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Summary
During the last decades, the focus of public transport reliability measures has been shifting from the
operators’ perspective to the passengers’ perspective. During this shift, the original vehicle punctuality
got passenger punctuality as a counterpart from passengers’ perspective. The passenger punctuality
should fit better to the experience of the passenger. In the Netherlands, passenger punctuality is
measured based on smart card data. These data allow to determine the delay of each passenger
under normal conditions. During disruptions, however, passengers behave in ways that can not be
automatically detected in the current calculation method. For example, a passenger that needs to
take a bus, due to a disruption, to reach its final destination may appear in the data as punctual. This
is because the train part of its journey could be made in time. However, the train part was not the
complete planned journey in this case. It is also possible that a passenger postpones or cancels its trip
due to a disruption. Such a passenger will not appear in the data as unpunctual, while it did experience
hindrance from the disruption. It is currently unknown what the impact is of these scenarios on the
passenger punctuality metric. Therefore, the objective of this research sounds:

Objective
Assess the unkown part of the impact of disruptions on passenger punctuality and evaluate
the current calculation method.

This is a relevant objective from both a practical and a scientific perspective. Inside the business,
passenger punctuality is used as a Key Performance Indicator by both the Dutch main railway operator
NS and infrastructure manager ProRail. As KPI, the passenger punctuality has on the one hand a
supervision function from the Dutch government, which grants the concession for the rail network. On
the other hand, it has a steering function on all planning levels in both organizations in order to improve
service reliability. From a scientific perspective, there is little knowledge about the impact of disruptions
on service reliability, based on empirical passenger data. By filling this gap, this research contributes to
the field of public transport service reliability, enabling to test disruption mitigation measures in real-life.
In order to achieve the research objective, the report follows a number of subquestions, divided in three
categories: state of practice and research, method and application.

State of practice and research
The state of practice describes passenger punctuality in its function as KPI of NS and ProRail. The
definition of the KPI is based on the philosophy that the operator promises possible journeys to the
passenger. If the journey can not be made as planned, it is considered as unpunctual. In the definition
of the KPI, this rule applies from an arrival delay of 5 minutes or 15 minutes (supervision thresholds).
The percentage of passengers within a time interval that made a punctual journey is called the passen-
ger punctuality. The KPI has two functions. In the first place, the government uses it as supervision
instrument. The government grants concessions to use and maintain the infrastructure on the condition
that this is done in an appropriate way. If the KPI norms are not accomplished, both organizations pay
a fine. In the second place, the KPI can be used to indicate weak spots and to steer improvements.

The state of research has been discussed by reviewing available definitions and methods for mea-
suring passenger service reliability. The current method used by NS and ProRail, called passenger
punctuality ’17, is built-up in several modules. These modules process check-in/check-out and vehi-
cle location data to passenger delays. Regarding disruptions, this method probably fails in measuring
detouring, postponing and canceling passengers in an accurate way. The previous method by NS
and ProRail, called passenger punctuality ’15, is based on planned and realized passenger arrivals
and transfers. The number of planned arrivals and transfers is deducted from passenger counts and
estimated transfer rates. Realized arrivals and transfers are derived from vehicle location data. The
punctuality is calculated based on data from 35 measuring stations. Since this method is based on
demand prognoses, canceling and postponing passengers are also taken into account in case of dis-
ruptions. The Danish railways have used several generations of passenger delay models in the past.
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The 1.5 generation models assign the expected passenger demand to the realized timetable. It is as-
sumed that passengers arrive to the station at their planned departure time. Regarding disruptions,
assigning expected demand to the realized timetable allows to assess for postponing and canceling
passengers. Expecting passengers to arrive at the station at their planned departure time seems to be
a reasonable assumption. For the London Underground, a method has been developed that calculates
the Reliability Buffer Time: the buffer time a passenger should add to the planned travel time in order
to obtain a reliable forecast of the real travel time. Realizing that this measure is strongly affected by
incidents, they also developed an alternative measure that indicates the impact of disruptions by cal-
culating the RBT with exception of disrupted days. This method is based on AFC data and, although
an attempt is made to cope with the impact of disruptions, the same problems exist as in the passen-
ger punctuality ’17 method. All in all, there is no ’best’ way of measuring passenger service reliability.
Re-assigning the expected demand in undisrupted conditions to the realized timetable seems to be a
good method to capture detouring, postponing and canceling passengers.

Method
The Journey Pattern Reconstruction (JPR) method has been developed in order to cope with the lim-
itations of the passenger punctuality ’17 method concerning detoured, postponed and canceled trips.
This method makes a reconstruction of the observed journey pattern during a disruption, based on the
expected demand and the realized timetable. Figure 1 displays the approach that is followed to get to
this reconstruction. It starts with selecting a disruption case that is expected to have a considerable im-
pact on passenger punctuality that is not yet measured. Then, the demand is determined for all possible
journeys in disrupted and undisrupted conditions, based on the punctuality data. Using the disruption
data in combination with the timetable, it can be determined if a journey is hindered by the disruption or
not. If a journey is hindered, three alternative journey advises are generated that are allowed to use any
(transit) mode. Based on these alternatives and the demand in disrupted and undisrupted conditions,
a reconstruction is made of the observed journey pattern during and after the disruption. This is done
by assigning the expected passenger demand to the generated alternatives including the alternative to
cancel the trip. The assignment process is carried out by formulating a linear program that minimizes
the absolute difference between the journey pattern reconstruction and the observed journey pattern.
In the reconstruction, it is exactly known what alternative the expected passengers chose, so that the
number of detouring, postponing and canceling passengers can be determined. Based on these num-
bers, the passenger punctuality can be recalculated. Besides, journey patterns during disruptions and
final delays can be studied.

Figure 1: Impact assessment approach
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Application
Six disruption cases have been selected in a strategic way, so that a maximum amount of information
could be obtained. These cases vary in the part of the day they occurred and the number of detour
possibilities in the NS network. One additional case was studied that concerns an exceptional severe
disruption. Table 1 gives a summary of the results. Figure 2 shows the resulting journey patterns after
applying the JPR method.

Table 1: Summary of the case studies results

Label
Morning peak,
medium detour
possibilities

During the day Evening peak Few detour
possibilities

Much detour
possibilities

Exceptional
large disruption

Total hindered
passengers 16298 22054 10864 5112 19354 47448

Total passengers
detouring 3417 7218 5206 1268 8755 5686

Total passengers
postponing 1541 2070 352 166 243 1504

Total passengers
canceling/detouring
only by other modes

10797 11425 4909 3522 10037 37821

Passenger
punctuality ’17 92.91% 92.47% 88.34% 94.83% 93.09% 91.93%

Recalculated
passenger punctuality 91.69% 90.71% 87.68% 94.40% 91.11% 86.71%

Delta passenger
punctuality -1.22% -1.76% -0.67% -0.42% -1.98% -4.68%

It appears that, during the morning peak, more passengers cancel their trip than during the day and
the evening peak. This can be explained by the fact that people may choose to work at home if there
is a large disruption in the morning peak. When a disruption occurs during the evening peak, people
want to get home from work, which makes canceling a much less attractive option.

When varying in the availability of detour possibilities, it appears that if there are few detour possi-
bilities in the NS network, passengers travel by bus only or traverse the disrupted trip leg by another
mode. Therefore, the detour rate in cases with few detour possibilities in the NS network is not nec-
essarily low. The opposite does appear to be true: in cases with lots of detour possibilities in the NS
network, the detour rate is higher than in the other cases.

During an exceptional severe disruption, canceling and detouring using only other modes appear
to be the most used alternatives. Due to the complete shut-down of the rail network in the area, it is
even hardly possible to take the train, so this is a logical result.

The unknown part of the impact of disruptions on passenger punctuality appears to range from
lower than 0.5% to higher than 4.5%. This impact roughly corresponds with the number of passengers
that are hindered by the disruption. This is a logical finding, because each hindered passenger has
by definition one negative contribution to the population of the recalculated KPI, whether they detour,
postpone or cancel their trip.

Conclusions
The key finding of this thesis is that disruptions probably have a considerable impact on passenger
punctuality that is not captured in the current calculation method. Assuming that the KPI plays an im-
portant role in steering the organizations involved, it is advised to explore ways to improve its accuracy.
At some points, the designed JPR method is still limited. One of the main limitations is that there is
currently no accurate forecast of passenger demand available. Developing a model that predicts the
demand would not only improve the JPR method, but can also be used in other studies. Another lim-
itation lies the fact that the journey advise generator only returns three alternatives per request. Not
always is there a postponing alternative or there is only one. This might be the reason why postponing
alternatives appear to be relatively unpopular. Adding postponing alternatives to the alternatives sets,
may improve the accuracy of the method. A final suggestion for future research is to take a better look
into the available definitions and methods for determining passenger services reliability in order to find
out which fits best to the experience of the customer.
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(a) Journey pattern distributions with varying time of the day

(b) Journey pattern distributions with varying amount of detour possibilities

(c) Journey pattern distribution in during an exceptional large disruption

Figure 2: Journey pattern distributions for the selected case studies
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1
Introduction

This chapter introduces the research topic and defines the problem in section 1.1. In section 1.2, the
relevance of the subject is explained from both a scientific and a practical perspective. Section 1.3
describes the research approach and the report structure. Eventually, section 1.4 walks through the
report, indicating what is described in each chapter.

1.1. Problem definition
This section defines the problem and estimates the size of it. In the last subsection, the objective is
formulated that covers the problem and the scope of the project is defined.

1.1.1. Research topic
Punctuality is one of themost important indicators for public transport service performance and reliability
[15]. It can be divided into two types: vehicle and passenger punctuality. Previously, most public
transport operators in several networks only measured vehicle punctuality based on vehicle delays.
However, vehicle punctuality does not directly reflect passenger punctuality; small vehicle delays can
imply many failed transfers leading to large passenger delays. Therefore, during the last decade, the
focus has been shifting from vehicle punctuality to passenger punctuality in order to better reflect the
experience of the passenger [18]. Passenger punctuality can be determined in different ways (see
chapter 2). The current calculation method by NS1 and ProRail2 in the Netherlands is based on smart
card data containing time and location of check-in and check-out in combination with train location data.
Under regular conditions, this is enough information to calculate the delay of a trip. During disruptions
however, it is much more challenging to make an adequate calculation of the passenger punctuality.

1.1.2. Problem introduction
Passenger punctuality is defined by NS and ProRail as the percentage of passengers that reach their
final destination within 5 and 15 minutes from the planned arrival time. This measure is used as a KPI3
in both these companies. It is suspected that the impact of (large) disruptions is not sufficiently and
adequately accounted for in the current indicator definition. This is because there are several cases in
which it is hard to determine if a passenger reached its destination in time. When a passenger takes the
planned route and reaches its destination with or without a delay, the current method is able to calculate
the delay of this passenger. It can also happen that a passenger needs to take a detour, possibly using
replacement modes. In this case, the passenger has to check-in or -out at another station than planned.
The journey by train may then appear punctual in the data, but may be not in reality, since the journey
is not completely captured in the data. Other possibilities are that passengers postpone or cancel their
trip due to the disruption. These passengers either do not appear in the data at all or with a punctual
journey, although they did experience hindrance. The described scenarios probably lead to a bias in

1Nederlandse Spoorwegen: Dutch railway operator. See appendix A for more information.
2Dutch rail infrastructure manager. See appendix A for more information.
3Key Performance Indicator (KPI): a variable that is used to analyze the performance of an organization, brand or product.
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2 1. Introduction

the calculation of the KPI. It is therefore desired to gain better insight into the impact of disruptions on
travel behavior as well as on the passenger punctuality as KPI.

1.1.3. Size of the problem
A rough estimation of the impact of disruptions on passenger punctuality is made by Wolters [27]. This
is done by taking an example case in which a certain track is disrupted. The number of check-outs at
the stations along this track under disturbed conditions is compared to the mean number of check-outs
on the 15 workdays around this day. For 3 different disruptions, the impact is estimated to be 0.05 to
0.12 percentage point on the passenger punctuality of that particular day. It is expected that the true
impact is even larger than estimated here since only executed check-outs are taken into account, while
missed or delayed check-ins are also part of the passenger punctuality. There are also passengers
postponing or canceling their trip, which are not taken into account. Furthermore, the impact probably
also depends on other factors like the duration of the disruption and the length of the disturbed track.
In the past 12 months, 650 high-impact infrastructure failures took place [11]. If we assume that, on
average, 2 disruptions occur every day, the yearly passenger punctuality is overestimated by 0.1 to
0.24 percentage point. This seems to be a negligible difference, but in the passenger punctuality KPI,
small differences matter. For the previous 12 months, the passenger punctuality was 92.5%, while the
norm value is 90.4% [11]. The difference between these values is only 2.1%, so a bias of 0.1 to 0.24
percentage point matters.

1.1.4. Objective and scope
As stated in the problem definition, the main research problem is that there is a part of the impact of
disruptions on passenger behavior and punctuality is currently unknown. The quality of the current
KPI calculation method partly depends on this impact. The objective can therefore be formulated as
follows.

Objective
Assess the unknown part of the impact of disruptions on passenger punctuality and evaluate
the current calculation method.

In the first place, passenger delays due to disruptions will be analyzed. Then, an estimation will be
made of the impact of disruptions on the KPI value in order to gain better insight into the KPI. Based
on the total impact, the quality of the current KPI calculation method can be evaluated. Given the
knowledge gained, it must be assessed if the current calculation method is still reasonable.

The result will consist in the first place of a calculation and analysis of passenger journey pattern and
factors that affect passenger behavior during disruptions. In the second place, the impact of disruptions
on the passenger punctuality KPI will be calculated and analyzed. Based on these results, the quality
of the KPI will be evaluated. In the end, this will lead to a number of general conclusions regarding
passenger behavior during disruptions and the impact of disruptions on passenger punctuality during a
longer period. Besides, recommendations will be made regarding the current KPI calculation method.

The issue of adapting the calculation method of the KPI lies beyond the scope of this project. Only
developing a new algorithm or changing the existing algorithm would require a whole new project, which
clearly cannot be executed within the time boundaries of the current project. However, the methods
used to find the impact of disruptions on passenger punctuality may form the basis for such a plan.

Another question that is not explicitly asked in this thesis is the question if the passenger punctuality
KPI sufficiently reflects the perception of the passenger. This is regarded as a more behavioral ques-
tion that is not directly related to the impact of disruptions. Moreover, it is debatable if the KPI would
sufficiently reflect the passengers’ perception, even if it would perfectly represent reality. It is common
property that human perception deviates from reality as well. In addition, there is already a dedicated
KPI for measuring client satisfaction.
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1.2. Relevance
The proposed research is relevant in two ways. First, it will make a contribution to the scientific field
of research into service reliability of public transport systems. This section will present the state of
research at this point. With this analysis, it becomes clear why the proposed topic is of scientific
value. Furthermore, the project will give better insight into the passenger punctuality KPI for the railway
operator and infrastructure manager. The second part of this section introduces the KPI from their point
of view, indicating its function and the reasoning behind it.

1.2.1. State of research
Service reliability has always been a hot item in public transport systems research. The importance
of this subject has been studied by Brons and Rietveld [12], Peek and van Hagen [21]. They find
that service reliability is of large importance to the customer. Metrics have been developed in order to
quantify service reliability, among which are trip time variability, punctuality and regularity [23, 26]. As
stated in chapter 1.1, punctuality is one of the most important of these metrics.

During the last decade, the focus of service reliability research has shifted from the supply-side to
the demand-side [20]. This trend has been catalyzed by emerging technologies for Automatic Fare
Collection (AFC). New passenger-oriented metrics for service reliability and in particular punctuality,
have been developed by Trépanier et al. [24]. For a full overview of the possibilities for analysis using
smart card data, see the reviews by Ghofrani et al. [17], Pelletier et al. [22].

Metrics have become more passenger-oriented in order to fit better to the perception of the cus-
tomer. Based on smart card data, the difference between planned travel time and realized travel time
can be calculated very accurately. However, as already introduced in section 1.1, there are some cases
in which this is not yet possible, in particular during disruptions. Therefore, it is currently unknown what
the impact is of disruptions on passenger punctuality.

Methods for determination of the impact of disruptions have been developed in the context of valida-
tion of control measures, see for example Cats and Jenelius [13], Ghaemi et al. [16], Zhu and Goverde
[29]. However, these methods are designed for model-based settings, but not for working with real
data. If a method can be developed for calculation of passenger punctuality during both regular and
disrupted conditions, it will be possible to test these measures in real-life.

A valuable contribution to this area is made by Cats et al. [14]. Here, link exposure and vulnerability
are combined into a network risk analysis. Vulnerability is defined as welfare loss due to a disruption
and calculated through assigning passengers to the disrupted network. For this research, empirical
disruption data have been used in order to find the probability of a disruption to occur. In the present
study, empirical passenger data is also taken into account.

Yap et al. [28] developed a transfer inference algorithm that holds under both regular and disturbed
circumstances. This research took place in an urban public transport network with passengers checking
in and out on-board. In this situation, the challenge was to infer realistic transfers between vehicles,
since a fixed threshold obviously does not work in disturbed conditions. This research also reveals that
different configurations of AFC systems yield different problems in processing the gathered data.

Given the state of research, there is currently no method to assess the impact of disruptions on
service reliability based on smart card data. Developing such a method will open up opportunities for
studying the effects of disruptions and measures to mitigate them.

1.2.2. Passenger punctuality in practice
Passenger punctuality is used by public transport operators to quantify service reliability, which is an
important performance indicator. Passenger punctuality can be analyzed per line or per station in
order to identify weak spots in the network. Doing so, valuable information is obtained about locations
that need measures to improve performance, so that the performance of the whole network can be
improved. Because of these features, passenger punctuality is an important steering instrument at all
levels in the organization of public transport agencies. Finding a method for assessing the impact of
disruptions will help in short-term to real-time planning of mitigation measures. But also at the more
strategic level, it is helpful to know where disruptions have the largest impact on network performance.
In short, assessing the impact of disruptions on passenger punctuality will be of value to all planning
levels in public transport.
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1.2.3. Conclusion
Based on the information in this section, it can be concluded that the proposed research into the impact
of disruptions on passenger punctuality has sufficient scientific and practical relevance. The scientific
gap lies in the lack of insight into the impact of disruptions on service reliability. Filling this gap will
make it possible to evaluate disruption mitigation measures in real-life situations. This research will
contribute to the value of the KPI by providing better insight into the impact of disruptions, which will
support planning from strategic to real-time level.

1.3. Approach
In section 1.1, the objective is formulated as follows: ”assess the unknown part of the impact of disrup-
tions on passenger delay and punctuality and evaluate the current calculation method”. This section
drafts the questions that will lead to the achievement of the objective. For each question, a brief expla-
nation is added on how it is answered. At the same time, the questions are divided into chapters to set
up the structure of the report.

Research questions

1. State of practice and research

• How is the passenger punctuality KPI currently defined, what is the reasoning be-
hind it and what function does it fulfill?
Literature research and talks with experts. At the methodological side, the pas-
senger punctuality is well documented. However, when it comes to the philos-
ophy behind it, there may come more information available through talks with
experts. These talks take place in an informal setting.

• How do the available methods for passenger punctuality take disruptions into ac-
count?
Literature research, assessment based on the four scenarios as identified in sec-
tion 1.1. Methods may be found in literature, but also in documentation by public
transport agencies. Both these fields should be checked for relevant information.

2. Method

• How can passenger hindrance be determined during disruptions, concerning de-
toured, postponed and cancelled trips?
A new method must be designed to assess for passenger delay and punctuality
during disruptions. Information from the available methods may serve as input
for this step.

3. Application

• What is the impact of disruptions on passenger punctuality?
The designed method is used to analyze a disruption case and then to assess the
impact of a larger set of disruptions on passenger punctuality.

1.4. Reading guide
The next chapters will follow the structure that is introduced in the research questions in section 1.3.
Chapter 2 describes the state of practice and research, answering the first two subquestions. Pas-
senger punctuality is discussed in its function as KPI in the Dutch railway sector as well as a general
measure for service reliability. Several methods will be reviewed with emphasis on how (large) dis-
ruptions are handled. Inspired by the available methods, a new method is developed in chapter 3 that
reconstructs the observed journey pattern in disrupted situations in order to determine the impact of the
disruption on the passenger punctuality of that day. This method is applied to several sets of disruption
cases in chapter 4. The results are analyzed in order to determine the influence of several factors on
passenger behavior during disruptions. Chapter 5 recalls the key findings of the research and derives
the policy implications. The limitations of this research are identified, which lead to directions for future
research.



2
State of practice and research

In order to create a practical and scientific basis for this thesis, this chapter will providemore background
information on the state of practice and research. In section 2.1 the passenger punctuality KPI as used
by NS and ProRail is described in detail. Section 2.2 describes the state of research regarding methods
for calculation of passenger punctuality.

2.1. Passenger punctuality KPI
This section answers the following subquestion:

How is the passenger punctuality KPI currently defined, what is the reasoning behind it and
what function does it fulfill?

The answer will be based on the documentation of passenger punctuality by NS and ProRail.

Philosophy
According to specialists, the definition of the passenger punctuality KPI is based on the philosophy
that the transport agency made a promise that has to be fulfilled. In other words, NS and ProRail
promise that a passenger can travel between station A and station B within a certain time from a given
departure time. If that passenger could make that journey as promised, the journey can be considered
as punctual. If that was not possible, the journey is considered as unpunctual.

KPI definition
Based on this philosophy, the passenger punctuality KPI is defined as the percentage of punctual
journeys out of the total amount of journeys made. A punctual journey is defined as a journey with
a delay lower than a certain threshold. Currently, the KPI is measured with thresholds of 5 and 15
minutes. For example, if a journey is made with a delay of 8 minutes, it is not punctual in the 5 minutes
punctuality, but in the 15 minutes punctuality, it is punctual.

Function
The function of the passenger punctuality is twofold. Firstly, the KPI has a supervision function. In
the Netherlands, NS is the railway operator and ProRail is the Infrastructure Manager on behalf of the
Ministry of Infrastructure and Water Management. The exact role of these organizations is explained in
appendix A. The NS has permission to operate trains on the main rail network (Hoofdrailnet, HRN) via
a concession that is granted for the time period between 2015 and 2025 [3]. ProRail is charged with the
infrastructure management via a concession over the same time period [4]. Part of these concessions
is a review based on KPI’s of which the passenger punctuality is one. Both ProRail and NS are ordered
a fine if the targets set with respect to these KPI’s are not accomplished. Therefore, NS and ProRail
strive for keeping the passenger punctuality at a high level. Better insight into the properties of the KPI
will be helpful in doing so.

The second function of the passenger punctuality is to help steering the organizations in satisfying
their clients. When analyzing the KPI, the areas can be identified where more attention is needed.

5
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This can be on all planning levels, from long-term strategic planning to real-time operational control.
The product of this research may provide valuable insights into the impact of disruptions, so that the
activities to decrease this impact can be better focused.

2.2. Passenger punctuality calculation methods
This section answers the second subquestion:

How do the available methods for passenger punctuality take disruptions into account?

The goal of this section is to find available methods for passenger punctuality that may be helpful to find
a more accurate value for passenger punctuality during disruptions. Therefore, the current calculation
method by NS and ProRail will be analyzed, followed by the previously used method and other methods
found in literature or at other public transport agencies. The required knowledge of each method is
input, process, output and how it copes with disruptions. Concerning disruptions, four scenarios can
be identified from a passengers’ point of view: the journey is made as planned with or without a delay;
a detour is taken by train or any other mode; the journey is postponed; the journey is cancelled. Based
on these scenarios, a method can be assessed.

2.2.1. Passenger punctuality ’17
Since 2017, passenger punctuality is calculated by the NS and ProRail using smart card data. This
method will be called ”Passenger punctuality ’17”. The input data for this method comes from CICO
(Check-In Check-Out) data, the journey planner and the realization data. Based on the CICO data,
frequent Origin-Destination (OD) pairs are determined. Then, the first module combines the frequent
OD’s and the data from the journey planner into promised journeys. For the promised journeys, the
realization is determined using the realization data. Journeys that could not be made, can be resched-
uled in module 3 which is not in place yet. When the realization for all promised journeys is known,
they are combined with the CICO data. Based on this combination, a data set is generated. Figure 2.1
shows a simplified flow chart of this method.

Determine frequent OD’s
Input: CICO data
Process: every quarter of a year, the frequent OD’s are extracted from the CICO data. All journeys on
the 100 days before determination are taken into account. A frequent OD is defined as an OD that is
traveled at least a hundred times and on at least 20 days of these 100 days.
Output: frequent OD’s

Module 1 // Request promised journeys
Input: frequent OD’s, journey planner
Process: for the frequent OD’s, all advised journeys from the journey planner are requested for the
time period the punctuality is calculated for. Every journey is divided in journey parts if one or more
transfers are required.
Output: promised journeys, journey parts

Module 2 // Determine realization
Input: promised journeys, journey parts, realized train movements, rescheduled journeys, journey parts
Process: the execution of the promised journey is determined per journey part. If there are no deviations
in all parts of a journey, the journey is marked ’realized’. If there are deviations on one or more journey
parts, it is first determined if the train on this part departed with a delay of 15 minutes or more. If this
is the case, the whole journey is left for rescheduling. If the departure delay is less than 15 minutes,
the next question is if the train reached the destination of the journey part. If this is not the case, the
journey needs to be rescheduled. If the train reached the destination of the journey part and it is the
final journey part, the journey is realized. If the particular journey part is not the final part, it must be
determined if the transfer could be made. If this was possible, the next journey part is controlled. If this
was not possible, the journey must be rescheduled. A flowchart of this process can be found in 2.2.
Output: realized journeys
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Figure 2.1: Simplified flow chart passenger punctuality
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Figure 2.2: Flowchart of module 2. Determine realization
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Module 3 // Rescheduling
Input: unrealized journeys
Process: unrealized journeys are rescheduled based on their planned departure time and the train
realization data
Output: alternative realization
Remark: this module is not in place (yet), because first, it is analyzed how the KPI functions in its
current form.

Module 4 // Connect journeys made to realized journeys
Input: CICO data, operator realized journeys, boarding/alighting margins
Process: every journey from the CICO data is connected to a realized journey based on check-in station
and time and check-out station. For each journey, the first possible promised journey is taken. If the
journey was not realized, the arrival time is defined as the check-out time minus an alighting margin
(i.e. the time between alighting and check-out for an average passenger, station specific).
Output: passenger realized journeys

Module 5 // Dataset generation
Input: passenger realized journeys
Process: a new dataset is generated including for every passenger journey the journey ID, promised
arrival time, realized arrival time, amount of delay minutes, delay reason and delay category. From this
dataset, the passenger punctuality can be calculated.
Output: dataset

Punctuality calculation
Given the amount of delay minutes, it can be determined if a passenger had a delay of more than 5 or
15 minutes. These thresholds are the intervals for which the passenger punctuality is calculated. The
punctuality is defined as the percentage of passengers that reached their final destination with a delay
of less than 5 or 15 minutes. It is calculated by equation 2.1.

𝑃𝑃኿ =
𝑃 ፞፥ፚ፲ጺ኿
𝑃፭፨፭ፚ፥

(2.1)

Where 𝑃𝑃኿ is the 5 minutes passenger punctuality, 𝑃 ፞፥ፚ፲ጺ኿ is the amount of passengers with a delay
smaller than 5 minutes and 𝑃፭፨፭ፚ፥ is the total number of passengers. The 15 minutes passenger punc-
tuality is calculated in the same way, but with the amount of passengers with a delay smaller than 15
minutes.

Disruption handling
Concerning disruptions, this method only captures passengers that follow their planned route and arrive
with or without a delay. If the third module for rescheduling would be in place, passengers taking
a detour by train would also be captured. Currently, no passengers taking a detour are captured,
nor passengers postponing or canceling their journey. These passengers may appear in the data as
punctual. Passengers that cancel their journey do not appear in the data at all, although they probably
experienced hindrance from the disruption.

2.2.2. Passenger punctuality ’15
The ”Passenger punctuality ’15” is the calculation method of passenger punctuality previously used by
ProRail and NS. This method is based on demand prognoses in combination with the realized timetable
at 35 measuring stations. The calculation of the passenger punctuality is based on equation 2.2.

𝑃𝑃ᖣ15 = 𝐴፫፞ፚ፥።፳፞፝ + 𝑇፫፞ፚ፥።፳፞፝
𝐴፩፥ፚ፧፧፞፝ + 𝑇ፏ፥ፚ፧፧፞፝

(2.2)

Here, 𝑃𝑃 is the passenger punctuality, 𝐴፩፥ፚ፧፧፞፝ and 𝐴፫፞ፚ፥።፳፞፝ are the planned and realized passenger
arrivals, 𝑇፩፥ፚ፧፧፞፝ and 𝑇፫፞ፚ፥።፳፞፝ are the planned and realized transfers. These variables are explained
in the following paragraphs.
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Planned passenger arrivals
The planned passenger arrivals is the number of train arrivals on 35 measuring stations weighted
with the expected number of passengers per train. The prognoses are based on passenger counts
by conductors. If there is no prognosis for a certain train line, a default value of 150 passengers is
used. The way the prognoses are made is clearly dubious, since they are not based on subjective
measurements, but instead on estimations by conductors.

Realized passenger arrivals
The realized passenger arrivals is the number of passenger arrivals that is realized within 5 minutes
from the planned arrival time. Train arrival times are measured at 35 stations. The number of real-
ized passenger arrivals is the sum of trains that arrived within 5 minutes from the planned arrival time,
weighted with the number of passengers on those trains. A large drawback of the methods for cal-
culating the planned and realized passenger arrivals is that if one journey passes multiple measuring
stations, it is also taken into account multiple times. E.g. if a train makes a journey from Rotterdam
to Utrecht, it passes Gouda. The passengers on this train are counted both in Gouda and in Utrecht.
Besides, the amount of 35 measuring stations is far beneath the total of 400 railway stations in the
network.

Planned transfers
Planned transfers is the number of executed connections weighted with the number of passengers
transferring. Connections are measured if they meet the following conditions:

• More than 300 passengers per working day make the transfer, according to the prognoses;

• The planned transfer time is 7 minutes or less;

• The planned transfer time is at least the design norm, which is based on the number of platforms
that need to be crossed to make the transfer.

The prognosis of planned transfers is made by taking a percentage of arriving passengers that is ex-
pected to transfer. If there is no prognosis available, a default value of 1 planned transfer is used.

Realized transfers
Realized transfers is the number of planned transfers that could be made in the realized timetable,
according to the conditions as discussed in the previous paragraph. If one of the trains in a connection
did not run, the connection is considered as not executed and left out of the punctuality calculation. This
is another drawback of this method, because punctuality is overestimated, since unrealized transfers
are left out of the calculation.

Disruption handling
Regarding disruptions, this method has both benefits and drawbacks. The calculation is based on
passenger prognoses instead of observed demand on a disrupted day. The benefit of this method is
that passengers that take a detour, postpone or cancel their trip are taken into account in the passenger
punctuality. However, it is not known what actually happened to the passenger. A large drawback is
that this method is relatively inaccurate due to the limited amount of measuring stations and the manual
passenger counts on which the prognoses are based. Still, the idea of using expected passenger
demand may be useful for determination of the impact of disruptions on passenger punctuality.

2.2.3. Rail Net Denmark passenger delay model
The Danish railways have an extensive history when it comes to delay modeling. Nielsen et al. [20]
reviews three generations of passenger delay models and develops a fourth. In the 1.5 generation, a
passenger delay model by Ildensborg-Hansen [19] is discussed.

Calculation method
In the model by Ildensborg-Hansen, the passenger delay is determined by assigning a time-space OD-
matrix to the realized timetable. It is assumed that passengers arrive according to the normal timetable.
From this point, full knowledge of the delays in the network is assumed, so passengers are assigned to
the optimal route. The total delay is obtained by taking the difference between the planned and realized
arrival time, weighted by the demand in the OD-matrix.



2.2. Passenger punctuality calculation methods 11

Disruption handling
Similar to Passenger punctuality ’15, this method uses normal passenger demand to calculate delays.
This way, passengers that take a detour, postpone or cancel their trip, are taken into account in the
passenger punctuality. By rescheduling these trips based on the realized timetable, it is assumed that all
passengers make their trip by taking a detour (or postponing if that is the fastest option). Rescheduling
is a good option, especially when assuming that passengers arrive at the station at the planned arrival
time.

2.2.4. Method by Uniman et al.
Another method for passenger punctuality measurement was developed by Uniman et al. [25]. This
method is based on AFC data and applied to the London Underground. The measure is based on the
buffer time a passenger should add to the normal travel time in order to obtain a reliable forecast of the
travel time.

Calculation method
This Reliability Buffer Time (RBT) is calculated for a certain time period at OD level using equation 2.3.

𝑅𝐵𝑇ፎፃ = (95𝑡ℎ percentile travel time −median travel time) (2.3)

Thus, for a certain period the travel times are taken for a given OD-pair. The RBT is obtained by taking
the difference between the 95th and 50th percentile of these travel times.

The RBT can be obtained at line level using equation 2.4.

𝑅𝐵𝑇፥።፧፞ =
∑ፎፃ∈፥።፧፞ 𝑉𝑜𝑙ፎፃ ∗ 𝑅𝐵𝑇ፎፃ

∑ፎፃ∈፥።፧፞ 𝑉𝑜𝑙ፎፃ
(2.4)

This equation gives the weighted average of the RBT at OD level.
Uniman et al. [25] realized that reliability is strongly affected by incidents, so another measure was

developed, namely the Excess Reliability Buffer Time. It is defined as the amount of RBT that is caused
by disruptions and calculated using equation 2.5.

𝐸𝑅𝐵𝑇 = 𝑅𝐵𝑇፨፯፞፫ፚ፥፥ − 𝑅𝐵𝑇፭፲፩።፜ፚ፥ (2.5)

Where 𝑅𝐵𝑇፨፯፞፫ፚ፥፥ represents the overall RBT and 𝑅𝐵𝑇፭፲፩።፜ፚ፥ is the RBT with exception of the disrupted
days. The latter is the baseline RBT.

Disruption handling
This method provides a way to find the impact of disruptions on service reliability. However, it assumes
that the RBT on disrupted day is reliable, making the same assumptions as those that are made in the
Passenger punctuality ’17. Since this method also uses AFC data, it has exactly the same problems.
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Table 2.1: Systematic comparison of available passenger-oriented service reliability metrics

Method Data source Calculation base Outcome Disruption handling

Passenger
punctuality ’17 Smart card

Realization first
possible promised
journey

Passenger
punctuality
interval

Only journeys fully
made by NS trains

Passenger
punctuality ’15 Manual count Realized arrivals

and transfers

Passenger
punctuality
interval

Assign expected
demand to the
realized timetable

Railnet
Denmark

Automatic
count

Route choice
model

Passenger
delay

Assign expected
demand to the
realized timetable

Uniman
et al. Smart card

Travel time
percentiles
between stations

Reliability
Buffer Time

Only journeys that
are fully made by
underground

2.3. Conclusion
The passenger punctuality KPI is built upon the philosophy of fulfilling the promise that is made to
the passenger. This means that a passenger which could not make its journey as planned can be
considered as unpunctual. The actual definition of the passenger punctuality KPI measures punctuality
in terms of delays greater than 5 and 15 minutes. The function of the KPI is two-sided: on the one hand,
it is a supervision measure. On the other hand it has a steering function.

Several methods for quantification of service reliability have been reviewed. The results are sum-
marized in table 2.1. The method by Uniman et al. also uses smart card data, but has also no solution
to the disruptions problem. Other methods re-assign the expected demand of an undisrupted day to
the realized timetable on the disrupted day. This may be a suitable method to model passenger delays
more accurate during disruptions. It must then be assumed that on a disrupted day, passengers arrive
at the station at their planned departure time. This method is still restricted to the rail network, while it
is expected that, during disruptions, passengers will also use other modes to reach their destinations.
Therefore, it would be interesting to incorporate other modes in the re-assignment of the demand.

Another conclusion that can be drawn is that there is no standard way of defining passenger punc-
tuality; each researcher and public transport operator handles its own definition of it. This fact raises
the question what a good definition of passenger punctuality is and which of the definitions is best.
These questions are beyond the scope of this research, but it may be worth the effort to find an answer
to these questions in future research.



3
Method

The following subquestion will be answered in this chapter:

Howcanpassenger hindrance bedeterminedduringdisruptions, concerningdetoured, post-
poned and cancelled trips?

This chapter describes the method that will be used to find the impact of disruptions on passenger
punctuality as well as the data that is required. First, the impact assessment approach will be described
in section 3.1. The data required for this method are specified in section 3.2. Section 3.4 concludes
with a short summary.

Figure 3.1: Impact assessment approach

3.1. Impact assessment approach
This section describes the approach that is followed in order to come to an estimation of the impact
of disruptions on passenger punctuality that is not accounted for in the current calculation method.
An overview is given in the flowchart in figure 3.1. The central part of the approach is step 5, where
the observed journey pattern of the disrupted day will be reconstructed. The steps 1-4 prepare and

13
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generate the data that is needed for this process. Step 6 translates the output of step 5 to insightful
results. Because the center of the method is the reconstruction of the disrupted journey pattern, this
method will be called the Journey Pattern Reconstruction (JPR) method in the remainder of this report.
The majority of the data operations will be performed using Python. Where this is not the case, it is
clearly indicated. All steps are automated as far as possible. Only at switch points between Python
and other applications, some manual actions are required. Other applications used are Java and R.

3.1.1. Case selection
A disruption case is chosen that is expected to have considerable impact on passenger punctuality that
is not measured in the current calculation method. Disruptions can be described by characteristics like
location, time of the day and duration. Cases must be selected that differ at only one characteristic, so
that the influence of that characteristic on the impact of disruptions on punctuality can be determined.
Per characteristic, three cases will be studied in order to find possible relations. In order to confirm
these findings, more cases need to be examined.

3.1.2. Determine demand in disrupted and undisrupted conditions for all promised
journeys

The passenger punctuality data is requested for the disruption day and the same day in the four weeks
before and after if possible and reasonable (otherwise, shifting a few weeks is allowed). The latter
are called peer days and are used to determine the expected demand on the disrupted day. The
punctuality data contains all information regarding punctuality per passenger journey, see section 3.2.2.
The punctuality data for the disruption day represents the observed demand. The peer days are used
to deduct the expected demand for the undisrupted situation. The data are grouped by promised
journey in order to determine how many passengers are observed on the disrupted day and on the
peer days. The amount of passengers on the disrupted day is defined as the observed demand in
disturbed conditions, 𝑞፝።፬፭፮፫፛፞፝. Then, the expected demand in undisturbed conditions, 𝑞̂፮፧፝።፬፭፮፫፛፞፝,
is calculated by taking the median of the demand on the peer days. 𝑞፝።፬፭፮፫፛፞፝ and 𝑞̂፮፧፝።፬፭፮፫፛፞፝ are
determined for each promised journey on which passengers are observed on at least one of the peer
days or the disruption day.

3.1.3. Determine hindered promised journeys
The output of this step should be a list of promised journeys that could not bemade due to the disruption.
This list is used in step 4 to generate alternative journeys. The process of selecting hindered promised
journeys is displayed in figure 3.2.

Figure 3.2: Hindered promised journeys selection process

The disruption data is requested for the selected case. It is desired to know the canceled train numbers
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and corresponding tracks in order to determine the affected promised journeys. A promised journey is
described by an origin station, a destination station, transfer stations (if any) and train numbers between
the stations. Using the timetable, it can be determined which stations a train would have passed on the
disrupted track part. Then, for each promised journey it is checked if there if any of the train numbers
used was canceled on the disrupted day. If this is true, the intermediate stations of this train number are
determined for the promised journey. These stations are compared to the intermediate stations of the
disrupted track part. If there are two or more matches, it can be concluded that the promised journey
has been hindered by the disruption. The result of these steps is a list of affected promised journeys
including their origin, destination and departure time.

3.1.4. Generate alternative journey advises for each hindered promised journey
In order to be able to make a reconstruction of the observed journey pattern on the disrupted day, it
is required to know what alternatives passengers have between their origin and destination from their
planned departure time. Therefore, alternative journeys are generated for each hindered promised
journey. This is done with the help of the open source application OpenTripPlanner (OTP) based on
transit data from the General Transit Feed Specification (GTFS) of the Netherlands. This is a format
in which most public transport operators of the Netherlands publish their timetables, which is free to
use. By excluding the disrupted links from the planning network, alternative journey advises can be
generated. Excluding links from the GTFS data is done with the help of the open-source GTFS Trans-
former application by OneBusAway [10]. Requests to OTP are carried out by an R function, found at
[9] and edited to suit better to the specific needs of this research. Originally, this function only returned
some trip information. It has been edited to return all trip information in JSON format, so that it can
be exported to Python and further processed there. By default, the OTP generates three advises per
request, including the most evident travel options. The result of this step is a set of three alternatives
for each hindered promised journey.

3.1.5. Reconstruct observed disrupted journey pattern
The observed disrupted journey pattern is reconstructed by assigning the expected demand in undis-
rupted conditions per hindered journey to the alternatives that were generated in step 3. The option to
cancel the whole journey is added to the set of alternatives per hindered journey. It is assumed that
each passenger has either chosen one of the alternative travel options or canceled its trip.

Now, the expected demand of the hindered promised journeys must be distributed over the alterna-
tives in such a way that the differences between the resulting journey pattern and the observed journey
pattern on the disrupted day are minimized. In order to compare the reconstruction to the observation,
the alternative journeys must be connected to existing promised journeys. For example: if a journey is
partly made by bus due to the disruption, only the train part of this journey appears in the passenger
data. Another example is if a passenger decides to take a detour to the final destination. It is then
assumed that the passenger is already checked in at the departure time of the original journey, so a
passenger which chose this alternative appears in the passenger data with the original promised jour-
ney. Therefore, it must be investigated for each alternative travel option how a passenger which took
this option has appeared in the passenger data. The full process of connecting the alternative travel
options to existing promised journeys is displayed in figure 3.3.

Some assumptions are made in this process that may affect the quality of the model. The first is
that passengers that take a detour are expected to check in at their planned departure time. However,
especially during larger disruptions, there are also passengers that are informed of the disruption before
they depart to the station. In this case, it is not expected that a passenger checks in at its planned
departure time, but this is assumed in the model for simplicity reasons.

The second assumption is that passengers check out and in again when they postpone their journey
when the disruption is almost solved, even when the delay is only 15 minutes. A passenger which is
delayed by only 15 minutes probably checks in at its planned departure time and waits till the first
train after the disruption runs. The result of this assumption is that passengers are assigned to the
promised journey of the postponed journey instead of their planned journey. The precise effect of
these assumptions on the quality of the model is unknown. More knowledge regarding information
availability and accessibility and passenger behavior is needed to get insight into this effect.
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Figure 3.3: Connecting alternative journeys to existing promised journeys

A linear program is formulated in order to make the reconstruction of the observed journey pattern.
The following variables have been used in the problem formulation.

Variable Description
𝐪̂፫፞፜፨፧፬፭፫፮፜፭።፨፧ Decision variable, assigned demand per alternative

𝐪̂ፚ፥፭፞፫፧ፚ፭።፯፞,፮፧፝።፬፫፮፩፭፞፝ Demand per alternative promised journey in undisturbed conditions,
0 for hindered promised journeys

𝐪፝።፬፫፮፩፭፞፝ Demand per alternative promised journey in disturbed conditions
𝐪̂፡።፧፝፞፫፞፝,፮፧፝።፬፫፮፩፭፞፝ Expected undisrupted demand per hindered promised journey

𝑇ፚ፥፭፞፫፧ፚ፭።፯፞ Transformation matrix to transform the assigned demand per alternative
to the assigned demand per unique alternative promised journey

𝑇፡።፧፝፞፫፞፝ Transformation matrix aggregate the assigned demand per alternative to
the assigned demand per hindered promised journey

𝑁 Number of unique alternative promised journeys

The problem can be described mathematically with the following set of equations.

min |Δ| =
ፍ

∑
።዆ኻ
|(𝑇ፚ፥፭፞፫፧ፚ፭።፯፞ ∗ 𝐪̂፫፞፜፨፧፬፭፫፮፜፭።፨፧)። + 𝐪̂ፚ፥፭፞፫፧ፚ፭።፯፞,፮፧፝።፬፫፮፩፭፞፝። − 𝐪፝።፬፫፮፩፭፞፝። | (3.1)

subject to (𝑇፡።፧፝፞፫፞፝ ∗ 𝐪̂፫፞፜፨፧፬፭፫፮፜፭።፨፧)። = 𝐪̂፡።፧፝፞፫፞፝,፮፧፝።፬፫፮፩፭፞፝። ∀ 𝑖 (3.2)
𝐪̂፫፞፜፨፧፬፭፫፮፜፭።፨፧። ≥ 0 ∀ 𝑖 (3.3)

The problem formulation sounds as follows. For each hindered promised journey, there is a set of four
alternatives, including the alternative to cancel the trip. The expected demand in undisrupted conditions
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for these promised journeys must be assigned to the alternatives. For example: the hindered promised
journey between Arnhem and Utrecht of 7:31 has an expected undisrupted demand of 80 passengers.
There are four alternatives for this journey. The sum of the number of passengers that is assigned
to each of these alternatives must be equal to 80. This is also the first constraint of the problem as
described in equation 3.2. In this equation, the left hand side calculates the sum of assigned passengers
per hindered promised journey. This number must be equal to the expected demand for that hindered
promised journey in undisrupted conditions.

Now, the goal is to assign the expected undisrupted demand to the alternatives in such a way that it
creates a new journey pattern that is a reconstruction of the observed journey pattern of the disrupted
day. Therefore, the alternative journeys must be aggregated on unique existing promised journeys on
which they will appear in the punctuality data. For example: the journeys between Arnhem and Utrecht
of 7:31 and 7:46 can both be postponed till 8:31. This is one alternative for two hindered promised
journeys. Therefore, the passengers that are assigned to this alternative from any hindered promised
journey must be added up. Then, the demand that was already expected on this promised journey
must also be added. Not only the passengers that postponed their trip between Arnhem and Utrecht
till 8:31 will take this option, but also the passengers that already planned to take this train. When
these steps are taken, the reconstruction of the journey pattern is complete and can be compared
to the observed journey pattern of the disrupted day. For each unique alternative promised journey,
the observed demand of the disrupted day is subtracted from the reconstructed demand. The sum of
the absolutes of these values is taken as measure for the difference between the observed and the
reconstructed journey pattern. The objective function in equation 3.1 tells to minimize this value.

The second constraint in equation 3.3 is the non-negativity constraint that forces all decision vari-
ables to be non negative.

Because passengers are not divisible, it would be logical to constrain the decision variables to be
integer. However, this does not yield feasible solutions, so the decision variables will be floats and be
rounded later on.

Several solver packages for solving linear programs are available in Python via the CVXPY package
[8]. Two solvers have been tested: GLPK and ECOS_BB. It appears that, when using the GLPK solver,
a larger share of the hindered passengers emerges in the results, while the optimization values are
equal. Therefore, it has been decided to use the GLPK solver.

In the process that linked the alternative journeys to the existing promised journeys, it was already
determined if an alternative was to detour or postpone a journey. After the reconstruction, it can be
directly calculated how much passengers took a detour, postponed or canceled their trip. This is the
basis for the recalculation of the passenger punctuality.

3.1.6. Passenger punctuality and delay calculation
Based on the results of the journey pattern reconstruction, the passenger punctuality percentage can
be recalculated. The recalculation equation is formulated in equation 3.4. In this equation, 𝑞 stands
for the observed numbers in the current punctuality calculation and 𝑟 stands for the reconstructed
numbers. The base for the recalculation equation is formed by the normal punctuality calculation:
number of punctual passengers divided by the total number of passengers for a certain time interval.
The number of punctual passengers is corrected by subtracting the number of passengers that detoured
or postponed their trip and is registered on a punctual promised journey; passengers that are already
registered unpunctual should not be counted again. The total number of passengers is corrected by
adding the number of passengers that is detouring their trip only by other modes or canceling. Then,
the number of passengers that took a detour with two separate train parts must be subtracted from the
total number of passengers, so that they are taken into account once instead of twice.

𝑃𝑃፫፞፜ፚ፥፜፮፥ፚ፭፞፝ = 𝑞፩፮፧፜፭፮ፚ፥ − 𝑟፝፞፭፨፮፫,፩፮፧፜፭፮ፚ፥ − 𝑟፩፨፬፭፩፨፧፞,፩፮፧፜፭፮ፚ፥
𝑞፭፨፭ፚ፥ + 𝑟፜ፚ፧፜፞፥።፧፠ + 𝑟፝፞፭፨፮፫,፨፭፡፞፫፦፨፝፞ − 𝑟፝፞፭፨፮፫,፝፨፮፛፥፞ (3.4)

In this calculation, postponing and canceling are considered unpunctual. This is in line with the phi-
losophy of the passenger punctuality KPI, see section 2.1; the promised journey these passengers
planned to take could not be made. With the outcome of this equation, the most important result is
obtained. Other results that are suitable for analysis can be found in the distribution of passengers
over alternatives.
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After recalculating the punctuality of the disrupted day, the delays can be deducted from the al-
ternative arrival times, planned departure times and number of assigned passengers per alternative
journey. Based on this, the total passenger delay, average delay per passenger and societal costs can
be calculated. Then, the delays can be distributed over intervals of 5 minutes in order to gain insight
into the delay distribution.

3.1.7. Calculating disruption impact already captured
In order to know the total size of the impact of disruptions on passenger punctuality, an estimation must
be made of the part of the impact that is already captured in the current calculation method. In order to
make this estimation, a method is used that is similar to the method that was used to detect hindered
promised journeys in section 3.1.3. There are two differences. Here, all trains that are directly affected
by the obstruction measure are taken into account. Besides canceled trains, these can also be returned
or rerouted trains. The other difference is that only the disrupted day is taken into account, because we
want to know the number of passengers that is already registered unpunctual during the disruption. With
these changes, the flowchart in figure 3.2 is walked through. The result is a list of hindered promised
journeys on the disrupted day including their total delay. By filtering the journeys with a delay larger
than 5 minutes, it can be determined what part of the impact of disruptions on passenger punctuality
is already captured in the current calculation method. An estimation of the passenger punctuality with
these journeys excluded is made by adding them to the nominator of the punctuality equation. This
equation is displayed in equation 3.5 where 𝑞፩፮፧፜፭፮ፚ፥ is the number of passengers that is counted
punctual by the current calculation method. The number of passengers that is counted unpunctual due
to the disruption, 𝑑፮፧፩፮፧፜፭፮ፚ፥, is added. The sum of these is divided by the total number of passengers
on the disrupted day, 𝑞፭፨፭ፚ፥.

𝑝𝑝፞፱፜፥፮፝፞_፝።፬፫፮፩፭።፨፧ = 𝑞፩፮፧፜፭፮ፚ፥ + 𝑑፮፧፩፮፧፜፭፮ፚ፥
𝑞፭፨፭ፚ፥ (3.5)

3.2. Required data
This section introduces the available data sources, which are: disruption data, passenger punctuality
data, and the planned timetable.

3.2.1. Disruption data
The first data source contains the disruption information. These data are put together from the obstruc-
tion measure (versperringsmaatregel, VSM) database and the planned timetable. Only two columns
are required: the cancelled train number and the cancelled track. See table 3.1.

Table 3.1: Disruption data

Train number Track Action
36xx Ah-Zp Cancel
76xx Ah-Dr Reroute
... ...

The first two entries of the train number represent the train series. In this case, the first train series is
the 3600 between Zwolle and Den Bosch via Arnhem and Zutphen. The last two entries represent the
index number of a specific train. The directions of the train are divided by odd and even numbers, so
the 3601 runs in the opposite direction of the 3602. This way, each train has a unique train number.

3.2.2. Passenger punctuality data
The passenger punctuality database contains all trip information for a sufficient time period, including
the punctuality according to the current calculation method. Passenger punctuality is often abbreviated
to rpun in coding environments. Table 3.2 gives an overview of the columns that are used in the model.

The itinerary column gives the origin station, destination station, transfer stations if any and the train
numbers that are used between the stations. Besides that, the table compares the promised departure
and arrival time to the realized departure and arrival time and gives the check-in and -out times.
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Table 3.2: Passenger punctuality

Itinerary Origin Destination Planned
departure time Delay

Nm-3022-Ah Nm Ah 7:43 4.7
Ut-539-Zl-1839-Mp Ut Mp 11:48 6.3
... ... ... ... ...

3.2.3. Planned timetable
The planned timetable contains all train numbers that are planned for a day. For these train numbers,
all control points are listed. See an example of the relevant columns in table 3.3. The displayed train
number is 2230 between Amsterdam central station and Vlissingen.

Table 3.3: Planned timetable

Train number Control point
2230 Asd

Sgbr
...
Hlm
Zspl
...
Vs

... ...

3.2.4. GTFS
The process of generating alternative journey advises is based on Dutch public transport timetables
published in General Transit Feed Specification (GTFS) format. This is a format developed by Google
to be a common format between public transport operators and developers [5]. Most Dutch transit
agencies also publish their timetables in this format. These data are used as input for the OpenTrip-
Planner. The GTFS data is in fact a set of eight files that each contain different data. There are files that
define the agencies, the calendar dates for which the timetable is used, additional feed data, routes,
stops and trips. These data are combined into one file that keeps all intermediate stops and stop times.

3.3. Example method walk-through
One example case is worked out in order to make the developed method more imitable. This is the
disruption case between Utrecht and Arnhem that took place on April 12, 2018. Here, the full track
was obstructed due to a collision with a person. Because this is an example case, there is no further
reasoning behind the case selection.

Determine demand First, the passenger demand per promised journey for the disrupted day is de-
termined in disrupted as well as in undisrupted conditions. Therefore, the passenger punctuality data
is obtained for the disrupted day, including the same day in the four weeks before and the four weeks
after. These data are grouped by promised journey in order to determine the passenger demand per
promised journey per day. The expected demand in undisrupted conditions is now obtained by taking
the median of the demand of the peer days. The observed demand on the disrupted day is already
obtained by grouping the data.

Determine hindered promised journeys Next, it is determined per promised journey if it was hin-
dered by the disruption. This is done by taking the canceled train numbers and comparing them to
the train numbers used in a promised journey. Each promised journey contains a deducted itinerary
existing of stations and train numbers used between the stations, for example: ’Ed-3123-Ah’ for a jour-
ney between Ede-Wageningen and Arnhem. In this case, train number 3123 has been canceled from



20 3. Method

Utrecht. Therefore, the promised journey with this itinerary must be further investigated. In order to
do that, the origin station, destination station and train number are combined with the timetable data to
obtain the intermediate waypoints. This is also done for the canceled train for the specific track part.
Then, both sets of start stations, end stations and intermediate waypoints are compared. If there are
two or more matches, it is concluded that this promised journey is affected by the disruption. If there is
only one match, the destination station of the journey is equal to the first station of the canceled track,
so the promised journey is not affected. The result of this step is a list of hindered promised journeys,
including their demands.

The list of hindered promised journeys is prepared for export to R for generating alternative journey
advises. The OpenTripPlanner uses lat/lon coordinates for specifying origin and destination locations.
The station coordinates are added from an available list of station locations.

Generate alternative journey advises Before alternative journey advises can be generated, the
GTFS data must be obtained and edited. These data are freely accessible via the internet. In order to
exclude the canceled trains and tracks from the journey planner, the GTFS data must be edited. This is
done using the open-source application OneBusAway [10]. This application takes the following query
and uses it to trim the trips.

{”op”:”trim_trip”, ”match”:{”file”:”trips.txt”, ”trip_id”:”77999005”},
”to_stop_id”:”54974”, ”from_stop_id”:”381627”}

The trip_id and stop_id’s are found in the stop_time file in the GTFS dataset based on the train numbers
and station names. The GTFS transformer application runs in Java and returns an edited GTFS dataset
based on the modification queries that are feeded into it.

At this point, both the demand data and the GTFS data are ready for generating alternative journeys.
This is done using an online available R script [9] that automates the requests to the locally launched
OTP client. The original R script translates the OTP output to JSON format and deducts the most
important journey information. This script is edited so that the output in JSON format is returned.
The resulting JSON string contains all relevant information about the three journey alternatives, from
general departure and arrival times to specific trip leg information like leg origins, destinations and trip
numbers (both for train and for other modes). This output can be used in Python to extract the journey
information needed.

Reconstruct observed journey pattern In Python, an alternatives list is created that takes each
entry from the list with hindered promised journeys four times; for each hindered promised journey,
there are three journey alternatives plus one canceling alternative. For each of these alternative journey
entries, the promised journey(s) are added on which an alternative journey is expected to appear in the
punctuality data. This is done following the flow chart in figure 3.3, which is expected to speak for itself.
At the same time, two data fields are added that indicate if a journey is postponed or if a journey is made
by only other modes than NS trains (in the latter case, passengers will not appear in the punctuality
data). The last data field that is added is the realized arrival time of the alternative journey to enable
us to calculate the final delay.

Again, an example from the Arnhem-Utrecht case is taken to make things a bit clearer: three alter-
native journeys have been generated for the hindered promised journey between Arnhem and Utrecht
at 06:31 am. A summary of these alternatives is displayed in the table below. To start with the first

Departure time Arrival time Duration [min] Itinerary Modes
06:51 08:16 85 Ah-3621-Ht-3922-Ut NS train, NS train
06:40 08:24 104 Ah-3614-Dv-1722-Ut NS train, NS train
09:45 10:21 36 Ah-3130-Ut NS train

alternative journey and walk through the process of connecting it to an existing promised journey, it is
first asked if any of the journey legs is carried out by NS. This is the case, so the next question is if
any of the train legs traverses the disrupted track. Here, it is checked if the train numbers belong to a
series that has been canceled. If so, it is checked if this trip leg indeed traverses the track part that was
obstructed (earlier). If that is true, it is assumed that the journey is postponed. If not, as in this case
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(none of the train numbers belong to a series that has been canceled), it is checked for each train leg if
the destination of that train leg is the same as the origin of the next train leg. If not, it is concluded that
there are two separate train parts in this alternative journey: some other mode(s), e.g. the bus have
been used to connect those two train legs. If, for all train legs, the destination is the same as the origin
of the next train leg, the alternative appears to be detoured and to contain only consecutive train legs,
which is the case here. This does not yet mean that no other modes have been used in this journey,
but that the train legs in this alternative are consecutive. The next question is, thus, if the full journey
has been made by train: is the origin of the first train leg the same as the journeys’ origin and is this
also true for the final train legs’ destination? Then, the journey is fully made by train, which is true in
this case. Then, the promised journey on which a passenger appears in the punctuality data on the
disrupted day is expected to be the original planned journey, since it is assumed that passengers arrive
at their planned departure time. If the journey is not fully made by train, the promised journey becomes
the first possible promised journey between the first train legs’ origin and the final train legs’ destina-
tion. For the first alternative journey in this example, the promised journey on which it will appear in the
punctuality data is the journey between Arnhem and Utrecht at 06:31 am. For the second alternative
journey, it is roughly the same: it contains trip legs carried out by NS, the train legs do not traverse
the disrupted track part, all NS train legs are consecutive and the journey is fully carried out by NS.
Therefore, this alternative is also captured in the data on the promised journey between Arnhem and
Utrecht at 06:31 am. For the third example, things become different: there is a journey leg carried out
by NS, but this train leg traverses the disrupted track part. Therefore, it is concluded that this journey
has been postponed and that the passenger checked in again at the planned departure time of the
postponed journey. Therefore, the promised journey connected to this alternative will be the journey
between Arnhem and Utrecht at 09:45 am. For the connected promised journeys, it is also looked
up how many passengers have been observed on the disrupted day and how many were expected
in the undisrupted situation. If the promised journey to which the alternative journey is connected is
hindered on the disrupted day, the expected passenger demand is set to zero; in the reconstruction
of the observed journey pattern, passengers that are assigned to this alternative will be added to this
value, so it can not be equal to the original expected demand. The process as explained above yields
the following results.

Origin Destination Departure
time

Realized
arrival time

Observed
disrupted

Expected
undisrupted

Post-
poned

Other
mode

Arnhem Utrecht 06:31 08:16 9 0 False False
Arnhem Utrecht 06:31 08:24 9 0 False False
Arnhem Utrecht 09:46 10:21 49 34 True False

Next, the promised journeys that are connected to the alternative journeys are filtered so that a list
of unique promised journeys remains. This is done because multiple alternatives may appear in the
punctuality data with the same promised journey. In the reconstruction, the passengers that take these
alternatives must be added up.

Now, the input matrices for the optimization program can be created. The first is the vector with
decision variables for all alternative journeys, which has a length of 13992 entries in this case. The
second is a matrix to transform the decision variables to the expected demand. This is a binary matrix
that consists of all alternatives in the rows and all hindered promised journeys in the columns. There
are ones at the places where the alternative belongs to the hindered promised journey. The next vector
represents the expected demand on an undisrupted day for these hindered promised journeys. Then,
there is another vector containing the expected undisrupted demand for all unique promised journeys
from the alternatives, with zeros for hindered promised journeys. There is also a corresponding trans-
formation matrix for this vector. The last vector contains the observed disrupted journeys for the unique
promised journeys from the alternatives.

With these matrices, the linear optimization program is formulated as described in section 3.1.5.
Finally, the journey patterns, delays and passenger punctuality can be calculated according to section
3.1.6.
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3.4. Conclusion
A method has been developed that reconstructs the observed journey pattern in order to derive pas-
senger travel behavior. This is done by taking all passengers that are hindered by a disruption and
generating alternatives for them. Then it is determined if a passenger chose a specific alternative, how
would it have appeared in the punctuality data? If this is a promised journey where more passengers
are observed on the disrupted day than on a normal day, it is assumed that the passenger indeed
chose this alternative. The goal of the method is to assess the part of impact of disruptions on passen-
ger punctuality that is not captured in the current calculation method. Therefore, it is desired to know
how much passengers made a detour, postponed or canceled their trip. The method is first applied
to a single disruption case in order to test the concept. When the method appears to be solid, it can
be applied to a set of disruption cases that is expected to have impact on the passenger punctuality.
Then, it can be analyzed what factors influence the impact of disruptions on passenger punctuality.



4
Application, results and analysis

The method as described in chapter 3 is applied to several cases in order to test the well functioning
of the method and to obtain results that help answer the main research question. Section 4.1 presents
the selected cases. The results that were obtained are given in section 4.2 and analyzed in section
4.3.

4.1. Case selection
As described in chapter 3, each disruption can be described by properties that are expected to have
influence on the journey pattern and thus the impact of the disruption on passenger punctuality. In order
to draw conclusions on the influence of such properties, multiple cases must be studied, preferably only
varying with respect to a single property. Cases are selected from the disruption log that also registers
the measures that were taken, including the trains that were canceled. After the reasoning that decides
what cases should be selected, the case selection also depends on the availability of the desired cases.
Therefore, it is not always possible to find a case that exactly matches the desired properties. The
current set of cases is expected to be suitable for the purposes of this research. It is decided to vary the
cases with respect to the time of the day and with respect to the availability of detour possibilities. These
factors are of interest because they are expected to have a certain impact on passenger behavior during
disruptions, but this has never been confirmed by real data studies. Besides, an extra case is selected
in which a very large disruption took place. The first combination of cases concerns disruptions in the
morning peak, during the day and in the evening peak. The second combination of cases concerns
disruptions on trajectories where few, medium and a lot of detour possibilities are available. These
combinations will be further explained in the following subsections. Section 4.1.3 describes the large
disruption case. Because of the time consumption of applying the JPR method to a case and the
limited set of suitable cases, only one case has been selected per specification. More cases need to
be studied in order to draw more generic conclusions, but for this research, it is expected to be enough
to recognize patterns. Regarding the time consumption of running the JPR method for a case, this
depends on the case size, but lies between 2 and 3 hours per case when running flawless. Including
time for solving minor errors, half a day is needed on average per case from step 2 till step 6. The time
consumption could probably be decreased by using a computer with higher processor and memory
capacity. The potential time gain of this measure is unknown.

23
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4.1.1. Cases varying in time of the day
For the cases varying in time of the day, three cases have been selected on the track Arnhem-Utrecht.
This track is found with 21 collisions in the top-5 of track parts where the most collisions with persons
took place [7]. For this track there is a medium amount of detour possibilities. See figure 4.1 at the
end of this section for a specification of the location of this trajectory. The three cases are concerning
collisions with persons, causing a complete obstruction of the corridor. These cases occurred on Mon-
day, January 22, Thursday, April 12 and Friday, June 1, all 2018. The times of the day are respectively
evening peak, morning peak and during the day. For the first two cases, the number of cancelled trains
is 50 and 46. For the last case, this is 117. It is assumed that the number of cancelled trains influences
the number of hindered passengers, but not their travel behavior.

Label Morning peak During the day Evening peak
Date 2018-04-12 2018-06-01 2018-01-22
Track Ah-Ut Ah-Ut Ah-Ut, Ah-Rhn
Duration 3:11 2:24 3:54
Canceled trains 50 46 117

4.1.2. Cases varying in available detour possibilities
The cases varying in availalbe detour possibilities are chosen at different locations in the network. The
first case is the case Arnhem-Utrecht in the morning peak as described in the previous subsection. The
second case took place on Wednesday, May 30 between Zwolle and Meppel. The track Zwolle-Meppel
is the only rail connection to the North of the Netherlands, which makes it a very vulnerable part of the
network. There are few detour possibilities, which is expected to cause more passengers to postpone
or cancel their trip, instead of taking a detour. The third case in this set took place on Wednesday,
February 28 between Leiden Centraal and Schiphol Airport. For passengers between Amsterdam and
Leiden/The Hague/Rotterdam, it is easy to take the route via Haarlem; this route does not lead to
additional travel time, except for a few minutes of waiting time. For passengers between Schiphol and
Leiden, the route by train via Amsterdam Sloterdijk takes 2 to 4 minutes less than the direct bus route:
49-51 versus 53 minutes. It can, therefore, be assumed that the unknown impact of this disruption on
passenger punctuality is limited. The locations of these cases in the network are displayed in figure
4.1.

Label Few detour
possibilities

Medium detour
possibilities

Much detour
possibilities

Date 2018-05-30 2018-04-12 2018-02-28
Track Zl-Mp Ah-Ut Ledn-Shl
Duration 3:44 3:11 2:23
Canceled trains 52 50 37

4.1.3. Exceptional large disruption case
Since an important interest of this research is the unknown impact of large disruptions on passenger
punctuality, a last case is selected that is expected to have a large impact on punctuality. It concerns
an exceptional large signal and switch failure that begun at Schiphol Airport, but has spread to the
whole Amsterdam area with implications throughout the whole national network. During this disruption,
a total of 484 trains has been cancelled around Amsterdam and in other parts of the network. It was
not possible to travel from and to Amsterdam for several hours.

Label Exceptional large
disruption

Date 2018-08-21
Track Asd
Duration 7:10
Canceled trains 484
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Figure 4.1: Location in the network of the selected cases [6]
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4.2. Results
The JPR method is applied to the cases as specified in section 4.1. The numeric results are listed in
table 4.1.

Table 4.1 starts with the case study labels, which can be found in the descriptions of the cases.
Per case, the results can be divided in several blocks. The first block represents the total number of
passengers that were hindered by the disruption. Due to some shortcomings in the method, not every
hindered passenger is found in the reconstruction. Therefore, the number of passengers that has been
reconstructed is also displayed.

The second block is about the passengers that take a detour. The first entry represents the total
number of passengers that takes a detour in the reconstruction and its share of the total number of pas-
sengers in the reconstruction. Two subgroups follow representing the number of detouring passengers
that is registered punctual, the number of passengers that take a detour with separate train parts and
their shares of the total number of passengers that take a detour. A detour with separate train parts is
a detour with, for example, first a train leg, then a bus leg and finally another train leg. In this case, a
passenger appears twice in the punctuality data, which should be corrected for.

The third block represents the postponing passengers, first calling the total number of postponing
passengers and its share of the total number of passengers in the reconstruction and then the number
and share of these passengers that are registered punctual.

In the fourth block, the passengers are displayed that travel only by other modes or cancel their
trip. Both these passengers do not appear in the data, which is the reason they are taken together.
Because they are exchangeable, the sum of these values is also showed. The percentages in this
block represent the shares of the total number of passengers in the reconstruction.

The fifth block represents the total number of passengers and the total number of punctual passen-
gers on the disrupted day according to the current passenger punctuality calculation method.

In the sixth block, the passenger punctuality is calculated according to the current calculationmethod
and according to the reconstruction. Then, the difference between these is given. Then, the part of the
impact that is already captured by the current calculation method is shown. The last row of this block
sums both impact parts up to the total impact.

The seventh block represents the outcomes of the optimization programs. The optimization value
is the sum of the squared differences between the observed journey pattern and the reconstruction of it
per promised journey. The number of unique promised journeys in the reconstruction is called in order
to calculate the average deviation between the observed and reconstructed journey pattern per unique
promised journey.

Block eight contains delay numbers, beginning with the total delay that is not captured by the current
calculation method, including the number of passengers that contribute to this delay. Then, the total
delay that is already captured by the current calculation method and the corresponding number of
passengers. These numbers are added to each other in the third set of lines. Finally, the average
delay per passenger and the percentage of delay that was already captured are calculated.
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4.3. Analysis
The goal of the research is to assess the unknown impact of disruptions on passenger punctuality.
In order to reach that goal, disruption cases have been selected based on factors of interest. These
factors are time of the day and availability of detour possibilities. Five cases have been analyzed,
which will be discussed in sections 4.3.1 and 4.3.2. In addition to these cases, one exceptional large
disruption case has been studied, which will be discussed in section 4.3.3. Section 4.3.6 discusses
other findings based on the six case studies. Figure 4.2 represents per set of cases and per case the
distribution of passengers over the detour, postpone and cancel alternatives.

(a) Journey pattern distributions with varying time of the day

(b) Journey pattern distributions with varying amount of detour possibilities

(c) Journey pattern distribution during an exceptional large disruption

Figure 4.2: Journey pattern distributions for the selected case studies
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4.3.1. Variation in time of the day
By varying in time of the day, it is expected that passengers during the morning peak are more prone
to canceling than passengers later on the day. More and more employers offer their employees the
opportunity to work at home, so if there is a large disruption, it will be no problem to cancel the trip.
Passengers in the evening peak are expected to go home from work and therefore be less prone to can-
celing their journey, because staying at work is no option. Journeys during the day are expected to be
less work-related or to be work-related and important. The cancellation rate for these trips is expected
to be somewhere in between the cancellation rates in the morning and evening peak. These hypothe-
ses are confirmed by the representation of the results in figure 4.2a. It appears that the cancellation
rate for a disruption in the morning peak is 69%. For a disruption during the day, this is decreasing
to 55%. During the evening peak, only 47% of the passengers appears to cancel their trip when a
disruption occurs. Another finding is that in the morning peak and during the day, 10% of the passen-
gers are postponing their trip, while this is only 3% during the evening peak. There are two possible
clarifications for this effect. One is that passengers during the evening peak are less willing to wait
and are more willing to take a detour that takes more travel time if that puts the arrival time forward.
The second is that the frequency for most connections decreases to two trains per hour instead of four
after the evening peak. This makes postponing a trip to after the evening peak more difficult and less
attractive.

4.3.2. Variation in availability of detour possibilities
For the cases with variation in availability of detour possibilities, it is expected that the amount of post-
poning and canceling passengers will increase with a decreasing availability of detour possibilities.
However, for the case with few detour possibilities, it appears that the detour rate for this case is higher
than for the case with medium availability of detour possibilities. This result can be explained by the fact
that, in the case Zwolle-Meppel an obvious detour alternative between e.g. Leeuwarden and Zwolle is
to take the NS train between Leeuwarden and Meppel and to take the bus between Meppel and Zwolle.
This detour takes about 90% more time than the undisturbed travel time, but it is one of the best al-
ternatives when the disruption is taking much time. Because of the unavailability of detour possibilities
by NS trains between Zwolle and Meppel, it also appears that there are more attractive alternatives
that only use the bus or take the train, the bus and then again the train (separate train parts in table
4.1. This is why the share of passengers detouring only by other modes is 19%, which is significantly
higher than in the other cases. The share of passengers detouring with separate train parts is also with
almost 3% the highest of all cases. For the case with many detour possibilities, it appears that 46% of
the passengers detours their trip, which is, as expected, much more than in the other cases.

4.3.3. Exceptional large disruption
For the exceptional large disruption, the resulting decrease in passenger punctuality between the cur-
rent calculation method and the model used is 4.68%. In this case, a lot of journeys are probably
canceled, because it was impossible to travel by train in the environment of Amsterdam. This is also
the explanation for the low detouring rate. This is the percentage of journeys that is detoured (partly) by
train. However, when there is hardly any train traffic possible, it also becomes hard to make a detour
partly by train. A lot of journeys may also be made by only using other modes. This is a reasonable
effect, because when excluding the train from the Amsterdam public transport network, a fairly exten-
sive network remains. Another option for the stranded passengers was to try to get a ride. The NS
launched a hashtag on Twitter named ’#treinpoolen’ (carpooling for the train), where car drivers could
offer empty seats to stranded passengers. It is unknown how many passengers could find a ride, but
it can be assumed that it is a small share of the number of hindered passengers. The low postponing
rate can in this case be explained by the fact that the disruption was solved late during the night.

4.3.4. Delay and delay distributions
Figure 4.4 displays the average delay per passenger in minutes. The first remarkable result is that
the average delay during the day and in the evening peak is almost equal, while during the morning
peak, the average delay is 10 minutes higher. As stated in section 4.3.1, it appears that during the
morning peak, less passenger decide to take a detour. Maybe, the passengers that take a detour are
also accepting a higher delay, causing the average delay to increase.

The next remarkable result is that the availability of detour possibilities seems to influence the aver-
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(a) Delay distribution during a disruption in the
morning peak with medium detour possibilities

(b) Delay distribution during a disruption during the day

(c) Delay distribution during a disruption in the
evening peak

(d) Delay distribution during a disruption with few detour
possibilities

(e) Delay distribution during a disruption with many
detour possibilities

(f) Delay distribution during an exceptional large disrup-
tion

Figure 4.3: Delay distributions for the selected case studies

age delay per passenger. The average delays for the cases varying in availability of detour possibilities
from few to many are respectively 82.9, 54.2 and 34.9 minutes. So, although these cases do not show
peculiarities where it comes to impact on passenger punctuality, the average delays do so. For the
cases studied, the average delay per passenger decreases with an increasing availability of detour
possibilities. As already indicated in section 4.3.2, the Zwolle-Meppel case does not only have few
detour possibilities, but the detour possibilities that are available also imply a much higher travel time.
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Probably, this is a general fact, that fewer detour possibilities also means detour possibilities with higher
travel times.

Figure 4.4: Average delay per passenger per disruption case

4.3.5. Total impact and impact already captured
Figure 4.5 divides the impact of disruptions into a part that is captured and a part that is not captured by
the current calculation method. This is displayed for the impact on passenger punctuality and for the
total delay. The total delay is slightly better captured by the current calculation method: on average,
28% of the delay is captured, while this is 25% for the impact on passenger punctuality. Furthermore,
these numbers are relatively constant, so for the near future, it seems to be reasonable to multiply the
measured impact on passenger punctuality by 4 to estimate the total impact.

(a) (b)

Figure 4.5: Total disruption impact on punctuality and delay divided in captured and uncaptured parts according to the current
calculation method
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4.3.6. Other findings
Besides the results that can be found when looking at one factor at a time, there are also other findings
that do not specifically depend on one of the factors or that depend on other factors than the studied
ones. For example, it appears that the decrease in passenger punctuality largely depends on the
number of hindered passengers. This is a logical result, since most hindered passengers either appear
not in the data or as punctual. Both these groups cause a decrease in passenger punctuality, the first
by decreasing the nominator of the punctuality equation and the second by increasing the denominator
of the equation. This effect is clearly visible in figure 4.6 where the decrease in passenger punctuality
is plotted against the total number of hindered passengers. A straight line can be drawn through the
observations with a relatively small deviation (𝑅ኼ = 0.9837), which also indicates that there may be a
linear relation between the decrease in passenger punctuality and the number of hindered passengers.
This is also an indication that the method developed yields plausible results.

Figure 4.6: Decrease in passenger punctuality plotted against the total number of hindered passengers

A remarkable result is that postponing is the overall least popular option. This result may be caused
by a lack of reliability of the reconstruction model at this point. For each request, the journey planner
returns the three most evident routes. In some cases, the advise consists of three postponing options,
but there are also cases where the planner only returns detour options. This is expected to have some
influence on the percentage of passengers that postpones its trip. Another cause for the low postponing
rate may be in the process of connecting the alternative journey advises to existing promised journeys.
If an alternative journey traverses the disrupted link, it is concluded that the journey is postponed and
the alternative journey is connected to the postponed promised journey. It is then assumed that a
passenger checked in at the departure time of the postponed journey. This is, however, not necessarily
the case, in particular when the disruption is almost solved. In that case, passengers may have checked
in at their planned departure time and waited 15 or 30 minutes till they could make their journey. Also
when passengers already made a journey by metro, bus, bike or other mode to reach the railway
station, they will have a higher willingness to wait for the resumption of the rail traffic. Therefore, a
journey may be postponed, but, since the passenger already checked in, the journey appears in the
data as the original planned journey.





5
Conclusions

The problem addressed in the current research is the unmeasured part of the impact of disruptions
on passenger punctuality. In dense transit networks with the availability of different modes, hindered
passengers that take detours do not always show up in the data or as punctual. Therefore, the Journey
Pattern Reconstruction (JPR) method was developed to reconstruct the observed journey pattern dur-
ing and after a disruption in order to track down the behavior of passengers during disruptions. Based
on these results, the size of the currently unmeasured part of the impact of disruptions on passenger
punctuality could be estimated.

This chapter discusses the results from the case studies and draws conclusions from them. The
goal is to reach the main research objective:

Objective
Assess the unknown part of the impact of disruptions on passenger punctuality and evaluate
the current calculation method.

Finally, the conclusions lead to recommendations for NS and ProRail and possible directions for future
research. First, the key findings will be reported in section 5.1. These findings will lead to policy
implications in section 5.2. Section 5.3 will call the limitations of the current research, which will lead
to directions for future research in section 5.4.

5.1. Key findings
The objective of this research is to assess the unknown part of the impact of disruptions on passenger
punctuality and to evaluate the current calculation method. In order to reach this objective, subques-
tions have been formulated. The answers to these subquestions will be summarized.

1. State of practice and research

• How is the passenger punctuality KPI currently defined, what is the reasoning be-
hind it and what function does it fulfill?

• How do the available methods for passenger punctuality take disruptions into ac-
count?

The reasoning behind the passenger punctuality KPI is that the journey that is offered to the customer
must be made possible. If a journey can not be made as planned, the passenger arrives unpunctual.
The punctuality is measured with thresholds of 5 and 15 minutes. In the current definition, the punctu-
ality is the percentage of punctual passengers within a time interval. The KPI is used in the first place
to supervise the railway operator and infrastructure manager. In the second place, it can be used as
an instrument to steer improvement at all planning levels.

A review has been conducted of available methods for quantification of service reliability with the
focus on handling disruptions. Re-assigning the demand of an undisrupted day to the realized timetable
on a disrupted day is a method that is used often in different shapes. Assuming that a passenger arrives
at the station at its planned departure time on a disrupted day seems to be a reasonable assumption.

35
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Another finding is that definitions of passenger punctuality differ a lot across different researchers and
public transport operators. This raises the question which of the definitions best reflects the experience
of the passengers.

2. Method
Howcanpassenger hindrance be determinedduringdisruptions, concerning detoured,
postponed and cancelled trips?

A new method has been developed that can be used to determine passenger punctuality and delay
during disruptions. This method is based on the concept of reconstructing the observed journey pattern
of the disrupted day. The reconstruction is made from the expected demand in undisrupted conditions
by generating alternative journey advises and assigning the demand to these new options. The result
is a reconstruction of the journey pattern that can be used to recalculate the passenger punctuality.
Besides, the results of the reconstruction give more insight into passenger behavior during disruptions,
which could formerly only be obtained from predictingmodels. Themethod is called the Journey Pattern
Reconstruction (JPR) method.

3. Application
What is the impact of disruptions on passenger punctuality?

The impact of disruptions on passenger punctuality depends on the disruption case. In general, the
impact of a case is determined by the amount of hindered passengers. It appears that, according
to the model, the majority of the expected passengers is canceling its journey by train. This number
decreases in the evening peak, when passengers need to get home. The unavailability of train detour
possibilities for a disrupted track does not necessarily imply that less passengers take a detour. In a lot
of cases, it is possible to take the train to the disrupted part and then take the bus to finish the journey.
For the studied cases, the uncaptured part of the impact of disruptions on the daily value of passenger
punctuality ranges from below 0.5% for a disruption that affects about 5000 passengers to more than
4.5% for a disruption that affects almost 50000 passengers.

5.2. Policy implications
Disruptions in railway traffic appear to have a significant impact on passenger punctuality that is not
captured in the current calculation method of this metric. It appears that this method structurally overes-
timates punctuality in case of disruptions, which affects the reliability of the KPI. The part of the impact
that is already captured is different per case, but lies around 25%. So, it is known what the total impact
is of disruptions on passenger punctuality, what part is captured in the current calculation method and
what part is not.

The following questions need to be asked while considering an improvement of the current method.
What is the total impact of disruptions on the yearly value of passenger punctuality? Is it necessary for
fulfilling the functions of the KPI to have the uncaptured part of the impact implemented?

This research only addressed six disruption cases. For these cases, it appeared that punctuality is
overestimated. However, more cases need to be examined to find the impact on the yearly value of
passenger punctuality. The first advise is, therefore, to further automate the developed method and to
apply it to a larger set of cases.

Secondly, it is advised to consider the accuracy level of the KPI with regard to its function. For the
supervision function, it may be sufficient to adjust the threshold value. Regarding the steering function,
it likely that passenger punctuality plays an important role. Otherwise, it would not be called a Key
Performance Indicator. This applies especially for NS, because transporting passengers from A to B in
time is their core business. Reliability of the passenger punctuality KPI is therefore assumed to be vital
for the well-functioning of both organizations. It is, consequently, advised to explore ways to improve
the current calculation method with respect to the impact of disruptions. The method developed in this
research may serve as a first step towards a more reliable KPI.

This advise assumes that the KPI already is an important steering instrument inside the organiza-
tions. If this is not the case, the advise is, instead, to (re)consider and evaluate the role of the KPI.
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5.3. Limitations
Although the research yielded some very interesting results, there are some limitations that need to be
mentioned. First of all, the research is based on rough estimations of undisrupted demand. Although
these estimations were made while taking the day of the week and the fluctuation over some weeks
into account, the reliability of them is debatable. This limitation has a direct effect on the reliability of
the JPR method.

Another factor that probably had a negative influence on the reliability of the method is that real-
time trip information has not been taken into account in the process of generating alternative journeys.
Real-time trip information of at least the NS train network would have led to more realistic alternative
journeys and a higher reliability of the applied method. For example, severe delays may have caused
alternatives to fail and others to arise. These changes have not been taken into account in the current
model development.

There are also some weaknesses in the method itself. For example, overcrowding is not taken into
account. During a disruption, other modes like bus are often sensitive to overcrowding. With the JPR
method, it is possible to make an estimation of the number of passengers on a bus alternative in case
of disruptions, so if the capacity of the bus is known, overcrowding could be taken into account in the
future.

As already indicated in section 4.3.6, the module that generates the alternatives only returns the
three most evident routes. As a result, some affected promised journeys do not have an alternative
to postpone the journey. This may have caused the low popularity of the postpone alternatives in the
reconstruction. If there would be more postponing alternatives for each affected promised journey,
it might appear that more passengers are assigned to a postponing alternative in the reconstruction.
This limitation also has a possible effect on the passenger punctuality, since passengers may have
postponed their trip to a later moment that is not taken into account in the current JPR method.

Another drawback is in the final phase of a disruption, where it is assumed that a passenger checks
out and in again if it postpones its journey. This assumption needs to be made because of simplicity
reasons, but may affect the quality of the model. In reality, a passenger that has to wait about 15
minutes is not expected to check out and in again in most cases.

Overall, the JPR method produces plausible results that are well explainable. However, the reli-
ability of the reconstruction can be improved. As visible in the bottom part of table 4.1, the average
deviation from the observed journey pattern per unique promised journey in the reconstruction of the
journey pattern ranges from 0.67 to 2.08. It is expected that, with improvements at the points mentioned
above, these numbers can be decreased, leading to a more accurate recalculation of the passenger
punctuality.

5.4. Future research
The limitations of the current research can serve as input for future research. Future research can aim
to develop a model for forecasting passenger demand on the level of promised journey. With such a
model, it can be determined on beforehand how many passengers will be in a train and how many will
be affected by a disruption. It will also make the analysis afterwards much more reliable. A possible
model would be a machine learning model that takes the historic demand and several factors that may
influence the demand (e.g. weather conditions, holidays, infrastructure maintenance etc.) into account.

Another enhancement to the method can be made by including real-time trip information in the
process of generating alternative journeys. Doing so, alternatives that became feasible as a result of
delays will be added and alternatives that became unfeasible will be removed from the sets of alterna-
tives. This will make the reconstruction process more reliable. Future research should point out how
this improvement can be achieved.

There are several minor improvements that can be made to the JPR method. The first of them is
to correct for overcrowding. This is expected to be a problem especially at alternatives that don’t use
the national rail network, but, for example, the bus or light rail. If this correction is made, it can also be
determined how large the overcrowding effect is in reality.

Future research may also go in the direction of check-in/check-out patterns. This can, in the first
place, provide information about the slack time passengers are taking between check-in and departure.
In the second place, it can be used to improve the JPR method in the final phase of a disruption.
Currently, it is hard to assign passengers to the right promised journey in that phase. Such research
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may lead to improvements in this process. If it appears that passengers on average take a slack time
of several minutes, this can also be implemented in the process of generating alternative journeys;
passengers can possibly take earlier alternatives if they arrive early to the station.

The shortcomings of the JPR method where it comes to the unrealistic percentages of postponing
passengers may be solved in a future study by manually adding postponing alternatives to the set of
generated alternatives. Therefore, it should be analyzed to what extent passengers want to postpone
their journey. Are extra passengers observed on the disrupted track until half an hour or until 2 hours
after the disruption? Based on this analysis, extra postponing alternatives can be added.

The final suggestion for future research is based on the review of available definitions and methods
for calculating passenger oriented reliability measures. The variety of these available definitions and
methods raises the question what is a good passenger oriented definition of service reliability and
which of the available definitions and methods performs the best in different situations. The focus in
such research can be either on the quality of reflection of the experience of the passenger, on the best
representation of reality or on a combination of both.



A
Stakeholder analysis

Several stakeholders are involved in this project. This appendix introduces them and places them in
a power-interest grid in order to indicate their particular roles. The stakeholders that can be identified
are ProRail and NS, the Dutch Ministry of Infrastructure and Water Management. Passengers are
represented in consumers’ associations like Rover in The Netherlands.

A.1. ProRail
ProRail is the infrastructure manager in The Netherlands and is in that function responsible for con-
struction, maintenance, management and safety of the Dutch rail network. ProRail fulfills tasks in
distributing the network capacity over transport agencies, rail traffic control and construction, manage-
ment and maintenance of rail and stations [2]. These duties are fulfilled in commission of the Dutch
Ministry of Infrastructure and Water Management, formerly known as the Ministry of Infrastructure and
Environment. Together with NS, ProRail is responsible for carrying passengers over the main rail net-
work (Hoofdrailnet, HRN). As part of this responsibility, ProRail has taken over the Key Performance
Indicators (KPI’s) that are also used by the NS. One of these KPI’s is the passenger punctuality, which
explains ProRails’ interest into this topic.

A.2. Dutch Railways (Nederlandse Spoorwegen, NS)
In former times, NS has been responsible for the complete railway operation in The Netherlands. In
the European program of unbundling the railway sector, the responsibility for infrastructure has been
transferred to ProRail. NS is still the main railway operator in The Netherlands and responsible for the
transport equipment that is needed to carry passengers over the HRN. NS is interested in the passenger
punctuality for the same reason as ProRail.

A.3. Ministry of Infrastructure and Water Management (I&W)
The Ministry of I&W is working on livability and accessibility in The Netherlands. Part of its tasks is to
guarantee reliable connections on the road, rail, through the water and through the air [1]. In order to
accomplish that, I&W granted concessions to ProRail and NS respectively to manage and operate the
HRN. In these concessions, agreements have beenmade on, among others, the passenger punctuality.
Therefore, the Ministry is not only interested in the value of the KPI, but also in the right definition of it.
Thus, caution is required in contact with the Ministry, because certain subjects may be sensitive.

A.4. Customers’ associations
Customers’ associations like Rover in The Netherlands act on behalf of the passengers to ensure the
quality of public transport. In this function, they are a second watchdog besides the Ministry. Since
punctuality is one of the core values in public transport, passenger punctuality can also count on con-
siderable attention from these associations. Although their power is limited when compared to the other
parties described, their influence should not be ignored.
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A.5. Power-interest grid
Based on the descriptions of the parties involved, figure A.1 shows a power-interest grid in order to
indicate their particular roles.

Figure A.1: Power-interest grid
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