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A Critical Evaluation of the Adequacy of the Gamma Model for Representing Raindrop
Size Distributions

CHRISTOS GATIDIS, MARC SCHLEISS, CHRISTINE UNAL, AND HERMAN RUSSCHENBERG

Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands

(Manuscript received 22 June 2019, in final form 2 August 2020)

ABSTRACT: The adequacy of the gammamodel to describe the variability of raindrop size distributions (DSD) is studied

using observations from an optical disdrometer. Model adequacy is checked using a combination of Kolmogorov–Smirnov

goodness-of-fit test and Kullback–Leibler divergence and the sensitivity of the results to the sampling resolution is inves-

tigated. A new adaptiveDSD sampling technique capable of determining the highest possible temporal sampling resolution

at which the gamma model provides an adequate representation of sampled DSDs is proposed. The results show that most

DSDs at 30 s are not strictly distributed according to a gamma model, while at the same time they are not far away from it

either. According to the adaptive DSD sampling algorithm, the gamma model proves to be an adequate choice for the

majority (85.81%) of the DSD spectra at resolutions up to 300 s. At the same time, it also reveals a considerable number of

DSD spectra (5.55%) that do not follow a gamma distribution at any resolution (up to 1800 s). These are attributed to

transitional periods during which the DSD is not stationary and exhibits a bimodal shape that cannot be modeled by a

gamma distribution. The proposed resampling procedure is capable of automatically identifying and flagging these periods,

providing new valuable quality control mechanisms for DSD retrievals in disdrometers and weather radars.

KEYWORDS: Rainfall; Drop size distribution; Sampling

1. Introduction
Continuous and reliable precipitation monitoring is of fun-

damental importance for understanding the water cycle. Every

year, extreme precipitation events cause floods and trigger

landslides, which cost many human lives and billions of dollars

(Ralph et al. 2014). However, obtaining accurate precipitation

measurements can be extremely challenging due to the high

underlying variability of the meteorological phenomenon

in space and time (Jameson and Kostinski 2001; Uijlenhoet

et al. 2003).

One fundamental quantity needed to understand rainfall

variability is the raindrop size distribution (DSD). The DSD is

considered to be the key source of uncertainty in quantitative

precipitation estimations (QPE), affecting rain-rate estimates

from ground based radars and satellites. Several studies have

shown that QPE can be significantly improved using accurate

DSD observations (Rose and Chandrasekar 2006) but is diffi-

cult in practice as natural DSDs rapidly vary in space and time

and exhibit a wide range of shapes. For radar and satellite re-

lated applications, where a limited amount of information is

available, it is often necessary to parameterize the DSD in the

form of a simple distribution.

Several mathematical models have been proposed to ap-

proximate naturally occurring DSDs (Marshall and Palmer

1948; Ulbrich 1983; Zhang et al. 2001; Testud et al. 2001; Bringi

et al. 2003). The most popular and widely accepted of them

in the remote sensing community is the gamma distribution.

However, the gamma distribution is not a perfect model and

several studies have questioned its adequacy (Kliche et al.

2008; Ekerete et al. 2015; Cugerone and De Michele 2015). Its

acceptance mainly comes from the fact that it is relatively

versatile yet simple enough to be useful in practice. It is more

flexible than the exponential (Marshall and Palmer 1948)

and provides a ‘‘reasonably good fit’’ to measured DSDs. In

addition to the conventional distributions like gamma, more

complex models have also been proposed in the literature

(Ignaccolo andDeMichele 2014; Ekerete et al. 2015; Cugerone

and De Michele 2015; Thurai and Bringi 2018). Although they

are better at representing real DSDs, they are more difficult to

use in practice due to their large number of parameters that

cannot be retrieved using remote sensing measurements.

Despite its being the most widely used model, only a few

studies have focused on precisely quantifying the adequacy

of the gamma distribution. Johnson et al. (2015) com-

pared the performance of four conventional unimodal and

skewed-to-the-right distributions that may be considered as

potential DSD models. They highlighted that the gamma

model provided the best fit, followed by the lognormal,

beta and, finally, the Weibull. Adirosi et al. (2016) fitted

three distributions—lognormal, gamma, and Weibull—and

compared their goodness of fit using the Kolmogorov–Smirnov

test (K-S test). They showed that the gamma distribution has

the lowest rejection rate, while Weibull is the most frequently

rejected. Ekerete et al. (2015) used the chi-square goodness-of-

fit test for testing several candidate models against the obser-

vations and concluded that DSDs are somewhere between the

bimodal and the gamma shape, suggesting that gamma or

lognormal distributions are not fully adequate. Their recom-

mendation is to use a Gaussian mixture model with three

centers. Similarly, Cugerone and De Michele (2015) pointed
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out that the gamma and lognormal model are not accurate

enough based onK-S test and a skewness–kurtosis diagram and

suggested to use a four-parameter distribution (i.e., Johnson

SB) instead. That diagram is one of the various graphical

methods for determining visually whether sample data con-

form to a reference distribution. Among them the most com-

monly used graphical tools are the quantile-to-quantile plots or

Q–Q plots (Yakubu et al. 2014; Watanabe and Ingram 2016)

and the density plots (Ekerete et al. 2015; Adirosi et al. 2016)

as well.

Noneof these studies focusedon sampling resolution as amajor

factor nor provided clear guidelines for how it should be taken

into account when evaluating the gamma model. All of them

used a similar resolution (1-minDSDs), ignoring questions like

‘‘Does the gamma model perform better at lower/higher resolu-

tions than 60 seconds?’’ or ‘‘When should we not use a gamma

model?’’ These are very relevant questions when we take into

consideration that DSD measurements at higher temporal res-

olutions are affected by larger sampling uncertainties. Although

it was not the main scope of their study, Adirosi et al. (2015)

suggested that the adequacy of the gamma model is likely to

decrease with higher temporal resolutions.

In this paper, we take a closer look at the adequacy of the

gamma model for representing DSDs. Our analysis starts by

fitting gamma distributions on a DSD dataset collected by an

optical disdrometer over a 2-month period. The adequacy of

the fit is assessed based on a combination of Kolmogorov–

Smirnov goodness-of-fit test and Kullback–Leibler divergence.

The novelty of the study lies in its focus on the influence of the

sampling resolution and how it affects the adequacy of the

gamma model. A new adaptive DSD sampling technique ca-

pable of determining the highest possible temporal sampling

resolution at which the gamma model provides an adequate fit

is proposed.

The work is organized as follows. In section 2, we introduce

the data used in our study, and in section 3 we present the

followedmethodology. The adequacy of the gammamodel and

its sensitivity to the sampling resolution is presented in

section 4. Finally, the conclusions are provided in section 5.

2. Data
The DSD data used in this study were collected by a Particle

Size and Velocity (Parsivel2) optical disdrometer located at

the Cabauw Experimental Site for Atmospheric Research

(CESAR) observatory during the Analysis of the Composition

of Clouds with Extended Polarization Techniques (ACCEPT)

campaign in October and November 2014, in a collabora-

tion between Leibniz Institute for Tropospheric Research

(TROPOS), Germany, and Delft University of Technology.

Cabauw is located in the western part of the Netherlands, in a

polder area, 0.7m below mean sea level.

The measurement principle and performance of the Parsivel

disdrometer have been extensively described in previous

studies (Löffler-Mang and Joss 2000; Tokay et al. 2014); it

uses a horizontal laser beam with an approximately 54-cm2

measuring, sampling surface. When a raindrop passes through

the laser beam, the attenuation in the received voltage and the

time for the particle to leave the beam can be used to estimate

the equivolume spherical raindrop diameter and the terminal

fall velocity of the raindrop.

Diameter and velocity are divided in 32 nonuniformly

spaced classes ranging from 0 to 25mm and 0 to 21m s21 re-

spectively. All the drops in a given class are assigned to the

center of the bin. Thus, the raw output data for a sampling

interval are a 32 3 32 matrix of detected number of drops for

each diameter and velocity class from which the volumetric

size distribution of drops (m23mm21) can be estimated

(Raupach and Berne 2015). The first two diameter classes

(0.062 and 0.187mm) in the Parsivel are always empty due to

the low signal-to-noise ratio. Therefore, the minimum detect-

able drop diameter is approximately 0.25mm. From the DSD,

integrated quantities can be inferred, such as rainfall rate (R)

expressed in mmh21, which is the amount of rain that falls

over a given interval of time and radar equivalent reflectivity

factor (Z) expressed in dBZ which is related to the back-

scattered radar signal of hydrometeors. For this study, volu-

metric DSD values at several temporal sampling resolutions

were used, the highest being 30 s.

As in other related DSD studies (Thurai and Bringi 2018;

Jaffrain and Berne 2011; Adirosi et al. 2014) a selection crite-

rion is applied to the whole DSD dataset before the analysis.

Our selection is based on two main requirements:

d Only liquid precipitation is considered. This means that only

the first 22 diameter classes of the Parsivel are used, starting

from the third (0.25–0.375mm) up to the twenty-second

(6–7mm), the latter corresponding to the biggest physically

possible raindrops. DSDs with measurements between the

twenty-third and thirty-second class (solid or mixed precip-

itation) were discarded. Further, the classification of pre-

cipitation particles provided by Parsivel was used, and only

the following precipitation types were accepted: drizzle,

drizzle with rain and rain. All DSDs attributed to other

precipitation types were discarded.
d A threshold on the minimum number of size classes was set.

All DSDs composed of fewer than three different size classes

were discarded. Moreover, all DSDs for which the rain rate

estimated by the Parsivel is zero were discarded. This is

necessary in order to remove suspicious observations such as

noise from insects or other objects crossing the beam.

The application of the selection procedure described above

to the whole dataset (24 289 DSD spectra) resulted in 12 329

30-s DSD spectra. From the 11 960 DSD that were excluded,

more than 80% were discarded due to the spurious signals

(noise) with only one diameter class and around 1.5% because

of solid or mixed precipitation. In Table 1 we present the dif-

ferent percentiles of rain rate, reflectivity factor, mean diam-

eter and number concentration corresponding to the whole

dataset. These values indicate that the dataset mostly contains

light rain, with 90% of the time steps corresponding to rain

rates of less than 2mmhr21, which in terms of reflectivity

factor is less than 30 dBZ and in terms of mean drop sizes less

than 1.33mm. This can be explained if we take into account the

fact that the ACCEPT campaign took place in October–

November in the Netherlands, during the cold season. Hence

most of the rain events are frontal in nature and convective
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events are rare. However, there are also some larger values

with rain rates between 11.2 and 26.31mmh21, number con-

centration between 8263 and 11 193 drops per cubic meter and

mean diameter between 3.12 and 4.92mm. Note that the

maximummean diameter (4.92mm) is suspicious and probably

corresponds to solid precipitation incorrectly classified by the

disdrometer highlighting the limitations of the Parsivel in

terms of detection of small/big droplets (Raupach and Berne

2015; Tokay et al. 2014).

For illustration and study purposes, one particularly inter-

esting event during the campaign was chosen (12 October

2014). This event was selected because it exhibits a large nat-

ural variability in DSD. As can be seen from Fig. 1, the event

started at 1900 UTC and lasted almost 4 h. According to the

measured DSDs in Fig. 2, the event can be divided into three

separate parts, each of them with its own characteristics. The

first part between 1900 and 2000 UTC is characterized by a

relatively stationary DSD, with no remarkable changes in the

number concentration (between 200 and 300 raindrops per

cubic meter) and a mean diameter mainly between 1 and

1.5mm. During the second part between 2040 and 2120 UTC,

the mean drop size increases and the DSD becomes more

variable, with rain rates between 1.5 and 7.5mmh21. The last

part between 2158 and 2237 UTC exhibits a more stable

DSD with a large number of small drops below 1mm (drizzle

conditions). It should be noted that even though the number

concentration has a peak around 2211 UTC (NT,max 5
2698m23), the equivalent reflectivity factor and the precipi-

tation intensity peak before 2100 UTC, highlighting the

larger sensitivity of both variables to the drop sizes rather

than concentration.

3. Methodology
Disdrometers provide detailed information about the DSD

and its variation over time. However, when we need to derive

DSDs using radar or satellite data, because of the limited set of

available observables, it is necessary to summarize this infor-

mation in the form of a mathematical model. Unfortunately, it

is impossible to find simple models that perfectly capture the

complex, natural properties of observed DSDs. One of the

most common DSD models used in practice is the gamma

model by Ulbrich (1983):

N(D)5N
0
Dme2LD, (1)

where N0 is the intercept parameter (m23mm212m); m is the

shape parameter (unitless) and L is the slope parameter

(mm21). To overcome the dependence of N0 to m, the model

is often reformulated and normalized (Testud et al. 2001;

Bringi et al. 2003):

N
model

(D)5N
w
f (m)

�
D

D
m

�m

e2(41m)D/Dm , (2)

with

f (m)5
6

44
(m1 4)(m14)

G(m1 4)
, (3)

L5
41m

D
m

, (4)

where Dm (mm) is the mass-weighted mean diameter and Nw

the generalized intercept parameter (m23mm21) whose unit

does not depend on m. Various methods have been proposed

to estimate gamma DSD parameters (Nw, m, Dm) from dis-

drometer observations. In this study we focus on the two most

common: the method of moments (MoM) and maximum

likelihood estimation (MLE).

a. MoM
The MoM is based on the fact that the unknown parame-

ters of the fitted DSDs can be expressed as a combination of

different weighted moments of the DSD (Ulbrich 1983).

Different versions of MoM have been proposed depending on

the application: the method of truncated moments (Ulbrich

1985), the L-moment method (Johnson et al. 2011; Kliche et al.

2008) and the m-search method applied to normalized spectra

(Thurai et al. 2014). Here we focus on the latter. For each

observed DSD provided by the Parsivel disdrometer, Dm and

Nw are calculated:

D
m
5
�
22

i53

N(D
i
)D4

i dDi

�
22

i53

N(D
i
)D3

i dDi

, (5)

TABLE 1. Overview of the DSD dataset from Parsivel2 optical disdrometer during the ACCEPT campaign. Sampling resolution,

available number of DSD samples, accepted number of samples after applying the filtering criteria, mean, 50%, 90%, and 99.9% quantile

and maximum value of rain intensity, reflectivity factor, mass-weighted mean diameter, and number concentration.

Sampling resolution No. of DSD spectra

No. of samples after

selection

30 s 24 289 12 329

Rain intensity

(R) (mmh21)

Reflectivity factor

(Z) (dBZ)

Mass-weighted mean diameter

(Dm) (mm)

Number concentration

(NT) (m
23)

Mean 0.76 16.17 0.89 401

50.0% (median) 0.33 16.20 0.82 225

90.0% 2.02 29.36 1.33 700

99.9% 11.20 42.08 3.12 8263

Max 26.31 47.82 4.92 11 193
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LWC5
pr

w

6
�
22

i53

N(D
i
)D3

i dDi
, (6)

N
w
5

44

pr
w

 
LWC

D4
m

!
, (7)

where LWC denotes the liquid water content (gm23), rw is the

density of water (1023 gmm23), Di is the center of the ith di-

ameter class,N(Di) is themeasurement by Parsivel (volumetric

size distribution), and dDi is the width of the ith diameter class.

We computeDm as the ratio of the fourth to the third moment

of the DSD. Using the calculatedNw andDm values, the shape

parameter m can be computed. The optimal shape parameter

m is estimated for every individual time step, by determining

the value of m 2 [23, 15] that minimizes the following cost

function (Thurai et al. 2014):

CF5�
22

i53

jlog
10
[N(D

i
)]2 log

10
[N

model
(D

i
jm)]j . (8)

The applied brute force search tests all possible values of

m between23 and 15 with steps of 0.01 and selects the one that

minimizes Eq. (8). Note that due to the large number of zeros

in measured DSD spectra [N(Di)5 0] and the numerical issues

related to log10(0) in Eq. (8), instead of the logarithms, square

roots were used in this study.

b. MLE
The second method used to estimate the parameters of

the gamma DSD model is the MLE. MLE is a statistical

technique for evaluating how likely it is to observe a specific

output under the assumption of a given set of model pa-

rameters. Several studies have applied MLE method for

DSD retrievals (Adirosi et al. 2016; Thurai et al. 2014;

Schleiss et al. 2009). The goal of MLE is to find a pair of

m and L values (m*, L*) that maximizes the log-likelihood

function:

�
n

i51

ln[ f (y
i
;m*,L*)]5max, (9)

where y1, y2, . . . , yn are the observations, f(yi) denotes the

density, and n is the total number of observations. In case of a

gamma distribution f(y) is given by

FIG. 1. Time series of (top to bottom) precipitation intensity (mmh21), equivalent re-

flectivity factor (dBZ), mass-weighted mean diameter (mm), and number concentration (m23)

from Parsivel disdrometer data on 12 Oct 2014.
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f (y;m,L)5
Lm11

G(m1 1)
yme2Ly . (10)

Note that because the Parsivel disdrometer outputs the num-

ber of drops per cubic meter and per diameter class i [N(Di)]

and not the total number of observations, n is given by

n5�
22

i53

N(D
i
) . (11)

To take the binning into account, Eq. (9) is rewritten in terms

of the Parsivel observations:

�
22

i53

N(D
i
) ln[ f (D

i
;m*,L*)]5max. (12)

The MLE is the pair of parameters (m*, L*) that maximizes

Eq. (12). This is determined through numerical optimization,

for example by using a steepest gradient method. As initial

values (m0, L0) for the optimization, the results from the MoM

and Eq. (4) can be used.

One important limitation of the Parsivel data is the effect of

censoring at the lower and higher drop end. Therefore, some

studies have suggested to rescale the density function in the

likelihood function over the range of observable diameter

classes (Johnson et al. 2014). In this case the density in Eq. (10)

becomes

f (D
i
;m,L)5

ðDi,max

Di,min

Lm11yme2Ly

G(m1 1)
dy

g(m1 1,LD
22,max

)

G(m1 1)
2
g(m1 1,LD

3,min
)

G(m1 1)

, (13)

where g is the incomplete gamma function, Di,max and Di,min

are the upper and lower boundary of the ith diameter bin

(with i5 3, 4, . . . , 22), respectively, withD22,max 5 7.0mm and

D3,min 5 0.25mm. In this study, both approaches were used

whereas it should be pointed out that the first (without rescaling)

is significantly faster than the second. The MLE for truncated

and binned data will be discussed further in appendix A.

c. K-S test
As mentioned before, this study primarily focuses on the

adequacy of the gamma model. This will be examined using

two statistical tools. The first is the K-S test. The K-S test is a

nonparametric test that quantifies the difference Dn between

the empirical distribution function (ECDF) of the sample (Fn)

and the cumulative distribution function (CDF) of a reference

distribution (F):

D
n
5 sup

x

jF
n
(x)2F(x)j , (14)

where sup
x

is the supremum of the set of distances. FromDn, a p

value can be calculated which is used to reject or accept the null

hypothesis (H0) that the DSD sample comes from the theo-

retical gamma distribution (Cugerone and De Michele 2015;

Adirosi et al. 2016). When the p value is smaller than the sig-

nificance level (a 5 0.05) the gamma model is rejected. To

apply the K-S test, the function ‘‘scipy.stats.kstest’’ from the

SciPy Python library was used.

At this point it is worth mentioning that because the K-S test

can be applied only to continuous distributions, it is not directly

applicable to a discrete dataset like the binned DSD observa-

tions provided by a Parsivel disdrometer. To overcome this

issue, randomization of the drop sizes based on a uniform

random distribution of the raindrops over each class was used

(Ignaccolo and De Michele 2014; Chambers et al. 1983). The

drops can also be redistributed according to the density func-

tion of a gamma distribution. But our analyses showed that this

is much slower and does not significantly change the results.

Also, it should be noted that because the K-S test is applied

to estimatedmodel parameters, themathematically correct but

computationally expensive way to determine the p values is to

use Monte Carlo simulations (Adirosi et al. 2016; Laio 2004;

Ignaccolo andDeMichele 2014). Again, both approaches were

considered. For the application of the K-S test using Monte

Carlo simulations (‘‘exact’’ K-S test), the reader is referred to

appendix B.

d. Kullback–Leibler divergence

The second tool used to evaluate the adequacy of the gamma

model is theKullback–Leibler divergence (DKL) also known as

relative entropy (Kullback and Leibler 1951):

D
KL

(P k Q)5�
22

i53

P(D
i
) ln

"
P(D

i
)

Q(D
i
)

#
, (15)

P(D
i
)5

N(D
i
)

�
22

i23

N(D
i
)

, (16)

where P(Di) denotes the probability distribution function

(PDF) of the observations from the disdrometer and Q is the

PDF of the reference distribution [gamma model, Eq. (10)].

The DKL measures how much work needs to be made in order

to transform one distribution into the other. Values close to 0

mean that P andQ are very similar, while a value of 1 indicates

that they are completely different. In contrast to the K-S test

output which is a ‘‘yes’’ or ‘‘no,’’ the DKL provides a more

FIG. 2. Volumetric drop size distributions N(D) (m23 mm21)

in logarithmic scale as a function of time for the study case on

12 Oct 2014.
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nuanced answer in terms of how close or far away the modeled

DSD is from our initial gamma DSD assumption. By com-

bining K-S test and DKL, a more detailed assessment of

the adequacy of the gamma model can be made. Similarly to

the K-S test, DKL is calculated using the Python function

‘‘scipy.stats.entropy’’ from the SciPy library.

e. Adaptive sampling
Natural variability in rain means that the DSD is seldomly

constant over time. However, for everything that follows, we

assume local statistical stationarity in the DSD, i.e., that the

unconditional joint probability function of raindrop sizes and

number concentrations are invariant over small time intervals

and spatial volumes. This is common practice and necessary for

making inference, although questionable from an observa-

tional point of view (see, e.g., Jameson and Kostinski 2001;

Ignaccolo et al. 2009; Schleiss et al. 2014; Gires et al. 2015). In

fact, nonstationarity in rainfall could be one of the reasons why

the gamma model is not equally good at representing DSDs

across different aggregation time scales.

In addition to that, measurements can also be affected by

significant uncertainties due to the limited sampling area of the

Parsivel. As a result, the adequacy of the gamma model will

change depending on the considered sampling resolution. To

reveal this sensitivity, the original measurements at 30 s were

resampled to lower temporal resolutions. Resampling was

done by averaging the 30-s DSDs (i.e., summing consecutive

DSD spectra and dividing by the number of measurements)

backward in time, using overlapping 30-s windows.

An adaptive sampling technique is used to determine the

highest possible temporal sampling resolution at which the

gamma model provides an adequate fit. The adequacy is

assessed by using a combination of K-S test and Kullback–

Leibler divergence (DKL). As can be seen schematically

(Fig. 3), the algorithm is an iterative procedure which starts at

the highest possible sampling resolution (e.g., 30 s). At this

resolution, the gammamodel is fitted and its parameters (m,L)
are retrieved. The K-S test is applied to the fitted model and

DKL is calculated. Based on the acceptance or the rejection of

the K-S test, the right or left branch of the decision tree is

followed. In both cases, an additional test on the DKL with

thresholdsC1 andC2 determines whether the algorithm ends or

not. IfDKL is greater than C1 and the K-S test is accepted or if

DKL is greater than C2 and the K-S test rejects, the gamma

model is rejected at this specific resolution and this procedure

continues to a lower sampling resolution. The two other cases

result in the gamma model being accepted and the algorithm

moves on to the next DSD observation. The two thresholds C1

and C2 characterize how tolerant the algorithm is with respect

to deviations from the gamma model. To set them, the gamma

model was fitted for every DSD in the database at every pos-

sible resolution from 30 s up to 30minwith a step of 30 s and the

K-S test was applied to each sample. The 90th quantile ofDKL

for all cases where the K-S test was rejected was taken as an

estimate for C1. Similarly, C2 was estimated by taking the 90th

quantile of DKL for all cases for which the K-S test was ac-

cepted. This resulted in C1 5 0.09 and C2 5 0.05 meaning that

the tolerance level is lower when K-S test rejects than when it

accepts. The values of C1 and C2 above were derived empiri-

cally without any considerations for performance. They are

specific to our dataset and other values can be chosen de-

pending on user requirements. For more discussion on the

choice of C1 and C2 and how they affect the results, see

appendix C.

FIG. 3. Flowchart of the adaptive sampling algorithm for determining the highest possible

resolution at which the gamma hypothesis is adequate.
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4. Results

a. Adequacy of gamma model at 30 s
In the following, the adequacy of the gamma model is

investigated at 30-s resolution through the K-S test and

Kullback–Leibler divergence (DKL) described in sections 3c

and 3d. For the following computations, the simple K-S test

(without Monte Carlo simulations) and the simple MLE

(without truncation and rescaling) were used. For more details

about the other versions (‘‘exact’’ K-S test, truncated MLE),

see appendixes A and B. We start by examining the results for

the study case on 12 October 2014. The p values from K-S test

andDKL are shown in Fig. 4. They show that 89.8% of the 30-s

samples do not pass the K-S test at a significance level of a 5
0.05, meaning that the majority of the observed DSDs during

this event are not strictly distributed according to the gamma

model. At the same time, mostDKL values during this rain event

remain relatively close to zero, indicating that the DSDs are not

far away from a gamma distribution either, in contrast to what

the K-S test suggests. This can be explained by the fact thatDKL

only looks at the shape of the distribution while the power of the

K-S test is heavily dependent on the number concentration, with

large samples being more likely to result in rejection (Cugerone

and De Michele 2015; Mohd Razali and Yap 2011).

An example of this situation can been seen from 2040 to

2100 UTC at the beginning of the second part of the event and

from 2145UTCuntil the end of the event (third part) where the

K-S test rejects the gamma assumption butDKL is low (DKL ,
0.1), suggesting that the gamma model is a reasonable ap-

proximation. The disagreement between K-S test and DKL

during these periods was expected since the two peaks of

number concentration were detected here (Fig. 1). By contrast,

higher acceptance rates for the K-S test were found in the first

part of the event (1900–2000 UTC) which is characterized by

a relatively stable period of light rain with stationary DSD

(Fig. 2) and p values that are frequently above 0.05.

Two (special) periods during which the K-S test mostly ac-

cepts the gamma hypothesis were identified from 2023 to

2037 UTC and from 2126 to 2141 UTC. The first period is

characterized by a very peakedDSDcovering a limited number of

diameter classes (i.e., between 3 and 5) and forming a triangular

shape distribution. The second is a transitional period of very

light rain between the second and the third part of the event.

Both periods are characterized by small number concentra-

tions which is the main reason the gamma model gets accepted

by the K-S test, even though visually the distributions do not

look like a gamma distribution, especially for the transitional

period (Fig. 2).

Except for the cases when the number concentration is high

enough for the p value of the K-S test to be equal to 0, we see

that often a local maximum for the K-S test corresponds to a

local minimum for the DKL. However, the overall agreement

between the two metrics (K-S test and DKL) remains weak

(correlation coefficient of 20.31), highlighting the different

type of information provided by the K-S test and DKL.

Based on the output of K-S test and DKL, four interesting

cases are presented in Fig. 5. The first (Figs. 5a,b) corresponds

to a measurement made at 1934 UTC when the p value is high

and the Kullback–Leibler divergence is almost zero. There is

an agreement between the two metrics, since K-S test clearly

accepts the gamma hypothesis and DKL indicates good agree-

ment between observations and the fitted gamma distribution

(Figs. 5a,b). However, this is not always the case, as shown by

the observation at 2200 UTC in Figs. 5g and 5h. Here the

agreement between the observations and the fitted gamma

model is visually good as confirmed by a DKL value close to

zero. Nevertheless, the K-S test rejects the gamma hypothesis

due to a large number concentration (NT 5 1196m23). The

two remaining cases (Figs. 5c,d) and (Figs. 5e,f) correspond to

spectra that cannot be approximated by a gamma distribu-

tion. Figures 5e and 5f show a DSD that exhibits bimodal

characteristics (forcing both statistical tests to reject the

gamma hypothesis nomatterwhat the number concentration is),

while Figs. 5c and 5d show a case where the Kullback–Leibler

divergence is rather large (DKL 5 0.217) but the K-S test ac-

cepts the gamma hypothesis (p value 5 0.287 . a) due to the

low number concentration (NT 5 23m23).

On average, over the whole event, only 1 out of 10 DSDs at

30 s strictly conformed to the gamma model (according to K-S

test only). A similar low acceptance rate was found for the

whole dataset. Out of 12 329 DSD spectra at 30-s resolution,

42% were accepted as gamma, of which only 21% were ac-

cepted by both K-S test andDKL which means that almost 79%

were not perfectly gamma according to the K-S test, but it is

close enough to be approximated by one according to theDKL.

One reason to explain the low acceptance rate can relate to the

cases with large NT values. Another reason which could ex-

plain the high rejection of the gamma hypothesis is related to

the limitations of the measurements, since Parsivel is suscep-

tible to errors in the recorded drop concentrations, particularly

for small and large drops (Raupach and Berne 2015; Tokay

et al. 2014). However, the implications of this are not fully clear

yet. For example, another study (Thurai and Bringi 2018) has

suggested that there might be larger deviations from the

gamma model at smaller diameters than suggested by the

Parsivel, meaning that the rejection rates could be even higher

in case better data at the low end of the spectra were available.

Therefore, several other studies (Thurai and Bringi 2018; Lee

et al. 2004) proposed to use the generalized gamma formulation,

FIG. 4. The p values from K-S test and DKL (Kullback–Leibler

divergence) at 30-s resolution on 12 Oct 2014.
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which is a more flexible model with additional parameters that

appears to better fit naturally occurring DSDs than the

standard gamma.

b. Influence of sampling resolution on the adequacy of
the gamma model
In section 3e, a novel adaptive sampling technique was

proposed where the temporal sampling resolution is adapted

until the gammamodel provides an adequate representation of

raindrop size distributions. The approach is based on an iter-

ative use of Kolmogorov–Smirnov goodness-of-fit test and

Kullback–Leibler divergence (Fig. 3). In the following, the

technique was applied to the whole dataset for 60 different

sampling resolutions, starting from 30 s (sampling resolution of

the original disdrometer DSD data) up to 30min in regular

steps of 30 s. If the gamma model is rejected at all resolutions,

the procedure stops and the sample is flagged as being in-

compatible with the gamma model. Resolutions lower than

30min were not used as the main objective is to work at the

highest possible temporal resolution to capture the dynamics

and microphysics of the rain and not mix different DSDs

together.

In Fig. 6 the application of the decision tree algorithm to the

study case is presented. It shows that for the majority of the

time steps (86.8%), the gamma model was accepted at reso-

lutions between 30 and 300 s. Most of the time (73.8%), the

right part of the flowchart was followed (DKL , C2) which

means that the gamma hypothesis is not accepted by K-S test

but the model is close enough to the observations to be useful.

On the other hand, there are also a few interesting cases where

lower resolutions are needed. One example is the period be-

tween 2048 and 2107 UTC during which the highest resolution

at which the gamma assumption is acceptable increases at ev-

ery time step. Looking closer, we can see that at the beginning

of that period (2045 UTC), the gamma hypothesis was ac-

cepted at rather high resolution (below 90-s resolution).

However, for the rest of the period, the DSDs were consis-

tently incompatible with the gamma model, forcing the algo-

rithm to downsample until the beginning of the period was

included.

For a deeper understanding of the adaptive sampling algo-

rithm, some examples highlighting the sensitivity of the results

to the sampling resolution are presented. The four cases which

were already discussed in the previous section (section 4a,

Fig. 5) are analyzed further here. Figures 7 and 8 present the

fitted gamma DSDs, the p values (K-S test output) and DKL

FIG. 6. The output of the adaptive sampling algorithm for de-

termining the highest possible resolution at which the gamma hy-

pothesis is adequate (applied on the study case on 12 Oct 2014).

FIG. 5. Four interesting DSDs from the case study. (a),(b) High p value and low DKL, (c),(d) both p value and

DKL relatively high, (e),(f) p value low and DKL high, and (g),(h) both p value and DKL low.
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(Kullback–Leibler divergence) for different sampling resolu-

tions (30, 60, 90 s, etc.) until the iterative resampling algorithm

stops. Together, these four cases cover all four possible paths in

the decision tree algorithm.

The first case at 1934 UTC (Fig. 7 left, Figs. 5a,b) is an ex-

ample of a DSD for which the gamma model gets accepted

right at the beginning at the 30-s sampling resolution (K-S test:

0.603 . 0.05, DKL:0.004 , 0.09). Thus, there is no need to

downsample. This is also the case for the spectra at 2200 UTC

(Fig. 7 right, Figs. 5g,h). The only difference in this example is

that the gamma hypothesis gets rejected by K-S test (K-S test:

0.001 j 0.05) but accepted by DKL (DKL:0.004 , 0.05) which

means that we follow the right branch of the flowchart instead

of the left one. This example demonstrates the importance of

theDKL criterion in the algorithm when the K-S test decisions

are heavily influenced by sample size. The two remaining cases

are examples of situations where downsampling is required and

more iterations of the algorithm are needed in order to have an

acceptable agreement between the gamma model and the ob-

servations. The case at 2021 UTC (Fig. 8 left, Figs. 5c,d) is an

example of a DSD that passes the K-S test (p value 5 0.287.
0.05) at 30-s resolution due to low sample size but is rejected by

DKL (0.217 > 0.09). A lot of downsampling is required until

both K-S test andDKL accept the gamma assumption at 1500 s

FIG. 7. DSDs at (left) 1934 and (right) 2200 UTC at 30 s. The fitted gamma distribution is shown in blue. The p

values (K-S test output) and DKL (Kullback–Leibler divergence) result in acceptance of the gamma hypothesis.

FIG. 8. DSDs at (left) 2021 and (right) 2155 UTC for different sampling resolutions (30, 60, 90 s, etc.) until the

iterative resampling algorithm stops.
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resolution (K-S test:0.117 . 0.05, DKL:0.082 , 0.09). The last

case (2155 UTC) is an example of a bimodal distribution. For

that particular case, the distribution is too far away from the

gamma model. Therefore, the algorithm rejects the gamma at

all sampling resolutions up to 30min. This last case is partic-

ularly interesting because it shows that the algorithm is also

capable of revealing entire time periods during which the

DSDs are completely incompatible with the gamma assump-

tion irrespective of the temporal resolution. The latter is very

valuable as mismatches between the model and the observa-

tions may not always be obvious to spot by eye just by looking

at the disdrometer data. In our study case, two such periods

were found (Fig. 6). They last for approximately 4min and can

be characterized as transitional rain periods corresponding to

the beginning of the second and third part in the event (see

section 2). Visual inspection of these two periods confirms that

the DSDs are indeed bimodal. The first one (2038–2042 UTC)

relates to a transition from peaked DSDs to broad DSDs with

a large number of small raindrops. The second one (2152–

2156 UTC) is just before the drizzle mode starts. A possible

physical explanation for the second transition could be a

raindrop breakup process during which larger drops break up

into smaller ones. Both transitional periods are characterized

by a bimodal shape resulting from the mixture of two different

DSDs which is impossible to model by a gamma distribution.

As long as the old and the new DSD regime overlap and none

of them dominates the other, the model cannot be used.

For a more general overview of the performance of the

resampling procedure, the decision tree algorithm was applied

to the whole DSD dataset. Table 2 shows the acceptance rates

for every possible resolution over the entire dataset. In addi-

tion, for every acceptance rate, the percentage which corre-

sponds to the left part of the flowchart (K-S accepts andDKL,
C1) and the percentage due to the right branch of the decision

tree (K-S rejects and DKL , C2) are given. We see that the

acceptance rate of the gamma model at 30 s is 42.14%. When

combined with the 60-s resolution, acceptance increases to

60.02%.When all the resolutions up to 300 s are combined, the

overall acceptance rate is about 85.81%. While this is en-

couraging, it also means that in 15% of all cases, the gamma

model did not fit the data reasonably well at high resolutions

(5 min or higher). The high resolution requirement is crucial

for hydrological applications or remote sensing since DSD

can change quickly over the course of an event. Among the

15%, approximately one-third (5.55%) correspond to DSD

spectra that do not follow a gamma distribution at any res-

olution (up to 1800 s), highlighting the importance of a

careful DSD inspection and selection before the fitting

procedure.

From the table we can also see a clear trend in the contri-

butions of the left and right parts of the flowchart which remain

stable around 25%–75% regardless of which sampling resolu-

tion was selected. This means that three out of four times the

observed distribution is not perfectly gamma according to the

K-S test, but it is close enough to be approximated by one

according to the Kullback–Leibler divergence. Above 900 s,

that proportion changes to 35%–65%; however, the cases

are noticeably fewer, representing only 2.3% of the entire

dataset.

At this point it is worth highlighting that these results de-

pend on the choice of C1 and C2, and will change for different

thresholds and levels of tolerance. Even though for this study

specific values forC1 andC2 were chosen, these are not optimal

and other combinations can be used depending on the appli-

cation. If one wants to be extremely strict, C1 and C2 can be

lowered, which will result in a drop of the acceptance rates,

especially at higher resolutions. In this case the algorithm be-

comes equivalent to a single K-S test output. On the other

hand, in caseC1 andC2 are increased, the algorithm will accept

the vast majority of the spectra, even the ones that are very far

TABLE 2. Acceptance rates for all possible resolutions from 30 to 1800 s for the whole dataset and the relative contributions of the left

and right branches of the flowchart to the acceptance rate.

Sampling resolution (s) Acceptance rate (%)

Accepted both by K-S test and

DKL (%)

Rejected by K-S test but accepted by

DKL (%)

30 42.14 21.04 78.96

60 17.88 30.17 69.83

90 9.17 27.43 72.57

120 5.26 26.50 73.50

150 3.54 24.08 75.92

180 2.34 18.34 81.66

210 1.73 25.82 74.18

240 1.46 24.44 75.56

270 1.26 25.16 74.84

300 1.03 24.41 75.59

[30, 300] 85.81 24.27 75.73

[330, 600] 4.59 23.67 76.33

[630, 900] 1.75 20.37 79.63

[930, 1200] 1.22 33.11 66.89

[1230, 1500] 0.67 37.35 62.65

[1530, 1800] 0.41 33.33 66.67

.1800 (never accepted) 5.55 — —
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away from a gamma distribution. In general, results are more

sensitive to C2 than C1 because the former defines the level of

tolerance for the right branch of the decision tree (where the

most of the acceptance comes from). For more details about

the influence of C1 and C2 and the sensitivity of the results to

the choice of these values, see appendix C.

c. Model adequacy based on bulk variables (R, Z, Dm, NT)
In the previous section, we showed how well the gamma

model can describe DSD observations, based on the entire

DSD spectra. However, for many applications only integrated

values of the DSD (R,Z,Dm,NT) are needed. Since these bulk

variables are related to weighted moments of the DSD, the

adequacy of the gamma model can also be examined as a

function of these moments. For a deeper investigation of the

importance of the method used to fit the DSDs, two differ-

ent DSD parameter estimation methods (MoM and MLE)

were used for the retrievals of m and L, described in

sections 3a and 3b.

The four bulk variables corresponding to the fitted DSDs

during the case study are presented in Fig. 9, together with the

‘‘true’’ values calculated directly from the disdrometer data.

We can see that the observed bulk variables (NT,Dm,R, andZ)

measured by the disdrometer and the bulk variables derived

from the fitted gamma models using MLE and MoM do not

always agree with each other, especially when the MLE is

chosen as the parameter estimation method. This is clearly

visible during the second part of the rain event (and partly

during the first) during which MLE strongly underestimates

Dm, R, and Z compared with the Parsivel and MoM.

The disagreements can be explained by the fact that most

DSDs during the second time period are not well approxi-

mated by the gammamodel according to Fig. 6. Also, the DSD

spectra include bigger drops which are known to have a large

influence on higher-order moments. Even thoughMoMmakes

the samemistake asMLE by assuming that theDSD is gamma,

it is a better choice than MLE during this particular period

because it explicitly tries to conserve the liquid water content,

which is closely related toDm andR and (to a lower degree), to

the reflectivity factor Z. By contrast, MLE does not conserve

the liquid water content, giving more weight to the smaller

more numerous drops in the spectra. Nevertheless, one should

FIG. 9. Time series of (top to bottom) precipitation intensity (mmh21), equivalent re-

flectivity factor (dBZ), mass-weighted mean diameter (mm), and number concentration (m23)

on 12 Oct 2014 for MoM and MLE. The black line represents the value measured by the

Parsivel disdrometer.
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not discard MLE simply on that basis that it produces biased

rainfall rates and reflectivities, as it can also lead to superior

performance for lower-order moments of the DSD (such as

NT). Also, it is very important to point out that MLE performs

very well in cases where theDSD is in good agreement with the

gamma hypothesis. This can be seen during the third part of the

event during which the gamma hypothesis is reasonable and

both methods (MLE andMoM) are in good overall agreement

with the Parsivel observations.

Table 3 provides a more general overview of the perfor-

mance of MLE and MoM for the whole dataset, showing the

root-mean-square errors for four bulk variables (R,Z,Dm, and

NT). We can see that MoM results in errors that are almost

3 times smaller for rain rate and 9 times for reflectivity. On the

other hand, MLE performs much better than MoM for low-

order moments, such as NT. The conclusion is that both MoM

and MLE can be good/bad choices depending on 1) the in-

tended application and 2) how close or far the observed DSDs

are from the gamma distribution.

Focusing on the third part of the event, the gamma DSD

assumption is reasonable and the MLE method is capable of

accurately estimatingR andZ. This can be seenmore clearly in

Fig. 10 where a scatterplot between the observations ofDm and

the estimations of Dm using MLE are presented. It shows that

for mean diameters up to 1mm, there is good agreement be-

tween mass-weighted mean diameter observations and model

estimates regardless of the acceptance or rejection of the

gamma assumption. On the other hand, for diameters above

1mm, MLE estimates of Dm tend to be underestimated com-

pared with the observations. This underestimation is more

severe when the gamma model is rejected than when it is ac-

cepted. Consequently, the performance of MLE bulk param-

eters depends both on the acceptance or rejection of the

gamma hypothesis and on the value of Dm.

From the last two examples (second and third parts of the

rain event), it is evident that the gamma model should not be

viewed as an absolute truth for all DSDs but as an approxi-

mation whose validity needs to be assessed on a case by case

basis. Failing to do so can result in large errors between cal-

culated and measured moments. The same argument applies

to the DSD estimation methods based on MoM and MLE,

which have different behavior and properties depending on

the validity of the gamma assumption and the Dm value. For

example, while MLE is superior to MoM for cases where the

DSD is gamma, it should be avoided in cases where the

gamma DSD assumption is questionable or Dm is large.

Similarly, in case the DSD is not perfectly gamma, it is better

not to use truncated and rescaled MLE (for more details see

appendix A). The adaptive sampling algorithm presented in

this paper can provide information about the adequacy of the

gamma model from a statistical point of view, which can be

helpful for interpreting changes in the microphysics of rain

and selecting the most appropriate fitting method. This is an

often overlooked aspect of DSD analyses that is crucial for

creating robust and representative DSD databases for use in

radar retrievals.

5. Conclusions
A critical evaluation of the adequacy of the gamma model

for representing raindrop size distributions was presented.

The results are based on DSD data collected by a Parsivel

optical disdrometer during a 2-month campaign in the

Netherlands. A study case was presented and a table sum-

marizing the results for the whole DSD dataset was provided.

At first, the adequacy of the gamma model at 30 s was ana-

lyzed using the K-S test and Kullback–Leibler divergence

and four interesting cases were highlighted. Then, the in-

fluence of the sampling resolution on the adequacy of the

gamma model was investigated. A novel adaptive sampling

technique was proposed to determine the highest temporal

sampling resolution at which the gamma model provides an

adequate representation of sampled DSDs. Finally, in order

to assess the gamma DSD model from a more practical point

of view, the accuracy of retrieved bulk variables (R, Z, Dm,

NT) was examined. According to the results the following

conclusions can be drawn.

1) The majority of the DSD spectra are not perfectly gamma

but are well approximated by the gamma model at high

sampling resolutions (60.02% of the DSDs up to 60 s,

85.81% of the DSDs up to 300 s). However, a substantial

number of DSDs (5.55%) were absolutely not complying

with the gamma model, which means that careful selection

of the DSD spectra is needed before fitting.

2) About three out of four times (across all temporal scales),

the gamma hypothesis gets accepted not because of the

FIG. 10. Scatterplot between the observations of Dm (from the

Parsivel) and the estimated values D̂m usingMLEwhen the gamma

DSD hypothesis is accepted and rejected for the case study on 12

Oct 2014.

TABLE 3. Root-mean-square error for the four bulk variables

(R, Z, Dm, NT) at 30-s resolution for the whole dataset using method

of moments (MoM) and maximum likelihood estimation (MLE).

MoM MLE

Rain intensity (R) (mmh21) 0.28 0.75

Reflectivity factor (Z) (dBZ) 0.41 3.53

Mass-weighted mean diameter

(Dm) (mm)

0.02 0.21

Number concentration (NT) (m
23) 64.11 3.98
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K-S test (it is not perfectly gamma) but because of the

Kullback–Leibler divergence. Thus, most DSDs are not

truly gamma but come close to it.

3) One should not fit the two parameters m and L of the DSD

usingMLEwhen the distribution is not perfectly gamma or,

at least, very close to it. The same argumentation holds for

truncated and rescaled MLE. Failing to do so results in

underestimated Dm and R values. In this case the safer

option is to use the MoM assuming that we want to retrieve

high-order moments of the distribution (e.g., rain intensity,

reflectivity factor).

4) The adaptive sampling algorithm proposed in this paper is

capable of automatically identifying transition periods dur-

ing which the DSD cannot be represented by a gamma

model (at any resolution). These may not be easily visible

in the data but become very clear after applying our

algorithm.

Finally, it should be mentioned that this study is not a

statement against the use of the gamma model which is

often a good approximation. However, it highlights the im-

portance of checking the adequacy of these assumptions. It

also lays the foundation for a better automatic quality control

of DSD retrievals for use in remote sensing applications. The

main idea could also be applicable to other relevant research

in the future, including an evaluation of the gamma model

assumption on m–L relationships used in polarimetric radar

retrievals.
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APPENDIX A

MLE for Truncated and Binned Data
The rescaling of the likelihood function in Eq. (13) and the

theoretical complications that follow from it are heavily de-

pendent on the assumption that the DSD is indeed a gamma

distribution, which we know is hardly ever the case. As a

result, the corrections are not necessarily beneficial and could

actually make the fit worse. To quantify this, we applied the

rescaling and truncation to the case study. With this new way

of fitting, we saw a drastic decrease in the cumulative ac-

ceptance rate up to 5min from 86.8% to 65.3%. This can be

explained if we take into account that most of the spectra of

the case study at 30-s resolution are not gamma (according to

K-S test only 10% are accepted). Consequently, the correc-

tion (rescaling) for the remaining 90% of them was based on

the wrong initial hypothesis which led to a worse MLE fit

than before.

To investigate this issue further, we applied the new

rescaled and truncated MLE fit to the entire DSD dataset at

30 s resolution and we calculated the 4 bulk variables (R, Z,

Dm, NT) corresponding to the fitted DSDs. Combining them

together with the ‘‘true’’ values calculated directly from the

disdrometer, we derived the root-mean-square error (RMSE)

of the bulk variables for the whole campaign (Table A1). The

results show that the RMSE of each variable calculated using

the truncated and rescaled MLE increased compared with

the values presented in Table 3 (MLE without rescaling).

The RMSE of the rain intensity increased from 0.75 to

0.89mmh21, reflectivity from 3.53 to 7.41 dBZ,Dm from 0.21

to 0.31mm, and NT from 3.98 to 22.27m23. This is attributed

to the fact that most of the time, the DSDs are not strictly

gamma. This can be seen very clearly if we calculate the

RMSE of the bulk variables separately for all the DSDs which

satisfy the gamma assumption (according to our algorithm)

and for those which do not (Table A1). For the gamma sha-

ped DSDs, the truncation and rescaling resulted in lower

RMSE values from 0.89 to 0.37mmh21 for rain intensity,

from 7.41 to 2.63 dBZ for reflectivity, from 0.31 to 0.12mm for

mean diameter, and from 22.27 to 9.14m23 for number con-

centration. On the other hand, for the nongamma DSDs the

RMSE increased to 0.97mmh21 for rain intensity, 7.81 dBZ

for reflectivity, 0.34mm for mean diameter, and 50.79m23 for

the number concentration.

All the above shows that the best way to estimate the pa-

rameters when we are not sure whether the distribution is re-

ally gamma or not is to use

d estimates which are based on a few moments calculated

directly from the sample (see Table 3, RMSEMoM), instead

of fitting the whole density function as in MLE;
d simple numerical solutions which make as little assumptions

as possible about the underlying distribution (MLE without

rescaling and truncation).

APPENDIX B

‘‘Exact’’ K-S Test (Using Monte Carlo Simulations)
An alternative way to apply the K-S test, suitable for cases

when population parameters are unknown and must be esti-

mated by sample statistics was implemented. Specifically,

we applied the LcKS function from the KScorrect package

(R programming language), which uses Monte Carlo simula-

tions to estimate the p values. A total of 4999 random samples

(recommended by the authors of the package) were drawn

from a gamma distribution with parameters calculated from

TABLE A1. Root-mean-square error for the four bulk variables

(R, Z, Dm, NT) at 30-s resolution, for the whole DSD dataset, for

the nongamma DSDs, and for gamma DSDs using MLE for trun-

cated and binned data.

All

DSDs

Nongamma

DSDs

Gamma

DSDs

Rain intensity (R) (mmh21) 0.89 0.97 0.37

Reflectivity factor (Z) (dBZ) 7.41 7.81 2.63

Mass-weighted mean diameter

(Dm) (mm)

0.31 0.34 0.12

Number concentration

(NT) (m
23)

22.27 50.79 9.14
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the sample. Based on these simulations we found that there

were no significant changes to the final results. For the study

case, the acceptance rates at resolutions between 30 and 300 s

differed by less than 1% compared with the previous ones,

increasing from 86.8% to 87.3%. Also, because the ‘‘exact’’

K-S test resulted in a lower rejection rate, the left branch of the

decision tree was followed slightly more often (from 25%/75%

it went to 28%/72%). But overall, no big differences could be

observed. This is due to the algorithm construction itself, which

is mostly based on the value of DKL. The purpose of the K-S

test is mainly to give a first opinion, but the final decision is

always based on DKL.

Because there is no significant difference in term of

acceptance/rejection rates and because the ‘‘exact’’ K-S

test is computationally very expensive and slow, we rec-

ommend using the simpler, slightly biased version of the

K-S test without Monte Carlo simulations when applying

the resampling algorithm.

APPENDIX C

Sensitivity Analysis for C1 and C2

A sensitivity analysis was carried out in order to investigate

the stability of the acceptance and rejection rates of the gamma

hypothesis for different C1 and C2 values. A total of four new

combinations of C1 and C2 values were considered, corre-

sponding to twice/half the original values (see Table C1). For

each combination, the adaptive resampling algorithm was ap-

plied at every possible resolution from 30 s up to 5min with a

step of 30 s. The cumulative acceptance rates (up to 5min) and

the contributions of the two branches were derived (Table C1).

Table C1 shows that when C2 is fixed (C2 5 0.05) and we

changeC1 (from 0.09 to either 0.18 or 0.045), the results remain

relatively stable. The acceptance rate varies by 61% and

the left and right branch contributions of the decision tree

by 62%. When C1 is fixed (C1 5 0.09) and C2 takes different

values, the results are more sensitive. When we increase the

DKL tolerance (C2) from 0.05 to 0.1, almost 95% of the cases

get accepted, mainly through the right branch of the decision

tree (;15/85). However, it should be noted that this specific

combination of values (C1 5 0.09 and C2 5 0.1) is not realistic

since by definition C1 should be greater than C2 to ensure a

lower tolerance onDKL in case the K-S test gets rejected. As for

the last case where the tolerance on DKL is much lower (C2 5
0.025), we see a drastic drop in the acceptance rate to 66%.

Overall, from the sensitivity analysis we conclude that

d values for C1 and C2 can be adapted depending on user

requirements and application,
d the algorithm is more sensitive on C2, and
d results depend on the choice ofC1 andC2. The chosen values

for this study are not claimed to be optimal.
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