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Abstract—The transportation industry is a significant source
of greenhouse gas emissions, with freight transport emerging as
one of the main contributors owing to its extensive mileage and
substantial weight. As a result, electrification of road transporta-
tion has become a vital step in reducing direct CO2 emissions.
While the adoption of passenger electric vehicles has gained
notable traction, the landscape for Heavy-Duty Electric Vehicles
(HDEVs) is still in its early stages of development. Accelerating
the advancement and adoption of HDEVs hinges on prioritizing
the installation of their charging infrastructure. This requires a
deep understanding of HDEVs’ energy and power requirements
while also considering grid limitations. Meeting the high demand
for charging necessitates exploring on-site renewable energy gen-
eration and stationary batteries as viable solutions. Recognizing
this imperative, a multiobjective sizing model has been developed,
tailored specifically to address the requirements of HDEV charging
stations. These objectives include minimizing investment costs,
penalizing undercharged or rejected HDEVs’ charging demand,
reducing idle charger time, and managing expenditures within a
charging station. The key outcomes of the model encompass various
critical factors essential for designing and implementing charging
infrastructure for HDEVs. These factors include determining the
optimal number of PV panels and wind turbines to harness
renewable energy, specifying the capacity of the battery energy
storage system, and identifying the necessary number and rated
power of chargers in alignment with the grid contract limit.

Index Terms—Charging station configuration, Genetic algorithm
(GA), Heavy-duty electric vehicle (HDEV), Multiobjective sizing
model.

I. INTRODUCTION

The European Commission took on a set of proposals to adapt
the EU’s climate, energy, mobility, and taxation practices in
order to reduce net emissions by a minimum of 55% by 2030
and make this continent the first to achieve climate neutrality
by 2050, which calls for a 90% reduction in emissions related
to transportation by that year [3]. Road vehicles account for
more than 75% of CO2 emissions in the transportation sector
according to [1] from which freight is responsible for over 30%,
and it is likely to rise [2]. As a result, one of the most critical
steps in reducing CO2 emissions is the electrification of heavy-
duty vehicles.

To promote the adoption of heavy-duty electric vehicles
(HDEVs), the EU established a target of having HDEV-specific

charging stations with a maximum distance of 60 km along
the TEN-T core network by the end of 2030 to facilitate their
excursions [4]. However, designing charging infrastructure for
HDEVs comes with distinct challenges compared to passen-
ger electric vehicles (EVs). Although, for now, battery size,
charging demand, and energy consumption of HDEVs remain
uncertain due to their limited availability and usage, HDEVs are
expected to use notably large batteries ranging from 300 to 1000
kWh, leading to higher energy requirements. Furthermore, these
trucks adhere to strict working schedules, constraining their
charging availability and resulting in peak demand for charging.
Consequently, charging stations for HDEVs must accommodate
substantially higher charging rates—up to a few megawatts if
multiple vehicles are charging simultaneously. Due to these
challenges, existing models designed for passenger vehicles are
unsuitable for sizing HDEV charging stations.

A significant amount of research has been dedicated to
determining the appropriate sizes of distributed energy storage
systems and renewable energy sources (RESs) for passenger EV
charging station systems. However, there has been a noticeable
scarcity of studies addressing the optimal number and power
ratings of chargers required in a charging station. Moreover, the
optimization objectives in many of these studies primarily focus
on minimizing economic expenditure. Among the few papers
that consider the sizing of chargers along with other factors,
Bryden et al. [5] proposed a rule-based model for determining
optimal battery energy storage system (BESS) capacity at pas-
senger EV charging stations based on acceptable average wait-
ing times, as well as determining the number of fast-charging
connection points. However, their approach keeps the size of EV
batteries, EV chargers’ rated power, grid connection capacity,
and acceptable waiting time of EVs constant. In [6], the optimal
number of chargers and waiting spaces in fast charging stations
was determined jointly to maximize expected operator profits,
considering various factors such as charging service profit,
waiting penalties, rejection penalties, and maintenance costs.
However, their study, akin to [5], only optimizes the number
of chargers while keeping their power constant, and they do
not delve into sizing other assets such as RESs. Additionally,
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their rejection criteria for EVs are based solely on available
space, neglecting considerations of parking times for vehicles.
Dominguez-Navarro et al. [7] presented an approach utilizing a
genetic algorithm (GA) model to optimize installation designs,
including charger number, power ratings, wind turbine types,
PV farm, and battery size. Their goal was to maximize profit
measured by net present value (NPV). However, while their
study seems to be more comprehensive in terms of variables
optimized, they simplify the objectives by focusing only on
economic considerations. While for a charging station such as
those by highway, factors such as rejection and parking time
penalties often hold more importance compared to economic
variables. Hence, a noticeable research gap emerges where
the sizing of BESS, RESs, and chargers are simultaneously
considered, integrating additional objectives such as penalties
related to unmet demand (rejection and undercharging of EVs)
and idle chargers.

To address this gap, a bi-level multiobjective sizing model
was developed to determine the size of assets in the charg-
ing station and identify the configuration. The optimization
model seeks to find an HDEV charging station’s configuration
that balances multiple factors and objectives. These objectives
include minimizing investment costs, penalizing undercharged
or rejected HDEV charging demand, reducing idle charger
time, and managing expenditures within a charging station.
By considering these objectives collectively, the model aims
to optimize various asset sizes within the charging station to
maximize its economic and social benefits. The outcomes of
this model are the number of PV panels and wind turbines,
the capacity of BESS, the number of chargers, and their rated
capacity according to the grid contract limit. In this model, if the
defined grid limit proves insufficient to fulfill the minimum re-
quirements within the system and a suitable configuration cannot
be identified based on that, a dynamic adjustment mechanism is
activated. This involves increasing the grid limit and restarting
the model with the updated constraint so that the system can
adapt effectively to minimum constraints and charging demands.

The subsequent sections of the paper are structured as
follows: Section 2 outlines the methodology and constraints
considered in defining the optimization model used for sizing
assets. In Section 3, the input data and parameters of this model
are detailed. Section 4 presents the conclusion of the study,
showcasing the final results of the multiobjective model. Section
5 summarizes the paper and discusses future steps.

II. MATHEMATICAL MODELLING

This study tries to identify the configuration and sizes of
assets in an HDEV-specific charging station located along a
highway in the Netherlands. To accomplish this, a bi-level mul-
tiobjective optimization model is defined. Given the anticipated
charging demand, which is expected to reach several megawatts,
and considering potential grid limitations and congestion, the
inclusion of RESs and stationary BESS is deemed necessary
for this charging station. The following section elaborates on
the methodology and details of this sizing model.

In order to be able to define the multiobjective optimization
model, NSGA-II (non-dominated sorting genetic algorithm II) is
employed on this model [8]. NSGA-II enables the minimization

of each objective independently, resulting in a range of non-
dominated solutions at each generation. Moreover, NSGA-II
offers the flexibility to prioritize objectives in the multiobjective
optimization problem. By setting priorities for each objective
and conducting a final selection process, different system con-
figurations can be tailored to different limitations and objectives.
For simplicity, the abbreviation GA is used instead of NSGA-II
throughout this paper.

The optimization problem is subject to several hard con-
straints, equations (1)–(7), to ensure the correct performance
of the system:

– limit of the SoC of the BESS (SoCmin as lower and SoCmax

as upper bounds):

SoCmin ≤ SoCb
t ≤ SoCmax (1)

which leads to the limits of the charge (P bch, max) and
discharge power (P bdis, max) of the BESS:

− P bdis, max
t ≤ P b

t ≤ P bch, max
t (2)

P bch, max
t = min(P b, r ,

(SoCmax − SoCt)× Eb, r

100×∆t
) (3)

P bdis, max
t = min(P b, r ,

(SoCt − SoCmin)× Eb, r

100×∆t
) (4)

– limit of the supplied and consumed power from the grid
(P g, max):

− P g, max ≤ P g2s
t ≤ P g, max (5)

– limit of the supplied power from the charger c to an HDEV
(P s2ev

t, c ):

P s2ev
t, c ≤ P r

c (6)

– power balance in the charging station:

P s2ev
t + P s2g

t + P unmet
t = P pv

t + Pwind
t + P b

t + P g2s
t (7)

where:

P s2ev
t =

Nev∑
v=1

P ev
t,v (8)

P total
t = P s2ev

t − P b
t − P pv

t − Pwind
t (9)

P g2s
t =

{
min(P g, max, P total

t ) if P total
t > 0

0 if P total
t ≤ 0

(10)

P unmet
t = P total

t − P g2s
t (11)

In Equation (1)–(11), the symbols represent:
SoCb

t : SoC of the BESS at time t (%).
P b
t : Power of the BESS at time t (W).

Eb, r: Rated energy capacity of the BESS (Wh).
P g2s
t : Power supplied from the grid to the station at time t

(W).
P r

c : Rated power of the charger c (W).
P s2ev
t : Total power supplied from the station to HDEVs at

time t (W).
P s2g
t : Power supplied from the station to the grid at time t

(W).
P unmet
t : Unmet power demand at time t (W).

P pv
t : Power generated by the PV panels at time t (W).
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Fig. 1: General block diagram of the sizing model.

Pwind
t : Power generated by the wind turbines at time t (W).

Pwind
t

P ev
t,v : Power demand of vehicle v arriving to the station at time

t (W).
Nev: the total number of HDEVs arriving at the station at

time t.
As shown in Fig. 1, the sizing model operates across two

distinct optimization levels. At the first optimization level, a
holistic view of the system is taken, focusing on optimizing
the sizes of the BESS (Eb, r) and RESs, including the num-
ber of PV panels (N pv) and wind turbines (Nwind). In this
layer of the model, the objective is to identify the optimal
system configuration that fulfills most of the energy demand
for HDEV charging (Es2ev

t ) while minimizing the electricity
purchase expenditure over the simulation period (T), penalties
for unmet demand (Eunmet

t ) based on the grid limit (P g, max),
and the NPV of investment cost (I1). Prioritization is given to
minimizing the unmet demand energy in this layer. In the final
selection process, any points on the pareto front where the unmet
demand exceeds 30% of the total charging demand (Etotal)
are disregarded, as shown in Fig. 1. Subsequently, the optimal
combination is selected from the remaining pareto front points
based on the fitness function presented in (12). In the first layer
of the model, a dynamic adjustment procedure is started if the
defined grid limit (P g, max) is insufficient to meet the system’s
basic needs, and an appropriate configuration cannot be found
under those requirements. This involves beginning the model
with the updated grid limit and updated set of constraints. This
iterative approach ensures that the charging station configuration
aligns closely with both the operational demands of HDEVs and
the constraints of the existing grid infrastructure.

Minimize(α1

T∑
t=1

Eg2s
t · cg2s

t + α2

T∑
t=1

Eunmet
t · cunmet

t + α3
I1 · T
L

)

(12)

where:

I1 = N pv · P pv, r · cpv +Nwind · cwind + Eb, r · cb (13)

In Equations (12) and (13), the symbols represent:
cg2s

t : Cost of energy purchased from the grid at time t (e).
cunmet

t : Penalty cost for unmet demand at time t (e).
L: Lifespan of the assets.
P pv, r: Rated power of each PV panel (W).

cpv: Cost of PV panel installation (eper rated power).
cwind: Cost of wind turbine installation (eper wind turbine).
cb: Cost of BESS installation (eper Wh).
After completing this first layer of optimization, the second

layer is initiated. In the second level, a more detailed perspective
is adopted, considering individual components within the sys-
tem. Here, the objective is to determine the number of chargers
(N cs) and rated power (P cs, r) of each charging plug in the
station, ensuring efficient utilization of resources and effective
meeting of the operational demands of HDEVs. The objective
is to optimize this configuration to efficiently charge HDEVs
while minimizing the penalties for unsatisfied charging demand
and idle chargers (C idle) (17) beside the NPV for purchasing
and installing chargers (I2) (16). In this stage, priority is given
to minimizing unsatisfied charging demand. During the final
selection process, any points on the pareto front where the
number of trucks leaving the charging station without being
charged (N uncharged) exceeds 20% of the total number of trucks
(N total) are disregarded. Subsequently, the optimal combination
is selected from the remaining pareto front points based on the
fitness function presented in (14).

min(β1

T∑
t=1

Eunmet
t,v · cunmet

t + β2C
idle + β3

I2 · T
L

) (14)

where:

Eunmet
t =

{∑Nev

v=1
(SoCreq

v −SoCt, v)×Ev

100 if t = tdep

0 otherwise
(15)

I2 =

Ncs∑
c=1

P cs, r
c · ccs (16)

C idle =

∑T
t=1

∑Ncs

c=1(1− Ut,c)

L
· I2 (17)

In Equations (14)–(17), the symbols represent:
ccs: Cost of high power charger installation (e/kW).
Ut,c: A binary variable indicating whether each charger is

working or not utilized at time t.
The system operation in both layers is simulated using a

rule-based energy management (EMS). The primary rationale
behind using a rule-based EMS is to prioritize simplicity and
efficiency. Given the necessity to execute this algorithm many
times for each generation of the GA (once every 15 minutes
for the simulation period), it is crucial to maintain a swift
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Fig. 2: General block diagram of the rule-based EMS deployed in the sizing model.

and straightforward approach. Fig. 2 presents the general block
diagram of the rule-based EMS deployed in the sizing model.

Since the focus is on identifying the general or high-level
architecture of the system in the first layer, the total charging
demand (P s2ev

t ) is considered, and only the blue section of
this block diagram is utilized (EMS1). However, in the second
layer of the sizing model, which is responsible for determin-
ing the chargers’ rated power, the detailed charging demand
(T park

t,v , SoCev, init
v , SoCev, req

v , Eev, r
v ) is considered instead of

the aggregated load curve, and the charger allocation block is
activated as well (EMS2 in Fig. 2). At each timestamp, several
HDEVs arrive at the charging station to be charged. The EMS
first checks if there are any available chargers. If a charger is
available, the first arrived vehicle connects to the charger, and
the charging process starts. However, vehicles where no charger
is available need to wait until the next timestamp. The parking
time (T park) for each vehicle is assumed to be known, so if no
charger is allocated to the vehicle before its parking time ends,
the vehicle leaves the station without being charged, incurring
a penalty. Additionally, since there is a possibility that chargers
may not be allocated in time, some vehicles may leave the
station without being fully charged. When the total charging
demand is calculated, the source allocation is initiated. The
EMS is designed to prioritize utilizing available RES generation
to meet the energy demand at each timestamp. If the demand
exceeds the available RES generation, the BESS is utilized,
followed by the grid as a last resort. This approach aims to
reduce dependence on the grid and promote self-sufficiency. The
BESS is charged whenever its SoC falls below 30%, and the
grid has available capacity.

III. CASE STUDY

Solar and wind generation data for modeling is sourced from
[9]. Additionally, the data related to charging demand, including
the arrival times of trucks at the charging station, their battery
capacity, and energy demand upon arrival, is obtained from the

Fig. 3: Charging demand at an HDEV charging station under study.

outputs of a truck trip simulator called MASSGT [10]. The
simulator models truck movements within the Netherlands based
on real trucks’ and trailers’ GPS data. Using this data, a semi-
realistic charging demand dataset for eight HDEV charging
stations within the Netherlands is generated. Fig. 3 illustrates
the dataset related to one of the chosen charging stations used
in the sizing model. The data related to the price of electricity
purchased from the grid is obtained from the Ember website,
which sources its data from Entso [11]. The price of electricity
purchased and sold to the grid is considered to be the same.
Additionally, the cost of charging HDEVs at the charging station
is assumed to be 0.6 e/kWh according to [12]. To account for
seasonal changes in RES generation and electricity costs, the
final dataset includes data from the first week of each season

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2025 at 13:24:56 UTC from IEEE Xplore.  Restrictions apply. 



from the entire dataset. Besides, in all the equations above, the
penalty for unsatisfied charging demand is set to three times the
electricity purchase price at that time.

The range of decision variables in the sizing model plus
their costs are shown in Table I. It should be noted that the
choices of BESS rated power and chargers’ rated power, shown
in this table, are step-wise. This is because these elements
are constructed using modules, mirroring real-world scenarios.
The ratings can be adjusted in increments of 100 kWh for the
BESS and 100 kW for the chargers’ rated power. Moreover, the
lifetime of all assets, including PV panels, wind turbines, BESS,
and chargers, is considered 20 years.

TABLE I: Optimization variables used in the sizing model.

Variable Lower
limit

Upper
limit

Unit size investment cost

Npv 0 2770 365 W 365 e/panel

Nwind 0 5 3.5 MW 6125000 e/turbine

Ncs 1 15 – –

P r
cs 300 kW 1 MW 100 kW 500 e/kW

Er
b 100 kWh 2 MWh 100 kWh 290 e/kW

IV. RESULTS

In the following, results using the above-described sizing
model are shown. In Fig. 4a, the dynamic evolution of decision
variables within the first layer GA is depicted, offering a
comprehensive insight into the iterative progression of initial
fronts across generations. The simulation commenced with a
grid contract limit of 3 MW. However, as this limit failed to meet
the model’s set constraints and requirements, it was gradually
increased to 4.5 MW. The results presented in this section are
for a system configuration with a grid limit set to this increased
value. Notably, it can be observed that each pareto front
encompasses more than a single combination, showcasing the
diverse range of potential solutions capable of achieving optimal
system configuration. This diversity is particularly pronounced
in the NSGA-II algorithm, where each objective is minimized
independently, yielding a spectrum of non-dominated solutions.
Upon analysis of these results, it becomes evident that the
optimal configuration, tailored to meet the specifications and
operational constraints of the system, entails the deployment
of 37 PV units, 0 wind turbines, alongside a BESS boasting
a capacity of 2 MWh. The corresponding values for different
objectives considering this configuration are as follows: NPV of
investment cost of 2276.46 e, total electricity cost of 68.49 ke,
and unmet demand penalty of 70.91 ke. With this configuration,
the percentage of unmet demand is 27.1%. Upon completion of
the first layer of optimization, the final system configuration
is transferred to the second layer, tasked with determining the
number of charging stations and their power ratings. Fig. 4b
illustrates the dynamic evolution of decision variables within
the second layer GA. Similar to the first layer, each pareto front
encompasses multiple combinations, demonstrating the diverse
array of potential solutions capable of achieving an optimal
system configuration. Upon analyzing these results, the optimal

(a)

(b)

Fig. 4: Evolution of pareto fronts at each iteration within the (a) first
layer and (b) second layer of the optimization model.

configuration which meets system specifications and operational
constraints involves deploying 13 chargers with power ratings
of [500, 500, 600, 600, 600, 700, 700, 800, 800, 900, 900, 1000,
1000] kW. Correspondingly, considering this configuration, the
associated values for different objectives are as follows: NPV of
investment cost of chargers at 18.41 ke, unmet charging penalty
at 20.51 ke, and idle charger penalty at 67.59 ke. Additionally,
with these asset sizes, 48.4% of vehicles are fully charged,
33.9% are undercharged, and the remaining 17.7% leave the
charging station without being charged. In the identified system
configuration, wind turbines were not included, likely due to
their high rated power per unit and investment cost compared to
PV and BESS. This makes them less practical for this charging
station’s requirements. Additionally, since the simulation was
conducted using data specific to the Netherlands, where solar
irradiance is not so high throughout the year, the number of PV
panels was not selected to be high either. Figure 5 illustrates how
the percentage of uncharged, undercharged, and fully-charged
trucks changes with the number of PV panels in the system. It
is evident from the case study that increasing the number of PV
panels does not have a significant impact, and the optimization
model opted for the lowest value to minimize investment costs.

Fig. 6 presents the results obtained from simulating the
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Fig. 5: Effect of PV panel quantity on truck charging status.

system performance using the rule-based EMS within the second
layer, utilizing asset sizes determined during the optimization
phase. In Fig. 6, the upper plot delineates the overall power
flow across primary subsystems of the EH over the course of a
period of 3,5 hours. Meanwhile, the lower plot offers a detailed
perspective on the BESS energy and SoC throughout the simula-
tion period. Given the BESS’s primary role as an energy source
before grid utilization, frequent charge and discharge cycles are
observed. At this simulation level, individual load curves for
each charging station are considered, although for clarity and
ease of interpretation, Fig. 6 showcases the aggregated charging
demands. As observed, despite the inclusion of a large BESS in
the system configuration, there is insufficient energy available
during peak hours to assist in meeting the charging demand
which highlights the importance of EMS in optimizing system
operation.

V. CONCLUSION

This paper presents a bi-level multiobjective sizing model de-
signed to address the critical need for optimized charging station
configurations tailored specifically for HDEVs. By integrating
various factors such as investment costs, penalties for unmet
demand, idle chargers, rejection of HDEVs, and expenditure
management, the model aims to strike a balance that maximizes
economic and social benefits while meeting operational require-
ments. The model’s outcomes provide valuable insights into the
optimal sizing of assets within charging stations, including the
number of PV panels and wind turbines, the capacity of BESS,
grid connection capacity, and the configuration of chargers.

By examining the outcomes presented in section IV, the
pivotal role of EMS in enhancing system performance becomes
evident. Despite the presence of a quite big BESS within
the system architecture, its effectiveness in meeting demand,
particularly during peak hours, is hindered by the absence of
smart charging mechanisms. Furthermore, the prioritization of
objectives in multiobjective GA optimization and the final selec-
tion process of determining the optimal configuration from the
pareto front significantly influence the system’s configuration.
As a result, future efforts will focus on enhancing the sizing
model to incorporate smart charging mechanisms and assessing
its efficacy under diverse operational conditions and selection
modes.
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