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Preface

This report is written as part of my master’s degree in Sustainable Energy Technology at Delft University
of Technology. I carried out this research project in collaboration with Northpool, a company active on the
European energy market. This report describes the work done on the development of a novel machine learning
based solar PV power forecasting framework. Increasingly more accurate solar PV power forecast support the
continues large scale adoption of solar PV in our energy mix and I sincerely hope the results of this project
supports the steps to be taken in that direction.

At the start of this project I was already extremely interested in renewable energy and learning about it for
several years, however my knowledge on machine learning was close to none. In the course of this project I
learned a lot about, and especially experimented a lot with, machine learning. For me this has been the most
valuable part of this research project, as I have been inspired by the vast possibilities of artificial intelligence. I
am certain that following this project I will keep on expanding my knowledge on machine learning and find new
and interesting applications for it in relation to renewable energy technologies. I hope that while reading this
report you will get as inspired about solar PV power, energy markets and artificial intelligence as I am now.

I would like to thank my TU Delft supervisors Sukanta Basu and Remco Verzijlbergh for their support, advice
and discussions throughout my thesis project. I also would like to thank Hesan Ziar from the PVDM group for
his support in evaluating the results presented in this report. Moreover, I am very grateful for the opportunities
that Northpool provided to me throughout my masters, with many interesting projects related to the energy
market and now also solar PV power forecasting. I am certain this sparked an everlasting personal interest in
the relation between renewable energy and their impact on the energy markets. Finally, I especially want to
thank Stefan de Weger for his supervision, ideas and interesting discussions throughout my thesis project.

G. van Ouwerkerk
The Hague, May 2021
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Summary

With the growing global drive to act up on climate change, the adoption of renewable energy sources such
as solar photovoltaic (PV) and wind is continuously increasing. This crucial shift poses many economic and
environmental benefits, however the variability in solar PV generation may also threaten the stability of our
grid and energy supply. The reliable prediction of this fluctuating power resource on various time scales has
been identified as a crucial technology for the continuous massive adoption of solar PV and the next-generation
energy system. Moreover, a knowledge gab has been identified with respect to the application of satellite images
for solar PV power forecast in a straightforward, yet accurate way. To this end, the research objective of this
project was to investigate and leverage on the recent developments in the field of deep learning, with respect to
convolutional neural networks (CNN) and Long Short Term Memory (LSTM), in order to propose new models
for deterministic intra-day solar PV power forecasting.

The study focuses on direct solar PV power prediction models with a forecast horizon of 3 hours and an interval
of 15-minutes, to be applied in Germany. Additionally, the models are designed to be applicable in a real-
time operational setting with a short forecast lag, which required for energy market trading purposes. The
methodology followed consists of the development of two individual forecast models: (1) A LSTM network
that leverages on the latest solar PV generation data and a NWP based day-ahead power forecast, and (2) a
CNN-LSTM network designed to utilize the latest satellite images and a NWP based day-ahead power forecast.
The difference in input feature selection results in a forecast lag of maximum 60-minutes for model 1 and only
5-minutes for model 2.

The accuracy of the two proposed forecast models are evaluated using one year of solar PV power generation
data in Germany (January 2020 through December 2020), and are compared to a persistence model and a NWP
based day-ahead and intra-day power forecast provided by the German transmission system operators (TSOs).
The results show that the two proposed models perform equal or better than the benchmark models, obtaining
a Mean Absolute Error (MAE) of 316 MW for model 1 and 547 MW for model 2, compared to 1333 MW, 672
MW and 588 MW for the benchmark persistence, day-ahead and intra-day model, respectively. This showcases
the potential of deep learning models for short-term solar PV power forecasting, in the first place based on the
latest actual solar PV generation and alternatively based on satellite images. In particular, this study shows the
potential of satellite images in being a valuable proxy for the latest actual solar PV generation and subsequent
power predictions; especially when there is no real-time actual generation data available. It is also found that
the two deep learning models outperform the benchmark model accuracy most significantly around the peak of
solar generation and less during the daily ramp up of solar PV power output. This result stresses the weakness of
statistical models in its dependence on complex input-output mapping, and hence its reliance on representative
past input data. Moreover, it is found that the statistical deep learning models outperform the NWP based
intra-day benchmark forecast up to a forecast horizon of 2-3 hours. Finally, an extensive analysis, including
several case studies, show that both proposed models experience prediction accuracy dependency on weather
conditions. The lowest accuracy occurs under conditions featuring strong spatial and temporal variation in the
cloud cover, such as with broken cloud cover or under convective cloud formation. It is also shown that this
effect is stronger, resulting in a lower overall prediction accuracy, for a regional forecast compared to a country-
aggregated forecast. This outcome is explained by the averaging effect of local inaccuracies in aggregated
forecasts.

In light of the encouraging results observed in this research project, it is concluded that the proposed deep
learning models 1 and 2 are a powerful tool for short-term solar PV power forecasting. Although, taking
into considerations its limitations under certain weather conditions, input feature dependence, forecast delay,
forecast horizon and the black-box characteristic of deep learning models; it seems apparent that deep learning
based solar PV power forecasting models are rather an addition to a comprehensive forecast toolbox than a
replacement. Future research recommendations to further improve the proposed forecast models or to pursue
different strategies include: the investigation of convLSTM architectures, the use of different satellite derived
data products, the further tuning of model hyperparameters and input data pre-processing, and the development
of statistical-physical hybrid models using the CNN-LSTM architecture of model 2.
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Chapter 1: Introduction

The renewable energy sector has shown remarkable strength in 2020, despite the Covid-19 pandemic negatively
impacting many industries and everybody’s life in numerous ways. The demand for power from renewable
energy sources (RES) has increased notably in the European Union (EU) over the past year, with a leading
role for solar photovoltaics (PV) and wind energy technologies [1]. Despite a slowdown of new additions in the
first half of 2020, due to lock-downs and global supply chain disruptions, the installation pace accelerated over
the second half driven by a push for a ‘green’ and sustainable economic recovery [1]. The installed solar PV
capacity grew by 18.2 GW in 2020, which is an 11% improvement over 2019 and marking the second-best year
ever in the EU solar history [2]. Germany alone already installed 4.8 GW in 2020, again marking its place as
the largest solar market in Europe [2].

Due to the broadening acknowledgment of the benefits of solar PV, market analysis suggest that in the next
4 year the the European solar sector will see continued expansion. Figure 1.1 shows the expected growth in
installed solar PV capacity in Europe for several scenarios, as projected by SolarPower Europe [2]. In a positive
scenario the installed capacity could more than doubled by 2024, with 292.8 GW installed across Europe. The
same scenario projects a PV capacity growth of 32.2 GW in Germany by 2024, which is a significant increase
over the total installed capacity of 57.5 GW in December 2020 [2]. The numerous positive developments leading
to this optimistic outlook, such as improving cost leadership and government support policies, will most likely
continue to reshape Europe’s energy markets.

Figure 1.1: EU27 cumulative installed solar PV capacity, scenarios for 2021-2024 [2].

The continued adoption of solar PV generation poses many environmental and economic benefits, however the
variability in its power output may also threaten the stability of the grid and our electricity supply [3]. A
number of challenges remain for the continued efficient and reliable integration of solar PV. One of those key
challenges will be the development of practices and tools that can mitigate the variability and uncertainty of
solar power generation [4]. In short, these variations are related to ever-changing meteorological states and
cloud formations [5]. The short-term power uncertainty can be handled with a range of solutions, such as
the balancing of power between allocation areas, demand-side response, and the deployment of various energy
storage solutions. Yet, one of the most economical and efficient solutions is the employment of forecasts for the
expected solar PV power generation [6]. Hence, the ability to more accurately forecast the power produced by
solar PV systems on various timescales has been identified as one of the main steps to overcome for continued
massive solar PV adoption in the grid [6].
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Solar PV power forecast are used by a variety of participants in the electricity market. Grid operators use
forecast to continuously balance the energy supply and demand in real time. Asset owners and PV systems
operators use the forecast to schedule generation and balance positions during the day to manages changes in
earlier predicted power output. On sunny days, solar PV generation can temporarily supply up to 50% of the
electricity demand in Germany, which is an amount that can strongly impact market prices [7]. As a result,
also energy traders are actively making use of solar power forecast to take up positions in the energy market.

The field of solar PV power forecast involves a variety of methods, mainly based on requirements regarding the
spatial domain, the time horizon, the availability of data and user application. These methods include numerical
weather prediction models (NWP), satellite imagery, sky imagers, statistical learning methods and ensemble
techniques which blend various aspects of different methods [4]. In general, for forecast with longer horizons
the chance and magnitude of forecast errors increases. In contrast, very short-term forecasts are negatively
influenced by unexpected natural events, such as convective clouds [8]. As such, a wide range of techniques
and model variants have been proposed in literature depending on the forecast task, with each having its own
strengths and weaknesses. Intra-day solar PV power forecast cover a temporal horizon of 1 to 6 hours, these
forecasts are mainly used by participant on the intra-day electricity market and employ statistical learning
methods, satellite imagery and NWP models [9].

In recent years the field of solar PV power forecasts based on statistical learning methods have seen an increased
use of machine learning, a modeling method that relies on artificial intelligence (AI) to learn from experience
with data in order to perform certain tasks [8]. Machine learning models can interpret highly non-linear relations
and features in data, without any preordained physical equations. Hence, this minimizes the effort needed to
manually engineer features in a model, such as physical relations between irradiance and solar power output, or
statistical relations between past observations and future predictions. Furthermore, the development of simple
yet powerful front-end programming packages have significantly improved the access to realm of deep learning
models for practitioners in many fields.

As the development of precise forecast remains challenging, current research and industries are continuously
investigating established methods, ensemble techniques and newly available approaches such as machine learning
[8]. To the best of our knowledge, the current statistical and machine learning methods proposed have considered
measurements on solar PV power output, NWP model irradiance data and other atmospheric parameters as
model inputs. While these input variables are a highly sensible selection to build time series models for solar PV
power forecasting, they lack direct information on the most recent cloud development, which is the main factor
influencing solar irradiance at the Earth’s surface [10]. A forecasting techniques based on satellite images in
combination with cloud motion vectors aims to tackle this information gap. However, this is a highly complex
forecasting technique that is not easily deployed and involves numerous processing steps [10]. This presents
a knowledge gab on the application of satellite images for solar PV power forecast in a straightforward, yet
accurate way.

To address the continuous need for accurate solar PV power prediction methods and bridge the current knowl-
edge gab with respect to the use of satellite image data for solar PV power forecasting, this project has the
following research objective: investigate and leverage on the recent developments in the field of deep learning,
with respect to convolutional neural networks (CNN) and Long Short Term Memory (LSTM), to process real-
time satellite images and solar PV power generation data, in order to make accurate deterministic intra-day
solar PV power forecasts. This study concentrates on the proposal of two forecasting frameworks that can be
applied in a real-time operational setting and generate an aggregated solar PV power forecast over Germany on
a 15-minute interval and with a forecast horizon of 3 hours. The performance of the novel forecast frameworks
are compared to local energy market standard solar PV power forecasts and a persistence model based forecast.

In chapter 2 of this report, an literature review is provided on the main approaches to solar PV power fore-
casting. An introduction in machine learning techniques and a discussion on several required consideration
in deep learning model setup is presented in chapter 3. In chapter 4 the data pre-processing techniques and
the frameworks of the two proposed solar PV power forecasting frameworks are outlined. The overall model
performance result and several forecast case studies for Germany are discussed and compared to the benchmark
models in chapter 5. Finally, in chapter 6, the report is concluded and recommendations are given on further
development and future research.
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Chapter 2: Solar PV power forecasting techniques

In this chapter an overview of solar PV power forecasting is presented. It aims to provide the reader with
the necessary background needed to understand the terminology and forecasting concepts considered in this
research. First, in section 2.1, the two main classes of forecasting techniques are introduced. Next, in section 2.2,
a further explanation is given on sky and satellite imagery based models. In section 2.3 the spatio-temporal
aspects of solar PV power forecasting are discussed. Finally, in section 2.4, the relation between energy market
characteristics and solar PV power forecasts is discussed.

2.1 Forecast techniques

Many types of solar irradiance and subsequently solar PV power forecasting models have been developed [9].
These models can be divided in two main groups based on the used approach. The first technique consists of
using physical equations to model the power to be produced by PV systems. In this method most efforts are
committed to obtain accurate irradiance forecasts, as this is the main factor influencing the power generation
[8]. This approach is known as physical or ‘white box’ method. In contrast, the second approach is based
on directly forecasting PV power output using statistical or machine learning methods. These schemes are
sometimes called direct or ‘black box’ methods, as it is not required to manually engineer preordained physical
equations in the forecast model. Additionally, an ensemble of both approaches can be used in an effort to
incorporate the positive aspects of one and the other. These are often denoted as hybrid models or ‘grey box’
models, not to be mistaken with an hybrid of several statistical or machine learning methods.

2.1.1 Physical models

Most of the efforts of a physical solar forecasting method is made in the prediction of solar irradiance and
additional meteorological parameters, such as atmospheric temperature, humidity, wind velocity, barometric
pressure and aerosol changes [8]. All these parameters are dependent on geographical locations and climatic
conditions. Solar irradiance correlates the strongest with PV power output compared to other meteorological
parameters [8]. As an indication of the dependencies of several parameters, table 2.1 lists the correlation
coefficient between solar PV power output and meteorological factors found in a correlation analysis at a
PV power plant site in Ashland, USA [11]. By implementing many relevant input variables that show a high
correlation for the specific local weather conditions, the performance of a physical solar forecasting method can be
enhanced. However, trying to impose every single input vector on a model is not a feasible nor computationally
efficient task [11]. Hence, one of the challenges of designing a good physical model lies in the selection of an
optimum number of input variables that are highly correlated with solar PV power.

Table 2.1: The correlation between meteorological parameters and solar PV power output at a site in the USA [11].

Meteorological factor Correlation coefficient
Solar irradiance 0.9840
Air temperature 0.7615
Cloud type -0.4847
Dew point 0.6386
Relative humidity -0.4918
Precipitable water 0.3409
Wind direction 0.1263
Wind speed 0.1970
Air pressure 0.0815

Predictions of meteorological parameters are obtained from NWP models. These models forecast the temporal
development of the state of the atmosphere using a set of coupled partial differential equations which represent
the physical laws determining the weather [10]. Global NWP models are initialized using a set of conditions
obtained from worldwide observations, after which the future state of the atmosphere is modeled per time
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step [10]. Examples of global NWP models are the European Centre for Medium-Range Weather Forecasts
(ECMWF) and the Global Forecast System (GFS). These models can forecast the state of the atmosphere more
than 15-days ahead, but have a coarse resolution in the range of 9-50 km [12] [13]. In order to tune NWP
models for more local climate effects and a higher spatial and temporal resolution, global models are scaled
down to mesoscale or regional models, often run by national weather services or companies [10]. An example of
a regional NWP model covering Germany is the Deutscher Wetterdienst (DWD) ICON-D2 model, which has a
spatial resolution of 2.2 km and in the vertical defines 65 atmosphere levels. The ICON-D2 model is operated
for a relative short forecast horizons of 27 hours (45 hours only for 03 UTC run) and update frequency of 3
hours.

When the technical specifications of a solar PV power plants are known, together with the irradiance forecast and
other meteorological parameters from NWP models, a local or regional power forecast can be made as visualized
in fig. 2.1. As such, the physical conversion of input parameters into power output is strictly speaking not the
forecasting technique on its own. The main forecasting effort lies in the prediction of relevant meteorological
parameters in a NWP model. This characteristic gives rise to the main advantage and disadvantage of a physical
forecasting model. The major advantage of a physical model over a statistical model is that for local forecast
there is not necessary the need for historic data [14]. Although, strictly speaking historic data is often used
for statistical post-processing of NWP data to corrected for systematic biases, called Model Output Statistics
(MOS). With solar PV plant technical specifications and NWP data a power forecast can be made, even before
plant construction. On the contrary, the high dependency on the input parameters obtained from NWP models
is also the main disadvantage. The errors in NWP model parameters persisting in the power forecast, together
with inadequate temporal and spatial resolution of NWP for local solar PV systems, are considered to be the
lead source of inaccuracy for this approach [9]. An other method to derive irradiance predictions is with the
use of satellite images as also visualized in fig. 2.1. This method is also classified as a physical forecast and
described in further detail in section 2.2.

Figure 2.1: Illustration of a general physical solar PV power forecasting scheme.

2.1.2 Statistical models

Statistical models aim to forecast solar PV power output directly using conventional statistical or new-generation
machine learning methods. This is a data-driven approach which tries to extract relations in past observations,
for example irradiance or solar PV power output observations, in order to forecast the future power output of
a solar PV power plant. In these models it is not required to manually engineer preordained physical equations
in the forecast and does not necessarily require site specific system information. For this approach the quantity
and quality of historic datasets is essential for the development of an accurate model [9]. Historical datasets
can be obtained from meteorological and power measurements, and from archived NWP forecasts. Similar to
a physical model, a challenge of a statistical model design lies in the selection of appropriate and an optimal
number of input parameters which yield the best results, while at the same time balances the trade-off between
accuracy and complexity. Contrary to physical models, not only meteorological parameters can be available,
but also measurements of PV system power output, current, module temperature and other parameters. Data
obtained from time series records of PV power plant output are called endogenous inputs, and meteorological
parameter data obtained from measurements or NWP models are known as exogenous inputs.

Statistical techniques can be divided in two main groups: time series based models (often linear) and machine
learning models (often non-linear). In time series based models a statistical approach is used to map relations
between input variables, the predictors, and the variable to be predicted. The general idea is that by evaluation
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patterns in past time series based data, and represent this in a mathematical expression, a prediction of future
values can be made. Some well established and applied techniques include: exponential weighted moving aver-
age (EWMA), auto-regressive moving average (ARMA), auto-regressive integrated moving average (ARIMA)
and seasonal auto-regressive integrated moving average (SARIMA) [8]. Models where additional predictions
of exogenous variables are introduced include: auto-regressive exogenous (ARX) and auto-regressive moving
average exogenous (ARMAX) models [15]. In table 2.2 an overview is given of several examples where linear
time series based models are applied for solar power forecasting. Several of these studies provide a comparison
to machine learning techniques, such as artificial neural networks (ANN) and k-nearest neighbors (k-NN), or
hybrid models.

Table 2.2: Overview of several statistical linear solar PV power forecasting models.

Authors Horizon Resolution Methods Description
Bacher et
al.[16]

1-36 h 1 h AR, ARX Forecast of normalized solar PV power are made using an AR model
with 15-min power observations and an ARX model with additional
exogenous NWP irradiance forecast data. Results indicate that up to
2 h ahead endogenous power input is most important.

Pedro et al.
[17]

1-2 h 1 h Persistence,
ARIMA,
k-NN, ANN

Comparison of several statistical methods using only exogenous 1h
resolution inputs of a 1 MWp solar PV plant. Findings show that ANN
based model outperforms on both 1-2 h forecast horizon, ARIMA
outperforms persistence on 2 h horizon.

Li et al.
[15]

Day-
ahead

1 h ARIMA, AR-
MAX

Comparison of ARIMA model with endogeneous inputs and ARMAX
model with additional NWP forecast exogenous inputs (not irradi-
ance) for a 2.1kW PV system. Forecast are made for day-ahead
daily power generation, here ARMAX outperforms ARIMA due to
the availability of NWP forecasted atmospheric parameters.

Reikard et
al. [18]

5 min - 4
h

5, 15, 30,
60 min

ARIMA,
ANN

Comparison of ARIMA and ANN for the forecasting at various res-
olutions of global horizontal irradiance at 6 sites in the USA using
past irradiance data. ARIMA outperforms at most resolutions and
forecast horizons as it is better in capturing the diurnal cycle.

Bouzerdoum
et al. [19]

1 h - SARIMA,
SVM, Hybrid

Evaluation of SARIMA, non-linear support vector machine (SVM)
model and hybrid model for 1 h horizon forecast of solar PV power
generation by a 20KWp plant in Italy. Results show that hybrid model
outperforms, as it combines SARIMA capturing the linear compo-
nents in the power while SVM finds non-linear patterns.

In the group of non-linear models machine learning techniques are used, an approach that is build on artifi-
cial intelligence. This method depends on a machine learning model to gain predictive capabilities based on
experience with historical data. In these models computers run many iterations with historic data before a
model is experienced enough to make accurate predictions using newly available data. These models can learn
complex representations of the input data without needing preordained physical or statistical equations, as
used in physical or linear statistical forecast models [20]. Some well established machine learning techniques in
the field of solar PV power forecasting include: artificial neural networks (ANN), k-nearest neighbors (k-NN),
support vector machines (SVM) and random forest (RF) [9]. Deep learning is the current state-of-the-art class
of machine learning and is increasingly being applied in solar PV power forecasting [8]. Deep learning models
are able to learn even more complex and non-linear representations for input-output mapping, while processing
input data in its raw form, something that is not possible with conventional machine learning techniques [21].
Some deep learning techniques used in literature for forecasting include: deep neural networks (DNN), convo-
lutional neural networks (CNN), auto-encoder (AE), recurrent neural networks (RNN) and Long Short Term
Memory (LSTM). All these techniques have their own characteristics and are used for specific applications. A
detailed description of the machine learning techniques used in this report is presented in chapter 3. Similar
to linear models, endogenous and exogenous data can be used as input variables for machine learning models.
In table 2.3 an overview is given of several examples where machine learning models are applied in the field of
solar power and irradiance forecasting.

Many variants of physical and statistical solar power forecasting methods have been proposed and applied.
However, there is no unique technique capable of making accurate predictions in all weather situations, as each
model may omit some crucial information for the prediction of a particular weather situation [22]. Hence it is
a common practice to combine several techniques to capture the individual strengths of different models [22].
This technique is often denoted as ensemble, combined, blended or hybrid models. Models can be combined in
several ways, such as by stacking, bagging, boosting or voting [9]. Hybrid models can be made by combining a
number of statistical techniques (hybrid-statistical) or by blending a statistical and physical model technique.
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Table 2.3: Overview of several statistical non-linear solar PV power forecasting models.

Authors Horizon Resolution Methods Description
Pedro et al.
[16]

15 min -
2 h

- ANN, k-NN Comparison of ANN and k-NN for the forecasting of global horizontal
irradiance on various temporal horizons at 5 different micro-climates
in the USA making use of irradiance measurements. Models outper-
form simple persistence models on all timescales and conclude that
relevant input feature vary for different micro-climates.

Jie et al.
[23]

Day-
ahead

15 min SVM A SVM model is proposed for the forecasting of day-ahead PV power
for a 20 KWp system, using 4 models based on weather classification:
sunny, rainy, foggy, cloudy. Input is PV power measurement of nearest
day with the same weather type and day-ahead NWP temperature.

Lee et al.
[23]

Day-
ahead

- CNN+LSTM,
AE+LSTM

Deploys a combination of a CNN or AE to extract relevant features
from a 10-min interval power and atmospheric parameter observa-
tions matrix, and subsequently uses an LSTM architecture to pre-
dict day-ahead solar PV power output. Results show CNN+LSTM
outperforms AE+LSTM and other conventional statistical methods.
Additional of weather inputs increases forecast accuracy.

Do et al.
[24]

1 h - ANN Study analyzing the training period required to forecast PV power at
two plants using instantaneous PV power measurements and exoge-
nous parameters: cloud cover and temperature. ANN model outper-
forms persistence and AR benchmark and shows that a longer training
period is required for locations with seasonal effects (min 6 months).

Li et al.
[25]

15 - 90
min

15 min RNN, LSTM,
ANN, SVM,
RBF

Uses intraday and adjacent day power measurements of 2.1 GWp net
region in Belgium as input for RNN to forecast power on 15-min
resolution, benchmarked against LSTM, ANN and other methods.
RNN outperforms on all forecast horizons with LSTM results inline,
but has increasing errors for 75 and 90 min forecast. Forecast error
larger in winter compared to summer.

Lago et al.
[26]

1 - 6 h 1 h ANN Deploys an ANN to forecast irradiance at 25 locations in the Nether-
lands using forecasted NWP and clear sky irradiance, plus past irra-
diance values derived from satellite images using a SICCS algorithm.
Method shows potential of regression of various input sources of past
and future irradiance for local forecasts.

Abdel-
Nasser et
al. [27]

1 h 1 h LSTM Analyses of different LSTM architecture for the forecasting of PV
power for systems in Egypt, based only on power measurements.
Outperforms linear benchmark models and suggest multiple previous
time-steps as input yields best result.

2.2 Sky imagery and satellite based models

In physical forecasting models solar irradiance is the most important parameter, as it correlates the strongest
with solar PV power output, as described in section 2.1.1. The presence of clouds is the main factor influencing
solar irradiance at the surface, of which cloud cover and cloud optical depth are of main consideration [10].
Hence, next to obtaining irradiance forecast from NWP models, efforts have been made on the prediction and
tracking of cloud movement and subsequently derive irradiance. Cloud formation and movement follow certain
physical rules, however turbulent and convective processes make it a very difficult task to model the behavior
[9]. Yet, for forecast horizons up to several hours, the change of cloud structures and position through time
is strongly influenced by cloud motion as a result of horizontal advection [10]. Ground-based sky imagers and
satellite images are used for the derivation and forecasting of solar irradiance from cloud cover. A clear sky
model is often used in these methods to derive the irradiance at a location and point in time under cloudless
conditions, in section 4.2 a detailed description of such a model is given.

Sky imagers produce high quality images of the sky, which are used for cloud detection, cloud classification, cloud
height estimation and calculating cloud motion [28]. Past consecutive sky images are used to estimate cloud
velocity, after which extrapolation of the motion in time is used to derive future cloud positions and subsequently
forecast the future irradiance. The maximum forecast horizon of this technique is strongly influenced by the
cloud velocity and the spatial extension of the images [28]. In contrast to satellite images, the sky images have a
much higher temporal and spatial resolution, and can thus capture sudden changes in irradiance over a certain
site. Sky imagers are mainly used for local solar PV power forecast and have a maximum temporal horizon of
approximately 30-minutes [28].
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Images from geostationary satellites such as NOAA and Meteosat can be used in a manner similar to the
observations from sky imagers. In a technique based on the satellite data, consecutive images are combined to
create cloud motion vector (CMV) fields, which are used to extrapolate cloud motion and derive future cloud
position [29]. Next, a physics-based and empirically adjusted algorithm can be used, such as Surface Insolation
under Clear and Cloudy skies derived from SEVIRI imagery (SICCS), to model for light attenuation by clouds
in future positions in order to forecast irradiance [30]. Subsequently, a power forecast can be made using the
irradiance forecast and PV system characteristics. Regional solar PV power forecasting using cloud motion
vector fields is a complex process involving many steps and requires knowledge on all PV system technical
parameters. It has however shown to be effective for irradiance forecasting on a temporal horizon of up to 4
hours [29]. This method shows less accuracy under convective and marine layer cloud regimes, as under these
conditions clouds can rapidly from or disappear [28].

2.3 Spatial and temporal aspects of forecast

For the temporal aspect of solar PV power forecast 3 concepts are important: forecast resolution, forecast
interval and forecast horizon [9]. The forecast interval describes the frequency at which a new forecasts is
issued by a model. The forecast resolution expresses the time range between subsequent point predictions in
the forecast. Finally, the forecast horizon is the time period between the effective time of the forecast and the
actual time for which the forecast is made. The forecast horizon can be broadly categorized in four groups,
although no universal classification criteria exist [8]:

1. Very short-term forecast models have a forecast horizons from seconds to 30 minutes. These forecasts
find their application in smart grids, power smoothing processes, real-time power system dispatch and
energy storage control.

2. Short-term forecast models have a temporal horizon between 30 minutes and 6 hours. These forecast are
often used in intraday electricity markets, renewable power management systems and economic dispatch
models.

3. Medium-term forecast models span 6 to 24 hours. These forecast models find applications in day-ahead
economic dispatch and electricity markets, reserve planning and maintenance scheduling.

4. Long-term forecast models consider time periods longer than 24 hours. These prediction horizons are
suitable for the long term planning of transmission, distribution and power generation.

Solar PV power forecast can be made for a range of spatial horizons, from a single local PV system to a regional
power forecast. Different forecasting techniques are applied based on the spatial coverage required for the
application. Sky imagers are only used for single plant or very local forecast, whereas satellite images and NWP
based physical models are often applied for regional aggregated power forecast [28]. Statistical models find
their applications in both local and regional forecast. The main difference between local and regional forecast is
found in the short term power output variability [31]. Regional forecast, including a number of dispersed solar
PV systems, benefit form forecast error reduction due to spatial averaging and smoothing effects [31].

Many different solar forecasting approaches have been proposed and studied in literature, which vary based
on the forecast horizon, forecast resolution, spatial application, data availability and types of input variables.
Comparing different forecast approaches and determining the optimal forecast technique for a certain application
is a challenging task. Nonetheless several authors have made overviews of forecast approaches and application
using a classification based on the spatial and the temporal resolution, all with slightly varying results [9] [10].
Based on these two aspects fig. 2.2 presents a broad classification and the following summary of the discussed
forecasting methods can be made:

1. Sky images based models make use of local data with a small spatial horizon and are suitable for forecast
with a temporal horizon up to 30-minutes [28].

2. Satellite image based cloud motion vector models have a rather large spatial resolution and horizon, and
are therefore applied in regional irradiance and subsequent power forecast with a temporal horizon up to
4 hours [29].
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3. Physical models which are based on atmospheric parameters from NWP models inherit the coarse spatial
and temporal resolution of these input parameters. Hence these models are most often successful applied
in forecast with a temporal longer than 2-4 hours and for regional forecast [9].

4. Both statistical time series based models and machine learning models are used for local and regional
forecast, and depending on model technique are used from 5-minute to day-ahead forecast horizons [9].

Figure 2.2: Broad classification of various forecasting methods based on the spatio-temporal horizon of its application.
The highlighted field of interest is discussed in section 2.4 and related to short-term solar PV power forecasts.

2.4 Forecasts and energy markets

Solar PV power forecast are becoming increasingly important to energy markets because of the continuously
growing installed capacity, which results in a major contribution of solar PV power to the energy supply. The
positive forecast scenario of SolarPower Europe projects a PV capacity growth of 32.2 GW in Germany by 2024,
which is a significant increase over the total installed capacity of 57.5 GW in December 2020 [2]. Currently,
on sunny days, solar PV generation can already temporarily supply up to 50% of the electricity demand in
Germany. In general, the greatest contribution of solar PV generation coincides with the peak power demand
around noon.

Electricity, including solar PV, is traded on various marketplaces. The duration of the contracts, delivery time-
frame and form of the transaction define these marketplaces. Currently, there is no technology available to store
electricity economically in large quantities, therefore power is traded using long-term and short-term contracts
in order to optimize the match of power demand and supply [32]. The contracts imply an obligation to deliver
or consume a certain quantity of power for a certain period at a agreed-upon price, i.e., a futures contract.
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In the EU short-term power contracts are traded via exchanges, with the largest being EPEX Spot and Nordpool.
Typical short-term power markets are the day-ahead market for the upcoming day and intraday market for the
current day. On the day-ahead market power is traded in dedicated hour, half-hour or quarter-hour blocks, and
additionally customized time intervals can be traded. Trading periods vary between exchanges, on EPEX Spot
the deadline for the day-ahead auction is at noon of the day before the delivery day [33]. On the intraday market
power is most commonly traded in dedicated hour, half-hour and quarter-hour intervals, although custom time
intervals are also possible. These contracts can be traded from the previous day up to 5 minutes before delivery
(lead time) in some countries, including Germany [33]. An important difference between the intraday and day-
ahead market is the pricing mechanism. On the day-ahead market the product price is determined by a market
clearing price principle, in which the last accepted bid sets the price for all transactions in that contract. On
the intraday market the contract price is continuously based on the price of each transaction, this is known as
the pay-as-bid principle and similar to stock markets.

A significant deviation of the actual solar PV generation from the forecasted power output requires actions by
solar PV asset owners. In order to avoid a costly position with a shortage or surplus of power in the imbalance,
asset owners need to offset these difference by buying or selling power on short-term power markets. The
resulting increase in supply or demand can cause strong market price movements. The considerable share of
variable solar PV power in the German grid and the resulting impact on market prices, lead to a active economic
interest in cutting edge solar PV power forecast methods by many parties involved in the energy market.

The various different power contracts require dedicated solar PV power forecast tools designed specifically for
their unique characteristics. On the day-ahead market, power is sold one day in advance, requiring forecast
with a 1 day horizon and typically a resolution of 1 hour. On the intra-day market an update is required for the
forecasted generation of that specific day. Here, two forecast types are of importance. One forecast is required
for the remaining period of the day, usually made in the morning based on the latest NWP model data and
having a forecast resolution of 1 hour. Next, an additional short-term forecast is required, used to anticipate
sudden changes in the solar PV generation based on the latest weather conditions. These forecast require a
temporal horizon of minimal 30 minutes to maximal 6 hours and a resolution of 15-minutes equal to the quarter-
hour contracts. Moreover, solar PV power forecast used for trading on the energy market need to be provided
on a regional level, as the power contracts are marketed for entire grid control regions, representing an area
of several hundred kilometers. The specific spatio-temporal characteristics required for short-term intra-day
forecast, is highlighted in fig. 2.2 as a field of interest. This area, with overlapping forecast methodologies based
on spatio-temporal horizon, is of special interest for trading companies active on the energy market, and hence
the focus of this research project.
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Chapter 3: Machine learning techniques

Machine learning is a modeling method that relies on computing and artificial intelligence to learn from expe-
rience with data in order to perform certain tasks. Machine learning is at the core of modern day society, as it
finds its application in web searches, voice recognition, e-commerce advertisements and is increasingly present
in our day-to-day consumer products such as phones and cars [34]. In all these applications the deep learning
class of the machine learning techniques has become the dominant go-to approach [34]. Deep learning allows
models with multiple layers to learn complex and non-linear representations of input data, while processing
the data in its raw form, something that is not possible with conventional machine learning techniques [21].
Furthermore deep learning allows models to automatically extract, analyze and understand complex relations
between input and output, without the need of manually engineering the model [21].

Both deep learning and conventional machine learning can be classified based on two types of learning method-
ologies, unsupervised and supervised learning [21]. In unsupervised learning the target variable is not provided,
that is, only input data is available with no corresponding output variable. The goal of an unsupervised learning
model is to learn an underlying structure or distribution of the input data, for example a certain grouping. In
supervised learning the input data and the target variable are provided. The goal of an supervised learning
model is to learn a mapping function from the input variables X to the output variable y, that is: y = f(X).
The learned mapping function can be used to predict the output variables for new and unseen input data. Su-
pervised learning can be further grouped into classification and regression problems. In a classification problem
the output variable is a category, where in an regression problem the output variable is a real value.

In the field of deep learning, algorithm such as Convolutional Neural Network (CNN) have presented interesting
results in the processing of images and videos [35]. Other deep networks like Long Short Term Memory (LSTM)
have yielded better results with sequential data, such as speech, text and time series forecasting [35]. Although
these deep learning algorithms form the foundation of the forecast models developed in this research project,
the basic concepts of deep learning are best introduced via a discussion of Artificial Neural Networks (ANN) as
presented in section 3.1. Next, in section 3.2 the working principles of a CNN is discussed. Finally, in section 3.3
the functionality and operational principles of a LSTM network is described in detail.

3.1 Artificial Neural Networks (ANN)

The Artificial neural network model is originally inspired by the biological theory of neurons [35]. The working
of an ANN can be compared to the functioning of the human brain, as it consists of many complexes of
interconnected ”neurons” working together to solve a specific problem and learn by example like people do [35].
ANNs are very versatile, with a wide range of architectures and specialized designs for specific applications [35].
A class of ANN is the feedforward neural network (FFNN), which can be used for classification and regression
tasks. The architecture of a FFNN is composed of several connected layers, which subsequently consist of unit
cells or nodes. An example of FFNNs is a multi-layer perceptron (MLP), of which an exemplary three layered
network architecture is shown in fig. 3.1. This example MLP shows a regression task, where the model maps
the input variables irradiance, temperature and cloud cover to the output variable solar PV power, just as a
physical model could do.
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Figure 3.1: Architecture of a two-layered MLP used for a regression task.

The architecture of the MLP in fig. 3.1 can be broken down in the following components:

1. The first layer is the input layer, which gathers the model input vector x. Each unit corresponds to one
feature from the input data stream, in fig. 3.1 these are irradiance, temperature and cloud cover.

2. The layer in between the input and output layer is called the hidden layer. In this case there is only 1
hidden layer, however multiple hidden layers can be added which pushes the model to the deep feedforward
neural network (DFFNN) class. The hidden layers are responsible for the complex non-linear input-output
mapping.

3. The last layer is the output layer, this yields the model output vector y. The output layer provides the
target variable, which is a known quantity in the training process of a supervised learning model. In
fig. 3.1 the output ‘vector’ consists only of 1 variable, namely solar PV power.

The information processing in the network involves the flow of input data through the hidden layers until it
reaches the output layer. Each unit in layer (l) is connected to all other units in the previous layer (l − 1) via
a certain weight wji represented by the lines in fig. 3.1. For the mapping of the input vector x to the output
vector y an expression can be given for the activity of all units in the input layer, hidden layer and output layer
by eq. (3.1), eq. (3.2), eq. (3.3) respectively. In these equations the vector r(l) represents the unit activity of
all units in the (l)-th layer. The W (l) is the connection matrix form the (l− 1) to the (l)-th layer consisting of
all weight wji connecting the nodes of the two respective layers. The f(·) and g(·) are the activation function
of the model neurons. The vector parameters b(l) are the biases for the model neurons. Note that in these
equations l = 0 is the input layer, and l = N is the output layer.

r(0) = x (3.1)

r(l) = f (W (l) r(l−1) + b(l)), 0 < l < N (3.2)

r(N) = y = g (W (N) r(N−1) + b(N)) (3.3)

In the hidden layers an activation function f(·) is applied to the multiplication of the connection matrix and
the activity vector of the neurons in the previous layer, plus the bias (W (l) r(l−1) + b(l)). In a similar manner
an activation function g(·) is applied to the connection from the last hidden layer to the output layer. The
choice of activation function has significant impact on the operation and capabilities of a ANN. The choice for
a non-linear activation function, introduces non-linearity to the model which is required for an ANN to process
data, learn and map inputs to outputs with any arbitrary complex function [36]. If no activation was used,
the ANN would act as a linear regression model and the input-output relation would simply be a one degree
polynomial function. The use of non-linear activation functions make ANN universal function approximators,
hence in theory it can approximate any arbitrary function [37]. This characteristic makes the performance
of ANNs standout compared to conventional statistical models. Typically all hidden layers have the same
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activation function, however the output layer often has a different activation function g(·) depending on the
required model task [36]. The choice of an activation function is not a straightforward process and is often
context and task dependent [36]. This makes the activation function a model hyperparameter, which is further
discussed in section 3.1.2. However, first the concepts involved in model training are discussed in section 3.1.1.
Finally, in section 3.1.3 the concept of generalization is introduced.

3.1.1 Training algorithm

In an ANN, it is the aim to find an optimal mapping function to relate input data to output data. This is
done by searching for a set of trainable model parameters that does this best for all data. It is not possible to
directly compute the optimal set of parameters nor can it be guaranteed that a model converges to an optimal
set. In a MLP, the trainable parameters are the connection matrix W and the bias vector b. Training a MLP
consist of updating the trainable model parameters subject to an objective function, also known as a cost or
loss function. Gradient descent is a technique to minimize this loss function by updating the model parameters
in the direction opposite to the gradient of the objective function [38].

There are three variants of gradient descent: batch gradient descent, stochastic gradient descent (SGD) and
mini-batch gradient descent [38]. These variants differ only in the quantity of data that is used at once to
compute the gradient of the objective function, which governs a trade-off between accuracy of the parameter
update and the time required to execute an update. For deep neural networks mini-batch gradient descent is
the typical used algorithm [38]. The quantity of data used in the gradient descent technique is described by
the batch size, which is a model hyperparameter and further discussed in section 3.1.2. The processes of model
training using SGD is visualized in fig. 3.2 and can be summarized in the following steps [37]:

1. In the first phase forward propagation occurs. In this process the input data x is passed into the network
to produce an output y, following equations eq. (3.1) - eq. (3.3). In the very first pass the trainable
parameters W and b are initialized randomly.

2. In the next phase a loss function is used to quantify the error between the model output (y) and the
target variable (ŷ) provided in a supervised learning task.

3. In the final phase backward propagation occurs. In this process the calculated loss is used to update the
trainable model parameters W and b. Let L be the loss function and let θ collectively denote all trainable
parameters, then the gradient of the loss function is ∂L/∂θ. In order to decrease the error, trainable
parameters are updated in the direction opposite to the gradient, with a magnitude proportional to the
learning rate η as in eq. (3.4). Starting from the output layer, the loss information updates the trainable
parameters of the units in the hidden layers based on the relative contribution they made to the output.
When all trainable parameters are updated, the process is repeated for a new batch of data.

∆θ = −η ∂L
∂θ

(3.4)

Figure 3.2: Simplified schematic representation of model training process for a one perceptron network.

For an ANN with many layers, back-propagation can be a slow and challenging task. Here the loss function is
represented by a cost surface, which is typically a non-convex, non-quadratic and a high dimensional structure
with numerous local minima [39]. There is no guarantee that a network will converge to an adequate solution,
will converge fast or will converge at all [39]. As a consequence there are some challenges when setting up the
gradient descent algorithm [38]:
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• Selecting an adequate learning rate. A learning rate which is too large can hinder convergence or can even
result in divergence, and a learning rate that is too small will have extremely slow convergence.

• Setting up a good learning rate schedule. This can solve the problem of choosing a single learning rate
for the entire training process, as the schedule adjusts the learning rate according to the amount of model
convergence, i.e., lowering the learning rate when the change in the loss function falls below a certain
threshold. However a problem is that the learning rate needs to be set in advance, which makes it
incapable of to adapting to specific dataset characteristics.

• All parameters are updated by the same learning rate. Depending on the characteristics of the features
in a models input data, it might be effective not to update all features at the same rate or to the same
extend. For example, one might want to perform large updates, with high learning rates, for infrequent
features.

• Setting adequate learning rates in order to prevent against getting trapped in not only local minima, but
also saddle points in the cost surface characterized by a plateau with an error of the same magnitude. This
is particularly important for SGD, as for a saddle point the gradient will be nearly zero in all directions
and subsequently the algorithm will not converge further.

To overcome these challenges several algorithms have been introduced which add elements to SGD in order to
improve its robustness [40]. These algorithms include: Momentum, Adagrad, Adadelta, Adamax, RMSprop and
Adam. One of the most widely used optimization algorithm in deep learning is the Adam, short for Adaptive
Moment Estimation [40]. Adam computes adaptive learning rates for each parameter and in addition combines
the advantages of RMSprop and AdaGrad, related to sparse gradients and non-stationary settings. Adam has
several other advantages: it is easy to implement, computationally and memory efficient and requires little
tuning for the learning rate when desired [40]. The choice of optimization algorithm is a model hyperparameter,
for which Adam is the common go to approach in deep learning [40].

3.1.2 Hyperparameters

When training a model using an optimization algorithm, a number of other decisions must be made on variables
in the training process, called hyperparameters. The determination of hyperparameter settings is often guided by
a combination of empirical evidence (trail-and-error), theory and hardware constraints [37]. Several important
hyperparameters are discussed in this section and acts as a guidance for proposed model setup in section 4.3

Loss function
To quantify the error between a model output (y) and target output (ŷ) an objective function must by chosen.
The selection of the loss function depends on data characteristics and the model task. For regression tasks
the most common loss functions are Mean Absolute Error (MAE, or L1-loss), Mean Squared Error (MSE, or
L2-loss), log cosh loss or Huber loss.

Activation function
The choice of activation function has a significant impact on the operation and capabilities of an ANN [36].
A list of several activation functions which are often applied in the field of machine learning is provided in
table 3.1. These activation functions have different characteristics based on their mathematical function. For
example, the sigmoid function transforms any input in the domain (−∞,∞) to outputs in the range (0, 1);
whereas the rectified linear unit (ReLU) function sets all values in the domain (−∞, 0) to zero, while passing
values through for the domain (0,∞). The choice of an activation function is not a straightforward process, as
each has its own advantages and disadvantages depending on the system design and context of the model task.
However, the ReLU activation function is currently the most common choice for hidden layers [36]. ReLU has
shown to outperform other activation functions, as it reduces the vanishing gradient problem and accelerates
convergence [36].

Weight initialization
At the beginning of a training process a starting point is required, this is defined by the initial model trainable
parameters W and b. As in model training the loss surface is non-convex, the optimization algorithm is
sensitive to the chosen initial starting point parameters [41]. The initial weight values are small random
numbers generated by a weight initialization method, which governs the scale and distribution of these values.
The most widely used initialization methods are Xavier uniform initialization and He normal initialization [42].
In the Xavier uniform initialization method the initial values are selected from a bounded random uniform

13



Table 3.1: Overview of commonly used activation functions in literature.

Name Equation Plot

Linear f(x) = ax

Sigmoid f(x) = 1
e−x

tanh f(x) = 2
1+e−2x − 1

ReLU f(x) = max(0, x)

distribution as given in eq. (3.5), in which (ni) and (nj) are the number of incoming and outgoing network
connections respectively. This method solves the problem of the saturation of initial layers in early stages of
training. This problem occurs when using the sigmoid activation functions, which is relevant for LSTM networks
[42]. In the He normal initialization method parameters are selected from a bounded normal distribution as
given in eq. (3.6), in which (a) is a parameter of the Relu activation function class (ReLU a = 0, PReLU a > 0)
[43]. This method works better with ReLU activation functions as it helps to attain global minima of the loss
function more efficiently, which is particularly relevant for fully connected layers [42].

U [(−
√

6
√
ni + nj

,

√
6

√
ni + nj

)] (3.5)

N [(−
√

6√
ni(1 + a2)

,

√
6√

ni(1 + a2)
) (3.6)

Batch size
As discussed earlier in section 3.1.1 mini-batch gradient descent is the typical used algorithm in model training.
Here the loss and subsequent gradients are calculated in batches, which are a small defined number of samples
from the training dataset. The batch size has an effect on the convergence speed and computational efficiency
of a training process. Compared to large batch sizes, small batches have higher convergence speed but are less
computationally efficient and have a more noisy training process. Common mini-batch sizes range between 2
and 256, but can vary for different applications and various different results have been shown in literature [44]
[38].

Epochs
The model training process must be repeated many times with the same training data for the model trainable
parameters to reach a minima in the objective function. The training epochs are the total number of iterations
through the complete training dataset, after which the training process is stopped. Too little epochs will lead to
an oversimplified mapping function approximation, while too many epochs will lead to increased generalization
error and overfitting. The proper amount of epochs is model and task dependent, and often determined using
a trail-and-error method or using a callback algorithm such as early stopping.

Learning rate
As introduced in section 3.1.1 the learning rate is an important parameter in the model training algorithm.
A learning rate that is too large can hinder convergence or can even result in diverge, and a learning rate
that is too small will have extremely slow convergence. Specialized optimization algorithms, such as Adam,
introduce adaptive learning rates for each parameter. However, the setting of an adequate global learning rate
or learning rate schedule in combination with Adam can still aid the model training performance. In a learning
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rate schedule the learning rate is lowered during the process of model convergence. This can be done with a
pre-set schedule, a constant or exponential rate decay, or based on a certain threshold value of the loss function.
The effects of the learn rate is often investigated using a trail-and-error method.

3.1.3 Generalization

Machine learning is basically a ”generalization” process which learns a mapping function from the input variables
X to the output variable y based on training data. The main goal in the development of an ANN is to create
a model which performs well on both the training dataset and new data not seen during training (e.g. the test
dataset). The ability of a model to perform well on new data is known as generalization [20]. Methods used
to monitor the generalization ability of a model are train/test split or k-fold cross-validation, which involve the
splitting of the available dataset in seen and unseen data [20]. The dataset used for training is often known
as the training data, and the dataset used to test a model’s generalization ability is known as the test data.
Adequately training a model, while at the same time support a good generalization ability, is a difficult process.
The following two concepts are important in the assessment of a machine learning model:

• Overfitting occurs when a model learns the training dataset too well, resulting in a good performance
on the training dataset but a poor performance on the test dataset. The gap between the training error
and the test error is too large.

• Underfitting occurs when a model fails to learn a good mapping function for the training dataset, and
subsequently has a poor performance on the test dataset.

Overfitting or underfitting can be prevented by altering the capacity of a model, which involves the ability
of a model to learn a variety of functions [20]. Shallow models with a low number of neurons have a lower
capacity and are prone to underfitting as it has difficulties learning the training dataset. Deep models with
a high number of neurons have a large capacity and are thus prone to overfitting as the model can memorize
properties that are specific only to the training dataset. In general, models with a large capacity are able to
solve more complex task. As increasing the capacity of a model is relatively easy to achieve, by adding more
layers and neurons, it is more common for overfitting to occur than underfitting when designing a model for a
complex task. A set of strategies used to reduce overfitting is collectively known as regularization [20]. Some
well known regularization techniques applied to deep learning models include among many others: dropout,
batch normalization and early stopping [45].

3.2 Convolutional Neural Networks (CNN)

The Convolutional Neural Network (CNN) is a deep learning model architecture that has presented interesting
results in various computer visual recognition tasks, such as in the processing and classification of images and
videos [35]. CNNs are specifically designed to process data that is structured and consists out of multiple arrays:
1D for sequences and signals, 2D for images, and 3D for sequential images or videos [34]. As an example, a
color image consists of three 2D arrays, composed of the pixel intensities in the red, green and blue (RGB)
color channels. The basic principles of CNNs are the same as for other ANNs, such as the FFNN discussed in
section 3.1; as the network consist of connected cells that are arranged in layers and utilize repetitive bias and
weight updates to learn a certain mapping function. The key differences of CNNs compared to other ANNs
are found in the architecture and performed operations, which gives the network the exceptional ability to
extract and capture spatial patterns in 2D or 3D structured data [46]. The typical architecture of a CNN is
organized as a series of stages. The first number of stages are composed of two types of layers performing
specific operations: the convolutional layers and the pooling layers. The final stage is composed of a flattening
layer and fully connected layers. An example of the structure of a CNN with all its stages and process from
input to output is illustrated in fig. 3.3. The operation and working principle of each layer are discussed in the
following subsections.
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Figure 3.3: Illustration of a general CNN architecture with a fully connected layer on top. Overall, this network contains
two convolutional layers and two pooling layers, with attached a flattening layer and three fully connected layers.

Convolutional layers
In the convolutional layers a multiplication is performed between a 2D array of weights and an array of input
data, followed by summation. This operation is performed in order to detect features in the input data and
capture these in so called feature maps [46]. The 2D arrays of weights are known as kernels or filters. The filter
is often small in size compared to the input data and is moved with a sliding window over the input data, as
visualized in fig. 3.4. This operation where the filter moves over the input allows for the detection of a feature,
recognizable by the filter, anywhere in the input data and is commonly known as translation invariance [20].
The operation between the input data and the filter is a dot product, which is a element-wise multiplication
followed by a summation. A feature map is the resulting output of the application of a filter after it has moved
completely over an input array. Each single feature map in a layer is a result of a different filter, however all
elements in a feature map share the same filter.

Figure 3.4: An illustration of the operations in a convolutional layer. Here the red block represents the sliding of the
filter over the input array resulting in the step-by-step generation of the feature map.

There are several hyperparameters in the design of a convolutional layer, such as the number of filters, the size
of the filter, the stride with which the filter moves over the input array, the weight initialization of the filters, the
padding type, and the type of activation function applied to the feature maps. In the complete structure of the
CNN several convolutional layers can be added, this is often done with the aim to extract higher level feature
representations [20]. The model training processes for CNNs are based on the same concepts as seen for FFNN in
section 3.1, however the formulas and algorithms are modified to accommodate the use of convolutions and the
required neuron arrangements [46]. In the training process the filters of the convolutional layers, representing
the model weights, are optimized to detect certain features required for the task of the model.
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Pooling layers
In the pooling layers feature maps are down-sampled, reducing their dimensions, which aids a faster model
training process and reduces the tendency of overfitting [46]. In the pooling layer a pooling unit typically
computes the maximum or average of a small patch of the input feature map [47]. The pooling unit slides with
a moving window over the feature map as illustrated in fig. 3.5, often avoiding overlap by matching the pooling
unit size to the stride with which it moves. For example, in fig. 3.5 the spatial windows of the pooling unit
has a size of 2 x 2 and a stride of 2. Several pooling layers can be added to the structure of the CNN, often
repetitively alternated with a number of convolutional layers.

Figure 3.5: An illustration of the operations in a pooling layer. Here the red block represents the sliding of the pooling
kernel over the input array resulting in the step-by-step generation of the down-sampled feature map.

Flattening and fully connected layers
The repetition of several convolution and pooling layers results in a 3D arrangement of neurons represented
by a number of feature maps, as visible in fig. 3.3 to the right of the final pooling layer. This data needs to
be flattened to produce a 1D vector output from the convolutional neural network. Subsequently, this output
vector can act as input for a fully connected layer used in classification or regression tasks, or act as input for
some other type of ANN.

3.3 Long-Short Term Memory Neural Networks (LSTM)

The LSTM neural network is part of the class of recurrent neural networks (RNN), a class often used to capture
temporal dependency patterns and are applied for time series prediction tasks [35]. The RNN is an extension
to the FFNN discussed in section 3.1 as it has the same structure of connected neurons, but also incorporates
feedback loops resulting in the sharing of parameters and transformations over time. Generally, a FFNN maps
from a fixed size input vector to fixed size output, whereas the RNN naturally operates on input sequences of
variable length and map these to output sequences of variable length [48]. Hidden units in the architecture of
RNN allow for the sharing of parameters and transformations over time, which is the mechanism that facilitates
the building of a memory of long sequences and enable the network to learn progressively [48]. If one neuron
is considered to be an information processing unit, then the feedback loop to that neuron provides additional
information on the previous state of the neuron and thus information from the previous time step. Similar to
FFNN, a RNN is commonly trained using a gradient-based optimization algorithm, in which the gradient of the
loss function is obtained using backpropagation [48]. Applying the backpropagation method to RNN involves
repeated multiplication of the connection matrix W and tanh activation function of the network, which leads
to extreme vanishing and exploding of gradients [49]. More intuitively, it arises from the propagation of local
errors in each time step, where similarly for our brain, it is simply impossible to remember every single event.
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The LSTM network was introduced to (partially) mitigate the vanishing gradient problem occurring with RNN,
and due to its success has become one of the most popular architectures for sequence prediction tasks [48].
Similar to a FFNN, the LSTM network consist of an input layer, an output layer and one or more hidden
layers. The main feature of a LSTM network is contained in the hidden layers, which are composed of so called
memory cells [50]. Four self-connected gates are introduced in the memory cells, which allows the cells to read,
write and remove information from memory. This feature enables the memory cell to selectively hold or forget
information, resulting in a more constant error flow [50]. Again in comparison to our human brain, the memory
cell selectively remembers details and special events from the past, while not bothering to remember everything.

In order to explain the functioning of an LSTM memory cell, a single localized cell for time step t is depicted
in fig. 3.6. Every gate in the memory cell has a different role; in fig. 3.6 the input (it), output (ot), forget (ft)
and update (gt) symbols represent the output values of each of the four gates. The gates receive input data
of the current time step (xt) and an input (ht−1) obtained from the same LSTM memory cell’s output in the
previous time step. In fig. 3.6 these information flows are depicted by the red and green arrows for the input
data (xt) and (ht−1) respectively. For each new information time step t, the new cell state (Ct) and output (ht)
are calculated for every memory cell using the following steps [46] [51]:

1. The output of the forget gate (ft) is calculated using eq. (3.7), which quantifies what information is
discarded from the the previous cell state (Ct−1). Here the (Wxf ) and (Whf ) are the weight matrices of
the input data and the previous cell state output data, whereas (bf ) represents the bias vector of the gate.
The gate operates through a sigmoid activation function (σ), which scales all values in the range 0 (forget
completely) to 1 (remember completely).

ft = σ(Wxf xt +Whf ht−1 + bf ) (3.7)

2. The input gate and update gate governs what information will be written to the new cell state (Ct), and
are calculated using eq. (3.8) and eq. (3.9). The input gate operates through a sigmoid activation function
(σ) and the update gate through a hyperbolic tangent (tanh). Here the (Wxi) and (Wxg) are the weight
matrices of the input data and the (Whi) and (Whg) are the weight matrices of the previous cell state
output data. The (bi) and (bg) represent the bias vector of the input gate and update gate.

it = σ(Wxi xt +Whi ht−1 + bi) (3.8)

gt = tanh(Wxg xt +Whg ht−1 + bg) (3.9)

3. The previous cell state (Ct−1) is updated to the new cell state (Ct) using the forget, update and input gate
as given in eq. (3.10). Here the output of the input gate and update gate interact through element-wise
multiplication (�). Similarly, the output of the forget gate and the previous cell state interact through
element-wise multiplication, after which both resulting vectors are added to produce the new cell state.

ct = it � gt + ft � ct−1 (3.10)

4. The output of the current memory cell (ht) is calculated using element-wise multiplication of the new cell
state and the output gate, as given in eq. (3.12). Here the new cell state is activated through the tanh
activation function which bounds the output values, alternatively the ReLU activation function can used.
The output gate vector is calculated using eq. (3.11), which implements a sigmoid activation function and
governs how much information is passed through to the next layer or time step. Here the (Wxo) and (Who)
are the weight matrices of the input data and the previous cell state output data, whereas (bo) represents
the bias vector of the gate.

ot = σ(Wxo xt +Who ht−1 + bo) (3.11)

ht = ot � tanh(ct) (3.12)
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Figure 3.6: A single localized LSTM unit cell in the first layer for time step t, inspired by [52]. The red and green arrows
depict the information flows of the input data (xt) and (ht−1) respectively. The symbols � and ⊕ represent element-wise
multiplication and summation operations respectively.

Similar to the way in which layers in FFNN are stacked in conventional deep neural networks, layers of LSTM
networks can also be stacked. Stacked LSTM networks have multiple hidden LSTM layers, which are each
comprised of numerous memory cells. In this way the LSTM network is both inherently deep in time due to
its memory cell structure and has depth in space as a result of hierarchical processing due to the stacking of
layers [53]. The additional hidden layers recombine the learned representation of previous layers and form new
representations at higher levels of abstraction [53]. This can be more intuitively conceptualized as a processing
pipeline, where each layer processes a small part of the problem and passes it on to the next layer, which in
turn processes a different part of the problem while retaining the previous learned information. The outputs of
the memory cells of the lower hidden layers acts as inputs for the upper hidden layers corresponding the same
time step. A function description of stacked LSTM networks can be given as follows [51]:

h1
t = f

(
h1

t−1, xt

)
h2

t = f
(
h2

t−1, h
1
t

)
· · ·
hN

t = f
(
hN

t−1, h
N−1

t

) (3.13)

In eq. (3.13) the outputs of layer 1, layer 2, till layer N are given by h1
t , h2

t , hN
t at time step t respectively,

and are the first part of the input stream of each respective subsequent layer. At the same time the second
input stream is represented by h1

t−1, h2
t−1, hN

t−1, which donates the outputs of layer 1, layer 2, till layer N at
the previous time step t − 1 respectively. The relation between the two input streams of the memory cell are
described by function f , which represents the hidden layer functions of a memory cell as described by eq. (3.7)
till eq. (3.12).

LSTM networks are specifically designed to work, learn and predict from sequence input data [48]. Its design
supports both single-step and multi-step time series forecasts, of which the latter is more generally referred to
as sequence-to-sequence predictions. Sequence-to-sequence models lies behind a multitude of applications that
many people use on a daily basis, such as voice-enabled devices, Google Translate and online customer service
chat-robots [54]. An LSTM models is able to map sequence input data directly to an output vector representing
multiple output time steps or a sequence. Moreover, specialized architectures have been developed to more
effectively use LSTM networks for advanced sequence-to-sequence prediction problems, such as a specialized
encoder-decoder framework used for machine translation [55]. This specialized framework consist of two main
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components: the encoder part reads the input sequences and produces a fixed-length vector which captures the
temporal representation of the input sequence, and the decoder part which interprets the temporal representation
and uses it to predict the output sequence [54]. A schematic representation of the encoder-decoder framework
is given in fig. 3.7. The decoder part can be combined with a fully connected layer on top to predict a sequence
target directly, or alternatively repeat the temporal representation and make a one-step prediction for each
element in the targeted output sequence separately [56]. The use of an LSTM network in the decoder is an
important feature of the encoder-decoder framework, as it allows the model to know what was predicted for the
previous step in the sequence and accumulate some internal state on it while generating the complete output
sequence [56]. In both the encoder and decoder several layers of LSTM cells can be stacked to form a deep
network.

Figure 3.7: Schematic representation of an encoder-decoder framework for sequence-to-sequence prediction models.
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Chapter 4: Methodology

In this chapter the methodology followed in the course of this research project is explained. Based on the
problem statement and knowledge gab detailed in chapter 1, this study concentrates on the development of a
novel forecasting framework for an aggregated solar PV power forecast over Germany with a temporal horizon
of 3 hours. This goal is further motivated by the advances made in the field of solar PV power forecasting
as elaborated upon in chapter 2, especially more recently with the application of (deep) machine learning
methods. Based on the study of deep learning methods discussed in chapter 3, two separate forecasting models
are investigated which leverage on convolutional neural networks (CNN) and Long Short Term Memory (LSTM)
networks to process various types of data input streams and subsequently generate a solar PV power forecast.
In the first model, a LSTM network is developed which processes multivariate time series data consisting of
the latest available solar PV power feed-in data and solar PV power prediction data from a standard forecast
employed in the energy market. In the second model, a CNN-LSTM network is developed which takes as input
stream the latest satellite image data and solar PV power prediction data from a standard forecast.

This chapter starts with an introduction of the available dataset used for the training, testing and validation
of the models and the applied data pre-processing steps. Next, in section 4.2 the design considerations of a
clear sky model are discussed, which is a critical component of the solar PV power forecast methodology and
data pre-processing steps. In section 4.3 the architecture and design considerations of the two proposed models
are explained in detail. Next, section 4.4 presents the methodology applied to evaluate the model prediction
performance. Finally, in section 4.5 the hardware and software environment used for model development is
described.

4.1 Dataset description

This study concentrates on the development of an aggregated solar PV power forecast over Germany, with more
specifically a temporal horizon of 3 hours, a 15-minute resolution and which has a forecast frequency of 15-
minutes. These characteristics are most suitable for short-term forecast applied in the intra-day energy market,
as identified in section 2.4. As a consequence, all model input variables, otherwise known as features, must be
available on this resolution and with a near-live data stream to employ the models in a real-time operational
setting. The selection of input features vary between the two proposed models, with one leveraging on the
latest available solar PV power feed-in data whereas the other utilizes the latest available satellite images. On
the other hand, some input features are shared between the two proposed models, such as solar PV power
prediction data from a standard forecast employed in the energy market. The preparation of the datasets and
pre-processing steps used to generating all available model features are identical for the two proposed models.
For this reason, each available model input feature, its underlying dataset and required pre-processing steps are
first discussed in the following subsection.

4.1.1 Actual solar PV power feed-in data

In Germany four regional transmission systems operators (TSOs) are responsible for uninterrupted exchange
of power in their governing region. Moreover, they ensure that the consumption and generation of all power
production types, including solar PV, are well balanced at all times. The four TSOs that each control a region
of the German grid are: 50Hertz, Tennet, Amprion and TransnetBW, as illustrated in fig. 4.1. Each TSO
publishes a near-live projection of the total solar PV feed-in power in their responsible control region. As
each control area includes many thousands of PV systems, it is practically impossible to monitor the live solar
PV power output of each individual system with measuring instruments. Instead, the TSOs use extrapolation
methods to make projections of the actual total solar PV feed-in power based on a number of reference systems.
This method takes into account measured values of reference systems, geographic information and individual
PV system orientation and properties [57]. The projections of the actual solar PV feed-in power are available
with a 15-minute interval and are collectively published for the four control regions on the Entsoe Transparency
Platform [58]. The average delay between the closing time of a 15-minute interval and the publication time of
the PV feed-in projection of that interval on the Entsoe Transparency Platform is provided in table 4.1. The
publication delay varies significantly per grid control area and an aggregated publication delay over Germany
is governed by the slowest provider. In other words, the data for the total solar PV feed-in power in Germany
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is available for live model usage with a 45-60 minute delay.

Figure 4.1: Map of TSO control regions in Germany and installed solar PV capacity as of December 2020 [59] [60].

Table 4.1: Average delay time in publication of solar PV feed-in per grid control area.

TSO Publication delay
50Hertz 15 - 30 min
Amprion 45 - 60 min
TenneT 15 - 30 min
TransnetBW 0 - 15 min

A historic dataset of the solar PV feed-in power per grid control region and aggregated for Germany is avail-
able starting from 01-01-2015. As a pre-processing step, the actual solar PV feed-in is normalized using the
maximum possible solar PV power generation at every instance, calculated by a clear sky model as described in
section 4.2. The normalized actual solar PV feed-in power aggregated for Germany will be denoted as Pactual.
The normalization is motivated by the non-stationarity of the solar PV feed-in data, whereas the normalized
power is more stationary resulting in a lower effect of change in power output over the day [16]. Additionally,
the use of normalized solar PV feed-in accommodates for the increasing installed solar PV capacity over the
time range of the dataset. Finally, the use of normalized data limits the regression error during model training
and increases model computational speed [8]. The characteristic daily time series for the solar PV feed-in power
en maximum solar PV power from the clear sky model are shown for a summer and winter day in fig. 4.2a and
fig. 4.2b respectively. These figures exemplify the significant changes in solar PV generation throughout the
day and the seasons.
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(a) Summer day (02-07-2019) (b) Winter day (05-12-2019)

Figure 4.2: Actual solar PV feed-in power, maximum solar PV power and two standard solar PV forecast time series on
a summer day (a) and winter day (b).

4.1.2 TSO solar PV power feed-in prediction data

A day-ahead and intra-day solar PV generation forecast is published by each of the four German TSOs, which
themselves use for generation estimation and scheduling purposes [61]. Moreover, it can be seen as a standard
for solar PV power forecast employed in the energy, as it is freely available to all market participants. The
solar PV generation predictions in each grid control area are based on forecast services provided by private
corporations, hence detailed information on the forecast methodology are unknown. In general, these are
physical forecast models based PV system characteristics of individual installations and NWP model data (e.g.
ECMWF, GFS) [62]. The forecasts are available with a 15-minute interval and are collectively published on
the Entsoe Transparency Platform [58]. The day-ahead forecast is published before 18:00 Brussels time the
day before actual delivery. The intra-day forecast is published before 08:00 Brussels time on the day of actual
delivery. As a result of the publication time and the required initiation time of a live version of the models
developed in this research, only the day-ahead forecast is available as a model input feature. As a pre-processing
step, the day-ahead power forecast is normalized using the maximum solar PV generation calculated by the same
clear sky model as applied to Pactual. The day-ahead solar PV power forecast data aggregated for Germany
will be denoted as Pdayahead. The characteristic daily time series for the day-ahead and intra-day solar PV
generation forecast are illustrated for a summer and winter day in fig. 4.2.

4.1.3 Satellite image data

The European geostationary meteorological satellites, Meteosat Second Generation (MSG), operated by the
European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) provide images of the
hemisphere covering Europe, Africa and the Atlantic. The 12-channel imager, named Spinning Enhanced Visible
and InfraRed Imager (SEVIRI), on-board MSG provides the data for several earth observation products with
a repeat cycle of 15 minutes. The SEVIRI instrument has three channels in the solar spectrum at 0.6, 0.8 and
1.6 µm; and eight channels in the solar thermal infrared (IR); and a broadband high-resolution visible channel
[63]. Several visualized and RGB composites products are based upon the observations from the SEVIRI
instrument. An example is the Natural Color Enhance product using the three channels in the solar spectrum
which provides a natural perception of the cloud cover. Although historic datasets for the visualized products
and separate observation channels from SEVIRI are available via the EUMETSAT data portal, they lack a
simple access method to commercially available live data. The access to live data is crucial to the deployment
of any proposed model in an online production environment. Due to this requirement, high resolution visible
satellite images are used which are published online by Weerslag [64]. These images are near live available
(5-min delay), with a 15-minute interval and are based on the data products of the MSG satellite operated
by EUMETSAT. A historic dataset of the satellite images published online by Weerslag is made available by
Northpool.
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The satellite images in the dataset have a size of 2000x1450 pixels, covering the Northwest region of Europe
with a one-kilometer spatial resolution. The dataset provides images with a 15-minute interval observed since 1
January 2015, however, images are sometimes missing for various reasons. In order to make the satellite images
applicable for the goal of this research, several pre-processing steps are performed as explained in the following
subsections.

Dataset cleansing
The high resolution visible satellite images making up the available dataset are published online by Weerslag and
have been extracted using a scraper since 1 January 2015. For various reasons this operation has been imperfect
resulting in missing data. The missing satellite images have a non-trivial impact on the model operation and
prediction performance, as for every 15-minute time step an image is expected by the model. Moreover, it is
important that the model receives satellite images that are in accordance with the previous and next image,
instead of an arbitrary data fill. If all missing images were interpolated without any restrictions, the model
would learn false information on intervals where a simple interpolation would not be adequate, such as with
large data gaps or during the transition from night to day and vice versa. A 3-step heuristic method is applied
to build a complete and representative dataset. As a first step, missing images before sunrise and after sunset
were filled with blank images, similar to all other night time images. As a second step, a nearest neighbor
interpolation method in time is applied when six or less consecutive images were missing. For example, when
the satellite images at 13:15 and 13:30 are missing, they are filled by the images from timestamp 13:00 and 13:45
of the same day respectively. It is assumed that the relative change from one image to the next with a data gap
up to six time steps is sufficiently small that this will not lead to training inconsistencies. As a final step, when
images are missing within 30-minutes from sunrise or the data gap is larger than six time steps, new images
are manually added from the online Sat24 historic satellite image database [65]. This database contains similar
high resolution visible satellite images based on the same data products of the MSG satellite as published by
Weerslag. The satellite images from the Sat24 historic database are available with a 60-minute interval. First
the missing hourly timestamps are filled with the images from Sat24, subsequently the intra-hour data gaps
are filled using nearest neighbor interpolation in time. For example, when images are missing from 11:45 till
14:15, satellite images from Sat24 are copied for timestamps 12:00, 13:00 and 14:00 after which the intra-hour
15-minute gaps are filled using the previous described nearest neighbor interpolation method.

(a) 03-01-2019 08:45 UTC (b) 06-05-2019 09:00 UTC

Figure 4.3: Two dataset samples of high resolution visible satellite images over Germany.

Cropping and re-sampling
The original satellite images in the dataset have a size of 2000x1450 pixels, covering the Northwest region of
Europe. As a pre-processing step the images are cropped over the maximum geographical width and length of
Germany, as visible in fig. 4.3b where the yellow lines represent country borders. The resulting images have
a size of 680 x 850 pixels with a one-kilometer resolution. This pre-processing step is motivated by the aim
to extract as much relevant cloud information over Germany, while limiting the number of pixels outside the
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borders of Germany. As a second step, the images are down-sampled to reduce the total size of the dataset,
required by limited DRAM capacity during model training. A bilinear re-sampling method is used to reduce
the image size to 32 x 40 pixels, maintaining the original aspect ratio of the cropped image over Germany. The
resulting satellite images have a spatial resolution of 21 kilometer per pixel. Several other re-sampling resolutions
were evaluated during model training, such as: 32x32, 64x64, 64x80 and 128x128, however these resulted in a
lower model prediction accuracy or similar accuracy with significantly increased training time. As an additional
pre-processing step the three RGB channels making up the images are normalized using the maximum value
255 of each channel. As an alternative pre-processing step the images were converted to grey-scale; however
during the development of the model it was found to have reduced prediction accuracy. Furthermore, no data
augmentation such as image rotation or translation has been applied. Although this is a common pre-processing
step to increase the size of the available dataset, it is not justified for this case as the distribution of PV systems
over Germany is not uniform.

4.1.4 Day-of-year and Quarter-of-day

The Earth’s tilted axis causes the times of sunrise and sunset to vary over the year, subsequently influencing
the length of the period in which solar PV power is generated. In order to add context to the model on seasonal
and day-to-day patterns, two additional input features are introduced: the day-of-year (DOY) and the quarter-
of-day (QOD). The latter refers to 96 periods of 15-minutes in a day, where the period 00:00-00:15 is quarter 1
and period 23:45-00:00 is quarter 96. As a pre-processing step the DOY and QOD are normalized using a cosine
function, as described in eq. (4.1) and eq. (4.2) respectively. The use of this normalization technique aids model
training and use of the cosine function specifically results in a smooth numerical transition from day-to-day and
year-to-year.

DOYnorm =
cos
(
2π DOY

365
)

+ 1
2 (4.1)

QODnorm =
cos
(

2π QOD
96

)
+ 1

2 (4.2)

4.1.5 Data split

The complete dataset is split in a train, test and validation dataset with a 66%, 17% and 17% distribution
respectively. The years 2015-2018 are used for training, the complete year 2019 is used for validation and the
year 2020 is used as final test set. The number of samples and range of timestamps per dataset are presented
in table 4.2. The validation dataset is held back from training and is used to quantify the prediction accuracy
of the model while tuning its architecture and hyperparameters. The final test set is held back completely from
training and model tuning, in order to present an unbiased estimate of the prediction accuracy of the final
model. Data splits with different time ranges were tested, however the split by calendar year shows the best
train-validation set representation and overcomes seasonal patterns.

Table 4.2: Overview of dataset split.

Dataset Timestamp range Samples
Train 01-01-2015 00:00:00 - 31-12-2018 23:45:00 140256
Validation 01-01-2019 00:00:00 - 31-12-2019 23:45:00 35040
Test 01-01-2020 00:00:00 - 31-12-2020 23:45:00 35136
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4.2 Clear Sky Model

An important data pre-processing step, as described in section 4.1, is the normalization of the actual solar PV
feed-in power and the TSO day-ahead solar PV power forecast using a clear sky model. This model provides
the maximum possible solar PV power generation at any given time. The choice of normalization via a clear
sky model is motivated among other things by: increasing installed solar PV capacity, non-stationarity of solar
PV power data and beneficial effects on the training process of deep learning models. The following subsections
describe the background of clear sky models and the adopted methodology to calculate the maximum solar PV
power generation in Germany at any given time.

4.2.1 Clear sky model methodology

As introduced in chapter 2, the presence of clouds is of influence on the solar irradiance and presents difficulties
in irradiance forecasts. It is however possible to approximate the solar irradiance under the absence of clouds,
that is, under clear sky conditions. The approximation of the amount of terrestrial solar irradiance on a clear
sky day is a function of site location, altitude, solar elevation angle, water vapor, aerosol concentration and
multiple other atmospheric conditions [9]. Clear sky models are generally classified into physical and empirical
models [9]. Physical clear sky models are based on radiative transfer models which simulate the attenuation of
solar irradiance in various layers of the atmosphere. These models offer a detailed analysis of the atmospheric
processes, however they come at a high computational cost and a large number of input requirements [14].
On the contrary, empirical models are based on simplified parameterizations of a selection of atmospheric
attenuation processes, resulting in an analytical expression to approximate the clear sky irradiance using a set
of atmospheric parameters as input. Empirical models are most often used for general applications, due to the
simplicity of the analytical equations, low computational cost and lower amount of input variables [9]. A large
number of clear sky models are described in literature, which differ mainly from one another in the required
model inputs. The most simple models are based only on the solar zenith angle. The more complicated models
use many more additional atmospheric parameters, such as precipitable water and aerosols concentration to
more accurately model the atmospheric attenuation processes.

Atmospheric effects have several impacts on the solar irradiance before it reaches the Earth’s surface. On a
clear sky day at noon, approximately 25% of the extraterrestrial solar irradiance from the sun is absorbed,
scattered or reflected by the atmosphere [66]. When the sun is lower on the horizon, the attenuation of the
solar irradiance by the atmosphere increases due to the longer traveling path. The solar radiation which comes
directly from the sun is known as direct irradiance or the direct beam component. This direct normal irradiance
(DNI) is measured by the flux of this component through a plane perpendicular to the direction of the sun. As
part of the attenuation by the atmosphere, sunlight is scattered in all directions of which a part is redirected
towards the Earth’s surface as diffuse horizontal irradiance (DHI). The total solar irradiation is the sum of the
direct beam and diffuse component received by a horizontal surface and is called the global horizontal irradiance
(GHI). The GHI is a measure of the power of received sunlight (W/m2), hence at any given location and time
it can be utilized to model the maximum power output of a solar PV system under clear sky conditions.

The selection of a clear sky model for a specific location is driven by the quality and availability of input data,
which is the primary limiting factor [67]. The data limiting the selection of a clear sky model for this project is
the lack and quality of complete historic installed capacity and location data on all individual solar PV systems
in Germany. However, the German Federal Network Agency [60] publishes monthly installed solar PV capacity
data per postal code since 2015. Still this data per postal code is very limited, as no information is available
on the location, elevation, solar panel orientation of all systems. Nonetheless, a representative average location
of all solar PV systems per postal code can be estimated using the geographic midpoint of that code’s area.
By reason of the limiting quality of the data, a simple clear sky model is selected which is only a function of
the solar zenith angle. The solar zenith angle is in it self only a function of location, so no atmospheric input
parameters are required.

The solar irradiance is highly dependent on the position of the sun in the sky relative to the receiving area
on the Earth’s surface. Hence the clear sky model requires geometric inputs expressing the solar zenith angle
throughout the year. At any day of the year (DOY ) the solar zenith angle (z) can be calculated by subtracting
the declination angle (δ) from site’s latitude (φ):

z = φ− δ (4.3)
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where δ = 23.45 sin (x) (4.4)

with x = 360◦

365◦ (DOY − 81) (4.5)

The solar time is then calculated using the difference between the longitude of the site, the meridian of its
timezone and the annual perturbations in the Earth’s rotation rate around the sun:

Solar T ime = Local T ime+ 4 (standardMeridian− LocalMeridian) + EoT (4.6)

where EoT = 9.87 sin (2x)− 7.53 cos (x)− 1.5 sin (x) (4.7)

The angle between a line pointing directly towards the sun at solar noon and the line pointing directly to the
sun at an arbitrary time is called the hour angle (ω). This is nothing more than an angular representation of
the solar time, where one hour is represented by 15 degrees:

ω = 15 (Solar T ime− 12) (4.8)

Finally, the solar zenith angle can be calculated for any location, date and time using the site latitude, declination
angle and hour angle:

cos (z) = cos (φ) cos (δ) cos (ω) + sin (φ) sin (δ) (4.9)

4.2.2 Regional clear sky power model

Motivated by the limited availability of PV system and atmospheric input variables the Meinel (1976) [68]
clear sky model is selected to compute the direct solar radiation component. The Meinel model is presented in
eq. (4.10). Here the attenuation of the extraterrestrial normal incident irradiance (I0) through the atmosphere
is described as a function of the relative airmass (AM). The Kasten and Young (1989) [69] model for relative
airmass is selected for this purpose, which is only a function of the solar zenith angle (z). The extraterrestrial
radiation is the radiation that reaches the Earth’s outer atmosphere. The intensity of the radiation varies slightly
throughout the year due to the eccentricity of the Earth’s orbit around the sun, however for simplicity radiation
can be considered constant at 1361 W/m2 [70]. The DNI component of the clear sky model is calculated as
follows:

DNI = I0 · 0.7 AM 0.678
(4.10)

with AM = 1
cos (z) + 0.50572 (96.07995− z) −1.6354 (4.11)

where DNI =
{

0 (90− z) ≤ 0
DNI (90− z) > 0 (4.12)

The diffuse irradiance component is good for approximately 10% of the direct irradiance under clear sky condi-
tions [70]. The clear sky models, including the DHI component, in literature are essentially empirical correlations
based on measurements for a specific location. An available clear sky model from Northpool uses a modified
version of the Meinel (1976) [68] DNI model for the DHI component, which is calibrated to fit clear sky days
over Germany. During the tuning of the clear sky model it was found that the actual solar PV feed-in data
contained values before and after the time of sunrise and sunset of the clear sky model on a quarterly interval.
This is possibly caused by imperfections in the used representative average location of all solar PV systems per
postal code, or caused by illumination of the Earth’s surface even when the sun is below the horizon [71]. To
overcome this problem a correction parameter (fTW ) is added to the clear sky model near sunrise and sun set.
In the early stages of model development it was found that the addition of this correction parameter improved
model performance, even though it reduced the stationarity of the normalized actual solar PV feed-in data.
The DHI component of the clear sky model is calculated as follows:
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DHI = 0.14285 I0 · 0.7 AMtw
0.678

(4.13)

with AMtw = 1
cos (z + fTW ) + 0.50572 (96.07995− (z + fTW )) −1.6354 (4.14)

where DHI =
{

0 (90− z) ≤ fTW
DHI (90− z) > fTW

(4.15)

The mounting orientation of a solar module has implications on the amount of direct irradiance perceived by
that module. The orientation of a module when mounted on a horizontal plane is described by the altitude
(aM ) and the azimuth (AM ) of the module surface normal. Here the altitude of the module normal is related
to the tilt angle by aM = 90◦ − θM . The position of the direct beam component of the sun is described by the
solar azimuth (As) and the solar altitude (as). The direct irradiance on a module (Gdir

m ) is related to the DNI
via the angle between the incident direction of the sunlight and the module surface normal, as expressed in
eq. (4.16). Unfortunately, no information is available on the orientation of each solar PV system per postal code
in Germany. Therefore, a normal distribution is assumed for the module azimuth and tilt angle to represent
the average orientation of all solar modules in Germany. For the module azimuth a normal distribution is used
with a mean of 180◦ and a standard deviation of 30◦, where 90 ≤ AM ≤ 270. The tilt angle is described by
a normal distribution with a mean of 25◦ and a standard deviation of 5◦, where 0 ≤ θM ≤ 90. The diffuse
irradiance received on a module (Gdif

m ) is proportional to the module tilt angle via the sky view factor (SVF).
For simplicity the SVF is considered to be equal to one, resulting in Gdif

m = DHI. As a final step, the Gdir
m

and Gdif
m are added to obtain the average irradiance on a PV module per time step and postal code, as in

eq. (4.17). Together with linearly interpolated installed capacity data per postal code and the Gm from the
clear sky irradiance model, a aggregate clear sky power model is created for Germany with a 15-minute interval.
The complete clear sky power forecasting scheme as described in this section is shown in fig. 4.4.

Gdir
m = DNI [sin (θM ) cos (as) cos (AM −AS) + cos (θM ) sin (as)] (4.16)

Gm = Gdir
m +Gdiff

m (4.17)

Figure 4.4: Schematic representation of the regional clear sky irradiance and maximum solar PV power forecasting
scheme.

4.3 Model framework

As introduced at the beginning of this chapter, in this research project two individual solar PV forecasting
models are developed. The models leverage convolutional neural networks (CNN) and Long Short Term Memory
(LSTM) networks to process the various input data streams introduced in section 4.1. In the first model a LSTM
network is developed which utilizes as input stream the Pactual and Pdayahead data. In the second model a CNN-
LSTM network is developed which takes as input stream the latest satellite image data and Pdayahead data.

The development of two separate models models is motivated by the real-time availability of the data streams.
The actual solar PV feed-in power for Germany is published with a 45-60 minute delay, whereas the satellite
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images are available with only a 5-minute delay. On the target forecast horizon of 3 hours, the difference in
data delay has a significant impact on the real-time usage of the forecast. The latest changes in cloud cover,
impacting the total solar PV power generation, are picked up faster and translated into a forecast by a model
with a shorter data delay. Moreover, the development of two separate models with the Pactual and satellite
images as distinctive data streams, allows for a comparison between the two input features and their relevance to
solar PV power forecast. In the following subsections the two proposed models and their design considerations
are discussed in detail.

4.3.1 Model 1 - LSTM

The first model is designed while considering two data-streams: the latest available actual solar PV power
feed-in data (Pactual) and the day-ahead solar PV power prediction data (Pdayahead) from Entsoe. The model
is designed to generate a forecast with a temporal horizon of 3 hours, a 15-minute resolution and which has a
forecast frequency of 15-minutes. The time t is considered to be the initiation time of a forecast. The input
data matrix consisting of 12 time steps and 4 input features: Pactual, Pdayahead, DOYnorm and QODnorm as
illustrated in fig. 4.5. The Pactual, DOYnorm and QODnorm are lagged values with respect to the initiation time
t of the forecast; i.e. (Pactual,t−11, . . . , Pactual,t). Whereas the input feature Pdayahead consist of future values
relative to initiation time t; i.e. (Pdayahead,t+1, . . . , Pdayahead,t+12). In order to support the translation of future
time steps of the Pdayahead to the input sequence, as visualized in fig. 4.5, a symmetrical input-output sequence
length is required. This however limits the optimization flexibility of the number of input feature time steps,
as it is now dictated by the output sequence length. The output sequence consist of future values of the solar
PV generation, that is during model training Pactual,t+1, . . . , Pactual,t+12. Hence, both the output and input
sequence length is equal to 12 time steps. For every new forecast the models moves with a sliding window of
15-minutes or 1 step over the dataset.

Figure 4.5: Schematic representation of the length and temporal dependence of the model input and output features.

The architecture of model 1 consists out of an encoder-decoder LSTM network, as visualized in fig. 4.6. The
encoder part compresses the information from the input matrix into a temporal vector representation, after
which the decoder translates this to the desired target sequence. The specialized encoder-decoder has shown to
be very effective for sequence-to-sequence prediction as explained in detail in section 3.3. The encoder consists
of three stacked LSTM layers, with each 200 memory cells. In early model training experiments it is observed
that deep LSTM networks, with multiple stacked layers and memory cells, perform better than shallow LSTM
networks. The temporal vector representation is duplicated 12 times in a repeater layer, once for each output
sequence time step. The copies of the temporal vector representation act as a two-dimensional input for the
decoder part of the model. The decoder consists of three stacked LSTM layers, with each 200 memory cells.
The last LSTM layer is connected to three time distributed fully-connected layers (FC-layers), which transforms
the two-dimensional output of the last LSTM decoder layer in a 12 time step output sequence.
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Figure 4.6: Overview of the model 1 LSTM Encoder-Decoder architecture. The values in brackets represent the output
shape of each layer, which illustrates the data-flow in one forecast run.

During model development a number of decisions must be made on hyperparameters related to the model ar-
chitecture and variables in the training process. The choice of hyperparameters can have a substantial effect on
the performance of a model, however the setup of appropriate values is a complex task. For example, numer-
ous configurations of cells and layers in the LSTM stack can be tested to find an optimal model performance.
Underestimating the number of stacks and cells will give rise to an over simplified approximation, while over-
estimation will lead to increased generalization error and overfitting. The selection process of hyperparameter
settings is often guided by a combination of trail-and-error, theory and hardware constraints [37]. Due to limited
computational resources a disciplined grid search of the optimum set of hyperparameters is beyond the scope
of this research project. However a large number of experiments throughout the model development phase
have been performed to find appropriated values for a selection of hyperparameters. Based on these experi-
ments and literature regarding hyperparameter selection, as discussed in section 3.1.2, the following decisions
on hyperparameter selection are made:

• MSE is selected as loss function to quantify the training error in the model optimization process.
• Adam is used as optimization algorithm for model training.
• A learning rate schedule is adopted which lowers the learning rate by 50% for every 5th epoch and starts

with an initial learning rate of 0.002.
• The mini-batch size is set to 96 samples.
• The ReLU activation function in combination with He normal initialization is applied to the fully-

connected layers.
• The tanh activation function is used for the cell state and hidden state of the LSTM cells.
• The sigmoid activation function is used for the input, output and forget gate of the LSTM cells.
• The time distributed fully connected stack consists of 3 layers, in which the first layer consist of 200

neurons. The last fully-connected layer has 1 neuron, corresponding to one time step output. The layer
in between consists of 100 neurons, equal to half the number of neurons of the first fully-connected layer.

• Both the model encoder and decoder LSTM stack consists out of 3 layers with 200 neurons each.
• The model is trained for 50 epochs.
• No dropout layers are applied as regularization technique, as it reduced model performance.

The model learning performance throughout the experiments are evaluated using model training and validation
loss curves over experience in terms of epochs. These so called optimization learning curves are based on the
MSE metric by which the model parameters in the training process are optimized, that is, are minimized. The
learning curves can be used to diagnose if a model is overfitting, underfitting or is well-fit. Moreover, they can
be used to diagnose if the validation or training datasets are a good representation of the model task domain.
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The training learning curve is computed based on the training dataset and thus gives an impression on how
well a model is learning. The validation learning curve is computed based on the validation dataset, so it is
used to evaluate how well the model is generalizing. The training and validation learning curves for model 1
are presented in fig. 4.7, with on the y-axis the MSE loss on a logarithmic scale. It is observed that the model
is well-fit as the training and validation loss decrease to a stable minimum with a only a small generalization
gab between the loss values at the final epoch.

Figure 4.7: Training and validation MSE loss for model 1.

4.3.2 Model 2 - CNN-LSTM

The second model is designed while considering two data-streams: the latest available satellite images and the
day-ahead solar PV power prediction data (Pdayahead). The model is designed for exactly the same purpose
as model 1: a forecast with a temporal horizon of 3 hours, a 15-minute resolution and which has a forecast
frequency of 15-minutes. The input data matrix consisting of 12 time steps and 4 input features: Pdayahead,
DOYnorm, QODnorm and the satellite images, of which the latter is a 3-dimensional data source. The proposed
model is designed in a two step approach. First a CNN-LSTM model (model 2A) is designed and trained to
process the satellite images into a power output (Psatellite) corresponding to the images in the input sequence.
Next a LSTM model (model 2) is designed which generates a solar PV power forecast from the Psatellite in
combination with the three remaining input features. In several model design experiments this approach shows
to outperform a model framework in which the model is not split and trained separately to process satellite
images to a solar PV power output. In the following two subsections the design process of model 2A and its
integration in model 2 are discussed separately.

Model 2A
The architecture of model 2A consists out of a CNN in combination with an encoder-decoder LSTM network, as
visualized in fig. 4.8. The CNN is employed to capture spatial information on clouds and shaded areas from the
pre-processed satellite images and encode the captured features in representation vectors, one for each image. An
encoder-decoder LSTM is subsequently employed to capture the temporal relation between the representation
vectors of the satellite images and provide a mapping function to the corresponding solar PV power generation
output sequence. The CNN consist out of a repetition of four convolutional and max-pooling layers followed
by a flatten layer. The CNN is employed in a time-distributed wrapper, which allows for the utilization and
training of the same CNN for each satellite image in the 12 time step input sequence. The LSTM encoder and
decoder consist both out of a three stacked LSTM layers with 200 memory cells each, which follows the same
structure that has shown to be effective in design experiments for model 1. Several experiments have been
performed to tune the hyperparameters of model 2A, with a special focus on the CNN architecture. Based on
these experiments and literature regarding hyperparameter selection, the following decisions on hyperparameter
selection are made:

• MSE is selected as loss function to quantify the training error in the model optimization process.
• Adam is used as optimization algorithm for model training.
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• A learning rate schedule is adopted which lowers the learning rate by 50% for every 15th epoch and starts
with an initial learning rate of 0.001.

• The mini-batch size is set to 96 samples.
• The ReLU activation function in combination with He normal initialization is applied to the fully-

connected layers.
• The tanh activation function is used for the cell state and hidden state of the LSTM cells.
• The sigmoid activation function is used for the input, output and forget gate of the LSTM cells.
• The time distributed fully connected stack consists of 3 layers with 200, 100 and 1 neuron(s).
• The model encoder and decoder LSTM stack consists out of 3 layers with 200 neurons each.
• The CNN has four convolutional layers with 32 filters each, a kernel size of 3x3, zero padding, a ReLU

activation function and He uniform kernel initiation.
• The CNN has four max-pooling layers with a kernel size of 2x2 with no (valid) padding.
• Batch normalization is not applied as regularization technique after each convolutional layer, as it showed

to increase the validation error.
• The model is trained for 50 epochs.

Figure 4.8: Overview of the model 2A, designed for the processing of satellite images to corresponding solar PV power
output.

The learning performance throughout the numerous CNN-LSTM architecture experiments for model 2A are
evaluated using model training and validation optimization learning curves. The training and validation learning
curves for model 2A are presented in fig. 4.7, with on the y-axis the MSE loss on a logarithmic scale. It is
observed that the training and validation loss significantly decreases over the number of epochs, indicating
that the model is learning the mapping task of satellite images to solar PV power output (Psatellite). The
validation loss goes to a stable minimum after about 35 epochs, while the training loss continuous to decrease.
As the validation loss is not increasing and does not have an inflection point after 35 epochs, the plot of the
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optimization curves does not shows the dynamics of overfitting. In this case the training loss continuous to
decrease while the validation loss is stable, this situation can indicate an under-representative training dataset.
This means that the training dataset does not provide sufficient information to completely learn the model task.
This can occur when the training dataset has too little samples compared to the validation dataset. Due to
the highly dynamic nature of clouds and weather condition, a large number of cloud cover settings can occur
in the satellite images over Germany. Hence, it is possible that several characteristic cloud cover settings and
their corresponding power output are unrepresented in the training dataset, while occurring in the validation
dataset. However, it must be noted that the MSE loss is plotted on a logarithmic scale in fig. 4.7 and the gab
between the training and validation loss is relatively small compared to the overall reduction in MSE loss over
the 50 epochs.

Due to the possible under-representation of the training dataset a method called transfer learning is investigated
in the course of this research project. Transfer learning is a method where an earlier developed and trained model
is reused as a starting point for a new model aiming to tackle a related task [20]. This approach is often applied
as the development and training of new models requires vast amount of computational and time resources,
plus an extensive training dataset. A summary of the transfer learning technique and performed experiments
is provided in appendix A. The experiments indicate that a self-trained model is superior to models based on
transfer learning for this particular task.

Figure 4.9: Training and validation MSE loss for model 2A.

Model 2
The architecture of model 2 integrates the pre-trained CNN-LSTM architecture of model 2A for the processing
of satellite images to their corresponding solar PV power (Psatellite). Additionally an encoder-decoder LSTM
network is added to generate the 12-step solar PV power forecast sequence, as visualized in fig. 4.10. In this
model only the encoder-decoder LSTM architecture is trained with the purpose of mapping four input features
Psatellite, Pdayahead, DOYnorm and QODnorm to a solar PV power forecast. In this way, the architecture and
input matrix of model 2 is the same as model 1, except that the actual solar PV power (Pactual) is replaced by
(Psatellite) provided by model 2A. As a result the data and model delay for an online version is reduced from
45-60 minutes to 5 minutes. Similar to model 1, the LSTM encoder and decoder consist both out of a three
stacked LSTM layers with 200 memory cells each. The hyperparameters of model 2 are kept similar to those of
model 1. This is motivated by the use of the same model architecture and similar input features in relation to
the hyperparameter optimization experiments performed for model 1. Moreover the similar setup allows for a
like-for-like comparison to model 1 regarding the input feature Pactual versus Psatellite.
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Figure 4.10: Overview of the model 2 with the integration of the pre-trained model 2A.

The training and validation learning curves for model 2A are presented in fig. 4.11, with on the y-axis the
MSE loss on a logarithmic scale. It is observed that the training and validation loss significantly decreases over
the number of epochs, indicating that the model is learning the mapping task of the input features, including
Psatellite, to solar PV power forecast sequence. Moreover, it can be seen that the training and validation loss
go to a stable minimum, with a relatively small generalization gab between the loss values at the final epoch.

Figure 4.11: Training and validation MSE loss for model 2.

Due to the complex and ensemble architecture of model 2 several problems arise with providing input data to
the model training process. The 4 input data sources required by model 2 consist of 1-dimensional sequence
data and 3-dimensional image sequence data. Moreover, these data streams are required as input at different
stages in the complete model. Finally, the satellite image training dataset consists out of 140256 sequences with
12 images each. If loaded and provided to the training phase directly, this would require much more DRAM
memory than available. To overcome these problems a dedicated data generator is build to automatically
transform the multivariate and multidimensional time series data sources into samples. These samples are
subsequently provided in batches and separate data streams to the model in the training phase. The script of
the custom built multivariate time series generator is available in appendix E.
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4.4 Forecast performance evaluation metrics

The accuracy and performance of the proposed models are assessed using four metrics: mean absolute error
(MAE), root mean square error (RMSE), mean bias error (MBE) and mean absolute percentage error (MAPE).
The metrics enable the comparison between the two proposed models predictions and benchmark models pre-
dictions relative to the actual solar PV power generation. Each metric adds some information on a certain
aspect of the accuracy of a model. In the MAPE metric two denominators are considered, the total solar PV
power generation for the sMAPE and the total power generation of all production types for the tMAPE. The
evaluation metrics are calculated as follows:

MAE = 1
N

N∑
i=1
|Ppred − Ptrue| (4.18)

RMSE =

√√√√ 1
N

N∑
i=1

(Ppred − Ptrue)2 (4.19)

MBE = 1
N

N∑
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(Ppred − Ptrue) (4.20)
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tMAPE = 100
N

N∑
i=1

∣∣∣∣Ppred − Ptrue

Ptotal

∣∣∣∣ (4.22)

where N is the number of data points in the evaluation set, Ppred is the predicted power, Ptrue is the actual
solar PV feed-in power and Ptotal is the total power of all generation types. The MAE shows the average
error between model predictions and actual values, making it suitable for the evaluation of uniform forecast
errors [9]. The RMSE penalizes large errors more significantly. The MBE metric tells if a model overestimates
or underestimates on average. The sMAPE and tMAPE are suitable to evaluate uniform forecast errors and
is a useful tool for the comparison of model performance on different datasets, such as a regional forecast in
comparison to an aggregated forecast for Germany. Moreover, the sMAPE and tMAPE provide a more intuitive
indication of the impact of the forecast error on energy market, by showing the relative error percentage to the
solar PV and total power generation.

Independent of the metrics applied to assess model performance, there are several factors influencing the com-
parison between models and the accuracy of a single model. The following factors and their appropriate solution
are considered:

• Day/night values: In order to make fair comparison between the proposed models, benchmark models
and other models from literature, it is important to clearly state the time range over which the model
performance is evaluated. Two options can be considered, whether to evaluate both day and night values or
only time steps in which the actual solar PV generation (Pactual) is larger than zero. Although the proposed
models make forecast for all quarters of the day, the performance evaluation over forecast values where
Pactual > 0 results in a better representation of the average error on the interval for which the forecast is
important. The inclusion of forecast where Pactual = 0 would increase the model performance since the
estimator at night is also very close to zero. Hence, in the model evaluation all forecast timestamps where
Pactual is equal to zero are discarded. This approach is most often followed in literature when new solar
PV power forecast methods are proposed [9].

• Solar ramp: Ramp events are caused by the variability of sunlight throughout the day, resulting in the
characteristic bell shape solar PV power time series as visible in fig. 4.12. Due to the statistical nature of
the proposed models, relying on past input data, the model performance may strongly vary throughout the
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day. Moreover, the impact of the solar PV generation and the model forecast error at noon is larger and
more important to energy trading than the generation just around sunrise and sunset. In order to better
assess the model performance based on time-of-day and relative impact of the forecast error, the solar PV
prediction errors are grouped in three events. A separation based on timestamp is not possible, as the time
of sunrise and sunset varies throughout the seasons. Instead a separation is made using the maximum
solar PV generation throughout the day. The first group is called the ‘ramp up event’ and contains all
forecast timestamps for which the maximum solar PV generation is increasing and below 75% of its daily
maximum. The second group is called the ‘ramp down event’ and contains all forecast timestamps for
which the maximum solar PV generation is decreasing and below 75% of its daily maximum. The group
containing all forecast timestamps for which the maximum solar PV generation is above 75% is called
the ‘peak event’. An illustration of this grouping mechanism is presented in fig. 4.12 for summer day on
02-07-2019. In the forecast results of the model test year 2020 the ramp up, peak and ramp down event
represent 19.1%, 20.9% and 20.0% of the samples, respectively. The remaining 40% of the samples are
forecast where the Pactual = 0.

Figure 4.12: Illustration of the grouping mechanism used to separate the solar ramp in three events: ramp up, peak and
ramp down.

In order to evaluate the performance of the two proposed forecast models, three benchmark models are con-
sidered: a persistence model, the Entsoe intra-day solar PV forecast and the Entsoe day-ahead forecast. A
persistence model is an often used benchmark in literature on solar PV power forecasting. It is useful to com-
pare the prediction accuracy of the proposed forecast model to the accuracy of any trivial model, such as a
persistence model [10]. The underlying fundamentals of a persistence model makes it popular for very short-
term to short-term forecast, similar to the temporal forecast domain of the proposed models in this research.
A persistence model assumes no change in conditions from the instance the forecast is made (t) to the forecast
timestamp (ft). The designed persistence model for this research project assumes that the future normalized
solar PV power at ft will be the same as the normalized solar PV feed-in power at instance t, as described in
eq. (4.23). The forecasted normalized power is subsequently scaled to the true solar PV power output using the
maximum solar PV power from the clear sky model at ft.

Pnorm(ft) = Pnorm(t) (4.23)

An intra-day and a day-ahead solar PV power forecast are published by the four Germany TSOs and are publicly
available on the Entsoe transparency platform, as introduced in section 4.1.2. These forecasts act as a market
standard and can significantly influence energy market trading when the projected solar PV feed-in deviate from
the actual generation. As a consequence, these forecast are important benchmarks to evaluate the performance
of the proposed models. An important difference of these forecast compared to the proposed models lies in
the forecast methodology, update frequency and forecast horizon. The intra-day and day-ahead forecast are
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physical forecast models based on PV system characteristics and NWP model data. The day-ahead forecast
is published once every 24 hours, no later than 18:00 (Brussels time) the day before actual power delivery,
and have a forecast horizon from 00:00 to 23:45 for the day of actual power delivery. The intra-day forecast
is published once every 24 hours, before 08:00 (Brussels time) on the day of actual power deliver, and have a
forecast horizon from the moment of publication to 23:45. In contrast, the proposed statistics based models,
have an update frequency of 15-minutes and a forecast horizon of 3 hours.

In order to compare the forecasts of the proposed models and the benchmark models, which have different
forecast frequency and horizon, an element wise comparison mechanism is adopted. A forecast result matrix is
generated which stores all 12 time step sequences of the two proposed models. Next the actual solar PV feed-in
and power forecast of the persistence, intra-day and day-ahead models are added for each individual time step
in the forecast. In the computation of the performance metrics the errors are first element wise calculated and
then averaged.

4.5 Experimental setup

An extensive model development phase and model comparison studies have been performed in this research
project. The model code and analysis tools are written in the Python 3.8.5 programming language. Keras
2.4.3 with Tensorflow 2.4.0 backend open source deep learning libraries are used to build all the experimental
deep learning models. Keras is an easy to use application programming interface (API) which supports the
development and evaluation of models with a limited amount of programming. The Keras sequential API
supports layer-by-layer model creation, which is sufficient for most problems but has a limited flexibility for
models with shared layers or multiple input streams. The Keras functional API allows for the creation of
more complex model structures and is therefor used for the development of model 2. Other packages used
for comparative studies, pre-processing and visualization include: Numpy 1.19.2, Pandas 1.1.3, Sklearn 0.23.2
and Matplotlib 3.3.2. Neptune 0.9.2 is used as experiment management tool as it allows for systematical
logging, tracking and comparing of experiments. All experiments are conducted on a virtual machine, whose
configuration is Intel(R) Xeon(R) Gold 6152 CPU 2.10 Ghz with 12 processors and 48GB of memory. The main
python scripts developed for model 1 and model 2 are available in appendix B and appendix C respectively.

The training time required by a model is dependent on hyperparameter settings and the size of the training
dataset. However, it is possible to give an indication of the training time range experienced during model
development. Model 1 has a training time of about 5 minutes per epoch on the available configuration. Model
2A and 2 are mainly governed by the time it takes to perform the convolutions in the CNN and has a training
time of 20-30 minutes per epoch. More important to note is that the prediction process time of one 3-hour
forecast takes less than a second. This makes the proposed models applicable for a real-time service, in which
the forecast is run every 15-minutes using the latest available data.
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Chapter 5: Results & Discussion

This chapter presents the results and evaluates the performance of the two proposed solar PV power forecasting
models. Through a comparison of the proposed models to three benchmark forecasts, the model performance,
effectiveness and characteristics are analyzed. In order to simplify the comparability between the two proposed
models, it is assumed that all data is available in real time, and both models can be initiated at the same
time for a 3-hour forecast horizon. The analysis is broken down in three sections in order to get a complete
understanding of the performance and highlight important model characteristics. First, the global statistics
of the two proposed are presented in section 5.1, in particular highlighting 5 aspects of the prediction results.
Next, in section 5.2 three characteristic case studies are presented. Finally, in section 5.3 a regional forecast is
presented to analyse the effect of spatial aggregation and geographic invariance.

5.1 Global statistics

After defining the model architecture, hyperparameter tuning and model training using the training and vali-
dation dataset as described in chapter 4, in this chapter the performance of the proposed model 1 and model
2 is evaluated against a year-long unseen dataset. The unseen test dataset ranges from 01-01-2020 00:00:00
to 31-12-2020 23:45:00 and contains 35136 multivariate sample sequences of 12 time steps. The average global
accuracy of the two proposed models is evaluated using the performance metrics MAE, RMSE, sMAPE and
tMape, which are used to compare the accuracy of the proposed models against three benchmark models as
described in section 4.4. The analysis of accuracy results is divided in five subsections, in order to highlight
important aspects of the model performance.

5.1.1 Overall performance

The overall performance results are presented in table 5.1. In terms of squared and absolute errors model 1
shows a substantial forecast performance improvement over the Entsoe day-ahead and intra-day forecast, with
a relative MAE improvement of 53% and 43%, respectively. Moreover, the mean absolute percentage error of
the model 1 forecast relative to the actual solar generation and total generation is significantly reduced to 8.4%
and 0.3% respectively. Additionally the non-linear LSTM network of model 1 shows absolute superiority to a
trivial persistence model. The predictive accuracy of the satellite image based model 2 is similar to that of the
Entsoe intra-day forecast, and slightly better than day-ahead forecast.

Table 5.1: Comparison of the forecast accuracy of the benchmarks and proposed models using the performance metrics
MAE, RMSE, sMAPE and tMAPE for the year 2020. The best performance is marked with bold font.

Model RMSE (MW) MAE (MW) sMAPE (%) tMAPE (%)
Persistence 2159 1333 59.6 1.5
Entsoe day-ahead 1008 672 15.7 0.7
Entsoe intra-day 840 558 13.2 0.6
Model 1 507 316 8.4 0.3
Model 2 812 547 11.6 0.6

5.1.2 Performance over the solar ramp

Next, the performance is evaluated while considering the period of the forecast horizon relative to the charac-
teristic daily solar ramp. In table 5.2 the solar PV power prediction errors are grouped in three solar ramp
events: ramp up, peak, ramp down. Model 1 shows superior prediction accuracy for all three groups and on
all evaluation metrics. The performance of model 2 is slightly better than the Entsoe intra-day forecast only
for the peak and ramp down event based on the RMSE and MAE, but better for all three groups based on the
sMAPE. This observation can be explained by a different distribution in the error of model 2 relative to its
location on the solar ramp, compared to the location of the error of the intra-day forecast. It can be observed
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that the predictive accuracy of model 1 is particularly better for the peak and ramp down event compared to the
Entsoe benchmark forecasts, whereas the accuracy in the ramp up event is more in accordance with the Entsoe
intra-day forecast. This observation stresses the underlying weakness of a statistical forecast method, such as
employed in model 1 and model 2, where the predictions are based on past observations. A large number of the
predictions made in the ramp up event contain input feature values obtained before sunrise. For model 1 this
means that the normalized actual solar PV feed-in input feature (Pactual) consist of zero values and is thus not
a good proxy for the weather conditions and cloud-cover that it otherwise represents. Similarly for model 2, the
satellite images before sunrise do not contain information in the visible band and thus do not provide a good
estimator for the impact of cloud cover on the future solar PV generation. In order to boost the performance
of models 1 and 2 in the solar ramp up event, the Entsoe day-ahead forecast (Pdayahead) was added to both
models as input feature. This input feature improves both model’s accuracy in the ramp up event to the values
shown in table 5.2. However, this design decision might also negatively influence the model accuracy during
other periods of the solar ramp, as the model’s accuracy is now partly dictated by the inherited accuracy of the
day-ahead forecast. Moreover, if the day-ahead forecast is inaccurate for a specific day during the solar ramp
up, the models 1 and 2 also show a poor performance for the same period.

Table 5.2: Comparison of the proposed models and benchmark forecast accuracy split in the three characteristic solar
ramp events. The best performance is marked with bold font and the RMESE, MAE and sMAPE in (MW), (MW) and
(%), respectively.

Ramp up Peak Ramp down
Model RMSE MAE sMAPE RMSE MAE sMAPE RMSE MAE sMAPE
Persistence 3162 1986 58.9 1748 1175 9.5 1042 842 130.9
Entsoe day-ahead 645 418 16.6 1384 1056 9.2 636 408 24.0
Entsoe intra-day 507 321 13.0 1159 886 7.9 546 357 20.9
Model 1 441 267 11.9 659 452 3.8 277 177 11.3
Model 2 556 360 12.6 1098 829 7.0 524 354 17.2

5.1.3 Performance over the forecast horizon

A third important aspect to analyse is the performance of the proposed models over the forecast horizon and
whether the performance is satisfactory across all prediction times. In particular, it is important to check from
which forecast horizon the proposed statistical models equal the performance of the day-ahead and intra-day
forecast of the TSOs. Figure 5.1 shows the squared prediction errors for each time step across the 3 hour
forecast horizon. Here the RMSE accuracy of the Entsoe intra-day and day-ahead forecast are flat over the
forecast horizon. This is because the forecasts are available on a daily interval and forecast horizon, resulting
in a uniform error for every 15-minute initiation and 3-hour forecast horizon of the two proposed models in this
research project. Model 1 and the persistence model show the best performance for the shortest forecast horizon
of 15-minutes and degrade over longer horizons. The performance of the persistence model degrades sharply
with increasing prediction horizon. These results are in accordance with the literature study, which indicated
that persistence models prove only good results for forecast horizons shorter than 1 hour [10]. The prediction
accuracy of the non-linear LSTM based model 1 degrades less sharp over the forecast horizon, and outperforms
the Entsoe benchmarks on the 3-hour target horizon for both the solar peak and ramp down events. Due to
the aforementioned statistical methodology it is observed that the performance of model 1 degrades faster for
forecast in the solar ramp up and performs in line with the Entsoe intra-day forecast after 120-minutes.

As can be seen from table 5.2 and fig. 5.1 the prediction accuracy of model 2 is more in line with the Entsoe
intra-day forecast and has a higher prediction error for short forecast horizons compared to model 1. The
development of two individual solar PV forecasting models in this research project was motivated by the live
availability of their respective data input streams. The actual solar PV feed-in power input feature of model 1 is
available with a 45-60 minute delay, whereas the satellite images for model 2 are available with only a 5-minute
delay. Due to this delay difference the first still relevant forecast point is 60-minutes after forecast initiation
for model 1, compared to 5-minutes for model 2. Even if the prediction accuracy across the forecast horizon of
model 1 is shifted backward by 60-minutes, the squared prediction errors of model 1 are still lower than those
of model 2. Therefore, as an initial observation when comparing the average performance of the two proposed
model with in addition the benchmark forecasts, a model based on actual generation data seems to be be the
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superior choice for live solar PV power forecasting with a 3-hour horizon.

(a) Full day (b) Ramp up

(c) Peak (d) Ramp down

Figure 5.1: Comparison of the prediction accuracy of the models across the 3-hour forecast horizon, with a split for the
full day, ramp up, peak and ramp down solar ramp events.

Figure 5.2 shows scatter plots for the solar PV power predictions of models 1 and 2 on a 1 hour, 2 hour and 3 hour
forecast horizon versus the actual solar PV generation. It can be observed in these plots that the performance of
model 1 is better than model 2 on all three forecast horizons, as it features a smaller spread. It is also observed
that the predictions of model 2 show several extreme deviations, especially to an under estimation in the peak
of the solar ramp. Most of the extreme outliers are traced back to 28 February 2020, for which the satellite
image at 08:45 is blank and thus incorrect. This leads to a extreme reduction in the forecasted solar PV power
output for 12 forecast runs, in which the incorrect image is in the input sequence. This demonstrates that it
is crucial for the performance of model 2 that the provided dataset for training and prediction operations is
errorless and consistent. Further investigation of the predictions in the outer band of the scatter plots spread of
model 2 shows that these occur often under conditions of rapid cloud formation or under conditions featuring
high spatio-temporal variation in the cloud cover. Several of these events are presented in section 5.2, where
the accuracy of models 1 and 2 under those weather conditions are further analysed. It can also be observed
from fig. 5.2 that the error spread is more uniform from low to high solar PV power generation for model 2,
compared to model 1, where the spread decreases with higher solar PV generation. This is in accordance with
the results of table 5.2, which shows that the sMAPE is lowest for solar PV power predictions in the peak of
the solar ramp compared to the ramp up and down, and more so for model 1 compared to model 2.
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(a) Model 1 - 1 hour forecast horizon (b) Model 2 - 1 hour forecast horizon

(c) Model 1 - 2 hour forecast horizon (d) Model 2 - 2 hour forecast horizon

(e) Model 1 - 3 hour forecast horizon (f) Model 2 - 3 hour forecast horizon

Figure 5.2: Scatter plot of 1 hour, 2 hour and 3 hour forecast predictions of models 1 and 2, split by solar ramp event,
compared to the actual solar PV generation.

5.1.4 Forecast bias

A further step to analyse is if the proposed models have a tendency to overestimate or underestimate the solar
PV power generation. The spread of the scatter plots in fig. 5.2 indicate a possible negative bias, especially for
model 2. In table 5.3 the mean bias error is presented for the solar ramp up, peak and ramp down event, plus a
further split for a 0-1 hour, 1-2 hour and 2-3 hour forecast horizon. It can be observed that for both models 1
and 2 the bias turns from an underestimation for short forecast horizons to an overestimation for longer forecast
horizons in the ramp up. Furthermore, both models 1 and 2 have a tendency to underestimate the solar PV

41



power generation in both the peak and ramp down of the solar ramp, and more so for shorter forecast horizons.
However, it must be noted that these bias errors are relatively small compared to the RMSE, MAE and total
solar generation.

Table 5.3: Comparison of the proposed models and benchmark forecast mean bias error in MW. The MBE score is split
in the three characteristic solar ramp events, plus a further split for a 0-1 hour, 1-2 hour and 2-3 hour forecast horizon.

Ramp up Peak Ramp down
Model 0-1h 1-2h 2-3h 0-1h 1-2h 2-3h 0-1h 1-2h 2-3h
Persistence 481 1760 3543 -214 -441 -313 -446 -840 -1015
Entsoe day-ahead -21 -21 -21 8 8 8 -34 -34 -34
Entsoe intra-day -9 -9 -9 -34 -34 -34 -38 -38 -38
Model 1 -15 3 17 -49 -65 -61 -34 -46 -56
Model 2 -22 20 57 -104 -84 52 -118 -64 -50

5.1.5 Performance dependency on weather conditions

A next step in analysing the global statistics is to check for forecast dependencies on weather conditions. There
are two commonly used parameters to classify weather conditions, the clearness index (kt) and the clear sky
index (kcs) [9]. These parameters are obtained from the ratio of measured irradiance to modeled clear sky
irradiance, with a difference in the latter used as normalization factor. As this research project is dedicated to
direct power forecasting, no irradiance observation data is available. However, the normalized Pactual, obtained
as a ratio of the actual solar PV feed-in power and the clear sky model solar PV power, can act as a proxy
for the clear sky index. Figure 5.3 shows the MAE for the two proposed models and the Entsoe benchmark
models over the Pactual, where the MAE is calculated for 10 equally sized bins. It is observed that all forecast
show a prediction accuracy dependency on the Pactual. Clear sky conditions (Pactual near 1) and overcast
cloud cover (Pactual near 0) show a better prediction accuracy compared to broken cloud cover (Pactual near
0.5). The weather conditions where Pactual is near 0.5 can feature strong spatial and temporal variations in
the cloud cover. Here model 1 significantly outperforms the satellite image based model 2, which is less the
case for overcast conditions. Interestingly, the predictions accuracy of model 2 is the lowest under clear sky
conditions compared to the other models. A possible explanation for this is the overestimation of impact of
small cloud features or scattered clouds on the total solar PV generation. A critical note must be made on the
assumption of the Pactual being a good proxy for the clear sky index. Under this assumption the Pactual data
should be completely stationary, which is not the case near sunrise and sunset. Here the Pactual is near zero,
hence resulting in an overly small MAE in the lower Pactual domain of fig. 5.3. This characteristic complicates
the analysis of the performance based on weather conditions using the normalized solar PV feed-in power. A
further step in analysing the forecast dependencies on weather conditions is presented in the seasonal forecast
analysis of section 5.1.6.

Figure 5.3: Dependency of the two proposed models and Entsoe intra-day and day-ahead models MAE on the normalized
actual solar PV feed-in power, presented as a proxy for the clear sky index.
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5.1.6 Seasonal effects

The final step in analyzing the proposed models performance is to validate whether the prediction accuracy
is constant or dependent on seasonality. Since weather conditions and sun elevation change by seasons, these
dependencies might influence the quality of the models. In order to analyze the seasonal performance, the test
dataset is divided in four subsets by meteorological seasons. Specifically, the spring test set ranges from 1 March
2020 to 31 May 2020, the summer test set from 1 June 2020 to 31 August 2020, the autumn test set from 1
September 2020 to 30 November 2020, and the winter test set from 1 December 2020 to 31 December 2020 plus
1 January 2020 to 29 February 2020. The results of this analysis are summarized in table 5.4. In particular,
analysing these results, it is clear that model 1 maintains its superior performance over all four seasons and all
evaluation metrics relative to model 2 and the benchmark forecasts. The model performance in autumn and
especially winter shows a higher relative error to the total amount of solar generation, expressed by the sMAPE.
However, according to the tMAPE, these errors have a lower impact on the total power generation compared
to summer. This can be easily expected, as the total daily solar generation is less in winter. Based on the
RMSE and MAE there is no strong impact of seasonal variability visible. Though, the squared and absolute
errors of both models 1 and 2 are slightly higher in summer and spring compared to autumn and winter. A
possible explanation for this phenomena is a more frequent occurrence of convective cloud formation in summer
and spring. In the analysis of fig. 5.2 this is already identified as a possible source of larger errors, especially for
model 2. Also interesting to observe from table 5.4 is that model 2 outperforms the Entsoe intra-day forecast
more significantly in spring and winter, compared to summer and autumn.

Table 5.4: Comparison of the seasonal performance of the benchmark and two proposed models for the year 2020. The
best performance is marked with bold font.

Season Model RMSE MAE (MW) sMAPE (%) tMAPE (%)
Persistence 2560 1564 57.5 2.9
Entsoe day-ahead 1137 758 10.9 1.3

Spring Entsoe intra-day 941 615 9.0 1.0
Model 1 552 340 5.7 0.6
Model 2 879 581 8.0 1.0
Persistence 2082 1306 53.2 2.4
Entsoe day-ahead 975 644 12.5 1.1

Summer Entsoe intra-day 768 514 9.8 0.9
Model 1 512 328 7.3 0.6
Model 2 787 549 9.9 0.9
Persistence 2097 1321 60.5 2.1
Entsoe day-ahead 965 660 19.5 1.0

Autumn Entsoe intra-day 799 548 16.1 0.8
Model 1 485 300 9.7 0.5
Model 2 799 559 13.1 0.9
Persistence 1617 1037 73.0 1.5
Entsoe day-ahead 896 599 24.1 0.9

Winter Entsoe intra-day 845 562 22.1 0.8
Model 1 449 277 13.2 0.4
Model 2 761 475 18.7 0.7

5.2 Case studies

To further analyze the two proposed models and identify characteristic model behavior under certain weather
events three case studies are presented. In the first case study a winter day with overcast cloud cover is presented.
Next, in the second study an autumn day with rapidly changing broken cloud cover is discussed. Then, in the
third study a day with convective cloud formation in spring is examined.
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Case 1: Overcast winter day
The first case study presents a winter day with overcast cloud condition on 9 January 2020. A time series
of models 1 and 2 forecast runs and corresponding satellite images are presented in section 5.2. The forecast
initiations range from 07:00 to 11:30 and are presented for every half and full hour. It can be observed that the
forecast of models 1 and 2 for 07:00 are in line with the Entsoe day-ahead forecast, as for this initiation the input
variable Pactual and the satellite images provide no context on the latest cloud conditions. This underlines the
observation that the accuracy of models 1 and 2 in the solar ramp up are strongly dependent on the correctness
of the day-ahead forecast, as previously discussed in section 5.1. Starting from the 07:30 forecast and onward
the Pactual and the satellite images provide information on the latest weather conditions, which is translated in
a power forecast that is higher than the Entsoe day-ahead and intra-day forecast. Both models 1 and 2 seem
to pick up the clearing of clouds in the southern part of Germany, visible in the satellite image from 08:00
and onward. In this case, model 2 provides a more accurate forecast of the solar PV power output throughout
the day. The power forecast of model 1 is adjusted downward from the 10:00 run to the 10:30 run, possibly
influenced by the slight dip in the Pactual visible in the solar ramp for this time range. After this dip in the
solar ramp, the actual solar PV feed-in increases again more strongly, for which the forecast of model 1 adjusts
accordingly. This observation stresses the dependency of model 1 on past input data. If changes in an input
feature are only momentarily and not continuous, such as observed in this case study, it can negatively impact
the forecast accuracy on the full 3-hour forecast horizon.
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Figure 5.4: Time series of the forecasts made for case study 1 with accompanying satellite images. The first forecast
subfigure is presented top left with the arrows indicating the chronological order.
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Case 2: Autumn day with cloud formation
This case study presents a day with rapidly changing broken cloud cover on 6 September 2020. A forecast time
series is presented in section 5.2, starting from forecast initiation 06:30 to 09:00 with a 30-minute temporal
resolution and from 09:15 to 10:00 with a 15-minute resolution. The day starts with the break up of clouds in
the north of Germany, resulting in a higher solar PV power output forecast by model 1 and model 2 compared
to the Entsoe day-ahead and intraday forecast. Both models quite accurately predict the peak power generation
at the 07:30 forecast, but overestimate the time for which this holds, as both models have no indication that
conditions will change. In the satellite image of 09:00 in section 5.2 it can be observed that the cloud condition
are changing. An increase in cloud cover starts over the northern and central part of Germany, possibly due to
turbulent and convective processes. This results in a big update for the satellite image based model 2 at 09:15,
strongly reducing the expected solar PV power output over the entire 3-hour horizon. Although this forecast
is inaccurate, it indicates that model 2 picks up rapidly changing cloud conditions and translate this in the
power forecast. The forecast of model 1 is decreasingly overestimating the solar PV power output for the runs
from 09:00 to 09:45. This indicates that the adjustment to the rapidly changing conditions takes longer and
is more gradual for this model. Still, also model 1 is able to pick up the changing conditions and adjust the
forecast accordingly. This shows that in this case the Pactual is also good proxy for the latest cloud conditions
and results in a more accurate forecast.

Case 3: Spring day with cloud formation
This case presents spring day with strong cloud formation over the central and eastern par of Germany on 3
May 2020. The forecast time series of this day is presented in section 5.2 starting from forecast initiation 07:30
to 10:00 with a 15-minute temporal resolution. Both model 1 and model 2 point to a slightly lower solar PV
power output for the first four presented forecast runs compared to the Entsoe day-ahead and intraday forecast.
In the satellite images starting from 08:00 the first increase in cloud cover can be observed, with a stronger
increase from 09:00 and onward. The forecast of model 1 points to an increasingly lower power feed-in starting
from the 8:30 run. The satellite image based model 2 forecast points to higher solar PV power feed-in and
less decreasing compared to model 1. Furthermore it is observed that in the forecasts of 08:45 to 9:15 both
models 1 and 2 have a lower power offset point (15-minutes after model initiation), but still expect an increase
in solar PV power following the characteristic solar ramp shape. This expectation to have an increasing solar
PV power output up to the time of peak maximum solar power is even stronger for model 2 compared to model
1. From this observation it can be questioned if normalized Pactual used for the training of both models is
stationary enough and if this reduces the flexibility of the model to deviate from the characteristic solar ramp
shape. Analyzing the results of this case study together with case 2, indicates that both models 1 and 2 have
the ability to identify events with convective cloud formation and translate this in a forecast. However it also
shows that both models do not have the ability to forecast these events before they onset.
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Figure 5.5: Time series of the forecasts made for case study 2 with accompanying satellite images. The first forecast
subfigure is presented top left with the arrows indicating the chronological order.
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Figure 5.6: Time series of the forecasts made for case study 3 with accompanying satellite images. The first forecast
subfigure is presented top left with the arrows indicating the chronological order.
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5.3 Regional forecast

A forecast over a large number of individual solar PV power plants reduces the variability and fluctuation of the
total solar PV power output, resulting in a more reliable forecast for aggregated regions compared to individual
sites or small regions [9]. Although the initial application of the proposed model framework is for Germany,
representing a large aggregated region, it is useful to evaluate if the forecasting framework is easily applicable
and transferable to smaller or different regions. Moreover, regional forecasts are of major interest to energy
markets, as power can also be traded per dedicated TSO control region in Germany and with a shorter lead
time to contract delivery. For this reason, the proposed forecast models 1 and 2 are additionally trained and
evaluated on one local TSO control area.

The grid area controlled by 50Hertz is selected for this purpose, located in the North-Eastern region of Germany
as visible in fig. 4.1. The area represents 25% of the installed solar PV capacity with 14.2 GW in December
2020 and has an areal footprint of roughly one-third of the size of Germany. The datasets for this region are
extracted and pre-processed in a similar manner as described in section 4.1. The models are trained on a dataset
ranging from 01-01-2015 00:00:00 to 31-12-2019 23:45:00 and are not further tuned for the specific task. The
performance of the proposed model 1 and model 2 are again evaluated against an unseen dataset, ranging from
01-01-2020 00:00:00 to 31-12-2020 23:45:00. The overall performance results are presented in table 5.5. Similar
to the forecast for Germany as a whole, the performance of model 1 is superior to all other models, although
less significantly. On the contrary, the forecast accuracy is lower for model 2 compared to the Entsoe intra-day
forecast for 50Hertz. Moreover, comparing the results to table 5.1, it is apparent that the sMAPE and tMAPE
of all forecast models are higher for the 50Hertz regional forecast. This is in line with the results from literature
on solar PV power forecasting, as forecast for larger regions are more reliable due to the averaging effect of local
inaccuracies.

Table 5.5: Comparison of the forecast accuracy of the benchmark and proposed models for the 50Hertz grid region using
the performance metrics MAE, RMSE, sMAPE and tMAPE for the year 2020. The best performance is marked with
bold font.

Model RMSE (MW) MAE (MW) sMAPE (%) tMAPE (%)
Persistence 684 433 42.8 2.9
Entsoe day-ahead 412 282 20.6 1.8
Entsoe intra-day 297 195 14.7 1.3
Model 1 248 154 9.9 1.0
Model 2 317 213 13.1 1.4

Next, the regional forecast performance is evaluated while considering the period of the forecast horizon relative
to the characteristic daily solar ramp. In table 5.2 the solar PV power prediction errors are grouped in the
ramp up, peak, ramp down events. Contrary to the countrywide forecast, it is observed that the accuracy of
model 1 is lower for the ramp up in terms of squared and absolute error compared to the Entsoe intra-day
forecast. Although, the lower accuracy occurs with higher actual solar PV feed-in power, demonstrated by the
lower sMAPE score. This indicates that the majority of the error impact occurs close in time to the solar peak
rather than close to sunrise. Moreover, comparing the results to table 5.2, it is striking that the sMAPE metric
for models 1 and 2 are mainly higher in the peak of the solar ramp, and less so in the ramp up and ramp down.
This indicates that the higher inaccuracy of regional forecast compared to the countrywide forecast occurs in
the peak of the solar ramp. In local case study 1, presented later in this section, a day is presented where the
accuracy of both models 1 and 2 are lower mainly in the solar peak.
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Table 5.6: Comparison of the proposed models and benchmark forecast accuracy for the 50Hertz grid region and split in
the three characteristic solar ramp events. The best performance is marked with bold font and the RMESE, MAE and
sMAPE in (MW), (MW) and (%), respectively.

Ramp up Peak Ramp down
Model RMSE MAE sMAPE RMSE MAE sMAPE RMSE MAE sMAPE
Persistence 945 612 58.7 636 430 13.0 323 248 69.5
Entsoe day-ahead 292 186 20.7 542 417 13.7 281 188 30.6
Entsoe intra-day 147 91 13.0 404 304 9.9 224 147 23.5
Model 1 202 124 12.6 322 221 7.1 148 90 11.2
Model 2 233 147 13.8 417 313 10.3 207 137 16.4

It is again interesting to analyse the performance of the proposed models over the forecast horizon. fig. 5.7 shows
the prediction accuracy of the models for each time step across the 3 hour forecast horizon. When comparing
these results to fig. 5.1, it is interesting to see that model 2 has a stronger dependency on forecast horizon,
with a higher relative accuracy at shorter forecast horizons and a stronger accuracy degradation. Similarly, it
is observed that the accuracy of model 1 degrades faster over the forecast horizon for all ramp events. Now,
on average, only outperforming the Entsoe intra-day forecast for a 60-minute forecast in the ramp up and a
135-minute forecast in the peak. The development of two individual solar PV forecasting models in this research
project was motivated by the live availability of their respective data input streams. The actual solar PV feed-in
power input feature of model 1 for 50Hertz is available with a 15-30 minute delay, less than the aggregated
publication delay over Germany. Looking at the forecast of model 1 for 50Hertz, the first relevant forecast
point is roughly 30-minutes after forecast initiation, compared to 5-minutes for model 2. Even if the prediction
accuracy across the forecast horizon of model 1 in fig. 5.7 is shifted backward by 30-minutes, the error metrics
indicate a higher accuracy compared to model 2.

(a) Full day (b) Ramp up

(c) Peak (d) Ramp down

Figure 5.7: Comparison of the prediction accuracy of the models for the 50Hertz grid region across the 3-hour forecast
horizon, with a split for the full day, ramp up, peak and ramp down solar ramp events.
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To further analyze difference in the performance results between the regional forecast and the forecast for
Germany two case studies are presented. The aim of these case studies is to highlight several characteristic
differences in the data input, model behavior and forecast characteristics. In the first case study a winter day
broken cloud cover is presented. Next, in the second study a spring day with overcast conditions is analyzed.

Regional case study 1: Winter day with broken cloud cover
As stated at the beginning of this section, a forecast over a large number of individual solar PV power plants
spread over a wide area reduces the variability and fluctuation of the total solar PV power output. This results
in a more reliable forecast for aggregated regions compared to individual sites or small regions. This effect is
even stronger for weather conditions that feature high spatial and temporal variation in the cloud cover. To
illustrate this effect, this case study presents a winter day with rapidly changing broken cloud cover on 10
February 2020. A forecast time series is presented in section 5.3, starting from 08:00 to 12:30 with a display
resolution of 30-minutes.

In the first forecast run visible in section 5.3 at 08:00 both models 1 and 2 point to a peak solar PV power output
of about 2 GW, in line with the day-ahead forecast and higher than the intra-day forecast. The corresponding
satellite image at 08:00 shows a variable cloud cover with both patches of thick cloud cover and cloud breakup.
In the satellite images from 08:00 to 09:30 it can be observed that the cloud cover has a high spatial and
temporal variability. In the satellite images from 9:30 to 10:30 the cloud cover seems to get more concentrated
on the central region of 50Hertz, resulting in a lower solar PV power output. However, it takes until the forecast
run of 10:30, for both models 1 and 2, to fully incorporated these conditions in the forecasts for the next 3-hour.
At that point, the cloud cover changes again with clearing conditions in the south-western region of 50Hertz.
This results in the actual solar PV power output to move back towards the day-ahead forecast. It is observed
in the images of 11:00 that both models pick up the increasing power output, but are not able to accurately
forecast the magnitude of the change. In the remaining forecast runs the power output continues to change
rapidly within the 3-hour forecast period, where both models show their inability to predict these rapid changes.
The resulting impact of highly variable cloud cover on the forecast models in this case study is 2-fold. The
models are not able to predict rapid changes in the cloud cover and produce accurate highly flexible 3-hour
horizon forecast. Additionally, as the effects of changing cloud cover have a larger impact on the solar PV power
generation around the peak of the solar ramp, the model accuracy is most influenced around this time.

The results of four forecast runs on the same day for the complete German net region are presented in fig. 5.9.
Specifically, the forecast runs of 09:00, 10:00, 10:30 and 11:30 on 10 February 2020 are shown. Here it is observed
that the variable cloud cover and rapidly changing conditions are present everywhere over Germany. This results
in a variable actual solar PV power output, as observed in fig. 5.9, but less significant and volatile than observed
for the 50Hertz control region. The effects of the strong temporal and spatial cloud cover variability is smoothed
out over the larger area, resulting in less fluctuating input features and a more accurate 3-hour forecast. Yet, it is
still observed that under these conditions the models, especially model 2, have a lower prediction accuracy. This
observation is in accordance with the results shown in fig. 5.3, where the relation between model performance
and cloud conditions is investigated and showed the most unfavorable performance under broken cloud cover
conditions.
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Figure 5.8: Time series of the forecasts made for regional 50Hertz case study 1, with accompanying satellite images over
the grid control region. The first forecast subfigure is presented top left with the arrows indicating the chronological order.
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(a) Forecast run 09:00 (b) Forecast run 10:00

(c) Forecast run 10:30 (d) Forecast run 11:30

Figure 5.9: Four forecast runs for Germany on the same day as the regional case study 1, 10 February 2020.

Regional case study 2: Spring day with overcast conditions
In this case study a day is presented with overcast cloud conditions in spring, with uniform cloud clearing. A
forecast time series is presented in section 5.3, starting from 07:00 to 11:30 with a display resolution of 30-
minutes. This case presents a day for which the spatial and temporal variation of the cloud cover is significantly
less and also more uniform compared to regional case study 1. In the satellite image accompanying the 07:00
forecast run it can be observed that there is cloud cover over the entire 50Hertz grid control region and the
forecast of models 1 and 2 initially follow the intra-day forecast. In the following satellite images until the
forecast at 10:00 it can be observed that there is a clearing of cloud conditions in the Southern/central part of
the 50Hertz grid control region, resulting in a higher solar PV power forecast for both models 1 and 2. Next the
cloud cover seems to increase again after the 10:00 forecast run and the models forecasts are adjusted lower. It
is observed that both models 1 and 2 are able to more accurately predict the solar PV power output compared
to case study 1, as the changes in cloud cover are more uniform with less spatial and temporal variability.
Moreover, this case show that if conditions are changing, although more uniform, both models 1 and 2 are able
to pick up changes in conditions relative to the intra-day and day-ahead forecast, and subsequently provide and
accurate solar PV power forecast.
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Figure 5.10: Time series of the forecasts made for regional 50Hertz case study 2, with accompanying satellite images
over the grid control region. The first forecast subfigure is presented top left with the arrows indicating the chronological
order.
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Chapter 6: Conclusion & recommendations

The problem statement at the start of this report stresses the need for accurate solar PV power forecasts, given
the continuous massive adoption of solar PV in the grid. The increasing power generation from solar PV poses
many environmental and economic benefits, however the variability of its power output may also threaten the
stability of our electricity supply. More accurate solar PV forecasts on various timescales have been identified
as the most economical and efficient solutions to support the continuous integration of solar PV. Moreover, a
knowledge gab has been identified with respect to the application of satellite images for solar PV power forecast
in a straightforward, yet accurate way. To this end, the research objective of this project was to investigate
and leverage on the recent developments in the field of deep learning, with respect to convolutional neural
networks (CNN) and Long Short Term Memory (LSTM), to process real-time satellite images and solar PV
power generation data in a deterministic intra-day solar PV power forecast.

This study concentrated on the proposal of two deep learning frameworks for an aggregated solar PV power
forecast over Germany with a forecast horizon of 3 hours and interval of 15-minutes. Moreover, the forecast
needed to be applicable in a real-time operation setting with a short forecast lag. This requires a forecast model
which has a forecast frequency of 15-minutes and utilizes real-time data. For these settings two main data
streams are available: the actual solar PV feed-in power in Germany, and high resolution visible satellite images.
The proposed methodology comprises of the development of two dedicated deep learning models to process these
data streams. This approach includes numerous data pre-processing steps, extensive experimentation with deep
learning architectures and model hyperparameter tuning. The outcome of this approach were two forecast
models, called model 1 and model 2.

In model 1, an encoder-decoder LSTM network is shown to be an effective architecture to process multivariate
one-dimensional time series input data into a multi-step solar PV power forecast. The input features of the
model consists of: actual solar PV power generation data, a NWP model based day-ahead solar PV power
forecast, and the date-time parameters quarter-of-day and day-of-year. In model 2, a CNN-LSTM network is
shown to be an adequate architecture to process multivariate and three-dimensional time series input data,
including satellite images, into a multi-step solar PV power forecast. This model processes the same input
features as model 1, except that the actual solar PV power generation data is replaced by satellite image
derived solar PV generation projections. The difference in input feature selection results in a forecast lag of
maximum 60-minutes for model 1 and only 5-minutes for model 2 in real-time operations.

The overall forecast accuracy of the two proposed models for the year 2020 are compared to a persistence
model and a NWP model based day-ahead and intraday forecast provided by the German TSOs. The proposed
models were shown to be equal or better than the benchmark models, and in turn, to be an accurate tool for
continuously updating short-term solar PV forecast. In particular, the best prediction accuracy is obtained using
the latest actual solar PV generation data and alternatively using satellite images. The further contributions
of this research project are five-fold.

First, the satellite images are shown to be a good proxy for the latest actual solar PV power generation
and subsequent power predictions. The CNN-LSTM architecture has shown the ability to derive spatial and
temporal relations of clouds in satellite images and process these to a projection of their corresponding solar
PV generation. Given the dependency on real-time data for short-term solar PV power forecast, this method
proves to be an attractive alternative data source if actual solar PV generation data is not available in real-time.
However, due to the highly dynamic nature of clouds and weather condition, a large number of cloud cover
settings can occur in satellite images. As a results, it is possible that several characteristic cloud cover settings
are unrepresented in the model training dataset, leading to forecast inaccuracies.

Next, the superior performance of models 1 and 2 in the period of peak solar PV generation compared to the
solar ramp up period, stresses the underlying weakness of statistical forecast methods. The reliance on past
input data, that represent the future weather conditions, make these models less fitting for predictions in the
morning solar ramp, as data is not at all or insufficiently available.

The third contribution presents itself in the analysis of the reducing prediction accuracy of both statistical
models 1 and 2 over longer forecast horizons. This characteristic illustrates the complex non-linear relations
between input data and a multi-step target sequence. In comparison to a trivial persistence model, the highly
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non-linear encoder-decoder LSTM network demonstrates its robustness in coping with longer multi-step forecast
horizons. However, depending on weather conditions and forecast initiation time, the statistical deep learning
models show inferior prediction accuracy for forecast horizons longer than 2-3 hours in comparison to the NWP
based intra-day and day-ahead forecasts.

Next, it is found that both physics based benchmark models and the two proposed statistics based models show
a dependency in prediction accuracy on weather conditions. The proposed forecast models 1 and 2 show the
lowest accuracy under conditions featuring strong spatial and temporal variation in the cloud cover, such as
with broken cloud cover or under convective cloud formation. Moreover, it is found that both models have
the ability to identify events with convective cloud formation and translate these conditions in their forecasts.
However, it also shown that both models do not have the ability to forecast these events before they onset.

The final contribution arises from the comparison study of the two proposed models employed for a country-
aggregated solar PV forecast compared to a regional forecast. It is found that forecasts for larger regions are
more reliable, which is likely due to the averaging effect of local inaccuracies. This is especially the case for
weather conditions with high spatio-temporal variability in cloud cover.

In light of the encouraging results observed in this research project, one might question whether data-driven
deep machine learning methods can replace more complex satellite image based cloud motion vector techniques
or NWP based forecast models. The machine learning techniques used in model 1 and model 2 are shown to be
powerful short-term forecasting methods and should definitely have a place in a comprehensive solar PV power
forecasting toolbox. However, they also suffer from limitations highlighted in the contributions of this research
project. Moreover, the black-box characteristic of deep learning models limits the understanding of the intricate
relations between model input features and the output target. This results in a time consuming trail-and-error
based approach to improve a models prediction accuracy, without fundamentally understanding the impact of
the changes made. Additionally, short-term forecasts employed in a real-time operational setting need to be
available with a short delay to real-time. The developed models make use of actual solar PV generation data and
satellite images that result in a forecast lag of 60-minutes and 5-minutes, respectively. Given the short forecast
horizon of 3-hours, the delay in data availability still significantly influences the relevance and functionality
of the forecasts, especially for model 1. As the forecast delay is of significant importance to real-time power
trading, the model performance cannot exclusively be judged based on the forecast accuracy expressed by error
metrics, but should also be viewed in light of the forecast delay. Finally, the proposed statistical models are
evaluated against physics based intra-day and day-ahead forecast models that are only generated once per day.
Although these benchmark models are off significant importance to the energy market, both their fundamental
working principles as their application is different from the two proposed models; thus making the forecast
accuracies harder to compare. Taking all this into consideration, it seems apparent that deep learning based
solar PV power forecasting models are rather an addition to a comprehensive solar PV power forecast toolbox
than a replacement.

In reflection on the development of the deep learning solar PV power forecasting models in this research project,
recommendation for future research are summarized as follows:

1. The CNN-LSTM architecture of model 2 is designed to process the spatio-temporal information in a
sequence of satellite images to solar PV generation data. However, in the proposed architecture the
extraction of spatio-temporal relations is decoupled; by first using a CNN to process the spatial features
in satellite images to a representation vector, and subsequently extract temporal features from the matrix
of representation vectors with a LSTM. In order to couple the extraction of spatial and temporal features,
the novel ConvLSTM should be further investigated. Although in the course of this research project
such a model has been developed, the training of the ConvLSTM architecture surpassed the limits of
the available computational resources. This limiting factor should be considered and dealt with in future
research.

2. The CNN-LSTM architecture designed for model 2 aims to extract the spatio-temporal information in a
sequence of satellite images. An alternative approach is suggested in which a CNN is developed to process
individual satellite images to their corresponding solar PV power output. This approach removes the
training error dependency on the LSTM model connected to the CNN, however it would also remove the
temporal dependency between consecutive image. Investigating this approach can lead to new insights
regarding which model elements and input-output relations are of importance to further improve solar
PV power forecast accuracy.
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3. In this research project, satellite images in RGB format from Weerslag where used to derive the solar
PV generation. The use of these images was motivated by the availability of a dataset and a direct
available method to obtain a real-time data stream of new images. However, the implementation of
more advanced data products or individual channels of the SEVIRI imager operated by EUMETSAT can
provide additional context on the weather and cloud conditions. For example, the Snow RGB product of
EUMETSAT allows for the separate identification of fog, low clouds and snow during day time. Although
datasets are available for a number of these products, a straightforward access method to real-time data
has not been found in the course of this project.

4. In order to improve the forecast capabilities of satellite images based models (such as model 2) around
sunrise, the additional use of infrared satellite images as input feature could be a promising approach.
Infrared satellite images provide information on cloud cover and fog even when the sun is below elevations
for which the visible channel satellite images do not provide information.

5. In the analysis of the forecast results the stationarity of the input data was discussed, with a focus of
the normalization of the actual solar PV feed-in power by means of a clear sky model. In the early
stages of model development, it was found that partially stationary solar PV feed-in data improved model
performance. More specifically, the data was normalized with a bias towards lower normalized solar PV
power near sunrise and sunset. In future research, considering the addition of day-ahead solar PV forecast
data to improve the performance in the morning solar ramp, it should be investigated if this decision is
still valid.

6. Based on a literature study of stacked LSTM networks and model experiments it was found that the
addition of up to 3 LSTM layers improved the forecast accuracy of model 1. However, after the addition
of the Entsoe day-ahead forecast as input feature to the model, it was later found that the inclusion of
stacked LSTM layers did neither improve nor reduce the model training and validation error. Although
the understanding of the intricate relations between model design, input feature and the output targets
is extremely difficult, it should be further investigated if stacked LSTM layers are desirable or of no
additional value to this forecast problem.

7. In order to add context to the model on seasonal and day-to-day patterns, two input features were
introduced: the day-of-year (DOY) and the quarter-of-day (QOD). As a pre-processing step the DOY and
QOD are normalized using a cosine function. However, with just applying the cosine transformation there
is symmetry across the period of the cyclical features. In future work it is advised to use a two dimensions
for the cyclical feature normalization, with both a cosine and sine function.

8. The encoder-decoder LSTM network was selected based on its characteristics found in literature. Although
it has demonstrated its robustness in coping with multi-step forecasts, it is suggested that in future research
its performance is evaluated against other neural network architectures, such as the Gated Recurrent Unit
(GRU) or a deep MLP.

9. The selection process of model architecture and hyperparameter settings in this research project was guided
by a combination of theory from literature and numerous trail-and-error experiments. After demonstrating
in this project that the two proposed forecast approaches are a valuable tool for short-term solar PV
predictions, it should be investigated if a systematic grid search of several hyperparameters, requiring
more time and computational resources, can improve model results.

10. In view of the conclusion that the deep learning models 1 and 2 are an addition rather than a replacement
in the solar PV power forecasting toolbox, an ensemble model of physical and statistical models is a
promising avenue for future research. A suggestion of such a hybrid model is the addition of NWP
model derived irradiance, temperature or cloud cover maps to the CNN-LSTM architecture of model 2.
This method allows for the extraction of spatial and temporal features in the NWP model data, without
manually engineering physical equations and providing information on PV systems characteristics and
locations.
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Appendix A: Transfer learning

CNNs have been extensively used in various computer visual recognition task and have shown to outperform
more traditional ANN in this field [47]. One of the most studied and basic tasks of visual recognition is image
classification. Hence, CNN architectures applied to different visual recognition tasks are often derived from
models that have shown good results in image classification [47]. Transfer learning is a method where an earlier
developed and trained model is reused as a starting point for a new model aiming to tackle a related task
[20]. This approach is often applied as the development and training of new models requires vast amount of
computational and time resources, plus an extensive training dataset.

A common transfer learning approach is to select a base network, which is pre-trained for a challenging and
broad image classification task such as the 1000-class ImageNet [72] database [73]. The first N layers of the base
network are copied to the first N layers of the target model. The remaining layers of the target network are then
designed, initialized and trained towards the specific task of the model. Some famous deep CNN architectures
that have achieved good results in image classification tasks and have been pre-trained on the ImageNet dataset
include: VGG16/19, ResNet, DenseNet, GoogleNet [47].

In the training process of the target model one can decide to back-propagate the errors obtained from the loss
function of the new task through the copied layers in order to fine-tune them for the desired task, or leave the
transferred layers frozen to training. Deep CNN networks exhibit an interesting characteristic when a model is
trained on images: here generally the first-layer filters represent either color blobs or Gabor filters [73]. This
phenomena occurs for completely different datasets and training task, hence the first-layer filters of a CNN are
called ‘general filters’. Contrary, the last-layer filters are known to be highly dependent on the dataset and
the model task, and are thus called ‘specific filters’. In the transfer learning technique it is the aim to transfer
the general filters from the base network and possibly fine-tune the last-layer specific filters. Of course, if the
first-layers are general and the last-layers are specific, there must be some transition zone governing which layers
to transfer and which layers to fine-tune. However, this transition zone is model and task dependent and very
hard to determine. Hence, often the quantity and quality of the target dataset, together with the number of
parameters in the first N layers of the copied base model, influence the decision whether or not to fine-tune the
parameters of the base model [73]. In case the number of parameters is large and the target dataset is small, the
decision to fine-tune can result in overfitting and is best avoided [73]. Contrary, if the number of parameters is
small and target dataset is large, overfitting is less of an issue and fine-tuning could improve model performance
[73]. However, if the target dataset is large enough, there would not necessary be the need for transfer learning,
as filters can be learned from scratch.

The transfer learning method is investigated during the development of the satellite image based CNN-LSTM
solar PV power forecasting model. Numerous experiments are performed with the architecture of model 2A;
here the LSTM encoder-decoder part of the network is maintained the same, while the CNN part is altered.
An important difference with the final model 2A presented in this report is that at the time of the experiments
the model was designed to forecast the future solar PV power output directly. So the target variable in the
to be discussed experiments consists of the 12 time-step sequence (Pactual,t+1, . . . , Pactual,t+12), compared to
(Pactual,t−11, . . . , Pactual,t) for the final model 2A presented in section 4.3.2.

In fig. A.1 the architecture of three experimental CNN architectures are presented, called model A, B and C.
In model A the VGG16 network is used as the base network for the CNN, where both the architecture and the
model weights trained on the ImageNet database are transferred. Additionally, all the CNN-layers are set to
non-trainable. The top of the VGG16 network is removed and the last pooling layer is connected to a flatten
layer and subsequently the encoder-decoder LSTM network. VGG16 is a CNN consisting of 13 convolutional
layers and 5 max pooling layers that are structured in repeating blocks, as visualized in fig. A.1. Model B is
exactly the same as model A, except that the last convolutional layer is set to trainable. Model C has exactly the
same architecture as model 2A presented in section 4.3.2; here the CNN consists of a custom designed 8-layer
structure (4 convolutional and 4 max-pooling layers) and all layers are trainable. The hyperparameter setting
of the experiments are equal to those of model 2A as described in section 4.3.2. Similarly, the years 2015-2018
of the dataset are used for training and the complete year 2019 is used for validation. Similar experiments have
been performed with other base networks, such as VGG19, ResNet and DenseNet, however VGG16 showed the
best overall training performance and is therefore discussed here.
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Figure A.1: Overview of three experimental CNN-LSTM architectures, with different CNN configurations, called model
A, B and C. The value in angle brackets represents the kernel size of the filter, with the value in front the number of
filters.

Figure A.2: Training and validation RMSE loss of experimental models A, B and C.
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The training and validation RMSE loss of the three experimental models are presented in fig. A.2. Based on
these training and validation results the following observations are made and commentary is provided for future
research in the development of satellite image and CNN based forecast models:

• The RMSE accuracy results show that the custom designed shallow CNN of model C is superior to models
A and B with the transferred VGG16 CNN. The transfer of the shallow layer general filters and deep layer
specific filters of VGG16 does not aid the forecast accuracy for this specific task or provide a good starting
point. Possibly the model task, taking into consideration the connection to the LSTM, is too different from
the task of the pre-trained VGG16 CNN. Additionally, the superior performance of the custom designed
model C indicates that the target dataset is possibly large enough to train the filters from scratch and
transfer learning is not necessarily needed.

• Transfer learning is often applied when the development and training of new models requires vast amount
of computational and time resources. The training time of one epoch on the available virtual-machine
configuration is about 50, 90 and 25 minutes for the models A, B and C, respectively. Even though the
transferred convolutional layers of model A are non-trainable, the time to perform 1 epoch is double the
time it takes to train 1 epoch of model C. It is common to transfer a base model which is pre-trained
for a challenging and broad image classification task, hence it is often a complex and deep network. Due
to this characteristic, even when the fine-tuning of layers is avoided, there is still the need for significant
computational resources. In case fine-tuning of deeper layers is performed, as for model B, the training
time increases significantly. Training only the last convolutional layer in model B already adds 40 minutes
to the training time and training the last three convolutional layers would add 7 hours to the training time
on the available configuration. Taking into consideration the training time and required computational
resources, the custom design of a shallow CNN seems to be the better approach in this case.

• It is observed that fine-tuning the last convolutional layer in model B results in a slower training process
compared to model A and at the end of the training process the same validation RMSE. Additionally,
as the number of parameters in the last convolutional layer of model B is relatively small compared to
the dataset, overfitting due to fine-tuning does not seem to be a problem in this case. The complex
connection of the CNN and LSTM network makes it difficult to interpret the training and validation loss
of the models. Hence it is advised to validate the results and get a better understanding of the fine-tuning
of layers using a simpler regression model with several dense layers instead of the encoder-decoder LSTM
network.
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Appendix B: Model 1 script
1 # -*- coding : utf -8 -*- #
2 """
3 Created on Thu Okt 26 08:43:15 2020
4
5 @author : Gijs van Ouwerkerk
6 """
7 # General #
8 import pandas as pd
9 import numpy as np

10 from numpy import array
11 import datetime
12 import pathlib
13 import math
14 # Created modules #
15 from load_data import load_data
16 # Deep learning #
17 from keras. models import Sequential
18 from keras. layers import Dense
19 from keras. layers import LSTM
20 from keras. layers import RepeatVector
21 from keras. layers import TimeDistributed
22 from keras. callbacks import History
23 from keras. callbacks import LearningRateScheduler
24 from keras import metrics
25 from keras. callbacks import ModelCheckpoint
26 # Neptune #
27 import neptune
28 from neptunecontrib . monitoring .keras import NeptuneMonitor
29
30 #%% Define model functions #
31
32
33 def split_dataset (df , N_enddays_in_test , n_out ):
34 """
35 Parameters
36 ----------
37 df : input dataframe
38 N_enddays_in_test : days in validation dataset
39 n_out : forecast output length (12 steps = 3 hours)
40
41 Returns
42 -------
43 train : model training dataset
44 test : model validation dataset
45 test_start : start date of validation set
46 test_end : end data of validation set
47 """
48 # Add normalized day -ahead forecast #
49 df[' norm_dayahead '] = (df['dayahead ']/ df['maxsolar ']). fillna (0). replace (
50 [np.inf , -np.inf], 0). clip (0 ,1)
51 # Translate day -ahead forecast to input feature #
52 df[' sh_norm_dayahead '] = df[' norm_dayahead ']. shift(-n_out ,axis =0). fillna (0)
53 # Normalize QOD #
54 df['quarter '] = abs ((( np.cos (2 * math.pi * df['quarter '] / df['quarter ']. max ()
55 ) + 1)/2) -1)
56 # Normalize DOY #
57 df['day '] = (np.cos (2 * math.pi * df['day '] / df['day ']. max ()) + 1)/2
58 # Return start and end date of validation dataset #
59 test_start = df.index. astype (str )[- N_enddays_in_test *96]

66



60 test_end = df.index. astype (str )[ -1]
61 # Data to array of objects #
62 data = df. values
63 # Split data into train and validation dataset #
64 train , test = data [0:- N_enddays_in_test *96] , data[- N_enddays_in_test *96:]
65 return train , test , test_start , test_end
66
67 def create_training_set (train , n_input , n_out ):
68 """
69 Parameters
70 ----------
71 train : training dataset
72 n_input : number of input timesteps
73 n_out : number of output timesetps
74
75 Returns
76 -------
77 LSTM model training input and output sets
78 """
79 # Select input features #
80 input_cols = [0, 1, 9, 11]
81 # Select target feature #
82 predictor_cols = 9
83 # Create lists to fill with X and y train data #
84 X_train_steps , y_train_steps = list (), list ()
85 start_in = 0
86 # Loop over history to create dataset [samples , timesteps , features ] #
87 for _ in range(len(train )):
88 end_in = start_in + n_input
89 end_out = end_in + n_out
90 if end_out <= len(train ):
91 X_train_steps . append (train[ start_in :end_in , input_cols ])
92 y_train_steps . append (train[ end_in :end_out , predictor_cols ])
93 start_in += 1
94 return array( X_train_steps ), array( y_train_steps )
95
96 def create_validation_set (test , n_input , n_out ):
97 """
98 Parameters
99 ----------

100 test : validation dataset
101 n_input : number of input timesteps
102 n_out : number of output timesetps
103
104 Returns
105 -------
106 LSTM model validation input and output sets
107 """
108 # Select input features #
109 input_cols = [0, 1, 9, 11]
110 # Select target feature #
111 predictor_cols = 9
112 # Create lists to fill with X and y validation data #
113 X_val_steps , y_val_steps = list (), list ()
114 start_in = 0
115 # Loop over history to create dataset [samples , timesteps , features ] #
116 for _ in range(len(test )):
117 end_in = start_in + n_input
118 end_out = end_in + n_out
119 if end_out <= len(test ):
120 X_val_steps . append (test[ start_in :end_in , input_cols ])
121 y_val_steps . append (test[ end_in :end_out , predictor_cols ])
122 start_in += 1
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123 return array( X_val_steps ), array( y_val_steps )
124
125 def build_model (train , test , n_input , n_out , model_save_name , para_dict ):
126 """
127 Parameters
128 ----------
129 train : Training dataset
130 test : Validation dataset
131 n_input : Number of input timesteps
132 n_out : Number of output timesteps
133 model_save_name : Model name
134 para_dict : Information for datalogging
135
136 Returns
137 -------
138 model: LSTM model
139 """
140 # Create object for model callbacks #
141 history_model = History ()
142 # Prepare training and validation datasets #
143 X_train_steps , y_train_steps = create_training_set (train , n_input , n_out)
144 X_val_steps , y_val_steps = create_validation_set (test , n_input , n_out)
145 # Reshape dataset output into [samples , timesteps , features ] #
146 y_train_steps = y_train_steps . reshape (( y_train_steps .shape [0],
147 y_train_steps .shape [1], 1))
148 y_val_steps = y_val_steps . reshape (( y_val_steps .shape [0],
149 y_val_steps .shape [1], 1))
150 # Define training hyperparameters #
151 verbose , epochs , batch_size = 1, 50, 96
152 n_timesteps = X_train_steps .shape [1]
153 n_features = X_train_steps .shape [2]
154 n_outputs = y_train_steps .shape [1]
155 # Learn rate schedule #
156 initial_learning_rate = 0.002
157 drop_rate_Nep = 0.5
158 epochs_drop_Nep = 5
159 def lr_step_decay (epoch , lr):
160 drop_rate = drop_rate_Nep
161 epochs_drop = epochs_drop_Nep
162 return initial_learning_rate * math.pow(drop_rate ,
163 math.floor(epoch/ epochs_drop ))
164 # Neptune log: Add extra parameters for neptune reference #
165 para_extra = {' batch_size ': batch_size ,
166 'epochs ': epochs ,
167 'optimizer ': 'Adam ',
168 'initial_LR ': initial_learning_rate ,
169 'drop_rate ': drop_rate_Nep ,
170 'epochs_drop ': epochs_drop_Nep }
171 para_dict . update ( para_extra )
172 # Neptune log: Create experiment #
173 neptune . create_experiment (name= model_save_name , params =para_dict ,
174 upload_source_files =(' Model_1 .py '),
175 tags =[' model_1 '])
176 # Define deep learning model #
177 model = Sequential ()
178 # Encoder #
179 model.add(LSTM (200 , return_sequences =True ,
180 input_shape =( n_timesteps , n_features )))
181 model.add(LSTM (200 , return_sequences =True ))
182 model.add(LSTM (200 , return_sequences = False ))
183 model.add( RepeatVector ( n_outputs ))
184 # Decoder #
185 model.add(LSTM (200 , return_sequences =True ))

68



186 model.add(LSTM (200 , return_sequences =True ))
187 model.add(LSTM (200 , return_sequences =True ))
188 model.add( TimeDistributed (Dense (200 , activation ='relu ',
189 kernel_initializer ='he_normal ')))
190 model.add( TimeDistributed (Dense (100 , activation ='relu ',
191 kernel_initializer ='he_normal ')))
192 model.add( TimeDistributed (Dense (1)))
193 # Compile model with additional hyperparameter selection #
194 model. compile (loss='mse ', optimizer ='adam ',
195 metrics =['mse ','mae ', metrics . RootMeanSquaredError ()])
196 # Model checkpoint save #
197 path = pathlib .Path.cwd (). joinpath (' Saved_models ', 'Model_1 ', model_save_name )
198 path.mkdir( parents =True , exist_ok =True)
199 path = path. joinpath (' best_model .h5 ')
200 checkpoint = ModelCheckpoint (path , monitor =' val_root_mean_squared_error ',
201 verbose =1, save_best_only =True , mode='min ')
202 # Neptune log: save model summary #
203 model. summary ( print_fn = lambda x: neptune . log_text (' model_summary ', x))
204 # Fit model #
205 model.fit( X_train_steps , y_train_steps ,
206 validation_data =( X_val_steps , y_val_steps ),
207 epochs =epochs , batch_size =batch_size , verbose =verbose ,
208 callbacks =[ history_model , NeptuneMonitor (),
209 LearningRateScheduler ( lr_step_decay , verbose =1),
210 checkpoint ])
211
212 # Save model to local folder #
213 path = pathlib .Path.cwd (). joinpath (' Saved_models ', 'Model_1 ', model_save_name )
214 path = path. joinpath (' final_model .h5 ')
215 model.save(path)
216 # Neptune log: save model to neptune #
217 neptune . log_artifact (str(path ))
218 return model
219
220 def forecast (model , history , n_input ):
221 """
222 Parameters
223 ----------
224 model : Trained model
225 history : Set containing historic input feature data
226 n_input : Number of input timesteps
227
228 Returns
229 -------
230 y_hat : predictions for 1 forecast run
231 """
232 # Flatten data #
233 data = array( history )
234 # Select input features #
235 input_cols = [0, 1, 9, 11]
236 # Retrieve last input feature observations #
237 input_x = data[- n_input :, input_cols ]
238 input_x = input_x . reshape ((1, input_x .shape [0], input_x .shape [1]))
239 # Generate forecast #
240 y_hat = model. predict (input_x , verbose =0)
241 y_hat = y_hat [0]
242 return y_hat
243
244
245 def make_forecast (model , train , test , n_input ):
246 """
247 Parameters
248 ----------
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249 model : Trained model
250 train : Training set for history
251 test : Validation set for predictions
252 n_input : Number of input timesteps
253
254 Returns
255 -------
256 predictions : Complete forecast for validation set
257 """
258 # History list of quarterly data #
259 history = [x for x in train]
260 # Walk - forward loop over validation dataset #
261 predictions = list ()
262 for i in range(len(test )):
263 # Prediction for 1 forecast #
264 y_hat_sequence = forecast (model , history , n_input )
265 # Store the prediction #
266 predictions . append ( y_hat_sequence )
267 # Get real observation and add to history for predicting next quarter #
268 history . append (test[i, :])
269 # Compile predictions #
270 predictions = array( predictions )
271 return predictions
272
273
274 def predictions_to_datetime (test_start , test_end , predictions , n_out ):
275 """
276 Parameters
277 ----------
278 test_start : Validation dataset start time
279 test_end : Validation dataset end time
280 predictions : Generated predictions for validation dataset
281 n_out : Forecast output timesteps
282
283 Returns
284 -------
285 df_predictions : Datetime based dataframe with prediction data
286 """
287 # Validation dataset with datetime index #
288 test_index = pd. date_range (test_start ,test_end ,freq ='15T ')
289 # Create empty dataframe to fill #
290 df_predictions = pd. DataFrame ({})
291 # Loop over prediction instances and n_output steps #
292 for i in range (0, len( predictions )):
293 t_step = range (1, n_out +1)
294 index_step = pd. date_range ( test_index [i], periods =n_out , freq ='15T ')
295 fill = pd. DataFrame (t_step , index_step )
296 # add column with moment of initiation 't=0' #
297 fill[' inititation_LSTM '] = test_index [i] - datetime . timedelta ( minutes =15)
298 df_predictions = df_predictions . append (fill)
299 # Reshape predictions #
300 df_predictions [' predictions '] = predictions . reshape (
301 predictions .shape [0]* predictions .shape [1] ,1)
302 return df_predictions
303
304
305 #%% Run model #
306
307 # =================================== Variables ================================== #
308 # Load dataset with range: #
309 start = '2015 -01 -01 00:00:00 '
310 end = '2020 -12 -31 23:45:00 '
311 # model variables #
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312 n_input = 12
313 n_out = 12
314 N_enddays_in_test = 366
315 # model save details #
316 model_save_name = 'test '
317 model_N = '2.58'
318 # Max solar #
319 maxsolarmodel = 'maxsolar23_2015_2020 '
320 # =================================== Neptune Data log ============================ #
321 para_dict = {'Data_start ': start ,
322 'Data_end ': end ,
323 'Days_val ': N_enddays_in_test ,
324 'n_input ': n_input ,
325 'n_output ': n_out ,
326 'maxsolar ': maxsolarmodel ,
327 'Save_name ': model_save_name ,
328 'CNN ': 'none ',
329 'model_N ': model_N }
330 # =================================== RUN ========================================= #
331 # Load data , make model , evaluate #
332 df = load_data (start ,end , maxsolarmodel )
333 train , test , test_start , test_end = split_dataset (df , N_enddays_in_test , n_out)
334 model = build_model (train , test , n_input , n_out , model_save_name , para_dict )
335 predictions = make_forecast (model , train , test , n_input )
336 df_predictions = predictions_to_datetime (test_start , test_end , predictions , n_out)
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Appendix C: Model 2 script
1 # -*- coding : utf -8 -*- #
2 """
3 Created on Thu Nov 26 14:43:15 2020
4
5 @author : Gijs van Ouwerkerk
6 """
7 # General #
8 import pandas as pd
9 import numpy as np

10 import pathlib
11 import datetime
12 from numpy import load
13 from numpy import array
14 import math
15 # Created modules #
16 from load_data import load_data
17 from time_generator import TimeseriesGenerator
18 # Deep learning #
19 from keras. models import load_model
20 from keras. layers import Dense
21 from keras. layers import LSTM
22 from keras. layers import RepeatVector
23 from keras. layers import TimeDistributed
24 from keras. callbacks import History
25 from keras. callbacks import LearningRateScheduler
26 from keras import metrics
27 from keras. callbacks import ModelCheckpoint
28 from keras. models import Model
29 from keras. layers import Input
30 from keras. layers .merge import concatenate
31 # Neptune #
32 import neptune
33 from neptunecontrib . monitoring .keras import NeptuneMonitor
34
35
36 #%% Define model functions #
37
38
39 def load_img_dataset ( dataset_name ):
40 """
41 Parameters
42 ----------
43 dataset_name : External satellite image dataset
44 Returns
45 -------
46 X_data : Return satellite dataset as array of images
47 """
48 # Open path of stored data set #
49 load_path = pathlib .Path(r"C:"). resolve (). joinpath (
50 'Users ','gijs ',' Intraday_solar_model ', 'Data ', 'Satellite_arrays ',
51 dataset_name )
52 # Load image data NpzFile #
53 data = load( load_path )
54 # Extract array from Npz type file #
55 X_data = data['arr_0 ']
56 return X_data
57
58 def split_dataset (df , X_data , N_enddays_in_test ):
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59 """
60 Parameters
61 ----------
62 df : input dataframe
63 N_enddays_in_test : days in validation dataset
64 n_out : forecast output length (12 steps = 3 hours)
65
66 Returns
67 -------
68 train : model training dataset
69 test : model validation dataset
70 test_start : start date of validation set
71 test_end : end data of validation set
72 """
73 # Add normalized day -ahead forecast #
74 df[' norm_dayahead '] = (df['dayahead ']/ df['maxsolar ']). fillna (0). replace (
75 [np.inf , -np.inf], 0). clip (0 ,1)
76 # Translate day -ahead forecast to input feature #
77 df[' sh_norm_dayahead '] = df[' norm_dayahead ']. shift(-n_out ,axis =0). fillna (0)
78 # Normalize QOD #
79 df['quarter '] = abs ((( np.cos (2 * math.pi * df['quarter '] / df['quarter ']. max ()
80 ) + 1)/2) -1)
81 # Normalize DOY #
82 df['day '] = (np.cos (2 * math.pi * df['day '] / df['day ']. max ()) + 1)/2
83 # Normalize RBG channels in satellite image dataset #
84 X_data = ( X_data /255). astype ('float32 ')
85 # Return start and end date of validation dataset #
86 test_start = df.index. astype (str )[- N_enddays_in_test *96]
87 test_end = df.index. astype (str )[ -1]
88 # Return targed data as array #
89 y_data = df. values . astype ('float32 ')
90 # Split y data into test and train #
91 y_train , y_test = y_data [0:- N_enddays_in_test *96] ,
92 y_data [- N_enddays_in_test *96:]
93 # Split X data into test and train ( images ) #
94 X_train , X_test = X_data [0:- N_enddays_in_test *96] ,
95 X_data [- N_enddays_in_test *96:]
96 return y_train , y_test , X_train , X_test , test_start , test_end
97
98 def create_training_set (y_train , n_input , n_out ):
99 """

100 Parameters
101 ----------
102 y_train : training dataset
103 n_input : number of input timesteps
104 n_out : number of output timesetps
105
106 Returns
107 -------
108 Array of target variable in sequence training set
109 """
110 # Select target feature normalized power #
111 predictor_cols = 9
112 # Create list to fill with y train data #
113 y_train_steps = list ()
114 start_in = 0
115 # Loop over history to create dataset [samples , timesteps , target ] #
116 for _ in range(len( y_train )):
117 end_in = start_in + n_input
118 end_out = end_in + n_out
119 if end_out <= len( y_train ):
120 y_train_steps . append ( y_train [ end_in :end_out , predictor_cols ])
121 start_in += 1
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122 return array( y_train_steps )
123
124 def create_validation_set (y_test , n_input , n_out ):
125 """
126 Parameters
127 ----------
128 y_test : validation dataset
129 n_input : number of input timesteps
130 n_out : number of output timesetps
131
132 Returns
133 -------
134 Array of target variable in sequence validation set
135 """
136 # Select target feature normalized power #
137 predictor_cols = 9
138 # Create list to fill with y validation data #
139 y_val_steps = list ()
140 start_in = 0
141 # Loop over history to create dataset [samples , timesteps , target ] #
142 for _ in range(len( y_test )):
143 end_in = start_in + n_input
144 end_out = end_in + n_out
145 if end_out <= len( y_test ):
146 y_val_steps . append ( y_test [ end_in :end_out , predictor_cols ])
147 start_in += 1
148 return array( y_val_steps )
149
150 def build_model (y_train , y_test , X_train , X_test , y_train_steps , y_val_steps ,
151 n_input , n_out , pixels_h , pixels_b , channels , model_save_name ,
152 para_dict ):
153 '''
154 Parameters
155 ----------
156 y_train : non - sequalized data as predictor training set
157 y_test : non - sequalized data as predictor test set
158 X_train : Satellite image training dataset
159 X_test : Satellite image test dataset
160 y_train_steps : Sequence of training target data
161 y_val_steps : Sequence of validation target data
162 n_input : Number of input timesteps
163 n_out : Number of output timesteps
164 pixels_h : Vertical pixels satellite images
165 pixels_b : Horizontal pixels satellite images
166 channels : Number of channels in satellite images
167 model_save_name : Model name
168 para_dict : Information for datalogging
169
170 Returns
171 -------
172 model: CNN -LSTM model
173 '''
174 # Create object for model callbacks #
175 history_model = History ()
176 # Define training hyperparameters #
177 verbose , epochs , batch_size = 1, 50, 96
178 # Prepare training and validation datasets via custom generator #
179 # Create training set #
180 y_train_steps_long = np. concatenate ((np.zeros(shape =(
181 n_input ,n_out )), y_train_steps , np.zeros(shape =( n_out -1, n_out ))), axis =0)
182 y_train_steps_long = y_train_steps_long . reshape ((
183 y_train_steps_long .shape [0], y_train_steps_long .shape [1], 1))
184 train_generator = TimeseriesGenerator (
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185 X_train , y_train [:,[0, 1, 11]] , y_train_steps_long , length =n_input ,
186 batch_size = batch_size )
187 # Create validation set generator #
188 y_val_steps_long = np. concatenate ((np.zeros(shape =(
189 n_input ,n_out )), y_val_steps , np.zeros(shape =( n_out -1, n_out ))), axis =0)
190 y_val_steps_long = y_val_steps_long . reshape ((
191 y_val_steps_long .shape [0], y_val_steps_long .shape [1], 1))
192 val_generator = TimeseriesGenerator (
193 X_test , y_test [:,[0, 1, 11]] , y_val_steps_long , length =n_input ,
194 batch_size = batch_size )
195 # Learn rate schedule generator #
196 initial_learning_rate = 0.002
197 drop_rate_Nep = 0.5
198 epochs_drop_Nep = 5
199 def lr_step_decay (epoch , lr):
200 drop_rate = drop_rate_Nep
201 epochs_drop = epochs_drop_Nep
202 return initial_learning_rate * math.pow(drop_rate ,
203 math.floor(epoch/ epochs_drop ))
204 # Neptune log: Add extra parameters for neptune reference #
205 para_extra = {' batch_size ': batch_size ,
206 'epochs ': epochs ,
207 'optimizer ': 'Adam ',
208 'initial_LR ': initial_learning_rate ,
209 'drop_rate ': drop_rate_Nep ,
210 'epochs_drop ': epochs_drop_Nep }
211 para_dict . update ( para_extra )
212 # Neptune log: Create experiment #
213 neptune . create_experiment (name= model_save_name , params =para_dict ,
214 upload_source_files =(' Model_2 .py '),
215 tags =[' Model_2 '])
216
217 # Import pre - trained model 2A #
218 path = pathlib .Path.cwd (). joinpath (' Saved_models ', 'Model_2A .h5 ')
219 own_cnn = load_model (path)
220 # Set layers to non - trainable #
221 for layer in own_cnn . layers :
222 layer. trainable = False
223 # Define deep learning model #
224 # Satellite image datastream #
225 visible1 = Input(shape =( n_input , pixels_h , pixels_b , channels ))
226 flat1 = own_cnn ( visible1 )
227 # Generation datastream #
228 visible2 = Input(shape =( n_input ,3))
229 # Merge two models #
230 merge = concatenate ([ flat1 , visible2 ])
231 # Encoder - LSTM #
232 LSTM1 = LSTM (200 , activation ='relu ', return_sequences =True )( merge)
233 LSTM2 = LSTM (200 , activation ='relu ', return_sequences =True )( LSTM1)
234 LSTM3 = LSTM (200 , activation ='relu ', return_sequences = False )( LSTM2)
235 # Decoder - LSTM #
236 Repeater = RepeatVector (n_out )( LSTM3)
237 LSTM4 = LSTM (200 , activation ='relu ', return_sequences =True )( Repeater )
238 LSTM5 = LSTM (200 , activation ='relu ', return_sequences =True )( LSTM4)
239 LSTM6 = LSTM (200 , activation ='relu ', return_sequences =True )( LSTM5)
240 hidden1 = TimeDistributed (Dense (200 , activation ='relu ',
241 kernel_initializer ='he_normal '))( LSTM6)
242 hidden2 = TimeDistributed (Dense (100 , activation ='relu ',
243 kernel_initializer ='he_normal '))( hidden1 )
244 output = TimeDistributed (Dense (1))( hidden2 )
245 # Define inputs and outputs #
246 model = Model( inputs =[ visible1 , visible2 ], outputs = output )
247 # Compile model with additional hyperparameter selection #
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248 model. compile (loss='mse ', optimizer ='adam ',
249 metrics =['mse ','mae ', metrics . RootMeanSquaredError ()])
250 # Model checkpoint save #
251 path = pathlib .Path.cwd (). joinpath (' Saved_models ', 'Model_2 ', model_save_name )
252 path.mkdir( parents =True , exist_ok =True)
253 path = path. joinpath (' best_model .h5 ')
254 checkpoint = ModelCheckpoint (path , monitor =' val_root_mean_squared_error ',
255 verbose =1, save_best_only =True , mode='min ')
256 # Neptune log: save model summary #
257 model. summary ( print_fn = lambda x: neptune . log_text (' model_summary ', x))
258 # Fit model #
259 model.fit( train_generator , steps_per_epoch =len( train_generator ),
260 validation_data = val_generator , validation_steps =len( val_generator ),
261 epochs =epochs , verbose =verbose ,
262 callbacks =[ history_model , NeptuneMonitor (),
263 LearningRateScheduler ( lr_step_decay , verbose =1),
264 checkpoint ])
265 # Save model to local folder #
266 path = pathlib .Path.cwd (). joinpath (' Saved_models ', 'Model_2 ', model_save_name )
267 path = path. joinpath (' final_model .h5 ')
268 model.save(path)
269 print (" Saved model to disk ")
270 # Neptune log: save model to neptune #
271 neptune . log_artifact (str(path ))
272 return model
273
274 def forecast (model , X_history , X_history_extra , n_input ):
275 """
276 Parameters
277 ----------
278 model : Trained model
279 X_history : Dataset of passed satellite images
280 X_history_extra : Dataset of other passed features
281 n_input : Number of output timesteps
282
283 Returns
284 -------
285 y_hat : predictions for 1 forecast run
286
287 """
288 # Flatten data stream1 #
289 data = array( X_history )
290 # Retrieve last satellite image observation as sequence #
291 input_x = data[- n_input :]
292 input_x = input_x . reshape ((1, input_x .shape [0], input_x .shape [1],
293 input_x .shape [2], input_x .shape [3]))
294 # flatten data stream 2 #
295 data2 = array( X_history_extra )
296 # Retrieve last solar PV power feed -in data as sequence #
297 input_x_extra = data2[- n_input :]
298 input_x_extra = input_x_extra . reshape (1, input_x_extra .shape [0],
299 input_x_extra .shape [1])
300 # Generate forecast #
301 y_hat = model. predict ([ input_x , input_x_extra ], verbose =0)
302 y_hat = y_hat [0]
303 return y_hat
304
305 def make_forecast (model , X_train , X_test , y_test , n_input ):
306 """
307 Parameters
308 ----------
309 model : Trained model
310 X_train : Image training set for history
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311 X_test : Generation dataset for history
312 y_test : Real observations for addition to history
313 n_input : Number of input timesteps
314
315 Returns
316 -------
317 predictions : Complete forecast for validation set
318 """
319 # X_history is a list of quarterly images #
320 X_history = [x for x in X_train [- n_input :]]
321 # X_history is a list of quarterly other imput features #
322 input_cols = [0, 1, 11]
323 X_history_extra = [x for x in y_train [- n_input :, input_cols ]]
324 # Walk - forward loop over validation dataset #
325 predictions = list ()
326 for i in range(len( X_test )):
327 # Prediction for 1 forecast #
328 y_hat_sequence = forecast (model , X_history , X_history_extra , n_input )
329 # Store the predictions #
330 predictions . append ( y_hat_sequence )
331 # Get real observation and add to X_history for predicting next quarter #
332 X_history . append ( X_test [i ,: ,: ,:])
333 # Get real observation of norm power and add to X_history_extra #
334 X_history_extra . append ( y_test [i, input_cols ])
335 # Remove quarter data not used anymore in forecast for RAM saving #
336 X_history .pop (0)
337 # compile predictions #
338 predictions = array( predictions )
339 return predictions
340
341 def predictions_to_datetime (test_start , test_end , predictions , n_out ):
342 """
343 Parameters
344 ----------
345 test_start : Validation dataset start time
346 test_end : Validation dataset end time
347 predictions : Generated predictions for validation dataset
348 n_out : Forecast output timesteps
349
350 Returns
351 -------
352 df_predictions : Datetime based dataframe with prediction data
353 """
354 # Validation dataset with datetime index #
355 test_index = pd. date_range (test_start ,test_end ,freq ='15T ')
356 # Create empty dataframe to fill #
357 df_predictions = pd. DataFrame ({})
358 # Loop over prediction instances and n_output steps #
359 for i in range (0, len( predictions )):
360 t_step = range (1, n_out +1)
361 index_step = pd. date_range ( test_index [i], periods =n_out , freq ='15T ')
362 fill = pd. DataFrame (t_step , index_step )
363 # add column with moment of initiation 't=0' #
364 fill[' inititation_CNNLSTM '] = test_index [i]- datetime . timedelta ( minutes =15)
365 df_predictions = df_predictions . append (fill)
366 # Reshape predictions #
367 df_predictions [' predictions '] = predictions . reshape (
368 predictions .shape [0]* predictions .shape [1] ,1)
369 return df_predictions
370
371
372 #%% Run model #
373
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374 # =================================== Variables =================================== #
375 # Load dataset with range: #
376 start = '2015 -01 -01 00:00:00 '
377 end = '2020 -12 -31 23:45:00 '
378 # model variables #
379 n_input = 12
380 n_out = 12
381 dataset_name = '2015 -01 -01 _tm_2020 -12 -31 _40_32 .npz '
382 pixels_h = 40
383 pixels_b = 32
384 channels = 3
385 N_enddays_in_test = 366
386 # model save details #
387 model_save_name = 'test '
388 model_N = '7.32'
389 # Max solar #
390 maxsolarmodel = 'maxsolar23_2015_2020 '
391 # =================================== Neptune Data log ============================ #
392 para_dict = {'Data_start ': start ,
393 'Data_end ': end ,
394 'Days_val ': N_enddays_in_test ,
395 'n_input ': n_input ,
396 'n_output ': n_out ,
397 'maxsolar ': maxsolarmodel ,
398 'Save_name ': model_save_name ,
399 'CNN ': 'Own ',
400 'model_N ': model_N }
401 # =================================== RUN ========================================= #
402 # Load data , make model , evaluate #
403 X_data = load_img_dataset ( dataset_name )
404 df = load_data (start ,end , maxsolarmodel )
405 y_train , y_test , X_train , X_test , test_start , test_end = split_dataset (
406 df , X_data , N_enddays_in_test )
407 y_train_steps = create_training_set (y_train , n_input , n_out)
408 y_val_steps = create_validation_set (y_test , n_input , n_out)
409 model = build_model (y_train , y_test , X_train , X_test , y_train_steps ,
410 y_val_steps , n_input , n_out , pixels_h , pixels_b , channels ,
411 model_save_name , para_dict )
412 predictions = make_forecast (model , X_train , X_test , y_test , n_input )
413 df_predictions = predictions_to_datetime (test_start , test_end , predictions , n_out)
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Appendix D: Model 2A script
1 # -*- coding : utf -8 -*- #
2 """
3 Created on Thu April 10 14:01:15 2021
4
5 @author : gijs
6 """
7 # General #
8 import pandas as pd
9 import numpy as np

10 import pathlib
11 from numpy import load
12 from numpy import array
13 import math
14 # Created modules #
15 from load_data import load_data
16 # Deep learning #
17 from keras. models import Sequential
18 from keras. layers import Dense
19 from keras. layers import LSTM
20 from keras. layers import RepeatVector
21 from keras. layers import TimeDistributed
22 from keras. layers import Flatten
23 from keras. layers import Conv2D
24 from keras. layers import MaxPooling2D
25 from keras. models import Model
26 from keras. layers import Input
27 from keras. preprocessing . sequence import TimeseriesGenerator
28 from keras. callbacks import History
29 from keras. callbacks import LearningRateScheduler
30 from keras import metrics
31 from keras. callbacks import ModelCheckpoint
32 # Neptune #
33 import neptune
34 from neptunecontrib . monitoring .keras import NeptuneMonitor
35
36
37 #%% Define model functions #
38
39 def load_img_dataset ( dataset_name ):
40 """
41 Parameters
42 ----------
43 dataset_name : External satellite image dataset
44 Returns
45 -------
46 X_data : Return satellite dataset as array of images
47 """
48 # Open path of stored data set #
49 load_path = pathlib .Path(r"C:"). resolve (). joinpath (
50 'Users ','gijs ',' Intraday_solar_model ', 'Data ', 'Satellite_arrays ',
51 dataset_name )
52 # Load image data NpzFile #
53 data = load( load_path )
54 # Extract array from Npz type file #
55 X_data = data['arr_0 ']
56 return X_data
57
58 def split_dataset (df , X_data , N_enddays_in_test ):
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59 """
60 Parameters
61 ----------
62 df : input dataframe
63 N_enddays_in_test : days in validation dataset
64 n_out : forecast output length (12 steps = 3 hours)
65
66 Returns
67 -------
68 train : model training dataset
69 test : model validation dataset
70 test_start : start date of validation set
71 test_end : end data of validation set
72 """
73 # Normalize RBG channels in satellite image dataset #
74 X_data = ( X_data /255). astype ('float32 ')
75 # Return start and end date of validation dataset #
76 test_start = df.index. astype (str )[- N_enddays_in_test *96]
77 test_end = df.index. astype (str )[ -1]
78 # Return targed data as array #
79 y_data = df. values . astype ('float32 ')
80 # Split y data into test and train #
81 y_train , y_test = y_data [0:- N_enddays_in_test *96] , y_data [- N_enddays_in_test *96:]
82 # Split X data into test and train ( images ) #
83 X_train , X_test = X_data [0:- N_enddays_in_test *96] , X_data [- N_enddays_in_test *96:]
84 return y_train , y_test , X_train , X_test , test_start , test_end
85
86 def create_training_target (y_train , n_input , n_out ):
87 """
88 Parameters
89 ----------
90 y_train : training dataset
91 n_input : number of input timesteps
92 n_out : number of output timesetps
93
94 Returns
95 -------
96 Array of target variable in sequence training set
97 """
98 # Select target feature normalized power #
99 predictor_cols = 9

100 # Create list to fill with y train data #
101 y_train_steps = list ()
102 start_in = 0
103 # Loop over history to create dataset [samples , timesteps , target ] #
104 for _ in range(len( y_train )):
105 end_in = start_in + n_input
106 end_out = end_in + n_out
107 if end_out <= len( y_train ):
108 y_train_steps . append ( y_train [ end_in :end_out , predictor_cols ])
109 start_in += 1
110 return array( y_train_steps )
111
112 def create_validation_target (y_test , n_input , n_out ):
113 """
114 Parameters
115 ----------
116 y_test : validation dataset
117 n_input : number of input timesteps
118 n_out : number of output timesetps
119
120 Returns
121 -------
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122 Array of target variable in sequence validation set
123 """
124 # Select target feature normalized power #
125 predictor_cols = 9
126 # Create list to fill with y validation data #
127 y_val_steps = list ()
128 start_in = 0
129 # Loop over history to create dataset [samples , timesteps , target ] #
130 for _ in range(len( y_test )):
131 end_in = start_in + n_input
132 end_out = end_in + n_out
133 if end_out <= len( y_test ):
134 y_val_steps . append ( y_test [ end_in :end_out , predictor_cols ])
135 start_in += 1
136 return array( y_val_steps )
137
138 def build_model (X_train , X_test , y_train_steps , y_val_steps , n_input , n_out ,
139 pixels_h , pixels_b , channels , model_save_name , para_dict ):
140 '''
141 Parameters
142 ----------
143 X_train : Satellite image training dataset
144 X_test : Satellite image test dataset
145 y_train_steps : Sequence of training target data
146 y_val_steps : Sequence of validation target data
147 n_input : Number of input timesteps
148 n_out : Number of output timesteps
149 pixels_h : Vertical pixels satellite images
150 pixels_b : Horizontal pixels satellite images
151 channels : Number of channels in satellite images
152 model_save_name : Model name
153 para_dict : Information for datalogging
154
155 Returns
156 -------
157 model: CNN -LSTM regression model
158 '''
159 # Create object for model callbacks #
160 history_model = History ()
161 # Define training hyperparameters #
162 verbose , epochs , batch_size = 1, 50, 96
163 # Prepare training and validation datasets via keras utils generator #
164 # Create training set generator #
165 y_train_steps_long = np. concatenate ((np.zeros(shape =(
166 n_input +n_out ,n_out )), y_train_steps [: -1 ,:]) , axis =0)
167 y_train_steps_long = y_train_steps_long . reshape ((
168 y_train_steps_long .shape [0], y_train_steps_long .shape [1], 1))
169 generator = TimeseriesGenerator (
170 X_train , y_train_steps_long , length =n_input , batch_size = batch_size )
171 # Create validation set generator #
172 y_val_steps_long = np. concatenate ((np.zeros(shape =(
173 n_input +n_out ,n_out )), y_val_steps [: -1 ,:]) , axis =0)
174 y_val_steps_long = y_val_steps_long . reshape ((
175 y_val_steps_long .shape [0], y_val_steps_long .shape [1], 1))
176 val_generator = TimeseriesGenerator (
177 X_test , y_val_steps_long , length =n_input , batch_size = batch_size )
178 # Learn rate schedule generator #
179 initial_learning_rate = 0.001
180 drop_rate_Nep = 0.5
181 epochs_drop_Nep = 15
182 def lr_step_decay (epoch , lr):
183 drop_rate = drop_rate_Nep
184 epochs_drop = epochs_drop_Nep
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185 return initial_learning_rate * math.pow(drop_rate ,
186 math.floor(epoch/ epochs_drop ))
187 # Neptune log: Add extra parameters for neptune reference #
188 para_extra = {' batch_size ': batch_size ,
189 'epochs ': epochs ,
190 'optimizer ': 'Adam ',
191 'initial_LR ': initial_learning_rate ,
192 'drop_rate ': drop_rate_Nep ,
193 'epochs_drop ': epochs_drop_Nep
194 }
195 para_dict . update ( para_extra )
196 # Neptune log: Create experiment #
197 neptune . create_experiment (name= model_save_name , params =para_dict ,
198 upload_source_files =(' Model_2A .py '),
199 tags =[' Model_2A '])
200 # Built CNN model #
201 own_cnn = Sequential ()
202 own_cnn .add( Conv2D (32, (3, 3), activation ='relu ',
203 kernel_initializer ='he_uniform ', padding ='same ',
204 input_shape =( pixels_h , pixels_b , channels )))
205 own_cnn .add( MaxPooling2D ((2, 2)))
206 own_cnn .add( Conv2D (32, (3, 3), activation ='relu ',
207 kernel_initializer ='he_uniform ', padding ='same '))
208 own_cnn .add( MaxPooling2D ((2, 2)))
209 own_cnn .add( Conv2D (32, (3, 3), activation ='relu ',
210 kernel_initializer ='he_uniform ', padding ='same '))
211 own_cnn .add( MaxPooling2D ((2, 2)))
212 own_cnn .add( Conv2D (32, (3, 3), activation ='relu ',
213 kernel_initializer ='he_uniform ', padding ='same '))
214 own_cnn .add( MaxPooling2D ((2, 2)))
215 # Define CNN model in complete architecture #
216 visible1 = Input(shape =( n_input , pixels_h , pixels_b , channels ))
217 cnn = TimeDistributed ( own_cnn )( visible1 )
218 flat1 = TimeDistributed ( Flatten ())( cnn)
219 # Encoder - LSTM #
220 LSTM1 = LSTM (200 , activation ='relu ', return_sequences =True )( flat1)
221 LSTM2 = LSTM (200 , activation ='relu ', return_sequences =True )( LSTM1)
222 LSTM3 = LSTM (200 , activation ='relu ', return_sequences = False )( LSTM2)
223 # Decoder - LSTM #
224 Repeater = RepeatVector (n_out )( LSTM3)
225 LSTM4 = LSTM (200 , activation ='relu ', return_sequences =True )( Repeater )
226 LSTM5 = LSTM (200 , activation ='relu ', return_sequences =True )( LSTM4)
227 LSTM6 = LSTM (200 , activation ='relu ', return_sequences =True )( LSTM5)
228 hidden1 = TimeDistributed (Dense (200 , activation ='relu ',
229 kernel_initializer ='he_normal '))( LSTM6)
230 hidden2 = TimeDistributed (Dense (100 , activation ='relu ',
231 kernel_initializer ='he_normal '))( hidden1 )
232 output = TimeDistributed (Dense (1))( hidden2 )
233 # Define inputs and outputs #
234 model = Model( inputs =visible1 , outputs = output )
235 # Compile model with additional hyperparameter selection #
236 model. compile (loss='mse ', optimizer ='adam ',
237 metrics =['mse ','mae ', metrics . RootMeanSquaredError ()])
238 # Model checkpoint save #
239 path = pathlib .Path.cwd (). joinpath (' Saved_models ', 'Model_2A ', model_save_name )
240 path.mkdir( parents =True , exist_ok =True)
241 path = path. joinpath (' best_model .h5 ')
242 checkpoint = ModelCheckpoint (path , monitor =' val_root_mean_squared_error ',
243 verbose =1, save_best_only =True , mode='min ')
244 # Neptune log: save model summary #
245 model. summary ( print_fn = lambda x: neptune . log_text (' model_summary ', x))
246 # Fit model #
247 model.fit(generator , steps_per_epoch =len( generator ),
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248 validation_data = val_generator , validation_steps =len( val_generator ),
249 epochs =epochs , batch_size =batch_size , verbose =verbose ,
250 callbacks =[ history_model , NeptuneMonitor (),
251 LearningRateScheduler ( lr_step_decay , verbose =1),
252 checkpoint ])
253 # Save model to local folder #
254 path = pathlib .Path.cwd (). joinpath (' Saved_models ', 'Model_2A ', model_save_name )
255 path = path. joinpath (' final_model .h5 ')
256 model.save(path)
257 print (" Saved model to disk ")
258 # Neptune log: save model to neptune #
259 neptune . log_artifact (str(path ))
260 return model
261
262 #%% Run model #
263
264 # =================================== Variables =================================== #
265 # Load dataset with range: #
266 start = '2015 -01 -01 00:00:00 '
267 end = '2020 -12 -31 23:45:00 '
268 # model variables #
269 n_input = 12
270 n_out = 12
271 dataset_name = '2015 -01 -01 _tm_2020 -12 -31 _40_32 .npz '
272
273 pixels_h = 40
274 pixels_b = 32
275 channels = 3
276 N_enddays_in_test = 366
277 # model save details #
278 model_save_name = 'Sat_test '
279 model_N = '6.37'
280 # Max solar #
281 maxsolarmodel = 'maxsolar23_2015_2020 '
282 # =================================== Neptune Data log ============================ #
283 para_dict = {'Data_start ': start ,
284 'Data_end ': end ,
285 'Days_val ': N_enddays_in_test ,
286 'n_input ': n_input ,
287 'n_output ': n_out ,
288 'maxsolar ': maxsolarmodel ,
289 'Save_name ': model_save_name ,
290 'CNN ': 'VGG16 ',
291 'model_N ': model_N }
292 # =================================== RUN ========================================= #
293 # Load data , make model , evaluate #
294 X_data = load_img_dataset ( dataset_name )
295 df = load_data (start ,end , maxsolarmodel )
296 y_train , y_test , X_train , X_test , test_start , test_end = split_dataset (df , X_data , N_enddays_in_test )
297 y_train_steps = create_training_target (y_train , n_input , n_out)
298 y_val_steps = create_training_target_validate (y_test , n_input , n_out)
299 model = build_model (X_train , X_test , y_train_steps , y_val_steps , n_input , n_out , pixels_h , pixels_b , channels , model_save_name , para_dict )
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Appendix E: Data generator script
1 """
2 Created on Fri Mar 5 09:37:30 2021
3
4 @author : Gijs van Ouwerkerk
5 """
6 import numpy as np
7 import json
8 import keras
9

10 class TimeseriesGenerator (keras.utils. Sequence ):
11 def __init__ (self , img , data , targets , length ,
12 sampling_rate =1,
13 stride =1,
14 start_index =0,
15 end_index =None ,
16 shuffle =False ,
17 reverse =False ,
18 batch_size =128):
19
20 if len(data) != len( targets ):
21 raise ValueError ('Image and sequence data must '+
22 'have same length as target data ')
23
24 self.img = img
25 self.data = data
26 self. targets = targets
27 self. length = length
28 self. sampling_rate = sampling_rate
29 self. stride = stride
30 self. start_index = start_index + length
31 if end_index is None:
32 end_index = len(data) - 1
33 self. end_index = end_index
34 self. shuffle = shuffle
35 self. reverse = reverse
36 self. batch_size = batch_size
37
38 if self. start_index > self. end_index :
39 raise ValueError ('`start_index + length =%i > end_index =%i')
40
41 def __len__ (self ):
42 return (self. end_index - self. start_index +
43 self. batch_size * self. stride ) // (self. batch_size * self. stride )
44
45 def __getitem__ (self , index ):
46 if self. shuffle :
47 rows = np. random . randint (
48 self. start_index , self. end_index + 1, size=self. batch_size )
49 else:
50 i = self. start_index + self. batch_size * self. stride * index
51 rows = np. arange (i, min(i + self. batch_size *
52 self.stride , self. end_index + 1), self. stride )
53
54 samples2 = np.array ([ self.img[row - self. length :row:self. sampling_rate ]
55 for row in rows ])
56 samples = np.array ([ self.data[row - self. length :row:self. sampling_rate ]
57 for row in rows ])
58 targets = np.array ([ self. targets [row] for row in rows ])
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59
60 if self. reverse :
61 return samples [:, ::-1, ...] , targets
62 return [samples2 , samples ], targets
63
64 def get_config (self ):
65 img = self.img
66 if type(self.img ). __module__ == np. __name__ :
67 img = self.img. tolist ()
68 try:
69 json_img = json.dumps(img)
70 except TypeError :
71 raise TypeError ('Satellite image data not JSON Serializable :', img)
72
73 data = self.data
74 if type(self.data ). __module__ == np. __name__ :
75 data = self.data. tolist ()
76 try:
77 json_data = json.dumps(data)
78 except TypeError :
79 raise TypeError ('Sequence data not JSON Serializable :', data)
80
81 targets = self. targets
82 if type(self. targets ). __module__ == np. __name__ :
83 targets = self. targets . tolist ()
84 try:
85 json_targets = json.dumps( targets )
86 except TypeError :
87 raise TypeError ('Targets not JSON Serializable :', targets )
88
89 return {
90 'img ': json_img ,
91 'data ': json_data ,
92 'targets ': json_targets ,
93 'length ': self.length ,
94 'sampling_rate ': self. sampling_rate ,
95 'stride ': self.stride ,
96 'start_index ': self. start_index ,
97 'end_index ': self.end_index ,
98 'shuffle ': self.shuffle ,
99 'reverse ': self.reverse ,

100 'batch_size ': self. batch_size
101 }
102 def to_json (self , ** kwargs ):
103 config = self. get_config ()
104 timeseries_generator_config = {
105 'class_name ': self. __class__ .__name__ ,
106 'config ': config
107 }
108 return json.dumps( timeseries_generator_config , ** kwargs )
109
110 def timeseries_generator_from_json ( json_string ):
111 full_config = json.loads( json_string )
112 config = full_config .get('config ')
113
114 img = json.loads( config .pop('img '))
115 config ['img '] = img
116 data = json.loads( config .pop('data '))
117 config ['data '] = data
118 targets = json.loads( config .pop('targets '))
119 config ['targets '] = targets
120 return TimeseriesGenerator (** config )
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