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Interacting fermions on a lattice can develop strong quantum correlations, which lie at the11

heart of the classical intractability of many exotic phases of matter1–3. Seminal efforts are12

underway in the control of artificial quantum systems, that can be made to emulate the un-13

derlying Fermi-Hubbard models4–6. Electrostatically confined conduction band electrons14

define interacting quantum coherent spin and charge degrees of freedom that allow all-15

electrical pure-state initialisation and readily adhere to an engineerable Fermi-Hubbard16

Hamiltonian7–17. Until now, however, the substantial electrostatic disorder inherent to solid17

state has made attempts at emulating Fermi-Hubbard physics on solid-state platforms few18

and far between18, 19. Here, we show that for gate-defined quantum dots, this disorder can19

∗email: l.m.k.vandersypen@tudelft.nl
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be suppressed in a controlled manner. Novel insights and a newly developed semi-automated20

and scalable toolbox allow us to homogeneously and independently dial in the electron filling21

and nearest-neighbour tunnel coupling. Bringing these ideas and tools to fruition, we real-22

ize the first detailed characterization of the collective Coulomb blockade transition20, which23

is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition1. As24

automation and device fabrication of semiconductor quantum dots continue to improve, the25

ideas presented here show how quantum dots can be used to investigate the physics of ever26

more complex many-body states.27

The potential for realizing novel electronic and magnetic properties of correlated-electron28

phases in low-dimensional condensed-matter physics, in topics ranging from high-Tc supercon-29

ductivity to electronic spin liquids1–3, has prompted quantum simulation efforts across multiple30

platforms4–6, 18, 19, 21, 22. Theoretical and proof-of-principle experimental work has shown how emer-31

gent spin physics21 and two-site Mott physics22 can be simulated on programmable quantum com-32

puting platforms. These digital quantum simulation efforts promise universality, but come at the33

cost of requiring large numbers of highly-controlled quantum bits with additional error-correction34

overhead. Analog quantum simulation efforts, on the other hand, aim to directly implement well-35

defined Hamiltonians. Such emulators are typically limited by the residual entropy of the initial-36

ized system, restricting experimental correlations in span and strength6. Furthermore, scaling to37

sufficiently homogeneous systems of larger size is not always straightforward4–6, 19.38

Semiconductor quantum dots form a scalable platform that is naturally described by a Fermi-39
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Hubbard model in the low-temperature, strong-interaction regime, when cooled down to dilution40

temperatures7–10. As such, pure state initialization of highly-entangled states is possible even with-41

out the use of adiabatic initialization schemes23. Coherent evolution of excitations can span many42

sites, as, contrary to what might be expected, > 20 coherent oscillations in charge or spin can be43

observed on adjacent sites13–15. Furthermore, local control and read-out of both charge and spin44

degrees of freedom have become matured areas of research, given the large ongoing effort of using45

quantum dots as a platform for quantum information processing11–17. In particular, excellent con-46

trol of small on-site energy differences24 or tunnel couplings14, 15 has been shown at specific values47

of electron filling and tuning.48

Quantum simulation experiments can leverage many of these developments, trading off some49

of the experimental difficulties involved in full coherent control for ease of scaling. Until now,50

however, calibration routines for quantum dots have been quite inefficient and limited in scope. As51

such, the effective control of larger parameter spaces as well as the calibration of larger samples52

seem like insurmountable obstacles. What has been lacking, thus, is an efficient and scalable con-53

trol paradigm for Hamiltonian engineering that extends to the collective Fermi-Hubbard parameter54

regimes well beyond those required for qubit operation25, 26.55

In this Letter, we demonstrate the simulation of Fermi-Hubbard physics using semiconduc-56

tor quantum dots. We describe an experimental toolbox, validated by direct numerical simulations,57

that allows for the independent tuning of filling and tunnel coupling as well as the measurement58

of all interaction energies, and employ it to map out the accessible parameter space of a triple59
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quantum dot device with unprecendented detail and precision. As the tunnel couplings are homo-60

geneously increased, we witness the delocalization transition between isolated Coulomb blockade61

and collective Coulomb blockade, the finite-size analogue of the interaction-driven Mott transition.62

The one-dimensional quantum dot array is electrostatically defined using voltages applied to63

gate electrodes fabricated on the surface of a GaAs/AlGaAs heterostructure (Fig. 1), that selec-64

tively deplete regions of the 85-nm-deep two-dimensional electron gas (2DEG) underneath. The65

outermost dots can be (un)loaded from Fermi reservoirs on the sides, which have an effective66

electron temperature of 70-75 mK (6.0-6.5 µeV). The three gates at the top are used to define a67

sensing-dot channel, the conductance of which is sensitive to changes in the charge state of the68

array and is directly read out using radio-frequency reflectometry.69

The control of Fermi-Hubbard model parameters is achieved by modulation of the potential70

landscape in the 2DEG using the seven bottom-most gate electrodes (Fig. 1). These gates come in71

two flavours. Plunger gates Pi are designed to tune the single-particle energy offsets εi of individual72

dots i, allowing us to set an overall chemical potential µ′ = 〈εi〉 and add site-specific detuning73

terms δεi. Barrier gates Bij allow for the modulation of tunnel couplings tij between the ith and74

jth dot or Γi between an outer dot i and its adjacent Fermi reservoir, respectively. The interaction75

energies are determined by the potential landscape realized to achieve this set {µ′, δεi,tij ,Γi}, and76

comprise of the on-site Coulomb interaction terms Ui and inter-site Coulomb interaction terms77

Vij . With each dot filled to an even number of electrons, we can describe the addition of the78

next two electrons per dot within an effective single-band extended Hubbard picture27, using site-79
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and-spin-specific electronic creation and annihilation operators c†iσ and ciσ and dot occupations80

ni =
∑

σ c
†
iσciσ:81

H = −
∑
i

εini −
∑

<i,j>,σ

tij(c
†
iσcjσ + h.c.) +

∑
i

Ui
2
ni(ni − 1) +

∑
i,j

Vijninj. (1)

In practice, both Pi and Bij gates exhibit cross-talk to all the εi and tij (with smaller effects82

on Ui and Vij), and in addition must compensate for initial disorder. Setting Hamiltonian parame-83

ters experimentally therefore requires carefully chosen linear combinations of gate voltages. This84

idea is employed regularly in spin qubit experiments in order to change the on-site energies εi de-85

terministically over small ranges24, but here we go further in important ways. Our experimental86

toolbox uses linear combinations of gate voltage changes {Pi, Bij} for the independent control of87

the Fermi-Hubbard parameters {µ′, δεi,tij} to within several kBT and over a wide range of fillings88

and tunnel couplings.89

Fig. 2a-b shows the filling of the array with up to N = 9 electrons, three electrons per dot,90

while keeping the inter-dot tunneling terms small (tij < Vij < Ui) and the tunnel couplings to the91

reservoirs roughly constant. The dark lines arise from steps in the charge detector conductance,92

indicating a transition in the number of electrons on one of the dots. The horizontal and diagonal93

lines indicate filling of one of the dots from the reservoir, whereas the vertical (polarization) lines94

indicate electron transitions between sites (not seen in Fig. 2b which shows only changes in N ).95

To achieve this level of control required several new insights. As a start, we measure the cross-96
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talk between the seven gate voltages and the three dot detunings at multiple points in gate space,97

allowing for the direct definition of virtual δεi gates that are accurate over a range of several meV98

(see Methods and Extended Data Fig. 1). Furthermore, it allows us to define virtual barrier gates99

that change specific tunnel couplings while keeping all dot detunings constant. In addition, we100

achieve homogeneous filling of a quantum dot array (as in Fig. 2a) through non-homogeneous101

changes in the εi, as the dots have to each overcome a different sum of local interaction energies102

Ui +
∑

i 6=j Vij . This is a consequence of the finite size of the array (only the middle dot has two103

neighbours) and the inhomogeneity in interaction terms (see Methods and Extended Data Fig. 2-3).104

Finally, as multiple electrons are added to the array, we use the virtual barrier gates described above105

to counter the effect that changing plunger gate voltages (and the higher wave function overlap of106

higher electron fillings) have on the tunnel couplings.107

Having filled the array with a given number of electrons, we can quantitatively characterize108

the various parameters in the Fermi-Hubbard model directly from relevant feature sizes in the109

charge stability diagram as we detune away from uniform filling. The spacing between charge110

addition lines of half-filled dot levels yields the on-site Coulomb interaction term Ui, whereas the111

displacement of single charge addition lines upon filling another dot yields their inter-site Coulomb112

coupling Vij (see Fig. 2c and Methods for automation and protocols). Finally, we can extract the113

interdot tunnel coupling tij at transitions where an added electron moves between adjacent sites114

i and j (the polarization lines seen in Fig. 2a). The width of such transitions is determined by115

the hybridization of the charge states on the two sites and is thus a measure of tunnel coupling.116

We implement an iterative tuning process that allows for automated repeated measurements of the117
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polarization line width with changing virtual barrier gates and thus tunnel coupling. To account118

for the only remaining cross-talk, between each virtual barrier gate and the other tunnel coupling,119

we redefine the virtual barrier gates such that they influence their local tunnel coupling only, while120

keeping all other parameters constant (see Fig. 2d and Extended Data Fig. 4).121

We showcase the potential of well-controlled quantum dot arrays to emulate Fermi-Hubbard122

physics by employing this newly developed toolbox for the realization of collective Coulomb123

blockade (CCB) physics, validating the results through direct numerical Fermi-Hubbard model124

calculations. Coulomb blockade (CB) is a purely classical effect that arises from the finite charg-125

ing energies of each individual quantum dot, where the charge excitations at half filling are gapped126

out, analogous to the Mott gap. When quantum tunneling effects between sites are turned on,127

however, a much richer phase diagram appears. The CB of individual dots is destroyed as the128

degeneracy of the peaks in the equilibrium charge addition spectrum is lifted and broadened into129

minibands, giving way to collective Coulomb blockade20 (see Fig. 3a and Extended Data Fig. 5130

for simulated data of a simplified model). As tunnel couplings continue to increase relative to local131

charging energies this gap will vanish in the thermodynamic limit, giving rise to a metallic state.132

The CCB physics is best described by the equilibrium electron addition spectrum as a function133

of filling and tunnel coupling, the two main experimental control parameters of the quantum dot134

array.135

The experimental phase diagram is mapped out by the independent control over electron fill-136

ing and tunnel coupling strength over as large a range as possible (Methods). It is constructed con-137
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tinuously by linear interpolation of gate values in between 3 to 12 calibrated points per miniband138

(Fig. 3b) where the on-site energies and tunnel couplings are well calibrated and the interaction139

energies measured (see Extended Data Fig. 6). At low tunnel coupling, the miniband has a finite140

width due to residual Vij . The main effect of increased nearest-neighbour tunnel coupling on the141

addition spectrum is a widening of the minibands at the expense of the collective gap at uniform142

filling, analogous to the reduction of the Mott gap with increasing tunnel coupling. Along with tun-143

nel coupling, also the inter-site Coulomb coupling Vij increases (see Extended Data Fig. 6). The144

gap between minibands continues to decrease with increasing tunnel coupling, but will be prohib-145

ited from closing completely by the charging energy of what has essentially become one large dot,146

a quantity inversely proportional to its large but finite total capacitance. The low and high tunnel147

coupling regimes are also clearly distinguished in transport measurements through the quantum148

dot array and in charge stability diagrams (see Extended Data Fig. 7). To test the validity of our149

approach, we perform numerical calculations of the addition spectrum within each band based on150

Eq. (1) and using experimental parameters that are either calibrated or measured (see Methods151

and Extended Data Table 1-2). The agreement between measurement and numerical calculation in152

Fig. 3b indeed validates the use of experimental tools for Hamiltonian engineering over the entire153

measured diagram.154

Putting these results in perspective, we are able to calibrate and characterize site-specific155

quantum dot parameters up to values of tunnel coupling reaching U/t = 7.1(4). The large en-156

ergy scales obtained compared to temperature, t/kBT = 54(5), give access to the regime where157

quantum correlations are strong1–3. Extending this work to larger quantum dot arrays, whether158
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for the purpose of analog quantum simulation or quantum computation, requires further automa-159

tion of our methods28, and extensions to parallelize the calibration routines. Scalable gate layouts160

for 1D arrays already exist29, which together with the programmable disorders in on-site ener-161

gies, can be mapped onto the physics of many-body localization30. Further advances in connec-162

tivity and homogeneity are underway in the pursuit of scalable quantum computing, including163

square31 and triangular32 geometries, industrial-grade fabrication processes and magnetically quiet164

28Si substrates33, that open up further possibilities for quantum simulation experiments with quan-165

tum dots.166
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Figure 1 | Gate-defined quantum dot array as a platform for quantum simulations of the251

Fermi-Hubbard model252

Electron micrograph of a sample nominally identical to the one used for the measurements. The253

bottom three circles indicate the triple dot array, whose Hamiltonian parameters derive from the254

local potential landscape controlled by the seven bottom-most gates (B1L to B3R). The top circle255

and arrow indicate the sensing dot channel, the radio-frequency reflectance of which is monitored256

to enable real-time charge sensing. Crossed squares indicate distinct Fermi reservoirs that are257

contacted using ohmic contacts. We describe a toolbox that allows for the control of the quantum258

dot array at the level of the microscopic Fermi-Hubbard model. In particular, it allows for the259

independent calibration of {µ′, δεi, tij} and the measurement of the Coulomb interaction terms260

{Vij, Ui}. Measurable observables for quantum dots include both local charge occupation and261

global charge transport as well as local spin degrees of freedom and nearest-neighbour singlet-262

triplet spin correlations (through spin-to-charge conversion protocols11, 16, 17).263
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Figure 2 | Hamiltonian engineering using a scalable toolbox of local control and measure-264

ments265

a Charge stability diagram showing uniform filling of the array of up to three electrons per dot in266

the vertical direction, using a combination of all seven gates (only P1 values are shown) that equally267

sweeps the local fillings ni while keeping the tunnel couplings between dots and to the reservoirs268

nominally identical. Lines correspond to charge transitions. b Theoretical charge stability diagram269

of a triple-quantum-dot system in the classical limit (t = 0) exchanging particles with a reservoir270

at U/kBT = 300, analogous to the measurement in a. c As we focus on relevant sections of the271

charge-stability diagram of the array, we calibrate all relative cross-capacitances of the seven-gate,272

three dot-system, allowing for deterministic changes in εi and subsequent measurement of on-site273

and inter-site Coulomb couplings. d Measurements of both tunnel couplings as a function of two274

linear combinations of gate voltages, V B12 and V B23, that keep either t23 or t12 (the full line de-275

notes the average value) as well as the three on-site energies εi constant whilst increasing t12 or276

t23, respectively (an exponential fit to α exp(V Bij/β) is shown). Individual tunnel coupling data277

points are taken at a rate of roughly 1 Hz and have typical fitting errors of several per cent (not278

shown). Text in brackets denote the dominant charge states in the many-body eigenstate.279

16



Figure 3 | Collective Coulomb blockade physics in the Fermi-Hubbard phase space280

a Schematic representation of the charge addition spectrum of a Mott insulator at half filling and281

a triple quantum dot array in Coulomb blockade (bottom) and those of a metallic phase at half282

filling and a triple quantum dot array in collective Coulomb blockade (top). b The experimen-283

tally accessible parameter space of the Fermi-Hubbard model for a triple quantum dot array as284

a function of electron filling and nearest-neighbour tunnel coupling. Continuous charge sensing285

measurements following the charging lines are shown, at calibrated gate values where the dots are286

filled homogeneously (only ε3 values are shown) and the tij’s are set to be roughly equal. Plotted287

spacings between the bands are set by the Coulomb interaction terms measured at small tunnel288

coupling. Red circles indicate extended Hubbard model calculations of the transitions. In the ver-289

tical direction, they are set using the same measured tavg = (t12 + t23)/2 as the experimental data.290

In the horizontal direction, the simulations start from measured interaction energies with ∼ 10 %291

errors (see Methods, Extended Data Fig. 6 and Extended Data Table 1-2). Text in brackets denotes292

electron filling.293
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Methods294

Materials and set-up The triple quantum dot sample was fabricated on a GaAs/Al0.25Ga0.75As295

heterostructure that was grown by molecular-beam epitaxy. The 85-nm-deep 2D electron gas has296

an electron density of 2.0 × 1011 cm−2 and 4 K mobility of 5.6 × 106 cm2V−1s−1. All sample297

structures were defined using electron-beam lithography, with metallic gates (Ti/Au) and ohmic298

contacts (Ni/AuGe/Ni) deposited on the bare wafer in a lift-off process using electron-beam evap-299

oration, similarly to the definition of metallic markers, leads and bonding pads, and with sample300

mesas defined using a diluted Piranha wet etch. The plunger gates were connected to bias-tees on301

the printed circuit board, allowing for fast sweeps and RF excitations to be applied in addition to302

DC voltages. RF reflectometry34 of the sensing dot channel conductance is done at 110.35 MHz303

employing a homebuilt LC circuit on the printed circuit board. The sample was cooled down in304

an Oxford Kelvinox 400HA dilution refrigerator to a base temperature of 45mK whilst applying305

positive bias voltages to all gates. With the sample cold and the dots formed through application306

of appropriate voltages to the metallic gates, read-out was performed by feeding the RF reflec-307

tometry circuit a roughly -99 dBm carrier wave, the reflected signal of which is amplified at 4 K308

and subsequently demodulated and measured using custom electronics. Using this technique on a309

sensing dot is preferred to forming a quantum point contact, and yields measurement bandwidths310

exceeding 1 MHz. The sensing dot position is asymmetric in order to obtain different sensitivities311

to each of the three dots. Note that as an alternative to electrostatically defined charge sensors in312

the 2DEG itself, dispersive read-out using the nanofabricated top gates would allow to measure313

how much charges move in response to gate voltage changes35. For more detailed methods please314
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see Baart et. al.16.315

Eliminating cross-talk through the definition of virtual gates Changes in εi can be tracked di-316

rectly by following transitions in the charge stability diagram and are found to depend linearly317

on gate values for voltage changes up to several tens of millivolts. In general, small changes in318

the energy offsets of each of the three dots will thus be achieved via a linear combination of voltage319

changes on each of the seven gates: δ
(
ε1
ε2
ε3

)
=
(
α11 α12 α13 α14 α15 α16 α17
α21 α22 α23 α24 α25 α26 α27
α31 α31 α33 α34 α35 α36 α37

)
δ ( P1 P2 P3 B1L B12 B23 B3R )T.320

Of these 21 matrix elements, the three αii’s describe the coupling of the plungers Pi to the energy321

offset εi of their respective dot i. The other 18 elements are cross-talks, whose values can eas-322

ily be related to the αii’s through the slope of charge addition lines (see Extended Data Fig. 1a).323

This leaves the relative weights of the αii’s and the absolute value of one of the elements to be324

determined. As the difference between the single-particle energies of two dots stays fixed along a325

polarization line, we can determine the relative weights from the slope of these lines (see Extended326

Data Fig. 1b). The absolute value of α22 can be found using photon-assisted tunneling measure-327

ments (see Extended Data Fig. 4). For the measurements presented in Fig. 3b, the matrix has been328

measured multiple times for different fillings and tunnel couplings: the ‘plunger’ side α11-α33 of329

the matrix was measured 25 times in total and the ‘barrier’ part α14-α37 12 times (see Extended330

Data Fig. 1c). In between these points, we used linear interpolation as function of measured tunnel331

coupling to extract matrix elements when needed.332

With all matrix elements known, the εi’s can be deterministically changed, a technique which is333

extensively used throughout the results presented here in two main ways, (1) by measuring Hamil-334
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tonian parameters through direct interpretation of features in the addition spectrum and (2) through335

the definition of ‘virtual gates’, both for plunger and barrier gates, that greatly simplify the tuning336

process. For instance, the virtual gate for the energy offset of the leftmost dot, ε1, is defined by337

a simple combination of plunger gates: δ
(
P1
P2
P3

)
=
(
α11 α12 α13
α21 α22 α23
α31 α32 α33

)−1 ( δε1
0
0

)
. To form virtual barrier338

gates we use δB12 → δV B12 = δ(P1, P2, P3, B12) with δ
(
P1
P2
P3

)
= −δB12

(
α11 α12 α13
α21 α22 α23
α31 α32 α33

)−1 ( α14
α24
α34

)
,339

which allows for making the barrier separating dots 1 and 2 more (or less) transparent without340

changing the energy offsets εi of any of the dots, which is to say, stay at the same location in the341

charge stability diagram. Linear combinations of this gate and its equivalent between dots 2 and 3342

yield the two orthogonal control gates for changing tij , as used in Fig. 2d.343

Classically coupled dots and homogeneous filling Isolated quantum dots are well described by a344

classical capacitance model36. This description is valid as long as tunnel coupling energies are neg-345

ligible compared to capacitive (Coulomb) effects. In this case, the charge states s of the system are346

simply described by the set of individual dot occupations (n1, n2, ..) as the ni’s are good quantum347

numbers. As has been shown previously9, one can map the classical capacitance model onto the348

extended Hubbard model of Eq. 1 with omission of its tunneling terms, which is readily diagonal-349

ized with eigenenergies E(n1, n2, ...) = −
∑

i εini +
∑

i

Ui
2
ni(ni − 1) +

∑
i,j 6=i Vijninj . Because350

we experimentally probe changes in the equilibrium charge state of the array coupled to adjacent351

electron reservoirs, typically kept at an equal and constant electrochemical potential µ and temper-352

ature kBT , we are interested in the charge addition spectrum ∂〈N〉
∂µ

, with 〈N〉 = kBT
∂ lnZ
∂µ

, Z =353

Tr{exp[−(H − µN)/kBT ]}, where N =
∑

i ni is the total electron number and Z is the grand354

partition function. In this classical case and at constant chemical potential µ = 0, the equations355
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for the charge addition spectrum ∂〈N〉
∂µ

= 〈N2〉−〈N〉2
kBT

simplify to simple Boltzmann-weighted sums356

over the charge states s, namely Z =
∑

s exp[−Es/kBT ] and 〈Nk〉 = 1
Z
∑

sN
k
s exp[−Es/kBT ].357

Note that for the purpose of finding the charge transitions, any spin-degeneracy of the charge states358

can be ignored. The charge stability measurements shown in the main text effectively show two-359

dimensional slices of the charge addition spectrum as a function of changes in the εi’s.360

The filling of the quantum dot array is controlled experimentally by changing the energy difference361

between the electronic states at the Fermi level of the reservoir and those of the dot array itself.362

The former can be done by applying a bias voltage to the relevant Fermi reservoir, the latter by363

applying voltages to top gates that influence the single-particle energies εi on the dots. Because364

the partition function is only sensitive to changes in H − µN , one can equivalently think about365

changes in the εi’s as influencing the chemical potential directly through δ(µN) = δ(
∑

i εini),366

which at uniform filling, simplifies to δµ = 〈δεi〉. This allows for a different look at the gate367

control over a quantum dot array with M sites. Instead of thinking about M different εi’s, we can368

define one global chemical potential term µ′ = 〈εi〉 and M − 1 energy differences δi = εi − µ′,369

where the latter describe the setting of some (controllable) disorder potential landscape at a fixed370

chemical potential µ′.371

In the case of a large and homogeneous system, changing all εi equally would uniformly and372

homogeneously fill all dots in the system. For the triple-quantum-dot sample described in the main373

text, however, both the finite size (e.g. only one of the three dots has two direct neighbours) and374

inhomogeneous interaction terms (e.g. U1 6= U2) mean a different approach is needed: we have to375
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link up a set of well-defined points in the (ε1, ε2, ε3)-space. In the case of Vij = 0, and focussing376

on the regime from 0 to 2 electrons per site, the only obvious choice would be to identify and align377

points A (where the eight charge states (000) to (111) are degenerate) and point B (where (111) to378

(222) are degenerate) (see Extended Data Fig. 2a). These points are lined up by changing the on-379

site single particle energies by ratio of their on-site repulsions εi = µ′Ui/〈U〉. Analogously, under380

finite Vij , we use the ratio of the sum of all locally relevant interaction energiesWi = Ui+
∑

j 6=i Vij381

as εi = µ′Wi/〈W 〉. Note, however, that the inter-site repulsion breaks particle-hole symmetry and382

moves states with more than one particle added to a homogeneously filled state to higher energy,383

meaning we can only find points with at most 4 degenerate states. We can align points C (where384

(000), (100), (010) and (001) are degenerate) and D (where (111), (211), (121) and (112) are385

degenerate) (see Extended Data Fig. 2b), or we can align points E (where (110), (101), (110) and386

(111) are degenerate) and F (where (221), (212), (221) and (222) are degenerate) (see Extended387

Data Fig. 2c), the two of which are particle-hole partners of the same total state.388

Defining a miniband as the region in chemical potential where one uniform filling transitions to389

the next one (the first miniband is thus the transition region between (000) and (111)), it becomes390

clear that the inter-site Coulomb terms already widen the miniband at zero tunnel coupling. On top391

of this, too large a deviation in the site-specific energy offsets εi’s from the desired values (which392

amounts to disorder in the dot energies) can also increase the miniband width. For changes in393

δε1 = −δε3, this can be seen in Fig. 2a. For changes in δε2, the width remains minimized as394

long as the δε2 remains in the window between two well-defined points denoted by the crosses and395

diamonds of Extended Data Fig. 2 (see also Extended Data Fig. 3).396
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Anti-crossing measurement and fit Much of the day-to-day work in quantum dot arrays in general397

and for the measurements described here in particular consists of the interpretation of features in398

the charge stability diagram. In the case of well isolated dots with localized electrons (t/U � 1)399

this essentially boils down to one-dot features (parallel lines) and two-dot features (anti-crossings400

and associated polarization lines). Indeed, pattern recognition of anti-crossings is the crucial step401

in the automated initial tuning of double quantum dots28.402

In general, the processing of a charge stability diagram (e.g. Fig. 2c) starts with finding charge403

transitions in the raw sensor dot data using an edge finding algorithm. The results are filtered to404

only leave edge sections with more than a threshold number of points. Next, we employ a k-means405

algorithm to cluster the edges into line sections. Depending on the data, manual input might406

be needed, either in the selection of relevant clusters or, sometimes, in the case of noisy data,407

manual selection of points. In determining on-site interaction terms Ui, calculating the orthogonal408

distance between two parallel lines suffices. In the case of an anti-crossing, we employ a 2D409

fitting routine in a rotated frame 2 ( yx ) = δ
(
εi+εj
εi−εj

)
= ( 1 1

−1 1 )
( αii αij
αji αjj

)
δ
(
Pi
Pj

)
, simultaneously410

fitting both branches in a least squares sense to y − y0 = ±
(
Vij/2 +

√
(x− x0)2 + t2ij

)
. Fitting411

parameters are three of the matrix elements (corresponding to the angles of the two dot lines and the412

polarization line), the two offsets x0 and y0 and the two energies Vij and tij . Both the procedures to413

find Ui and Vij are limited to t/U < 0.15, as around this value for the tunnel coupling there are no414

straight line sections in the charge addition diagram left where two well-defined localized charge415

states meet. Further discussion on this can be found with Extended Data Fig. 6.416
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Practical limits to achievable parameter space As can be seen in Fig. 3b, there are limits to the417

achievable parameter space in terms of electron filling and tunnel coupling for the device measured.418

This is mostly due to the gate layout, which was designed for spin qubit experiments at fillings419

around one electron per site and tunnel couplings up to several tens of µeV (red shaded area420

in Fig. 3b). The chosen lithographic separation between the dots does not allow for sufficient421

wavefunction overlap between singly-occupied sites to achieve much larger tunnel couplings. With422

multiple electrons per dot, however, the wavefunctions are more extended and much larger tunnel423

couplings are possible. Here, practical difficulties in compensating for cross-talk make it hard to424

reach very small tunnel couplings.425

Verification through Fermi-Hubbard calculations: measuring miniband width We perform426

numerical simulations with two levels of detail. Extended Data Fig. 5 shows the collective427

Coulomb blockade transition in a simplified model to illustrate the main concepts. Results from a428

more detailed simulation are overlaid with the experimental data in Fig. 3b. We here elaborate on429

these two approaches.430

In the simplified model calculation, we ignored the inter-site Coulomb interactions Vijninj , which431

will split the peaks in the addition spectrum even at zero tunnel coupling, as discussed above. It is432

included in the detailed model. Because it is difficult to experimentally fix the absolute chemical433

potential over large areas of the parameter space due to nonlinearities in the gating effects, the ad-434

dition spectrum in Fig. 3b was constructed by plotting the middle transition within each miniband435

as a straight line at fixed ε3, and measuring the chemical potentials of adjacent transitions with436
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respect to those. As we can see from Extended Data Fig. 5b, such an approximation is justified at437

small t/U(< 0.15), although it neglects any change in the interaction terms with increasing tunnel438

coupling. Furthermore, since the interaction parameters are non-constant over the experimental439

phase space (Extended Data Fig. 6), the detailed simulations take this into account. Finally, as440

also discussed above, it requires an inhomogeneous change in the site-specific energy offsets to441

homogeneously fill the array. In order to allow direct comparison to the experiment, we thus have442

to take the correct
(
ε1
ε2
ε3

)
line to describe the filling (horizontal axis of Fig. 3b). Note that because443

of the non-constant interaction energies, this vector will generally differ with miniband number444

and tunnel coupling.445

In order to find the correct filling vector and subsequently the position of the transitions, we use446

the following procedure for each data set at a particular tunnel coupling and miniband number: (i)447

When the system has N = 3n electrons, its ground state is tuned to be the (n, n, n) state. (ii) The448

two critical points (both for n and n′ = n + 1) at which the four states (n, n, n), (n ± 1, n, n),449

(n, n ± 1, n), and (n, n, n ± 1) are degenerate are identified. (iii) Linking these points in the450

three-dimensional parameter space spanned by (ε1, ε2, ε3) yields the filling line δ
(
ε1
ε2
ε3

)
. (iv) The451

three charge transitions of the miniband are subsequently found to lie somewhere on this line. (v)452

This procedure yields a fixed width of the miniband, but leaves one degree of freedom unspecified,453

which is the relative position of the middle dot detuning relative to the outer dots, addressed in the454

next paragraph.455

We illustrate this procedure for the data with the second largest tunnel couplings in the fourth456
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miniband in Fig. 3b in the main text, for which the following set of quantum dot parameters457

applies: t = 0.29, U1 = 2.26, U2 = 2.70, U3 = 2.48, V12 = 0.65, V23 = 0.57, V13 = 0.43458

(all in meV). First of all, it is helpful to show the ‘uniform’ chemical potential µ that correspond459

to the specific εi’s (a ‘global’ chemical potential µ can be regained through µ = 1
N

∑
i εini.).460

Such a comparison is shown in Extended Data Table 1. We can see that in the three-dimensional461

parameter space the filling vector defined by δ
(
ε1
ε2
ε3

)
can be very different from the one defined462

by δ
(
µ
µ
µ

)
. This shows that the distinction is important, and a simple simulation with a uniform463

chemical potential as in Extended Data Fig. 5b will not compare well with the experiment. Second,464

note that the simulations are done for the specific middle dot detuning denoted by the asterisk in465

Extended Data Fig. 2b and Extended Data Fig. 3b, whereas the experimental detuning will be in466

between that situation and the detuning denoted by the diamond in the same figures. This means467

that although the total width of the miniband will be fixed, the relative position of the middle468

transition between the outer transitions of each miniband (which we denote α and which will be469

close to 0.5) depends on the specific middle dot detuning. To overlay the simulation results on the470

experimental data, we used values of α = (0.5, 0.6, 0.65, 0.6) for the four minibands, respectively.471

Finally, Extended Data Table 2 gives an overview for the width of the fourth miniband at different472

tunnel couplings, as Fig. 3b in the main text only plots the data along the ε3 direction. It can be473

seen that the theory compares well with the experiment along all three directions, which further474

corroborates the consistency of our measurements.475

Data availability statement Source data for both main text and Extended Data figures are provided476

with the paper. Raw data and analysis files supporting the findings of this study38 are available from477
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Extended Data Figure 1 | Gate-to-dot cross-talk491

a Cross-talk measurement of gates P1 and B12 on the left dot detuning. The slope of the charge492

transition (fit in white) yields the relative effect (δB12/δP1 = −α11/α14) of the two gates on the493

single-particle energy offset ε1 of the leftmost dot. Note also the nonzero background in charge494

sensor response we find in experiments, which is due to a direct coupling between the swept gate495

voltages and the sensing dot conductivity. b Charge stability diagram showing the anti-crossing496

(white) and polarization line (red) between the left and middle dot, yielding the relative effect497

α11 = α21 + (δP2/δP1)(α22 − α12) of the two plungers on their respective dots. Automated edge498

finding and fitting procedures are outlined in Methods. c Measured matrix elements αij/α22 as a499

function of tunnel coupling. No visual distinction is made between the measured matrix elements500

at different electron filling. No error bars are shown, as the small uncertainty in the slope fits yields501

errors smaller than marker size.502
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Extended Data Figure 2 | Simulated classical charge addition spectra503

a-c Simulated charge addition spectra (see Methods) for a triple quantum dot at zero tunnel cou-504

pling, U2 = 1.05U1 = 0.95U3 and up to two particles per dot, connected to a reservoir at µ = 0505

and kBT = 0.02U (>10 times larger than for the experiments described in the main text), with506

Vij = 0 and δi = 0 (a) or with V12 = V12 = 2V13 = 0.2U and δi = 0 (b) or δ1 = δ3 = 0 and507

δ2 = U/15 (c). States are denoted by charge occupation (n1n2n3) and specific degeneracy points508

A-F are referred to in Methods. The relation between εi and µ′ specified in the bottom left boxes509

applies to the vertical line at zero (horizontal) detuning.510
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Extended Data Figure 3 | Miniband width and electron temperature511

a Measured charge stability diagrams of the 222-333 miniband as a function of homogeneous fill-512

ing (only P1 values are shown) and offset in the outer two dot energies by changing P1 and P3513

in opposite directions, akin to the simulations of Extended Data Fig. 2c. b Similar measurement514

as a function of the offset in the middle dot energy, controlled by P2. The P1 values are some-515

what different from a because these measurements were taken at slightly different tunnel coupling516

tunings. The white diamond and asterisk indicate (roughly) the position of the same degeneracy517

points as shown in Extended Data Fig. 2. c Broadening of a charge addition line due to the finite518

temperature of the (rightmost) Fermi reservoir. A Fermi-Dirac fit of the transition is shown in red,519

which yields an effective reservoir temperature of 72(1) mK.520
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Extended Data Figure 4 | Determining lever arm and tunnel coupling521

a Example of a photon assisted tunneling (PAT) measurement, which at low tunnel couplings is the522

measurement method of choice for both lever arm and tunnel coupling. Plotted is the difference in523

charge sensor response between applying a microwave excitation or not as a function of detuning.524

Dashed red line is a fit to the hybridized charge state spectrum of the double dot24. The energy525

difference between bonding and anti bonding states yields the minimum in frequency (2t) and the526

slope away from the transition gives the lever arm between detuning voltages applied to the gates527

and single-particle energy difference change between the two dots. The need to generate AC exci-528

tations and transmit them without significant losses through coaxial cables in the fridge, however,529

limits the maximum tunnel frequency we can accurately determine with this method to roughly530

20 GHz (83 µeV). b Example of a polarization line width measurement, with fit in red. As an al-531

ternative to PAT, one can determine the tunnel coupling by assessing the width of the polarization532

line 37. The excess charge (say on the left dot) transition is broadened both by an effective electron533

temperature and by the tunnel coupling. Charge sensor response is however not a direct measure-534

ment of excess charge. Not only does there exist a finite cross-talk between the gate voltages and535

the charge sensor response that leads to a finite slope away from the transition, we also typically536

find a back-effect of the excess charge on the sensing dot, leading to a different slope on either side537

of the transition. We fit the data with the following equation, taking this back-effect into account538

to first order in excess charge: V (ε) = V0 + δV Q(ε) +
[
δV
δε
|Q=0 +

(
δV
δε
|Q=1 − δV

δε
|Q=0

)
Q(ε)

]
ε,539

where V (ε) is the charge sensor response as a function of the detuning ε = δ(εi− εj) away from to540

the transition and V0, δV and δV
δε

are the background signal, sensitivity and gate-sensor coupling,541
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respectively. Note that ε is a linear combination of the swept gate voltages, taking the relevant542

cross-capacitances and the lever arm into account. Excess charge on the left dot is described by543

Q(ε) = 1
2

(
1 + ε

Ω
tanh

(
Ω

2kBTe

))
, with Ω =

√
ε2 + 4t2ij and effective temperature kBTe ≈ 6.5 µeV544

(1.6 GHz). c Excess charge as function of detuning for three different tunnel couplings, showing545

that this characterization method works up to significantly larger tunnel couplings than PAT. d546

Comparison of PAT and polarization line width measurements. The data is well explained by as-547

suming a constant lever arm α22 = 83(1) µeV/mV between gate P2 and the middle dot. Text in548

brackets denote relevant charge states, error bars are 1σ fit uncertainties.549
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Extended Data Figure 5 | Simulations of collective Coulomb blockade for the simplified550

Hubbard model551

a Cartoon diagram of a triple dot system, which is a simplified version of the model used to de-552

scribe the experiments in the main text. Specifically, we have set a uniform tunnel coupling t and553

Hubbard U , while ignoring the inter-site Coulomb interaction term Vij . We describe two levels per554

dot with a level splitting ∆ that separates the single-particle energies of the first and second orbital.555

Each energy level is doubly degenerate due to the spin degrees of freedom. b Peaks in the electron556

addition spectrum for the triple dot system in a. It is known that the classical Coulomb blockade557

effect arises purely from the charging effects of the quantum dots. When electron tunneling be-558

tween quantum dots is allowed, however, quantum fluctuations compete with the classical charging559

effects and give rise to a rich phase diagram, which is known as collective Coulomb blockade20.560

The metal-insulator transition in such a system is best captured by the charge addition spectrum,561

which is precisely what we measure in the experiment (Fig. 3b in the main text). The numbers in562

b indicate the average electron numbers in the system when the chemical potential resides at the563

respective gap. Here we use ∆/U = 0.2, and kBT/U = 0.04 (>20 times larger than for the experi-564

ments described in the main text). c-f Line cuts for the addition spectrum in b at different values of565

t/U . As we discussed in the main text, there will be three different regimes in this phase diagram:566

at weak tunnel couplings the quantum dot states split into minibands but the isolated Coulomb567

blockade of each individual dot is preserved; at intermediate tunnel couplings the Coulomb block-568

ade of individual dots is lost, but the gap between minibands remains open; finally, in the large569

tunnel coupling limit the gap between minibands can become comparable to temperature, and the570
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system will be in a metallic state. The same can be seen in these line cuts. At t = 0 we can see that571

there are four critical chemical potentials µ at which electrons can be added to the triple dot. For572

the present model, these four peaks occur at µ = 0, U , 2U + ∆, and 3U + ∆, respectively. Each573

peak is triply degenerate, as the energy cost to add electrons to any of the three dots is identical.574

For nonzero but small tunnel couplings (d-e) each triply degenerate peak at t = 0 starts to split575

into a miniband, indicating the breakdown of Coulomb blockade in each dot. However, different576

minibands are still separated by gaps that arise from a collective origin, reminiscent of the energy577

gap in a Mott insulator. Finally, at sufficiently high tunnel couplings we find nonzero ∂〈N〉
∂µ

at the578

middle gap (f), indicating that Coulomb blockade is overwhelmed by temperature altogether.579
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Extended Data Figure 6 | Characterizing model parameters580

a Simulated charge stability diagram for a triple dot system with parameters t = 0.006, U1 =581

3.98, U2 = 3.48, U3 = 2.70, V12 = 0.41, V23 = 0.35, V13 = 0.11 (all energies in meV). As582

described in Methods, the eigenstates can be obtained exactly in the t = 0 limit, as the eigenstates583

of the triple dot system can be represented simply by the charge states (n1n2n3). In this regime,584

one can show that on the ε2-ε3 plane the border between the (111)/(112) region and the border585

between the (111)/(110) region are exactly separated by an energy of U3. Similarly, the border586

between the (111)/(121) region and the border between the (111)/(101) region are separated by587

an energy of U2. In the presence of a nonzero but small tunnel coupling as is the case here, we588

expect that such an estimate is still reasonable. Now that the tunnel coupling is nonzero, the ground589

state of the system is no longer an exact charge state (n1n2n3), but generally a superposition of590

different charge states. To retain a connection to the t = 0 limit, we keep labeling sections of the591

charge stability as (n1n2n3), but with the distinction in mind that (n1n2n3) no longer denotes the592

exact ground state, but instead the charge state with the largest weight in the actual ground state.593

As a check, we can determine the values of U2 and U3 from the simulated charge stability diagram594

using the method described above and find that U2 = 3.44 meV and U3 = 2.71 meV, respectively,595

which is reasonably close to the corresponding model parameters. Since the data in Fig. 2c is596

taken at t/U = 0.002, we can thus trust the extracted U . b Charge stability diagram for a triple597

dot system with parameters t = 0.17, U1 = 2.92, U2 = 2.39, U3 = 2.53, V12 = 0.55, V23 =598

0.47, V13 = 0.27 (all energies in meV). We find that the structure of the charge stability diagram599

remains qualitatively the same as that in a, and if we again extract the values of U2 and U3 using the600
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same method, we find that U2 = 2.48 meV and U3 = 2.56 meV, which still agrees reasonably well601

with the original model parameters. Granted, at sufficiently large t/U the structure of the charge602

stability diagram will change drastically, and the present method to extract model parameters is603

bound to fail. However, as we never enter those regimes, our fitting method serves the purpose604

of this experiment. c-e Calibrated tunnel couplings (c) and measured inter-site Coulomb (d) and605

on-site Coulomb (e) terms at calibrated values of the average tunnel coupling, corresponding to606

the experimental parameter space plot shown in Fig. 3b of the main text. Blue fill indicates data607

from the first subband from 0 to 6 electrons, red fill data from the second subband from 6 to 12608

electrons. Error bars are 1σ fit uncertainties.609
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Extended Data Figure 7 | Isolated versus collective Coulomb blockade in charge and trans-610

port611

a (c) Charge stability diagram around the (333) regime in the low (high) tunnel coupling regime,612

using a combination of all seven gates (only P1 values are shown) that change the local fillings613

equally. To further investigate the distinct phases, we focus on the regime with around nine elec-614

trons in total, corresponding to half-filling of the second band, and look at both charge sensing and615

transport. In the localized phase (t/U < 0.02 in a), the charge stability diagram shows transition616

lines following three distinct, well-defined directions, corresponding to the filling of the separate617

lithographically defined dots. In the delocalized phase (t/U > 0.15 in c), this distinct nature is618

all but lost, highlighting the incipient formation of a large single dot. The same effect can also619

be seen in transport measurements, as we observe Coulomb diamond sizes as a function of fill-620

ing. b Transport through the array following the zero-detuning line of Fig. 2b of the main text621

as a function of applied bias (60% on leftmost and 40% on bottom right reservoir). In the (333)622

state, this applied bias has to overcome the local (strong) Coulomb repulsion in order for current623

to flow, similar to a Mott insulator whose Fermi energy resides inside the gap. Adjacent Coulomb624

diamonds correspond to a Fermi-level inside the miniband and are significantly smaller, allowing625

current to flow at much smaller bias voltages. d Similar data in the high tunnel coupling regime.626

Whereas the individual nature of the dots is all but gone, global (weaker) Coulomb repulsion still627

prohibits transport at small bias, as expected for the collective Coulomb blockade phase. The no-628

tion of a large gap at half-filling is gone, and it is but the charging energy of the entire system that629

prohibits transport to occur, regardless of filling. The dots are in collective Coulomb blockade, and630
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its transport characteristics are similar to that of a small, metallic island.631
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Extended Data Table 1 | Example of simulated transition points632

Transition points for a triple dot system with parameters t = 0.29, U1 = 2.26, U2 = 2.70, U3 =633

2.48, V12 = 0.65, V23 = 0.57, V13 = 0.43 (all in meV). The label N1 → N2 indicates that this634

data is for the transition from a total of N1 particles to N2 particles. εi (i = 1, 2, 3) are the ‘local’635

chemical potentials on each dot, while µ is the ‘uniform’ chemical potential. The last two columns636

compare the experimental and theoretical total width of the fourth miniband. All energies are in637

meV.638
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Extended Data Table 2 | Comparison of experimental and theoretical miniband width639

Comparison of the experimental and theoretical width of the fourth miniband in Fig. 3b in the640

main text at five calibrated values of the tunnel coupling. Theoretical widths take the interaction641

energies measured at the specific tunnel coupling values into account (see Extended Data Fig. 6).642

All energies are in meV.643
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