”; an altogether too common result of replacement surgery is that the
patient’s neighboring bone atrophies through the natural process of osteoclasis, weakening the joint
until failure (Mullen et al., 2009).

Selective laser sintering (SLS), an additive layer manufacturing (ALM) technology, offers the
possibility of including porous metamaterial zones in implant design. This intricacy may blur some
classical definitions of material and structure by allowing natural and artificial materials to gradually
fuse together, forming a lighter ‘living’ joint. According to (Mahmoud and Elbestawi, 2017; Mullen
et al., 2009, 2010), SLS and novel design methods show great promise in improving patient recovery
time and quality of life. Figure 2.3 shows a photograph of a conceptual design for a human hip
implant, realized with SLS (Murr et al., 2012).

Avian long bones are unique in that they are part of the ornithological respiration and circulatory
system and have low relative density (O’Connor and Claessens, 2005). It seems that that these added
functionalities, together with the evolutionary airborne advantages of flying lightweight, has brought
about the avian bone topologies that we recognize as highly distinctive today (Sullivan et al., 2017).
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2.1 Looking to nature 9

Fig. 2.4 Characteristics of avian long bones (Sullivan et al., 2017).
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Studying avian bones more closely reveals that they are much more porous than those of mam-
malian counterparts, and feature reinforcing struts between the thinner compact bone walls (Sullivan
et al., 2017). Figure 2.4 provides an overview of these observations using simple conceptualizations.
Figure 2.5 shows a cross-section of the Cape vulture’s long bones. Gyps coprotheres seems to show
off much thinner wall thicknesses as well as internal reinforcement struts that join to the thin walls
with streamlined contours than, say, a human’s.

2.2 Cellular solids

2.2.1 Natural cellular solids

Fig. 2.5 Cross-section of a Cape vulture’s
(Gyps coprotheres) long bone (Sullivan
et al., 2017).

One of the best-known and most-cited books on cellular
solids is (Gibson and Ashby, 1997). According to their
definition, cellular solids are assemblies of smaller sub-
structural ‘cells’, made of connective tissue in the form
of struts, ligaments, or membranes (Ashby, 2006). The
choice in nomenclature is likely based on the relevant
literature available, which was largely biological and
botanical according to the references published in that
book.

Natural cellular solids are wide-spread, and include
wood, cork, plant tissue, animal tissue and bone (Gib-
son, 2005). As discussed in Section 2.1, many of these
examples feature a common stress-reducing topology.
Artificial cellular solids are an emerging field. These
man-made designs currently fall into two broad categories, as do natural ones: foams and ordered
cellular solid systems. Foams are understood to be random or stochastic in nature, a reflection of
their manufacturing process which include stochastic blowing processes (Abueidda et al., 2017;
Montemayor et al., 2015). Ordered cells tend to be more anisotropic. Their mechanical properties are
considered derivative to cell properties (Gibson and Ashby, 1997), which is explained in Section 2.2.2.

One of the most recognizable natural cellular solids is the honey bee’s humble honeycomb. Charles
Darwin noted the spectacular ability of bees to shape their wax in order to store food and larvae as
efficiently as possible (Darwin, 1859). In 1999, Professor Thomas Hales of the University of Michigan
proved outright that “honeycombs provide the least-perimeter to enclose infinitely many regions
of unit area in the plane”, allowing bees to work quickly and with the fewest resources. His work
was, in fact, the answer to the so-called hexagonal honeycomb conjecture that had been bothering
mathematicians for millennia (Hales, 2001).

Honeycombs have been used in the aerospace industry for decades, and are commonly featured
in composite sandwich panels. They provide excellent vertical stiffness for a small weight penalty,
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allowing high Young’s modulus face sheets to be loaded in tension and compression perpendicular
to it, resulting in high specific bending stiffnesses. Correspondingly, a great deal is known of their
mechanics, making them an excellent candidate for a preliminary study.

2.2.2 Cellular solid mechanics

Two broad geometrical categories are often referred to in cellular solid mechanics research. Open
cells are structures that have a single enclosed air pocket and tend to be made up of interconnected
struts. Closed cells are structures that separate air pockets from each other and tend to be made from
membranes. The central importance of these differences is the effect of internal air pressure on the
structure. (Gibson and Ashby, 1997)

The scope of this thesis, whose definition is presented in the following Chapter, is principally
concerned with open cell structures, as they are more straight-forward to analyze using classical
engineering theory.

An apparent trend in the research of cellular solid mechanical properties and characteristics,
is to classify their behavior. Broadly, there seem to be two main categories: bending-dominated
structures and stretching-dominated structures. Figure 2.6 illustrates their differences. The struts of
bending-dominated structures are principally loaded in bending and are depicted by Figure 2.6 a).
The struts of stretch-dominated lattices are principally loaded in the axial axis and are depicted in 2.6
9 b).

Fig. 2.6 Anecdotal truss-structure examples
of a) bending-dominated and b) stretch-
dominated lattices (Ashby, 2011)

.

According to (Deshpande et al., 2001), stretching-
dominated structures “offer greater stiffness and strength
per unit weight than those in which the dominant mode
of deformation is (. . . ) bending”, yet suffer from post-
yield softening compared to bending dominated struc-
tures due to strut buckling. Bending dominated struc-
tures, meanwhile, suffer from a ligament deformation
mode that causes more rapid decreases in strength and
stiffness for increasing porosity.

The general behavior of cellular solids under com-
pression loading is shown in Figure 2.7. Here, an exter-
nal load is applied to the system, and is counteracted by
the cellular solid’s internal loads. Initially, the response
is linearly elastic with a constant system deformation
rigidity. The structure then begins to soften as the effect
of geometric non-linearity and material softening grows.
As the ligaments are loaded beyond their limit and begin to fail, the result is a so-called stress plateau.
From there, tissue self-contact dominates the response in a densification regime where the deflection
rigidity begins to approach the base material stiffness. (Ashby, 2011).
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Fig. 2.7 The stress-strain behavior of cellular solids under compression (Ashby, 2011)

The initial linear-elastic response is caused by cell walls flexing elastically under load before non-
linear responses dominate the structural response. For two-dimensional (2-D) hexagonal honeycomb
solids, Ashby & Gibson have shown that the apparent Young’s modulus (referred to by the author
as the cellular solid’s ‘initial deflection rigidity’) is a function of its relative density and its aspect
ratio. For a regular hexagonal structure, where any strut or cell wall is equal to the other, the relation
becomes

kidr

Es
=
( t

l

)3 (1+ sin(π/6))
cos3 (π/6)

=
4√
3

( t
l

)3
(2.1)

where kidr is the initial cellular solid deflection rigidity of a 2-D hexagonal honeycomb cellular solid
with wall thickness t, cell wall length l, and a material Young’s modulus Es. Neglecting the size of
the node, l is also the distance between the honeycomb’s nodes. (Gibson and Ashby, 1997)

The stress plateau is caused by cell collapse. For 2-D hexagonal honeycomb cellular solids that
are loaded uni-axially, this can occur through: elastic buckling in elastomeric materials; the formation
of plastic hinges for those with a plastic yield point; and brittle fracture. (Gibson and Ashby, 1997)

Elastic buckling

The elastic buckling of cell walls in an elastomeric three-dimensional (3-D) honeycomb is considered
to occur when the cell walls are able to behave as slender columns which have an Euler buckling load
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Fig. 2.7 The stress-strain behavior of cellular solids under compression (Ashby, 2011)
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with critical load

Pcrit =
n2π2EsI

l2 (2.2)

where Pcrit is the critical elastic buckling load, 0.692 is its end fixity or nodal rotational stiffness, Es

is the material Young’s modulus, I is the minimum second moment of area, and l is the cell wall
length or inter-nodal distance. A value of 0.69 is assumed for regular hexagonal structures, and is not
considered to vary for differences in nodal topology. (Gibson and Ashby, 1997)

Plastic collapse

Ashby & Gibson’s models assume that plastic hinges occur at nodal points. The researchers’ model
for regular hexagonal structures is an exact

σpl

σys
=

2
3
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l

)2
, (2.3)

where σpl is the critical plastic stress, σys is the yield stress of the material, t is the cell wall thickness,
and l is the cell wall length or inter-nodal distance. (Gibson and Ashby, 1997)

Brittle fracture

Ashby & Gibson’s models assume that brittle fracture occurs near the nodal points. The researchers’
model for regular hexagonal structures is defined by

σbf

σfs
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4
9
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l

)2
, (2.4)

where σb f is the critical brittle fracture strength or crush strength of the cellular solid, σ f s is the
modulus of rupture, t is the cell wall thickness, and l is the cell wall length or inter-nodal distance.
The modulus of rupture is usually considered to be roughly 10 [%] larger than the ultimate tensile
strength of the material. (Gibson and Ashby, 1997)

2.2.3 Cellular solids as crush structures

The gradual crushing through plastic strain and cell wall collapse is reminiscent of Béla Barényi’s
work at automotive manufacturing giant Daimler-Benz. The Austrian engineer began his career in
1939. By the time he retired in 1972, he had not only invented the concept of the crumple-zone, but a
safer steering column and over 2000 other patented designs.

In "Kraftfahrzeug, insebesondere zur Beförderung von Personen" (Motor vehicles, with an
emphasis on passenger transport), Barényi challenged the then-age-old adagio that “a safe car must
not yield but be stable”, arguing instead for the kinetic energy of the crash to be transformed into
relatively harmless strain energy (Béla, 1949; Daimler, 2009; Eckermann, 2000). Instead of subjecting
the occupants to the full impulse of an energetic collision, the collision is spread out over time, and a
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significant portion of the energy into wrecking the material around the passenger cabin. Overall, this
reduces the extent to which the occupants are accelerated (or decelerated).

Barényi’s idea has been applied to automotive design ever since and led to significant improve-
ments in human welfare. When applied to energy absorption contexts, cellular solids can support
the application of crush structure principles to the material level. The mechanics of this behavior
have been addressed already. Cellular solids have historically been applied for energy absorption
under compression applications. One example is the Apollo 11 landing module in which a sandwich
structure was used as a shock-absorber in its landing module (Gibson and Ashby, 1997).

2.3 Key engineering concepts

A few key engineering concepts have been identified as essential or important background informa-
tion which together provides a foundation for the experiment design, analysis, and the subsequent
discussion of the results.

2.3.1 Plane stress problems

For the case where in-plane forces act on an element, the stress components regarding the out-of-plane
component can be assumed equal to zero (Pilkey and Pilkey, 2008). This is the definition of plane
stress. The assumption of plane stress reduces the compatibility equations for stress to a simpler set
of system of equations in which

∂σx

∂x
+

∂τxy

∂y
+ pV x = 0, (2.5)

∂τxy

∂x
+

∂σy

∂y
+ pV y = 0, (2.6)

and (
∂ 2

∂x2 +
∂ 2

∂y2

)
(σx +σy) =−(1+ν)

(
∂ fVx

∂x
+

∂ fVy

∂y

)
(2.7)

(Pilkey and Pilkey, 2008). Terms and denote the components of the body forces acting on the
unit volume in consideration. If the variation of these forces can be considered zero, then the last
constitutive relation reduces to

(
∂ 2

∂x2 +
∂ 2

∂y2

)
(σx +σy) = 0. (2.8)

The above system of equations is that they do not contain any material properties: the state of stress
is only related to the geometry of the specimen in question and the load acting on it. The implicit
assumption here is that the material has constant material properties that relate strain to stress.
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2.3.2 Saint-Venant’s problem & principle

Saint-Venant’s problem was “The task of determining, within the framework of the linear theory of
elasticity, the stresses and displacements in an elastic cylinder in equilibrium under the action of loads
that arise solely from tractions applied to its plane ends”. Circa 1856, Barré Saint-Venant reported
his principles on the problem as his semi-inverted solution method, which has since transformed to
become known as Saint-Venant’s principle. (Horgan and Knowles, 1983)

Saint-Venant’s principle is a practical approximation in which the effects of nonlinear stress state
responses to changes in geometry and load for distances far enough away from the discrepancies
are neglected. This distance is usually defined by the minimum dimension of the geometry being
analyzed. According to (Young and Budynas, 2002):

If a load distribution is replaced by a statically equivalent force system, the distribution
of stress throughout the body is possibly altered only near the regions of load application.

2.3.3 Beam structures

Straight beams are slender structures that have: homogeneous material in tension and compression;
have an overall curvature at least 10 times its depth; a near-constant cross-sectional area; at least one
longitudinal plane of symmetry; loads and reactions acting perpendicularly to the beam axis; and long
dimensions relative to its minimum dimension. Furthermore, it does not experience a maximum stress
that exceeds the proportional limit of its material. Satisfying these cases seem to yield in a maximum
error of 5 [%] for evaluating beam deflections. (Young and Budynas, 2002)

Notch stresses are evaluated by assuming an idealized bending stress distribution, and applying
assumed stress concentration factor from classical stress reduction theory (Young and Budynas, 2002).

The effect of shear is considered to be negligible under the above conditions - that is to say, in
conditions that respect the idealization of the Euler-Bernoulli beam model (Young and Budynas,
2002). In this beam model, the general differential equation at any cross-section is given by

EI
d2yc

dx2 = M, (2.9)

where E is the Young’s modulus of the material, I its second moment of area, M the moment at that
cross-section, and yc the vertical tip deflection of the centroidal axis. (Young and Budynas, 2002).
The latter term is the inverse of the local radius of curvature. This can easily be rearranged to solve for
what shall from now be referred to as the apparent bending stiffness, where v(x) is the strut’s vertical
deflection function:

EI(x) =
M(x)(
d2v(x)

dx2

) . (2.10)
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According to Castigliano’s second theorem,

yc =
∂C
∂F

, (2.11)

where beam displacement yd is also the partial derivative of the complementary energy of flexure C
with respect to a vertical tip load F (Young and Budynas, 2002).

The relationship between a local cross-section’s moment M and shear force S is given by the
equation

S =
dM
dx

. (2.12)

The strain energy of stretching material U is defined as the work done by that material in absorbing
the load F integrated for the resulting deflection dx according to the equation

U =
∫

Fdx. (2.13)

C and U are related to each-other by totalling as the product of load and deflection at any point of a
load-deflection curve.

Overall, the deflection rigidity of a beam can be found by dividing the tip force F by the tip
displacement v(x = l). This effectively idealizes the beam as a rotational spring, hence the use of
symbol kdr in the defining equation

kdr :=
F

v(x = l)
. (2.14)

2.3.4 Classical stress-reduction in engineering design

Stress concentration factors

Cross-sections that suffer from abrupt changes in their geometry suffer from high stress gradients at
those changes. These localizations are known as stress concentration factors (SCF) and are defined
by the ratio of the peak stress to some baseline stress (Pilkey and Pilkey, 2008). For linear elastic
materials, stress can be considered directly proportional to strain by invoking Hooke’s law. This
is hereby considered a valid assumption under the provision that the material has not yielded its
elasticity.

The reference stress (or strain) is known as the nominal value. Its selection is arbitrary but aims
to provide a form factor to engineers so that they can compare designs (Pilkey and Pilkey, 2008).
Photoelastic experiments were performed to study the influence of different basic geometries on the
resulting stress gradients under load. These findings have since been compiled into various design
handbooks in the form of design charts including (Pilkey and Pilkey, 2008; R.B Heywood, 1965;
Young and Budynas, 2002).
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In this thesis, the stress concentration (SC) in stepped bars are in a plane problem are particularly
important. In such designs, the geometric discontinuity of the step provides what is known as a notch
stress. According to experimental results, the notch stress is a function of the smaller nominal shaft’s
size relative to the base shaft, of the applied fillet geometry, and the length of the base. For a circular
fillet, these effects can be inferred from Figures 2.8 and 2.9 (Pilkey and Pilkey, 2008). For a relatively
large step size (ie. d/D is large), Figure 2.8 shows that small changes would have little effect; this is
especially true for larger values of r/d. For a large base thickness (ie. L is large using the figure’s
nomenclature), Figure 2.9 shows that for an r/d equal to 1.0, the design is not very sensitive to further
variations in geometry.

Mitigating stress concentrations with fillets

To mitigate the effects of SC – an important consideration for assessing fatigue performance and
the goodness of a lightweight design – engineers can grade geometric changes and discontinuities
with more streamlined fillet contours. This is especially relevant to improving designs whose main
geometric parameters are fixed or highly limited for the application.

Circular fillets are perhaps the most straight-forward type of shoulder fillet. Non-circular contours
such as elliptical fillets or Baud’s fillet can provide even better reductions of SC. Baud’s fillet is based
on an idealization of frictionless liquid flowing by gravity from an opening in a tank bottom (Baud,
1934; Pilkey and Pilkey, 2008). Its contour is defined by

x = 2r sin2
(

θ
2

)
, (2.15)

and
y = r log

[
tan

(
θ
2
+

π
4

)
− sin(θ)

]
(2.16)

where r is the base fillet width, and θ is the tangent angle of the contour to the x-axis in radians, as
shown in Figure 2.10. Baud’s fillet can provide a SCF of near-unity when the appropriate r is selected.
Baud himself recommends it to be equal to the nominal shaft size d for a stepped shoulder divided by
the value of π (Baud, 1934).

Stress concentrations in cellular solids

Little is known about how the role stress-reduction design might play in cellular solid design. Take
nodal filleting as an example. At the beginning of this thesis, only (Dallago et al., 2017) remarked
on the possible effects that circular fillets might have on 2-D cellular solid structures. Dallago et al.
provided a glimpse into the sensitivity of cellular solids to changes in nodal topology via FE and
analytical beam models. The initial results were promising, with circular fillets being applied with a
radius equal to one half of the strut thickness. Overall, the structural modulus of the material was
‘highly sensitive’ to the circular fillets, although the differences seemed an obscure 5 [%] for a square
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Fig. 2.8 The effect of the stepped shoulder size on stress concentration factor Kt for a bending stepped
bar with a circular fillet according to photoelasticity tests (Pilkey and Pilkey, 2008)
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Fig. 2.8 The effect of the stepped shoulder size on stress concentration factor Kt for a bending stepped
bar with a circular fillet according to photoelasticity tests (Pilkey and Pilkey, 2008)
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Fig. 2.9 The effect of base thickness on stress concentration factor Kt for a bending stepped bar with a
circular fillet according to photoelasticity tests (Pilkey and Pilkey, 2008)
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Fig. 2.10 The parametric definition of Baud’s curve

lattice. According to the author, “the fillet radius increases the rotational stiffness of the joints, thus
making the structure less compliant, but the effect is weaker than that of [the change in thickness]”.

The central problem in the opinion of this author is that FE models suffer in their inability to
directly asses the effect of geometric discontinuities on SCFs.

Design stress-reduction performance

As mentioned earlier in Section 2.3.4, design charts can be found in engineering design handbooks,
many of which are knowledge compilations of photoelastic experiments. The experimental specimens
were made from translucent material. They had a 2-D form, which is to say that the front and back
faces were parallel to each other to form an extrusion of some contour. A series of lights, filters, and
other optical equipment allowed scientists to capture diffraction patterns as a result of body forces
deforming the specimens. These diffraction patterns were then translated into plane stress gradients
over the idealized 2-D surface. The maximum SCF could thus be calculated. An example of fringes
showing SC is given in Figure 2.11 for a cantilever specimen with a filleted base. (R.B Heywood,
1965)

Designs were then compared to each other in an iterative engineering process. Stress – or
correspondingly strain – can be plotted against load for each specimen along with the ideal nominal
stress not affected by SC, as shown in Figure 2.12. The maximum SCF can directly be compared or
compared to the ideal situation as an expression of material efficiency.

2.3.5 The Von Mises equivalent strain

The Von Mises stress is a fictional stress that combines normal and shear stresses to determine the
extent of the material’s loading according to the basic Von Mises criterion. The Von Mises equivalent
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Fig. 2.11 The fringe patterns produced in a photoelastic experiment of a cantilevered specimen with a
circular fillet applied to its base (R.B Heywood, 1965)

strain is the corresponding strain, and is often used in FE models to compare material inefficiencies in
structural design. The Von Mises equivalent strain is defined by the equation

εV M :=
2
3

√(
3
2
(
ε2

xx + ε2
yy + ε2

zz
)
+

3
4
(γ2

xy + γ2
yz + γ2

zx)

)
, (2.17)

where εV M is the equivalent Von Mises strain, εxx, εyy and εzz are the strains in the x, y and z directions
respectively, and γ is the shear whose subscripts denote in which plane the shear strains are referring.



22 Background information

Fig. 2.12 Comparing the stress reduction performance of comparable designs (R.B Heywood, 1965)
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Fig. 2.12 Comparing the stress reduction performance of comparable designs (R.B Heywood, 1965)

Chapter 3

Research definition

In Chapter 2, gaps in the scientific understanding of cellular solids were identified. The potential
sensitivity of cellular solids to nodal topology was particularly striking. Broadly, researchers believe
that the detailed behavior of cell-level mechanics matter little at the larger scale. In the words of
metamaterial pioneers Ashby & Gibson, “the single most important structural characteristic of a
cellular solid is its relative density” (Gibson and Ashby, 1997). The characteristic cell wall lengths for
their mechanical models are equal to the corresponding distance between the idealized lattice nodes
regardless of strut thickness. In other words, nodes are reduced to 1-dimensional (1-D) entities who
have a position but no explicit stiffness.

Many of nature’s nodes have remarkably streamlined topologies. This curious pattern indicates
that nodes might play an important functional role in cellular solid mechanics. This basic observation
helped to define the following central research question and the hypotheses presented in Section 3.3.

What is the effect of nodal topology on cellular solid mechanics?

3.1 Research scope

The above research question is too broad to consider in a single Master of Science thesis. Executing a
preliminary diagnostic investigation became its objective. As with many cellular solid studies, the
project scope was reduced to consider 2-D structures, though with the goal of scaling the lessons
learned to 3-D structures in a synthesizing multiple-scale discussion.

A multiple-scale analysis seemed appropriate to shed as much light on nodal topology as possible.
If empirical evidence exists for nodal topology affecting strut mechanical properties, and corroborating
evidence supports those findings on a cellular solid level, it could draw a conclusive link between the
two.

Comparing and contrasting test specimens seemed an intuitive way to probe the structural sig-
nificance of nodal topology. In a nod to Heywood’s photoelastic design principles, and to classical
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stress-reducing fillet design engineering handbooks, varying nodal topology through filleting became
a central idea.

The scope of this project can be defined by the following mission statement:

Determine the sensitivity of 2-D hexagonal honeycomb cellular solid mechanics to
changes in strut base filleting from the nodal and finite cellular solid scales of analysis.

3.2 Author inspiration, opinions and personal biases

The author was particularly inspired by nature’s beauty and by apparent patterns in its design. Claus
Mattheck’s studies of organic and inorganic natural forms, were hugely formative for the author. After
researching the internal topology of avian bone, the idea that nodal topology is important became
unshakable. It seemed intuitive for the entire structure to become more homogeneously loaded and
for it to benefit from shorter streamlined load-paths through the material as a direct result.

There is a general danger in the blind belief of ‘utopia’. Pursuing stress homogenization through
effective material redistribution might well bring every part of the material to an equivalent loading
and for the material efficiency to drastically increase. Indeed, this is one of the core values of an
engineer. On the other hand, it might bring every point to an equally critical limit. If every part of the
structure is critical, the smallest of flaws or disturbances might cause catastrophe. The rightness of a
pure pursuit, therefore, depends greatly on context. It seems to the author that pursuing this knowledge
and bringing it together with well-articulated and planned structural weak-points or ‘triggers’ could
be a hugely powerful concept in the general case.

The last idea is partly based on a presentation given by Megan Walker to the author and other
colleagues in Calvin Rans’ Additive Manufacturing research group on the concept of ‘layers of
structure for layers of damage’.

3.3 Hypotheses

Several hypotheses are put to the test in this thesis. The author’s perceptions and guesses were
continually re-articulated into the form of the falsifiable – or at least experimentally observable –
statements. As this work is a preliminary diagnostic investigation and discussion across multiple
scales in cellular solids, it seemed appropriate to reflect this in their classification and articulation as
follows.

1. Nodal scale:

1.1 Mass-normalized strut deflection rigidity is unaffected by nodal topology.

1.2 Strut stress fields and their homogenization are unaffected by nodal topology.

1.3 If stress homogenization in a bending structure improves, then that structure will increase
in its mass-normalized strut deflection rigidity.
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2. Cellular solid scale:

2.1 Mass-normalized cellular solid deflection rigidity is unaffected by nodal topology.

2.2 Stress homogenization in a cellular solid is unaffected by nodal topology.

2.3 If stress homogenization improves, then a cellular solid will increase in its mass-normalized
deflection rigidity.

2.4 If stress homogenization improves, then a cellular solid will become less sensitive to
localized stress gradients and their effects, thereby increasing the height of the so-called
stress plateau.
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Chapter 4

Nodal-level methodology

In an attempt to systematically assess the sensitivity of cellular solids to nodal topology, and offer
new insights grounded in real experimental data, the multi-scale begins with the investigation on
the so-called ‘nodal level’. A number of hypotheses were put forward earlier in Section 3. The
process of refining specimen design, designing test procedures, and amassing enough detailed data
to justify drawing those insights is detailed in this Chapter. The author has attempted to be up-front
about the decisions that were taken - some of which are arbitrary - and to outline how the results
presented in Chapter 6 can be reproduced. More specifically, the objective is to reproducibly challenge
Hypotheses 1.1 through 1.3.

4.1 Specimen design

Two basic specimen types were developed for the nodal level of analysis. Both feature a slender strut
whose base is filleted. Slender struts are likened to slender beams, whose definitions are given in
Section 2.3.3.

The differences between specimens within a type manifest as distinctive nodal topology, articulated
through changes in base filleting. These fillets were inspired by patterns in nature (explained in
Section 2.1.1) and by classical engineering design methods (explained in Section 2.3.4). According to
Saint-Venant’s principle (explained in Section 2.3.2), the outer portions of the struts can be considered
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usage, this may indicate strut sensitivity to nodal topology, thereby disproving Hypothesis 1.1.

Variables pertaining to the design of the specimen itself must be controlled such that specimen
comparisons are fair. It is precisely this which is targeted in the proceeding sub-sections of this
Section.

For information regarding the detailed specimen fabrication, the reader is directed to (van Helvoort,
2018) for the relevant MATLAB design scripts, printable files, and specimen logs.
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Table 4.1 Overview of fillet shapes to be applied to a sharp notch

Fillet shape Inspiration

No fillet Baseline design (current state of most cellular solids)
Circular ‘State-of-the-art’ in cellular solid design; straight-forward engi-

neering practice
Mattheck’s fillet Bioinspired stress-reducing fillet design
Baud’s fillet Classical stress-reducing streamlined fillet design

4.1.1 Nodal fillet shapes

The first specimen’s nodal topology is the non-filleted node, and represents the baseline design. The
remaining shapes are an arbitrary assortment of fillets inspired by different contexts. Descriptive and
visual overviews are given in Table 4.1.

The geometric definitions for each fillet are given in Section 2.3.4, where a common geometric
parameter is the fillet envelope height, henceforth referred to as r. The author wished to observe the
surface strain of an affected nodal area without significantly disturbing the far-field behavior. An
arbitrary balance was struck between fillet dissemblance in the vicinity of the node, and its size relative
to the strut, the envelope height was arbitrarily set to 1/10th of the strut length for all specimens. For
the circular fillet, this corresponds to the fillet remaining within the boundary-affected zone implied
by Saint-Venant’s principle.

4.1.2 Infinite node specimens

A slender strut is joint to a self-constrained node, designed to be insensitive to small changes in
shoulder geometry, in accordance with classical stress reduction theory. In the early stages of this
project, the author planned to compare experimental data with Ciomber and Jackel’s FE model results,
but later, little added value of this was perceived. Although Ciomber & Jackel’s work was extremely
helpful, it should be noted that the selection of base fillets for this thesis was completely coincidental.

A ratio of D/d = 10 was selected to build in a safety margin, and initially to compare results
with Ciomber and Jackel’s work directly. Figures 2.8 and 2.9 meanwhile, together indicate that
for increasing values of r/d provide increasingly ‘stable’ values of Kt which approaches 1 at r/d
approaches 1 for a circular fillet. This stability is assumed for all fillets, meaning that their maximum
stress concentrations can be directly compared as a direct function of fillet geometry.

The specimen geometries was defined according to this D/d ratio, fillet height r, and strut length
L. In terms of r, L := 10r, D := 10r, and d := r. The final physical dimensions were a function of
the available printing volume of a Formlabs Form 2 printer, the printer made available to the author
at the Delft Aerospace Structures and Materials Laboratory (DASML). Technical drawings for each
specimen can be found in Appendix B.
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4.1.3 Finite node specimens

The same slender struts and filleted bases are now joint to two perpendicular support struts with the
same properties. The finite nodes offer insight into how nodes are affected by being ‘free’, in terms of
strut flexibility and load transfer. Their design differs only in the depth of the node base which has
become equal to r. The technical drawings for each specimen can also be found in Appendix B.

4.2 Methodology validity

The comparative study aims to shed light on the effect different fillets had within a predefined fillet
envelope on strut deflection rigidity, and on its detailed strain behavior in terms of stress concentration
visualizations. Unintended changes from specimen to specimen should therefore be accounted or
controlled for.

4.2.1 Material considerations

The material used to fabricate all specimens was the Formlabs Gray resin V4 using a Formlabs Form
2 SLA printer. The specimens were rinsed and post-cured using the Formlabs Wash and Cure stations
respectively. It is assumed that the critical sections to be compared are not thick enough to experience
residual stress concentrations, and other material differences as a result of the manufacturing processes
used are eliminated using the manufacturer’s advise on specimen treatments. The relatively thick parts
of the specimens did not seem to suffer from excessive warping, indicating that this is a reasonable
assumption to make. The assumptions were necessary with regard to the thesis scope and time-frame.
This is revisited later in Chapter 10.

4.2.2 Strut deflection rigidity

Controlling for any changes in second moment of area of the nodal regions would be a poor nor-
malization of strut deflection behavior, as it too-closely relates to the intended variation between
specimens. As most of the added material is located at the strut root, which is an area considered to
have a complex stress field according the Saint-Venant principle, the second moment of area may not
be of key interest if a section is not principally loaded in bending. For this reason, it is assumed that
controlling for differences in the second moment of area is not justifiable. Instead, it is proposed to
normalize the results according to the material usage of the functional strut (from base to tip). This is
done in the processing of results, in Chapter 5.

As it is not possible to load an edge, the strut length hereby receives a more practical definition.
The length is based on the functional strut, which is defined as the length of the point of load
application to the shoulder location. Determining this precise location and the corresponding strut
length is specifically addressed in Section 4.3.2.
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4.2.3 Nominal strain

To compute the free-boundary stress concentration from the DIC strain field data, a theoretical nominal
reference strain must be selected. As slight geometric differences were observed between samples as a
result of the fabrication process, it was judged that a fair solution would be to assume that the bending
stiffness of the minimum-area cross-section can be modelled by calculating the actual moment of
area of the strut tip. Thus, each specimen’s strut tip dimensions and effective strut lengths are to be
measured using LIN 69332638 digital calipers. From these measurements, the second moment of
area is calculated using

Ixx =
1

12
bh3, (4.1)

where Ixx is the second moment of area round the x-axis, b is the strut width, and h is the strut’s local
height, at the minimum-area cross-section.

4.3 Experimental design

4.3.1 Test goal

The aim of the experiment is to compare the various effects that a tip load causes through the resulting
internal shear and moment distribution. The comparison itself will be based on differences in strut
displacement, and on the resulting strain fields from two DIC camera setups: one observing the
free boundary, and one observing the section-view. The overall setup is functionally similar to old
photoelastic experiment designs.

The force is to be applied by a 20kN Zwick 1455 20kN test bench with a 1 [kN] load cell which
records the magnitude of the applied load and the tip displacement. Using a permanent marker, the
test bench’s push-rod is to be coated to leave an impression on each specimen. The distance from this
mark to the shoulder base is the (functional) strut length, and is to be measured by the same calipers
by temporarily transcribing both locations to a piece of blank paper. The load should act in-plane
with the specimen geometry and be made consistent with the help of specimen clamping.

4.3.2 Chosen approach

Specimen preparation and camera calibration

After fabricating, washing and curing the test specimens – a process detailed in (van Helvoort, 2018)
– the specimens were brought to the DASML paint booth. The target surfaces for DIC were spray-
painted with a flexible matte white base coat and left to dry for 1 hour. In that time, the DIC setups
were calibrated, and the calibration file saved as a reference data file. Then, spare or old specimens
were speckled with black paint using swift consistent motions from several distances. Those samples
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Table 4.2 Summary of the node-level test program on a Zwick 1455 equiped with a 1 [kN] load cell.

Infinite node Finite node

Max. force channel voltage [V] 10 10
Max. force channel force [N] 165 40
Max. force test [N] 150 35
Max. displ. test [mm] 20 20
Strain rate test [mm / min] 0.25 1

were brought the experimental setup, and the speckle patterns were reviewed. The best results were
attempted once more, and then applied to actual experiment specimens.

Experiment methodology

Table 4.2 summarizes the experimental test program that was used for the 20kN Zwick 1455 20kN
test bench configured to use a 1 [kN] load cell. It is also available for download in the form of a Zwick
1455 template at (van Helvoort, 2018).

The following method was then applied.

1. The test bench’s push rod is coated with a new application of permanent marker.

2. A specimen is placed in the test environment. A small distance of approximately 3 [mm] was
left between the specimen and the test bench’s point of force application.

3. The DIC cameras are manually set to start taking pictures at a rate of 2 frames per second (FPS)
using hardware triggering in VIC Snap 8.

4. The load cell was calibrated to 0 [N].

5. The laboratory climate is recorded in terms of the relative humidity and temperature.

6. The test program described in Table 4.2 was executed.

7. After reaching the maximum force threshold, the DIC cameras were manually controlled to
stop taking pictures.

8. The specimen was removed. Return to step 1 until all specimens have been tested. Then proceed
to step 8.

9. The imprint left by the coated push-rod is used to measure the effective length of the strut l,
defined previously as the distance between the marker and the specimen shoulder, by paper
transcription.





Chapter 5

Nodal-level data processing

Unprocessed data in the form of analog sensor spreadsheet logs, and stereoscopic black and white
digital images were processed with MATLAB and Correlated Solutions’ VIC-3D 8. The reader
is referred to (van Helvoort, 2018), where the MATLAB data processing scripts have been made
available. Briefly, the underlying theory is presented in this Chapter.

5.1 Digital image correlation

5.1.1 System calibration

For each series of experiments, a series of calibration images of the test environment were taken to
correlate pixel transformations between images to meaningfully scaled discrete transformations in
three dimensions in a process commonly referred to as Digital Image Calibration (DIC) using VIC
Snap 8. The analysis of these stereoscopic photographs within VIC Snap 8 provided a reference
data file for those specific camera and lighting conditions. For information, the reader is referred to
Appendix B.

5.1.2 Appending load cell data to DIC images

The spreadsheet data log for all image sequences includes the force registered by the load cell at each
point in time in terms of an analog voltage reading. This data was inspected manually to determine
the point at which the specimens first encountered the test machine and thereby defined as the start of
each test. Any error here is assumed negligible owing to the low strain rate.

5.1.3 Area of interest

To begin with, an outline of each specimen had to be manually traced using a mouse in the graphical
user interface (GUI) of VIC-3D 8. Through a process of trial-and-error, a single unchanging set of
subset, step, and strain filter size was selected for each series. An overview of these and other settings
specific to VIC-3D 8 is given in Appendix C.
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The objective of the trial-and-error process was to reduce output noise, maximize coverage, whilst
maintaining sharpness across all specimens. In order to do so, the smoothing area needs to be kept as
small as possible in order to observe localized regions of high strain gradients, whilst reducing noise,
the risk of aliasing, and non-convergence. Edge data cannot be observed; enough neighboring points
need to be present in order to compute strain.

The basic x-, y-, z-, xy-, and 1- and 2-principal strains were then post-processed to compute
the equivalent Von Mises strain, curvature, local in-plane rotation, and velocity for further analysis
and exported to MATLAB. This data can be found at (van Helvoort, 2018). The equivalent Von
Mises strain is a fictional strain that combines deformations into a single metric, defined earlier by
Equation 2.17.

In VIC-3D 8, the initial surface facing the camera was fitted to a flat plane. Data points in which
no strain is detected is set to not-a-number (NaN). The y-axis (x = 0) was defined by the position and
orientation of the base shoulder geometry in the first image. Thus, the necessary axis transformations
were made according to these definitions.

The detailed strain fields can be visualized with standard MATLAB plots like quiver, streamline,
contour, and contourf plots without further processing.

5.1.4 Blending the DIC data

As the experiment was designed as a plane problem, the two DIC setups are considered to be
complementary. Pictures from each DIC setup were taken at slightly different points in time, so results
were linearly correlated and interpolated through the logged force output and shoulder location as a
time-proxy and space reference respectively. The struts’ tip deflections at a given force level can be
interpolated from the high frequency sampling of the Zwick 1455 20kN’s 1 [kN] load cell’s analog
output signal.

5.2 Apparent flexural rigidity

To compare the apparent flexural rigidity, a tip deflection of 1% of the functional strut length was
selected for, where any geometric nonlinearities are assumed negligible. A MATLAB analysis code
made openly available at (van Helvoort, 2018) calculated the mean and standard deviation for the
vertical displacement at each point along the x-axis using the nanmean and std MATLAB functions,
both configured to omitnan, from the section view DIC setup. The local derivative with respect to x
is taken twice numerically using MATLAB’s diff function.

The moment distribution as a function of x is assumed to be a linear distribution increasing from 0
at the strut’s effective tip (where the tip load acted) to its root by the equation

M(x) = (l − x)F. (5.1)
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It is important to note that this may not be the precise moment distribution. This will be discussed
more fully later.

From the rearranged Bernoulli-Euler law of bending in Equation 2.10, the apparent stiffness of
the beam is calculated from its local curvature.

5.3 Initial deflection rigidity

The initial deflection rigidity is a simple application of Hooke’s law applied to the raw Zwick 1455
20kN’s 1 [kN] load cell’s analog output signal. A change in force is simply divided by a change in the
sip deflection. A deflection of 0.5 to 1.0 [mm] was chosen arbitrarily for all specimens. The deflection
rigidity defined earlier in Equation 2.14 then normalized according to the estimated amount of beam
material for the real specimen. The normalization is performed according to

kdr := kdr
Vnf

∆V +Vnf
. (5.2)

5.4 Strain concentration visualization

Stress concentrations depend on the problem at hand and on the reference stress in question. For
linear-elastic problems, stress concentrations can be calculated by the ratio of a strain over a reference
or nominal strain.

Usually, the reference strain would be chosen from an undisturbed but representative location;
for no stress concentration, a strain concentration of 1 is conventionally expected. In words, unity
represents a return to a ‘status-quo’ or undisturbed strain distribution. The undisturbed strain field is
the idealized strain distribution for regions considered to be unaffected by boundary conditions and
load introductions, though exceptions are made for the classical analysis of notches. The identification
of these regions is often related to Saint-Venant’s principle.

As the moment is a changing distribution in response to shear instead of a pure moment, the
author found it most intuitive to reflect this in a nominal strain dependent on x. The assumption can
be reflected on by inspecting the shape of the far-field strain distribution. The Euler-Bernoulli law
can then be reformulated to express the nominal strain εnom as a function of the distance from the
strut’s neutral axis x. To ‘level the playing field’, the actual printed geometry of each strut tip is used
to define the distance of the free surface from the neutral axis y, which is assumed to be h, the height
of the beam. The second moment of area becomes a constant and is easily calculated using the basic
equation for a rectangular section.

εnom,x(x) =−y
(

d2v(x)
dx2

)
=−y

M(x)
EI

(5.3)
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The computation of the strain concentration distribution Kt,x(x) becomes:

Kt,x(x) =
εx(x)

εnom,x(x)
, (5.4)

and the maximum stress concentration Kt,max can be found according to:

Kt,max = max(Kt,x(x)). (5.5)
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Chapter 6

Nodal-level results

Two specimen archetypes whose detailed designs are explained more thoroughly in Chapter 4 were
tested in an experimental setup under quasi-static loading conditions. The first archetype represented
an ‘infinite node’ and is like a cantilevered beam plane problem. The second archetype had geometri-
cally identical strut and fillet geometries but had a truncated base in the form of two adjoining struts.
This second archetype represented a ‘finite node’ and is more like an actual cellular solid node.

The specimen masses are given in Table 6.1, having been weighed with a Mettler AE 1666 digital
scale. The specimen projected volumes are given in Table 6.2, using the Formlabs PreForm software
estimation from the input stereolithography file. An overview of each infinite-node specimen’s
geometries in which the LIN 69332638 digital calipers were used is provided in Table 6.3, and an
overview of each finite-node specimen’s geometries in which the same calipers were used is provided
in Table 6.4.

Table 6.1 An overview of nodal specimen masses

Fillet design
Specimen masses pm 0.0005 [g]

Infinite node Finite node

No fillet 100.268 7.353
Circular 99.130 7.537
Mattheck’s fillet 100.701 7.799
Baud’s fillet 100.207 7.931

Of interest is the overall strut deflection rigidity. This performance parameter essentially idealizes
the strut as a torsional spring. If this rigidity varies according to fillet shape, after controlling and
normalizing the results, this would directly challenge Hypothesis 1.1.

By analyzing local curvature along the strut length, the apparent stiffness can be estimated by
invoking the Euler-Bernoulli law. This process will help identify preliminary explanations for how
the fillet shapes affect strut rigidity, and which areas are particularly significant.
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Table 6.2 An overview of nodal specimen volumes

Fillet design
Specimen volumes ±0.005 [ml]

Infinite node Finite node

No fillet 83.02 6.07
Circular 83.11 6.16
Mattheck’s fillet 83.36 6.41
Baud’s fillet 83.46 6.51

Table 6.3 An overview of the infinite-node specimen geometric parameters

Fillet design
Geometric parameter lengths ±0.010 [mm]

Tip height (h) Tip width (b) Strut length (l)

No fillet 4.51 9.89 39.53
Circular 4.61 10.02 42.02
Mattheck’s fillet 4.51 9.78 40.06
Baud’s fillet 4.77 10.00 39.00

Table 6.4 An overview of the finite-node specimen geometric parameters

Fillet design
Geometric parameter lengths ±0.010 [mm]

Tip height (h) Tip width (b) Strut length (L)

No fillet 4.62 10.07 40.16
Circular 4.62 10.09 40.16
Mattheck’s fillet 4.66 10.02 40.16
Baud’s fillet 4.72 10.02 40.16

By comparing and contrasting the apparent strut stiffness for every beam section with the theoretical
stiffness of each strut, how anomalies from this well-understood backdrop can be identified and
hopefully explained later in the synthesizing discussion, along with a comparison of free boundary
strain distributions, stress concentration, and photoelastic-like section views.

6.1 Infinite node specimens

The infinite node aims to present the effects of a strut base fillet independent of other geometric
parameters.

6.1.1 Strut deflection rigidity

Under quasi-static loading conditions, the specimens differed in their strut deflection rigidity. This is
clearly seen in the unprocessed test bench results, shown in Figure 6.1, and remain after normalizing
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Fig. 6.1 The unprocessed force-displacement results for the infinite node specimens

by the projected strut and fillet material volume, as defined by Equation 5.2 in Chapter 5. The
normalized rigidity of each specimen is compared graphically in Figure 6.2. For a given displacement,
it seems that significant differences in force is required as a function of the specimen themselves.

The Baud-filleted infinite node specimen, represented by a dashed line in Figure 6.1, rotated
in its clamp during the experiment, unbeknownst to the author at the time. This is clearly seen by
comparing the first and last photographs of each specimen. The Baud-filleted infinite node suffers from
rotational blurring in Figure 6.3d as compared to 6.3a, for example, which did not rotate. Although
this rotation may seem small, it is still considered a significant systematic error. The displacement
occurred randomly in the initial stages of the experiment according to the force-displacement output,
and knowing that the strain rate was constant. This movement significantly affected the specimen’s
orientation with respect to the applied load. For this reason, these results cannot be considered truly
representative, hence the dashed line.

6.1.2 Strut deflection analysis

The strut displacement pattern of each specimen for a tip deflection of 1 [%] of its functional length is
shown in Figure 6.4. According to theory outlined in Chapter 5, it was differentiated twice with respect
to x to find the local curvature, and correspondingly its apparent stiffness through the Euler-Bernoulli
bending law and assuming a linear moment distribution from tip to base. The moment distributions
are shown in Figure 6.5. The resulting apparent stiffness distributions are shown in Figure 6.6.
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Fig. 6.2 The initial deflection rigidities for the infinite nodal specimens

In the region of the node, St. Venant’s principle implies that the stress field in these regions are
subject to highly complex strain fields; they are not easily modelled. The strain fields of the specimens
in this area may thus give clues as to how the flexural rigidity of the beam is actually affected by the
fillet.

6.1.3 Strut free boundary analysis

The specimen average free boundary principle strain for every point in x is shown in Figure 6.7 for a
tip deflection of 1 [%], and the corresponding stress SCF distribution as defined in Chapter 5 is shown
in Figure 6.8.

The nodal regions of both Figures 6.7 and 6.8 are distinctive from each other, and their far-fields
converge to comparable principle strain levels and SCF values respectively. The relative shape of
both distributions were seen to be similar throughout each trial. It is thought that for these larger strut
deflections, structural non-linearities upset the pattern, and are thus not representative for the general
linear case.

According to Figure 6.8, the stress concentration factors vary greatly from specimen to specimen
in terms of magnitude and location. It seems that the un-filleted baseline experienced an observable
maximum SCF of 1.6 [-] at a position of 3.5 [mm] from the notch. The SCF at the notch itself was not
able to be computed owing to the nature of DIC. The circular- and Mattheck-filleted nodes, experience
near-zero SCFs at the notch: the maximum SCF of the circular-filleted node was found to be 1.2 [-] at
a position of 4.1 [mm] from the notch; the SCF of the Mattheck-fillet was roughly unity for much of
its length, and was not sufficiently localized to be considered a maximum. The area around the notch
had a very low stress concentration, however.
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In the region of the node, St. Venant’s principle implies that the stress field in these regions are
subject to highly complex strain fields; they are not easily modelled. The strain fields of the specimens
in this area may thus give clues as to how the flexural rigidity of the beam is actually affected by the
fillet.

6.1.3 Strut free boundary analysis

The specimen average free boundary principle strain for every point in x is shown in Figure 6.7 for a
tip deflection of 1 [%], and the corresponding stress SCF distribution as defined in Chapter 5 is shown
in Figure 6.8.

The nodal regions of both Figures 6.7 and 6.8 are distinctive from each other, and their far-fields
converge to comparable principle strain levels and SCF values respectively. The relative shape of
both distributions were seen to be similar throughout each trial. It is thought that for these larger strut
deflections, structural non-linearities upset the pattern, and are thus not representative for the general
linear case.

According to Figure 6.8, the stress concentration factors vary greatly from specimen to specimen
in terms of magnitude and location. It seems that the un-filleted baseline experienced an observable
maximum SCF of 1.6 [-] at a position of 3.5 [mm] from the notch. The SCF at the notch itself was not
able to be computed owing to the nature of DIC. The circular- and Mattheck-filleted nodes, experience
near-zero SCFs at the notch: the maximum SCF of the circular-filleted node was found to be 1.2 [-] at
a position of 4.1 [mm] from the notch; the SCF of the Mattheck-fillet was roughly unity for much of
its length, and was not sufficiently localized to be considered a maximum. The area around the notch
had a very low stress concentration, however.

6.1 Infinite node specimens 43

(a) Un-filleted (b) Circular-filleted

(c) Mattheck-filleted (d) Baud-filleted

Fig. 6.3 A review of the rotations of the infinite-node specimens: from initial to final deflection.
Notice how 6.3d has a base that is affected by a radial blur and has edge ’ghosting’. This indicates
slippage in the clamp.
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Fig. 6.5 Strut deformation for 1 [%] tip deflection

6.1.4 Plane strain section analysis

In the previous section, obvious differences in apparent stiffness were observed in the nodal region.
The complexity of the stress field in the region of the node is difficult to assess quantitatively owing
to the complex nature of local stress fields. This complexity is implied in Saint-Venant’s principle.
Applying the principle to the un-filleted node would give a compromised region defined by inequality
x < 4.5 [mm]. This was thus arbitrarily defined as the ‘nodal region’ for all specimens.

For a tip deflection of 1 [%], the x-, y- and xy- strains were plotted in Figure 6.9 and equivalent
Von Mises strains in Figure 6.10. It seems that qualitatively, Mattheck and Baud fillets have a much
more homogeneous strain distributions along their free boundaries than the un- and circular-filleted
specimens. It seems too that the x- and y- strains are much lower. Its seems as though the nodal region
for the Mattheck- and Baud-filleted nodes were less affected by bending. The reader is reminded
about the earlier concern with the Baud-filleted node.

6.1.5 Equivalent strut length calculations

The length of equivalent strut models (where the far-field stiffness was assumed constant throughout
the strut) were calculated using standard analytical expressions for a cantilevered beam. Taking the
quotient of this theoretical strut length and the known strut length gives an apparent effective length
multiplier. The effective lengths and the resulting multiplier of each specimen is shown in Table 6.5,
along with their finite counterparts.
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6.1.4 Plane strain section analysis

In the previous section, obvious differences in apparent stiffness were observed in the nodal region.
The complexity of the stress field in the region of the node is difficult to assess quantitatively owing
to the complex nature of local stress fields. This complexity is implied in Saint-Venant’s principle.
Applying the principle to the un-filleted node would give a compromised region defined by inequality
x < 4.5 [mm]. This was thus arbitrarily defined as the ‘nodal region’ for all specimens.

For a tip deflection of 1 [%], the x-, y- and xy- strains were plotted in Figure 6.9 and equivalent
Von Mises strains in Figure 6.10. It seems that qualitatively, Mattheck and Baud fillets have a much
more homogeneous strain distributions along their free boundaries than the un- and circular-filleted
specimens. It seems too that the x- and y- strains are much lower. Its seems as though the nodal region
for the Mattheck- and Baud-filleted nodes were less affected by bending. The reader is reminded
about the earlier concern with the Baud-filleted node.

6.1.5 Equivalent strut length calculations

The length of equivalent strut models (where the far-field stiffness was assumed constant throughout
the strut) were calculated using standard analytical expressions for a cantilevered beam. Taking the
quotient of this theoretical strut length and the known strut length gives an apparent effective length
multiplier. The effective lengths and the resulting multiplier of each specimen is shown in Table 6.5,
along with their finite counterparts.
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Apparent, No fillet

DIC, No fillet

Apparent, circular

DIC, circular

Apparent, Mattheck

DIC, Mattheck

Apparent Baud, DIC Baud

Fig. 6.6 Apparent bending stiffness for 1 [%] tip deflection

6.2 Finite node specimens

The same methods and processes were applied to the finite-node specimens, which are displayed in
Figures 6.11 through 6.19. Much of the above commentary applies to the finite node specimens as
well, though some important differences do exist. Note that the finite node effective lengths have
already been given in Table 6.5.

It is no surprise that the deflection rigidities of the finite nodes are less stiff than their infinite
counterparts. Less base material is present, and the node itself is freer to rotate. The underlying
concept of testing such a configuration - despite being arbitrary - is that it is more representative
of a cellular solid node. Whereas the infinite strut highlights differences in structural performance
which is independent from certain geometric parameters, it is hoped that a direct comparison with the
equivalent finite struts can shine some new light on the effect of nodal topology on cellular solids.

This time, each specimen was well-tested. The observable stress concentration distribution for a
strut deflection of 1 [%] is shown in Figure 6.17. It is clear that the maximum stress concentrations
suffered by the baseline un-filleted and circular-filleted specimens suffered much more from localized
effects in this region. This is in very stark contrast to the profiles that reduce these effects: the Baud-
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Fig. 6.7 Major principal strain for 1 [%] tip deflection

and Mattheck-filleted specimens were seemingly successful in homogenizing stress throughout the
specimen.

Another important difference is how the strain fields developed in the nodal region, which may
explain some of the previous effects, although the link should only be drawn in the synthesizing
discussion of Chapter 10. Regardless, the patterns are certainly more acute with the finite nodes:
the various strain distributions in the nodal regions have much higher gradients, as can be seen in
Figure 6.18. The un-filleted node suffers especially from ‘hot-spots’, and this is especially apparent
for εxy, and for εVM in Figure 6.19, whereas the Mattheck- and Baud-filleted nodes seem to have
contours that adopt the shape of their ‘container’: the free boundary shape. For this reason, the much

Table 6.5 An overview of nodal specimen effective strut lengths

Fillet design
Specimen effective strut lengths (leff) [mm]

Infinite node Finite node

No fillet 45.49 52.51
Circular 45.53 49.91
Mattheck’s fillet 36.50 45.08
Baud’s fillet 38.67 44.74
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and Mattheck-filleted specimens were seemingly successful in homogenizing stress throughout the
specimen.

Another important difference is how the strain fields developed in the nodal region, which may
explain some of the previous effects, although the link should only be drawn in the synthesizing
discussion of Chapter 10. Regardless, the patterns are certainly more acute with the finite nodes:
the various strain distributions in the nodal regions have much higher gradients, as can be seen in
Figure 6.18. The un-filleted node suffers especially from ‘hot-spots’, and this is especially apparent
for εxy, and for εVM in Figure 6.19, whereas the Mattheck- and Baud-filleted nodes seem to have
contours that adopt the shape of their ‘container’: the free boundary shape. For this reason, the much
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Fillet design
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Fig. 6.8 Major principal stress concentration for 1 % tip deflection

of the impending discussion is based around flow analogies to explain the mysterious nature of cellular
solid nodes.
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(a) Un-filleted

(b) Circular-filleted

(c) Mattheck-filleted

Fig. 6.9 The infinite node internal strains for a 1 [%] tip deflection
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(a) Un-filleted

(b) Circular-filleted

(c) Mattheck-filleted

Fig. 6.9 The infinite node internal strains for a 1 [%] tip deflection
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(a) Un-filleted (b) Circular-filleted

(c) Mattheck-filleted (d) Baud-filleted

Fig. 6.10 The infinite node equivalent Von Mises strains for a 1 [%] tip deflection
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Fig. 6.11 The unprocessed force-displacement results for the finite node specimens
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Fig. 6.12 The initial deflection rigidities for the finite nodal specimens
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Fig. 6.13 Strut deformation for 1 [%] tip deflection
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Fig. 6.14 Strut deformation for 1 [%] tip deflection
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Fig. 6.15 Apparent bending stiffness for 1 [%] tip deflection
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Fig. 6.16 Major principal strain for 1 [%] tip deflection
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Fig. 6.17 Major principal stress concentration for 1 % tip deflection
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Fig. 6.17 Major principal stress concentration for 1 % tip deflection
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(a) Un-filleted

(b) Circular-filleted

(c) Mattheck-filleted

(d) Baud-filleted

Fig. 6.18 The finite node internal strains for a 1 [%] tip deflection
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(a) Un-filleted (b) Circular-filleted

(c) Mattheck-filleted (d) Baud-filleted

Fig. 6.19 The finite node equivalent Von Mises strains for a 1 [%] tip deflection
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(a) Un-filleted (b) Circular-filleted

(c) Mattheck-filleted (d) Baud-filleted

Fig. 6.19 The finite node equivalent Von Mises strains for a 1 [%] tip deflection

Part III

Honeycombs





Chapter 7

Cellular solid level methodology

In an attempt to systematically assess the sensitivity of cellular solids to nodal topology, and offer new
insights grounded in real experimental data, the multi-scale study continues with the investigation
on the so-called ‘cellular solid level’. A number of hypotheses were put forward earlier in Section 3.
The process of refining specimen design, designing test procedures, and amassing enough detailed
data to justify drawing those insights is detailed in this Chapter. The author has attempted to be
up-front about the decisions that were taken - some of which are arbitrary - and to outline how the
results presented in Chapter 6 can be reproduced. More specifically, the objective is to reproducibly
challenge Hypotheses 2.1 through 2.4.

7.1 Specimen design

The developed specimen type is a low relative density, finite, bioinspired hexagonal bee honeycomb.
The difference between specimens can be found by examining their nodal topologies, articulated
through the application of different fillet shapes. Should the specimen’s deflection rigidity change for
a change in nodal topology, after controlling for other factors, this would indicate a direct correlation
between the two, thereby disproving hypothesis 2.1. Details on specimen fabrication and post
processing is given in (van Helvoort, 2018).

7.1.1 Nodal fillet shapes

The first fillet shape is the non-filleted node: the result of struts intersecting each other. The remaining
shapes were an arbitrary assortment of fillets inspired by different contexts. An overview of the chosen
shapes is given in Table 7.1. For more information, the reader is directed to Chapter 2. Table 7.1
similar to Table 4.1, except for the substitution of the ‘lumped’ node design for Baud’s fillet. The
lumped node specimen was roughly designed to have a similar amount of material as the other
specimens. This choice was made as Baud and Mattheck are similarly shaped, and the author wanted
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Table 7.1 Overview of the nodal designs to be applied to the hexagonal cellular solid specimens

Fillet shape Inspiration

No fillet Baseline design (current state of most cellular solids)
Circular ’State-of-the-art’ in cellular solid design; straight-forward engineering practice
Mattheck’s fillet Bioinspired stress-reducing fillet design
Lumped nodes Control specimen

to verify that there is more to nodal design than increasing the amount of material allocated to it: all
the whether or not shape is of importance is central to the discussion of this thesis.

The geometric or parametric definitions for the first three fillet are given in Chapter 2, where
the only obvious common geometric parameter is the fillet envelope height . As the author wished
to observe the surface strain of an affected nodal area without significantly disturbing the far-field
behavior, the envelope height was arbitrarily set to 1/10th of the strut length for these specimens. For
the special case of the lumped node, the increase in volume for the circular node was considered. A
theoretically equivalent volume of material was assigned for a circular lumping of material at the
node using basic geometry.

7.1.2 Specimen development

The first compression specimen designs suffered from printability issues when printed at large inclines
for low relative density, and a lack of beam slenderness for printable higher relative densities. After
some experimentation, it was discovered that printing thinner extrusions of the honeycomb profiles led
to more successful prints. Unfortunately, the second series of compression specimens suffered from
significant out-of-plane warping. Although significant differences in the initial deflection rigidities
were measured, the boundary conditions were poorly controlled and likely inconsistent, thus rendering
the results untrustworthy.

The apparent constraint to print thin extrusions of a honeycomb profile led the author to experiment
with a compression-tension (CT) -like specimen design. The concept was to pry an initiated crack
between two pull-lugs and observe the crack propagation under quasi-static conditions. Unfortunately,
these lugs shattered when drilled, and although Metal plates made from sheet metal were secured to
the pull-lug areas with adhesive and clamped in the machine, the clamp eventually slipped. These
results were also considered unreliable. Nevertheless, an interesting observation was made.

It was noticed that the initiated crack propagated by fracturing struts close to or at nodal points
for the non-filleted honeycombs, and quickly turned towards the clamps. In the case of the filleted
honeycombs, however, the crack turned 30 degrees from the initiation zone, and travelled straight
through the lattice, fracturing struts almost exactly in the middle, half-way between nodes.
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node using basic geometry.
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some experimentation, it was discovered that printing thinner extrusions of the honeycomb profiles led
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were measured, the boundary conditions were poorly controlled and likely inconsistent, thus rendering
the results untrustworthy.

The apparent constraint to print thin extrusions of a honeycomb profile led the author to experiment
with a compression-tension (CT) -like specimen design. The concept was to pry an initiated crack
between two pull-lugs and observe the crack propagation under quasi-static conditions. Unfortunately,
these lugs shattered when drilled, and although Metal plates made from sheet metal were secured to
the pull-lug areas with adhesive and clamped in the machine, the clamp eventually slipped. These
results were also considered unreliable. Nevertheless, an interesting observation was made.

It was noticed that the initiated crack propagated by fracturing struts close to or at nodal points
for the non-filleted honeycombs, and quickly turned towards the clamps. In the case of the filleted
honeycombs, however, the crack turned 30 degrees from the initiation zone, and travelled straight
through the lattice, fracturing struts almost exactly in the middle, half-way between nodes.
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Fig. 7.1 The generalized hexagonal honeycomb specimen, where the red lines indicate the areas
affected by the fillet, if present.

7.1.3 Chosen specimen design

The lessons from the development process were addressed in an improved compression specimen
design. Although a larger order cell structure help support regions to behave as if in a continuum, the
low relative density relaxes its importance; it is hoped that a lower cell order will test the proposed
hypotheses. A generalized drawing is given in Figure 7.1, where the annotated filleting regions are
adapted according to the proposed test matrix.

The specimen arbitrarily features 10 complete cells and 8 ‘boundary’ cells whose vertical struts
are encased inside of integrated load introduction bars. The purpose of including bars was to improve
consistency in specimen alignment in the test environment, and to introduce load more evenly. The
placement of the bars was based on the idea that interrupting vertical struts would mimic the effect
of higher order cell systems for low strains. Strut stability here is increased, encouraging failure to
occur in the middle of the functional specimens. The high stiffness of the bars relative to the low
deflection rigidity of the embedded specimen is assumed to be orders of magnitude higher, justifying
this proposal. Furthermore, the effect of the bars straining on the observed strain can assumed to be
negligible. It should be checked that excessive deformation or failure does not occur in or near the
bars.



60 Cellular solid level methodology

7.2 Methodology validity

The proposed experiment is comparative, whose objective is to investigate the effect of nodal topology
on cellular solid deflection rigidity and the nature of the stress fields in one of the cell walls. To
level the playing field the apparent deflection rigidity was normalized by relative differences in mass.
Details on the normalization procedure can be found in Chapter 8.

The printed specimens were weighed by a Mettler AE 1666 digital scale. The projected volumes
of material were acquired from the PreForm printing software.

The material used to fabricate all specimens was the Formlabs Gray resin V4 using a Formlabs
Form 2 SLA printer. The specimens were rinsed and post-cured using the Formlabs Wash and
Cure stations respectively. It is assumed that the critical sections to be compared are not thick
enough to experience residual stress concentrations, and other material differences as a result of the
manufacturing processes used are eliminated using the manufacturer’s advise on specimen treatments.
The relatively thick parts of the specimens did not seem to suffer from excessive warping, indicating
that this is a reasonable assumption to make. The assumptions were necessary with regard to the
thesis scope and time-frame. This is revisited later in Chapter 10.

7.3 Experimental design

7.3.1 Test goal

This is a comparative experiment a compressive load is introduced through load introduction bars into
cellular solid specimens. A comparison of overall deflection rigidity, the center wall strain fields and
observed qualitative behavior will be had.

The force is applied and recorded by a 20kN Zwick 1455 20kN test bench equipped with a 1 [kN]
load cell along with the cellular solid’s deflection. To improve load introduction to the solid bar, a
metal part was specially fabricated to provide a consistent interface between the load cell and the
loading bars. The load should act in-plane with the cellular solid’s 2-D geometry (the effectively
extruded cross-section).

7.3.2 Specimen preparation and camera calibration

After fabricating, washing and curing the test specimens – processes that are detailed in (van Helvoort,
2018) – the specimens were brought to the DASML paint booth. The target surfaces for DIC were
spray-painted with a flexible matte white base coat and left to dry for 1 hour. In that time, the DIC
setup was calibrated, and the calibration file saved as a reference data file. Then, spare samples were
speckled with black paint using swift consistent motions from several distances. Those samples
were brought the experimental setup, and the speckle patterns were reviewed. The best results were
attempted once more, and then applied to the real experiment specimens.
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Table 7.2 Summary of the cellular solid test program on a Zwick 1455 equiped with a 1 [kN] load cell.

Hexagonal honeycomb tests

Max. force channel voltage [V] 10
Max. force channel force [N] 10000
Max. force test [N] 8000
Max. displ. test [mm] 80
Preload [N] 5
Strain rate test [mm / min] 5

7.3.3 Experiment procedure

Table 7.2 summarizes the experimental test program that was used for the 20kN Zwick 1455 20kN
test bench. It is also available for download in the form of a template and with the unprocessed
experimental data at (van Helvoort, 2018).

The following procedure was then followed.

1. A specimen is placed in the test environment. A small distance of approximately 3 [mm] can
be left between the specimen and the test bench’s point of force application.

2. The environment temperature and relative humidity is recorded using a simple climate instru-
ment.

3. The DIC camera rig is manually set to start taking pictures at a rate of 2 FPS using hardware
triggering.

4. The regular camera car is manually set to start taking pictures at a rate of 2 FPS using the
camera car software.

5. The load cell is calibrated to 0 [N].

6. The test program described in Table 7.2 is executed.

7. After reaching the maximum force threshold, the camera rigs are manually controlled to stop
taking pictures.

8. The specimen is removed. Any necessary data management can be performed. Return to step 1
until all specimens have been tested.





Chapter 8

Cellular solid level data processing

Unprocessed data in the form of analog sensor spreadsheet logs, and stereoscopic DIC black and
white digital images were processed with MATLAB and Correlated Solutions’ VIC-3D 8. The camera
car photographs were to be used for qualitative purposes only. The reader is referred to (van Helvoort,
2018), where the MATLAB data processing scripts have been made available. Briefly, the underlying
theory is presented in this Chapter. Appendix C contains an overview of the settings used for VIC-3D
8.

8.1 Apparent initial flexural rigidity

To compare the apparent initial flexural rigidity of the cellular solid specimens, the force-deflection
curves of each specimen was analyzed. Although a pre-load of 5 [N] was defined in the test program,
it is assumed that any remaining initial non-linearities are the result of load introduction and are not
significant. A small deflection window from 0.5 and 1.0 [mm], at the beginning of each specimen’s
response, was arbitrarily selected to define the initial flexural rigidity, defined earlier in Equation 2.14.

8.2 Normalized specimen strain energy absorption before break

The work done by the test bench to compress the honeycomb specimens until failure can be defined
as the integral of the resultant force with respect to its deflection. For the displacement-controlled test,
numerically using trapz. One can also calculate a more conservative estimate from load initiation
until the maximum force experienced. The appeal of the latter method is that it more representative for
contexts where a maximum load is more relevant, barring strain rate effects. The latter is particularly
important.

Spring back is not considered relevant, as the total energy absorption until failure is what seemed
most-interesting, and illustrative for energy-absorption contexts wherein loading until failure is of
key significance. Mathematically, the two methods can be expressed mathematically in terms of the
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honeycomb axial deflection δ :

U1 =
∫ δult

0
Fdδ , (8.1)

and

U2 =
∫ δFult

0
Fdδ , (8.2)

where U is the strain energy absorbed up to the ultimate deflection δult and ultimate force δFult

respectively, and where F is the force.
Each energy absorption can be normalized by each specimen’s relative density to give the relative

density specific energy absorption Ui before break of each specimen as defined by

Ui =
Ui

ρrel
, (8.3)

and where Ui is the chosen method, and ρrel is the specimen relative density.
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Chapter 9

Cellular solid level results

The hexagonal honeycomb specimens whose detailed designs are explained in Chapter 7 were tested
according to the methodology set out in Chapter 8. Together, the group represents the cellular solid
level effect of nodal topology on an arbitrary over-arching cellular solid architecture in a wider
multiscale analysis of the research question defined earlier in 3. These results shall presently be
synthesized in a cross-scale synthesizing discussion in Chapter 10.

A summary of the projected specimen volumes are provided in Table 9.1. The functional mass is
defined as the material volume that only corresponds to the cellular solid itself; in other words, the
volume without the loading bars.

A theoretical solid block of material that occupies the space of each honeycomb, with dimensions
T , W , and w was calculated. This theoretical block is the reference solid from which the specimen
relative densities are calculated. These results are provided in Table 9.2.

Under quasi-static displacement-controlled compression, the mass-normalized deflection rigidities
of each specimens specimen seem distinctive from each other. The unprocessed test results are shown
in Figure 9.1. A visual depiction is shown in Figure 9.2. The initial deflection rigidities were plotted
against each specimen’s relative density is shown in Figure 9.3 along with trend shapes that the Ashby
model would expect.

By integrating the force-displacement curve, the strain energy stored in the cellular solids before
failure can be calculated. By integrating the force-displacement curve to the point of maximum load,

Table 9.1 An overview of hexagonal honeycomb specimen projected total and functional volumes

Fillet design
Specimen projected volume ±0.05
[ml]

Functional projected volume ±0.05
[ml]

No fillet 122.53 25.43
Circular 124.76 27.66
Mattheck’s fillet 124.99 27.89
Lumped node 124.84 27.74
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Fig. 9.1 The unprocessed force-displacement of the hexagonal honeycomb specimens
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Fig. 9.1 The unprocessed force-displacement of the hexagonal honeycomb specimens
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Table 9.2 Overview of the hexagonal honeycomb specimen relative densities

Relative density (ρrel) [%]

No fillet 16.91
Circular 18.62
Mattheck’s fillet 18.78
Lumped nodes 18.07
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Fig. 9.3 Relative density against the initial deflection rigidities of the hexagonal honeycomb specimens.
The Ashby-Gibson model is plotted for a material confidence interval of 95 [%]. Notice that the data
points do not fit these shapes.

Table 9.3 Overview of the hexagonal honeycomb specimens’ energy absorptions

Energy absorption to Fult) (UFult ) [J] Energy absorption to δult) (Uδult ) [J]

No fillet 2353 2760
Circular 1870 1877
Mattheck’s fillet 2927 3398
Lumped nodes 1766 1769

an approximation for the strain energy absorption potential of each specimen can be estimated for a
force-controlled experiment. These results are given in Table 9.3, and shown visually in Figures 9.4
and 9.5.

The DIC results show that strain gradients from node to node across specimen cell walls have the
appearance of a ‘bathtub’, whose sensitivity to strain gradients in the nodal area seem to inversely
correlate with the magnitude of the mean or mid-strut strain, and the overall cellular solid deflection
rigidity. This can be seen in Figure 9.6.

Each of the specimens failed in an apparent catastrophic explosion, with the specimens breaking
into many small shards. Observations were made by the author at the time that the size and number of
shards seemed to differ across specimens, although it is difficult to know whether each shard was the
direct result of the failure, or the result of secondary collisions such as hitting the test environment
or floor. Furthermore, the filleted specimens experienced fractures in the strut sections at roughly



68 Cellular solid level results

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Specimen relative density ( *) [-]

0

20

40

60

80

100

120

140

160

180

200

S
p

e
c
im

e
n

 i
n

it
a

l 
d

e
fl
e

c
ti
o

n
 r

ig
id

it
y
 (

k
id

r) 
[N

 m
m

-1
] No fillet

Circular fillet

Mattheck's fillet

Lumped node

Ashby-Gibson lower CI=95[%]

Ashby-Gibson upper CI=95[%]

Fig. 9.3 Relative density against the initial deflection rigidities of the hexagonal honeycomb specimens.
The Ashby-Gibson model is plotted for a material confidence interval of 95 [%]. Notice that the data
points do not fit these shapes.

Table 9.3 Overview of the hexagonal honeycomb specimens’ energy absorptions

Energy absorption to Fult) (UFult ) [J] Energy absorption to δult) (Uδult ) [J]

No fillet 2353 2760
Circular 1870 1877
Mattheck’s fillet 2927 3398
Lumped nodes 1766 1769

an approximation for the strain energy absorption potential of each specimen can be estimated for a
force-controlled experiment. These results are given in Table 9.3, and shown visually in Figures 9.4
and 9.5.

The DIC results show that strain gradients from node to node across specimen cell walls have the
appearance of a ‘bathtub’, whose sensitivity to strain gradients in the nodal area seem to inversely
correlate with the magnitude of the mean or mid-strut strain, and the overall cellular solid deflection
rigidity. This can be seen in Figure 9.6.

Each of the specimens failed in an apparent catastrophic explosion, with the specimens breaking
into many small shards. Observations were made by the author at the time that the size and number of
shards seemed to differ across specimens, although it is difficult to know whether each shard was the
direct result of the failure, or the result of secondary collisions such as hitting the test environment
or floor. Furthermore, the filleted specimens experienced fractures in the strut sections at roughly

69

Fig. 9.4 Energy absorption of hexagonal specimens until (Fult).

Fig. 9.5 Energy absorption of hexagonal specimens until (δult).
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Fig. 9.6 Bathtub major strain curves for hexagonal honeycomb center wall during a 1 [%] tip deflection.

1/3 or 1/2 through the attached strut, whereas the un-filleted and lumped-node specimens failed at
the notch of the strut-node interface. Pictures of the un-filleted, circular-filleted, Mattheck-filleted
and lumped-node honeycomb specimen fragments can be found in Figures 9.7, 9.8, 9.9 and 9.10
respectively.
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the notch of the strut-node interface. Pictures of the un-filleted, circular-filleted, Mattheck-filleted
and lumped-node honeycomb specimen fragments can be found in Figures 9.7, 9.8, 9.9 and 9.10
respectively.
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Fig. 9.7 Photograph of the un-filleted honeycomb post-experiment fragments
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Fig. 9.8 Photograph of the circular-filleted honeycomb post-experiment fragments
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Fig. 9.8 Photograph of the circular-filleted honeycomb post-experiment fragments
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Fig. 9.9 Photograph of the Mattheck-filleted honeycomb post-experiment fragments
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Fig. 9.10 Photograph of the lumped-node honeycomb post-experiment fragments
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Fig. 9.10 Photograph of the lumped-node honeycomb post-experiment fragments

Part IV

Discussion, conclusions &
recommendations





Chapter 10

Discussion

Although additive manufacturing has allowed researchers and engineers to produce metamaterials,
knowledge of cellular solids is still emerging. The detailed behavior of unit cells and their constituents
are not yet fully understood. Studying natural cellular solids like avian long bones reveals that
nature homogenizes stress to maximize material usage: reinforcing struts join to the thinner-than-
mammalian bone walls through stress-reducing fillets. One might well ponder about the sensitivity
of cellular solids to nodal topology, the subject of this preliminary experimental investigation. Two
null-hypotheses were made, one on the nodal-level of analysis, and one on the cellular solid-level,
regarding the effect of nodal topology on the overall initial deflection rigidity: that there would be no
effect.

Null hypotheses regarding the local stress fields of nodal regions regarding their topology as well,
namely that they would be indifferent to such changes. If-then hypotheses were also given, predicting
that a reduction in stress localization generally leads to improved mass- (or volume-) normalized
deflection rigidity. For the cellular solid case, a reduced sensitivity to high-stress regions through the
neutralization of stress concentration would increase the height of the so-called stress plateau.

10.1 A synthesis of the experimental evidence

At the nodal level of analysis, the initial deflection rigidity of the specimens - a step that essentially
idealizes specimens as torsional springs - indicate distinct differences. The least-rigid responses were
those of the un-filleted and circular-filleted specimens while the most rigid responses were those
filleted with Mattheck’s bioinspired and Baud’s fluid flow-inspired curves, even after controlling for
the volume of functional material.

The aforementioned groupings seemed to hold for both the infinite and finite cases, although the
relative difference between the two groups was reduced in the latter case. This is undoubtedly due to
the general topology of that problem: instead of a practically infinite reservoir of material for strain to
dissipate into, the node is no longer encastré and is able to warp ‘freely’. Nevertheless, a difference in
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stiffness was still observed for a rather challenging load transfer problem, where material stress must
flow around a sudden 90 degree corner into the adjoining struts.

The author suspects that had the tests continued to specimen failure, the Baud- and Mattheck-
filleted nodes would have caused the specimens to be more tough. The circular-filleted design,
meanwhile, would hold some middle-ground in terms of toughness. Initially, this suspicion was
based on the extents of stress-concentration mitigation that can be expected from those designs from
classical stress concentration theory; reducing the peak stress may easily affect the development of
geometric non-linearity from bending itself, as well as the point of onset for multiple failure modes
including strut lateral buckling and brittle collapse. A reduction in the magnitude of the maximum
stress concentration and its localization was indeed observed, which was accompanied by a shift in its
location away from the nodal region. This can be seen in Figures 6.8 and 6.17.

Steps in the methodology were specifically designed to control each specimen’s fabrication, post-
production steps, and clamping. Specimens within a series were printed simultaneously or in closely
timed batches, and in similar orientations; they experienced tightly controlled rinse cycles and cure
times; and they were stored together in a light-tight box until they were painted, speckled and tested.
Regarding the latter steps, paint applications occurred simultaneously in the DASML paint booth, and
a test clamp for both series was manufactured from aluminum to ensure near-identical loading. The
point of load application was recorded in the form of an ink-print on the strut for later analysis to help
define l.

Although the material quality of the specimens was not specifically investigated by the author,
little-to-no warping was observed in the hexagonal honeycomb bars or infinite-node, save for the
back-end of the infinite bases. The essential parts of each specimen were relatively thin by comparison,
so it is thought that any residual stresses from curing are not significant enough to cause process-
dependent changes in the specimens. Furthermore, the manufacturer-recommended post-cure stage
is thought to address any residual stresses in a kind of heat-treatment. Any mechanical differences,
by extension, are assumed to be the result of geometric differences only. This was a preliminary
diagnostic investigation. Before drawing any final conclusions, however, the material quality of the
Formlabs 3-D printers should be more intimately understood. To do so is beyond the time-scale and
scope of this project.

In summary, With the exception of the Baud-filleted infinite node which rotated in its clamp
due to an incompletely-fastened screw, the author makes the following over-arching assumption:
the specimens are comparable to one another. Thus, the differences between the individual initial
deflection rigidities within each series are significant, directly challenging Hypothesis 1.1, although
more efforts are required for these findings to prove conclusive.

In a similar vein, at the cellular solid level of analysis, the initial deflection rigidities as seen in
Figure 9.1 of the filleted specimens seemed to stiffen, thereby increasing the effective Young’s
Modulus of the hexagonal honeycomb. For a given displacement, the sum of the internal loads result
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in a larger required force for that deflection: an important design aspect for lightweight stiffness-led
designs such as beams.

Examining the cellular solid center wall principal strain distributions in Figure 9.6, it can be seen
that the initial stages of each experiment shows that the un-filleted specimen walls are loaded most,
followed by the lumped-node, then circular- and Mattheck-filleted specimens. Though the observed
wall is not necessarily representative of all other walls, it is possible that the more highly loaded cell
walls of the un-filleted and lumped-node specimens are the result the material absorbing strain energy
more efficiently by better redistributing that energy throughout the structure.

This latter point is supported by examining the experiment debris, where the filleted nodes seemed
to fracture in the struts themselves, and the un-filleted and lumped-node specimens failed next to
or in the nodal area at the points of high stress concentration. Furthermore, the pieces not caused
by secondary impacts - a careful study of the experiment pictures was performed - seem to be more
plentiful and smaller for the circular- and Mattheck-filleted specimens, and larger and fewer for the
lumped- and un-filleted specimens. These arguments are more subjective than the author would like,
and not as reliable as the others. Perhaps the use of high-speed cameras would help to determine
what was caused by specimen failure caused by the test, as well as a means to determine the size and
number of parts more accurately. It should be noted that it was not possible to find all of the pieces,
and smaller pieces were easily mixed up.
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that were observed in the experiment: a growing increase in apparent stiffness towards the nodal area
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Fig. 10.1 A direct comparison of the infinite-node theoretical and apparent bending stiffness according
to DIC data.

unrealistic; the expected strain pattern deviates in reality, as it either dissipates through shear into the
infinite node, or transfers through shear into a mixture of bending and axial loading of the adjoining
struts in the finite case.

This deduction is contained by the difference in the fictional effective strut lengths of the infinite
specimens in Tables 6.5. The larger-than-expected values for the un- and circular-filleted struts
indicate that the base material is not behaving as the expected cantilever. Some of the base material
must therefore still be bending in an extended nodal region, affecting the definition of the load itself.
The lower-than-expected values for the Mattheck- and Baud-filleted nodes indicate that the nodal
region is not bending. Instead, improved load transfer seems to have undercut the moment distribu-
tion’s development in the nodal region, and consequently changed the definition of its load to reduce it.

The DIC data for a small deflection of 1 [%] also supports the argument that the Euler-Bernoulli law
is fundamentally challenged at the nodal level of analysis, where more complex mechanics are at
play, thereby dominating the structural response. As seen in Figures 10.3 and 10.4 (repeated) the εx

distribution maintains its general axial pattern throughout the strut, and extends into the strut base for
the infinite node before finally dissipating.
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Fig. 10.2 A direct comparison of the finite-node theoretical and apparent bending stiffness according
to DIC data.
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In the finite node case, this dissipation is somewhat faster in terms of the full strain distribution,
but bending technically occurs throughout the entire nodal region. The Mattheck-filleted specimens,
meanwhile, deviate from this pattern much earlier, at a distance of 10 [mm] from the node. It is clear
that the bending stress distribution was already experiencing an upset. The lines of equipotential - or
isoclinics - following the outer free boundary indicate that stress here was relatively homogeneous at
the free boundary.

The shear distribution is also highly significant to examine in the nodal area. In the un-filleted
case, the strain distribution forms a highly localized ‘hot-spot’, whereas the Mattheck-filleted nodal
area has a more homogeneous distribution, with isoclinics roughly adopting the free boundary shape.
In other words, the strain takes the form of its ‘container’. The peak shear stresses are lower, and are
distributed over a larger area than in the un-filleted case. The circular fillet provides a kind of middle-
ground, explaining its intermediate deflection stiffness relative to its un-filleted and Mattheck-filleted
counterparts.

According to the Von Mises equivalent strain fields, shown again in Figures 10.5 and 10.6, the
filleted finite nodes held an advantage over their baseline counterpart in that they outright eliminated
the threat of an internal stress concentration in the nodal region itself. It would be difficult to observe
this stress concentration in a more realistic structure.

In fact, the Mattheck-filleted finite node even had ‘cold’ material that could be removed to produce
a more suitable overall topology for that specific loading, according to its Von Mises equivalent strain
distribution. Such an act is similar to the so-called ‘soft-kill’ method that is so favored by Mattheck.

Although the detailed strain behavior of the cellular solid nodes is an incomplete picture in this
series of experimental tests, differences in the initial deflection rigidities were observed for varying
nodal topologies. More specifically, circular- and Mattheck-fillets seemed to significantly increase
overall stiffness, and the lumped-node design formed a half-way point between them and the baseline
un-filleted design. After inspecting the experimental debris, it was remarked that the apparent fracture
positions seemed to coincide with high-stress locations that would be identified by classical fillet
design theory in the un-filleted and lumped-node specimens. The Mattheck- and circular-filleted
specimens, meanwhile, had fractures that occurred further out from the node itself, at a point where
the cross-sectional area first becomes minimal.

Regarding ultimate failure, the Mattheck-filleted specimen was unique in that vertical cell wall
elastic buckling of the center-most cells was observed for a few moments before failure. This caused
the cellular solid to effectively soften before failing, which can be seen by a decreasing resultant force
for an increasing displacement.

Whether or not the un-filleted specimen failed through elastic buckling is uncertain, though the
last frame of the experiment does support such an assumption: the center walls are no longer upright.
Furthermore, the force level was seen to dip slightly after the ultimate load was reached.

Assuming that the central struts of the un-filleted and Mattheck specimens did indeed undergo
elastic buckling, the height of the stress plateaux can be assumed as a function of the struts’ length,
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(c) Mattheck-filleted

(d) Baud-filleted

Fig. 10.3 The infinite node internal strains for a 1 [%] tip deflection
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(a) Un-filleted

(b) Circular-filleted

(c) Mattheck-filleted

(d) Baud-filleted

Fig. 10.4 The finite node internal strains for a 1 [%] tip deflection
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Fig. 10.4 The finite node internal strains for a 1 [%] tip deflection
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(a) Un-filleted (b) Circular-filleted

(c) Mattheck-filleted (d) Baud-filleted

Fig. 10.5 The infinite-node equivalent Von Mises strains for a 1 [%] tip deflection



86 Discussion

(a) Un-filleted (b) Circular-filleted

(c) Mattheck-filleted (d) Baud-filleted

Fig. 10.6 The finite-node equivalent Von Mises strains for a 1 [%] tip deflection
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(a) Un-filleted (b) Circular-filleted

(c) Mattheck-filleted (d) Baud-filleted

Fig. 10.6 The finite-node equivalent Von Mises strains for a 1 [%] tip deflection
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minimum bending stiffness, and orientation according to Ashby & Gibson’s models. By sticking with
this interpretation, equivalent strut lengths can be found from the stress plateaux and compared to the
actual strut lengths. From Equation 2.2,

leff,eb =

√
0.6862π2EImin

Pcrit
, (10.1)

where leff,eb is the effective length from the elastic buckling analysis, Pcrit is assumed to be an even
distribution of the total force F divided by the number of walls (in this case 4), and EImin is the
minimum stiffness of the cell wall. A value of 0.686 is assumed to hold true for the end fixities.
Assuming that the un-filleted cellular solid indeed buckled, its leff,eb is 22.65 [mm] (1.42 l). The
Mattheck-filleted cellular solid has an leff,eb of 17.15 [mm] (1.07 l).

Though these effective strut lengths are reductive, it allows for a more intuitive understanding of
how fillets increase the rigidity and collapse force for a cellular solid, by wrapping the nodal fixity
into a conceptualization where the node remains 1-D. The strut now addresses the end-fixity and
the boundary between the two ‘components’. This also has the advantage of allowing the re-use of
Gibson & Ashby’s models for modelling cellular solid performance and ask further questions.

The energy absorption characteristics of the circular-filleted and lumped-node specimens were similar
in that the amount of energy absorbed by the specimens increased until their ultimate catastrophic
failure - most probably cause by cell wall fracture. The Mattheck-filleted and un-filleted specimens
underwent a levelling off of energy absorption rate per unit displacement. The Mattheck-filleted curve
certainly softened in a post-yield regime after its vertical struts elastically buckled. The un-filleted
baseline failed more suddenly with less softening.

A more realistic application of load would be better-represented by a force-controlled experiment.
In such a context, the Mattheck-filleted specimen would fail earlier, and would likely absorb less
energy, though the effects of nodal topology on strain rate is unknown and needs to be studied.

Even so, the amount of energy absorbed by the Mattheck-filleted curve is greater, and was
achieved in a smaller deflection. For applications in which energy-absorbing material is applied to an
engineering design, it is possible that both weight and volume is a defining parameter.

Although the effect of nodal topology on strain-rate is uncertain, it seems that further research into
the nature of nodal topology for energy absorbing cellular solid structures is a promising direction to
take. This is because the filleted cellular solids supported much higher ultimate forces in the same
honeycomb height, making them interesting in engineering designs where space comes at a premium.
This topic is revisited in Section 11.2.

Overall, strong evidence exists to disprove Hypotheses 1.1 and 2.1 outright: both strut deflection and
cellular solid deflection rigidity seem highly sensitive to the nodal topology of strut bases or nodes,
corroborating Dallago et al.’s observations in (Dallago et al., 2017), although with experimental
evidence and in a much more obvious manner in terms of the difference in structural moduli.
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Classical stress theory suggests that those fillets are able to reduce peak stresses, which would in
turn mitigate the extent of nodal warping and its downstream propagation through adjoining struts in
the form of strut displacement. Warping would cause load eccentricity; in mathematical terms, a node
is effectively a strut’s boundary condition - one that can be compromised from its ideal. This is an
argument that Dallago et al. independently gave.

The above arguments were suspected to be relevant at the beginning of the project, culminating
in the articulation of (null-) Hypotheses 1.2, 1.3, and 2.2 through to 2.4. The hypotheses pertained
to the detailed nature of the nodal regions themselves. With lines of equipotential or isoclinics
roughly following the outer free boundary of the nodal topologies in the case of the Mattheck- and
Baud-filleted node-level specimens coinciding with apparently decreased effective strut lengths, and
by observing stress homogenization in their detailed strain fields, it was is thought that improved
load transfer is the central cause of the improved deflection rigidity. Thus, Hypotheses 1.2 and 2.2
are thought to have been directly falsified by the experimental evidence, whereas 1.3 and 2.4 remain
plausible.

10.2 Implications for further research and potential applications

Across scales, trends in the theoretical equivalent strut lengths that were the reduced mechanical
performance of finite-level and cellular solid level struts were similar in that filleted nodes had smaller
effective lengths. Evidence from the nodal-level experiments supports the notion that fillets mitigate
the negative effects of highly localized stress concentrations, and seem to move critical regions from
the nodal areas away from the node and into the strut.

Consequently, there are important implications here for the continued research into damage
tolerant lightweight structures, structural health monitoring, and fatigue performance in tandem with
continued research in cellular solids. Adding to those, applying this thinking to architectural and
civil structural design, and to wound-composite joinery and other composite material materials are
suggested.

Regarding structural health monitoring and damage tolerant cellular solid design, having a structure
whose critical region is well-understood and precisely located, can improve the detection of damage.
The design is somewhat analogous to the functionality of common household electric fuses. The user
could then be alerted and switch to a less intensive usage mode until a more intensive assessment or
repair is made.

Examining inspectability for a moment in detail: this point was encountered in the experiments
themselves. The un-filleted and lumped-node specimens had nodes that were not directly observable
by the DIC cameras and strain calculation process, whereas the filleted nodes were. The usefulness
of this point is not just limited to optical inspectability. Applying strain gauges to relatively smooth
struts is much more feasible than to discontinuous nodes.
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A strict binary ‘fuse’ concept would be limited to damage. A softer definition might also be
useful, perhaps by implementing a high (but accurate) stress raiser. Applying a strain gauge to an
affected region would allow a structural component function similarly to a test-bench load cell, thereby
recording precise structural usage logs. Not only would this improve inspection and maintenance, it
might introduce new business models.

Another advantage to encourage damage to initiate in the strut instead of near the node: less
of the network risks becoming compromised. A fracture initiating and propagating within the
strut is preferable to one in the nodal region, as less of the structure is directly implicated or risked
by that damage. It is much better to lose one strut instead of a node along with all of its adjoining struts.

With regard to implications for cellular solid fatigue performance, stress peaks in the structure for a
given load may be homogenized to a more even level, increasing its fatigue life. For any designs that
are already in use for cyclical load contexts, redesigning them may even bring them under the fatigue
limit.

One potential criticism of the work done in this thesis is that the scale at which parts must be fabri-
cated are relatively large: enough resolution must be available to control the precise nature of nodal
topologies. But consider the following statement: it is better to maintain relatively tight controls
over nodal topology to homogenize stress, than to relinquish it and produce stress-raisers. After all,
there are large differences between lightening holes in aircraft spars and sharp notches or cracks. The
argument is more of an analogy than a water-tight explanation backed by empirical evidence; it is
clear that more works needs to be done.

In architectural or civil engineering contexts, large-scale deposition modeling-like processes are
beginning to be used, where concretes are 3-D printed in layers to produce novel structures. Filleting
macro-scale notches in a similar fashion to that of the cellular solid specimens in this thesis might
conceivably deliver performance and cost-improvements, as well as being more aesthetic. More
research would need to be done to investigate this claim.

Lastly, filament-wound carbon fiber tubes are currently used to make high-performance lightweight
structures like race vehicles. Joining them using lightweight parts remains difficult. By applying the
lessons regarding nodal topology and load transfer from this preliminary investigation, lightweight
parts might be fabricated to give a balance between providing stiffness, load transfer, and enough
compliance to improve overall structural performance.





Chapter 11

Conclusions & Recommendations

What is the effect of nodal topology on cellular solid mechanics?

11.1 Conclusions

In the available literature, almost nothing was known about nodal topology in cellular solids; much
is known about stress concentration factors and beam models. On its face, applying classical stress-
reduction design methods to nodal points seems like a straightforwardly favorable proposition.

Many of nature’s designs feature stress-reducing curves. Natural cellular solids are not excep-
tions to this fascinating pattern. Avian long bones have particularly low relative densities, offering
lightweight bending stiffness and an integration with the peculiar ornithological pulmonary and circu-
latory systems. Streamlined struts bridge the extremely thin outer walls, forming smooth spacious
vaults within.

Nature has it right. Stress-reducing fillet geometries increased strut deflection rigidities on both
the nodal- and cellular solid- levels. As a result, null-Hypotheses 1.1 and 2.1 were falsified. The
fillets successfully stiffened the strut-node combination to varying extents on the nodal-level, with
the bioinspired curves coming out on top. On the cellular solid-level, the initial deflection rigidities
of both fillets achieved similar results early on, but seemed to behave very differently in failure; the
bioinspired Mattheck curve seemed to strengthen the nodal region enough to cause buckling to occur.
From there, it seems that a crushing fracture initiated in the strut.

On the nodal-scale, the increase in deflection rigidity occurred simultaneously with an improved
load transfer through the nodal region. This was observed using DIC apparatus and analysis methods.
The filleted nodes were able to activate the base material much better in both the infinite- and
finite-node cases: equivalent Von Mises stress was more homogeneous.

Meanwhile, the un-filleted node experienced high-stress gradients that did not conform as well to
the free boundary. These observations were also clearly observable in the basic stress distributions for
εx, εy and τxy.
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Table 11.1 Current status of the hypotheses

ID Hypothesis Status

1.1 Mass-normalized strut deflection rigidity is unaffected by nodal
topology.

False

1.2 Strut stress fields and their homogenization are unaffected by nodal
topology.

False

1.3 If stress homogenization in a bending structure improves, then
that structure will increase in its mass-normalized strut deflection
rigidity.

Plausible

2.1 Mass-normalized cellular solid deflection rigidity is unaffected by
nodal topology.

False

2.2 Stress homogenization in a cellular solid is unaffected by nodal
topology.

False

2.3 If stress homogenization improves, then a cellular solid will in-
crease in its mass-normalized deflection rigidity.

Plausible

2.4 If stress homogenization improves, then a cellular solid will be-
come less sensitive to localized stress gradients and their effects,
thereby increasing the height of the so-called stress plateau.

Plausible

Overall, it seemed that fillets were able to effectively expand the ‘nodal zone’ with a conjugal
reduction in effective strut length. On the cellular solid level, the height of the so-called bathtub
curves differed according to fillet shape. Overall, this indicates that null Hypotheses 1.2 and 2.2 were
falsified.

Effective strut lengths were calculated across scales as a simple way to investigate and capture the
reduction in functional strut length, and an increase in end-fixity. The results indicate a decreasing
effective length for improving fillet geometry, and an increasing end-fixity coefficient. This supports
the if-then Hypothesis 1.3.

On the cellular solid-level, changing bathtub heights coincided with higher stress plateaux as well,
though the extent of stress-homogenization was not observed completely. Inspecting the experimental
debris indicates that stress was better-distributed in the filleted honeycombs as they fractured in the
cell walls, and not in the nodes. This was in stark contrast to the un-filleted nodal honeycombs that
did fracture at the sharp notch of un-filleted nodal points. Together, these observations indicate that
if-then Hypotheses 2.3 and 2.4 remain reasonable. A summary is given in Table 11.1.

In summary, stress-reducing fillet geometries were used as a vehicle to explore nodal topology
effects. It seems that low density cellular solids are highly sensitive to nodal topology across both
scales of analysis.
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11.2 Recommendations

A number of recommendations for future research can be made that carry from the discussion
presented in Chapter 10 and from Section 11.1. The recommendations have taken the form of open
research questions which have prompted a further evaluation of the work done in this thesis.

1. What is the cause of cellular solid nodal softening and its corresponding effects on cellu-
lar solid mechanics?
In cellular solids, softening is the phenomenon of material effectively seizing up inside lattices,
or locally yielding at edge-cells due to a lack of constraint. In this thesis, un-filleted nodes
had highly localized regions of stress concentration and large stress gradients which seemed
to affect cellular solid mechanics such as the initial deflection rigidity. Filleted nodes were
seemingly less affected by these phenomena, though to varying extents.

An investigation of specimen debris at the cellular solid level indicated that sharp notches
induce failure at the notch, whereas those whose notches were filleted broke at the minimum
cross-sectional area of the strut. On the nodal level, the Baud curve seemingly increased
the apparent stiffness of the entire finite strut, as well as eliminated the free boundary stress
concentration through stress-homogenization.

In summary, the precise nature of those effects remain unknown, and thus need to be examined
more closely. From the work performed in this thesis, it was clear that the actual moment
distribution in the struts were far from their idealized shapes. Modelling and measuring the
load distributions of the filleted struts more accurately might prove a good start. Solving Airy
stress functions for the equilibrium reached in the nodal region is one possibility.

2. How can stress-reducing cellular solid fillet geometries be applied to 3-D open cell struc-
tures?
In this study, stress reducing nodal geometries based upon a 2-D extruded shape were examined.
There is no obvious extension of these shapes for generalized 3-D lattice nodes, whose shape
cannot be reduced as easily. Numerous lattice structures being used in the biomedical and
aerospace engineering fields are comprised of lattices made of ligaments with circular cross-
sections. A means to extend the 2-D geometries to accommodate the intersections of circular
rods thus needs to be addressed.

3. Is it certain that the curing and post-curing effects are negligible?
In this study, stress reducing nodal geometries based upon a 2-D extruded shape were examined.
The specimen fabrication and post treatments were repeated using manufacturer recommenda-
tions. It was assumed that the specimens did not differ in their performance due to material or
process-dependent variables such as microstructure or residual stress distributions. Were this a
more exhaustive post-doctoral research paper, such tests would have been carried out to ensure
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that geometry was indeed specifically targeted as the free variable space. This was beyond the
scope and time-scale of this Master of Science thesis.

4. Can a nodal grading tool be developed to fine-tune finite cellular solid structure deflection
requirements of lightweight damage-tolerant structures?
In high-performance lightweight structures, supporting advanced functionality is challenging;
systems integration, structural inspection, and damage tolerance come on top of structural
requirements in numerous aerospace applications. In this study, it was observed that cellular
solids have a high sensitivity to nodal topology on a mass-basis, and that filleted nodes were
more easily inspected with DIC. The latter translates well to strain gauge application. A tool
that negotiates the various performance requirements by providing the required stiffness and
forcing specific failure modes to occur is an exciting idea. Perhaps a study comparing the
effects of strut diameter and relative fillet size needs to be addressed on a mass-basis. Another
idea is to study the sensitivity of asymmetrical nodal topology on strut buckling direction.

5. Can a nodal grading tool be developed to fine-tune finite cellular solid structure deflection
requirements of lightweight damage-tolerant structures?
n high-performance lightweight structures, supporting advanced functionality is challenging;
systems integration, structural inspection, and damage tolerance come on top of structural
requirements in numerous aerospace applications. In this study, it was observed that cellular
solids have a high sensitivity to nodal topology on a mass-basis; cellular solid deflection
rigidity seems to be directly affected. Currently, cellular solid continua have well-understood
mechanical properties. In the biomedical and aerospace engineering fields (to name a few), the
application of cellular solids is limited to a target volume. In other words the edges conform
to some arbitrary shape. Edge cells tend to have different and often undesired mechanical
properties. An ability to cause a similar structural response in these areas through the systematic
application of nodal grading could be a solution.

6. Can cellular solid nodal fillets be optimized to cause adjoining struts to fail with high
reliability in easily-inspected regions using structural health monitoring concepts and
hardware to create tomorrow’s lightweight damage-tolerant structures?
In this study, it was observed that cellular solids with filleted nodes were more easily inspected
with DIC. This also translates well to the application of other transducers such as strain gauges.
A future engineering thesis might consider the redesign of an aerospace component whose
design is made up of cells and a structural ’fuse’ to be monitored with SHM technology. The
fuse would in this context be a strut which provides insight into real-time structural performance
according to its design requirements. Such work would be a practical preliminary investigation
of the wider research question, helping engineers and companies to envisage smarter designs.
Although it is not a scientific help, it might also be a project that might help secure funding for
further cellular solid research.
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7. What is the effect of nodal topology on strain rate sensitivity of a compressing cellular
solid?
In this study, it was observed that cellular solids are highly sensitive to nodal topology. The
experimental evidence was gathered under quasi-static conditions. The results show that the
filleted cellular solids are more effective in a defined space than their unfilleted counterparts;
these improved designs are able to withstand higher loads, and transform the work done on the
system into material strain more effectively. In design contexts where energy absorption is a key
functionality for the cellular solid, it is not just these capacities that matter, but also the speed
at which the force is applied. Examples could include blast-protection in military personnel
vehicles, impact shields on-board satellites, improved automotive crush zones, airplane crush
zones, et cetera. A means to extend the analysis to these high-energy impact situations is
needed, and thus the issue of strain rate sensitivity needs to be addressed specifically.

8. How can the lessons from this thesis be applied to produce lightweight joints for filament-
wound carbon fiber tubes?

9. How can the lessons from this thesis be applied to bigger scale architectural and civil
designs?
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Appendices





A Young’s modulus analysis

According to the standard material datasheets, the Clear resin is comparable to Gray resin (Formlabs,
2018). In Formlabs white paper (Zguris, 2018), ASTM D638 type IV tensile bars were printed in
Clear Resin V2 with Formlabs Form 1+ and Form 2 printers at a layer height of 100 micrometers
[µm] and tested quasi-statically using a Universal Testing Machine model 500LB equipped with a
model SM-500-294 load cell and model 3542-0100-050-ST extensometer. The experimental Young’s
Modulus was obtained for different cure station temperatures for a wavelength of 405 nanometers
[nm]. This data is presented in Figure A.1, where the size of the error bars is said to represent each
datapoint’s “standard deviation for the mean of four samples” (Zguris, 2018). The author interpreted
this as the sample mean. These results indicate a leveling-off at 117.7 kips per square inch (812 [kPa])
for 60 minutes at 60 degrees Celsius [°C], with a 66.6 [%] confidence interval bound of ±13.8 [%]
for an estimated population mean using basic statistics and assuming a normal distribution of random
error.

All of the experimental specimens were made from Gray V4 on a Form 2 printer and cured for
the recommended cure time of 60 minutes at 60 [°C] at a wavelength of 405 [nm] using the Formlabs
Cure Station. It is assumed that layer height and short wash-cycles in the recommended isopropyl
alcohol do not affect material properties. The white paper’s E-modulus scatter at this cure setting is
considered representative. The precise details regarding the fabrication and post-processing of all
samples can be found at (van Helvoort, 2018).
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Fig. A.1 The Young’s modulus of Formlabs resin dependence on time (Zguris, 2018)
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Fig. A.1 The Young’s modulus of Formlabs resin dependence on time (Zguris, 2018)

B Experiment development and further
information

B.1 Specimen clamping

Initially, the infinite nodes were clamped by tightly sandwiching the plate between two thick steel
plates and securing them the to test bench. This made the test environment cluttered. This is a
significant problem with the highly sensitive DIC equipment. Specimen alignment was also difficult
to control across specimens. A dedicated clamp was fabricated such that specimens were easily
introduced and removed from the test environment.

The finite nodes were initially secured to a construction that was already available in the DASML.
In this setup, the support struts were secured with thumb-screws which limited nodal rotations. It was
also difficult to align the specimens correctly with the rest of the test setup. A dedicated clamp was
also fabricated such that specimens could easily be introduced and removed from the test environment.

B.2 Specimen preparation

An ideal DIC speckle pattern should be random, sharp and high-contrast distribution of speckles
against a continuous background to mitigate the risk of aliasing and non-convergence. Furthermore,
the ideal speckle pattern should be scaled and distributed in such a way that the CCD of the DIC
cameras are able to independently resolve each speckle from its neighbors.

As the camera resolution, field of view and focal length of the lenses all evolved in parallel
development processes, the ideal speckle pattern changed to be developed accordingly. With the
equipment available at DASML, the author soon gave up on reproducing an ideal speckle pattern.
Instead, a more workable process was created. First, the DIC cameras and the necessary lights set up
and calibrated. Second, speckle patterns were painted on different targets using a spray can with a
fully-open nozzle from different distances. Those targets were then placed in the test area, and the
best pattern was chosen. The actual test specimens were then taken to the paint room, and the best
process was applied to all of them as evenly as possible.
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Notable application issues include: graying out the background with overly-fine paint speckles;
high resultant variability in individual speckle sizes; differences between resultant speckle patterns
between specimens; and applying an uneven paint thickness.

B.3 Camera and lighting considerations

Several issues were resolved regarding camera and lighting considerations:

• The angle between the two cameras in the stereoscopic camera set-up began at a suggested
value of approximately 30° but was gradually decreased in favor of increased accuracy in the
xy plane.

• The area of interest was reduced to prioritize observing the strain field of the nodal area in
increasing detail. The focal depth became the limiting factor.

• Initially, only one set of DIC cameras were used to observe the section view. This meant that
the free boundary could not be observed directly. Thus, a second DIC setup with a smaller focal
length was placed inside the setup to observe the free-boundary deformation of the strut.

• Lighting seemed to affect DIC noise significantly. As the author and independent colleagues in
the Delft University of Technology’s DASML became more experienced lighting became more
tightly controlled with the use of light-absorbent materials, powerful lights, smaller camera
apertures and faster shutter speeds where possible.

B.4 Specimen technical drawings

Infinite node

The specimen drawings are given according to the American Projection convention in Figures B.1 to
B.4.

Finite node

The specimen drawings are given according to the American Projection convention in Figures B.5 to
B.8.

Hexagonal honeycomb specimens

The specimen drawings are given according to the American Projection convention in Figures B.9 to
B.12.
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Fig. B.1 Technical drawing of the un-filleted infinite node specimen, employing the American
projection convention
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Fig. B.2 Technical drawing of the circular-filleted infinite node specimen, employing the American
projection convention
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Fig. B.2 Technical drawing of the circular-filleted infinite node specimen, employing the American
projection convention
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Fig. B.3 Technical drawing of the Mattheck-filleted infinite node specimen, employing the American
projection convention
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Fig. B.4 Technical drawing of the Baud-filleted infinite node specimen, employing the American
projection convention

Fig. B.5 Technical drawing of the un-filleted finite node specimen, employing the American projection
convention
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Fig. B.4 Technical drawing of the Baud-filleted infinite node specimen, employing the American
projection convention

Fig. B.5 Technical drawing of the un-filleted finite node specimen, employing the American projection
convention
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Fig. B.6 Technical drawing of the circular-filleted finite node specimen, employing the American
projection convention

Fig. B.7 Technical drawing of the Mattheck-filleted finite node specimen, employing the American
projection convention
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Fig. B.8 Technical drawing of the Baud-filleted finite node specimen, employing the American
projection convention
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Fig. B.8 Technical drawing of the Baud-filleted finite node specimen, employing the American
projection convention
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Fig. B.9 Technical drawing of the un-filleted hexagonal honeycomb specimen, employing the Ameri-
can projection convention
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Fig. B.10 Technical drawing of the circular-filleted hexagonal honeycomb specimen, employing the
American projection convention
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Fig. B.10 Technical drawing of the circular-filleted hexagonal honeycomb specimen, employing the
American projection convention
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Fig. B.11 Technical drawing of the Mattheck-filleted hexagonal honeycomb specimen, employing the
American projection convention
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Fig. B.12 Technical drawing of the Lumped-node hexagonal honeycomb specimen, employing the
American projection convention
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Fig. B.12 Technical drawing of the Lumped-node hexagonal honeycomb specimen, employing the
American projection convention

C Overview of VIC3D 8 settings

Table C.1 summarizes the VIC 3D settings used for all experiment analyses.
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Table C.1 VIC 3D 8 settings

VIC 3D 8 parameter settings

Subset size [pixels] 41
Step size [pixels] 10
Step size [pixels] 6
Interpolation type 8-tap
Criterion NSD
Consistency threshold 0.02
Confidence margin: max. margin 0.05
Matchability threshold 0.1
Epipolar threshold 0.5
Compute confidence margins Yes
Strain computation 13
Compute principal strains Yes
Overwrite existing strains Yes
Von Mises equivalent strains Yes
Raw gradients No
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