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Executive summary 
Every company and organization is trying to achieve the highest possible profits while catching up with 

government regulations. After the COP21 agreement on the environment and the aim of European 

Union to reduce climate gas emissions by 80-95% until 2050, and specifically in transport related 

emissions by 54-67% comparing to 1990 (European Commission, 2011), current solutions proved to 

be inadequate for the companies and transportation firms. For this reason, several concepts have 

been proposed for freight transportation to promote sustainability. Researchers have introduced 

synchomodality concept as a development of “traditional” intermodal and multimodal concepts.  

In order to achieve the optimal level of synchronized services, collaboration between all stakeholders 

is required (Tavasszy and De Jong, 2013) and cooperation is one of the prerequisites of 

synchromodality (Singh et al., 2016). However, in reality every actor operates for his individual profits 

and benefits and as a result, the relationship between them is competitive rather than cooperative. 

Thus, currently, system’s performance assumed to be closer to the non-cooperative point. By the 

intervention of different policies in the negotiations and information sharing, the aim is to move closer 

to the optimal solution. 

This work intended to find, test and evaluate the right interventions to move towards collaboration of 

the actors in order to have an efficient freight transportation system. The general framework that was 

followed in this thesis is based on the combination of gaming and simulation as used by Kurapati et al. 

(2017) and Kourounioti et al. (2018) enhanced by an optimization model.  This framework was used 

iteratively in order to test and evaluate different policies and their level of performance.  

This study combined the three methods of gaming, simulation and optimization in order to extract the 

advantages of each method while avoiding their disadvantages in the highest possible level. 

At first, the game sessions were useful to observe and record the current performance of the players 

and used to define the simulation model of the game, based on real data. The decisions of the actors 

in simulation were modeled using utility function and Discrete Choice Modelling (DCM). Subsequently, 

a number of policies were proposed using literature review and expert interviews and tested using 

the simulation model. Their performance was then compared with a possible coordinated system that 

included stochasticity and with the upper bound that was set by the optimization model. 

The outcomes led to the conclusions that fine and subsidy policies do not have a significant effect on 

utilization rate of the trains and the reduction of used trucks and thus they found to be inadequate 

measures. Furthermore, the cooperation between the train operators to co-decide which terminals-

destination to service is the policy with the highest performance, between the policies that included 

one kind of actors (only horizontal collaboration). Simple vertical collaboration (alliance of freight 

forwarder and one operator) has even negative impact on the performance, as it reduces the transport 

options of the alliance members. Subsequently, the results of the policy testing show that the higher 

the level of collaboration the more the performance improved. The alliance between freight 

forwarders to consolidate their freight and the trade of containers between operators apart do not 

have high impact on the performance, but the combination of these two interventions achieves much 

better results. The highest level of cooperation, that is simultaneous collaboration in vertical and 

horizontal dimension, lead to the highest performance among the policy alternatives. However, this 

performance could not reach coordinator’s performance as there was still competition for the 

unconsolidated containers.  
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1. Introduction  
This introduction chapter describes the aim of this thesis, addresses the research intentions and the 

identified problems and presents the approach to be followed in order to contribute in the research 

topic of freight transportation and more specifically in port to hinterland freight transportation. 

1.1. Port to Hinterland freight transportation 

1.1.1. General Introduction 
Every company and organization is trying to achieve the highest possible profits while catching up with 

government regulations. After the COP21 agreement on the environment and the aim of European 

Union to reduce climate gas emissions by 80-95% until 2050, and specifically in transport related 

emissions by 54-67% comparing to 1990 (European Commission, 2011), current solutions proved to 

be inadequate for the companies and transportation firms. Focusing on the ports and the freight 

transport to hinterland terminals, there is an ongoing necessity for modal shift towards more 

environmentally friendly modes in transport. Many European Port authorities are aiming to reduce 

truck-use and have cargo transported by rail or barge. Largest Europe’s ports as port of Rotterdam 

and Antwerp have set truck reduction targets of 15-20% until 2035 and 2020 respectively, while port 

of Hamburg has set a target of 5% shift from truck to rail until 2025 (Van den Berg and De Langen, 

2014). For this reason, several concepts have been proposed for freight transportation to promote 

sustainability. Researchers have introduced synchomodality concept as a development of “traditional” 

intermodal and multimodal concepts.  

1.1.2. Synchromodality 
Synchromodality is “a concept of optimising all network transportation in an integrally operated 

network, making of all transportation options in the most flexible way.” (Van Riessen et al., 2015). 

Furthermore, synchromodal concept is described as a freight transport system that provides a service 

independent of the mode, but as a range of customized services and requirements (figure 1) (Tavasszy 

et al., 2015). As described by Behdani et al. (2014) synchromodal transportation promotes an 

integrated view of freight transport in two dimensions, vertical and horizontal, as illustrated in figure 

2. “Vertical” dimension describes the integration of the logistic services (e.g. same shipping bill) while 

the “horizontal” dimension refers to the integration of the modes that are used for transport. As there 

are several papers that focus on the vertical integration of logistic services, the main distinctive feature 

of synchromodality is the horizontal dimension (Behdani et al., 2014), that integrates the transport 

service on different modalities as one transport mode. 

 

Figure 1 Synchomodality as a set of services and requirements (Tavasszy et al., 2015) 
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Figure 2 Integrated freight transportation view (Behdani et al., 2014). 

A key factor to make synchromodal concept feasible and successful is the cooperation of the involved 

actors (Pfoser et al., 2016). However, these actors have much different businesses and involved in 

different aspects of freight transportation, as can be seen in the “TRAIL layer model” in figure 3 

(Kurapati et al., 2018). This diversity of the actors makes their coordination a difficult task but can lead 

to potentially high benefits for all of them (Pfoser et al., 2016). 

 

Figure 3 The TRAIL layer model (Kurapati et al., 2018) 

1.2. Problem definition and research questions 
After the presentation of the general context, the problem definition and the research gaps follow. 

1.2.1. Problem statement 
As stated in chapter 1.1.2. cooperation is one of the key success factors of new transport systems as 

synchromodality. In order to achieve the optimal level of synchronized services, collaboration 

between all stakeholders is required (Tavasszy and De Jong, 2013) and cooperation is one of the 

prerequisites of synchromodality (Singh et al., 2016). However, in reality every actor operates for his 

individual profits and benefits and as a result, the relationship between them is competitive rather 

than cooperative. Pfoser et al. (2016) mentions that many companies are not willing to cooperate with 

their competitors and a mind shift towards collaboration is needed, as it is a critical success factor of 

synchromodality.  
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The need for cooperation is also addressed by Kourounioti et al. (2018), focusing on the in-game 

behavior of the Rail Cargo Challenge Rotterdam (RCCR) board game, who states “Game playing results 

show that the inability of stakeholders to cooperate results in lower profits and lower reputation 

rates.” (Kourounioti et al., 2018). There are several studies to record the preferences of the actors in 

synchromodalilty using games (see Kurapati et al. (2018); Kourounioti et al. (2018); Buiel et al. (2015)). 

However, there are not many papers that extent the gaming tool to test and evaluate different policies 

in freight transportation. This is proposed as future research by Kurapati et al. (2017) by changing 

parameters of the game and capture the effects on the performance indicators. This could give deep 

insight of different policy interventions (Kurapati et al., 2017). This is also an aim of this thesis: to 

investigate gaming as a policy validation tool. 

As can be conducted, the identified gap is the in-game implementation of the right interventions to 

move towards collaboration of the actors in order to have an efficient freight transportation system.  

Combining the aforementioned aspects, this thesis will try to find and implement cooperative policies 

that will move players’ performance in the game RCCR as close to optimality as possible. The aim of 

these policies is to align the individual benefits of actors with the overall goals of the port to hinterland 

freight transport system. 

1.2.2. Research questions 
The research questions and sub-questions that arise after the description of the relative topics and 

problem statement are related to a transport system that promotes actors’ collaboration and services’ 

coordination, aiming to the efficient system operation on port to hinterland transportation. In 

addition, the use of innovative methodology of the combination of gaming, simulation and 

optimization is examined. In that way there are two main aspects of the thesis. The first tries to fill a 

more theoretical gap in literature, related with the impact of different policies on performance, and 

the second is associated with a more practical issue of using gaming as a policy validation tool. The 

research is based on the Rail Cargo Challenge Rotterdam, which was initiated by Port of Rotterdam to 

identify the causes of low utilization of rail alternative, which is assumed as a sustainable mode 

comparing to truck. 

Summarizing, the research questions and the sub-questions are related to the identified gap and the 

innovative methodological approach that are: 

• Policies towards collaboration that will lead to an efficient freight transport system in port to 

hinterland. 

• Apply an innovative methodological approach in a hybrid framework that combines gaming, 

simulation and optimization to test and evaluate policies. 

The objective of this thesis that is relevant to the problem statement and the identified gaps is set as: 

The research objective is to examine cooperation policies between the involved actors that can lead to 

a higher level of performance in port to hinterland freight transport system, using a mixed method 

based on gaming to test and evaluate these policies. 

The main research questions connected to the research gaps is: 

RQ1. “How can we achieve a higher level of performance through cooperation in the port to 

hinterland freight transport system?” 

RQ2. “To what extent can we combine gaming with simulation and optimization to test and 

evaluate these policies and strengthen game application?” 
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And the sub-questions are: 

SQ1. Which are the most relevant policies for cooperation? 

SQ2. What is the highest achievable in-game performance under full information and no 

stochasticity? 

SQ3. What can be the in-game performance of a coordinated system including stochasticity? 

SQ4. How the selected policies influence the overall in-game performance relative to the highest 

achievable performance? 

SQ5. Can the configuration of game rules, according to specific policy plans, affect players’ 

performance in the expected way? 

1.3. Methodological Approach 

1.3.1. Methodological framework 
Gaming gives the opportunity to be used for testing and evaluation of new operating procedures that 

are required for the cooperation of the actors, as stated in the recommendation for future research 

in the work of Buiel et al. (2015). As mentioned in subsection 1.2.1., this potential extension of the 

gaming tool is also addressed by Kurapati et al. (2017). 

The general framework that will be followed in this thesis is based on the combination of gaming and 

simulation as used by Kurapati et al. (2017) and Kourounioti et al. (2018) for capturing the behavior 

and decision making of the stakeholders in gaming sessions for synchromodality. At first the games 

are used to let participants express their attitudes and preferences and then the simulation 

metamodel is developed using the same design of the game and the observed choices of the players 

(Kourounioti et al., 2018).  

In this thesis the aforementioned framework will be enhanced with an optimization model in order to 

set a base for comparison and it will be used iteratively in order to test, evaluate and validate different 

policies and their level of performance. The optimized performance will set the upper limit and will be 

used as a reference point for comparison. The general framework can be seen in figure 4. 

 

Figure 4 General framework 

Based on the general framework a more detailed description of the methodological framework that 

will be followed is shown step by step in figure 5 and is described in this paragraph. The first step is 
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the development of the game. The Rail Cargo Challenge Rotterdam board game is already developed 

and some game sessions have already been done (see Kouronioti et al., 2018 ; Kurapati et al., 2017). 

After the development of the game, two independent branches follow. The first branch is associated 

with the creation of a reference point of the highest possible performance aiming in a system optimum 

state while the second branch includes observation and simulation of actors’ behavior, behavioral 

policy implementation and evaluation. The “highest”, reference point is needed to compare the policy 

alternatives. The planning to achieve this highest performance could be done by a coordinator that 

would have access to all the available information and could bypass the negotiations of actors, that 

lead to an inefficient system. The decisions of the coordinator are only based on the efficient planning 

to achieve system optimality and not to maximize individuals’ profit. Subsequently, the steps on the 

second branch aim to find policies and incentives that will move actors towards more cooperative 

behavior and through cooperation and information exchange could approach the “optimal” system 

performance that was mentioned above. In order to achieve this, several steps will be applied. First, 

game sessions are organized to observe players’ behavior and performance. Observations captured in 

these sessions are used to develop a simulation model of the behavior of the players in the game 

(representation of in-game behavior) (step 2). For these two steps there is already some data 

available, as mentioned previously, from the research of Kurapati et al. (2017) and Kourounioti et al. 

(2018).  The first simulation approach of RCCR, found in the work of Kurapati et al. (2017), uses 

probabilistic distributions of negotiated prices accepted by the train operators in-real games. In that 

way the negotiations are expressed by randomly drawing prices from these distributions and compare 

them with the respective prices of the freight forwarders. In this thesis, the simulation model will be 

approached much differently, using modeled behavior and not by comparing probabilistic values. The 

third step of this branch is to find policies that can influence players’ behavior towards collaboration. 

Subsequently, depending on the policies that will be chosen, the simulation model will be changed to 

identify the respective changes in performance (step 4). Simulation is used here as it is relatively easier 

and faster to change parameters and identify the results comparing to gaming. Then, a comparison of 

this performance with the reference performance (in coordinated system) is done (step 5). This 

simulation modification and performance comparison will be done for all the selected policies. After 

this iterative process, an evaluation of the results follows (step 6). The best of the above policies will 

be selected to be used in game sessions with changed player behavioral rules (step 7-9). Their new 

performance will be then measured and compared to the highest achievable score found by the 

optimizer of the game. In this way, it will be examined if the policies have the desired outcomes on 

actors’ choices and if this performance was in accordance with the simulation model.  
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Figure 5 Methodological Framework 

In addition to the main methodological framework, in order to simulate the behavior of the players, 

Discrete Choice models (see Ben-Akiva et al., 1985; Bierlaire, 1998) in dynamic environment (e.g. 

negotiation rounds between the players) will be used to describe the decision making of the actors. 

According to Ben-Akiva and Lerman (1985) Discrete Choice analysis is the most used methodology for 

travel decisions and mode choice.  

Furthermore, the optimization model will be based on the Service Network Design models (SND) (see 

Andersen et al., 2007; Crainic, 2000) when using full information, while a Model Predictive Control 

(see Camacho & Alba, 2013; Kouvaritakis & Cannon, 2016) combined with SND will be used to describe 
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a possible coordinated system that includes stochasticity and decision making under partial 

information. 

In figure 6 the comparison framework can be seen, which is the insight for the methodological 

framework. At the top point is the system optimum achieved by using full information. At the bottom 

position is the performance in a non-cooperative system. The system performance lays in the line 

between these two points, depending on players’ decisions and stochasticity. Currently, system’s 

performance assumed to be closer to the non-cooperative point. By the intervention of different 

policies in the negotiations and information sharing the aim is to move closer to the optimal solution. 

 

 

Figure 6 Comparison framework representation 

In order to have a stable base of comparison, it should be ensured that the policies are only associated 

with the behavioral rules that affecting the negotiations of the players. In that way, the service options 

in the network and the resources that can be inputted on the system (e.g. shippers’ prices) do not 

change. Thus, the optimal level of system performance achieved by the coordinator is not changing as 

the collaboration policies are implemented.  

1.3.2. Research Methods 
This section includes the description and approach of the used methods of this study, the reason why 

each method is used and what are the desirable outcomes that each method can contribute over the 

others. 

The three main methods for the analysis that are used in this study are gaming, simulation and 

optimization. Literature review is also used to support the choices and the content of the methods. In 

the next subsections each of the gaming, simulation and optimization methods are described and after 

this a summary of the pros and cons of each method follows. 

Input and output of the models 

In order to have a connection and a valid comparison between the results of the models the units of 

inputs and outputs are the same for gaming, simulation and optimization model. However, the 

different decision process in the models on how the inputs will be handled lead to different values of 

outputs, but in same units. 
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The main input of the models is a number of container orders that have to be transported from their 

origin port terminal to their destination. The orders have stochastic characteristics, as day of release, 

day of expire, origin-terminal and destination. 

The outputs of the models are the decisions on when and by which mode each container will be 

transported. The efficiency of these decisions is quantified in two performance indicators: profit and 

truck-use.  

The inputs, outputs and the KPI’s of the models are further described in the next chapters that the 

models are presented in detail. 

Gaming 

The base method that is used to represent the port to hinterland freight transport system and actor’s 

behavior in this study is gaming. 

Games are used from practitioners to better understand the value of flexibility in freight transport and 

by educational institutes to teach intermodal container logistics (Van Riessen, 2018).  Furthermore, 

gaming is used as a way to raise actor’s awareness towards new transport systems as synchromodality 

that is expected to increase efficiency in freight transportation (Kourounioti, 2018). This tool (gaming) 

has three objectives for synchromodality according to Buiel et al. (2015): 

1) Let the actors experience synchromodal planning,  

2) Show to the actors the benefits and  

3) Achieve the mind shift towards cooperation between actors. 

The game that is used is Rail Cargo Challenge Rotterdam. Rail Cargo Challenge Rotterdam is a game 

developed by TU Delft gamelab, The Barn, ProRail and TNO within the “Synchro-gaming” project (TU 

Delft gamelab site, 2018) and in collaboration with stakeholders of port of Rotterdam.  

Acoording to Kourounioti et al. (2018), “The key research objective of the Rail Cargo Challenge 

Rotterdam (RCCR) is to assess the attitudes and behavior of stakeholders in the freight transport 

domain with respect to the efficient bundling of containers to be transported to their final destination 

using rail”.  

For the purposes of this study, three gaming sessions were organized. The first two sessions were 

useful to understand actors’ behavior and collect data. The third gaming session was used to validate 

the results of the implementation of a chosen policy and identify if the players responded on the 

expected way on the changed rules. 

Gaming has the advantage that can give an actual – and not modeled- human behavior, while can also 

provide a discussion with the actors on the results and their individual reflection on the system 

operation. The main disadvantages of gaming, is that it has a high simplification level compared to the 

“real” world and it is difficult to take many samples, due to the availability of players and the gameplay 

time itself. As an indication a gaming session of RCCR game requires at least 5 players and 1 game 

master and has a duration of about 3 hours.  

Due to the low availability of the stakeholders, the gaming sessions were not organized with relevant 

industry players, but with TU Delft’s students.  

More information about the RCCR game follow in chapter 2.2. and in Appendix A. 
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Simulation 

The simulation model is used as a representation of the game. The simulation model gives the 

opportunity, by changing simulation structure or parameters, to model different game scenarios 

according to new policies, without the need of organizing multiple gaming sessions. Of course, ideally 

all the scenarios would be more realistic to be tested in gaming sessions, but due to time restrictions, 

the simulation alternative is preferred. A sample of 100 simulation runs lasts a few minutes, while only 

one game session needs 2.30-3 hours. 

A first approach of a simulation meta-model of RCCR game was done by Kurapati et al. (2017). In their 

study, the simulation is based on a probabilistic comparison of the proposed prices in the negotiation 

phase between the players. 

In the current study, the simulation model is approached differently than the aforementioned work. 

First, the flowchart of the game was structured and the simulation model was made according to the 

game steps. A very important element lays on the decision making of the players on what mode to 

choose, during the negotiation phase of the game. These decisions are modeled using Discrete Choice 

Modeling and specifically the Multinomial Logit model (MNL). According to Ben-Akiva and Lerman 

(1985) Discrete Choice analysis is the most used methodology for travel decisions and mode choice.  

In addition, the proposed negotiation prices were drawn from a distribution, using observed prices 

from gaming sessions.  

The disadvantage of the simulation is the fact that it is a model of the game, that is already an 

abstraction of reality. However, this method is used due to the convenience of testing different 

alternatives in a very short time, compared to gaming. 

The simulation model was coded in python 2.7. The parameters used for the Discrete Choice model 

were based on observed data from gaming sessions and were estimated using the software BIOGEME 

1.8 (see Bierlaire, 2008). BIOGEME package is distributed free in order to develop the research area 

of Discrete Choice Models (Bierlaire, 2003). 

More detailed description of the simulation model, the flowchart, utility functions, parameter results 

and player decision rules can be found in chapter 3.3. and Appendix B.  

Optimization 

Optimization model is used in order to find the upper bound of performance and identify the potential 

benefits of a coordinated or fully-cooperative system. 

Two approaches of optimized performance are used in this study. The first model uses full information, 

excludes stochasticity and sets the upper bound, while the second uses only the exact information 

that players have and gives a coordinated system perspective. The second model can be also assumed 

as a policy measure of a central coordinator and is closer to the simulation of the game, as the 

coordinator takes the decisions per round. However, as the coordinated model is based on 

optimization and does not include human behavior, it is described with the optimization part.  

The first model, referred as optimization model, assesses all information of the system and excluding 

stochasticity by taking the results of the stochastic elements as input. This optimization model has no 

physical meaning, as excludes stochasticity, which is not realistic. However, the practical usefulness of 

the model is that sets the theoretical upper bounds of the game performance in each case, in order 

to quantify the potential for system improvements and set a basic element for comparison between 

the different policy scenario. In a way the optimization model can give a quantification of how “worse” 
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is the planning of the players compared to the highest performance that they could have achieved, 

with the specific demand and resources. 

The second model, referred as coordinator’s model, is a combination of the aforementioned 

optimization model and a Model Predictive Control (MPC). This model has a “physical” translation and 

represents a version of a coordinated system that assesses only the available information each time. 

The information of the coordinator is exactly the same as players’ information and released at the 

same time that become available to the players, as well. As a result, coordinator’s performance falls 

under stochasticity, too. The difference of the coordinated system and the current system is that the 

coordinator takes decisions to maximize system’s KPIs and bypasses players’ negotiations that lead to 

inefficient decisions for the system. 

The main difference of the two models is that the optimization model guarantees the highest 

performance, given the same input, as makes the planning under full information and no stochasticity. 

On the other hand, MPC coordinator takes and performs the decisions on each round separately under 

stochasticity. This makes coordinator’s performance lower compared to the optimized performance. 

However, this difference can give an insight of the impact of the stochastic elements on performance 

and, consequently, separate this difference with the impact of players’ negotiations. 

In order to compare the simulated results with the performance of the optimization model that assess 

full information, first the simulation model was executed for one sample, the information for the 

stochastic elements were saved and then the optimization model was executed with all the 

information as input. This was used to find the highest possible performance for this sample, with the 

specific number of orders, order characteristics and stochastic element outcomes. It becomes 

obvious, that the performance of the optimization model does not take one single value, but depends 

on the input that differs for each sample.   

On the other hand, the coordinated system’s model (MPC) was executed after each simulation step 

(game round) and not at the end of the sample. In this way the coordinator had as input exactly the 

same information at each round as the simulation model -and the players at each round- and not full 

information, as the optimization model. In this way the coordinator included the uncertainty of the 

stochastic elements and can be assumed as a special case of policy of centralized control center, that 

bypasses players’ negotiations. 

The optimization approach is based on the arc-based Service network design or “capacitated 

multicommodity network design” (CMND) as described by several articles (Andersen et al., 2007; 

Crainic, 2000) with some adaption. 

Coordinator’s decisions on the coordinated system’s model are based on the aforementioned 

optimization model combined with Model Predictive Control (see Camacho & Alba, 2013; Kouvaritakis 

& Cannon, 2016). The main elements that are used from the MPC is that the coordinator makes the 

planning for a planning horizon (e.g. four rounds) by assessing all the currently-available information, 

but applies only the decision for the current round. Every new round that new information become 

available to the system, a new planning is done for the planning horizon. In this way, stochasticity is 

handled as the disturbances on the MPC concept (see Kouvaritakis & Cannon, 2016). 

The optimization model and coordinator’s model were first formulated as Linear Programming 

problems using mathematical terms and then solved in python 2.7 using the external library and 

application programming interface (API) of IBM CPLEX. 
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Optimization model and the coordinated system model, their approach and mathematical models are 

presented in Chapter 4. 

Pros and Cons of each method 

The different methods have several advantages and disadvantages that are summarized in this 

subsection. 

First, gaming is used to enable the stakeholders identify their problems and observe operational 

complications that lead to inefficiency. Also, it helps researchers to observe human behavior and 

decision making of all actors and their interactions from multiple sides on the same time, something 

that it is difficult to capture in real operations. In addition, it allows for different scenarios testing (e.g. 

policies interpreted into game rules) in a controlled environment and low cost, compared to real 

operations testing. As Bradley et al. (1977) notes, gaming has lower implementation costs, which 

allows for the test of performance of different alternatives with the participation of the actors and 

decision makers. Furthermore, it is a more entertaining and “relaxed” method that engage 

stakeholders to express their preferences easier comparing to more traditional data collection 

methods, as surveys. On the other hand, it is a time-consuming method for the participants and 

combined with the low availability of the stakeholders, leads to limited possibilities for high number 

of samples. Another disadvantage of gaming as research method is the high level of abstraction 

compared to the “real” world.  However, as all models are a simplification of the system that they 

represent, the games should also be handled as a model that serve specific purposes (e.g. behavior 

observation) and not as an exact representation of the system. 

The second used method, simulation, allows for a high number of samples in lower time than game 

sessions. This is the main reason that is used as a supplementary method in this study. Simulation can 

also be adapted easily to new scenarios in order to quantify their performance. However, it is a model 

of the game, which is already a simplification of reality. Another disadvantage is that the behavior of 

the players is modeled with Discrete choice model and is not a “real” behavior, as in gaming. 

Optimization model gives the highest achievable performance and can act as a guide to the players 

for the best allocation of the resources (e.g. train capacities) and the decisions that lead to a more 

efficient system. The main disadvantage of the optimization model is that it does not include any 

human behavior. 

On tables 1-3 the advantages and disadvantages of each method are summarized. As can be seen on 

these tables, most of the disadvantages of one method are covered by the other methods. This is the 

reason why all of these methods were chosen to be combined: To extract the advantages of each 

method while avoiding their disadvantages in the highest possible level. 
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Table 1 Gaming pros and cons 

Gaming 

+ - 

Stakeholders can identify their problems 

and observe operational complications 

Time consuming (compared to 

simulation) 

Observe behavior, test policies and raise 

awareness 

Limited sample 

More fun and relaxed way to engage 

stakeholders 

Higher level of abstraction 

 

Table 2 Simulation pros and cons 

Simulation 

+ - 

Allows for high sampling in low time Models the game which is already an 

abstraction of the “real” world 

Allows for different scenarios modeling Behavior is modeled and not “real” 

 

Table 3 Optimization pros and cons 

Optimization 

+ - 

Sets the upper bound for performance Does not include behavior 

Gives insight on the optimal decisions for 

the system 
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1.3.3. Approach for each research (sub)question 
In this chapter the approach to answer each of the sub questions that will lead to the answer of the 

main research questions is given. 

SQ1. Which are the most relevant policies for cooperation? 

In order to find the relevant policies for collaboration in port to hinterland transportation 

literature review was used. Additionally, some expert consultation relevant to the topic was 

required to answer this sub question. In that way different policy scenarios can be structured. 

This sub-question is answered by using literature of Chapter 2 and presented in Chapter 5.  

 

SQ2. What is the highest achievable in-game performance under full information and no 

stochasticity? 

In order to find the highest possible performance, the RCCR game is used and an optimization 

model for this game is developed, assessing full information at the end of each game and 

including the results of the stochastic elements, thus excluding stochasticity. In this way, the 

specific performance gives the upper bound of the comparison framework, that cannot be 

exceeded, given the same input. The answer of this sub-question is in Chapter 4. 

 

SQ3. What can be the in-game performance of a coordinated system including stochasticity? 

This performance can be calculated by using the optimization model combined with a Model 

Predictive Control. The outcome of this model compared with the performance of the previous 

sub question can give an insight of the negative impact of stochasticity in the system. This sub-

question is answered in Chapter 4. 

 

SQ4. How the selected policies influence the overall in-game performance relative to the highest 

achievable performance? 

As described in chapter 1.3.1 both simulation and gaming is used to test and evaluate each of 

the policies and compare their performance with optimization model’s. First in simulation runs 

the respective parameters for the policies are tested to check their performance and compare it 

with the performance of the optimization model. At this point it is worth noting that it would be 

more straightforward and realistic if all the parameter changes would be tested directly to the 

gameplay of the actors. However, the time and effort needed for this is obviously prohibitive 

and that is the reason that simulation is preferred for the selection of parameter that need to be 

changed. As a comparison, a couple of rounds of gameplay with human players can last for 2-3 

hours while several runs of the simulation model can be fulfilled in one minute. After the final 

selection of the parameters that should be changed (choice of a policy), these parameters are 

also changed in the gaming sections with real players to measure the performance of the actors. 

The performance of the actors was then measured from the game runs and was compared to 

game optimizer’s high score. This sub-question is answered by the analysis’ results in Chapter 6. 

 

SQ5. Can the configuration of game rules, according to specific policy plans, affect players’ 

performance in the expected way? 

In order to answer this sub-question, the simulation and gaming outcomes, before and after the 

implementation of the policies was assessed to identify if players’ behavior changed in the 

expected way. Thus, it was examined if the configuration of game parameters or rules, according 

to specific policy plans could affect player’s performance. This sub question requires the 

combination of both theoretical and practical part of the thesis. On the one hand there are the 

theoretical expected outcomes of each policy. On the other hand, there are the data captured 
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from the practical game runs. These data included the performance of the actors when playing 

the game. By comparing the initial performance and preferences of the actors in the gameplay, 

before and after the implementation of each policy in the game (through parameter changing), 

the practical outcomes of the policies on the actors can be found. These outcomes then can be 

compared to evaluate the theoretical expected outcomes of each policy.  
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2. Literature review and description of RCCR game 
This chapter presents the relevant literature for port to hinterland and choice behavior of the actors 

and the required background information in order to understand the Rail Cargo Challenge Rotterdam 

game. 

2.1. Literature review 

2.1.1. Collaboration and Coordination mechanisms 
Business integration may be used as a practice to increase revenue, achieve economies of scales, 

enhance market share and distribute the risks among the participants (Sudarsanam, 2003). According 

to Mason, Lalwani & Boughton (2007), business collaboration in transport management is not only 

important for reduction in costs, but generally for “value optimization”, such as improvement of 

service level and customer satisfaction. 

Saeedi et al. (2017) mention that business integrations range from light to heavy forms. A light form 

of business integration is subcontracting, while heavy forms are the strategic alliances and business 

acquisitions (Saeedi et al., 2017). Van Der Horst & De Langen (2008) note that “interfirm alliances are 

a more effective arrangement than complete vertical integration”. 

Brandenburger and Nalebuff (1996) propose the term coopetition for ports, which is the cooperation 

with the competitors in order to reach in a win-win state for all competitive actors. Saeedi et al. (2017) 

argue that competition in the intermodal freight transport system could be decreased by business 

integrations in both horizontal and vertical dimensions. 

Van Der Horst & De Langen (2008) mention that in order to establish an alliance, the capabilities of 

the companies should be “complementary” and the transaction costs should be low.  

According to Saeedi et al. (2017) there are two types of vertical collaboration, the “restricted” and the 

“flexible”. In the restricted situation the two parts are obliged to work together until the one part 

fulfills its capacity and if the other part still has remaining capacity, then can sell it to other operators 

(Saeedi et al., 2017). 

Brooks et al. (2009) write that “Port authorities can deliberately enable competition and set conditions 

in concession agreements. They can develop access rules to enhance efficient use of infrastructure, and 

they can develop supporting facilities like port community systems”.  

According to Van Der Horst & De Langen (2008) there are “four key mechanisms to enhance 

coordination: the introduction of incentives, the creation of interfirm alliances, changing the scope, 

and the creation of collective action”. These coordination mechanisms with their possible 

arrangements can be seen in figure 7. 
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Figure 7 Typology with examples of coordinating mechanisms (Brooks et al. 2009) 

In the work of Van Der Horst & De Langen (2008) it is noted that cargo exchange can resolve the 

problem of long-stay of the barges in the ports. Cargo exchange can be done by collective action or by 

interfirm alliances, with the incentive for the involved parties to achieve economies of scale (Van Der 

Horst & De Langen, 2008). Van Der Horst & De Langen (2008) also notice that especially in Port of 

Rotterdam can be found 34 collective actions and 31 interfirm alliances in different forms of 

cooperation (e.g. capacity pools, exchange websites), while monetary adjustment incentives (e.g. 

penalties) identified in six cases. 

Brooks et al. (2009) listed real port examples that used some of the above arrangements for 

coordination mechanisms. This can be seen in figure 8. 

  

 

Figure 8 Typology with examples of coordinating mechanisms (Brooks et al. 2009) 

2.1.2. Intermodal competition (train-truck) 
Crozet (2017) exploring the competition between the truck and train in freight transportation and a 

potential opening in rail freight transport market, mentions as a major difference of road and rail the 

level of network access. The rail to road network ratios are very small (e.g. 10/100 for Germany, 3/100 

in France), which makes extensive massification necessary for rail, in order to be competitive (Crozet, 

2017).  
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Furthermore, according to Crozet (2017) more than eight train operators left the market between 

2000 and 2004 in Sweden. An important factor for these “exits” was the intermodal competition of 

road transport where mega-trucks of 60 tons were allowed (Crozet, 2017). 

2.1.3. Mode choice in freight transportation  
Floden et al. (2017) in their literature review on choice of transport service, found that “a number of 

key factors reoccur in most of the articles: cost, transport quality, reliability and transport time”, while 

the environmental factors are being researched more and more but they are still found to have 

insignificant effect on mode choice (Floden et al., 2017). The above attributes and their level of 

importance are illustrated in figure 9, as found in Floden et al. (2017). Cost, damage (transport quality), 

reliability and speed (transport time) are also addressed as the top four important factors in the work 

of Cullinane & Toy (2000).  

Maier et al. (2002) found reliability as the most important factor on choosing between transport 

alternatives and underpin that rail is not preferred by the logistic managers even if all the other 

attributes are equal. 

  

Figure 9 A graphical representation of the important factors selecting transport service (Floden et al, 2017) 

Holguín-Veras, Xu, de Jong, and Maurer (2011) conclude that the interaction between shippers and 

carriers can explain freight mode choice decisions and that this decision greatly depends on shipment 

size. 

Reis (2014) investigated whether the variables used in medium to long-distance transport mode 

choice can also be used in intermodal short-distance choices and concluded that these variables, 

except price, are not significant for the explanation of freight forwarders choice and that road 

transport is generally preferred over intermodal option. 

Feo- Valero, García-Menéndez & Sáez-Carramolino, et al. (2011) found that in inland freight transport 

frequency of service has an important role and regulators should focus on this in order to make rail a 

competitive alternative over road transport option. 

Beuthe and Bouffioux (2008) analyzing the important attributes of freight transport for different types 

of goods, note that cost is the dominant attribute for the mode choice for all categories while 
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especially for container transport the most important factor is cost with a weight of 71%, followed by 

transport time, reliability and frequency of service. 

2.2. Gaming applications and RCCR 
An innovative approach to evaluate the impact of different policy scenarios on actors’ preferences by 

using a combination of gaming (also called simulation gaming), simulation and optimization will be 

used on this thesis, as an extension of the already developed games of Synchro-Gaming project that 

department of Engineering Systems and Services (TPM) of TU Delft is involved. 

2.2.1. Introduction to gaming 
The games that are used for purposes are also called simulation games (Harteveld, 2011). As an 

abstraction of the real-world games can also be considered as models. In figure 10, the different types 

of modelling, including gaming, can be seen as found in the work of Bradley et al. (1977). These are 

Operational exercises, gaming, simulation and analytical models. In the first two types the actors have 

an active role and can interact with the model. In the other two types the actors have only an external 

role. Although operational exercises take place in actual world environment and are closer to the real 

operations, usually the cost of implementation is prohibitively high (Bradley et. al, 1977). On the other 

hand, gaming is a simplification and abstraction of reality, leading to lower implementation costs, 

which allows for the test of performance of different alternatives with the participation of the actors 

and decision makers. (Bradley et. al, 1977). 

 

Figure 10 Types of models (Bradley et al., 1977) 

2.2.2. Applications of games 
Serious or simulation games are used for centuries by military to analyze tactics, develop strategies 

and prepare missions (Smith, 2010). However, the modern development of the games started by the 

evolution and combination of war games, computer science, operational research in 1950’s. (Wolfe 

and Crokall, 1998). After the war games, also business used games for training, analysis, policy and 

decision making (Duke, 1974).  

In transport sector, gaming has been applied in several cases. Meijer et al. (2012) developed and used 

a game to support ProRail analyze capacity management problems and develop strategic behavior. 

Subsequently, Meijer (2012) in a different paper describes six more games for Dutch rail infrastructure 

management, with different scopes, including policy related topics, utilization of technical aspects, 

process management, handling of major disruptions, rolling stock management and test of resilience 

and robustness. Also, games are used from practitioners to better understand the value of flexibility 

in freight transport and by educational institutes to teach intermodal container logistics (Van Riessen, 
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2018).  Furthermore, gaming is used as a way to raise actor’s awareness towards new transport 

systems as synchromodality that is expected to increase efficiency in freight transportation 

(Kourounioti, 2018). This tool (gaming) has three objectives for synchromodality according to Buiel et 

al. (2015): 

1) Let the actors experience synchromodal planning,  

2) Show to the actors the benefits and  

3) Achieve the mind shift towards cooperation between actors. 

 The first results of synchromodal games seem promising. After playing a synchromodal game, 72% of 

the participants raised their awareness of the importance of flexibility in freight transportation and 

48% understood the importance of synchromodality (Kourounioti et al., 2018). This shows a trend for 

common acceptance by all actors.  

2.2.3. Rail Cargo Challenge Rotterdam game (RCCR) 
Rail Cargo Challenge Rotterdam is a game developed by TU Delft gamelab, The Barn, ProRail and TNO 

within the “Synchro-gaming” project (TU Delft gamelab site, 2018). In this chapter a brief description 

of the context and the rules of the game are described, as found in the game manual and discussed 

by Kurapati et al. (2017) and Kourounioti et al. (2018). A more extensive description of the game and 

its rules can be found in appendix A. 

 

Figure 11 Rail Cargo Challenge Rotterdam Board (http://www.seriousgaming.tudelft.nl/games/rail-cargo-challenge) 

“The key research objective of the Rail Cargo Challenge Rotterdam (RCCR) is to assess the attitudes 

and behavior of stakeholders in the freight transport domain with respect to the efficient bundling of 

containers to be transported to their final destination using rail.” (Kourounioti et al., 2018).  

RCCR has two main categories of players: rail operators and freight forwarders. These two categories 

are on the second and third layer of TRAIL model (see figure 3), respectively.  

The game is played in rounds. On each round, new containers arrive at the port of Rotterdam in one 

of the terminals and each container has a specific destination and an expiration date of delivery. Each 

container is represented by one order card, including the above information (storing terminal, 

destination, latest day of delivery). The order cards are distributed to the freight forwarders that are 

responsible for the on-time delivery of the respective containers. 

http://www.seriousgaming.tudelft.nl/games/rail-cargo-challenge
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Rail operators: There are two train operators in the game that compete to satisfy forwarders’ demand. 

Each operator is in charge of one train. It is the decision of rail operator which terminals the train visits 

and at which destination it arrives and this decision can defer per game round. In the case that the 

schedule of the train operator has more terminals than the maximum possible terminals that can be 

serviced then rescheduling is required or even transportation by truck. 

Freight forwarders: There are three forwarders in the game that are responsible for the on-time 

delivery of the cargo. Each container is assigned to one forwarder. The forwarder can choose to send 

the container either by train or by truck. The role of Freight forwarders is to negotiate the price of 

train transport with train operators and finally decide which mode to choose.   

Shippers (Not an active actor in the game): Freight forwarders are paid by shippers that have a 

preference to train and thus they pay more to have their containers transported by rail. If the 

containers are not delivered on time no yield is payed to the forwarders. A container is assumed to be 

delayed if the latest day of release it is transported by truck. Note that shippers do not have an active 

role in the game and does not need a person to play this role.  

Dice in the game: A stochastic element (dice) is included in RCCR. The role of the dice is to determine 

the maximum number of terminals that each train is allowed to visit. The stochasticity of the dice 

represents possible last-minute delays or, on the other hand, low traffic in the terminals. 

Each player is assumed to have his own company and tries to achieve the highest possible profits.  

The reputation of the port is also important as the lower the reputation the less the container orders 

that are given to freight forwarders. Thus, as the reputation of the port increases, more customers 

(shippers) prefer Port of Rotterdam, new containers reach to PoR terminals and new resources are 

inputted on the system. The reputation is lowered with the use of truck. 

The aim of the game is to promote horizontal and vertical collaboration between the actors, as the 

merging of orders and the appropriate selection of terminals and destination is required to utilize the 

train and lead to highest profits for players.  

2.2.4. Key Performance Indicators (KPIs) 
The Key Performance indicators that are set in the game are two. The first is the monetary profitability 

and the second is the reputation of the Port.  

The profitability is measured on the game currency (tokens), while the reputation is closely connected 

with the sustainability aspect and is reduced with the use of each truck, which is assumed a non-

environmental friendly solution. 

Key Performance Indicators (KPIs): 

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑡𝑜𝑡𝑎𝑙_𝑡𝑟𝑎𝑖𝑛_𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑡𝑜𝑡𝑎𝑙_𝑡𝑟𝑎𝑖𝑛_𝑐𝑜𝑠𝑡 + 𝑡𝑜𝑡𝑎𝑙_𝑡𝑟𝑢𝑐𝑘_𝑜𝑛_𝑡𝑖𝑚𝑒_𝑟𝑒𝑣𝑒𝑛𝑢𝑒 +

𝑡𝑜𝑡𝑎𝑙_𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑_𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑡𝑜𝑡𝑎𝑙_𝑡𝑟𝑢𝑐𝑘_𝑐𝑜𝑠𝑡  

𝑃𝑜𝑟𝑡_𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = −𝑡𝑜𝑡𝑎𝑙_#𝑡𝑟𝑢𝑐𝑘𝑠_𝑢𝑠𝑒𝑑  

(*Port reputation is increased by one point if no trucks are used in one round)  



21 
 

3. Game and simulation model 

3.1. Important aspects of the game and players’ decisions 
In this section an analysis of the important game aspects is done. In this analysis, as “system” is 

referred the group of Port, train operators and freight forwarders. Shippers are assumed to be an 

external passive actor (none of the players has this role), that create the demand and pay freight 

forwarders for the successful delivery of their freight. Truck operators are also assumed to be out of 

the system, as they do not have an active role in the game. 

Next the decisions of each player are summarized: 

Freight forwarders: Each of these players are responsible for the transportation of specific containers. 

The actions and decisions that they have to take are: 

• Negotiate the price for each container transport with train operators. 

• Choose between train and truck. This decision is not only depended on the price but can also 

include the reliability perception for each train operator. 

• Decide to send each container the specific day or wait for one of the next available days 

before container expiry date. 

Train operators are scheduling the train service. The decisions that each train operator have to take 

during the game are: 

• Negotiate the price for each container transport with freight forwarders. 

• Choose the number of terminals to service. This decision includes the risk of servicing less 

terminals than the decided, depending on the dice described in the previous chapter. 

• Choose which terminals to service. 

• Choose the destination of the train. 

• Decide to undertake the responsibility to transport a container. By the time that the train 

operator takes this decision, he is responsible for the successful transport of the container 

and his further decision can affect the yield of the freight forwarder. This means that if the 

train operator cannot successfully send the container by train and has to fulfil the order by 

truck, the train operator will pay for the truck fee and the freight forwarder will get yield as 

using truck, although he has chosen train. 

• Decide to send each container the specific day or wait for one of the next available days before 

container expiry date. 

Except the decisions of the players there are also some other aspects that need to be addressed. 

Firstly, the resources of the system are the exchange currency (tokens) and the port reputation. 

Reputation linearly decreases by the use of each truck and it is straightforward that it is maximized by 

the minimization of truck use. As for the currency, except the starting budget of each player, new 

tokens are only inputted in the system by shippers.  

Secondly, after the preliminary analysis of the game that can be found in appendix A.2., and as can be 

seen in figure 12, it is observed that as the agreed price to transport a container by train increases, 

the income of freight forwarder (per container) decreases, while the income of train operator 

increases. This happens as the tokens are transferred from the one player to the other. At the same 

time, system income (per container) stays on the same level. As can be conducted, the system profit 

is independent of the negotiated price between the train operators and the freight forwarders. 
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However, there is an undergoing risk that these negotiations could fail and result in the use of truck 

alternative instead, which greatly reduces system’s profit (see Figure 12). 

 

Figure 12 Each player’s income per container as function of agreed price (train use) 

Another important element of the game is the reputation of the port, which is directly connected with 

the truck use. As more trucks are used, port reputation reduces and less container orders come to the 

port terminals. This results in less customers in the port system and lower profitability. 

It can be seen that the lower profitability and efficiency of the non-coordinated system, mostly come 

from the negotiation part of the game, the lack of information and the low cooperation between the 

actors. Cooperation could be used in order to utilize the trains (e.g. consolidate freight with same 

origin-destination) and take decisions to increase the profit for the whole system through information 

sharing. The use of train instead of truck in the highest possible level would most probably lead to 

higher individuals’ profits as well, as more new (monetary) resources are inputted on the system and 

can be split between individuals. 
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3.2. Current in-game performance 
The game sessions are used to collect data and observe players’ behavior. These observations are 

important as they are used to set the decision rules for the simulation model as well. 

Note that the costs and revenues in the game sessions for this thesis are multiplied by 5 compared to 

the basic game rules, in order to achieve a better variation in negotiation prices.  

 

 

Figure 13 Players’ performance, game 1 (19/5/2018) 

 

Figure 14 Players’ performance, game 2 (29/6/2018) 

As can be seen in figures 13, in the first game players achieved a profit of 740 currency units, by 

transporting 91 containers by train and 50 containers by truck (on-time and delayed). Players’ 

performance in the second game, as illustrated in figure 14, reached 695 game currency units in profit, 

by transporting 93 containers by train and 41 by truck. 

It should be noted that the total containers transported by truck and by train are not the same. As 

mentioned in the description of the game, the amount of the containers depends on the reputation 

of the port (use of truck in each round). Thus, in the first game the reputation on the first rounds was 
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higher and more containers reached on the terminals. Although the players did not manage to send 

more containers with the train at the end comparing to the second game, the more containers that 

became available to the system led to higher profits, but to lower end reputation. 

 

3.3. Game simulation 

3.3.1. Simulation steps 
The simulation model is based on the RCCR game process and rules. The simulation model is presented 

step by step in the next flow chart in figure 15. A more extensive description of the model and the 

sub-steps for operators’ decisions (step 3, step 7) and the freight forwarders’ decisions (step 4) can be 

found in Appendix B. 

 

Figure 15 Simulation model steps 
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3.3.2. Discrete Choice Model in simulation 
An important aspect of the simulation model is the way freight forwarders and train operators take 

their decisions. In this simulation, simple utility maximization is used for the decision of train operators 

in steps 3 and 7 (see figure 15). Also, a Discrete Choice Model (DCM) and specifically a Multinomial 

Logit model is used in step 4 (see figure 15) to model the decisions of freight forwarders for the mode 

of transport to be used. According to Ben-Akiva and Bierlaire (1999) the most important assumptions 

of the DCM are the decision maker, the alternatives, the attributes and the decision rule. 

In order to choose the most important factors to include in the utility functions of the decision model, 

literature is used. In literature review (see chapter 2.1.), the most important factors for mode choice 

in port to hinterland freight transportation found to be cost, transport time, reliability, transport 

quality and in some cases frequency of the service. As in the game RCCR transport time, transport 

quality and frequency of service are not included, the factors that are finally chosen in the utility 

functions are cost and reliability. 

Freight forwarders’ utility functions 

Freight forwarders’ decisions appear on step 5 of simulation (see figure 15). Freight forwarders make 

their decision for each order card separately. The important assumptions of the Discrete Choice Model 

(see Ben-Akiva & Bierlaire, 2009) in this case are: 

• The decision maker: Freight forwarder 

• The alternatives: depend on the expire date (see next) 

• The attributes: cost, reliability (transport time and quality are not included in RCCR game) 

• The decision rule: utility maximization, MNL model 

The alternatives for freight forwarders depend on the expiry round of the order card. 

➢ If it is the last round (day) before the order expires, the discrete choices for each freight forwarder 

are: 

1) train operator 1, 

2) train operator 2 or  

3) delayed truck. 

And the respective utility functions are: 

𝑈𝑇𝑟𝑎𝑖𝑛1
= 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟1𝑝𝑟𝑖𝑐𝑒) + 𝛽𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦1 +

                   +(𝛽𝑡𝑟𝑎𝑖𝑛)  

 

𝑈𝑇𝑟𝑎𝑖𝑛2
= 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟2𝑝𝑟𝑖𝑐𝑒) + 𝛽𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦2 +

                    + (𝛽𝑡𝑟𝑎𝑖𝑛)  

 

𝑈𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑 = 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒_𝑑𝑒𝑙𝑎𝑦 − 𝑐𝑜𝑠𝑡_𝑑𝑒𝑙𝑎𝑦) + 𝛽𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑  
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➢ If it is not the last day before the order expires, the discrete choices for each freight forwarder 

are:  

1) train operator 1,  

2) train operator 2,  

3) early truck or  

4) keep the order to decide next day.  

And the respective utilities are:  

𝑈𝑇𝑟𝑎𝑖𝑛1
= 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟1𝑝𝑟𝑖𝑐𝑒) + 𝛽𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦1 +

                   +(𝛽𝑡𝑟𝑎𝑖𝑛)  

 

𝑈𝑇𝑟𝑎𝑖𝑛2
= 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟2𝑝𝑟𝑖𝑐𝑒) + 𝛽𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦2 +

                   +(𝛽𝑡𝑟𝑎𝑖𝑛)  

 

𝑈𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦 = 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒_𝑒𝑎𝑟𝑙𝑦 − 𝑐𝑜𝑠𝑡_𝑒𝑎𝑟𝑙𝑦) + 𝛽𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦  

 

𝑈𝑘𝑒𝑒𝑝_𝑜𝑟𝑑𝑒𝑟 = +𝛽𝑘𝑒𝑒𝑝_𝑜𝑟𝑑𝑒𝑟   

 

The parameters for each utility function were estimated using observed data from the game sessions. 

The values of the parameters can be seen in Table 4. 

Table 4 Estimated parameters in Utility functions 

𝛽𝑝𝑟𝑖𝑐𝑒 0.108 

𝛽𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 0.146 

𝛽𝑡𝑟𝑎𝑖𝑛 0 (train set as base case) 

𝛽𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑 -1.45 

𝛽𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦 -2.44 

𝛽𝑘𝑒𝑒𝑝_𝑜𝑟𝑑𝑒𝑟 -1.06 

 

Note that as the truck cost and revenue are constant, these prices were incorporated in the alternative 

specific parameter. Thus, 𝑈𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑 = +𝛽𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑 and 𝑈𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦 = +𝛽𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦. 

Furthermore, it is worth noting that the parameter for the early trucks (𝛽𝑡𝑟𝑢𝑐𝑘𝑒𝑎𝑟𝑙𝑦
) found to be less 

than the parameter for delayed truck. This is justified from the game sessions, as the early truck 

alternative found to be the most rarely used, as the players prefer to keep the order cards for the next 

rounds most of the times. 

The software used for estimation is BIOGEME 1.8 (see Bierlaire, 2008). BIOGEME package is distributed 

free in order to develop the research area of Discrete Choice Models (Bierlaire, 2003). More 

information for the decisions of freight forwarders, the used Discrete Choice Models and the 

estimated parameters can be found in Appendix B.2. 
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Train operators’ utility functions 

Train operators’ decisions appear on step 3 and step 7 of the game simulation. On these steps, simple 

utility maximization is used as the decision rule, as the operators do not choose among a set of mode 

alternatives, but decide which origin-destination pair will service to achieve the highest benefits. The 

weights in the utilities (paramters) for the price and for the delayed orders are assumed to be the 

same as estimated for freight forwarders in the previous subsection. 

First, on step 3, train operators negotiate with freight forwarders and decide which containers to agree 

to transport (so they have to make an informal plan-strategy on which terminal(s)-destination to 

service this round) and on step 7 decide and announce formally which terminal(s)-destination will 

actually service.  

On step 3 of simulation, during negotiation phase, the outcome of the dice, that defines the maximum 

number terminals that operators are allowed to service, is not yet known. Thus, in this step, train 

operators negotiate with freight forwarders and agree to transport orders with the aim to maximize 

their expected profits. This includes some risk in the decision process on this step, as if the operators 

decide to agree on orders for more terminals than the maximum number of terminal that the dice will 

determine, then the expiring orders will have to be transported by a delayed truck.  

On the other hand, on step 7, the outcome of the dice is known and the operators decide which 

terminal(s)-destination to choose in order to maximize their “real” profits. 

It was observed from the real game sessions that the decision of the operators on which cards to buy 

from the freight forwards depends on highest demand and on the cards that had already bought from 

previous rounds. More detailed information about the decision process of train operators are given in 

Appendix B.3. 

3.3.3. Simulation results 
For the simulation model, the utility functions with the estimated parameters as described in chapter 

3.3.2. were used. 

As can be seen in figure 16, the simulated profit has a high variation. This can be explained due to the 

different outcomes of the stochasticity of the dice and by the different “paths” of decisions that the 

players can take and, as a result, lead to different profit outcomes in the end. 

 

Figure 16 Total system profit in 10 game rounds. (100 simulation runs) 
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Figure 17 Total number of containers transported by train in 10 game rounds. (100 simulation runs) 

 

Figure 18 Total number of containers transported by trucks (on-time and delayed) in 10 game rounds. (100 simulation runs) 
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4. Optimization Model and a Coordinated Perspective 
As shown in preliminary analysis of the game (chapter 3.1., Appendix A.2.), in order to maximize 

system’s profit, players should utilize the trains, as much as possible, and have truck option as an 

alternative for the containers that cannot be delivered by the train services. It was also deducted that 

the lower profitability and efficiency of the non-coordinated system, mostly come from the 

negotiation part of the game, the lack of information and the low cooperation between the actors. In 

the game sessions, freight forwarders also aim to send most of their containers by train as their 

individual income per container is more. However, negotiation on prices or choices of terminals-

destination by train operators that are not optimal for the system, due to lack of information, lead to 

inefficiency. All these complications could be bypassed by a coordinated or a fully cooperative system. 

This chapter describes two models that will move towards this way. 

The use of each model and their differences were described in the methodological part in section 

1.3.2. 

The difference of the coordinated system and the current system is that the coordinator takes 

decisions to maximize system’s KPIs, as defined in chapter 2.2.4, and not individual’s profits. 

4.1. Optimization Model of the RCCR game 
In the next subsections the inputs, outputs, objectives, assumptions and mathematical model of the 

optimization model are presented. 

4.1.1. Input of the model 
The inputs of the optimization model are: 

•  New containers that are released in each round (day).  

• Each container has a specific terminal of arrival, destination and latest round (day) to depart 

from the terminal (after this round the order expires). The information for each container 

order (terminal, destination, expire) become known only at round (day) of its arrival. 

• The maximum number of terminals that each train can service in the current round is given (it 

is determined by a dice). This information is not available for next rounds. 

4.1.2. Output of the model 
The output of the model is to find: 

• Which terminal(s) and which destination to service each train in the current round. 

• Which containers to send by train, which to keep for next rounds (if the order is not expiring 

the current round), which to send by trucks (on-time or delayed). 

4.1.3. Objective of the model 
Maximize the KPIs for the system: Profit and Reputation of “Port of Rotterdam” in game. (see also 

chapter 2.2.4.) 

4.1.4. Assumptions of the model  
The assumptions are set by the rules of the game. 

1. All containers have to be delivered before expire date.  

2. The transport options are: two trains, on-time truck and delayed truck. 

3. If the last day before a container order expires, the container cannot be transported by train, 

it should leave with a truck that is assumed to be delayed (delayed truck). 
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4. If a truck is used, to transport a container, two days before expiry round it is assumed to be 

an on-time truck. (In last round before expiry, only a delayed truck can be used).  

5. Costs are not dependent on distance, terminal choice, destination choice. 

6. Fixed cost to operate each train each round. 

7. Trains have to pay the fixed operational cost per round independently of utilization rate (even 

if the train is empty), distance, terminal choice, destination choice.  

8. Fixed revenue per container transported by train. 

9. Fixed cost per container for truck-use. 

10. Trucks pay their fixed cost per container only if they are used. 

11. Fixed revenue per container transported by on-time truck. 

12. Fixed revenue per container transported by delayed truck. 

13. Only two trains are available. 

14. Each train has a capacity of 10 containers. 

15. Each train can service only one destination per round. 

16. Each train can service up to one, two or three terminals per round depending on a stochastic 

element of game (dice) that its outcome is determined in each round. Thus, the outcome of 

the stochastic element (dice) is not known for the future rounds and each case has a specific 

chance to happen.  

17. Reputation of “Port of Rotterdam” is reduced by one point for each truck that is used (on-time 

and delayed trucks). 

18. Reputation is increased by one point if no trucks are used in a round. 

4.1.5. Optimization approach and mathematical model 
The optimization approach is based on the arc-based Service network design or “capacitated 

multicommodity network design” (CMND) as described by several articles (Andersen et al., 2007; 

Crainic, 2000), with some adaption. The aforementioned model is changed to better fit the specific 

problem. Firstly, a profit maximization formulation is considered, instead of cost minimization, as the 

train services have a fixed cost, independent of the arc that is used. Secondly, to reduce the decision 

variables and as the arcs have no cost of use (fixed cost per train), each train service is not described 

with design arcs but with design nodes (𝑥𝑡𝑒𝑟𝑖𝑛
𝑡𝑟 , 𝑥𝑑𝑒𝑠𝑡𝑗

𝑡𝑟) that represent the terminals/destination 

that each train can visit each round. In the case of flow arcs the decision variables of rail service could 

be represented as 𝑟𝑖𝑘𝑙𝑗
𝑡𝑝𝑟

 as each train t∈T can service up to three terminals (e.g. i,k,l∈O) to transport 

the containers p∈P in round r∈R to destination j∈D. However, this would require about 

T*P*R*O*O*O*D=2*18*4*5*5*5*2=36000 decision variables, only for the rail flows. As there are no 

cost for using each arc and in order to reduce the required decision variables, the flow arcs of rail 

service (𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

) are represented as binary variables that train t∈T transports container p∈P in round r∈R 

from terminal i∈O, which is the nth terminal choice of the operator (n∈N), to destination j∈D. In this 

case, the decision variables for rail flows are reduced to T*P*R*O*N*D=2*18*4*5*3*2=4320 instead 

of 36000. The flow decision variables are binary as each commodity p∈P represents only one 

container; thus, flow is either zero or one. 
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The Integer programming optimization is presented next. 

Sets:  

T Set of trains that are operating (t∈T). 

P Set of containers (IDs) (p∈P). 

O Set of origin terminals (i∈O). 

D Set of destination (j∈D). 

R Set of planning horizon rounds (days) (r∈R) 

N Set of possible choices in priority order for terminals (n∈N). (e.g. 
1st choice, 2nd choice, 3rd choice for a maximum of 3 out of 5 
Terminals) (Equals to the dice alternatives) 

Parameters:  

𝑑𝑒𝑠𝑡𝑗
𝑝

  Binary parameter: 1 if container p∈P has j∈D as destination, 0 
otherwise. 

𝑡𝑒𝑟𝑚𝑖
𝑝

  Binary parameter: 1 if container p∈P has i∈O as destination, 0 
otherwise. 

𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑟𝑚𝑡𝑟 Non-negative integer: maximum number of terminals that train 
t∈T is allowed to service on planning round r∈R. 

𝑝𝑟𝑜𝑓𝑖𝑡_𝑟𝑎𝑖𝑙 Revenue for a successful container transport by train (as train 
has constant cost for operating, cost not included) 

𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦 Profit for each container transported by an on-time truck 
(revenue -cost) 

𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦 Profit for each container transported by a delayed truck 
(revenue -cost) 

𝑒𝑥𝑝𝑖𝑟𝑒𝑝𝑟 Binary parameter: 1 if container order p∈P has expired on round 
r∈R, 0 otherwise. (The indicated round shown in the order 
cards is the last round that the container can be transported, 
thus expire=0 at the specific and previous rounds and 
expire=1 the following days).   

𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑝𝑟 Binary parameter: 1 if container order p∈P has released on 
round r∈R, 0 otherwise. (The round that the container reaches 
the origin terminal and the following rounds, release=1. 
Before this round release=0) 

Variables:  

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

  Binary variable: 1 if train t∈T transports container p∈P from 
origin terminal i∈O, which is the nth (n∈N) terminal choice, to 
destination j∈D in round r∈R, 0 otherwise. 

𝑥𝑡𝑒𝑟𝑖𝑛
𝑡𝑟  Binary variable: 1 if train t∈T services terminal i∈O as nth choice 

(n∈N) in round r∈R, 0 otherwise. 

𝑥𝑑𝑒𝑠𝑡𝑗
𝑡𝑟  Binary variable: 1 if train t∈T has as destination j∈D in round 

r∈R, 0 otherwise. 

𝑡𝑒𝑝𝑟  Binary variable: 1 if on-time (early) truck transports container 
p∈P in round r∈R, 0 otherwise. (trucks can service all terminals 
and destinations at all rounds) 

𝑡𝑑𝑝𝑟  Binary variable: 1 if delayed truck transports container p∈P in 
round r∈R, 0 otherwise. 
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𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (maximize profit): 

𝑚𝑎𝑥 ∑ ∑ ∑ ∑ ∑ ∑ 𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

∗ 𝑝𝑟𝑜𝑓𝑖𝑡_𝑟𝑎𝑖𝑙

𝑗∈D𝑛∈N𝑖∈O𝑟∈R𝑝∈P𝑡∈T

+ ∑ ∑ 𝑡𝑒𝑝𝑟 ∗ 𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦

𝑟∈R𝑝∈P

+  ∑ ∑ 𝑡𝑑𝑝𝑟 ∗ 𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦

𝑟∈R𝑝∈P

                                                               (1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

∑ ∑ ∑ ∑ ∑ 𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

𝑗∈D𝑛∈N𝑖∈O𝑟∈R𝑡∈T

+ ∑ 𝑡𝑒𝑝𝑟

𝑟∈R

+ ∑ 𝑡𝑑𝑝𝑟

𝑟∈R

= 1,        ∀ 𝑝 ∈ P                                                (2) 

∑ ∑ ∑ ∑ 𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

𝑗∈D𝑛∈N𝑖∈O𝑝∈P

≤ 10, ∀ 𝑡 ∈ T, 𝑟 ∈ R                                                                                  (3) 

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

≤ 𝑑𝑒𝑠𝑡𝑗
𝑝

, ∀𝑡 ∈ T, 𝑝 ∈ P, 𝑟 ∈ R, 𝑖 ∈ O, n ∈ N, 𝑗 ∈ D                                                        (4) 

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

≤ 𝑡𝑒𝑟𝑚𝑖
𝑝

 , ∀𝑡 ∈ T, 𝑝 ∈ P, 𝑟 ∈ R, 𝑖 ∈ O, , n ∈ N 𝑗 ∈ D                                                     (5) 

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

≤ 𝑥𝑡𝑒𝑟𝑖𝑛
𝑡𝑟  , ∀𝑡 ∈ T, 𝑝 ∈ P, 𝑟 ∈ R, 𝑖 ∈ O, n ∈ N, 𝑗 ∈ D                                                     (6) 

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

≤ 𝑥𝑑𝑒𝑠𝑡𝑗
𝑡𝑟 , ∀𝑡 ∈ T, 𝑝 ∈ P, 𝑟 ∈ R, 𝑖 ∈ O, n ∈ N, 𝑗 ∈ D                                                    (7) 

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

≤ (1 − 𝑒𝑥𝑝𝑖𝑟𝑒𝑝𝑟), ∀𝑡 ∈ T, 𝑝 ∈ P, 𝑟 ∈ R, 𝑖 ∈ O, n ∈ N, 𝑗 ∈ D                                       (8) 

𝑡𝑒𝑝𝑟 ≤ (1 − 𝑒𝑥𝑝𝑖𝑟𝑒𝑝(𝑟+1)), ∀𝑝 ∈ P, 𝑟 ∈ R                                                                              (9) 

𝑡𝑑𝑝𝑟 ≤ (1 − 𝑒𝑥𝑝𝑖𝑟𝑒𝑝𝑟), ∀ 𝑝 ∈ P, 𝑟 ∈ R                                                                                  (10) 

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

≤ 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑝𝑟, ∀𝑡 ∈ T, 𝑝 ∈ P, 𝑟 ∈ R, 𝑖 ∈ O, n ∈ N, 𝑗 ∈ D                                              (11) 

𝑡𝑒𝑝𝑟 ≤ 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑝𝑟, ∀𝑝 ∈ P, 𝑟 ∈ R                                                                                             (12) 

𝑡𝑑𝑝𝑟 ≤ 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑝𝑟, ∀ 𝑝 ∈ P, 𝑟 ∈ R                                                                                            (13) 

∑ ∑ 𝑥𝑡𝑒𝑟𝑖𝑛
𝑡𝑟

𝑛∈N𝑖∈O

≤ 𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑟𝑚𝑡𝑟  , ∀𝑡 ∈ T, 𝑟 ∈ R                                                                   (14) 

∑ 𝑥𝑡𝑒𝑟𝑖𝑛
𝑡𝑟

𝑛∈N

≤ 1  , ∀𝑡 ∈ T, 𝑟 ∈ R, 𝑖 ∈ O                                                                                     (15) 

∑ 𝑥𝑡𝑒𝑟𝑖𝑛
𝑡𝑟

𝑖∈O

≤ 1  , ∀𝑡 ∈ T, 𝑟 ∈ R, 𝑛 ∈ N                                                                                     (16) 

∑ 𝑥𝑑𝑒𝑠𝑡𝑗
𝑡𝑟

𝑗∈D

≤ 1 , ∀𝑡 ∈ T , 𝑟 ∈ R                                                                                               (17) 

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

, 𝑥𝑡𝑒𝑟𝑖𝑛
𝑡𝑟, 𝑥𝑑𝑒𝑠𝑡𝑗

𝑡𝑟, 𝑡𝑒𝑝𝑟 , 𝑡𝑑𝑝𝑟  ∈ {0,1}, ∀𝑡 ∈ T, 𝑝 ∈ P, r ∈ R, 𝑖 ∈ O, 𝑛 ∈ N  , 𝑗 ∈ D (18) 
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Objective function (1), maximizes the profit. The first term represents the profit obtained by the 

successful transport of containers by train, the second term includes the profit by on-time (early) 

trucks and the third term the profit by delayed trucks. 

Constraint (2) ensures that each container is transported only once and only by one of the available 

modes/services: train “t”, on-time truck or delayed truck. 

(3) is the container capacity constraint for each train t∈T and for each round r∈R. 

Constraint (4) ensures that each container p∈P can only reach the destination that is assigned to. 

Constraint (5) ensures that each container p∈P can only be picked up by the terminal that is assigned. 

Constraints (6)-(7) ensure that each container p∈P can only be transported by train t∈T on the round 

r∈R, if the specific train is servicing the respective terminals/destinations on the specific round.  

Constraints (8)-(10) ensure that each container p∈P will reach destination before expire. Also, 

constraint (9), by using r+1 in 𝑒𝑥𝑝𝑖𝑟𝑒𝑝(𝑟+1) ensure that an on-time (early) truck cannot be used on the 

last day that the order is released. In this case only a delayed truck can be used by the rules of the 

game.  

Constraints (11)-(13) ensures that each container p∈P cannot be delivered before the day of release. 

Constraint (14) limits the number of terminals that each train can service. A different limit for each 

train applies per round, depending on the conditions (dice value) in each round. 

Constraint (15) restricts each train t∈T to choose each terminal i∈O on each round r∈R no more than 

one time.  

Constraint (16) ensures that each train t∈T on each round r∈R has as nth choice (n∈N) no more than 

one terminal i∈O.  

Constraint (17) restricts the train to have at most one destination. 

(18) is a constraint that sets the type of variables to binary. 

4.1.6. Performance of optimization model 
In this subsection the performance of the optimization model with full information is compared with 

the simulated performance of the players. In order to make a valid comparison, due to the 

stochasticity that is included in the game, for each sample the simulation model was ran first and then 

the optimization model took as input exactly the same information. Then the comparison was done 

for the respective pairs. As can be seen in figure 20, the optimized model has about 100-200% better 

performance in profitability than players’ simulated performance in most cases, while this difference 

greatly increases in some cases. Also, it can be seen in figure 21 that the reduction in trucks (thus in 

reputation) fluctuates from 50% to more than 90%.  
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Figure 19 One-by-one comparison of performance in 100 samples in terms of profitability 

In figure 19, can be seen that the simulation model profit, as expected, never overcomes optimization 

model’s profit. 

 

Figure 20 Percentage difference of profit between optimization and simulation 

As shown in figure 20, the optimized performance has a better profitability in all cases. The mean 

percentage difference in 100 iterations is +159,8% and a standard deviation of 57,5. 
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Figure 21 Percentage difference of truck use between optimization and simulation 

The mean percentage difference in truck use of figure 21 is -75,1%. Thus, the optimization model 

achieves about 75% reduction in trucks. The standard deviation is 8,6. 

 

Figure 22 Profit distribution in 100 samples of optimization and simulation model 

4.2. Coordinated system 
This subsection describes a possible coordinated system that aims to maximize the performance 

indicators of profit and reputation of the port to hinterland system of RCCR game. 

4.2.1. Coordinated system’s model 
Several coordinator strategies can be defined to control the system. In this thesis, coordinator’s 

decisions are based on the optimization model of the subsection 3.1 combined with Model Predictive 

Control (see Camacho & Alba, 2013; Kouvaritakis & Cannon, 2016). The main elements that are used 

from the MPC is that the coordinator makes the planning for a planning horizon (e.g. four rounds) by 

assessing all the available information, but applies only the decision for the current round. Every new 

round that new information become available to the system, a new planning is done for the planning 

horizon. In this way, stochasticity is handled as the disturbances on the MPC concept (see Kouvaritakis 

& Cannon, 2016). 
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As the container information become available only in the “current” round and the demand is 

unknown for the “future” rounds, the optimization model is used in every new round of the game and 

the planning for a planning horizon is performed with all the available information until this round. 

Then, according to the model results, only the decisions for the “current” round are taken, the 

respective containers are transported and the round ends. Subsequently, in the new round, the input 

information of the model is readapted including information of the new round and the planning is 

redone, performing only the decisions for the “new” round. The planning horizon is chosen until the 

round of the latest expiring order. 

As the “future” rounds of the game include some stochasticity due to the dice that determines the 

maximum number of the terminals that each train is allowed to service, the profit calculated from the 

planning is not “guaranteed”. For this reason, we implement “expected” profit in the optimization 

model which is the profit multiplied by the probability (expected_profit=chance*profit) of this profit 

to happen.  The objective function of the model is then modified to: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (maximize expected profit for the planning horizon): 

𝑚𝑎𝑥 ∑ ∑ ∑ ∑ ∑ ∑ 𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

∗ 𝑐ℎ𝑎𝑛𝑐𝑒𝑛
𝑟 ∗ 𝑝𝑟𝑜𝑓𝑖𝑡_𝑟𝑎𝑖𝑙

𝑗∈D𝑛∈N𝑖∈O𝑟∈R𝑝∈P𝑡∈T

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

∗ 𝑒𝑥𝑝𝑖𝑟𝑒𝑝(𝑟+1) ∗ (1 − 𝑐ℎ𝑎𝑛𝑐𝑒𝑛
𝑟)

𝑗∈D𝑛∈N𝑖∈O𝑟∈R𝑝∈P𝑡∈T

∗ 𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦 + ∑ ∑ 𝑡𝑒𝑝𝑟 ∗ 𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦

𝑟∈R𝑝∈P

+  ∑ ∑ 𝑡𝑑𝑝𝑟 ∗ 𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦

𝑟∈R𝑝∈P

                                                                

,where 𝑐ℎ𝑎𝑛𝑐𝑒𝑛
𝑟 is the chance (depending on dice) that the train is allowed to service up to n∈N 

terminals in round r∈R. 

The objective function in this case maximizes the expected profit (chance*profit) for the entire 

planning horizon. The first term represents the profit that can be obtained by the successful transport 

of containers by train up to the respective probability 𝑐ℎ𝑎𝑛𝑐𝑒𝑛
𝑟. The second term expresses the risk 

that the dice can determine less terminals than the number of terminals the coordinator has decided 

to service. In this case the expiring orders that cannot be transported by train have to be sent by a 

delayed truck. This probability is (1-𝑐ℎ𝑎𝑛𝑐𝑒𝑛
𝑟). The third term calculates the expected profit by on-

time (early) trucks and the fourth term the expected profit by delayed trucks. 
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4.2.2. Coordinated system’s performance 

 

Figure 23 Profit per sample (optimized and coordinated performance) 

As expected the optimized system is constantly above coordinator’s profit level. This is illustrated in 

figure 23. The mean profit for the optimized model is 2133 of game currency and for the coordinated 

system is 1903 of game currency. The difference in performance of the two systems lays on the 

stochasticity that is included on the coordinated system, when optimized model uses full information. 

The coordinated system profit approaches the optimized in an average of 12,3% with a standard 

deviation of 3,5. This is graphically represented in figure 24. It can be assumed that this difference is 

the clear impact of stochasticity in the profit. 

 

Figure 24 Profit Percentage difference optimized to coordinated performance (Distribution in 100 samples) 
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Figure 25 Truck use per sample (optimized and coordinated performance) 

The average truck-use for the optimized performance is 15 trucks while coordinator’s performance 

has an average of 27 trucks. 

 

Figure 26 Profit Percentage difference optimized to coordinated performance (Distribution in 100 samples) 

As illustrated in figure 26, the optimized performance reduces the truck-use by an average of 44,1% 

with a standard deviation of 9. 
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5. Selected Policies 
After the literature review in coordination mechanisms and cooperative incentives and in consultancy 

with experts the policies that will be assessed for their performance are defined in this chapter. The 

framework of the chosen policies is based on the work of Brooks et al. (2009) that describes these 

mechanisms especially for port to hinterland transportation. The different chosen policies are divided, 

according to their kind, to cooperative or information sharing and monetary adjustment policies. The 

changes on the simulation flowchart due to each policy intervention can be found in Appendix C. 

5.1.  Information sharing policies 

5.1.1. Horizontal collaboration of actors 
Alliance between freight forwarders: 

Policy (1). Freight forwarders consolidate their containers to achieve economies of scale and 

have discount in train transport by train operators. Requires information sharing between 

alliance forwarders. 

Alliance between operators: 

Policy (2). Operators can trade the containers that cannot transport by themselves, if the 

other operator has chosen the respective terminal-destination. 

Policy (3). Operators decide together which terminal(s)-destination to service each train in 

order to maximize their total benefits, then negotiate with forwarders for the respective 

orders and at the end of the round share the profits.  

Alliance between forwarders and alliance between operators (combinations of 1.1.-1.2.): 

Policy (4). Freight forwarders can consolidate their containers and operators can trade their 

containers between them. 

Policy (5). Freight forwarders can consolidate their containers and operators co-decide trains’ 

terminal(s)-destinations. 

5.1.2. Vertical collaboration of actors 
Alliance between freight forwarder and operator: 

Policy (6). A freight forwarder deals to transport all his containers with a specific operator for 

a predefined price, and the operator decides which to send by truck and which by train.  

Policy (7). Forwarder gives priority to a specific operator to choose which containers will take 

in a predefined price and then can negotiate with the other operator for the rest.   

5.1.3. Vertical and horizontal collaboration of actors 
Alliance between freight forwarders, alliance between operators and alliance between freight 

forwarders-operator 

Policy (8). Forwarders make alliances to consolidate their freight and give their orders to 

specific operator in predefined price and operators can trade their containers to the other 

operator if they cannot fulfil the order. 

These policies don’t affect the fully coordinated model (optimization), as they concern only the 

behavior between the players, by which the fully coordinated system is not affected. 
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5.2. Monetary adjustment policies 
Policy (9). Subsidize the utilization of trains above a percentage (e.g. 70%). *Note that this 

policy may not have a very high effect as the in-game operator profitability is almost 

proportional with train utilization (if the deviations in negotiated prices are neglected), and 

thus operators try to utilize their train anyway, even without subsidy.  

 

Policy (10). Fine the use of truck (by operators and freight forwarders). *Note that this would 

probably raise the fees for train use, as the operators would ask for higher prices, that 

forwarders could accept in order to avoid fine. 

Note that economic policies may affect the performance of the fully coordinated as “new” resources 

are inserted in the system, if it is assumed that the same policies would apply to both systems (fully 

coordinated and actor-based).  
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6. Results and Discussion 

6.1. Assumptions, Implementation and verification of the models 

6.1.1. Important assumptions of the models 
In this subsection the important assumptions for the used models that described in the previous 

chapters are summarized and listed. 

Game model assumptions: 

• The game model is an abstraction of the freight transport system between the terminals of 

Port of Rotterdam and the destinations of Duisburg and Burghausen in Germany.  

• Players represent freight forwarders and train operators and is assumed to have behavior that 

is relevant to real operations’ behavior.  

• One day is considered as one game round.  

• The transport of each container is assumed that can be fulfilled in the same day that is sent. 

• Delays are included on the model. 

• The game represents typical days under normal operations and without problems. 

• Every container order should be fulfilled, either by train or truck.   

• There are several rules that the players should follow, as capacity constraints. All the game 

rules are presented in Appendix A. 

Simulation model assumptions: 

• Simulation model is a simplification of the game. 

• Follows the flow chart of the game design. 

• Follows the same rules as the game. 

• Does not include human players. Instead decision models (i.e. Discrete Choice Modeling and 

utility maximization) are used to represent players’ decisions. 

• Negotiation transport costs are drawn from distributions fitted in observed prices where 

needed. 

• Discounts due to economies of scales is assumed to apply after the consolidation of 4 

containers. This is relevant for the alliance policies and not for the current system’s simulation 

model. 

• Negotiation time which is set to five minutes according to the game rules is translated into 

negotiation rounds, as the real time is not relevant for the simulation. One negotiation round 

is defined as the interval between the proposal of a transport price by the train operator, the 

acceptance or decline of this price from the freight forwarder and the trade between the 

accepted orders. In the simulation model, as shown on the simulation flow chart, this number 

is set as constant to 2 rounds. This number is chosen as it was observed from gaming sessions 

that they players had time for about two rounds of negotiations in the given five minutes. 

• The penalty and subsidy amount that are used in some policies are assumed to be received or 

given by an actor that is external for the port system (e.g. government). 

Optimization model: 

• Optimization is a model of the game. 

• Does not include human behavior and interactions, neither real nor modelled. 

• All the decisions are taken by one decision maker that has access to all the available 

information and aims for the system’s optimal solution. 

• Follows all the constraints that are set from the game rules. 
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• Excludes stochasticity by taking as input the results of the stochastic elements. 

• The optimization model is dependent on the performance of the policies that is compared, as 

it takes the same data as input. For example, as mentioned in the description of the game, 

lower reputation rate in each round lead to less new orders that are incoming in the system. 

Thus, if players achieve a reputation that brings 140 containers in the system, the same 140 

containers will be taken from the optimization model as input. Thus, as the performance of 

the players increase and more demand is created, the higher become the profitability of the 

optimization model, as well. The aim of the optimization model is to quantify the level of 

possible improvements compared to the planning of the players, when the input is the same.  

All the assumptions and constraints of the optimization model can be found in detail in chapter 4. 

Coordinator’s model: 

• Coordinator’s model is based on the optimization model, combined with MPC controller 

approach. 

• Does not include human behavior and interactions, neither real nor modelled. 

• All the decisions are taken by one decision maker that has access to all the available 

information and aims for the system’s optimal solution. 

• Follows all the constraints that are set from the game rules. 

• Stochasticity is included. 

• It can be assumed as a policy measure that bypasses the negotiation phase and makes a 

central planning for all the transportation of all the orders. 

6.1.2. Implementation and verification 
The game sessions were organized using the game boards and decks that were already developed. 

The simulation and optimization models were implemented in python 2.7. Specifically, for 

coordinator’s model and the optimization IBM CPLEX API for python was used to solve the Linear 

Programming formulation of the problems. The hardware of the computer system that was used was 

an Intel i7-6700HQ 2.60 GHz CPU, 8.00 GB RAM and the operating system was Windows 7 64-bit. 

As for the verification of the models, first the simulation model tested if it complies with the game 

rules and real players’ performance. This was verified with multiple runs of simulation model by 

examining if the container transport routes, player decisions and train origin-destination choices 

match. In addition, the simulation model had a performance that was close to real players’. However, 

this was compared with only two game samples, which is a very small sample size. In order to have a 

more reliable verification more games should be played. Optimization model was verified in the same 

way and all the constraints were satisfied. An example of the routing with the simulation model and 

the optimization model can be found in Appendix B.5. 

6.2. Performance of policies 
In this subsection, the comparison of the policies in terms of the KPIs is presented. A detailed graphical 

representation for the performance of each policy is given on Appendix C. 

For the first eight policies, the base for comparison is the optimization model’s performance and thus 

the comparison between the policies is set as the percentage difference from this reference point.  

𝑑𝑖𝑓 =
(𝑝𝑜𝑙𝑖𝑐𝑦𝑝𝑒𝑟 − 𝑜𝑝𝑡𝑝𝑒𝑟)

𝑜𝑝𝑡𝑝𝑒𝑟
∗ 100 
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For policies 9 and 10, which are the subsidize of train-use and fine of truck-use respectively, a 

sensitivity analysis is chosen in order to check the performance in different levels of subsidies and 

fines. 

6.2.1. Policies 1-8 
On the next tables the performance of each policy can be seen compared to the optimization model. 

Table 5 Profit comparison between policies and optimization model 

Profit comparison between each policy and optimization model  

 Mean Dif. (%) 
(100 samples) 

St. Deviation 

Current performance -56,5 7,4 

Policy 1 -50,1 8,1 

Policy 2 -47 6,2 

Policy 3 -44,9 9,2 

Policy 4 -44,9 6,9 

Policy 5 -46 8 

Policy 6 -65,5 7,6 

Policy 7 -55,4 8,2 

Policy 8 -42,8 7,9 

Coordinator’s performance -10,9 2,77 

 

Table 6 Truck-use comparison between policies and optimization model 

Truck use comparison between each policy and optimization model  

 Mean Dif. (%) 
(100 samples) 

St. Deviation 

Current performance 503,9 293 

Policy 1 452,4 235,5 

Policy 2 484,1 455,6 

Policy 3 418 329 

Policy 4 415 203 

Policy 5 422 235,9 

Policy 6 575 233 

Policy 7 535,2 422 

Policy 8 390,4 182,2 

Coordinator’s performance 84 31,6 

 

In figures 27-28, the performance of each policy in terms of profit and truck-use compared to the 

optimized performance is represented graphically. 

As can be seen, all the policies except “policy 6” have a better performance than the current situation. 

The best performance is achieved by the application of “policy 8”, which represents the highest level 

of cooperation, vertical and horizontal at the same time. Furthermore policies “3” and “4” approach 

the performance of “policy 8”. These two policies concern only horizontal collaboration, that is 

collaboration between the same kind of actors. At last, it is worth mentioning that only the 
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cooperation between forwarders (policy 1) and only vertical collaboration (policies 6 and 7) are not 

enough to improve the current system in a high level. 

 

Figure 27 Profit comparison between policies 

 

Figure 28 Truck-use comparison between policies 
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Figure 29 Distribution of profit in 100 samples for the different policy scenarios. 

 

 

Figure 30 Distribution of truck-use in 100 samples for the different policy scenarios. 

Note that the performance of the optimization model in the illustrated distribution of figures 29-30 

comes from the comparison between the Coordinator and the optimized system that has the highest 

performance. The optimization model, when compared with the rest policies has lower performance 

as the orders that come to the port system are less, due to the lower reputation per round that the 

players achieve. As mentioned in the methodology part, optimization model has not a direct “physical” 

interpretation, as the coordinated system. It is only used for comparison, in order to quantify how far 
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from optimal planning are the players, given as input the same number and characteristics of the 

orders.  

6.2.2. Policy 9 
Policy 9 is a subsidy policy for the train utilization rate. When the utilization rate overcomes a specific 

percentage (e.g. 70%), extra benefits are given to train operators. A sensitivity analysis is done for 

different prices of subsidy, as percentage of the basic train cost. The impact of the subsidies as function 

of the subsidy amount is illustrated in figures 31-32. The subsidy amount is assumed that comes into 

the port system from external resources (e.g. government). Also, note that 0% subsidy describes the 

current system, without any subsidy. 

 

Figure 31 Profit as function of subsidy 

 

Figure 32 Train and Truck use as function of subsidy 

As can be conducted from figures 31-32, the subsidy has not a significant impact on the performance. 

The profit seems to increase, but this is due to the new resources (subsidy) that come to the system. 

The “real” performance that is the use of train and truck is in the same level, independently of the 

subsidy level. This can be explained as the operators already try to utilize, as much as possible, their 

trains to increase their income. Thus, an increase of the benefits is not critical to achieve a higher 

utilization rate.  
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6.2.3. Policy 10 
In the same way as the subsidize policy (policy 9), policy 10 penalties the use of truck by freight 

forwarders. As in the previous policy, in this case as well, the fine is set as a proportion of the basic 

truck cost and assumed to be paid in an external actor (out of the port system). 

 

Figure 33 Profit as function of fine 

 

Figure 34 Train and Truck use as function of penalty 

As in the subsidy policy case, the fine level is not critical for the reduction of truck-use and increase of 

train use (see figure 34). This happens because the benefits for the use of truck is already less than 

trains’ and freight forwarders try to send their containers by train when this option is available in a 

reasonable price. Furthermore, the fine can raise the negotiation prices between forwarders and 

operators as the operators would know that the truck alternative would be even more expensive than 

previously. Finally, although the train and truck use is the almost the same the profit line in figure 33 

seem to reduce as the fine increases. This happens due to the loss of resources to the external fine 

receiver. 
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6.2.4. Remaining challenge to reach coordinator’s performance 
Due to the big gap between coordinated system’s performance and the rest of the policies an 

explanation of this difference is done in this section.  

For this reason, a sensitivity analysis on two parameters that assumed constant on the negotiation 

phase of simulation model is done, to explore how the change of these parameters could affect 

system’s performance.  These are not relevant for the coordinator’s model as the negotiation phase 

of the players is bypassed. 

The two parameters are the negotiation time between the players, that is translated in negotiation 

rounds, and the minimum number of containers that assumed the consolidation effects and 

economies of scale are achieved.  

The negotiation time is set to five minutes, according to the game rules. It was observed from the 

game sessions that the players had time for about 2 negotiation rounds in five minutes. One 

negotiation round is defined as the interval between the proposal of a transport price by the train 

operator, the acceptance or decline of this price from the freight forwarder and the trade between 

the accepted orders. In the simulation model, as shown on the simulation flow chart, this number was 

set as constant to 2 rounds. 

The number of containers (n) that consolidation effects started for the operators and discount that 

was given to the freight forwarders due to the economies of scale, assumed also constant in the 

simulation model. It was observed from the game sessions that above 3 to 4 containers, the operators 

proposed prices in discount to the freight forwarders. The discount is only relevant in the form of 

alliances that the players consolidate their containers. The number of containers (n) was chosen as 4 

containers for the simulation model.  

 

Figure 35 Profit as function of negotiation rounds and number of consolidated containers. 

As a base for the sensitivity analysis, policy 8 is chosen.  

As can be seen in figure 35, as the negotiation time increases and as the consolidation point drops the 

profit is increased. By dropping the consolidation point from 4 (current simulation) to 2 containers 

and by increasing the negotiation rounds from 2 (current simulation) to 5, the performance can be 

increased about 10%. 
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However, there is still a remaining gap between policy performance and coordinator. This can be 

caused by several other reasons. First, there is still competition for the unconsolidated containers. 

Second, the players do not have a central plan for a planning horizon, but plan individually for their 

orders. On the other hand, coordinator plans for all the available orders at the same time and for a 

planning horizon.  

At last, the simulation model is based on the current game with the basic rules. The new policies allow 

for new interactions between the players that may not be incorporated in the most realistic way in 

the current simulation. This can be a recommendation for future research, to observe players’ 

behavior under the new policy implementation and re-simulate the game. 

6.3.  Policy 4 implementation in game session 
Policy 4 was chosen to play in the last game session to find the result of the policy. This policy was 

chosen as has a high performance and included the participation of all players. Policy 4 sets parallel 

horizontal collaboration of freight forwarders and train operators. 

As can be seen in figure 36, the profit of the players reached 910 game currency units compared to 

717 that achieved in the first to games (average). Also, the truck use dropped to 36 compared to 46 in 

the previous games and train use increased to 107 from 91 containers. 

 

Figure 36 Performance of players in game session with policy 4 applied 

6.4. Discussion 
In this chapter the results by all models and the comparison between the selected policies were 

summarized and presented. At the end the results of the in-gage implementation of a cooperation 

policy were given. These outcomes led to some conclusions that are discussed next. 

 First, the sensitivity analysis of the fine and subsidy policies show that they do not have a significant 

effect on utilization rate of the trains and the reduction of used trucks and thus they found to be 

inadequate measures.  

Furthermore, the cooperation between the train operators to co-decide which terminals-destination 

to service is the policy with the highest performance, between the policies that included one kind of 

actors (only horizontal collaboration). Simple vertical collaboration (alliance of one freight forwarder 

and one operator) has even negative impact on the performance, as it reduces the transport options 

of the alliance members. Subsequently, the results of the policy testing show that the higher the level 
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of collaboration the more the performance improved. The alliance between freight forwarders to 

consolidate their freight and the trade of containers between operators apart do not have high impact 

on the performance, but the combination of these two interventions achieves much better results. 

The highest level of cooperation, that is simultaneous collaboration in vertical and horizontal 

dimension, led to the highest performance among the policy alternatives.  

After assessing the performance of the different policies, one policy was selected and implemented in 

a game session. The results of the game and the observed behavior showed that the players 

responded on the expected way on the new rules. The performance of the players was increased 

compared to the first games and this was mainly achieved by the cooperation of the players on sharing 

information and consolidating their orders. 

However, the performance of the cooperation policies could not reach coordinator’s performance. 

According to the presented results, coordinator’s performance approaches optimized performance in 

a very high level. The remaining difference between the optimized performance and coordinator’s 

performance can be attributed to the stochastic elements, which are assumed known for the 

optimization model, while for the coordinator are still unknown. 

The big gap between highest policy performance and coordinator’s performance can have different 

sources. For example, high level of cooperation lead to consolidation effects and economies of scale 

for the participant actors. However, there is still competition for the unconsolidated containers which 

could lead to inefficient transport for these containers. In addition, the simulated players do not have 

a central planning for all the orders and do not consider any probabilities for the next rounds, but only 

assess the current information. Although coordinator assesses the same information, he plans for a 

planning horizon for the transport of all the available orders. 

To conclude, cooperation policies can improve the current system in terms of profitability and 

sustainability. However, it is worth noting that according to the results, all the stakeholders can benefit 

more by the implementation of a central system that will have the ability to collect all information and 

do the planning for the whole system. This of course requires the cooperation and acceptance of all 

the involved actors.  
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7. Concluding remarks and further research  
Collaboration is necessary for the successful implementation of new freight transport concepts in port 

to hinterland transportation, as synchromodality. This study tried to fill a research gap of policy testing 

and evaluation using a combination of gaming, simulation and optimization and evaluate cooperation 

policies that will move towards system’s efficiency. For this reason, an innovative combination of 

methods was followed. 

The combination of the three methods of gaming, simulation and optimization was helpful to explore 

and understand the behavior of the stakeholders in port to hinterland freight transportation, quantify 

the impact of different policy interventions on actors’ behavior and finally identify how far is this 

system from a system that have the ability to assess all the information and take the most efficient 

decisions. 

More specifically, the game sessions were useful to observe and record the current behavior of the 

players. Using the observed data, the simulation model of the game was defined, including a model 

of the decision-making of the players. Subsequently, a number of policies were proposed using 

literature review and expert interviews and tested using the simulation model. Their performance was 

then compared with a possible coordinated system that included stochasticity and with the upper 

bound that was set by the optimization model.  

This methodological combination was innovative as could extract the benefits of each method, while 

avoiding the disadvantages. The benefits of gaming were the observation of real behavior and a 

simplified representation of the port to hinterland freight transport system, which allowed for cheap 

and convenient environment that includes human interaction to test the selected policy scenarios. 

The disadvantage of gaming was the low sample due to the availability of players. This was by-passed 

by the simulation that provided high samples and modelling of many different scenarios in a 

reasonable time, without the need for players. However, as simulation included modeled behavior 

and not real, gaming was re-used at the end to verify the findings. In addition, optimization was used 

to understand the potential for the system improvements and set a base for comparison during the 

policy testing. 

By using the above methodology, this study aimed to strengthen and extend the gaming application 

to test and evaluate different policies in freight transport by intervening on players’ in-game behavior 

and recording their performance in different policy scenarios. This was proposed as future research 

by Kurapati et al. (2017) and this study tried to filled this gap, as well.  

A number of different conclusions and research implications, both practical and theoretical, can be 

drawn from the outcomes of this study.  These are presented in the next subsections. 
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7.1. Conclusions 
This section addresses the most important outcomes of this study, followed by the answer of the 

research questions and sub-questions as defined on section 1.2.  

On the methodological part, this study showed that the combined use of gaming, simulation and 

optimization allowed to extract each method’s benefits, while skipping the main drawbacks. The 

combined methods were not independent on each other but were chosen in such a way that the 

advantages of the one method could cover the disadvantages of the others. The proper functioning of 

the combination appeared on the results, as well. After the analysis that compared different policies, 

on the last game session for this study, the players responded on the expected way on the in-game 

policy implementation.   

The analysis also indicated that the current system is far from the optimal state and the involved actors 

achieve much lower profits and port reputation rates. The source of this low performance lays on the 

lack of information sharing, the inability of the stakeholders to cooperate and the conflicting interests 

of the stakeholders. 

The uncertainty of delays and the stochastic demand themselves only lead to a small proportion of 

the inefficiency. All the rest difference in performance is due to the ineffective planning. This was 

shown in the results, as a coordinator that operated under the aforementioned stochastic elements, 

but by-passed player’s negotiations, could achieve a much higher performance that approached the 

optimal solution in about 10% deviation. 

Thus, the near-optimal planning can be done by a coordinator that has access to all available 

information and is accepted by all the involved actors.  

Generally, the higher the level of collaboration between the players the higher the performance that 

they can achieve. Α simultaneous vertical and horizontal collaboration can lead to an improved 

performance compared to the current system. 

However, port managers and stakeholders should be careful on choosing which cooperation policy to 

implement as not all cooperation policies have a positive effect on performance. Some vertical 

collaboration interventions that do not include all the involved actors can even have negative 

outcomes for the system. This happens as the agreements between separate small alliances create 

more restrictions on the decision-making, that do not guarantee that these are the most effective for 

the system.  

There is still a big difference on coordinator’s performance and policies’ highest performance. This is 

mainly because there is still competition for the unconsolidated containers. In addition, most players 

try to send their orders as soon as possible and do not plan for multiple rounds in cooperation with 

the other players. This can have short term benefits for the players, but in long-term it can lead to 

reduction of system profitability and port reputation. However, it should be noted that a coordinated 

system is much more difficult to apply as it requires the acceptance and the compliance of all the 

involved actors, which is a much stricter agreement than any cooperation policy. 

Finally, the results show that penalty and subsidy policies do not have a significant effect on overall 

performance, as the companies already try to achieve the highest individual profits by utilizing the 

transport mean with the highest benefits and avoiding the expensive alternatives. As stated 

previously, the inefficiency comes from the lack of cooperation and information sharing and not from 

the price differences of the different transport alternatives. 
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Considering the analysis, the outcomes and the conclusions the answer to the research questions and 

sub-questions follow.  

RQ1. “How can we achieve a higher level of performance through cooperation in the port to 

hinterland freight transport system?” 

The main research question was answered by considering the results of all parts of 

methodology. A higher level of performance can be achieved by the simultaneous formulation 

of interfirm alliances between freight forwarders, between train operators and between 

freight forwarders-train operators at the same time. This would change the current 

competitive environment to a more integrated transport system through collaboration that 

would have the ability to take more efficient and sustainable decisions for the whole port to 

hinterland system and save more resources that could be distributed to the involved members. 

However, as shown in chapter 6, this performance cannot yet reach a coordinated system that 

have access to all available information and decides for system’s efficiency and not for 

individuals’ benefits. This difference mainly lays on the competition for the unconsolidated 

containers and on the difficulty of the actors to achieve a central planning not only for the 

current orders, but for future time periods as well. 

 

RQ2. “To what extent can we combine gaming with simulation and optimization to test and 

evaluate these policies and strengthen game application?” 

As shown in chapter 6, the simulation model combined with the optimization set a tool for 

comparison to choose between policy alternatives. As the game is a representation of the port 

to hinterland freight transport system developed by experts and stakeholder consultation can 

give a safe and cheap environment for scenario testing, which has the advantage to include 

human interaction. Simulation model gives the flexibility on testing different policy scenarios, 

without the need of players. Optimization provides a stable base of comparison between the 

alternatives and an insight of what is the optimal planning that the players should move. 

Finally, the outcomes were tested in game sessions and observed that players’ behavior 

responded in the expected way on the changed rules of the game. This showed that the 

connection between the methods functioned well and that the combination of these methods 

can be used to avoid the disadvantages of each method. However, it should be noted that as 

the game is a model, attention is needed on the interpretation of the results to the real-world 

systems. This greatly depends on the assumptions and simplifications that were done during 

the development of the game. For example, the assumptions could be valid for Port of 

Rotterdam, as RCCR developed for this system, but for another port system these assumptions 

could lead to important omissions.  

 

SQ1. Which are the most relevant policies for cooperation? 

The selected policies were described in chapter 5. Different policies and coordination 

mechanisms for port to hinterland transportation were found by reviewing relevant literature, 

that presented in chapter 2.  Subsequently based on literature and in consultation with experts, 

ten policies were selected and formulated for the problem of this study. The selected policies 

were divided into information sharing policies and monetary adjustment policies. The most 

relevant information sharing policies are based on the form of alliances between forwarders 

(horizontal collaboration), alliances between forwarders-operators (vertical collaboration) and 

a combination of these (horizontal and vertical collaboration at the same time). As for 

monetary adjustment policies, the most relevant measures are subsidy of high train utilization 

rate and penalty on truck use. 
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SQ2. What is the highest achievable in-game performance under full information and no 

stochasticity? 

This question was answered in chapter 4. In order to find the highest performance and 

compare it in different scenarios an optimization model was developed and formulated as a 

linear programming problem. The optimization model gives the optimal performance for the 

system by taking as input all the information that the players have and by transporting the 

same orders in a more efficient way. The optimization model excludes stochasticity by taking 

as input the outcomes of the stochastic elements, as well. Note that the optimized 

performance has not a single value, but differs as the input of the stochastic elements, the 

number and the type of orders that have to be fulfilled differ per game. As an indication, the 

optimization model achieved an average performance that found to be about 160% higher in 

profit than the current’s system and has a 75% reduction in truck-use. 

 

SQ3. What can be the in-game performance of a coordinated system including stochasticity? 

A coordinated system version was defined in chapter 4. The coordinator can be seen as a policy 

measure of the system. However, as bypasses players’ negotiations and does not intervene to 

players’ interactions as policies, it was described separately. Coordinated system’s model is 

based on the optimization model with the difference that operates under stochasticity. 

Demand is assumed unknown for the coordinator and the outcomes of the stochastic elements 

as well. In this way coordinator have exactly the same information and at the same time as the 

players. According to the results, the coordinator achieved 10.9% less profit than the optimized 

and used 84% more trucks, when the actors of the current system used 5 times more trucks 

than the optimization model’s performance.   

 

SQ4. How the selected policies influence the overall in-game performance relative to the highest 

achievable performance? 

Chapter 6 presents the comparison of the performance between the policies and the optimized 

system. It is found that the structure of alliances both in horizontal and vertical dimension at 

the same time can help to achieve a higher performance. On the other hand, small alliances of 

vertical collaboration (e.g. one freight forwarder with one train operator) found to have even 

negative effects on the performance of the system. Furthermore, the results showed that 

penalty and subsidy measures have not a significant effect on utilization rate of trains and on 

truck-use.  

 

SQ5. Can the configuration of game rules, according to specific policy plans, affect players’ 

performance in the expected way? 

After the analysis and comparison of the selected policy scenarios, one policy was chosen to 

be tested in a game session, in order to validate the outcomes. The results were presented in 

Chapter 6.  The in-game implementation of the policy was done by changing the rules of the 

game on the last game session. It was observed that the players adapted their behavior by 

cooperating according to the policy rules and achieving consolidation of their orders which 

made the planning easier and more efficient for the train operators. Finally, the performance 

that the players achieved was increased compared to the first game sessions. Of course, the 

sample of one game is very small to validate the results on the level of performance. However, 

the observation on the in-game cooperative behavior of the players and the easier planning 

for the operators compared to the first sessions, showed that the policy itself helped the 

players to take more efficient decisions for the system. 
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7.2. Research implications 
The outcomes of this study can be used both for practical and theoretical implications. 

Practically the results can be used to raise stakeholders’ awareness on the importance of collaboration 

in port to hinterland freight transport. This could be achieved by organizing gaming sessions with the 

mangers of the port system. At the beginning, the game can be played with the basic rules. This will 

let stakeholders identify by themselves the problems, the complications in negotiations and the 

difficulty on taking individual decisions under pressure that lead to the inefficiency of the current 

system. According to Kourounioti et al. (2018), on a post-game survey after playing RCCR game, 75% 

of the participants identified the challenges and opportunities of rail bundling. Subsequently, the 

game rules can be changed with a cooperation policy implementation, as shown in this study. This 

policy can make players share more information, take more efficient decisions and end up the game 

with higher profits. This can help stakeholders realize the importance of cooperation and information 

sharing for the individual profitability and for the whole system efficiency. 

Another practical implication is the demonstration of the importance of a central coordinated system 

that is accepted by all actors. In a similar way as described above, stakeholders can play RCCR game 

with the basic rules. Parallel, the model of the coordinator as described in chapter 4 can be used, with 

the same input as the players have. At the end of each round, that the players have taken their 

decisions, the planning of the coordinator for the specific round can be presented and be compared 

with players’ planning. As shown in the analysis, coordinator’s performance is much higher than 

current performance. Thus, the higher benefits that coordinator’s planning can bring to the system 

can make the stakeholders understand the importance of a central coordinated system both for the 

companies and for the system.  

The theoretical contribution of this study in literature is that showed the importance of cooperation 

between the actors in port to hinterland transportation, evaluated different cooperation policies and 

demonstrated the important role of a coordinator that is accepted by all involved members.  

A more innovative contribution of this study is the proposed combined methodology of gaming, 

simulation and optimization to test and evaluate different scenarios. This methodology begins with 

the understanding of actors’ behavior through gaming. Subsequently, using the observed data a 

simulation model is developed that allows for different scenarios modelling and high sampling in a 

reasonable time. The optimization model is useful to identify the gap between the optimal 

performance and the performance of the different scenarios. The explanation of this gap can give an 

insight of the root causes of this difference and the optimization solution can show ways that can help 

players increase their performance. Finally, the simulated performance of the chosen scenario can be 

validated in a game session to observe if the changed rules or parameters have the desirable effects 

on real players’ performance and behavior. 
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7.3. Recommendations for future research 
In this subsection the suggestions for future research are presented, based on this study. 

As this study includes a number of different models and due to the low samples provided by the game 

sessions, the models should be further validated with more observations.  

The optimization of the game does not include any human behavior and was developed according the 

game rules that were clearly stated on the gaming instructions. Thus, the validation of the 

optimization model for the purpose that was developed is considered sufficient. As a further research 

it could be proposed an optimization model that would include the decision making of the players.  

On the other hand, the simulation model includes a Discrete Choice Model for the decision making of 

the players. As the parameters for this model were based only in two game session with the same 

players, in the future, observations from more game sessions and different players could be used for 

parameter estimation.  

In addition, as future research is proposed the more detailed observation on the interaction of the 

players. The new observations could lead to a more reliable decision model that is included in the 

simulation model. For example, different decision rules could be tested in the simulation model for 

the negotiation phase between freight forwarders and operators (e.g. game theory) and be compared 

with the Discrete Choice Model that is currently used, to find which model fits better to the decision 

making of the players.  

Also, the simulation model is based on the current basic rules. The new policies allow for new 

interactions between the players that may not be incorporated on the current model in the most 

realistic way. Thus, using new observations on players’ interactions from game sessions, after the in-

game policy implementation, a simulation meta-model could be developed, especially to model the 

behavior of the players under the new policy. 

Furthermore, as the costs for information sharing and forming of alliances was not included in the 

policy performance of this study, in a future study it could be examined how transaction costs can 

affect the policy performance and implementation.  

Finally, as the game sessions were organized with university students due to the low availability of 

port’s stakeholders, it is recommended to validate the results in game sessions with professionals 

from the field of port to hinterland freight transport. 
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Appendix A. Rail Cargo Challenge Rotterdam Game 

A.1. Game description and rules 
Rail Cargo Challenge Rotterdam is a game developed by TU Delft gamelab, The Barn, ProRail and TNO 

within the “Synchro-gaming” project (TU Delft gamelab site, 2018). In this chapter the context and the 

rules of the game are described, as found in the game manual and discussed by Kurapati et al. (2017) 

and Kourounioti et al. (2018). 

 “The key research objective of the Rail Cargo Challenge Rotterdam (RCCR) is to assess the attitudes 

and behavior of stakeholders in the freight transport domain with respect to the efficient bundling of 

containers to be transported to their final destination using rail.” (Kourounioti et al., 2018).  

At the early phases, the “world” of the board game consists of three sea terminals in port of Rotterdam 

(A, B, C) and two hinterland destinations (Duisburg, Burghausen). After some time, two more terminals 

are added to the game to increase its complexity. 

RCCR has two main categories of players: rail operators and freight forwarders. These two categories 

are on the second and third layer of TRAIL model (see figure 3), respectively.  

The game is played in rounds. On each round, new containers arrive at the port of Rotterdam in one 

of the terminals and each container has a specific destination and an expiration date of delivery. Each 

container is represented by one order card, including the above information (storing terminal, 

destination, expire). The order cards are distributed to the freight forwarders that are responsible for 

the on-time delivery of the respective containers. 

Rail operators: There are two train operators in the game that compete to satisfy forwarders’ demand. 

Each operator has one train with maximum capacity of 10 containers and there is a fixed cost (10 

tokens) to operate the train for each round. The trains depart from the terminals at the end of each 

round, regardless the number of containers, and each train can only arrive at one destination. It is the 

decision of rail operator which terminals the train visits and at which destination it arrives and this 

decision can defer per round. The maximum number of terminals (1-3) that a train can visit is not 

constant, though. It is stochastically defined by a dice, which represents possible last-minute delays in 

the terminals. In the case that the schedule of the train operator has more terminals than the 

maximum possible terminals that can be serviced then rescheduling is required or even transportation 

by truck. 

Freight forwarders: There are three forwarders in the game that are responsible for the on-time 

delivery of the cargo. Each container is assigned to one forwarder. The forwarder can choose to send 

the container either by train or by truck. The train transport fee is negotiable with the train operator 

while the truck has a fixed cost per container (1 token). Freight forwarders are paid by shippers that 

have a preference to train and thus they pay more to have their containers transported by rail (fixed 

4 tokens per container for rail, 2 tokens per container for truck). If the containers are not delivered on 

time no yield is payed to the forwarders. A container is assumed to be delayed if the latest day of 

release it is transported by truck. Note that shippers do not have an active role in the game and does 

not need a person to play this role.  

Each player is assumed to have his own company and tries to achieve the highest possible profits.  

The reputation of the port is also important as the lower the reputation the less the container orders 

that are given to freight forwarders. The reputation is lowered with the use of truck. 
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The aim of the game is to promote horizontal and vertical collaboration between the actors, as the 

merging of orders and the appropriate selection of terminals and destination is required to utilize the 

train and lead to highest profits for players.  

Steps/ Algorithm of the game: 

1) Reputation of port of Rotterdam is set to zero. 

2) Round is set to zero 

3) Round is set to Round+1 

4) Game master takes the order cards for the specific round. (18 per round) 

5) If reputation is between -5 and -9, game master removes three order cards from this round 

(supposed to be serviced by the competitive port of Hamburg which is out of the system of 

the game). 

6) If reputation is less than -10, game master removes six order cards from this round. 

7) Game master give the order cards to Freight forwarders 

8) Game master starts the countdown timer for the negotiation phase (5 minutes). 

 

-Negotiation phase- (start of 5 minutes timer) 

 

9) Freight forwarders communicate the order characteristics to the train operators they want. 

Usually they ask for an offer by both operators. 

10)  Freight forwarders and operators negotiate the price to transport the containers by train. 

11) Freight forwarders choose to whom they will give the order cards according to their 

preferences (or keep the orders). 

12) Operators take the respective order cards and they are responsible for the transportation of 

the orders now on. It is expected by the forwarders to transport these orders by train but is 

the choice of operators from now on what to do with the cards (send by train or truck if they 

cannot fulfill the order by train). 

 

-End of negotiation phase- (end of 5 minutes) 

 

13) Operators throw a dice to determine how many terminals they can service (from one to up to 

three terminals). 

14) Each operator announces to game master which terminal(s)- destination will service their 

train the specific round. (up to three terminals depending on the dice, and only one 

destination) 

15) Operators give the respective cards to game master. 

16) Operators pay a fixed price to game master in order to operate the train. (*This fee is paid 

even if the train is empty) (Fixed price for the operation of the whole train) 

17) Game master pays freight forwarders the revenue for successful transport of the container by 

train. (Game master takes the role of the shipper that pays the forwarders for the transport 

in this step). (Fixed price) 

18) Operators and/or freight forwarders send (if they want) containers with trucks for the orders 

that expiring in a later round. 

19) Operators and/or freight forwarders pay the fee to use the truck. (if they don’t use the service 

they don’t have to pay anything) (Fixed price per truck used) 

20) Game master pays freight forwarders the revenue for transport the container by truck earlier 

than the expire. (Fixed price) 
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21) Operators and/or freight forwarders are obliged to send the orders that expire this round by 

a “delayed” truck. 

22) Operators and/or freight forwarders pay the fee for truck use. (Fixed price per truck used) 

23) Game master reduces the reputation meter by one point for each truck that was used this 

round (on-time and delayed) 

24) If no truck was used in this round, game master increases the reputation meter by one point. 

25) If round is less than 10, go to step 3.  

A.2. Preliminary Game Analysis 
In this section a general analysis of the game aspect is done. In this analysis, as “system” is referred 

the group of Port, train operators and freight forwarders. Shippers are assumed to be an external 

passive actor (none of the players has this role), that create the demand and pay freight forwarders 

for the successful delivery of their freight. Truck operators are also assumed to be out of the system, 

as they do not have an active role in the game. 

First the decisions of each player are summarized as described previously. 

Freight forwarders: Each of these players are responsible for the transportation of specific containers. 

The actions and decisions that they have to take are: 

• Negotiate the price for each container transport with train operators. 

• Choose between train and truck. This decision is not only dependend on the price but can 

also include the reliability perception for each train operator. 

• Decide to send each container the specific day or wait for one of the next available days 

before container expiry date. 

Train operators are scheduling the train service. The decisions that each train operator have to take 

during the game are: 

• Negotiate the price for each container transport with freight forwarders. 

• Choose the number of terminals to service. This decision includes the risk of servicing less 

terminals than the decided, depending on the dice described in the previous chapter. 

• Choose which terminals to service. 

• Choose the destination of the train. 

• Decide to undertake the responsibility to transport a container. By the time that the train 

operator takes this decision, he is responsible for the successful transport of the container 

and his further decision can affect the yield of the freight forwarder. This means that if the 

train operator cannot successfully send the container by train and has to fulfil the order by 

truck, the train operator will pay for the truck fee and the freight forwarder will get yield as 

using truck, although he has chosen train. 

• Decide to send each container the specific day or wait for one of the next available days before 

container expiry date. 

Except the decisions of the players there are also some other aspects that need to be addressed in 

this preliminary analysis. 

To begin with, the resources of the system are the exchange currency (tokens) and the port reputation. 

Reputation linearly decreases by the use of each truck and it is straightforward that it is maximized by 

the minimization of truck use. As for the currency, except the starting budget of each player, new 

tokens are only inputted in the system by shippers.  
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Shippers pay two (2) tokens for freight delivered by truck and four (4) tokens delivered by rail. Truck 

cost is one (1) token per container, while the price per container for train transport is defined by the 

negotiations between each train operator and freight forwarder. Let the average price be 𝑎𝑣_𝑐𝑡𝑟𝑎𝑖𝑛. 

This is the cost per container (transported by train) for freight forwarders’ side and the yield for the 

train operators’ side. The cost to operate the train is 10 tokens per round for each operator. Let also 

𝑥𝑡𝑟𝑎𝑖𝑛 be the total containers transported by train and 𝑦𝑡𝑟𝑢𝑐𝑘 be the total containers transported by 

truck in one round. Lets assume a situation with one train operator and one freight forwarder in the 

game, for shake of simplicity. Then the profit equations for each actor type for one round is: 

 𝑇𝑟𝑎𝑖𝑛𝑝𝑟𝑜𝑓𝑖𝑡  = −10 +  𝑎𝑣_𝑐𝑡𝑟𝑎𝑖𝑛 ∗ 𝑥𝑡𝑟𝑎𝑖𝑛 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑟𝑝𝑟𝑜𝑓𝑖𝑡  = − 𝑎𝑣_𝑐𝑡𝑟𝑎𝑖𝑛 ∗ 𝑥𝑡𝑟𝑎𝑖𝑛 − 1 ∗ 𝑦𝑡𝑟𝑢𝑐𝑘 + 4 ∗ 𝑥𝑡𝑟𝑎𝑖𝑛 + 2 ∗ 𝑦𝑡𝑟𝑢𝑐𝑘  

So, the system new resources are: 

𝑆𝑦𝑠𝑡𝑒𝑚𝑝𝑟𝑜𝑓𝑖𝑡  = 𝑇𝑟𝑎𝑖𝑛𝑝𝑟𝑜𝑓𝑖𝑡 + 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑟𝑝𝑟𝑜𝑓𝑖𝑡

= −10 +  𝑎𝑣𝑐𝑡𝑟𝑎𝑖𝑛
∗ 𝑥𝑡𝑟𝑎𝑖𝑛 − 𝑎𝑣𝑐𝑡𝑟𝑎𝑖𝑛

∗ 𝑥𝑡𝑟𝑎𝑖𝑛 − 1 ∗ 𝑦𝑡𝑟𝑢𝑐𝑘 + 4 ∗ 𝑥𝑡𝑟𝑎𝑖𝑛 + 2

∗ 𝑦𝑡𝑟𝑢𝑐𝑘 => 

=>  𝑆𝑦𝑠𝑡𝑒𝑚𝑝𝑟𝑜𝑓𝑖𝑡 = −10 + 4 ∗ 𝑥𝑡𝑟𝑎𝑖𝑛 + 1 ∗ 𝑦𝑡𝑟𝑢𝑐𝑘    

The equations can easily be deducted to more train operators and forwarders, with the same results.  

As can be seen in figure ap1,  as the income of freight forwarder (per container) decreases the income 

of train operator increases, as the tokens are transferred from the one player to the other. At the 

same time, system income stays the same as it is independent from the negotiated price. The 

alternative of truck reduces significantly the system income by 3 tokens per container. 

 

Figure ap1 Each player’s income per container as function of agreed price (train use) 

 As can be conducted by the equations, the system profit is independent of the negotiated price 

between the train operators and the freight forwarders. In addition, the yield given by the train 

transportation to the system is quadruplicate of truck’s. This means that in order to maximize system’s 

profit, containers should be send by trains, as much as possible, and have truck option as an alternative 

for the containers that cannot be delivered by train. 

Considering the above notes, in a coordinated system, optimality would come from the utilization of 

the trains and the avoidance of truck use, to the maximum extent. 
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In the game, freight forwarders are also aiming to send most of their containers by train as their 

individual income per container is more (4 tokens instead of 1). However, negotiation of prices or 

choices of terminals/destination by train operators that are not optimal for the system, due to lack of 

information, lead to inefficiency. All these complications are bypassed by a coordinated or a fully 

cooperative system.   

It becomes obvious that the lower profitability and efficiency of the non-coordinated system, come 

from the negotiation part of the game, the lack of information and the low cooperation between the 

actors. Cooperation could be used in order to utilize the trains (e.g. consolidate freight with same 

origin-destination) and take decisions to increase the profit for the whole system through information 

sharing. The use of train instead of truck in the highest possible level would most probably lead to 

higher individuals’ profits as well, as more new resources (tokens) are inputted on the system and can 

be split between individuals. 

The role of dice in the game is important. After the negotiation phase, train operators use the dice to 

determine how many terminals are allowed to service. The dice has 1/6 chances to allow only one 

terminal, 4/6 chances allow two terminals and 1/6 to allow for three terminals. This means that one 

terminal can always be served (1/6+4/6+1/6=6/6), at least two terminals can be served 5/6 times 

(4/6+1/6) and three terminals can be served only 1 out of 6 times. If the operator decides in 

negotiation phase to take orders of more than one terminal, a risk exists that the dice can determine 

less terminals and thus the orders that are in the additional terminals and expire should be 

transported by delayed truck. This risk has a probability of 6/6-x for the orders that expire the same 

day. For example, the probability that at least two terminals can be serviced is 5/6 and thus the 

probability that the expiring orders will have to be sent by delayed truck is 6/6-5/6=1/6. Orders that 

are not expiring can be kept for the next round.  
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Appendix B. Game simulation 

B.1. Simulation steps 
The simulation model of the game is shown in the next flow chart. The sub-steps for operators’ 

decisions (step 3, step 7) and the freight forwarders’ decisions (step 4) are described more precisely 

in next sections. 
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B.2. Freight Forwarders’ choice modelling 
From literature: The review finds that the core factors important for transport service choice are cost, 

transport time, reliability, and transport quality. After ensuring that basic transport quality 

requirements are met (e.g., on- time deliveries, transport damages, transport times), most of the 

decisions are made based on price. But the willingness to pay for lower environmental impact is low. 

Rail is perceived as more environmentally friendly, although several studies mention a negative 

attitude towards rail. There is great consistency among the studies in identifying the most important 

factors. (Floden et al, 2017). 

As in the game there is not included transport time and transport quality, the factors that are included 

are cost and reliability. 

The choices are done according to MNL model and the probabilities for each alternative are calculated 

as: 

𝑃𝑖 =
𝑒𝑈𝑖

∑ 𝑒𝑈𝑗
𝑗

 

 

Step 5 of game simulation 

Each freight forwarder has a discrete choice for each order card they have (depending also in the 

expiry date):  

-If the order card expires the same day:  

Discrete choices->  1) train operator 1, 

2) train operator 2 or  

3) delayed truck. 

The respective utilities are: 

• 𝑈𝑇𝑟𝑎𝑖𝑛1
= 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟1𝑝𝑟𝑖𝑐𝑒) + 𝛽𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦1 + (𝛽𝑡𝑟𝑎𝑖𝑛) 

 

• 𝑈𝑇𝑟𝑎𝑖𝑛2
= 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟2𝑝𝑟𝑖𝑐𝑒) + 𝛽𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦2 + (𝛽𝑡𝑟𝑎𝑖𝑛) 

 

• 𝑈𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑 = 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒_𝑑𝑒𝑙𝑎𝑦 − 𝑐𝑜𝑠𝑡_𝑑𝑒𝑙𝑎𝑦) + 𝛽𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑 

*𝛽𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑 probably will be negative.  

*If we take as a base case the train, 𝛽𝑡𝑟𝑎𝑖𝑛 can be excluded. 

-If the order card expires one of the next days:  

Discrete choices->  1) train operator 1,  

2) train operator 2,  

3) early truck or  

4) keep the order to decide next day.  

The respective utilities are:  
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• 𝑈𝑇𝑟𝑎𝑖𝑛1
= 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟1𝑝𝑟𝑖𝑐𝑒) + 𝛽𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦1 + (𝛽𝑡𝑟𝑎𝑖𝑛) 

 

• 𝑈𝑇𝑟𝑎𝑖𝑛2
= 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟2𝑝𝑟𝑖𝑐𝑒) + 𝛽𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦2 + (𝛽𝑡𝑟𝑎𝑖𝑛) 

 

• 𝑈𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦 = 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒_𝑒𝑎𝑟𝑙𝑦 − 𝑐𝑜𝑠𝑡_𝑒𝑎𝑟𝑙𝑦) + 𝛽𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦 

 

• 𝑈𝑘𝑒𝑒𝑝_𝑜𝑟𝑑𝑒𝑟 = +𝛽𝑘𝑒𝑒𝑝_𝑜𝑟𝑑𝑒𝑟  

 

Each freight forwarder takes the decision according to MNL discrete choice model. 

The estimated parameters were calculated with BIOGEME 1.8 and can be seen in next figure.  

Note that as the cost and revenue of trucks are constant the parameters were integrated in the 

alternative specific constant. Thus, the used utilities for trucks were 𝑈𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦 = 𝛽𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦 and 

𝑈𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑 = 𝛽𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑. 

 

 

B.3. Train operators’ decisions and utilities (step 3 and step 7) 
Train operators’ decisions appear on step 3 and step 7 of the game simulation. 

First, on step 3, they negotiate with freight forwarders and decide which containers to agree to 

transport (so they have to make an informal plan-strategy on which terminal(s)-destination to service 
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this round) and on step 7 decide and announce formally which terminal(s)-destination will actually 

service.  

On step 3 of simulation, during negotiation phase, the outcome of the dice, that defines the maximum 

number terminals that operators are allowed to service, is not yet known. Thus, in this step, train 

operators negotiate with freight forwarders and agree to transport orders with the aim to maximize 

their expected utility. This includes some risk in the decision process on this step. 

On the other hand, on step 7, the outcome of the dice is known and the operators decide which 

terminal(s)-destination to choose in order to maximize their “real” utility. 

-Train operators try to find the Terminal(s)-Destination combination with the highest utility for them.  

-They collect the order information/characteristics on the negotiation phase by all freight forwarders. 

-They aggregate the information to identify highest Terminal(s)- Destination combination demand. 

-By assessing the potential utilities, they choose their Terminal(s)-Destination plan and propose a price 

for the orders with the respective route. Note that this is the plan that the train operators make in 

their minds in order to agree on which orders to take from the freight forwarders. The actual formal 

decision on which terminal(s)-destination to service is done in step 7. 

The parameters used in the utility functions assumed to be the same as on freight forwarders 

decisions. 

Step 3 of game simulation (negotiation process before the dice has determined how many 

terminals can be served). 

 



70 
 

After the negotiation phase, train operators use the dice to determine how many terminals are 

allowed to service. On step three this outcome is not yet known. So the operators take their decision 

on the utility that they expect to have. 

Parameter C was calculated using observed data from the game sessions. It was observed that the 

operators would choose to buy cards from different terminal if their revenue was not yet about 40 

game coins. 

Expected utility for one terminal (dice chance for at least 1 terminal=1): 

𝐸𝑈𝑇𝐷 = 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ ∑(𝑝𝑟𝑖𝑐𝑒𝑖 ∗ 𝑥𝑖𝑇𝐷)

𝑖

− 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ 𝑐𝑜𝑠𝑡𝑡𝑟𝑎𝑖𝑛 + 𝛽𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑎𝑟𝑙𝑦
∗ 𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑎𝑟𝑙𝑦 + 𝛽𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑥𝑝𝑖𝑟𝑒

∗ 𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑥𝑝𝑖𝑟𝑒                                                                 (1) 

-The first term includes the parameter of price and the number of the available containers (with the 

specific Terminal-Destination pair) multiplied by their respective offer price.  𝑥𝑖𝑇𝐷 is a binary variable 

equal to 1 if container i is on terminal T and goes to destination D, else 0.  

-The second term is the cost for operating the train (constant).  

-The third and fourth term correspond to the total number of the active orders that operator has 

already agreed to transport (e.g. from previous rounds) and it is not possible to transport by train this 

round if he chooses T-D pair. The third term corresponds to the orders that expire in later date while 

the fourth term shows the orders that expire the specific date and thus they are forced to be sent by 

a delayed truck. 𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑎𝑟𝑙𝑦,𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑥𝑝𝑖𝑟𝑒 are integer variables that show the total number of the 

orders (expiring later/same date respectively) that the operator has already agreed to transport and 

cannot send by train if choose T-D pair.   

Expected utility for two terminals (dice chance 1st terminal=1, dice chance 2nd terminal=5/6): 

𝐸𝑈𝑇1𝑇2𝐷 = 1 ∗ 𝐸𝑈𝑇1𝐷 + 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ ∑(𝑝𝑟𝑖𝑐𝑒𝑖 ∗ 𝑥𝑖𝑇2𝐷)

𝑖

                        (2) 

-The first term is calculated by equation (1). 

-The second term is the probability multiplied by the benefits. 

-The third term is the extra risk: probability of not going to two terminals (6/6-5/6=1/6) multiplied by 

the impact: how many of the new orders will have to be kept for next round or send by delayed truck.  

𝑥𝑖𝑇2𝐷 is a binary variable equals 1 if order i is on the second chosen Terminal and goes to destination 

D, else 0. 𝑦𝑖𝑒𝑎𝑟𝑙𝑦 is a binary variable equals 1 if order i has an expiry date later that the current day, 

else 0. 𝑦𝑖𝑒𝑥𝑝𝑖𝑟𝑒  is a binary variable equal to 1 if order i expiring the current date, 0 else. 

*note that utilities for early and delayed orders that are already agreed by the operator are included 

in 𝐸𝑈𝑇1𝐷 and that is the reason that are not visible in (2). In equation (2) only the new risk for early 

and delayed orders is visible. 

*note that 𝛽𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑥𝑝𝑖𝑟𝑒
 is expected to be negative. 

Expected utility for three terminals (dice chance 1st terminal=1, dice chance 2nd terminal=5/6, dice 

chance 3rd terminal=1/6): 

𝐸𝑈𝑇1𝑇2𝑇3𝐷 = 𝐸𝑈𝑇1𝑇2𝐷 + 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ ∑(𝑝𝑟𝑖𝑐𝑒𝑖 ∗ 𝑥𝑖𝑇3𝐷)

𝑖

    (3) 
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-The first term is calculated by equation (2) 

-The other terms are defined as in equation (2) 

 

Maybe the above model includes a lot of information and probabilities that maybe some players 

don’t have the time to assess and so they decide in simpler way (depending on the player). So, the 

above equations can be changed without probabilities as: (What do you think?) 

𝑈𝑇𝐷 remain the same. 

𝑈𝑇1𝑇2𝐷 = 𝑈𝑇1𝐷 + 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ ∑ (𝑝𝑟𝑖𝑐𝑒𝑖 ∗ 𝑥𝑖𝑇2𝐷)𝑖                               

𝑈𝑇1𝑇2𝑇3𝐷 = 𝑈𝑇1𝑇2𝐷 + 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ ∑(𝑝𝑟𝑖𝑐𝑒𝑖 ∗ 𝑥𝑖𝑇3𝐷)

𝑖

 

*𝛽𝑟𝑖𝑠𝑘  probably negative 

In any of the two cases the flow chart for the simulation model of train operators price decision can 

be:  

 

Step 7 of game simulation (after the negotiation phase and after the dice has determined how 

many terminals can be served) 

-After the dice has dropped, operators know how many terminals can service and also know which 

orders are obliged to fulfill.  

-In step 7, they decide which terminal(s)-destination their train will visit this round in order to 

maximize their “actual” utility and not the expected. 

-The utility functions (and betas) are same as in step three, but without probabilities and risks. 

So, depending on the dice and the available cards the operators choose the Terminal(s)-Destination 

that maximize their own utility: 

Case 1, If dice allows for 1 terminal: 

• 𝑈𝑇𝐷 = 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ ∑ (𝑝𝑟𝑖𝑐𝑒𝑖 ∗ 𝑥𝑖𝑇𝐷)𝑖 − 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ 𝑐𝑜𝑠𝑡𝑡𝑟𝑎𝑖𝑛 + 𝛽𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑎𝑟𝑙𝑦
∗ 𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑎𝑟𝑙𝑦 +

𝛽𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑥𝑝𝑖𝑟𝑒
∗ 𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑥𝑝𝑖𝑟𝑒                                                  (1) 

Case 2, If dice allows for 2 terminals: 

• 𝑈𝑇1𝑇2𝐷 = 𝑈𝑇1𝐷 + 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ ∑ (𝑝𝑟𝑖𝑐𝑒𝑖 ∗ 𝑥𝑖𝑇2𝐷)𝑖                                                (2) 

Case 3, If dice allows for 3 terminals: 

• 𝑈𝑇1𝑇2𝑇3𝐷 = 𝑈𝑇1𝑇2𝐷 + 𝛽𝑝𝑟𝑖𝑐𝑒 ∗ ∑ (𝑝𝑟𝑖𝑐𝑒𝑖 ∗ 𝑥𝑖𝑇3𝐷)𝑖                                         (3) 

 

*All orders that expire and have to leave with delayed trucks and all orders that leave with early trucks 

are assumed to be included in the term 𝑈𝑇𝐷 and that is the reason that are not shown as different 

terms in equation (2)-(3). However, 𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑎𝑟𝑙𝑦, 𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑥𝑝𝑖𝑟𝑒 may have different values in equation 
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(1),(2) and (3). For example, some orders that were included in e.g. 𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑥𝑝𝑖𝑟𝑒 in case 1 (equation 

1) could be sent by train in case 2 and thus 𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑥𝑝𝑖𝑟𝑒 would be reduced. 

Proposed negotiated prices from operators 

The prices that the train operators propose in the simulation is drawn by a distribution. According to 

the observation the prices fit to a beta distribution with mean=15.1 , α=5 and b=1.9 . 

 

 

However, according to Kurapati et al. (2017), the negotiated prices in RCCR game fit to a beta 

distribution with α=2 and b=5. 

Αs the observations in this thesis come only from two game sessions, the parameters α,β are corrected 

taking into account the work of Kurapati et al. (2017). 

The final chosen parameters that are included in the simulation model are  average=15, α=3.5, β=4.5. 
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B.4. Simulated performance 

Simulation performance 
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Performance per player 
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B.5. Example Simulation versus Optimization container routing 

Random deck used for comparison 

 

ID Release dayForwarder Terminal DestinationExpiry

1 1 Blue D Duisburg 5

2 1 Blue E Burghausen 4

3 1 Blue E Burghausen 3

4 1 Blue E Duisburg 1

5 1 Blue C Duisburg 5

6 1 Blue B Burghausen 2

7 1 Red A Burghausen 3

8 1 Red B Duisburg 1

9 1 Red E Duisburg 4

10 1 Red B Duisburg 2

11 1 Red D Duisburg 4

12 1 Red B Duisburg 2

13 1 Yellow C Burghausen 3

14 1 Yellow C Burghausen 2

15 1 Yellow C Duisburg 5

16 1 Yellow B Burghausen 2

17 1 Yellow B Burghausen 2

18 1 Yellow A Burghausen 1

19 2 Blue B Burghausen 6

20 2 Blue B Duisburg 2

21 2 Blue C Burghausen 2

22 2 Blue D Burghausen 2

23 2 Blue E Duisburg 3

24 2 Blue D Burghausen 3

25 2 Red D Duisburg 3

26 2 Red B Burghausen 4

27 2 Red E Burghausen 4

28 2 Red C Burghausen 4

29 2 Red A Burghausen 3

30 2 Red A Burghausen 5

31 2 Yellow D Burghausen 2

32 2 Yellow C Burghausen 3

33 2 Yellow E Burghausen 5

34 2 Yellow C Burghausen 3

35 2 Yellow D Duisburg 4

36 2 Yellow B Duisburg 3

37 3 Blue C Duisburg 3

38 3 Blue E Burghausen 5

39 3 Blue B Burghausen 6

40 3 Blue D Burghausen 5

41 3 Blue D Duisburg 6

42 3 Blue E Burghausen 3

43 3 Red A Duisburg 6

44 3 Red D Duisburg 7

45 3 Red D Burghausen 4

ID Release dayForwarder Terminal DestinationExpiry

46 3 Red D Duisburg 6

47 3 Red D Duisburg 7

48 3 Red D Burghausen 6

49 3 Yellow A Burghausen 5

50 3 Yellow C Duisburg 4

51 3 Yellow C Duisburg 3

52 3 Yellow A Burghausen 6

53 3 Yellow B Burghausen 5

54 3 Yellow E Burghausen 5

55 4 Blue A Burghausen 6

56 4 Blue E Burghausen 8

57 4 Blue E Duisburg 5

58 4 Blue A Burghausen 6

59 4 Blue D Burghausen 7

60 4 Blue C Duisburg 8

61 4 Red A Burghausen 5

62 4 Red C Duisburg 8

63 4 Red A Duisburg 7

64 4 Red B Duisburg 5

65 4 Red C Duisburg 5

66 4 Red A Duisburg 7

67 4 Yellow D Duisburg 4

68 4 Yellow D Burghausen 6

69 4 Yellow B Burghausen 5

70 4 Yellow E Duisburg 6

71 4 Yellow C Burghausen 8

72 4 Yellow E Burghausen 6

73 5 Blue B Burghausen 9

74 5 Blue B Burghausen 8

75 5 Blue B Duisburg 6

76 5 Blue D Burghausen 7

77 5 Blue C Duisburg 6

78 5 Blue D Duisburg 6

79 5 Red D Burghausen 7

80 5 Red D Duisburg 9

81 5 Red A Burghausen 8

82 5 Red A Burghausen 8

83 5 Red D Burghausen 9

84 5 Red E Burghausen 5

85 5 Yellow B Burghausen 7

86 5 Yellow E Duisburg 5

87 5 Yellow B Burghausen 6

88 5 Yellow C Burghausen 6

89 5 Yellow B Burghausen 5

90 5 Yellow C Burghausen 8
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Always only one destination is allowed per round. 

 

ID Release dayForwarder Terminal DestinationExpiry

91 6 Blue B Duisburg 8

92 6 Blue E Burghausen 6

93 6 Blue E Duisburg 7

94 6 Blue D Burghausen 8

95 6 Blue B Duisburg 10

96 6 Blue D Duisburg 7

97 6 Red C Duisburg 6

98 6 Red C Burghausen 10

99 6 Red B Duisburg 8

100 6 Red C Duisburg 10

101 6 Red B Duisburg 9

102 6 Red A Duisburg 9

103 6 Yellow E Duisburg 9

104 6 Yellow C Duisburg 7

105 6 Yellow A Burghausen 6

106 6 Yellow B Duisburg 9

107 6 Yellow B Duisburg 6

108 6 Yellow C Burghausen 9

109 7 Blue E Burghausen 7

110 7 Blue A Duisburg 10

111 7 Blue E Burghausen 7

112 7 Blue B Duisburg 10

113 7 Blue D Burghausen 7

114 7 Blue E Burghausen 9

115 7 Red D Duisburg 10

116 7 Red B Burghausen 7

117 7 Red A Duisburg 9

118 7 Red D Duisburg 8

119 7 Red C Burghausen 11

120 7 Red D Burghausen 9

121 7 Yellow D Burghausen 9

122 7 Yellow D Burghausen 8

123 7 Yellow C Duisburg 9

124 7 Yellow B Duisburg 8

125 7 Yellow D Duisburg 7

126 7 Yellow B Burghausen 9

127 8 Blue C Burghausen 12

128 8 Blue C Burghausen 12

129 8 Blue A Burghausen 9

130 8 Blue B Burghausen 10

131 8 Blue B Duisburg 11

132 8 Blue D Duisburg 8

133 8 Red C Burghausen 8

134 8 Red D Burghausen 9

135 8 Red C Burghausen 8

ID Release dayForwarder Terminal DestinationExpiry

136 8 Red D Duisburg 11

137 8 Red A Burghausen 11

138 8 Red C Duisburg 12

139 8 Yellow A Burghausen 10

140 8 Yellow D Burghausen 10

141 8 Yellow A Duisburg 11

142 8 Yellow C Duisburg 8

143 8 Yellow D Burghausen 9

144 8 Yellow D Burghausen 11

145 9 Blue A Duisburg 10

146 9 Blue D Duisburg 10

147 9 Blue B Burghausen 9

148 9 Blue A Burghausen 10

149 9 Blue A Duisburg 9

150 9 Blue B Burghausen 13

151 9 Red C Duisburg 9

152 9 Red A Burghausen 9

153 9 Red B Duisburg 9

154 9 Red A Duisburg 9

155 9 Red E Burghausen 12

156 9 Red C Duisburg 12

157 9 Yellow B Burghausen 13

158 9 Yellow A Burghausen 9

159 9 Yellow E Duisburg 13

160 9 Yellow B Duisburg 9

161 9 Yellow A Burghausen 13

162 9 Yellow D Duisburg 10

163 10 Blue B Burghausen 10

164 10 Blue C Duisburg 11

165 10 Blue B Burghausen 11

166 10 Blue B Burghausen 12

167 10 Blue C Duisburg 11

168 10 Blue B Burghausen 10

169 10 Red B Duisburg 12

170 10 Red D Burghausen 14

171 10 Red E Burghausen 13

172 10 Red B Burghausen 11

173 10 Red E Burghausen 14

174 10 Red E Duisburg 13

175 10 Yellow B Duisburg 14

176 10 Yellow D Duisburg 14

177 10 Yellow E Duisburg 12

178 10 Yellow C Duisburg 12

179 10 Yellow A Burghausen 11

180 10 Yellow C Duisburg 13

Dice outcome (maximum  #Terminals allowed)

Operator 1Operator 2

Round 1 3 2

Round 2 2 1

Round 3 3 2

Round 4 1 2

Round 5 2 3

Round 6 2 2

Round 7 2 2

Round 8 2 2

Round 9 1 2

Round 10 2 3



77 
 

Simulation Routing 

 

 

 

 

 

simulation

Hamburg 60 66 72 77 78 83 84 89 90 95 96

101 102 107 108 113 114 119 120 125 126 131

132 137 138 143 144 149 150 155 156 161 162

167 168 173 174 179 180

Operator 1 Terminals/Destination choice per round

Terminal1 Terminal2 Terminal3 Destination

Round 1 1 4 2 1

Round 2 0 3 1

Round 3 4 2 3 0

Round 4 0 1

Round 5 0 1 1

Round 6 4 1 0

Round 7 4 3 1

Round 8 2 0 1

Round 9 2 0

Round 10 1 3 1

(A=0, B=1, C=2, D=3, E=4) (Du=0, Bu=1)

(Train Capacity=10)

Train op1 Slot 1 Slot2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9 Slot 10

Round 1 6 16 17 2 3 14 13 0 0 0

Round 2 7 29 30 22 24 31 0 0 0 0

Round 3 5 37 50 41 35 0 0 0 0 0

Round 4 55 61 52 49 0 0 0 0 0 0

Round 5 58 81 39 85 87 0 0 0 0 0

Round 6 70 103 75 99 106 0 0 0 0 0

Round 7 109 111 59 94 121 122 0 0 0 0

Round 8 127 128 98 129 0 0 0 0 0 0

Round 9 100 151 123 0 0 0 0 0 0 0

Round 10 163 165 166 172 170 0 0 0 0 0

Operator 2 Terminals/Destination choice per round

Terminal1 Terminal2 Terminal3 Destination

Round 1 1 3 0

Round 2 2 1

Round 3 2 3 0

Round 4 1 4 1

Round 5 3 1 2 0

Round 6 1 3 1

Round 7 0 1 0

Round 8 3 0 1

Round 9 1 0 1

Round 10 4 0 1 0

(A=0, B=1, C=2, D=3, E=4) (Du=0, Bu=1)
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Optimization routing 

 

 

(Train Capacity=10)

Train op2 Slot 1 Slot2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9 Slot 10

Round 1 8 10 12 1 11 0 0 0 0 0

Round 2 21 28 34 0 0 0 0 0 0 0

Round 3 15 51 25 46 47 0 0 0 0 0

Round 4 19 26 53 56 27 33 54 0 0 0

Round 5 44 65 0 0 0 0 0 0 0 0

Round 6 73 74 76 79 68 0 0 0 0 0

Round 7 110 117 91 112 124 0 0 0 0 0

Round 8 134 140 82 139 0 0 0 0 0 0

Round 9 130 147 157 148 152 158 0 0 0 0

Round 10 159 169 175 0 0 0 0 0 0 0

Truck delay Truck early

Round 1 18 4 0 0 0 Round 1 0 0

Round 2 20 0 0 0 0 Round 2 0 0

Round 3 42 36 32 23 0 Round 3 43 0

Round 4 67 45 9 0 0 Round 4 64 71

Round 5 86 38 57 40 69 Round 5 88 0

Round 6 92 105 48 97 0 Round 6 63 0

Round 7 116 104 93 0 0 Round 7 0 0

Round 8 62 118 133 135 142 Round 8 0 0

Round 9 80 153 160 154 0 Round 9 0 0

Round 10 145 146 115 0 0 Round 10 0 0

optimization

Hamburg 60 66 72 77 78 83 84 89 90 95 96

101 102 107 108 113 114 119 120 125 126 131

132 137 138 143 144 149 150 155 156 161 162

167 168 173 174 179 180

Operator 1 Terminals/Destination choice per round

Terminal1 Terminal2 Terminal3 Destination

Round 1 1 3 4 0

Round 2 2 3 1

Round 3 2 3 4 0

Round 4 3 1

Round 5 1 4 0

Round 6 0 2 0

Round 7 1 4 1

Round 8 1 2 0

Round 9 0 1

Round 10 1 3 1

(A=0, B=1, C=2, D=3, E=4) (Du=0, Bu=1)



79 
 

 

 

 

 

  

(Train Capacity=10)

Train op1 Slot 1 Slot2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9 Slot 10

Round 1 4 8 9 10 11 0 0 0 0 0

Round 2 13 14 21 22 24 28 31 32 34 0

Round 3 5 15 23 25 35 37 41 46 50 51

Round 4 40 45 48 59 0 0 0 0 0 0

Round 5 57 64 70 75 86 0 0 0 0 0

Round 6 43 63 97 100 104 0 0 0 0 0

Round 7 56 73 74 85 109 111 116 0 0 0

Round 8 91 99 112 123 124 142 0 0 0 0

Round 9 129 139 148 152 158 0 0 0 0 0

Round 10 130 140 157 163 165 166 170 172 0 0

Operator 2 Terminals/Destination choice per round

Terminal1 Terminal2 Terminal3 Destination

Round 1 0 1 1

Round 2 1 0

Round 3 0 4 1

Round 4 2 3 0

Round 5 0 1 3 1

Round 6 0 4 1

Round 7 3 4 0

Round 8 2 3 1

Round 9 0 1 0

Round 10 2 3 4 0

(A=0, B=1, C=2, D=3, E=4) (Du=0, Bu=1)

(Train Capacity=10)

Train op2 Slot 1 Slot2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9 Slot 10

Round 1 6 7 16 17 18 0 0 0 0 0

Round 2 12 20 36 0 0 0 0 0 0 0

Round 3 2 3 27 29 30 33 38 42 49 54

Round 4 1 44 62 65 67 0 0 0 0 0

Round 5 19 39 53 61 68 69 76 79 87 0

Round 6 52 55 58 81 82 92 105 0 0 0

Round 7 47 80 93 103 118 0 0 0 0 0

Round 8 71 94 98 121 122 127 128 133 134 135

Round 9 106 110 117 141 145 153 154 160 0 0

Round 10 115 136 146 159 164 176 177 178 0 0

Truck delay Truck early

Round 1 0 0 0 Round 1 0 0 0

Round 2 0 0 0 Round 2 26 0 0

Round 3 0 0 0 Round 3 0 0 0

Round 4 0 0 0 Round 4 0 0 0

Round 5 0 0 0 Round 5 88 0 0

Round 6 0 0 0 Round 6 0 0 0

Round 7 0 0 0 Round 7 0 0 0

Round 8 0 0 0 Round 8 0 0 0

Round 9 147 151 0 Round 9 0 0 0

Round 10 0 0 0 Round 10 169 171 175
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Appendix C. Performance of policies 

𝑑𝑖𝑓 =
(𝑜𝑝𝑡𝑝𝑒𝑟 − 𝑝𝑜𝑙𝑖𝑐𝑦𝑝𝑒𝑟)

𝑝𝑜𝑙𝑖𝑐𝑦𝑝𝑒𝑟
∗ 100 

Policy 1 
Policy 1 changes in simulation flowchart.  
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Performance of policy 1 
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Policy 2 
Policy 2 changes in simulation flowchart. 
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Performance of policy 2 
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Policy 3 
Policy 3 changes in simulation flowchart  
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Performance of policy 3 
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Policy 4 
Policy 4 changes in simulation flowchart  
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Performance of policy 4 
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Policy 5 
Policy 5 changes in simulation flowchart. 
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Performance of policy 5 
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Policy 6 
Policy 6 changes in simulation flowchart. 
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Performance of policy 6 
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Policy 7 
Policy 7 changes in simulation flowchart. 
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Performance of policy 7 
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Policy 8 
Policy 8 changes in simulation flowchart. 
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Performance of policy 8 

 

 

 

 

 

 

Average performance and standard deviation of performance of Policies 1-8 
Note that the performance of the optimization increases as the performance of each policy increases. 

This happens as the optimization takes as input exactly the same number and type of orders as the 

policy in each case. As “better” is the policy, and the players achieve a higher reputation in each round, 

more containers reach to the port that have to be transported (demand increases). As soon as the 

input is the same for the optimization model, the more containers that transported the more the 

performance. For example, if the players by using policy 1, achieve a reputation per round that brings 

to the port 130 containers in total, the optimization model has as input 130 containers and optimizes 

the services for these 130 containers. If the players, using policy 8, achieve a reputation in each round 

that brings to the port 150 containers, the optimization model will also transport 150 containers. Thus, 

the more containers that become available to the port the higher the profitability. The reason that the 

optimization model is used is to see how “better” and more efficient can be the planning for the given 

demand. The coordinator’s model, on the other hand, can seen as a policy as the coordinator “plays” 

the game in rounds and creates more demand when achieving higher reputation in each round. 
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Profit comparison 
 (policy- opt)/opt 

   

 
profit mean st.d. Optimization 

mean with the 
same input 

st.d. 

Current perf. 688,9 139,9 1578 102,3 

Policy 1 809,8 160,7 1618,1 112 

Policy 2 862,5 126,3 1625,5 98,6 

Policy 3 911,7 173,3 1653,1 115,9 

Policy 4 902,4 136,2 1634,7 88,2 

Policy 5 893,1 152,5 1652,4 108,9 

Policy 6 546,3 126,8 1584,4 78,5 

Policy 7 727,6 157,7 1625,6 109,8 

Policy 8 954,4 175,7 1659,9 121,3 

Coordinator 1903,3 208 2133 196 

 

Truck comparison 
(policy- opt)/opt 

   

 
truck use 

mean 
st.d. Optimization 

mean with the 
same input 

st.d. 

Current perf. 47,6 5,2 9,3 3,4 

Policy 1 44,1 5,8 9,2 3,3 

Policy 2 41,3 4,2 8,5 2,9 

Policy 3 40,7 6,3 9,3 3,4 

Policy 4 40,25 4,8 8,8 2,9 

Policy 5 41,1 5,7 9 3 

Policy 6 52,9 5,3 8,6 2,6 

Policy 7 47,5 5,6 8,7 2,8 

Policy 8 39,2 5 9 3,1 

Coordinator 26,8 3,3 14,9 2,8 

 

(policy- mpc)/mpc 
    

 
profit (coins) 

  
trucks (#) 

Current perf. 697,7 150,4 
 

Current 
perf. 

47,7 5,2 

Policy 1 817,8 157,7 
 

Policy 1 43,2 5,3 

Policy 2 885,2 136,9 
 

Policy 2 40,1 4,6 

Policy 3 913,3 170,2 
 

Policy 3 40,4 6 

Policy 4 911 147,5 
 

Policy 4 39,6 5,2 

Policy 5 876,8 144,4 
 

Policy 5 41 5,3 

Policy 6 553,9 122,5 
 

Policy 6 53,3 5,4 

Policy 7 729,2 157,4 
 

Policy 7 47,3 5,6 

Policy 8 971,3 139,6 
 

Policy 8 38,1 5 

Coordinator 1924,6 178,2 
 

Coordinator 27 3,3 
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Comparison graphs of policies 1-8 
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Policy 9 
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Policy 10 
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Abstract 

As the margins for improvements in the current freight transport system become limited, researchers address more and more 

the importance of collaboration between the actors which is crucial for the implementation of new, more efficient transport 

concepts as synchromodality. In addition, rail is concerned as a sustainable mode of transport that can also achieve economies 

of scale due to its ability to haul large quantities of goods. This study investigates cooperation policies that affect actors’ 

behavior to better utilize the rail use and lead to a more efficient system. We propose an innovative approach that combines 

gaming, simulation and optimization as a mixed method to test and evaluate these policies. The port to hinterland freight 

transportation system in the range of Port of Rotterdam is used as a case study.  First, gaming sessions are organized in order 

to observe actors’ behavior and collect data. The game that is used was initiated by Port of Rotterdam, especially to identify 

the problems in this system. Subsequently, by assessing the observed data, a simulation model is developed and different 

policy scenarios are simulated to quantify their performance. In addition, the optimization model is developed, which sets the 

upper bound for performance and used as a solid base for comparison between the policy alternatives. Finally, the explanation 

of the difference between the policies’ and the optimized performance can give an insight on what are the root causes of the 

inefficiency, what is the best allocation of the resources and where the solutions should be focused. 

 
Keywords: Cooperation; Policies; Freight transport; Port to hinterland; Collaboration; Gaming; Simulation; Optimization 

1. Introduction 

Every company and organization is trying to achieve the highest possible profits while catching up with 

government regulations. After the COP21 agreement on the environment and the aim of European Union to reduce 

climate gas emissions by 80-95% until 2050, and specifically in transport related emissions by 54-67% comparing 

to 1990 (European Commission, 2011), current solutions proved to be inadequate for the companies and 

transportation firms. Focusing on the ports and the freight transport to hinterland terminals, there is an ongoing 

necessity for modal shift towards more environmentally friendly modes in transport. Many European Port 

authorities are aiming to reduce truck-use and have cargo transported by rail or barge. Largest Europe’s ports as 

port of Rotterdam and Antwerp have set truck reduction targets of 15-20% until 2035 and 2020 respectively, while 

port of Hamburg has set a target of 5% shift from truck to rail until 2025 (Van den Berg and De Langen, 2014). 

For this reason, several concepts have been proposed for freight transportation to promote sustainability. 

Researchers have introduced synchomodality concept as a development of “traditional” intermodal and 

multimodal concepts.  

Synchromodality is “a concept of optimising all network transportation in an integrally operated network, 

making of all transportation options in the most flexible way.” (Van Riessen et al., 2015). Furthermore, 
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synchromodal concept is described as a freight transport system that provides a service independent of the mode, 

but as a range of customized services and requirements (Tavasszy et al., 2015). As described by Behdani et al. 

(2014) synchromodal transportation promotes an integrated view of freight transport in two dimensions, vertical 

and horizontal. “Vertical” dimension describes the integration of the logistic services (e.g. same shipping bill) 

while the “horizontal” dimension refers to the integration of the modes that are used for transport. As there are 

several papers that focus on the vertical integration of logistic services, the main distinctive feature of 

synchromodality is the horizontal dimension (Behdani et al., 2014), that integrates the transport service on 

different modalities as one transport mode. 

A key factor to make synchromodal concept feasible and successful is the cooperation of the involved actors 

(Pfoser et al., 2016). However, these actors have much different businesses and involved in different aspects of 

freight transportation. This diversity of the actors makes their coordination a difficult task but can lead to 

potentially high benefits for all of them (Pfoser et al., 2016). 

The need for cooperation is also addressed by Kourounioti et al. (2018), focusing on the in-game behavior 

of the Rail Cargo Challenge Rotterdam (RCCR) board game, who states “Game playing results show that the 

inability of stakeholders to cooperate results in lower profits and lower reputation rates.” (Kourounioti et al., 

2018). There are several studies to record the preferences of the actors in synchromodalilty using games (see 

Kurapati et al. (2018); Kourounioti et al. (2018); Buiel et al. (2015)). However, there are not many papers that 

extent the gaming tool to test and evaluate different policies in freight transportation. This is proposed as future 

research by Kurapati et al. (2017) by changing parameters of the game and capture the effects on the performance 

indicators. This could give deep insight of different policy interventions (Kurapati et al., 2017). This is also an 

aim of this thesis: to investigate serious gaming as a policy validation tool. 

Combining the aforementioned aspects, this study has as research objective to examine cooperation policies 

between the involved actors that can lead to a higher level of performance in port to hinterland freight transport 

system, using a mixed method based on gaming to test and evaluate these policies. 

2. Research Approach 

The general framework that will be followed in this thesis is based on the combination of gaming and 

simulation as used by Kurapati et al. (2017) and Kourounioti et al. (2018) for capturing the behavior and decision 

making of the stakeholders in gaming sessions for synchromodality. At first the games are used to let participants 

express their attitudes and preferences and then the simulation metamodel is developed using the same design of 

the game and the observed choices of the players (Kourounioti et al., 2018).  

In this study the aforementioned framework will be enhanced with an optimization model in order to set 

a base for comparison and it will be used iteratively in order to test, evaluate and validate different policies and 

their level of performance. The optimized performance will set the upper limit and will be used as a reference 

point for comparison. The general framework can be seen in figure 1. 

 

 

 
Figure 1 General framework 
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Based on the general framework a more detailed description of the methodological framework that will 

be followed is described in this paragraph. The first step is the development of the game. The Rail Cargo Challenge 

Rotterdam board game is already developed and some game sessions have already been done (see Kouronioti et 

al., 2018 ; Kurapati et al., 2017). After the development of the game, two independent branches follow. The first 

branch is associated with the creation of a reference point of the highest possible performance aiming in a system 

optimum state while the second branch includes observation and simulation of actors’ behavior, behavioral policy 

implementation and evaluation. The “highest”, reference point is needed to compare the policy alternatives. The 

planning to achieve this highest performance could be done by a coordinator that would have access to all the 

available information and could bypass the negotiations of actors, that lead to an inefficient system. The decisions 

of the coordinator are only based on the efficient planning to achieve system optimality and not to maximize 

individuals’ profit. Subsequently, the steps on the second branch aim to find policies and incentives that will move 

actors towards more cooperative behavior and through cooperation and information exchange could approach the 

“optimal” system performance described above. In order to achieve this, several steps will be applied. First, game 

sessions are organized to observe players’ behavior and performance. Observations captured in these sessions are 

used to develop a simulation model of the behavior of the players in the game (representation of in-game behavior) 

(step 2). For these two steps there is already some data available, as mentioned previously, from the research of 

Kurapati et al. (2017) and Kourounioti et al. (2018).  The first simulation approach of RCCR, found in the work 

of Kurapati et al. (2017), uses probabilistic distributions of negotiated prices accepted by the train operators in-

real games. In that way the negotiations are expressed by randomly drawing prices from these distributions and 

compare them with the respective prices of the freight forwarders. The third step of this branch is to find policies 

that can influence players’ behavior towards collaboration. Subsequently, depending on the policies that will be 

chosen, the simulation model will be changed to identify the respective changes in performance (step 4). 

Simulation is used here as it is relatively easier and faster to change parameters and identify the results comparing 

to gaming. Then, a comparison of this performance with the reference performance (in coordinated system) is 

done (step 5). This simulation modification and performance comparison will be done for all the selected policies. 

After this iterative process, an evaluation of the results follows (step 6). The best of the above policies will be 

selected to be used in game sessions with changed player behavioral rules (step 7-9). Their new performance will 

be then measured and compared to the highest achievable score found by the optimizer of the game. In this way, 

it will be examined if the policies have the desired outcomes on actors’ choices and if this performance was in 

accordance with the simulation model.  

3. Game 

The base method that is used to represent the port to hinterland freight transport system and actor’s 

behavior in this study is gaming. Games are used from practitioners to better understand the value of flexibility in 

freight transport and by educational institutes to teach intermodal container logistics (Van Riessen, 2018).  

Furthermore, gaming is used as a way to raise actor’s awareness towards new transport systems as 

synchromodality that is expected to increase efficiency in freight transportation (Kourounioti, 2018). This tool 

(gaming) has three objectives for synchromodality according to Buiel et al. (2015): 

1) Let the actors experience synchromodal planning,  

2) Show to the actors the benefits and  

3) Achieve the mind shift towards cooperation between actors. 

The game that is used is Rail Cargo Challenge Rotterdam. Rail Cargo Challenge Rotterdam is a game 

developed by TU Delft gamelab, The Barn, ProRail and TNO within the “Synchro-gaming” project (TU Delft 

gamelab site, 2018) and in collaboration with stakeholders of port of Rotterdam.  

Acoording to Kourounioti et al. (2018), “The key research objective of the Rail Cargo Challenge Rotterdam 

(RCCR) is to assess the attitudes and behavior of stakeholders in the freight transport domain with respect to the 

efficient bundling of containers to be transported to their final destination using rail”.  

Gaming has the advantage that can give an actual – and not modeled- human behavior, while can also 

provide a discussion with the actors on the results and their individual reflection on the system operation. The 

main disadvantages of gaming, is that it has a high simplification level compared to the “real” world and it is 

difficult to take many samples, due to the availability of players and the gameplay time itself. As an indication a 

gaming session of RCCR game requires at least 5 players and 1 game master and has a duration of about 3 hours. 

4. Simulation 

The simulation model is used as a representation of the game. The simulation model gives the 

opportunity, by changing simulation structure or parameters, to model different game scenarios according to new 

policies, without the need of organizing multiple gaming sessions. Of course, ideally all the scenarios would be 

more realistic to be tested in gaming sessions, but due to time restrictions, the simulation alternative is preferred. 
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A sample of 100 simulation runs lasts a few minutes, while only one game session needs 2.30-3 hours. The 

disadvantage of the simulation is the fact that it is a model of the game, that is already an abstraction of reality. 

However, this method is used due to the convenience of testing different alternatives in a very short time, 

compared to gaming. 

A first approach of a simulation meta-model of RCCR game was done by Kurapati et al. (2017). In their 

study, the simulation is based on a probabilistic comparison of the proposed prices in the negotiation phase 

between the players. In the current study, the simulation model is approached differently than the aforementioned 

work. First, the flowchart of the game was constructed and the simulation model was made according to the game 

steps. A very important element lays on the decision making of the players on what mode to choose, during the 

negotiation phase of the game. These decisions are modeled using Discrete Choice Modeling and specifically the 

Multinomial Logit model (MNL). According to Ben-Akiva and Lerman (1985) Discrete Choice analysis is the 

most used methodology for travel decisions and mode choice.  In addition, the proposed negotiation prices were 

drawn from a distribution, using observed prices from gaming sessions.  

In order to choose the most important factors to include in the utility functions of the decision model, 

literature is used. The most important factors for mode choice in port to hinterland freight transportation found to 

be cost, transport time, reliability, transport quality and in some cases frequency of the service. As in the game 

RCCR transport time, transport quality and frequency of service are not included, the factors that are finally chosen 

in the utility functions are cost and reliability. 

The simulation model was coded in python 2.7. The parameters used for the Discrete Choice model were 

based on observed data from gaming sessions and were estimated using the software BIOGEME 1.8 (see Bierlaire, 

2008). BIOGEME package is distributed free in order to develop the research area of Discrete Choice Models 

(Bierlaire, 2003). 

4.1. Freight forwarders decision modeling 

In the simulation model freight forwarders make their decision for each order card separately. The important 

assumptions for the used Discrete Choice Model (see Ben-Akiva & Bierlaire, 2009) in this case are: 

• The decision maker: Freight forwarder 

• The alternatives: depend on the expire date (see next) 

• The attributes: cost, reliability (transport time and quality are not included in RCCR game) 

• The decision rule: utility maximization, MNL model 

The alternatives for freight forwarders depend on the expiry round of the order card. 

➢ If it is the last round (day) before the order expires, the discrete choices for each freight forwarder are: 

1) train operator 1, 

2) train operator 2 or  

3) delayed truck. 

 

And the respective utility functions are: 

 

𝑈𝑇𝑟𝑎𝑖𝑛1
= 𝛽

𝑝𝑟𝑖𝑐𝑒
∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟1𝑝𝑟𝑖𝑐𝑒) + 𝛽

𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
∗ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦1 +  (𝛽

𝑡𝑟𝑎𝑖𝑛
)  

𝑈𝑇𝑟𝑎𝑖𝑛2
= 𝛽

𝑝𝑟𝑖𝑐𝑒
∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟2𝑝𝑟𝑖𝑐𝑒) + 𝛽

𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
∗ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦2 +   (𝛽

𝑡𝑟𝑎𝑖𝑛
)  

𝑈𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑 = 𝛽
𝑝𝑟𝑖𝑐𝑒

∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒_𝑑𝑒𝑙𝑎𝑦 − 𝑐𝑜𝑠𝑡_𝑑𝑒𝑙𝑎𝑦) + 𝛽
𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑

  

 

 

➢ If it is not the last day before the order expires, the discrete choices for each freight forwarder are:  

1) train operator 1,  

2) train operator 2,  

3) early truck or  

4) keep the order to decide next day.  

 

And the respective utilities are:  

 

𝑈𝑇𝑟𝑎𝑖𝑛1
= 𝛽

𝑝𝑟𝑖𝑐𝑒
∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟1𝑝𝑟𝑖𝑐𝑒) + 𝛽

𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
∗ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦1 + (𝛽

𝑡𝑟𝑎𝑖𝑛
)  

𝑈𝑇𝑟𝑎𝑖𝑛2
= 𝛽

𝑝𝑟𝑖𝑐𝑒
∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟2𝑝𝑟𝑖𝑐𝑒) + 𝛽

𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
∗ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦2 + (𝛽

𝑡𝑟𝑎𝑖𝑛
)  

𝑈𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦 = 𝛽
𝑝𝑟𝑖𝑐𝑒

∗ (𝑟𝑒𝑣𝑒𝑛𝑢𝑒_𝑒𝑎𝑟𝑙𝑦 − 𝑐𝑜𝑠𝑡_𝑒𝑎𝑟𝑙𝑦) + 𝛽
𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦

  

𝑈𝑘𝑒𝑒𝑝_𝑜𝑟𝑑𝑒𝑟 = +𝛽
𝑘𝑒𝑒𝑝_𝑜𝑟𝑑𝑒𝑟
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The parameters for each utility function were estimated using observed data from the game sessions. The 

values of the parameters can be seen in Table 1. 

𝛽
𝑝𝑟𝑖𝑐𝑒

 0.108 

𝛽
𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

 0.146 

𝛽
𝑡𝑟𝑎𝑖𝑛

 0 (train set as base case) 

𝛽
𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑

 -1.45 

𝛽
𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦

 -2.44 

𝛽
𝑘𝑒𝑒𝑝_𝑜𝑟𝑑𝑒𝑟

 -1.06 

Table 1 estimation of parameters in Utility functions 

Note that as the truck cost and revenue are constant, these prices were incorporated in the alternative 

specific parameter. Thus, 𝑈𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑 = +𝛽
𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦𝑒𝑑

 and 𝑈𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦 = +𝛽
𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦

. Furthermore, it is worth 

noting that the parameter for the early trucks (𝛽𝑡𝑟𝑢𝑐𝑘𝑒𝑎𝑟𝑙𝑦
) found to be less than the parameter for delayed truck. 

This is justified from the game sessions, as the early truck alternative found to be the most rarely used, as the 

players prefer to keep the order cards for the next rounds most of the times. 

 

4.2. Train operator’s decisions modeling 

Train operators’ decisions modelling is included in simulation, as well. For this model, simple utility 

maximization is used as the decision rule, as the operators do not choose among a set of mode alternatives, but 

decide which origin-destination pair will service to achieve the highest benefits. The weights in the utilities 

(paramters) for the price and for the delayed orders are assumed to be the same as estimated for freight forwarders 

in the previous subsection. 

5. Optimization and a coordinated system perspective 

Optimization model is used in order to find the upper bound of performance and identify the potential 

benefits of a coordinated or fully-cooperative system. Two approaches of optimized performance are used in this 

study. The first model uses full information, excludes stochasticity and sets the upper bound, while the second 

uses only the exact information that players have and gives a coordinated system perspective. The second model 

can be also assumed as a policy measure of a central coordinator and is closer to the simulation of the game, as 

the coordinator takes the decisions per round. However, as the coordinated model is based on optimization and 

does not include human behavior, it is described with the optimization part.  

The first model, referred as optimization model, assesses all information of the system and excluding 

stochasticity by taking the results of the stochastic elements as input. This optimization model has no physical 

meaning, as excludes stochasticity, which is not realistic. However, the practical usefulness of the model is that 

sets the theoretical upper bounds of the game performance in each case, in order to quantify the potential for 

system improvements and set a basic element for comparison between the different policy scenario. In a way the 

optimization model can give a quantification of how “worse” is the planning of the players compared to the highest 

performance that they could have achieved, with the specific demand and resources. 

The second model, referred as coordinator’s model, is a combination of the aforementioned optimization 

model and a Model Predictive Control (MPC). This model has a physical meaning and represents a version of a 

coordinated system that assesses only the available information each time. The information of the coordinator is 

exactly the same as players’ information and released at the same time that become available to the players, as 

well. As a result, coordinator’s performance falls under stochasticity. The difference of the coordinated system 

and the current system is that the coordinator takes decisions to maximize system’s KPIs and bypasses players’ 

negotiations that lead to inefficient decisions for the system. 

The main difference of the two models is that the optimization model guarantees the highest performance, 

as makes the planning under full information. On the other hand, MPC coordinator takes and performs the 

decisions on each round separately under stochasticity. This makes coordinator’s performance lower compared to 

the optimized performance. However, this difference can give an insight of the impact of the stochastic elements 

on performance and consequently separate this difference with the impact of players’ negotiations. 

In order to compare the simulated results with the performance of the optimization model that assess full 

information, first the simulation model was executed for one sample, the information for the stochastic elements 

were saved and then the optimization model was executed with all the information as input. This was used to find 

the highest possible performance for this sample, with the specific number of orders, order characteristics and 
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stochastic element outcomes. It becomes obvious, that the performance of the optimization model does not take 

one single value, but depends on the input that differs for each sample.   

On the other hand, the coordinated system’s model (MPC) was executed after each simulation step (game 

round) and not at the end of the sample. In this way the coordinator had as input exactly the same information at 

each round as the simulation model -and the players at each round- and not full information, as the optimization 

model. In this way the coordinator included the uncertainty of the stochastic elements and can be assumed as a 

special case of policy of centralized control center, that bypasses players’ negotiations. 

The optimization approach is based on the arc-based Service network design or “capacitated multicommodity 

network design” (CMND) as described by several articles (Andersen et al., 2007; Crainic, 2000) with some 

adaption. 

Coordinator’s decisions on the coordinated system’s model are based on the aforementioned optimization 

model combined with Model Predictive Control (see Camacho & Alba, 2013; Kouvaritakis & Cannon, 2016). 

The main elements that are used from the MPC is that the coordinator makes the planning for a planning horizon 

(e.g. four rounds) by assessing all the currently-available information, but applies only the decision for the current 

round. Every new round that new information become available to the system, a new planning is done for the 

planning horizon. In this way, stochasticity is handled as the disturbances on the MPC concept (see Kouvaritakis 

& Cannon, 2016). 

The optimization model and coordinator’s model were first formulated as Linear Programming problems 

using mathematical terms and then solved in python 2.7 using the external library and application programming 

interface (API) of IBM CPLEX.    

5.1. Optimization model 

The optimization approach is based on the arc-based Service network design or “capacitated multicommodity 

network design” (CMND) as described by several articles (Andersen et al., 2007; Crainic, 2000), with some 

adaption. The aforementioned model is changed to better fit the specific problem. Firstly, a profit maximization 

formulation is considered, instead of cost minimization, as the train services have a fixed cost, independent of the 

arc that is used. Secondly, to reduce the decision variables and as the arcs have no cost of use (fixed cost per train), 

each train service is not described with design arcs but with design nodes (𝑥𝑡𝑒𝑟𝑖𝑛
𝑡𝑟  , 𝑥𝑑𝑒𝑠𝑡𝑗

𝑡𝑟) that represent the 

terminals/destination that each train can visit each round. In the case of flow arcs the decision variables of rail 

service could be represented as 𝑟𝑖𝑘𝑙𝑗
𝑡𝑝𝑟

 as each train t∈T can service up to three terminals (e.g. i,k,l∈O) to transport 

the containers p∈P in round r∈R to destination j∈D. However, this would require about 

T*P*R*O*O*O*D=2*18*4*5*5*5*2=36000 decision variables, only for the rail flows. As there are no cost for 

using each arc and in order to reduce the required decision variables, the flow arcs of rail service (𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

) are 

represented as binary variables that train t∈T transports container p∈P in round r∈R from terminal i∈O, which is 

the nth terminal choice of the operator (n∈N), to destination j∈D. In this case, the decision variables for rail flows 

are reduced to T*P*R*O*N*D=2*18*4*5*3*2=4320 instead of 36000. The flow decision variables are binary as 

each commodity p∈P represents only one container; thus, flow is either zero or one. 

 

The Integer programming optimization is presented next. 

Sets:  

T Set of trains that are operating (t∈T). 

P Set of containers (IDs) (p∈P). 

O Set of origin terminals (i∈O). 

D Set of destination (j∈D). 

R Set of planning horizon rounds (days) (r∈R) 

N Set of possible choices in priority order for terminals (n∈N). (e.g. 1st 

choice, 2nd choice, 3rd choice for a maximum of 3 out of 5 Terminals) 

(Equals to the dice alternatives) 

Parameters:  

𝑑𝑒𝑠𝑡𝑗
𝑝
  Binary parameter: 1 if container p∈P has j∈D as destination, 0 

otherwise. 

𝑡𝑒𝑟𝑚𝑖
𝑝
  Binary parameter: 1 if container p∈P has i∈O as destination, 0 

otherwise. 

𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑟𝑚𝑡𝑟 Non-negative integer: maximum number of terminals that train t∈T is 

allowed to service on planning round r∈R. 

𝑝𝑟𝑜𝑓𝑖𝑡_𝑟𝑎𝑖𝑙 Revenue for a successful container transport by train (as train has 

constant cost for operating, cost not included) 
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𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦 Profit for each container transported by an on-time truck (revenue -cost) 

𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦 Profit for each container transported by a delayed truck (revenue -cost) 

𝑒𝑥𝑝𝑖𝑟𝑒𝑝𝑟 Binary parameter: 1 if container order p∈P has expired on round r∈R, 0 

otherwise. (The indicated round shown in the order cards is the last 

round that the container can be transported, thus expire=0 at the specific 

and previous rounds and expire=1 the following days).   

𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑝𝑟 Binary parameter: 1 if container order p∈P has released on round r∈R, 0 

otherwise. (The round that the container reaches the origin terminal and 

the following rounds, release=1. Before this round release=0) 

Variables:  

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

  Binary variable: 1 if train t∈T transports container p∈P from origin 

terminal i∈O, which is the nth (n∈N) terminal choice, to destination j∈D 

in round r∈R, 0 otherwise. 

𝑥𝑡𝑒𝑟𝑖𝑛
𝑡𝑟   Binary variable: 1 if train t∈T services terminal i∈O as nth choice (n∈N) 

in round r∈R, 0 otherwise. 

𝑥𝑑𝑒𝑠𝑡𝑗
𝑡𝑟  Binary variable: 1 if train t∈T has as destination j∈D in round r∈R, 0 

otherwise. 

𝑡𝑒𝑝𝑟  Binary variable: 1 if on-time (early) truck transports container p∈P in 

round r∈R, 0 otherwise. (trucks can service all terminals and 

destinations at all rounds) 

𝑡𝑑𝑝𝑟  Binary variable: 1 if delayed truck transports container p∈P in round 

r∈R, 0 otherwise. 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (maximize profit): 

𝑚𝑎𝑥 ∑ ∑ ∑ ∑ ∑ ∑ 𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

∗ 𝑝𝑟𝑜𝑓𝑖𝑡_𝑟𝑎𝑖𝑙

𝑗∈D𝑛∈N𝑖∈O𝑟∈R𝑝∈P𝑡∈T

+ ∑ ∑ 𝑡𝑒𝑝𝑟 ∗ 𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦

𝑟∈R𝑝∈P

+  ∑ ∑ 𝑡𝑑𝑝𝑟 ∗ 𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦

𝑟∈R𝑝∈P

                                                                                              (1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

∑ ∑ ∑ ∑ ∑ 𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

𝑗∈D𝑛∈N𝑖∈O𝑟∈R𝑡∈T

+ ∑ 𝑡𝑒𝑝𝑟

𝑟∈R

+ ∑ 𝑡𝑑𝑝𝑟

𝑟∈R

= 1,        ∀ 𝑝 ∈ P                                                                                (2) 

∑ ∑ ∑ ∑ 𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

𝑗∈D𝑛∈N𝑖∈O𝑝∈P

≤ 10, ∀ 𝑡 ∈ T, 𝑟 ∈ R                                                                                                                 (3) 

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

≤ 𝑑𝑒𝑠𝑡𝑗
𝑝

, ∀𝑡 ∈ T, 𝑝 ∈ P, 𝑟 ∈ R, 𝑖 ∈ O, n ∈ N, 𝑗 ∈ D                                                                                         (4) 

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

≤ 𝑡𝑒𝑟𝑚𝑖
𝑝

 , ∀𝑡 ∈ T, 𝑝 ∈ P, 𝑟 ∈ R, 𝑖 ∈ O, , n ∈ N 𝑗 ∈ D                                                                                      (5) 

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

≤ 𝑥𝑡𝑒𝑟𝑖𝑛
𝑡𝑟   , ∀𝑡 ∈ T, 𝑝 ∈ P, 𝑟 ∈ R, 𝑖 ∈ O, n ∈ N, 𝑗 ∈ D                                                                                      (6) 

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

≤ 𝑥𝑑𝑒𝑠𝑡𝑗
𝑡𝑟 , ∀𝑡 ∈ T, 𝑝 ∈ P, 𝑟 ∈ R, 𝑖 ∈ O, n ∈ N, 𝑗 ∈ D                                                                                    (7) 

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

≤ (1 − 𝑒𝑥𝑝𝑖𝑟𝑒𝑝𝑟), ∀𝑡 ∈ T, 𝑝 ∈ P, 𝑟 ∈ R, 𝑖 ∈ O, n ∈ N, 𝑗 ∈ D                                                                       (8) 

𝑡𝑒𝑝𝑟 ≤ (1 − 𝑒𝑥𝑝𝑖𝑟𝑒𝑝(𝑟+1)), ∀𝑝 ∈ P, 𝑟 ∈ R                                                                                                                (9) 

𝑡𝑑𝑝𝑟 ≤ (1 − 𝑒𝑥𝑝𝑖𝑟𝑒𝑝𝑟), ∀ 𝑝 ∈ P, 𝑟 ∈ R                                                                                                                   (10) 

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

≤ 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑝𝑟 , ∀𝑡 ∈ T, 𝑝 ∈ P, 𝑟 ∈ R, 𝑖 ∈ O, n ∈ N, 𝑗 ∈ D                                                                              (11) 
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𝑡𝑒𝑝𝑟 ≤ 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑝𝑟 , ∀𝑝 ∈ P, 𝑟 ∈ R                                                                                                                              (12) 

𝑡𝑑𝑝𝑟 ≤ 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑝𝑟 , ∀ 𝑝 ∈ P, 𝑟 ∈ R                                                                                                                             (13) 

∑ ∑ 𝑥𝑡𝑒𝑟𝑖𝑛
𝑡𝑟

𝑛∈N𝑖∈O

≤ 𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑟𝑚𝑡𝑟  , ∀𝑡 ∈ T, 𝑟 ∈ R                                                                                                   (14) 

∑ 𝑥𝑡𝑒𝑟𝑖𝑛
𝑡𝑟

𝑛∈N

≤ 1  , ∀𝑡 ∈ T, 𝑟 ∈ R, 𝑖 ∈ O                                                                                                                      (15) 

∑ 𝑥𝑡𝑒𝑟𝑖𝑛
𝑡𝑟

𝑖∈O

≤ 1  , ∀𝑡 ∈ T, 𝑟 ∈ R, 𝑛 ∈ N                                                                                                                     (16) 

∑ 𝑥𝑑𝑒𝑠𝑡𝑗
𝑡𝑟

𝑗∈D

≤ 1 , ∀𝑡 ∈ T , 𝑟 ∈ R                                                                                                                               (17) 

𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

, 𝑥𝑡𝑒𝑟𝑖𝑛
𝑡𝑟 , 𝑥𝑑𝑒𝑠𝑡𝑗

𝑡𝑟, 𝑡𝑒𝑝𝑟 , 𝑡𝑑𝑝𝑟  ∈ {0,1}, ∀𝑡 ∈ T, 𝑝 ∈ P, r ∈ R, 𝑖 ∈ O, 𝑛 ∈ N  , 𝑗 ∈ D                                    (18) 

Objective function (1), maximizes the profit. The first term represents the profit obtained by the successful 

transport of containers by train, the second term includes the profit by on-time (early) trucks and the third term 

the profit by delayed trucks. 

Constraint (2) ensures that each container is transported only once and only by one of the available modes/services: 

train “t”, on-time truck or delayed truck. 

(3) is the container capacity constraint for each train t∈T and for each round r∈R. 

Constraint (4) ensures that each container p∈P can only reach the destination that is assigned to. 

Constraint (5) ensures that each container p∈P can only be picked up by the terminal that is assigned. 

Constraints (6)-(7) ensure that each container p∈P can only be transported by train t∈T on the round r∈R, if the 

specific train is servicing the respective terminals/destinations on the specific round.  

Constraints (8)-(10) ensure that each container p∈P will reach destination before expire. Also, constraint (9), by 

using r+1 in 𝑒𝑥𝑝𝑖𝑟𝑒𝑝(𝑟+1) ensure that an on-time (early) truck cannot be used on the last day that the order is 

released. In this case only a delayed truck can be used by the rules of the game.  

Constraints (11)-(13) ensures that each container p∈P cannot be delivered before the day of release. 

Constraint (14) limits the number of terminals that each train can service. A different limit for each train applies 

per round, depending on the conditions (dice value) in each round. 

Constraint (15) restricts each train t∈T to choose each terminal i∈O on each round r∈R no more than one time.  

Constraint (16) ensures that each train t∈T on each round r∈R has as nth choice (n∈N) no more than one terminal 

i∈O.  

Constraint (17) restricts the train to have at most one destination. 

(18) is a constraint that sets the type of variables to binary. 

5.2. Coordinated system 

Several coordinator strategies can be defined to control the system. In this thesis, coordinator’s decisions 

are based on the optimization model that was described in the previous section combined with Model Predictive 

Control (see Camacho & Alba, 2013; Kouvaritakis & Cannon, 2016). The main elements that are used from the 

MPC is that the coordinator makes the planning for a planning horizon (e.g. four rounds) by assessing all the 

available information, but applies only the decision for the current round. Every new round that new information 

become available to the system, a new planning is done for the planning horizon. In this way, stochasticity is 

handled as the disturbances on the MPC concept (see Kouvaritakis & Cannon, 2016). 

As the container information become available only in the “current” round and the demand is unknown 

for the “future” rounds, the optimization model is used in every new round of the game and the planning for a 

planning horizon is performed with all the available information until this round. Then, according to the model 

results, only the decisions for the “current” round are taken, the respective containers are transported and the round 

ends. Subsequently, in the new round, the input information of the model is readapted including information of 

the new round and the planning is redone, performing only the decisions for the “new” round. The planning 

horizon is chosen until the round of the latest expiring order. 
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As the “future” rounds of the game include some stochasticity due to the dice that determines the 

maximum number of the terminals that each train is allowed to service, the profit calculated from the planning is 

not “guaranteed”. For this reason, we implement “expected” profit in the optimization model which is the profit 

multiplied by the probability (expected_profit=chance*profit) of this profit to happen.  The objective function of 

the model is then modified to: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (maximize expected profit for the planning horizon): 

𝑚𝑎𝑥 ∑ ∑ ∑ ∑ ∑ ∑ 𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

∗ 𝑐ℎ𝑎𝑛𝑐𝑒𝑛
𝑟 ∗ 𝑝𝑟𝑜𝑓𝑖𝑡_𝑟𝑎𝑖𝑙

𝑗∈D𝑛∈N𝑖∈O𝑟∈R𝑝∈P𝑡∈T

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝑟𝑖𝑛𝑗
𝑡𝑝𝑟

∗ 𝑒𝑥𝑝𝑖𝑟𝑒𝑝(𝑟+1) ∗ (1 − 𝑐ℎ𝑎𝑛𝑐𝑒𝑛
𝑟) ∗ 𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦

𝑗∈D𝑛∈N𝑖∈O𝑟∈R𝑝∈P𝑡∈T

+ ∑ ∑ 𝑡𝑒𝑝𝑟 ∗ 𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑟𝑢𝑐𝑘_𝑒𝑎𝑟𝑙𝑦

𝑟∈R𝑝∈P

+  ∑ ∑ 𝑡𝑑𝑝𝑟 ∗ 𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑟𝑢𝑐𝑘_𝑑𝑒𝑙𝑎𝑦

𝑟∈R𝑝∈P

                                                                

,where 𝑐ℎ𝑎𝑛𝑐𝑒𝑛
𝑟  is the chance (depending on dice) that the train is allowed to service up to n∈N terminals in round 

r∈R. 

The objective function in this case maximizes the expected profit (chance*profit) for the entire planning 

horizon. The first term represents the profit that can be obtained by the successful transport of containers by train 

up to the respective probability 𝑐ℎ𝑎𝑛𝑐𝑒𝑛
𝑟 . The second term expresses the risk that the dice can determine less 

terminals than the number of terminals the coordinator has decided to service. In this case the expiring orders that 

cannot be transported by train have to be sent by a delayed truck. This probability is (1-𝑐ℎ𝑎𝑛𝑐𝑒𝑛
𝑟 ). The third term 

calculates the expected profit by on-time (early) trucks and the fourth term the expected profit by delayed trucks. 

6. Policies 

Based on literature and expert consultation, the policies that have been selected to be tested are divided in 

information sharing policies and momentary adjustment policies. 

6.1. Information sharing policies 

6.1.1. Horizontal collaboration of actors 

6.1.1.1. Alliance between freight forwarders: 

Policy (1). Freight forwarders consolidate their containers to achieve economies of scale and have 

discount in train transport by train operators. Requires information sharing between alliance forwarders. 

6.1.1.2. Alliance between operators: 

Policy (2). Operators can trade the containers that cannot transport by themselves, if the other operator 

has chosen the respective terminal-destination. 

Policy (3). Operators decide together which terminal(s)-destination to service each train in order to 

maximize their total benefits, then negotiate with forwarders for the respective orders and at the end of 

the round share the profits.  

6.1.1.3. Alliance between forwarders and alliance between operators (combination of 6.1.1.1.-6.1.1.2.): 

Policy (4). Freight forwarders can consolidate their containers and operators can trade their containers 

between them. 

Policy (5). Freight forwarders can consolidate their containers and operators co-decide trains’ 

terminal(s)-destinations. 

 

6.1.2. Vertical collaboration of actors. 

Alliance between freight forwarder and operator: 

Policy (6). A freight forwarder deals to transport all his containers with a specific operator for a 

predefined price, and the operator decides which to send by truck and which by train.  

Policy (7). Forwarder gives priority to a specific operator to choose which containers will take in a 

predefined price and then can negotiate with the other operator for the rest.   
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6.1.3. Vertical and horizontal collaboration of actors. 

Policy (8). Forwarders make alliances to consolidate their freight and give their orders to specific 

operator in predefined price and operators can trade their containers to the other operator if they cannot 

fulfil the order. 

6.2. Monetary adjustment policies 

Policy (9). Subsidize the utilization of trains above a percentage (e.g. 70%). *Note that this policy may 

not have a very high effect as the in-game operator profitability is almost proportional with train 

utilization (if the deviations in negotiated prices are neglected), and thus operators try to utilize their train 

anyway, even without subsidy.  

 

Policy (10). Fine the use of truck (by operators and freight forwarders). *Note that this would probably 

raise the fees for train use, as the operators would ask for higher prices, that forwarders could accept in 

order to avoid fine. 

7. Results 

7.1. Policies’ performance 

For the first eight policies the comparison, the base for comparison is the optimization model’s performance and 

thus the comparison between the policies is set as the percentage difference from this reference point.  

𝑑𝑖𝑓 =
(𝑝𝑜𝑙𝑖𝑐𝑦𝑝𝑒𝑟 − 𝑜𝑝𝑡𝑝𝑒𝑟)

𝑜𝑝𝑡𝑝𝑒𝑟

∗ 100 

For policies 9 and 10, which are the subsidize of train-use and fine of truck-use respectively, a sensitivity analysis 

is chosen in order to check the performance in different levels of subsidies and fines. On the next tables the 

performance of each policy can be seen compared to the optimization model. 

 
Profit comparison between each policy and optimization model  

 Mean Dif. (%) 

(100 samples) 

St. Deviation 

current performance -56,5 7,4 

Policy 1 -50,1 8,1 

Policy 2 -47 6,2 

Policy 3 -44,9 9,2 

Policy 4 -44,9 6,9 

Policy 5 -46 8 

Policy 6 -65,5 7,6 

Policy 7 -55,4 8,2 

Policy 8 -42,8 7,9 

MPC controller -10,9 2,77 

Table 2 Profit comparison between policies and optimization model 

Truck use comparison between each policy and optimization model  

 Mean Dif. (%) 

(100 samples) 

St. Deviation 

current performance 503,9 293 

Policy 1 452,4 235,5 

Policy 2 484,1 455,6 

Policy 3 418 329 

Policy 4 415 203 

Policy 5 422 235,9 

Policy 6 575 233 

Policy 7 535,2 422 

Policy 8 390,4 182,2 

MPC controller 84 31,6 

Table 3 Truck-use comparison between policies and optimization model 
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In figures 2 and 3, the performance of each policy in terms of profit and truck-use compared to the 

optimized performance is represented graphically. 

As can be seen, all the policies except “policy 6” have a better performance than the current situation. The best 

performance is achieved by the application of “policy 8”, which represents the highest level of cooperation, 

vertical and horizontal at the same time. Furthermore policies “3” and “4” approach the performance of “policy 

8”. These two policies concern only horizontal collaboration, that is collaboration between the same kind of actors. 

At last, it is worth mentioning that only the cooperation between forwarders (policy 1) and only vertical 

collaboration (policies 6 and 7) are not enough to improve the current system in a high level. 

 

 
Figure 2 Profit comparison between policies 

 

 
Figure 3 Truck-use comparison between policies 

 

Policy 9 is a subsidy policy for the train utilization rate. When the utilization rate overcomes a specific percentage 

(e.g. 70%), extra benefits are given to train operators. A sensitivity analysis is done for different prices of subsidy, 

as percentage of the basic train cost. The impact of the subsidies as function of the subsidy amount is illustrated 

in figure 4. The subsidy amount is assumed that comes into the port system from external resources (e.g. 

government). Also, note that 0% subsidy describes the current system, without any subsidy. 
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Figure 4 Profit, train-use and truck use as function of subsidy 

 

 
Figure 5 Profit, train-use and truck use as function of subsidy 

In the same way as the subsidize policy (policy 9), policy 10 fines the use of truck by freight forwarders. As in 

the previous policy, in this case as well, the fine is set as a proportion of the basic truck cost and assumed to be 

paid in an external actor (out of the port system). Using penalty in truck use does not have a significant effect on 

promoting train use and avoiding truck, as can be seen in figure 5. 

7.2. Remaining challenge to reach coordinator’s performance 

Due to the big gap between coordinated system’s performance and the rest of the policies an explanation 

of this difference is done in this section. For this reason, a sensitivity analysis on two parameters that assumed 

constant on the negotiation phase of simulation model is done, to explore how the change of these parameters 

could affect system’s performance. These are not relevant for the coordinator’s model as the negotiation phase of 

the players is bypassed. 

The two parameters are the negotiation time between the players, that is translated in negotiation rounds, 

and the minimum number of containers that assumed the consolidation effects and economies of scale are 

achieved. The negotiation time is set to five minutes, according to the game rules. It was observed from the game 

sessions that the players had time for about 2 negotiation rounds in five minutes. One negotiation round is defined 

as the interval between the proposal of a transport price by the train operator, the acceptance or decline of this 

price from the freight forwarder and the trade between the accepted orders. In the simulation model, as shown on 

the simulation flow chart, this number was set as constant to 2 rounds. 

The number of containers (n) that consolidation effects started for the operators and discount that was 

given to the freight forwarders due to the economies of scale, assumed also constant in the simulation model. It 

was observed from the game sessions that above 3 to 4 containers, the operators proposed prices in discount to 

the freight forwarders. The discount is only relevant in the form of alliances that the players consolidate their 

containers. The number of containers (n) was chosen as 4 containers for the simulation model. As a base for the 

sensitivity analysis, policy 8 is chosen.  

 



117 
 

 
Figure 6 Profit as function of negotiation rounds and number of consolidated containers. 

As can be seen in figure 6, as the negotiation time increases and as the consolidation point drops the 

profit is increased. By dropping the consolidation point from 4 (current simulation) to 2 containers and by 

increasing the negotiation rounds from 2 (current simulation) to 5, the performance can be increased about 10%. 

However, there is still a remaining gap between policy performance and coordinator. This can be caused by several 

other reasons. First, there is still competition for the unconsolidated containers. Second, the players do not have a 

central plan for a planning horizon, but plan individually for their orders. On the other hand, coordinator plans for 

all the available orders at the same time and for a planning horizon. At last, the simulation model is based on the 

current game with the basic rules. The new policies allow for new interactions between the players that may not 

be incorporated in the most realistic way in the current simulation. This can be a recommendation for future 

research, to observe players’ behavior under the new policy implementation and re-simulate the game. 

7.3. Implementation of policy 4 in game session 

Policy 4 was chosen to play in the last game session to find the result of the policy. This policy was 

chosen as has a high performance and included the participation of all players. Policy 4 sets parallel horizontal 

collaboration of freight forwarders and train operators. As can be seen in figures 7, the profit of the players reached 

910 game currency units compared to 717 that achieved in the first to games (average). Also, the truck use dropped 

to 36 compared to 46 in the previous games and train use increased to 107 from 91 containers. 

 

Figure 7 Performance of players in game session with policy 4 applied 
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8. Conclusions and Recommendations for future research 

8.1. Conclusions 

This section addresses the most important outcomes of this study. On the methodological part, this study 

showed that the combined use of gaming, simulation and optimization allowed to extract each method’s benefits, 

while skipping the main drawbacks. The combined methods were not independent on each other but were chosen 

in such a way that the advantages of the one method could cover the disadvantages of the others. The proper 

functioning of the combination appeared on the results, as well. After the analysis that compared different policies, 

on the last game session for this study, the players responded on the expected way on the in-game policy 

implementation.   

The analysis also indicated that the current system is far from the optimal state and the involved actors 

achieve much lower profits and port reputation rates. The source of this low performance lays on the lack of 

information sharing, the inability of the stakeholders to cooperate and the conflicting interests of the stakeholders.  

The uncertainty of delays and the stochastic demand themselves only lead to a small proportion of the inefficiency. 

All the rest difference in performance is due to the ineffective planning. This was shown in the results, as a 

coordinator that operated under the aforementioned stochastic elements, but by-passed player’s negotiations, 

could achieve a much higher performance that approached the optimal solution in about 10% deviation. Thus, the 

near-optimal planning can be done by a coordinator that has access to all available information and is accepted by 

all the involved actors.  

Generally, the higher the level of collaboration between the players the higher the performance that they can 

achieve. Α simultaneous vertical and horizontal collaboration can lead to an improved performance compared to 

the current system. However, port managers and stakeholders should be careful on choosing which cooperation 

policy to implement as not all cooperation policies have a positive effect on performance. Some vertical 

collaboration interventions that do not include all the involved actors can even have negative outcomes for the 

system. This happens as the agreements between separate small alliances create more restrictions on the decision-

making, that do not guarantee that these are the most effective for the system.  

There is still a big difference on coordinator’s performance and policies’ highest performance. This is 

mainly because there is still competition for the unconsolidated containers. In addition, most players try to send 

their orders as soon as possible and do not plan for multiple rounds in cooperation with the other players, by taking 

the probabilities for the stochastic aspects into account. This can have short term benefits for the players, but in 

long-term it can lead to reduction of system profitability and port reputation. However, it should be noted that a 

coordinated system is much more difficult to apply as it requires the acceptance and the compliance of all the 

involved actors, which is a much stricter agreement than any cooperation policy. 

Finally, the results show that penalty and subsidy policies do not have a significant effect on overall 

performance, as the companies already try to achieve the highest individual profits by utilizing the transport mean 

with the highest benefits and avoiding the expensive alternatives. As stated previously, the inefficiency comes 

from the lack of cooperation and information sharing and not from the price differences of the different transport 

alternatives. 

8.2. Recommendation for future research 

As this study includes a number of different models and due to the low samples provided by the game 

sessions, the models should be further validated with more observations. 

The optimization of the game does not include any human behavior and was developed according the 

game rules that were clearly stated on the gaming instructions. Thus, the validation of the optimization model for 

the purpose that was developed is considered sufficient. As a further research it could be proposed an optimization 

model that would include the decision making of the players.  

On the other hand, the simulation model includes a Discrete Choice Model for the decision making of 

the players. As the parameters for this model were based only in two game session with the same players, in the 

future observations from more game sessions and different players could be used for parameter estimation.  

In addition, as future research is proposed the more detailed observation on the interaction of the players. 

The new observations could lead to a more reliable decision model that is included in the simulation model. For 

example, different decision rules could be tested in the simulation model for the negotiation phase between freight 

forwarders and operators (e.g. game theory) and be compared with the Discrete Choice Model that is currently 

used, to find which model fits better to the decision making of the players.  

Also, the simulation model is based on the current basic rules. The new policies allow for new 

interactions between the players that may not be incorporated on the current model in the most realistic way. Thus, 

using new observations on players’ interactions from game sessions, after the in-game policy implementation, a 

simulation meta-model could be developed, especially to model the behavior of the players under the new policy. 
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Furthermore, as the costs for information sharing and forming of alliances was not included in the policy 

performance of this study, in a future study it could be examined how transaction costs can affect the policy 

performance and implementation.  

Finally, as the game sessions were organized with university students due to the low availability of port’s 

stakeholders, it is recommended to validate the results in game sessions with professionals from the field of port 

to hinterland freight transport. 
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