
Application of Self-Paced learning for noisy meta-learning

Árpád Aszalós 1

Supervisor(s): Matthijs Spaan1, Joery de Vries1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Árpád Aszalós
Final project course: CSE3000 Research Project
Thesis committee: Matthijs Spaan, Joery de Vries, Pradeep Murukannaiah

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Meta-learning is an important emerging paradigm
in machine learning, aimed at improving data-
efficiency and generalization performance across
learning tasks. Challenges caused by noisy data
has been extensively researched in traditional learn-
ing settings. However, its impact in the context
of meta-learning, especially concerning label noise
in meta-training, remains under-explored. Curricu-
lum Learning (CL), is an approach where training
data is ordered from easy to complex, and mod-
els learn from easier to harder samples. A type
of CL , Self-Paced learning (SPL) offers adaptive
data curriculum, where ordering is based on per
sample model performance during training. Self-
Paced Learning (SPL) has proven effective in en-
hancing model robustness and convergence under
noisy data scenarios. However, its application in
meta-learning under these conditions remains lim-
ited. In this paper, we use a Neural Process model
on 1D sinusoidal function regression tasks, with
different ratio of clean / noisy training data scenar-
ios to empirically observe the same benefits SPL
can potentially offer for noisy meta-learning. In
line with findings in traditional learning settings,
SPL improved overall training convergence, also
lead to increase in generalization thus noise robust-
ness. Furthermore SPL lead the model to be more
robust to increasing scale of noise for tasks within
the training data distribution.

1 Introduction
Approaches in machine learning and artificial intelligence , in
majority, often drawn inspiration from cognitive science and
human-like biological and conceptual principles. With the
main aim, to leverage what allows humans and animals to be
versatile and efficient at carrying out , translating prior knowl-
edge to, and learning new tasks (J. X. Wang, 2020). Current
deep learning approaches, although achieve excellent results
in lieu of large amounts of data, have room for improve-
ment in terms of data efficiency and generalization capabil-
ities. Emerging approaches, such as “ meta-learning ” aims
to solve and alleviate some of these problems (Hospedales et
al., 2021). In meta-learning, the goal is to learn representa-
tions across individual tasks (eg. a supervised learning task),
in a way that they are transferable to learning or solving other
tasks (Vanschoren, 2018).

Noisy data presents a significant challenge in machine
learning, as it concerns real-world datasets and therefore real-
world applicability of models. Substantial amount of research
has been done in training models to be noise robust with
varying techniques (Song et al., 2023) in traditional learn-
ing settings. Noise robustness in meta-learning, however, is
yet to receive the same level of attention. The applicability of
meta-learners to real-world use cases emphasizes the issue of
noise robustness, as real-world data comprising meta-datasets
would contain the same amount of noise as typical datasets,

leading to meta-learners over-fitting on the noise, degrading
performance.

In addition, majority of research considering noisy meta-
learning has been in connection with managing label noise in
the meta-test set through various methods, like adaptive sup-
port set task scheduling (Yao et al., 2021), or attentive support
set profiling (Lu et al., 2021). As also mentioned in Galjaard
(2023), only Chen et al. (2022) has looked at implications of
noisy labeled meta-training , however their method is specific
to Reptile (Nichol et al., 2018).

A long studied approach that has been previously utilized
as a solution to tackling problems with noisy data is Cur-
riculum Learning (CL). The work of Bengio et al. (2009),
considered seminal in Curriculum Learning (CL), introduced
the notion of curricula, being the introduction of examples
from easy to hard throughout training, and saw improvements
in performance on language modelling and shape classifica-
tion tasks. Since then, Curriculum Learning has been applied
and extended in several domains, eg. supervised classifica-
tion, object detection, neural machine translation (Soviany et
al., 2022; X. Wang et al., 2021) with empirical evidence for
improved performance in particular data scenarios. Curricu-
lum strategies generally consist of a difficulty measure and a
scheduler (X. Wang et al., 2021), which together determine
the order and timing of ordered data introduction for training.

Earlier work has seen challenges by relying on expert de-
fined heuristics for curricula ordering and lacking general-
ization capability across domains and architectures. Later
work includes different automatic approaches, and difficulty
measures based on model performance to make the CL more
transferable across different task and models. One such ap-
proach is Self-Paced learning (SPL), where the difficulty
measure is determined by the model’s performance on a per
sample basis (Kumar et al., 2010). However, it has also been
shown that curricula is highly dependent on certain training
data conditions and environments. Mainly showing empir-
ical improvements in noisy, imbalanced data as well as re-
stricted learning resource scenarios (Wu et al., 2020). Self-
paced learning has further been shown to be mostly applica-
ble to the same scenarios, also with theoretical arguments for
its validity and usefulness (Gong et al., 2015; Meng & Zhao,
2015).

Although meta-learning and curriculum learning saw some
research on their joint application (Shu et al., 2019; Sun et
al., 2019) and SPL have also been studied in a meta-learning
context (Zhang et al., 2022) , there remains a gap in un-
derstanding of how different curricula could apply to noisy
meta-learning scenarios. Recent work has further highlighted
this gap, including X. Wang et al. (2021) for CL in general,
and Zhang et al. (2022) for meta-learning and SPL specif-
ically. Despite these related works, applicability of Self-
Paced learning for the noisy data setting is however, yet still
under-explored. Further empirical investigation is necessary
to determine how SPL could be leveraged to improve meta-
learning in noisy scenarios, and understand potential nature
of improvements that SPL could offer for subsequent perfor-
mance.

Given the demonstrated benefits of Self-Paced Learning
(SPL) in traditional noisy learning settings, this paper aims

1

to answer: How can Self-Paced learning aid meta-learning
in presence of noisy training data. The research seeks to
address the following questions:

• How does SPL affect the meta-training trajectory in
noisy training environments?

• How does incorporating SPL influence generalization
performance for within and out-of training task distri-
butions, under clean and noisy conditions, considering
prior noisy training environments?

2 Background
2.1 Meta-Learning
Meta-learning is a paradigm in machine learning, that aims to
allow training of models, that are capable of adapting quickly
to unseen, or less seen examples of data. As opposed to nor-
mal learning, where the aim is to create a model that does
well on a given machine learning task, in meta-learning, the
objective is trying to learn across sets of tasks, by leveraging
”meta-features” or ”meta-representations” in the data that can
be used to perform better across new tasks more quickly and
with minimal data (Vanschoren, 2018).

To formalize this for a supervised learning problem, in
a traditional learning setting the aim is to learn a predictor
function f(x) based on our dataset D = {(xi, yi)}Ni=1, pre-
dicting the accompanying target and label pairs (xT , yT) by
f(xT) = yT , so the learning algorithm At is At : D → f(x)
. We refer to a learning task Dtask of learning to predict
new data based on the our dataset in the form of Dtask = (
D , xT , yT). In a meta-learning setup, training is carried out
over a dataset of tasks (meta-dataset) Mt = {D(i)

task}
Ntask
i=1

(Dubois et al., 2020) . The objective compared to traditional
supervised learning, then shifts from returning a predictor
function solely based on xT , to learning a function that re-
turns predictions yT based on not only the target inputs xT ,
but also leveraging the D of that task, named context set. The
meta-learning algorithm Am can be formulated as a mapping
Am : Mt → (D → f(x;D)) , where f is capable of pro-
viding a prediction function on a per-task basis, taking into
account both xT and the context set D (Dubois et al., 2020).
This reformulation encapsulates the paradigm of ”learning to
learn”, or more explicitly, learning how to adapt the predic-
tor function to new tasks based on the provided context D.
It also allows to return predictor functions that can leverage
information across tasks using the context sets of new unseen
tasks.

2.2 Neural Process model
The Latent Neural Process model (NP) , first introduced by
Garnelo et al., 2018 , combines Neural Networks computa-
tional efficiency and flexibility in fitting to data , and Gaus-
sian Processes (GPs) capability to represent distribution over
functions and give uncertainty estimates of predictions. Since
then, a wider range of architectural solutions have been de-
rived to address initial shortcomings of NP , these are collec-
tively termed as the Neural Process Family (Jha et al., 2023)
, ranging from convolution and attention mechanism exten-
sions.

C T

xC yC yT xT

z

Figure 1: Graphical Model of the Neural Process , taken from (Gar-
nelo et al., 2018)

In this section, the three core components (encoder, ag-
gregator, decoder) and training of a neural process model in
context of 1D regression will be laid out, to provide prelim-
inary background knowledge. For 1D regression task learn-
ing with the NP model, we define a meta-dataset of regres-
sion tasks as Dmr = {D(i)

task}
Ntask
i=1 where a task Dtask =

((Xc, Yc), Xt, Yt) consists of a set of x, y values of a function
to be regressed using the context set Dc = (Xc, Yc). Suc-
cintly, we organise a sampled regression task into two sets,
with sizes n,m.:

Dc = {(xi, yi)}ni=1, Dt = {(xj , yj)}mj=1

The problem the NP model needs to solve is: given Dc and
target function inputs Xt, predict the corresponding Yt val-
ues. However, given the nature of the Neural Process model
, which is capable of predicting distributions around predic-
tions, the output for each target xt is a Gaussian distribution
of the form N (µyt

, σyt
) , that offers a probability distribu-

tion over the to be predicted value yt.
Firstly, the encoder component h takes in the context set

of (Xc, Yc), or in earlier terms Dc. These context points are
encoded into a representation ri = h((xci , yci)) per context
pair. The encoder is parameterised with an Multilayer Per-
ceptron (MLP).

These representations are aggregated together by their
mean into r , this global representation is used to parame-
terise the latent distribution , for global latent variable z ∼
N (µ(r), σ(r)), as can also been seen from Figure 1, that the
context set infers the latent variable. The importance of z and
related distribution, is to capture a global function represen-
tation over the set of X,Y points the model uses for calcula-
tions, such that it can learn the underlying regression function
fd for a given task where fd(xi) = yi, rather than having to
learn an explicit mapping to each yi.

The decoder receives the sampled global latent variable z
and combines it with the target points Xt to predict p(Yt |
Xt;Dc) . As mentioned earlier, the encoder takes Dc, impor-
tantly, during training however, the target to be predicted is
formed as Dc ∪Dt. Meaning that the decoder will combine z
and Dc ∪ Dt, during testing only Dt is used.

2.3 Curriculum and Self-Paced Learning
Curriculum learning , first explored for machine learning by
Bengio et al., 2009 , is a learning strategy that draws upon the
way human’s get to learn and get better overtime, by building
up from smaller easier tasks to larger more complex tasks.

2

The main setup of a Curriculum Strategy is a difficulty mea-
sure, that determines the easier and harder tasks, and a train-
ing scheduler, that determines the nature of introduction of
the ordered tasks for the model to learn from (X. Wang et al.,
2021).

Self-Paced Learning is an adaptive curriculum strategy,
where the difficulty measure is determined by the model’s
capability, and is encoded through the loss the model pro-
duces on a per training example basis. This can be thought of
as synonymous to a student ”self-learning” and setting up a
curricula based on their current performance and accrued un-
derstanding. Therefore Self-Paced Learning offers an adap-
tive curriculum, that changes as the model trains over time.
The SPL objective was first formulated into a weighted loss
optimization objective by Kumar et al. (2010) , where the
usual loss minimzation scheme was extended to include the
per sample weights and accompanying weighted loss. The
objective is then given by:

min
w,θ

N∑
i=1

wiℓ(f(xi; θ), yi)− λ

N∑
i=1

wi

Where:

• w = [w1, w2, . . . , wN], wi ∈ [0, 1] are the weights as-
signed to the training samples,

• θ are the model parameters,

• ℓ(f(xi; θ), yi) is the loss for sample i,

• λ is the thresholding parameter (often called age param-
eter)

The above objective is often solved by an alternating op-
timization strategy over the curriculum weights and model
parameters. Firstly , with model parameters kept constant the
optimal weight parameters can be found by:

w∗
i =

{
1, if ℓi < λ

0, otherwise

Secondly, by fixing the weights, a normal gradient descent
algorithm can then optimise the model parameters. Overtime
the threshold λ (age parameter) is increased with each epoch,
to include harder samples, as determined by the model’s loss
on the samples. The nature of this increase can be understood
as the training scheduler. In practice , the samples for which
wi = 1 are considered ”easy” or low loss , and will be used to
form the current epoch’s training subset , in our meta-learning
notation Mts. The age parameter updates determine the pace
at which Mts approaches the full dataset Mt, |Mts| ∼ |Mt|
over the epochs, an example visualization of how the subset
gets to include more of the samples based on losses can be
seen in Figure 2. So, over-time the pacing leads to the intro-
duction of training examples with higher losses, acting as a
filter on the admissible examples, until the model starts train-
ing on the whole training dataset |Mt|.

This original version of Self-Paced Learning has since been
extended , to include more informative and task specific met-
rics, for example approaches that include a querying aspect
for relevant data selection (Tang & Huang, 2019), include

Figure 2: Example visualization of how the Self-Paced Learning
threshold selects a subset Mts over 3 epochs. The red dashed line
shows the threshold up to which examples are chosen based on the
current distribution of losses

more diverse training data to improve imbalanced data sce-
narios (Jiang et al., 2014), or to incorporate prior knowledge
in form of a predetermined curricula restricting the weight
space of samples (Jiang et al., 2015). Further natural exten-
sion in terms of a soft-weighing scheme based formulation
(Zhao et al., 2015) has also been explored, in order to increase
flexibility of the difficulty encoding that is binary in the orig-
inal version. Recent work has also explored SPL within a
meta-learning context with added cross-query reguralization
for few shot image classification tasks, named SepMeta by
Zhang et al. (2022).

3 Experimental Setup
As mentioned in the introduction, prior research has shown
SPL to be an effective technique against noisy data in tradi-
tional learning settings. However, applicability with similar
outcomes in meta-learning has not been explored. In order to
investigate SPL offering the same benefits, an NP model was
trained with different ratio of clean/noisy training data splits.
Training loss and performances were then used to answer how
SPL can aid in a noisy meta-learning setting.

Dataset: The training meta-dataset consists of 128,000 re-
gression tasks (see Figure 3 for an example). Each task is syn-
thetically created with 96 uniformly sampled (X,Y) points in
the range [−1, 1] from families of sinusoidal functions. Each
task is synthetically created with uniformly sampled (X,Y)
points in the range [−1, 1] from families of sinusoidal func-
tions. These points were further split into context and target
sets randomly during training. Each sample consists of 64
points for the context set C and 32 points for the target set T .

C = {(xi, yi)}64i=1, T = {(xj , yj)}32j=1

3

Figure 3: Examples of the training dataset (in task) , and the intra
training evaluation out of task distribution, with and without noise.

The sine regression tasks were created using a randomiz-
ing Fourier series function, that allowed to parameterise the
number of sine components n, the range for amplitude and
period , and returned random sinusoidal functions from the
thus defined distribution of possible regression tasks. A de-
tailed explanation on the data generation and parameters can
be found in Appendix A.1. The models were trained on three
training data setups with varying proportions of noisy and
clean training data:

• 0% Noisy / 100% Clean training data in the meta-dataset

• 30% Noisy / 70% Clean training data in the meta-dataset

• 60% Noisy / 40% Clean training data in the meta-dataset

These noisy splits allow evaluation of SPL as a technique
for noise robustness for meta-learning in presence of noisy
data, as well as whether the effects are specific to certain ra-
tios of noisy data present in the training data.

Noise: Noise was introduced within the regression tasks
by perturbing the Y values of the sampled points by a Stan-
dard Gaussian ϵ ∼ N (0, 1) applied to all ŷi = yi + ϵi ∗ s
, where s = 0.2 (referred to as 0.2 Noise in the paper, and
s as noise level) points within a task if that task was made
noisy, within a given noisy / clean training split setup. Noisy
training examples can be seen from figure 3.

Evaluation metric: For the evaluation metric, Empirical
Cross Entropy (ECE) was used. In a normal regression , the
output of the model would entail a single scalar value y =
f(x) for the function value at a given point x . However in
order to capture the uncertainty estimate of the NP model in
the accuracy measure, normally employed regression metrics
will not suffice. Empirical Cross Entropy can be defined as:

ECE = − 1

N

N∑
i=1

logP (yi|xi)

where P (yi|xi) is the probability of the target value yi

given the predicted distribution at xi. This metric determines
how likely the target value is, given our predicted distribution.
In evaluation, the ECE value over a single task was computed
first, according to the aforementioned formula. To determine
the performance on a test set, the individual ECE values from
the tasks within that test set were further averaged.

Furthermore, despite the availability of the uncertainty es-
timates, Root Mean Squared Error (RMSE) was also used
for evaluation the same way, in order to evaluate the predicted
means only as well.

Training: The training setup is available from the code 1

, a single model training script has been setup for both the
baseline NP , and NP with SPL. The script allows provid-
ing a manual dataset and data-loading seed. For each clean
/ noisy split training data setup the models were trained on
10 different dataset and data-loading seeds (consistent across
the 2 models) to ensure the results are not influenced by spe-
cific seed initalizations, altogether 60 models were trained.
An epoch is defined as a whole pass over the current train-
ing data subset Mts. In case of the Base NP model, it al-
ways holds that Mts = Mt, but the SPL curriculum leads to
epochs where |Mts| < |Mt|. A training step is a gradient
descent step and update for a single batch , for this exper-
iment a batch size of 128 was used. To further guarantee
consistent training conditions a training step restriction of
6000 has also been introduced to ensure both models train
on consistent amount of available information. During train-
ing at every 500 training steps , an evaluation was run on
four test datasets sampled on the fly (so different dataset for
each 500 step evaluation period, but consistent across models
within training runs through manual seeding), all intra train-
ing evaluation test sets of size 12800. Two of these test set
was comprised of tasks that are drawn from the same training
task distribution (in-task distribution), clean and noisy (0.2
Noise). The other two evaluation sets were drawn from an out
of training task distribution (different from training data dis-
tribution, further details in Appendix A.1) , clean and noisy
respectively. For these four test sets metrics mentioned above
were calculated. The intra training evaluation setups allows
analysis with regards to the effects of SPL on both the train-
ing trajectory and generalization capabilities, and their dy-
namics of change throughout the learning process. The train-
ing also saved the accrued SPL curriculum weights, that is,
which samples are included in Mts in each epoch. The final
best model parameters and intra training metrics over the dif-
ferent in task and out of task distributions were saved for later
visualisations across the seeds.

Evaluation: Post training evaluation was carried out with
in and out of task distributions with sizes 12800. Increas-
ingly more out of task distributions were used for evaluation
runs with 0.2 Noise and without noise to observe the extent of
generalization capability of the model and possible improve-
ments offered by the curricula in presence of noisy test as
well. Regression tasks were created while changing Fourier
function parameters one at a time. All the out of task dis-
tribution setups can be seen in Table 1. The in task general-
ization performance evaluation was carried out with varying

1https://github.com/aszi09/SPL-NoisyMetaLearning

4

noise level s ∈ {0.0, 0.2, 0.3, 0.4, 0.5, 0.6}, in order to assess
and observe the nature of possible noise robustness against
increasing levels of noise that SPL potentially offers.

Parameter(s) Values
n {3, 4}

Amplitude {1.0, 2.0}
Period, Period Range {(1.0, 0.5) , (1.5, 0.5)}
Each setup is evaluated with noise levels: 0.0 , 0.2, 0.4

Table 1: Evaluation Setups for Out-of-Task Distributions, for further
clarification on the meaning of the parameters and values refer to
Appendix A.1

SPL setup: The SPL implementation of CurML(Zhou et
al., 2022) has been adapted to JAX, for defining the curricula
a start rate of 10 % have been used, and the subset Mts in-
creases to the full training set size within 5 epochs. Although
as previously discussed , the training step size restriction is
required to allow equal learning for both baseline and curricu-
lum setups, we still require the epochs to infer the curriculum
training schedule growth as well.

Tools and Technical Setup: For model setup and dataset
generation JAX (Bradbury et al., 2018), for dataloading Py-
torch was used, as there was an available codebase for Neural
Process model coded in JAX, both frameworks also offer re-
producibility through manual seeding. The training was car-
ried out on DelftBlue ((DHPC), 2024) on a single NVidia
Tesla V100S 32GB, with 64G RAM. However the experi-
mental setup allows for commercially available GPUs to run
the experiment, as the code have been written to adapt chunk-
ing computations for VRAM bottlenecks.

4 Results and Discussion
Figure 4. shows the training trajectories for both Base
and SPL-based Neural Process models across different noisy
training scenarios. SPL led to faster loss convergence at
around the 1500 training step mark , as also supported by
the ECE intra-training performances in the Sub-figures 6 , 7.
Also, to more stable learning, as shown by less variance in
per training step training loss, except for a slight increase in
the 30% noisy setup. Interestingly, there were distinct sud-
den increases in training loss aligning with the 28% and 82%
curriculum subset marks.

These results demonstrate that SPL affects meta-training
by accelerating loss convergence and reducing variance
across runs, pointing to a more robust learning process. Im-
proved convergence points to usefulness of CL in restricted
learning time scenarios as pointed out by Wu et al. (2020),
that is shown to hold for meta-learning as well. The poten-
tial distribution shifts causing the loss jumps could suggest a
connection to transitioning from different higher confidence
regions of the underlying training data, as mentioned by Gong
et al. (2015).

From sub-figures of Figure 8. the intra training evaluations
ran every 500 training steps can be observed, showing aver-
age performances of Base and SPL models over the 10 runs
and 95% CI can be seen. The noisy training split Figures 6

and 7 show highly similar performance trends, meaning that
the ratio of noisy training data is less of an important factor
as much as the presence of noise. SPL model shows slightly
worse in-task performance and significantly worse noisy in
task performance in terms of ECE. Out of task performance
however clearly points to the SPL based model outperform-
ing the Base model in both RMSE and ECE, also showing no
significant difference due to the added level of noise.

These results point to SPL preventing the model from over-
fitting to noise, meanwhile improving overall generalization
capability as indicated by performance on out of task regres-
sion tasks being invariant to introduced noise. This gener-
alization capability is likely due to the model being exposed
to fundamental features early in training as a result of SPL.
Then, this exposure allows the model to later leverage key
features improving generalization across different tasks.

From sub-figure 5 the clean training split intra training per-
formances can be seen. The results show SPL to have highly
degraded performance in presence of noise for in-task distri-
bution test cases. Also , performance on overall out of task
test cases aligns with the Base model, having progressively
worse performance due to overfitting on the training distribu-
tion.

The above results show that SPL lead to increased gener-
alization capability for out of task distributions despite added
noise level. It aided meta-learning by preventing the model
from overfitting to noise, leading to robustness. Furthermore
, as demonstrated by previous work by Wu et al. (2020) SPL,
as a CL, even in meta-learning only seems to offer benefit in
noisy scenarios . The showcased overfitting in clean scenario
is a problem of SPL due to repeated learning on same easy
examples, as also explored by Jiang et al. (2014).

Post training, in task distribution performances can be seen
plotted for ECE in figure 9 (RMSE in appendix 14) with in-
creasing level of noise introduced. The usage of SPL cur-
riculum greatly improved in task generalization performance
for increasing levels of noise. Meanwhile Base model also
shows faster degradation of performance compared to SPL
based model as the regression tasks get more noisy. In the
clean training setup case, performances are similar as sug-
gested by also the intra training metrics, although with higher
uncertainty for the SPL based model.

The results above show SPL helping meta-learning by im-
proving in task generalization performance in presence of
varying noise levels, as well as on par performance for clean
test cases. These findings further showcase how SPL can aid
meta learning in presence of noisy training data.

Post training, out of task distribution performance mea-
surements based on the setup mentioned in Table 1 can be
seen from Table 2, with the most important collective visu-
alization for ECE visible from Figure 10 (and further visual-
izations from Figures 11, 12, 13), for all the different added
noise and noisy training setups. RMSE performances across
models and setups tend to be similar with negligible degree
of differences suggesting that the model performance differ-
ences can mostly be observed through the uncertainties in
predictions of the model and not the overall raw values. Fig-
ure 10. shows that in noisy training setups, the SPL model
significantly outperforms the Baseline model in terms of al-

5

Figure 4: Training losses averaged over 10 seeds per training step, showing the standard deviation as a fill. The dashed line show the
curriculum subset progression over the training with aforementioned start rate = 0.1 , growth epochs = 5.

most all types of out of task distributions for ECE. The 30%
noisy |70% clean based SPL model however shows very high
uncertainty in the amp = 2.0 case. In clean training setups
the inclusion of SPL degrades out of task distribution perfor-
mance compared to Base model. Furthermore, the ratio of
training data made noisy, only leads to marginal performance
increase for the 60% noisy setup in other distributions.

These results further showcase the findings of improved
generalization even across more varied out of task distribu-
tions. These indicate that SPL helps noisy meta-learning by
preventing the model from overfitting to the noise, as well as
allowing it to leverage key features from the data, leading to a
robust model. Also, again showing that the ratio of noise dur-
ing training is less of a factor, than overall presence of noise
in the training data.

4.1 Limitations
The study’s findings on how SPL can benefit noisy meta-
learning solely focuses on sinusoidal regression task, which
has limited potential real-world applicability. The level of di-
versity found within real world datasets is much greater than
the regression task datasets that have been used for training.
To enhance the relevance of the findings, and ensure they gen-
eralise to real world use cases, a more diverse set of regression
tasks could have been devised. In addition, leveraing com-
monly used meta-learning datasets, for example Omniglot
(Lake et al., 2015) or a larger collection of datasets like Meta-
Dataset (Triantafillou et al., 2020), could also take steps to-
wards real world applicability, as well as allow for a more
standardised basis of comparison and validation of findings
with other studies.

The experimental design in the study includes only a few
specific clean / noisy training splits , noise levels and types of
noise, which may not comprehensively capture the noisy data
challenges faced in real world datasets. Exploring a more
extensive set of noisy data ratios, levels and types of noise
could provide deeper insights into potential shortcomings re-
garding the applicability of SPL in such scenarios. More-
over, using more varied hyperparameter initialization could
provide a more nuanced understanding of the specific noisy
data characteristics where SPL is applicable. For example,
ablation studies on the sensitivity of hyperparameters to noisy
training data ratios, noise levels and types, a well as mix-
ture of these, could reveal more general or specific benefits

of SPL. Differences in the start rate might be important for
convergence improvements in different noisy training data ra-
tios as that has not been observed greatly. Meanwhile, the
growth epochs could potentially influence the overall gener-
alization improvements that the study showed.

Lastly, the study’s investigation into SPL’s applicability
could further benefit from including other methods for noise
robustness, to provide possible comparison and place the
findings in a wider scientific context. For example, inclu-
sion of other CL techniques like meta-weight net (Shu et
al., 2019) or more general noise robustness techniques like
dropout could offer comparative insights into SPL’s noise ro-
bustness benefits.

5 Conclusions and Future Work
This paper set out to empirically investigate the potential ap-
plications of Self-Paced Learning for meta-learning in pres-
ence of noisy training data , and analyse its effects on the
training process and consequent in and out of task generaliza-
tion performance. The study has found that applicability of
SPL for noisy meta-learning, aligns with the observed bene-
fits in traditional learning settings, therefore showcasing SPL
as a promising technique for noisy meta-learning as well.

The SPL based model has been found to significantly im-
prove training loss convergence over the Base model over-
all. Furthermore SPL lead to stabilization of per training step
losses over the different runs, when compared to the high
standard deviation of losses throughout training of the Base
model. Overall leading to more robust meta-learning, as also
showcased by the improved generalization performances in
the intra-training evaluations.

In line with previous studies on CL and SPL, the study
has shown that application of SPL in clean data scenarios is
highly limited, despite the training loss convergence. This is
attributable to SPL overfitting in clean data training setups.
Out of task distribution performance is crucial for the future
of meta-learning, as improvements in this area could lead to
greater efficiency in training data to be leveraged across tasks,
leading to overall decrease in training times and more capable
models.

The study has found that SPL improves the out of task gen-
eralization capability of the model compared to Base model,
hence also increases noise robustness. In task distribution
performance differences in less noisy scenarios remained

6

Figure 5: Intra training metrics for the Noise setup ratio: noisy - 0.0% |clean - 100.0%. As we can be seen, SPL does not offer any added
performance benefit on with clean data. It also leads to overfitting, degrading performance on In-Task ECE Noise tests cases.

Figure 6: Intra training metrics for the Noise setup ratio: noisy - 30.0% |clean - 70.0%. SPL also offers robustness in meta-learning as
suggested by efficacy for noisy learning in traditional learning settings. Increased out of task generalization capability can be seen. SPL
further prevented the model from overfitting on the noise found in the training dataset.

Figure 7: Intra training metrics for the Noise setup ratio: noisy - 60.0% |clean - 40.0%. SPL also offers robustness in meta-learning as
suggested by efficacy for noisy learning in traditional learning settings. Increased out of task generalization capability can be seen. SPL
further prevented the model from overfitting on the noise found in the training dataset. Even in the presence of higher amount of noisy data
in the training dataset.

Figure 8: Sub-figures for the Intra training RMSE and ECE performance metrics showcasing the per 500 training step evaluation runs with
12800 test datasets of in and out of task distributions with clean and 0.2 noise = (noise) added to the test tasks. The lines are the aggregated
means and the fill is the 95% CI from the means of the 10 runs.

7

Figure 9: Post training in task distribution ECE performances in different noisy training setups, and with increasing level of added noise,
averaged over 10 runs, fill showing 95% CI. Sub-figures showcase the benefit of SPL for meta-learning along the same lines as has been
found in traditional learning settings.

Figure 10: Out of task distribution ECE performances averaged over the 10 runs with 95%CI , with 0.2 Noise. The graph shows the
improved generalizatoin capability of the model due to SPL in the noisy training splits. Although with very high uncertainty in the 30% noisy
amp = 2.0 case. Overall clear improvement for out of task distribution can be observed in noisy trainging setups, and degradation due to
overfitting in the full clean training setup

only marginal, however SPL has increased noise robustness
with regards to increasing level of noise compared to Base
model. Furthermore RMSE measures have shown that the
improvements offered by SPL can mostly be attributed to a
decrease in uncertainty of the Neural Process model predic-
tions as shown by improved ECE but not always RMSE.

Although the findings of the study showcase some promis-
ing results, as the limitations point out, there are shortcom-
ings that need to be further explored more deeply to make
sure that SPL is a technique worth incorporating in real world
meta-learning scenarios. Several directions of exciting future
work can be discussed not only in connection with SPL but
with regards to Curriculum Strategies in general.

Next step in researching SPL and Meta-learning could look
at different pacing functions, as well as already established
and used SPL versions, such as soft weighing (Zhao et al.,
2015) or diversity (Jiang et al., 2014), in meta-learning sce-
narios. Research on more diverse meta-learning scenarios are
still yet to be explored, one highly influential avenue of work
could include exploring imbalanced training data settings in
meta-learning , and how Curriculum Strategies could help

mitigate such scenarios. As one of the main goals of meta-
learning is out of task distribution performance with only few
data, such imbalanced training data setups could be explored
with different Curriculum Strategy setups to observe its ef-
fects in mitigating imbalance of certain task types.

Another important and interesting approach to future work
could include focus on deriving new CL techniques or build
upon previous ones that solve more meta-learning specific
problems. For example, one major challenge that has been
identified in multi-task learning scenarios and speculated to
also appear in meta-learning is conflicting gradients, high
positive curvature and large gradient differences (Yu et al.,
2020). Exploring how these characteristics apply to meta-
learning and developing new Curriculum Strategies to miti-
gate these issues would be a valuable direction. In addition,
recent paper has already explored the use Variance of Gradi-
ents (Agarwal et al., 2022) for estimating example difficulty,
which could be further explored for inferring curriculum for
meta-learning.

8

6 Responsible Research
Reflecting on the ethical, societal impact and values provided
by a given research is crucial for furthering science with in-
tegrity and reproducibility in mind. Reflection on the con-
ducted research based on principles from the Netherlands
Code of Conduct for Research Integrity is found in this sec-
tion.

In terms of reproducibility of the research, the experiment
has been setup in several aspects in order to improve repro-
ducibility. The data used in the experiments are synthetically
created, using random seeding, therefore reproducing the re-
quired data to reproduce the same results for the post training
evaluations is freely available in the appendix. Manual ran-
dom seeding has further been used to ensure reproducibility
of results, both random initilizations of parameters and dat-
aloading. The experimental setup section details the experi-
ment in depth with added details observable from Appendix
A.1 as well the code 2, further improving the reproducibility
of the research. In addition, the experiment has been setup
to allow for VRAM chunking, making the training accessible
on commercially available GPUs as well.

In terms of Honesty, the paper included uncertainty mea-
sures over the shown performance metrics, as well as showed
detailed statistical information for the training losses. Fur-
thermore, data used for the graphs can also be found in the
appendix in the form of tables for further clarity and honesty
declaring the results.

The principle of scrupulousness is reflected in the research,
by carefully detailing each aspect of the experimental design,
making it available in the appendix, and providing available
code for result reproduction.

The research is aligned with principles of transparency, by
providing clear explanations of methods, code and data cre-
ation used for the experiments. The code has been made pub-
lic, and there are no third party or related stakeholders con-
nected to the research that are undisclosed. Furthermore, ex-
port of surveyed papers and relevant notes are also available
from the code repository, to offer further transparency of the
research process.

Independence of the research is ensured, as no commercial
or other non-scholarly parties were involved or were invested
in the formulation, making or implications of the conducted
research. The study concerns solely the student, supervisor
and responsible professor, all of whom are impartial and ded-
icated to research with integrity.

In reflection on ethical and social impact and related prin-
ciple of responsibility, the data usage and real-world applica-
bility is concerned. The experiment has used synthetic data,
therefore there is no possible privacy concerns. As the lim-
itations of the study has also pointed out , real-world appli-
cability of the findings is constrained. Although this is the
case, the general ethical and social impact of machine learn-
ing model robustness, is of great importance. In society, more
and more key infrastructure systems are incorporating models
that must provide reliable information, as their impact could
affect people immensely. By researching noise robustness,

2https://github.com/aszi09/SPL-NoisyMetaLearning

the research aimed at fulfilling the principle of responsibility
by striving for scientific and social relevance.

References
Agarwal, C., D’souza, D., & Hooker, S. (2022, June 21). Es-

timating example difficulty using variance of gradi-
ents. https://doi.org/10.48550/arXiv.2008.11600

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009).
Curriculum learning. 60, 6. https://doi.org/10.1145/
1553374.1553380

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J.,
Leary, C., Maclaurin, D., Necula, G., Paszke, A.,
VanderPlas, J., Wanderman-Milne, S., & Zhang,
Q. (2018). JAX: Composable transformations of
Python+NumPy programs (Version 0.3.13). http: / /
github.com/google/jax

Chen, D., Wu, L., Tang, S., Yun, X., Long, B., & Zhuang, Y.
(2022, June 4). Robust meta-learning with sampling
noise and label noise via eigen-reptile. https://doi.
org/10.48550/arXiv.2206.01944

(DHPC), D. H. P. C. C. (2024). DelftBlue Supercomputer
(Phase 2).

Dubois, Y., Gordon, J., & Foong, A. Y. (2020, September).
Neural process family.

Galjaard, J. (2023, May). Meta-Learning with Label Noise: A
Step Towards Label Few-Shot Meta-Learning with
Label Noise [Master’s thesis]. Delft University of
Technology. http : / / resolver . tudelft . nl / uuid :
65aa4a0c-d2d6-44f1-bda8-6dd093488f40

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende,
D. J., Eslami, S. M. A., & Teh, Y. W. (2018). Neural
processes.

Gong, T., Zhao, Q., Meng, D., & Xu, Z. (2015). Why
curriculum learning & self-paced learning work in
big/noisy data: A theoretical perspective [Publisher:
Big Data & Information Analytics]. Big Data & In-
formation Analytics, 1(1), 111–127. https://doi.org/
10.3934/bdia.2016.1.111

Hospedales, T. M., Antoniou, A., Micaelli, P., & Storkey,
A. J. (2021). Meta-learning in neural networks: A
survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1–1. https://doi.org/10.1109/
TPAMI.2021.3079209

Jha, S., Gong, D., Wang, X., Turner, R. E., & Yao, L. (2023).
The neural process family: Survey, applications and
perspectives.

Jiang, L., Meng, D., Yu, S.-I., Lan, Z., Shan, S., &
Hauptmann, A. (2014). Self-paced learning with
diversity. Retrieved April 24, 2024, from https :
/ / www . semanticscholar . org / paper / Self -
Paced - Learning - with - Diversity - Jiang - Meng /
44606e1209a47d1fcf88b90e306db9e4b84fa2c5

Jiang, L., Meng, D., Zhao, Q., Shan, S., & Hauptmann, A.
(2015). Self-paced curriculum learning. AAAI Con-
ference on Artificial Intelligence. Retrieved April 22,
2024, from https://www.semanticscholar.org/paper/
Self - Paced - Curriculum - Learning - Jiang - Meng /
21d255246cd7ddba24a651fd716950f893ea8eb2

9

https://doi.org/10.48550/arXiv.2008.11600
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.48550/arXiv.2206.01944
https://doi.org/10.48550/arXiv.2206.01944
http://resolver.tudelft.nl/uuid:65aa4a0c-d2d6-44f1-bda8-6dd093488f40
http://resolver.tudelft.nl/uuid:65aa4a0c-d2d6-44f1-bda8-6dd093488f40
https://doi.org/10.3934/bdia.2016.1.111
https://doi.org/10.3934/bdia.2016.1.111
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.1109/TPAMI.2021.3079209
https://www.semanticscholar.org/paper/Self-Paced-Learning-with-Diversity-Jiang-Meng/44606e1209a47d1fcf88b90e306db9e4b84fa2c5
https://www.semanticscholar.org/paper/Self-Paced-Learning-with-Diversity-Jiang-Meng/44606e1209a47d1fcf88b90e306db9e4b84fa2c5
https://www.semanticscholar.org/paper/Self-Paced-Learning-with-Diversity-Jiang-Meng/44606e1209a47d1fcf88b90e306db9e4b84fa2c5
https://www.semanticscholar.org/paper/Self-Paced-Learning-with-Diversity-Jiang-Meng/44606e1209a47d1fcf88b90e306db9e4b84fa2c5
https://www.semanticscholar.org/paper/Self-Paced-Curriculum-Learning-Jiang-Meng/21d255246cd7ddba24a651fd716950f893ea8eb2
https://www.semanticscholar.org/paper/Self-Paced-Curriculum-Learning-Jiang-Meng/21d255246cd7ddba24a651fd716950f893ea8eb2
https://www.semanticscholar.org/paper/Self-Paced-Curriculum-Learning-Jiang-Meng/21d255246cd7ddba24a651fd716950f893ea8eb2

Kumar, M. P., Packer, B., & Koller, D. (2010). Self-
paced learning for latent variable models. Re-
trieved April 24, 2024, from https : / / www .
semanticscholar.org /paper /Self - Paced- Learning-
for - Latent - Variable - Models - Kumar - Packer /
a049555721f17ed79a97fd492c8fc9a3f8f8aa17

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015).
Human-level concept learning through probabilistic
program induction. Science, 350(6266), 1332–1338.
https://doi.org/10.1126/science.aab3050

Lu, J., Jin, S., Liang, J., & Zhang, C. (2021). Robust few-shot
learning for user-provided data. IEEE Transactions
on Neural Networks and Learning Systems, 32(4),
1433–1447. https://doi.org/10.1109/TNNLS.2020.
2984710

Meng, D., & Zhao, Q. (2015). What objective does
self-paced learning indeed optimize? ArXiv. Re-
trieved April 28, 2024, from https : / / www .
semanticscholar.org/paper/What-Objective-Does-
Self - paced - Learning - Indeed - Meng - Zhao /
a37873860f279bfda39add3bc0caf69e2f9ffbff

Nichol, A., Achiam, J., & Schulman, J. (2018). On first-order
meta-learning algorithms.

Shu, J., Xie, Q., Yi, L., Zhao, Q., Zhou, S., Xu, Z., & Meng,
D. (2019, September 26). Meta-weight-net: Learn-
ing an explicit mapping for sample weighting. https:
//doi.org/10.48550/arXiv.1902.07379

Song, H., Kim, M., Park, D., Shin, Y., & Lee, J.-G. (2023).
Learning from noisy labels with deep neural net-
works: A survey. IEEE Transactions on Neural Net-
works and Learning Systems, 34(11), 8135–8153.
https://doi.org/10.1109/TNNLS.2022.3152527

Soviany, P., Ionescu, R. T., Rota, P., & Sebe, N. (2022). Cur-
riculum learning: A survey. International Journal of
Computer Vision, 130(6), 1526–1565. https : / / doi .
org/10.1007/s11263-022-01611-x

Sun, Q., Liu, Y., Chua, T.-S., & Schiele, B. (2019).
Meta-transfer learning for few-shot learning. 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 403–412. https://doi.org/
10.1109/CVPR.2019.00049

Tang, Y.-P., & Huang, S.-J. (2019). Self-paced active learn-
ing: Query the right thing at the right time [ISSN:
2374-3468, 2159-5399 Issue: 01 Journal Abbrevia-
tion: AAAI]. Proceedings of the AAAI Conference
on Artificial Intelligence, 33, 5117–5124. https : / /
doi.org/10.1609/aaai.v33i01.33015117

Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Evci, U.,
Xu, K., Goroshin, R., Gelada, C., Swersky, K., Man-
zagol, P.-A., & Larochelle, H. (2020). Meta-dataset:
A dataset of datasets for learning to learn from few
examples.

Vanschoren, J. (2018). Meta-learning: A survey.
Wang, J. X. (2020). Meta-learning in natural and artificial in-

telligence.
Wang, X., Chen, Y., & Zhu, W. (2021). A survey on curricu-

lum learning. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 1–1. https://doi.org/
10.1109/TPAMI.2021.3069908

Wu, X., Dyer, E., & Neyshabur, B. (2020). When do
curricula work? ArXiv. Retrieved April 22, 2024,
from https : / / www . semanticscholar . org / paper /
9d2c96574019305a8c86cc5b84cb9f616ccf0eb3

Yao, H., Wang, Y., Wei, Y., Zhao, P., Mahdavi, M., Lian, D.,
& Finn, C. (2021). Meta-learning with an adaptive
task scheduler.

Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K.,
& Finn, C. (2020). Gradient surgery for multi-task
learning.

Zhang, J., Song, J., Gao, L., Liu, Y., & Shen, H. T. (2022).
Progressive meta-learning with curriculum [Confer-
ence Name: IEEE Transactions on Circuits and Sys-
tems for Video Technology]. IEEE Transactions on
Circuits and Systems for Video Technology, 32(9),
5916–5930. https://doi.org/10.1109/TCSVT.2022.
3164190

Zhao, Q., Meng, D., Jiang, L., Xie, Q., Xu, Z., & Hauptmann,
A. (2015). Self-paced learning for matrix factoriza-
tion [Number: 1]. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 29(1). https://doi.org/
10.1609/aaai.v29i1.9584

Zhou, Y., Chen, H., Pan, Z., Yan, C., Lin, F., Wang, X., & Zhu,
W. (2022). CurML: A curriculum machine learning
library. Proceedings of the 30th ACM International
Conference on Multimedia, 7359–7363. https://doi.
org/10.1145/3503161.3548549

10

https://www.semanticscholar.org/paper/Self-Paced-Learning-for-Latent-Variable-Models-Kumar-Packer/a049555721f17ed79a97fd492c8fc9a3f8f8aa17
https://www.semanticscholar.org/paper/Self-Paced-Learning-for-Latent-Variable-Models-Kumar-Packer/a049555721f17ed79a97fd492c8fc9a3f8f8aa17
https://www.semanticscholar.org/paper/Self-Paced-Learning-for-Latent-Variable-Models-Kumar-Packer/a049555721f17ed79a97fd492c8fc9a3f8f8aa17
https://www.semanticscholar.org/paper/Self-Paced-Learning-for-Latent-Variable-Models-Kumar-Packer/a049555721f17ed79a97fd492c8fc9a3f8f8aa17
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1109/TNNLS.2020.2984710
https://doi.org/10.1109/TNNLS.2020.2984710
https://www.semanticscholar.org/paper/What-Objective-Does-Self-paced-Learning-Indeed-Meng-Zhao/a37873860f279bfda39add3bc0caf69e2f9ffbff
https://www.semanticscholar.org/paper/What-Objective-Does-Self-paced-Learning-Indeed-Meng-Zhao/a37873860f279bfda39add3bc0caf69e2f9ffbff
https://www.semanticscholar.org/paper/What-Objective-Does-Self-paced-Learning-Indeed-Meng-Zhao/a37873860f279bfda39add3bc0caf69e2f9ffbff
https://www.semanticscholar.org/paper/What-Objective-Does-Self-paced-Learning-Indeed-Meng-Zhao/a37873860f279bfda39add3bc0caf69e2f9ffbff
https://doi.org/10.48550/arXiv.1902.07379
https://doi.org/10.48550/arXiv.1902.07379
https://doi.org/10.1109/TNNLS.2022.3152527
https://doi.org/10.1007/s11263-022-01611-x
https://doi.org/10.1007/s11263-022-01611-x
https://doi.org/10.1109/CVPR.2019.00049
https://doi.org/10.1109/CVPR.2019.00049
https://doi.org/10.1609/aaai.v33i01.33015117
https://doi.org/10.1609/aaai.v33i01.33015117
https://doi.org/10.1109/TPAMI.2021.3069908
https://doi.org/10.1109/TPAMI.2021.3069908
https://www.semanticscholar.org/paper/9d2c96574019305a8c86cc5b84cb9f616ccf0eb3
https://www.semanticscholar.org/paper/9d2c96574019305a8c86cc5b84cb9f616ccf0eb3
https://doi.org/10.1109/TCSVT.2022.3164190
https://doi.org/10.1109/TCSVT.2022.3164190
https://doi.org/10.1609/aaai.v29i1.9584
https://doi.org/10.1609/aaai.v29i1.9584
https://doi.org/10.1145/3503161.3548549
https://doi.org/10.1145/3503161.3548549

A Further details on the experimental setup

A.1 Explanation of functions used for data
generation

The Fourier series function that is used in the study to cre-
ate different sinusoidal regression task distributions allows
changing the nature of the regression tasks using the num-
ber of sine components, amplitude , period and period range.
Subsequent explanation of each parameter follows, to im-
prove clarity for the reader in understanding the task distri-
butions used in the study.

Parameter n allows changing the number of sine compo-
nents the resulting fourier series will have, with the compo-
nents being n-1, so n=2 will lead to normal sine functions.

Parameter amplitude, determines the uniform distribution
of possible amplitude values per sine component. So the re-
sulting amplitude value for a given sine component ai is de-
fined as : ai = a− 1, a ∼ U(amplitude ∗ 2)

Parameters period, period range define the distribution
of periods the individual sine components can have. The
period is a scalar supplied parameter. The period range a
shift in the supplied period parameter, period shift = ps −
period range, ps ∼ U(period range ∗ 2). Then for each
sine component the period is pi = period− period shift

Furthermore shift is sampled shift ∼ U(π) , affecting
shift of x values.

Another function that is used to make the regression tasks
more complex is Shift, which determines further possible x
and y value shifts of the sampled regression tasks. Both allow
a base parameter for raw scalar shifts x shift, y shift or
parameters x shift range, y shift range that determine
uniform distributions to sample x shift, y shift from.
Then the final x shift, y shift values of a regression task
is given by x shift = x s − x shift range, x s ∼
U(x shift range ∗ 2) and y shift = y s −
y shift range, y s ∼ U(y shift range∗2) respectively.

• The training data distribution (in task distribution) has
the following insantiation of Fourier: Fourier(n =
2, amplitude = 0.5, period = 1.0, period range =
0.2).

• The out of task distribution for the intra
training evaluations has the following in-
santiation of Fourier: Shift(Fourier(n =
2, amplitude = 1, period = 1, period range =
0.5), x shift = 0.0, x shift range = 1.5, y shift =
0.0, y shift range = 3.0)

A.2 More detail on training params

Training is initialized with the Adam optimizer from the Op-
tax (Bradbury et al., 2018) library, with learning rate =
0.001 and weight decay = 0.000001. Furthermore clip =
0.1 and clip by global norm = 1.0 has been used for all
models trained.

B Graphs of Out of Task performances based
on values in Table 2.

C Varied out of task evaluations across
different noise setups

D In task performances table for each noise
setup

E RMSE in task distribution performance
F Use of LLM
LLM has been used for occasional sentence rephrasing, con-
ciseness, grammar checking and the tikz created image in
Figure 1.

11

Figure 11: Post Training RMSE and ECE performance metrics for differing out of task distributions, showing mean of 10 runs and 95% CI

12

Figure 12: Post Training RMSE and ECE performance metrics for differing out of task distributions, showing mean of 10 runs and 95% CI

13

Figure 13: Post Training RMSE and ECE performance metrics for differing out of task distributions, showing mean of 10 runs and 95% CI.

Figure 14: Post training in task distribution RMSE performances in different noisy training setups, and with increasing level of added noise,
averaged over 10 runs, fill showing 95% CI. Meaningful RMSE differences for the in task generalization performance cannot be discerned,
when it comes to noise robustness.

14

Param Type n amp period

Param Value 3 4 1.0 2.0 (1.0,0.5) (1.5,0.5)
Noise setup Noise level Model Metric

Noise setup 0.6-0.4 No Noise base rmse 0.62 (0.62, 0.63) 0.75 (0.74, 0.76) 0.16 (0.15, 0.17) 1.09 (1.06, 1.12) 0.27 (0.27, 0.28) 0.36 (0.35, 0.38)
ece 10.08 (9.34, 10.82) 12.46 (11.46, 13.46) -0.23 (-0.34, -0.12) 19.23 (15.59, 22.87) 1.46 (1.30, 1.62) 3.32 (2.83, 3.81)

spl rmse 0.59 (0.58, 0.59) 0.71 (0.70, 0.71) 0.17 (0.17, 0.18) 1.07 (1.04, 1.10) 0.28 (0.27, 0.28) 0.32 (0.32, 0.32)
ece 2.44 (2.21, 2.67) 2.98 (2.69, 3.27) -0.32 (-0.36, -0.27) 9.94 (8.01, 11.88) 0.28 (0.22, 0.33) 0.62 (0.56, 0.69)

0.2 Noise base rmse 0.68 (0.68, 0.69) 0.80 (0.79, 0.81) 0.28 (0.27, 0.28) 1.13 (1.10, 1.16) 0.38 (0.37, 0.39) 0.46 (0.45, 0.47)
ece 11.19 (10.38, 11.99) 13.28 (12.22, 14.35) 1.30 (1.16, 1.44) 19.86 (16.17, 23.55) 3.03 (2.79, 3.27) 4.97 (4.40, 5.55)

spl rmse 0.64 (0.64, 0.65) 0.75 (0.74, 0.76) 0.28 (0.27, 0.28) 1.11 (1.08, 1.14) 0.37 (0.37, 0.38) 0.41 (0.40, 0.41)
ece 2.76 (2.51, 3.02) 3.21 (2.90, 3.53) 0.25 (0.21, 0.30) 10.20 (8.27, 12.13) 0.87 (0.79, 0.95) 1.19 (1.11, 1.26)

0.4 Noise base rmse 0.82 (0.81, 0.83) 0.91 (0.91, 0.92) 0.48 (0.47, 0.48) 1.23 (1.19, 1.26) 0.57 (0.56, 0.57) 0.64 (0.63, 0.65)
ece 14.09 (13.04, 15.14) 15.21 (13.93, 16.49) 5.45 (5.08, 5.81) 21.77 (17.92, 25.61) 7.10 (6.61, 7.60) 9.18 (8.32, 10.03)

spl rmse 0.77 (0.76, 0.77) 0.85 (0.84, 0.86) 0.46 (0.46, 0.46) 1.19 (1.17, 1.22) 0.54 (0.54, 0.55) 0.57 (0.56, 0.57)
ece 3.54 (3.22, 3.86) 3.82 (3.44, 4.20) 1.44 (1.34, 1.55) 10.93 (8.95, 12.92) 1.95 (1.82, 2.09) 2.25 (2.13, 2.38)

Noise setup 0.3-0.7 No Noise base rmse 0.63 (0.62, 0.64) 0.76 (0.75, 0.77) 0.17 (0.16, 0.18) 1.08 (1.05, 1.12) 0.28 (0.28, 0.29) 0.38 (0.37, 0.40)
ece 12.74 (11.45, 14.03) 15.78 (14.13, 17.42) -0.01 (-0.16, 0.14) 22.14 (17.41, 26.87) 2.01 (1.73, 2.28) 5.00 (4.16, 5.83)

spl rmse 0.59 (0.59, 0.59) 0.71 (0.70, 0.71) 0.18 (0.17, 0.19) 1.06 (1.05, 1.08) 0.28 (0.28, 0.29) 0.33 (0.32, 0.34)
ece 2.67 (2.36, 2.98) 2.98 (2.60, 3.35) -0.33 (-0.40, -0.26) 21.71 (0.38, 43.04) 0.40 (0.31, 0.50) 0.89 (0.75, 1.03)

0.2 Noise base rmse 0.69 (0.69, 0.70) 0.81 (0.80, 0.81) 0.28 (0.27, 0.29) 1.13 (1.09, 1.16) 0.39 (0.38, 0.39) 0.48 (0.46, 0.49)
ece 14.23 (12.81, 15.66) 16.73 (14.98, 18.48) 2.02 (1.74, 2.30) 22.82 (18.12, 27.51) 4.05 (3.67, 4.44) 7.17 (6.18, 8.17)

spl rmse 0.64 (0.64, 0.65) 0.75 (0.74, 0.75) 0.28 (0.27, 0.29) 1.10 (1.09, 1.12) 0.38 (0.38, 0.38) 0.42 (0.41, 0.43)
ece 3.03 (2.70, 3.35) 3.19 (2.79, 3.58) 0.46 (0.33, 0.59) 21.76 (0.97, 42.56) 1.16 (1.00, 1.32) 1.56 (1.35, 1.76)

0.4 Noise base rmse 0.83 (0.83, 0.84) 0.92 (0.91, 0.93) 0.48 (0.47, 0.49) 1.22 (1.19, 1.25) 0.58 (0.57, 0.58) 0.66 (0.64, 0.68)
ece 17.72 (15.87, 19.56) 18.86 (16.77, 20.94) 7.33 (6.64, 8.02) 25.16 (20.29, 30.03) 9.30 (8.49, 10.12) 12.68 (11.19, 14.17)

spl rmse 0.77 (0.76, 0.77) 0.85 (0.84, 0.85) 0.46 (0.45, 0.47) 1.19 (1.17, 1.20) 0.55 (0.54, 0.55) 0.58 (0.57, 0.58)
ece 3.78 (3.37, 4.19) 3.80 (3.32, 4.28) 1.75 (1.58, 1.91) 22.64 (1.80, 43.47) 2.26 (2.10, 2.42) 2.59 (2.37, 2.80)

Noise setup 0-1 No Noise base rmse 0.63 (0.62, 0.64) 0.76 (0.75, 0.76) 0.18 (0.17, 0.18) 1.13 (1.11, 1.15) 0.29 (0.28, 0.30) 0.39 (0.38, 0.40)
ece 14.50 (12.82, 16.17) 18.17 (16.07, 20.28) 0.36 (0.09, 0.63) 25.19 (18.59, 31.79) 2.52 (2.05, 2.99) 6.20 (5.09, 7.32)

spl rmse 0.62 (0.61, 0.62) 0.75 (0.74, 0.76) 0.16 (0.15, 0.17) 1.11 (1.08, 1.13) 0.27 (0.26, 0.27) 0.34 (0.33, 0.34)
ece 22.17 (17.04, 27.30) 29.45 (22.32, 36.58) 0.45 (0.22, 0.68) 26.83 (18.73, 34.93) 3.63 (2.72, 4.54) 5.98 (4.68, 7.27)

0.2 Noise base rmse 0.69 (0.69, 0.70) 0.80 (0.79, 0.81) 0.29 (0.28, 0.29) 1.17 (1.14, 1.19) 0.40 (0.39, 0.41) 0.48 (0.47, 0.50)
ece 16.55 (14.67, 18.43) 19.00 (16.72, 21.27) 3.53 (3.11, 3.95) 26.30 (19.50, 33.11) 6.00 (5.34, 6.67) 9.88 (8.60, 11.16)

spl rmse 0.68 (0.67, 0.69) 0.79 (0.78, 0.80) 0.27 (0.27, 0.28) 1.15 (1.12, 1.17) 0.37 (0.37, 0.38) 0.43 (0.42, 0.44)
ece 25.27 (19.39, 31.16) 30.87 (23.40, 38.35) 4.89 (3.73, 6.04) 28.31 (19.74, 36.87) 8.79 (6.63, 10.94) 11.52 (8.87, 14.16)

0.4 Noise base rmse 0.83 (0.82, 0.84) 0.91 (0.90, 0.92) 0.48 (0.48, 0.49) 1.26 (1.24, 1.28) 0.59 (0.57, 0.60) 0.66 (0.65, 0.68)
ece 19.86 (17.61, 22.12) 20.33 (17.78, 22.88) 9.80 (8.91, 10.68) 28.85 (21.88, 35.81) 12.01 (10.87, 13.15) 15.87 (14.17, 17.56)

spl rmse 0.81 (0.80, 0.82) 0.90 (0.89, 0.91) 0.47 (0.46, 0.47) 1.24 (1.21, 1.26) 0.56 (0.55, 0.57) 0.61 (0.60, 0.62)
ece 30.59 (23.32, 37.86) 33.14 (25.02, 41.25) 14.16 (10.74, 17.59) 31.93 (22.41, 41.45) 18.32 (13.80, 22.84) 21.59 (16.35, 26.82)

Table 2: Table of evaluation means per setup mentioned in Table 1. For each noisy training setup and level of noise. The values in the
parenthesis show the 95% confidence intervals lower and upper bounds. Aggregations are over 10 runs.

15

Table 3: Table of In task distribution based evaluations for ECE and RMSE for both Base and SPL based models. For each noisy training
setup and level of noise. The values in the parenthesis show the 95% confidence intervals lower and upper bounds. Aggregations are over 10
runs.

Noise setup Noise level Model Metric Mean (95% CI)

Noise setup 0.6-0.4 0.0 base rmse 0.22 (0.21, 0.22)
ece -0.07 (-0.13, -0.02)

spl rmse 0.26 (0.25, 0.27)
ece 0.08 (0.04, 0.12)

0.2 base rmse 0.26 (0.26, 0.26)
ece 0.64 (0.59, 0.68)

spl rmse 0.28 (0.27, 0.29)
ece 0.21 (0.18, 0.24)

0.3 base rmse 0.35 (0.35, 0.35)
ece 2.01 (1.88, 2.13)

spl rmse 0.36 (0.36, 0.37)
ece 0.73 (0.68, 0.77)

0.4 base rmse 0.45 (0.45, 0.45)
ece 3.83 (3.59, 4.08)

spl rmse 0.46 (0.45, 0.46)
ece 1.40 (1.32, 1.48)

0.5 base rmse 0.56 (0.55, 0.56)
ece 6.01 (5.61, 6.40)

spl rmse 0.55 (0.55, 0.56)
ece 2.18 (2.05, 2.32)

0.6 base rmse 0.67 (0.66, 0.67)
ece 8.39 (7.82, 8.95)

spl rmse 0.65 (0.65, 0.66)
ece 3.04 (2.85, 3.24)

Noise setup 0.3-0.7 0.0 base rmse 0.22 (0.21, 0.23)
ece -0.05 (-0.12, 0.03)

spl rmse 0.27 (0.26, 0.28)
ece 0.16 (0.10, 0.22)

0.2 base rmse 0.26 (0.26, 0.27)
ece 0.88 (0.80, 0.97)

spl rmse 0.29 (0.28, 0.29)
ece 0.37 (0.32, 0.43)

0.3 base rmse 0.35 (0.35, 0.36)
ece 2.53 (2.33, 2.72)

spl rmse 0.37 (0.36, 0.37)
ece 1.04 (0.96, 1.13)

0.4 base rmse 0.45 (0.45, 0.46)
ece 4.68 (4.33, 5.04)

spl rmse 0.46 (0.45, 0.46)
ece 1.90 (1.77, 2.02)

0.5 base rmse 0.56 (0.55, 0.56)
ece 7.19 (6.63, 7.75)

spl rmse 0.56 (0.55, 0.56)
ece 2.87 (2.68, 3.05)

0.6 base rmse 0.67 (0.66, 0.67)
ece 9.86 (9.04, 10.68)

spl rmse 0.66 (0.65, 0.66)
ece 3.90 (3.66, 4.14)

Noise setup 0-1 0.0 base rmse 0.25 (0.24, 0.26)
ece 0.19 (0.09, 0.29)

spl rmse 0.22 (0.20, 0.24)
ece 0.09 (-0.06, 0.25)

0.2 base rmse 0.27 (0.27, 0.28)
ece 1.13 (0.98, 1.27)

spl rmse 0.26 (0.25, 0.27)
ece 1.43 (1.03, 1.83)

0.3 base rmse 0.36 (0.36, 0.36)
ece 2.82 (2.56, 3.08)

spl rmse 0.35 (0.34, 0.36)
ece 3.67 (2.78, 4.57)

0.4 base rmse 0.46 (0.45, 0.46)
ece 5.01 (4.59, 5.43)

spl rmse 0.45 (0.44, 0.45)
ece 6.60 (5.04, 8.16)

0.5 base rmse 0.56 (0.56, 0.56)
ece 7.53 (6.93, 8.13)

spl rmse 0.55 (0.55, 0.56)
ece 10.00 (7.66, 12.35)

0.6 base rmse 0.67 (0.66, 0.67)
ece 10.18 (9.37, 10.99)

spl rmse 0.66 (0.65, 0.66)
ece 13.59 (10.41, 16.76) 16

	Introduction
	Background
	Meta-Learning
	Neural Process model
	Curriculum and Self-Paced Learning

	Experimental Setup
	Results and Discussion
	Limitations

	Conclusions and Future Work
	Responsible Research
	Further details on the experimental setup
	Explanation of functions used for data generation
	More detail on training params

	Graphs of Out of Task performances based on values in Table 2.
	Varied out of task evaluations across different noise setups
	In task performances table for each noise setup
	RMSE in task distribution performance
	Use of LLM

