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Abstract
Multiple solutions for solving optimal power flow (OPF) have been employed, most of them using a cen-
tralised approach. However, there is another approach where every node is responsible for the local problem
in order to reach a solution: the decentralised optimal power flow (D-OPF). In this thesis, the aim was to im-
prove the speed and flexibility of a D-OPF algorithm based on the Consensus and Innovation (C+I) method
using physical measurements from a direct current (DC) system. While in previous implementations, the sys-
tem would work towards finding the solution for one point in time, the suggested implementation works by
performing online optimisation, meaning that there is less time required in propagating information around
the system and faster solutions are reached. A possible interaction between the physical and optimisation
layers was suggested, to make online control feasible. Using current droop control for a DC system, it was
possible to react to sudden changes the system and, in the long term, optimise the electrical resources. The
improvements in speed were then demonstrated by the simulations results, where the time to reach the opti-
mal solution was reduced, when compared to previous implementations. In order to increase the flexibility of
the system, adaptive behaviour for the critical optimisation variables was suggested. To reduce the oscillatory
behaviour of the system, some gains were made proportional to rate of change of said variables, meaning that
the system didn’t have to rely on user determine values in order to converge. It was also implemented a solu-
tion to calculate the line resistance between two nodes, further reducing the need for external inputs. These
implementations were tested and it was concluded that it improved convergence speeds, while increasing
the flexibility pf the system. Finally, a test case, based on a real existing lighting grid, was designed in order to
test the algorithm under larger networks. The results showed that for a 25% increase in the size of the network
there was no significant increase in the time required to reach a solution, indicating that the system can be
scaled further, and might be dependent mainly on the network structure, and not its size.

keywords: DC, Optimal Power Flow, Consensus + Innovation, Droop Control, Online Optimisation, Adap-
tive Behaviour, Parameter Estimation
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1
Introduction

1.1. Renewable Energy and Distributed Energy Resources
Climate change is one of the big challenges humanity is facing. Proof of this is the amount of attention it has
been gathering: from everyday people, striking for change, to world leaders, signing important global treaties,
like the Paris Climate Accord, in order to reduce CO2 emissions.

This shift in mentality, allied to the increase of electricity has a energy source [1], was led to an increase
of demand for newer and cleaner energy solutions: Renewable Energy (RE). These new energy sources have
seen a big push in development, especially wind generation, with big onshore and offshore wind farms being
planned and constructed, as well as solar generation, with photovoltaic (PV) panels becoming less expensive
and more efficient [2], making them, as time goes on, a more economic and environmentally friendly solution
the more widely used fossil fuels.

One of the many advantage of using RE sources is the fact that these can be installed in regular homes,
meaning homeowners, which could only be consumers, are now able produce their own energy and sell it
back to the grid, becoming prosumers. This change in electrical power production from big fossil fuel based
power plants to a system where there are smaller distributed energy resources (DER) is becoming increasingly
likely, but is not without consequences.

This DER, for example, are harder to control because there is no centralised command centre from where
power production can be dispatched since power generation might be dependent on weather conditions, in
the case of RE, and can also be privately owned and, as such, is subject to privacy laws.

Also, in order to optimise these resources, it is not feasible to have it human controlled. As the system
grows and becomes more complex, the amount of control variables becomes exponentially larger and users
cannot be expected to manage such complex problems.

As such, to tackle and solve the presented problems, new optimisation strategies are needed.

1.2. Meshed Low Voltage Grids and Microgrids
The increasing number of prosumers will also lead to infrastructure problems, mainly on the low voltage (LV)
distribution grids.

As it stands, the distribution grid is arranged radially, which is a good solution for a traditional power
system, since power flows from medium voltage distribution level and is supplied first from top to bottom.
For example, power would first be delivered to a neighbourhood LV grid, then to apartment blocks and finally
to individual households. This meant that it would be easier to isolate and react to faults in the system.

However, with the introduction of micro production at the consumer level, the system faces problems
which were unseen before. One of which is the lack of information in the distribution grid operator about
private production of energy, which leads to sub-optimal line congestion control. This congestion could be
an upwards flow of power, meaning power that is being generated in households and flowing upstream. This
generated power also leads to less effective protection since the LV distribution system is not built to handle
current flow in both directions.

A solution as been presented to tackle such problems: meshing the LV distribution grid, suggested in
[3]. This new LV meshed grid would be better prepared to handle faults, since there would have in-built

1



2 1. Introduction

redundancy, assuring that some power could flow in case of faults, as well as reducing increasing the solution
space need to solve congestion problems.

Meshing the grid, however, has some obstacles, especially in alternating current (AC) electrical grids. For
example, when connecting two different branches together, the difference in voltage angle, which result of
different impedances, can create high currents and trip the protection modules. In [3], is suggested that direct
current DC is used as an alternative since it is easier to mesh, current flow depends only on the voltage level,
and because most renewable sources are already in DC: PV panels and batteries are inherently DC and wind
turbines, in order to have flexible speed, are connected to the grid via two back to back AC-DC converters.

1.3. Consensus and Innovation as a Fully Distributed Optimi-
sation Strategy

In order to reduce costs and better allocate electrical power resources, Optimal Power Flow (OPF) tools have
been developed. In its core, OPF is an optimisation problem where the objective is to minimise the electrical
power generation costs by despatching different generators, while still meeting the demand and subject to
the constraints of the system, e.g, keeping the current under the maximum limit and voltage withing certain
boundaries to maintain a stable system. This tool is widely used by transmission system operators [4] in order
to keep the grid stable a better allocate the energetic resources.

This OPF calculations are usually performed in a centralised manner, meaning that the information is
received from several substations, the optimisation calculation are performed centrally and the generation
requirements are sent to power plants. These problems can scale very rapidly with the grid size and for bigger
networks, there is a lot of computational power required to reach an optimal solution. There is also the
drawback of performing OPF in a centralised way means there is a single point of failure, which can have
hefty consequences.

For the scope of the operation of a transmission grids, running centralised OPF makes sense since there
are usually only one or few TSO’s, which responsible of assuring grid stability. However, in the LV grids, this
solution might not be feasible anymore, since there are more players involved in the optimisation process and
power supply and demand are more volatile. As such, a new way of preforming OPF becomes more viable:
Decentralised OPF (D-OPF).

One of the proposed solutions to run D-OPF is called Consensus and Innovation (C+I). This algorithm is
a fully distributed solution for the OPF problem, meaning there is no central controller and every area in the
network, a node, is helping the system to reach the optimal solution. The inner workings of this algorithm
will be addressed in the following chapters.

1.4. Research Motivation
Although progress has been made in order to make C+I based algorithms a viable solution, there are still some
challenge wich remain to be solved. The first problem is that present solutions only solve OPF for one time
step, meaning that, the optimal solution is calculated for one point in time and, if there is any shift in the
network, the results are not valid anymore.

Another downside of suggested implementations is that there is no feedback from the grid, meaning there
is no way to actually check if the setpoints defined by the optimisation process are being applied in the phys-
ical system.

A third problem that was found is the fact that tuning parameters of the optimisation process need to be
set during the initialisation phase and remain immutable during the whole process, which means that the
system might requires heavy human supervision.

And lastly, the whole convergence of the system to an optimal solution needs to be faster in order to make
this solution applicable in the real world.

This project was developed with the aim of mitigating, or even eliminating this probelms, in order to path
the way to a real world implementation.
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1.5. Objective and Research Questions
1.5.1. Objective
The main objective of this thesis is to improve the speed and flexibility of the C+I fully decentralised online
optimisation algorithm for low voltage DC grids using physical measurements.

1.5.2. Research Questions
In order to successfully meet the objective of this study, 4 different research questions would have to be an-
swered:

1. How can physical measurements be used to improve the convergence rate?

2. What is the impact of communication loss on the convergence rate?

3. How can the optimisation parameters be adapted online to improve convergence rate?

4. What is the impact of changing supply and demand on the convergence rate?

1.6. Report Structure
This report is divided into six chapters. In chapter 1, an introduction to the report was given. In Chapter 2, a
state of the art review is done, introducing the concepts that will support this thesis report: grid economics,
DC power flow calculations, centralised and decentralised OPF algorithms.

Chapters 3 and 4 represent the main body of the report. In Chapter 3, the grid and droop equations are
presented, as well as the formulation for the decentralised optimal power flow optimisation problem. The
update strategy is described, the interaction between physical and cyber layers is explained and simulation
results are shwon. In Chapter 4, the adaptive behaviour of the algorithm is defined and the results are com-
pared to previous implementations.

Chapter 5 presents the test case study of this algorithm on LV electrical power grid in Zoetermeer and,
finally, in Chapter 6 the research questions are answered and conclusions are taken about the produced work.
Suggestions for future work are given as well.





2
Literature Review

2.1. Electrical Energy Market Economics
In the 1880’s, the first steps into building a electrical grid were taken. 140 years past, the transmission of elec-
trical energy from the producer to the consumer became a very complex process with many parties involved.
However the basic principle is still the same than other markets: there is a group of entities (producers) which
produces a certain commodity and the other group (consumers) buy said commodity at a certain price [5].
On the electricity market, both entities trade in electrical energy, measured in MWh, for a certain time frame.
This transaction can occur in two different ways: Decentralised or Centralised trading [5]. Decentralised
trading occurs when producers and consumers have a contract for a certain amount of energy for a certain
price, while in centralised trading all consumers and producers submit a bid on how much they are willing
to buy/sell and at what price and a third entity, the system operator, gathers all the bids and sets the market
clearing price. This last trading option is more relevant for the work developed on this thesis, and therefore it
will the one taken into account in this section.

The price that a producer is willing to sell electricity depends on the costs at which it can be generated. For
optimisation purposes, this costs are approximated by a cost function C (P ), where C is the cost of generating
P , in MWh. The nature of this function depends on the type of generator since different generation methods
have different associated expenses. For most gas turbine and diesel fuelled generators, it’s cost function is
usually of quadratic nature[6], while some fuel cell systems have a linear cost function, where its price scale
mainly with the amount of fuel need to generate power[7]. Finally, renewable sources like photovoltaic panels
have constant cost functions[8], depending on initial investments, for example. In figure 2.1 examples of
these functions can be seen.

C [m.u/h]

P [MW]

Quadratic Cost

Constant Cost
Linear Cost

Figure 2.1: Cost funtion examples

At any given point in time, there is a electricity demand that must be met and so the market works to
minimise the overall cost of production in order to meet said demand. This means that, in its core, it is an
optimisation problem, which is called Optimised Power Flow (OPF)[5]. We can better see it in an example:
There are m producers, each one with a cost function Cm , as shown in equation (2.1), and the only constraint

5



6 2. Literature Review

is that the total produced power must be the same as the total demanded power DTotal, like in equation (2.2),
disregarding any losses in the system. This will be called the unconstrained case.

Cm = AmP 2
m +BmPm +Km (2.1)∑

Pm = DTot al (2.2)

where Am ,Bm and Km are, respectively, the quadratic, linear and constant cost coefficients.
The optimisation problem is then solved by minimising all the cost functions, while subject to (2.2).

min
∑

Cm(Pm) (2.3)

The solution to this problem are the values of P for which all dCm
dPm

are the same. This derivative is called
Marginal Prices (MP), since it represents the added cost of increasing production.

The previous example might work for very broad studies, but in the case of this master thesis it does not
suffice, since it does not account for any physical limitations of the grid.

For example, no line is capable of transferring an infinite amount of power and there are always some
transmission losses on the system. Therefor, this marginal prices at the end of the optimisation might differ
from the unconstrained case. Since this MP might vary throughout the network, they are called Locational
Marginal Prices (LMP) [9].

2.2. Grid Physics and Simulation
2.2.1. AC Power Flow
Most of the installed electrical transmission capacity is in AC [10], therefor most of the tools that exist nowa-
days to make power flow calculations are also in AC [11]. Hence, power flow is calculated using the equations
(2.4), for active power, and (2.5), for reactive power.

Pm =
N∑

n=1
|Um ||Un |(Gmn cosθmn +Bmn sinθmn) (2.4)

Qm =
N∑

n=1
|Um ||Un |(Gmn sinθmn −Bmn cosθmn) (2.5)

where Um is the voltage amplitude in node m, Gmn and Bmn are, respectively, the conductance and suscep-
tance of the branch between node m and node n, and θmn is the difference between the voltage angles of
nodes m and n.

The DC power flow calculations that often appear in literature are an approximation of AC PF, where the
voltage magnitude U is taken as being 1 pu, the differences in θ over one line are taken as being very small,
meaning cosθm,n = 1 and sinθm,n = θm −θn , and the line resistances are negligible. This assumptions mean
that only active power P flows in the network,Qm = 0, and it is dependent on the voltage angles θ and the line
susceptance, as seen in (2.6).

Pm =
N∑

n=1
Bmn(θm −θn) (2.6)

Although, for distribution grids this approximations is not be valid, the line resistance is not insignificant
when compared to the reactance, and new formulations have been developed to tackle those problems [12].

2.2.2. Exact DC Power Flow
The focus of this thesis project is to preform distributed OPF in a DC network and therefor, this equations are
not valid since they do not represent a DC system, where voltage angles and reactances do not exist.

In [13] the equations for Exact DC (EDC) Power Flow are show, in terms of current, for a bipolar DC net-
work.

im,n =Gm,n · (um −un) (2.7)

im = ∑
n|(m,n)∈G

im,n − ∑
n|(m,n)∈G

im,n (2.8)

−im = ∑
n|(m,n)∈S

∑
s|(m,n,s)∈S

i S
m,n,s −

∑
n|(m,n)∈S

∑
s|(n,m,s)∈S

i S
n,m,s (2.9)
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where im,n is the current that flows from node m to node n, um and im are, respectively, the voltage and the
total current at node m. Furthermore, (m,n) ∈ G is a pair of nodes with a connecting line and (m,n, s) ∈ S

are the individual sources at nodes (m,n).
Equation (2.7) is the application of Ohm’s law to a branch between 2 nodes, while (2.8) is Kirchhoff’s

current law applied to a single node m. As for the 3r d equation, (2.9), it states that the source current of a
node is the difference between the input current from a source and the drawn current from a load. Since
generators and loads also have power limits, it is important to define the power of a source/load:

pS
m,n,s = (um −un) · i S

m,n,s (2.10)

where pS
m,n,s is the power of a load connected at (m,n).

Then, running EDC-PF for any DC grid is a matter of obtaining the solution for a system of equations
defined by (2.7)-(2.9).

2.2.3. Droop Control
This report studies a solution for DC OPF in a fully distributed algorithm, where there is no central controller.
Therefore, every node of the network, if its a load or a generator, must be able to, until a certain point, be
able to control its own voltage and power. A solution can be found on [14], where current droop control is
suggested, meaning that the converter in that node could set its own power, current and voltage limits, as well
as setting its own current-voltage (IV) characteristics. This would mean that, “(...) even if communication is
lost, the system could continue to operate, increasing the resilience of the system.” [14]. The suggested droop
curve wold look similar to the one presented on figure 2.2.

im

pm

im
pm

Droop

um[pu]

im[pu]

Im Im0

Figure 2.2: Example of a possible droop curve (without deadband)

In this figure it is possible to identify 5 segments which describe the behaviour of the converter depending
on its own state. When the converter is supplying or demanding maximum and minimum current, respec-
tively, its behaviour is mandated by the bright green and blue lines, meaning that its own voltage can change
but not the current and, therefore, shown as a vertical line. When the converter is at maximum or minimum
power, its behaviour is set by the red and olive green respectively, where both current and voltage can change
but their product must be constant, i.e., i ·u = P meaning that u = P/i , which translates to the hyperbola seen
in Figure 2.2. For the case where the converter is not at any operational limit, the behaviour is set by a linear



8 2. Literature Review

function of u = f (i ), with slope d , called the droop, i.e.:

u = d · i +K (2.11)

where K the value of voltage for which the current i = 0. In [14], droop control is also shown with deadband,
which is not present in figure 2.2 since it was not relevant for this project.

2.3. Methods for Distributed OPF
As it was mentioned in section 1, OPF can be done in a centralised, distributed or fully distributed fashion,
with the later one being the focus of this report. Many algorithms have been researched for this purpose and
studies comparing them have also been realised [15, 16]. These distributed methods can be classified in two
groups, depending on the mathematical foundation: Augmented Lagrangian Relaxation (ALR) methods or
Karush-Kuhn-Tucker (KKT) Condition methods, each one with different algorithms [15, 16]. In the following
sections, a brief overview of the non used methods will be given.

2.3.1. Augmented Lagrangian Relaxation
Examples of ALR methods are the Analytical Target Cascading (ATC) method, the Auxiliary Problem Principle
(APP) and the Alternating Direction Method of Multipliers (ADMM), like the solution presented by [17]. All
of this methods require a central coordinator [15], hence, are not fully distributed and thus are not viable of
being implemented in this project.

A solution is to use ADMM in combination with Proximal Message Passing (PMP) which no longer re-
quires a central coordinator to operate and makes it a fully distributed algorithm [18]. To explain how it
works, an example will be given.

Considering the follow optimisation problem:

min
x,y

f (x)+ g (y) (2.12)

with the following linear constraint:

Ax +B y = c (2.13)

where x and y are decision variables, A and B are constraint coefficients and c is the specified vector.
For this problem, there is the following augmented Lagrangian function:

L (x, y,λ) = f (x)+ g (y)+λ(Ax +B y − c)+ ρ

2
∥Ax +B y − c∥2

2 (2.14)

where ρ > 0 is a specified penalty parameter and ∥.∥2 is the two norm for absolute value. The ADMM algo-
rithm conducts decomposing the problem in sub-problems of minimizing each decision variables and the
dual variable.

x(l +1) = arg min
x

L (x(l ), y(l ),λ(l )) (2.15)

y(l +1) = arg min
y

L (x(l +1), y(l ),λ(l )) (2.16)

λ(l +1) =λ(l )+ρ(Ax(l +1)+B y(l +1)− c) (2.17)

where the variables are updated one after the other. In this case, a central coordinator is needed for (2.17) in
order to update the dual variable value. Introducing PMP, this is no longer a requirement since every node
evaluates a “prox” function:

prox f ,ρ(v) = arg min
x

( f (x)+ρ/2∥x − v∥2
2) (2.18)

where x is a vector that contains the primal (x, y) and dual (λ) variables and v is a vector of the avearge values
of x in the nodes.

Applying this method the the decentralised OPF problem [18], we get as the decision variables the power
plans, f (x) is the local objective function and ρ is scalar for tuning parameter. The prox function optimises
the local variables and sends it to the neighbouring nodes. The algorithm stops after all nodes agree on a
common value of x, in the case of [18], the power P .
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2.4. KKT based Fully Distributed OPF methods
The methods which will be described in the following sections are all based on KKT Conditions for optimality,
and so it is required an explanation of what they are.

2.4.1. Karush-Kuhn-Tucker Conditions
The KKT Conditions, initially developed in [19, 20], is a method of optimising non-linear constrained prob-
lems. Given a certain function, the objective is to minimise said function, in regards to the KKT necessary
conditions. Considering the following optimisation problem:

min f (x) (2.19)

subject to:

hi (x) = 0 ∀i ∈N (2.20)

g j ≤G j ∀ j ∈M (2.21)

gk ≥Gk ∀k ∈M (2.22)

where i , j and k are the indexes for equality constraints and the inequality constraints respectively. The
problem is to minimise f (x), which is dependent on x and the solution x∗ must follow the equality constraints
hi (x) and must not violate maximum and minimum boundaries given by G and G respectively. In order to
solve this problem it is necessary to first define the Lagrangian function L as:

L (x) = f (x)+λi hi (x)+µG
j (g j (x)−G j )+µ

G
k (−gk (x)+Gk ) (2.23)

Hence, an optimal solution is only reached when the following 4 sets of conditions are met:

1. Optimality conditions

∂L

∂x
= 0 (2.24)

∂L

∂λi
= 0 (2.25)

2. Feasibility condition (Equation (2.20)-(2.22))

3. Complementary slackness condition

µG j (g j (x)−G j ) = 0 (2.26)

µG (−g j (x)+G) = 0 (2.27)

4. Positivity condition

µG
j ,µ

G
j ≥ 0 (2.28)

Every λ and µ is called a KKT multiplier, or a dual variable of the constraint. The main variables, x, in this
case, are called the primal variables. In the case of OPF problems, one of the equality constraints is power
mismatch constraint, given by (2.6) for AC systems, and the associated dual variable, λ, is also the LMP, which
was discussed in section 2.1.

2.4.2. Optimality Condition Decomposition
The Optimality Condition Decomposition method is used when the optimisation problem has coupling con-
straints [15]. In this method, the problem is partitioned into many subproblems, which, in every iteration,
receive the information from the neighbouring nodes, update their variables by solving OPF locally, and send-
ing that information back to the neighbours until a every node agrees on the solution.
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Once decomposed in N subproblems, one for every node, the constraints are divided into coupling and
non-coupling. Then, the 1st order derivative of the associated KKT conditions is calculated and the Newton-
Raphson method used to reach a local solution. Then, using the Jacobian Matrix of the KKT conditions, the
primal and dual variables are updated and that information is sent to the other neighbours, until all the KKT
conditions are met, and therefor a solution is reached.

In [21], OCD is used in order to solve a dynamic reactive power optimisation (DRPO) problem, minimising
the transmission loss over multiple time periods. DRPO is a problem with continuous decision variables,
nodal active power P and reactive power Q as well as voltage magnitude V and angle θ as well as discrete
decision variables like controlling variables of the transformers. The later ones have first be relaxed into
continuous variables with a help of binary variables in order to preform OCD, making this a mixed integer
optimisation problem.

Then, the network is divided into areas by relaxing the coupling constraints, with the neighbouring areas
exchanging the necessary information, i.e., Va , θa , λa and µa and, finally, recurring to non-linear program-
ming, the local problem is solved. The whole method iterates until the change in V and θ is smaller than the
defined tolerances ϵV ,θ .

2.4.3. Distributed Interior Point Method
Distributed Interior Point Method is based on the interior point method and then modified into a distributed
algorithm using a unidirectional communication ring, as proposed in [22].

In this approach, an approximation of the centralised interior point method is made by first deriving
Lagrangian function L of the problem, then applying Newton-Raphson to L and therefore obtaining ∆x and
∆λ. In the decentralised method, the only variables that are updated are the local primal and dual variables,
while the other ones the same and once that update is done, meaning:

xn(l +1) = xn(l )+αp (l +1)∆xn (2.29)

λn(l +1) =λn(l )+αd (l +1)∆λn (2.30)

where xn and λn are the local primal and dual variables and l is the current iteration.
The results of one node are then sent to the next node in a circular faction until the result is within the

defined tolerance range.

2.5. Consensus + Innovations
Consensus + Innovations is another KKT based method to solve problems in a fully decentralised fashion,
which was subject of study in [23–26]. In [23], C+I is suggested as a method to improve on the Consensus
algorithm, in order to tackle imperfect communication and randomness in the network. Here, the state esti-
mate of each variable is updated with:

xm(l +1) = xm(l )−βl

∑
n∈Ωm

xm(l )−xn(l )︸ ︷︷ ︸
consensus

+αl Km(l ) (H T
mR−1

m (ym(l )−Hm xm(l )))︸ ︷︷ ︸
local innovation

(2.31)

where xm is the estimation variable, l the current iteration, αl and βl iteration dependant weighting factors,
Km(l ) is the iteration dependant local innovation gain, and (H T

mR−1
m (ym(l )−Hm xm(l ))) is the local innovation

strategy which combines all agents observations ym with the current one xm [23].
Although it is a versatile method that can be used in network estimation, it has also been applied to OPF

in [24–27]. C + I has the advantage of being a fully decentralised method, which needs no global variable
update.

In order to better understand how this method works, we will take the example of the implementation on
[25], where the DC approximation for AC power flow is used, as shown previously on (2.6). It is worth noting
that Ym,n = Bm,n since the line resistance is neglected.

Here the objection function is defined as:

min
P S

∑
m∈N

Am(pS
m)2 +Bm pS

m +Km (2.32)

subject to:
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pS
m = ∑

n∈Ωm

Ym,n(θm −θn) ∀(m) ∈N (2.33)

P m,n ≤ Ym,n(θm −θn) ≤ P m,n ∀(m,n) ∈N (2.34)

P S
m ≤ pS

m ≤ P
S
m ∀(m) ∈N (2.35)

where Am and Bm are the quadratic and linear cost parameters, respectively, of the observed node m, Km the
constant cost of the same node and the objective function is the sum of all the costs associated with the nodal
power Pm . This problem is subject to three sets of constraints: the power flow equation (2.33), the maximum
and minimum power transfer limits of a branch (2.34) and the maximum and minimum power limits of a
node (2.35). Since all voltage angles are relative to each other, it is necessary do fix one of them, arbitrarily,
hence θ1 = 0.

Given this problem, it is possible then to set the Lagragian funtion L as:

L = ∑
m∈N

Am(pS
m)2 +Bm pS

m)+Km

+ ∑
m∈N

λm

( ∑
n∈Ωm

Ym,n(θm −θn)−pS
m

)

+ ∑
n∈Ωm

µm,n

(
Ym,n(θm −θn)−P m,n

)
+ ∑

n∈Ωm

µn,m

(
−Ym,n(θm −θn)−P m,n

)

+ ∑
m∈N

µP
m

(
pS

m −P
S
m

)
+ ∑

m∈N

µ
P
m

(
−pS

m +P S
m

)
(2.36)

where λ and µ correspond to the dual variables of respective constraints. The KKT first optimality conditions
are:

∂L

∂pS
m

= ∑
s∈S

2Am pS
m +Bm

−λm +µP
m −µ

P
m = 0

(2.37)

∂L

∂θm
=λm

∑
n∈Ωm

Ym,n − ∑
n∈Ωm

λnYm,n

+ ∑
n∈Ωm

Gp
m,n(µm,n −µn,m) = 0

(2.38)

∂L

∂λm
=− ∑

s∈S

pS
m + ∑

n∈Ωm

Ym,n(θm −θn) = 0 (2.39)

∂L

∂µm,n
= ∑

n∈Ωm

Ym,n(θm −θn)−P m,n ≤ 0 (2.40)

∂L

∂µn,m
= ∑

n∈Ωm

−Ym,n(θm −θn)−P m,n ≤ 0 (2.41)

∂L

∂µP
m

= pS
m −P

S
m ≤ 0 (2.42)

∂L

∂µ
P
m

=−pS
m +P S

m ≤ 0 (2.43)

KKT requires then the following conditions to be added in order to reach a true optimal solution, as shown
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in equations (2.26), (2.27) and (2.28):

µm,n

(
P m,n − ∑

n∈Ωm

Ym,n(θm −θn)

)
= 0 (2.44)

µn,m

(
−P m,n + ∑

n∈Ωm

Ym,n(θm −θn)

)
= 0 (2.45)

µP
m(P

S
m −pS

m) = 0 (2.46)

µ
P
m(pS

m −P S
m) = 0 (2.47)

µm,n ,µn,m ,µP
m ,µ

P
m ≥ 0 (2.48)

An iterative approach is then presented, where each node communicates exclusively with its neighbours
during optimisation process. So, for the array of local variables xm :

xm(l ) = [λm(l ), θm(l ), µm,n(l ), P S
m(l )] (2.49)

the general update is given by:
xm(l +1) =Pm(xm(l )+Φm gm(xn(l ))) (2.50)

where gm(·) is the first order optimality constraints of node m, Φm a vector of tuning parameters and xn is the
vector of variables from the neighbouring node n. P is an operator that projects the result into the feasible
solution space, e.g., if the µm,n < 0 ⇒µm,n = 0.

Applying this general update rule for the individual local variables of xm wields the following expressions:

λm(l +1) = λm(l )−αλ
θ

(
∂L

∂θm

)
+αλ

λ

(
∂L

∂λm

)
=λm(l )−αλ

θ

(
λm

∑
n∈Ωm

Ym,n − ∑
n∈Ωm

λnYm,n + ∑
n∈Ωm

Gp
m,n(µm,n −µn,m)

)

+αλ
λ

(
− ∑

s∈S

pS
m + ∑

n∈Ωm

Ym,n(θm −θn)

)

(2.51)

pS
m(l +1) = P

(
pS

m(l )− 1

2Am
· ∂L

∂pS
m

)
=P

(
λm(l )−Bm

2Am

) (2.52)

θm(l +1) = θm(l )−αθ
λ

(
∂L

∂λm

)
=θm(l )−αθ

λ

(
− ∑

s∈S

pS
m + ∑

n∈Ωm

Ym,n(θm −θn)

) (2.53)

µm,n(l +1) = P

(
µm,n(l )+β

P m,n
µ

(
∂L

∂µm,n

))
=P

(
µm,n(l )+β

P m,n
µ

(
pS

m −P
S
m

)) (2.54)

µn,m(l +1) = P

(
µn,m(l )+β

P m,n
µ

(
∂L

∂µm,n

))
=P

(
µn,m(l )+β

P m,n
µ

(
−pS

m +P S
m

)) (2.55)

where all the α’s and β’s are tuning parameters.
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For the update of the locational marginal price, equation (2.51), the two terms besides the λm(l ) can
be discerned, similarly to (2.31). The first term is the consensus part, where the locational marginal prices
converge to an agreement and the second term is the innovation part, which is proportional to the power
mismatch on the node. For example, if there is negative power balance in m, the λm will have a tendency to
increase which will lead to an increase of pS

m , seen in (2.52).
In (2.53) is defined the voltage angle update, which is dependant on the power imbalance on the node,

similarly to the LMP. Here, if too much power is flowing into other lines, then the voltage angle is reduced in
order to reduce the outgoing power, reducing the nodal power imbalance.

Lastly, equations (2.54) and (2.55) update the dual variable of the line constraints. In case the power
flowing in one line is not at the limit, (2.42) and (2.43) wield negative values and are set to 0 by the operator
pS

m . Only if the line is congested, these dual variables will increase.
The tuning parameters can be set by trial and error, [25], but attempts have been made to give them a

physical interpretation [27] in order to increase convergence rates.





3
Physical Measurements for

Increased Distributed Optimal
Power Flow Convergence Rate

This chapter will focus on how physical measurements of a DC network can be incorporated into a Consen-
sus + Innovations method in order to increase its convergence rate, as well as increasing its robustness.

Firstly, in section 3.1, it is defined how DC grid can be modelled, which will provide a foundation on which
the optimisation algorithm can be built upon.

Then, in section 3.2, the optimisation problem is specified, and the equations that describe its behaviour
are derived. The interaction between the physical and the cyber layer is explained in 3.3 and the differences
between the implemented solution and the possible real world implementation are highlighted in 3.4.

In sections 3.5 and 3.6, the difference the synchronous and asynchronous implementations is explained
and results for both implementations are shown.

3.1. Grid Modelling
Instead of using an bipolar grid like the one shown in [13], a unipolar DC grid was used. This means there
are only 2 wires and voltage is measured between the plus (u+) and neutral (uN ), which will be named u. It is
also important to define that a current that is generated has a positive sign and a current that flows to a load
is negative, i.e, if a node is generating power then i S

m > 0.

3.1.1. Power Flow equations
In order to to define power flow in a DC unipolar network, the line current im,n equations and the source
current im equations were derived as follow:

im,n =Gm,n(um −un) (3.1)

where Gm,n is the conductance between node m and n. Throughout this report it is assumed that are no self
connecting nodes, i.e., that there is no line that connectes node m to itself, creating a loop, and therefore,
Gm,m = 0. Also, if node m does not have a physical connection to node n, Gm,n = 0.

From Kirshoff’s current law, the expression for source current i S
m can also be written as:

i S
m = ∑

n∈Ωm

im,n (3.2)

In Figure 3.1 it is possible to better visualise what equations (3.1) and (3.2) mean. The current of the source
im can be written as the sum of every current thats is flowing in or out of that node. Equation (3.2) also holds
true in case a node is not generating or consuming any power, meaning that the current that flows in to the
node is the same as the one that flows out of said node, and, therefore,

∑
n∈Ωm im,n = 0.

Combining (3.1) and (3.2) wields:

15
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nodem noden

im,n

i S
m

Gm,n

un
um

Figure 3.1: Connection between 2 nodes m and n

i S
m = ∑

n∈Ωm

Gm,n(um −un) (3.3)

which can then be written in a general matrix form as:

I S
m =−G ·∆U (3.4)

I S
m = [

i0 . . . im . . . iN

]T
(3.5)

G =



G1,1 . . . G1,N
...

. . .
...

Gm,1 . . . Gm,N
...

. . .
...

GN ,1 . . . GN ,N

 , ∆Gm,m = 0 ∀m ∈N (3.6)

∆U =



∆u1,1 . . . ∆u1,N
...

. . .
...

∆um,1 . . . ∆um,N
...

. . .
...

∆uN ,1 . . . ∆uN ,N

 , ∆um,n = um −un ∀m,n ∈N (3.7)

In (3.4) one line of the matrix product gives i S
m = ∑

n∈Ωm Gm,n(un −um) and therefore the minus signal is
necessary in order to be consistent with (3.3).

For a network of N node and M current sources, (3.4) is an equation system with N +M independent
variables(N node voltages and M source currents) and only N equations. This means that is not mathemat-
ically possible to solve this equation system because the it is mathematically undetermined and, therefore,
this equation system is not sufficient to simulate powerflow in the grid.

This problem can also be looked at from a physical perspective. In order to know how much current each
source is producing it is necessary to know who much current is flowing in each line, as given by (3.2), but in
order to know much current is flowing in each line it is required that is the voltage in both ends of that line,
shown in equation (3.1). So, it is necessary to know the nodal voltages u, which is unknown, in order to define
what will be the source currents i S .

One solution to a similar problem found in the DC approximation for AC powerflow [28] is to set a refer-
ence node. This node will have variable power P but fixed voltage angle θref, while every other node will have
fixed Pm and variable θm .

Applied to EDC power flow, which would mean one node would have its voltage fixed in order to function
as a reference and would then accommodate for any current imbalance on the grid. On the other hand, every
other node would have fixed current and the local voltage would then vary accordingly to the line currents.
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3.1.2. Droop Control
Although is not explicitly said, having a reference node implies that is a central coordinator, which is the ref-
erence, which other nodes follow. In this thesis it is explored a solution for optimising grid resources without
the necessity for a central coordinator, which means that another solution for running the simulated grid
must be developed.

If we assume that every node that every load or generator is connected to the grid with a power electronics
(PE) interface, current droop control can then be implemented. This means that for every source M , the
local im and um have a direct relation, increasing the number of equations that define the system to the same
number of variables, N +M .

In [14], the droop curve is defines um as a function of im„ but as it can be seen in 2.2, that does not
translate to a well defined function. As an example, when im = I S

m , um can take a multitude of values. And

so, droop as redefined as im = F (um). As such, limits for current, I
S
m and I S

m , and power, P
S
m and P S

m , can be
defined without incurring in mathematical errors. An example of the redefined control curve can be seen in
Figure 3.2 .

im[pu]

um[pu]

im

pm

im
pm

Droop

Im

Im

Figure 3.2: Example of the droop curve where current is a function of voltage. The letters A to E label the intersection points between 2
lines. For example, B is the intersection between the droop curve and maximum current line.

Depending on the operating state of the controller, its function is defined by a different equation, which
will be explained in the upcoming paragraphs.

PE interface operating within the current and power limits

um =−d · i S
m +u0

m (3.8)

⇐⇒
i S

m =−d ′ ·um + i 0
m , d ′ = d−1 (3.9)

where d ′ is the droop slope and i 0
m is the desired local current level in case um = 1[pu]. While (3.8) is a

direct application of (2.11), from the previous chapter, (3.9) is the one that is going to be use throughout the
report. When the PE interface is operating within the limits for power and current, i.e., normal operation, the
output current is set by this curve. This means that, if there is a disturbance on the grid, the converter will
automatically act in order to preserve voltage stability.
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The operation of the droop control is demonstrated in Figure 3.3.
If the local voltage increases it means that, somewhere on the network, more power is being generated

than consumed. Therefor the controller will decrease its current output, the green arrow, which means less
power is supplied to the network. This dencreased power output will then work towards lowering the local
voltage. Then, it is the task of the optimisation method to find a new optimal voltage, shown as the grey arrow.

initial I-V setpoint
final I-V setpoint (no droop)
final I-V setpoint (with droop)
new optimal I-V setpoint

um[pu]

im[pu]

i i
m

u
f
m

current droop curve

new droop curve

i
f
m

ui
m

Figure 3.3: Droop Control action example. As a solid red circle, the initial I-V setpoint. As a hollow red circle, the new I-V setpoint in
case there was no droop control. As a green circle, the new I-V setpoint after the control action. As a grey point, the possible new

optimal set point for I-V.

If no droop control was present, the voltage of that node would increase, but the output current would
be the same, red arrow on Figure 3.3, meaning that the power output of that node would also go up and
possibility worsening the network instability.

The slope d ′ is a tuning parameter that can be set as well. The smaller the slope, the less reactive a con-
verter is to a voltage oscillation, meaning that will provide less current to compensate for the fault, but it is
more stable to voltage oscillations on the network. On the other hand, a higher droop d ′ means that a node
will help more to compensate for power imbalances, but will be more susceptible to small voltage oscillations
which can also create oscilation problems.

PE interface operating within the current and power limits

i S
m = P

S
m ·um

−1 (3.10)

where P
S
m is either the maximum or minimum power rating of the converter.

When the PE interface reaches its power limits, it reduces the absolute value of the current output, in
order to keep the power output from going the maximum and damaging both the converter and the device it
is connected to. Once the voltage reaches um

C , the voltage level that corresponds to point C in Figure 3.2, or
um

E , the converter can then restart normal operation again, given that the current limits are also respected.

PE interface operating at maximum or minimum current

im = I
S
m (3.11)

um = un − im,n

Gm,n
(3.12)
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where I
S
m is either the maximum or minimum current rating of the converter.

When the PE interface reaches the current limits, the output current is set to I S
m or I

S
m , similarly to the

operation at the power limit. In this state the power of the node is not controlled since the current is fixed
and the voltage may vary, and will remain in this state until it reaches the power limit or when the voltage is
between uB

m and uF
m .

3.2. Nodal Equations
Having described how the DC grid is simulated, an what we can call the physical layer of the system, we have
now to describe how the optimisation process works, on what can be called the cyber layer.

In previous work [16, 27] both Lossless OPF and Exact OPF was discussed, since the algorithm worked
detached from any kind of physical feedback. This is not the case anymore, since now exact physical mea-
surements are taken from a lossy network, and so implementing Lossless OPF in a lossy grid would create
problems. Therefore, for the rest of this report, only Exact OPF will be taken into account and therefore, it
might be referred only as OPF.

3.2.1. Problem Definition
With that said, will define the optimisation problem as:

min
∑

m∈N

Am(pS
m)2 +Bm pS

m (3.13)

subject to:

pS
m = um

∑
n∈Ωm

Gm,n(um −un) (3.14)

Gm,n(um −un) ≤ I m,n (3.15)

P S
m ≤ pS

m ≤ P
S
m (3.16)

U m ≤ um ≤U m (3.17)

The constant term K in 2.32 was discarded since it has no relevance on the optimisation problem, since it
is a fixed value and, as such, does not have any impact on the solution.

Equation (3.14) represents the power mismatch at node m. The mismatch between power flowing to or
from the node, given by the left side of the equality, is the same as the total power produced in said node.

The inequations in (3.15), (3.16) and (3.17) set the maximum current limit in a line, the maximum and
minimum power limit and the maximum and minimum voltage limits of the node, respectively.

3.2.2. Lagragian Function
Having defined the problem, the Lagrangian function can be written as:

L = ∑
m∈N

(
Am(pS

m)2 +Bm pS
m

)
+ ∑

m∈N

λm

(
um

∑
n∈Ωm

Gm,n(um −un)−pS
m

)
+ ∑

m∈N

∑
n∈Ωm

µm,n

(
Gm,n(um −un)− I m,n

)
+ ∑

m∈N

µP
m

(
pS

m −P
S
m

)
+ ∑

m∈N

µ
P
m

(−pS
m +P S

m

)
+ ∑

m∈N

µU
m

(
um −U m

)
+ ∑

m∈N

µ
U
m

(−um +U m

)

(3.18)

where λm and µ’s are, respectively the dual variables of the nodal equality constraint and the nodal and line’s
inequality constraints.
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3.2.3. Karush Kuhn Tucker Conditions
From L , the First Order Optimality conditions can be derived:

∂L

∂pS
m
=2Am pS

m +Bm

−λm +µP
m −µ

P
m

(3.19)

∂L

∂um
=λm

∑
n∈Ωm

Gm,n(um −un)

+λmum
∑

n∈Ωm

Gm,n − ∑
n∈Ωm

λnunGm,n

+ ∑
n∈Ωm

Gm,n(µm,n −µn,m)+µU
m −µ

U
m = 0

(3.20)

∂L

∂λm
=−pS

m +um
∑

n∈Ωm

Gm,n(um −un) = 0 (3.21)

∂L

∂µm,n
= ∑

n∈Ωm

Gm,n(um −un)− I m,n ≤ 0 (3.22)

∂L

∂µP
m

= pS
m −P

S
m ≤ 0 (3.23)

∂L

∂µ
P
m

=−pS
m +P S

m ≤ 0 (3.24)

∂L

∂µU
m

= um −U m ≤ 0 (3.25)

∂L

∂µ
U
m

=−um +U m ≤ 0 (3.26)

(3.27)

As well as the slack conditions:

µm,n

(
I m,n −Gm,n(um −un)

)
= 0 (3.28)

µn,m

(
− I m,n +Gm,n(um −un)

)
= 0 (3.29)

µP
m

(
P

S
m −pS

m

)= 0 (3.30)

µ
P
m

(
pS

m −P S
m

)= 0 (3.31)

µU
m

(
U m −um

)= 0 (3.32)

µ
U
m

(
um −U m

)= 0 (3.33)

(3.34)

And the positivity conditions:

µm,n ,µn,m ,µP
m ,µ

P
m ,µU

m ,µ
U
m ≥ 0 (3.35)

In order to know λn , µm,n and un , that information had to be sent from the neighbouring nodes. However,
since it is assumed that Gm,n is known and that the line current im,n can be measured, um,n is obtained using
(2.7):

im,n =Gm,n(um −un) ⇐⇒ (3.36)

⇐⇒ un = um − im,n

Gm,n
(3.37)

This result can then be applied to the first order optimality conditions and slackness conditions in order
to remove un from the equations.
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Substitution of un in ∂L /∂um

In order to make this next part easier to understand, (3.21) was divided in two parts: one that is dependent
on either um or un and another that is not, which will be called K :

∂L

∂um
=λm

∑
n∈Ωm

Gm,n(um −un)+λmum
∑

n∈Ωm

Gm,n − ∑
n∈Ωm

λnunGm,n

+ ∑
n∈Ωm

Gm,n(µm,n −µn,m)+µU
m −µ

U
m︸ ︷︷ ︸

K

(3.38)

⇒ ∂L

∂um
=λm

∑
n∈Ωm

Gm,n(um −un)+λmum
∑

n∈Ωm

Gm,n − ∑
n∈Ωm

λnunGm,n +K (3.39)

Applying (3.37) to (3.39), wields:

∂L

∂um
=λm

∑
n∈Ωm

im,n +λmum
∑

n∈Ωm

Gm,n − ∑
n∈Ωm

λnGm,n(um)+ ∑
n∈Ωm

λn im,n +K (3.40)

∂L

∂um
= ∑

n∈Ωm

im,n(λm +λn)+um
( ∑

n∈Ωm

Gm,n(λm −λn)
)+K (3.41)

and expanding K , it gives the full equation for the Lagragian derivative of the voltage:

∂L

∂um
= ∑

n∈Ωm

im,n(λm +λn)+um
( ∑

n∈Ωm

Gm,n(λm −λn)
)

+ ∑
n∈Ωm

Gm,n(µm,n −µn,m)+µU
m −µ

U
m

(3.42)

This optimality condition is very important because it is going to be used to update the local variables
when running the C + I optimisation method, namely the pm , um and λm . This is critical because it could be
argued that the substitution (3.37) could actually be performed on (3.14) and (3.15) and, once the Lagrangian
function was written and its first order optimally conditions were derived, it would be the same as was done
in (3.42). That is not the case.

If (3.37) is used in (3.14) and (3.15), then the following expressions are obtained:

pS
m = um

∑
n∈Ωm

im,n (3.43)

im,n ≤ I m,n (3.44)

which means:

L =(. . . )+λm(um
∑

n∈Ωm

im,n −pS
m)+

+ ∑
m∈N

∑
n∈Ωm

µm,n

(
im,n − I m,n

)
+ (. . . )

(3.45)

which, when deriving ∂L /∂um , will result in:

∂L

∂um
=λm

∑
n∈Ωm

im,n +µU
m −µ

U
m (3.46)

It is possible to observe the differences between (3.42) and (3.46). The most fundamental distiction be-
tween both equations is the fact that information about λn is lost, especially in the um

(∑
n∈Ωm Gm,n(λm −λn)

term. This is a vital loss since that expression represents the consensus part of the C + I algorithm and, without
it, the algorithm wouldn’t work.

Using (3.46) would then mean that the nodes wouldn’t be able to converge to one solution, which defeats
the objective of this proposed solution.
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Substitution of un in ∂L /∂λm

The ∂L /∂λm is the power flow condition, meaning that will always have to be 0 at the optimal operating
point. Rewriting (3.22) with (3.37) gives:

L

∂λm
= um

∑
n∈Ωm

im,n −pS
m = um · i S

m −pS
m = 0 (3.47)

Looking at (3.47), um and i S
m are measured from the physical grid, while pS

m is a internal variable from the
optimisation process. If we define, the product um · i S

m as p̂S
m , then:

L

∂λm
= p̂S

m −pS
m = 0 (3.48)

which means that ∂L /∂λm becomes the difference between the power setpoint defined by the optimisation
layer and the actual power that the node is supplying.

Substitution of un in ∂L /∂µm,n

Updating the ∂L expression with is quite strait forward:

∂L

∂µm,n
= ∑

n∈Ωm

im,n − I m,n ≤ 0 (3.49)

The only difference with previous implementations is that now, since im,n is measured, µm,n will increase
or decrease based on physical values and not optimisation variables.

Substitution of un on the slackness conditions
The slackness conditions could also be subject to this substitution, but since they are only used during the
optimisation process in order to check if the system has converged, it is not very relevant that they are derived.

3.2.4. Defining the updates
Once redefined the first order optimality conditions, the update strategy for the variables has to be described.

Relation between λm and pS
m

The power and λ updates are vital to the optimisation process since the objective is to minimise the costs,
which are directly linked to the amount of power being produced in each individual node and how much does
it cost to produce it. It would make sense that, in a network with multiple generators and loads that the more
expensive generators would only be supplying energy in case the cheaper options where unable to meet the
demand on the grid. This makes sense from a market point of view. Looking at the LMP as the price that the
network is willing to pay for generation on one node, then this node will only start generating power if the
price that it could sell that power was, at least, the same as the cost that it would incur when generating said
power. This price will fluctuate until demand is met, meaning that if supply is bigger than demand then the
prices will go down and some generators will lower their production, but if demand is higher, then the prices
will increase and it is economically viable for generators to produce more.

The locational marginal price is a measurement of the incremental cost of power generation and is mea-
sured in m.u./W, where m.u. is monetary units and W is power measured in Watts. As such, it is directly re-
lated to how cheap or expensive a source is and, therefore, directly influences how much a generator should
be supplying. This relation between LMP and power output can be seen in figures 3.4 and 3.5. During the
iterative process, either λm or pm should be forced to follow the trajectory shown in one of the figures, with
the difference being that in Figure 3.4, the term Am = 0, which means the generator as a linear cost function,
which can be seen from (3.13).

And so, following the implementation suggested on [27], two regions of operation can be differentiated:
Constant Power Region and Marginal Generator Region. The first is define for LMP values that are either
bellow the minimum marginal cost or above the maximum marginal cost while the second is for when λm is

within those values. This means that, in one hand, if λm < Bm +2Am ·P S
m or λm > Bm +2Am ·P

S
m the power

is fixed at the limit value and the LMP is being updated accordingly to an update strategy which will be later

described. On the other hand, when Bm +2Am ·P S
m <λm and λm < Bm +2Am ·P S

m , the generator will change
pS

m accordingly to the defined strategy while the LMP will follow accordingly to the curves shown in Figures
3.4 or 3.5. It is important to note that, if the generator has a linear cost function (Am = 0), the LMP will stay
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λm

Bm

P S
m P

S
m pS

m

Constant Power Zone (P S
m)

Marginal Generatior Region

Constant Power Zone (P
S
m)

Figure 3.4: Power-LMP charateristic curve of a generator in node m with a linear cost function.

λm

Bm +2AmP
S
m

P S
m P

S
m pS

m

Bm +2AmP S
m

Constant Power Zone (P S
m)

Marginal Generatior Region

Constant Power Zone (P
S
m)

Figure 3.5: Power-LMP charateristic curve of a generator in node m with a quadratic cost function.

the same until the generator reaches one of the power limits, which is not the case for when the cost function
is quadratic.
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Constant Power Region updating startegy
Starting with the constant power region, the update strategy for the λm and pS

m is given by:

λm(l +1) =λm(l )−αλ
u
∂L

∂um
+αλ

λ

∂L

∂λm
(3.50)

pS
m(l +1) = P

S
m (3.51)

where αλ
u and αλ

λ
are tuning parameters and pS

m is either at minimum or maximum power output, depend-
ing if the LMP is higher or lower than the marginal costs. It is also important to note were the presence of
∂L /∂um , which, as previously mentioned, is the term which contains the part of the update and therefor
writing it as (3.46) would remove that term, meaning the whole optimisation would not work as intended.

Both αλ
u and αλ

λ
can have a physical psychical interpretation, which will help when tuning them.

The αλ
u formulation

Starting with αλ
u , this tuning parameter is formulated in a way that λm resembles the neighbouring nodes’

LMP, λn , in order to reach consensus. As such, ∂L /∂λm is discarded and ∂L /∂um is expanded for (3.50):

λm(l +1) =λm(l )−αλ
u

( ∑
n∈Ωm

im,n(λm +λn)+um
( ∑

n∈Ωm

Gm,n(λm −λn)
)

+ ∑
n∈Ωm

Gm,n(µm,n −µn,m)+µU
m −µ

U
m

) (3.52)

For simplification, there is no congestion on the grid and the voltage limit has not been reached:

λm(l +1) =λm(l )−αλ
u

( ∑
n∈Ωm

im,n(λm +λn)+um
( ∑

n∈Ωm

Gm,n(λm −λn)
))

(3.53)

For a DC grid with losses, λm =λn only if there is no current flowing between node m and node n. If im,n ̸=
0, then the power loss in that line is given by im,n

2/Gm,n ̸= 0. Those line losses also have a cost associated
since it’s increasing the power demand and this would mean a disparity in the observed λm and λn which
goes against the initial assumption that λm =λn . Hence, it is also assumed im,n = 0 and so:

λm(l +1) =λm(l )−αλ
u

(
um

( ∑
n∈Ωm

Gm,n(λm −λn)
))

(3.54)

αλ
u = k

um
∑

n∈Ωm Gm,n
, k = 1 (3.55)

λm(l +1) =λm(l )−λm +λn =λn (3.56)

In (3.56)), if k = 1 is chosen, a problem might surge where λm(l +1) = λn(l ) and λn(l +1) = λm(l ) and, as
such, the nodes might oscillate against each other. A solution was found in [27], which was selecting k = 0.5
and so both m and n would preform half the work each, hence reducing the oscillations. This then wields:

αλ
u = 0.5

um
∑

n∈Ωm Gm,n

[
V

W

]
(3.57)

The αλ
λ
formulation

The second tuning parameter in (3.50) is αλ
λ

and it tunes the effect that ∂L /∂λm has on the the λm update.

Since ∂L /∂λm has now a different meaning, also αλ
λ

can be interpreted differently. While in [27] αλ
λ

is inter-
preted as the rate at which the LMP would vary accordingly to the power mismatch on the node, now it can
be though of as the how fast is every node willing to increase or decrease the local price in order to match the
the intended power output, pm with the actual value of power measured in that node, p̂m . The units are still
the same, i.e, since αλ

λ
determines the variation rate of λm , measured in m.u./W, accordingly to the measured

power and its setpoint, in W, then αλ
λ

is measured in m.u/W2.
Setting this parameter too high and the λm might become too reactive and cause oscillations and other

convergence problems, but setting this value too low and the LMP might not be influenced enough by the
difference in power and to converge to a optimal point fast enough. Thus:
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αλ
λ = 0.01

m.u.

W
·1×10−3W−1 = 1×10−5

[
m.u.

W

]
(3.58)

where the defined rate was chosen as a variation of 1% for every 1 kW mismatch.

Marginal Generator Region updating strategy
Once the λm is within the the maximum and minimum marginal prices it, then is LMP that is written as a
function of the local power setpoint pS

m . Hence, the update of this variables is given by:

pS
m(l +1) = pS

m(l )+α
p
λ

∂L

∂λm
−α

p
u
∂L

∂um
(3.59)

λm(l +1) = 2Am ·pS
m(l +1)+Bm (3.60)

where α
p
λ

and α
p
u are tuning parameters. Once more, it is possible to observe that the consensus term is also

present in this update, which serves to highlight, again, the importance of doing the mathematical substitu-
tion only on the differential terms of the Lagrangian function. Similarly to both αλ

u and αλ
λ

, αp
λ

and α
p
u also

have a physical psychical interpretation.
In [27] was found that this update strategy didn’t work when, in a grid with multiple generators, the node

with the highest voltage (m) was not the marginal generator. Oscillations induced by the µU
m on the λm , via

the ∂L /∂un would translate to an attempt to change λn , the LMP of the marginal node n, but since λn was
fixed at Bm , it would create power oscillations, meaning the system would not converge.

In order to solve this problem, when on the marginal generator region, a node would update its λm using
(3.50) and the local power would vary accordingly to the following equation:

pS
m(l +1) = λm(l +1)−Bm

2Am
(3.61)

This meant that, in a system, all the generators would have to have quadratic cost functions, something
which is not true in real systems.

However, using grid measurements and some parameter tuning, this problem was solved and so this
limitation was eliminated.

The α
p
λ
formulation

The term ∂L /∂λm from (3.60) determines the difference between last iteration’s power setpoint and the mea-
sured power ouput. In [27] it was cocluded that, in order to get smooth results, this would mean that pS

m(l +1)
should only go half way towards bridging that gap, and since the update was done simultaneously with the
voltage update which will be later discussed, it should only take a quarter step, meaning this tuning parameter
is given by:

α
p
λ
= 0.25 (3.62)

The α
p
u formulation

The ∂L /∂um means that power will increase or decrease in regard to the difference in LMP between neigh-
bouring nodes. Using the same reasoning that was used for αλ

u , and applying it to (3.60), it wields:

α
p
u = k W2

m.u

um(l )
∑

n∈Ωm Gm,n

[
V

W

]
(3.63)

where k is the ratio between the the intended shift in power in regards to the difference in LMP. Through trial
and error, it was define that k = 100 was a good ratio, hence:

α
p
u = 100 W2

m.u

um(l )
∑

n∈Ωm Gm,n

[
V

W

]
(3.64)
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The voltage update
In Exact OPF, one of the side effects of trying to minimise costs is also to minimise power losses in the system.
One way to minimise those losses is to increase the voltage levels, which decrease the necessary current to
transfer the same amount of power, and, therefore, reduces the transmission losses.

As previously stated, um is measured from the grid. But at the same time it is also an optimisation variable.
As such, in the update, strategy um(l ) is the measured voltage at the beginning of the iteration and um(l +1)
is the new voltage setpoint. Both this um(l +1) as the pS

m(l +1) will be later used to set the droop curve, which
will be explained in the following section.

As such, it is necessary to make sure voltage changes in order to both reduce the power mismatch in
each node and increases to the maximum possible value, in order to reduce losses on the network. Hence,
following [27], the voltage update can be given as:

um(l +1) = um(l )−αu
λ

∂L

∂λm
−αu

u
∂L

∂um
(3.65)

whereαu
λ

andαu
u are tuning parameters. As before, the formulation and physical interpretation of both tuning

parameters will now be explained.

The αu
λ
formulation

The αu
λ

is, in its core, the reverse approach from the formulation of αp
λ

. This means that, for example, if too
much power is flowing from the node, it will decrease its voltage, approximating the power setpoint and the
real power output. As previously mentioned, αp

λ
does a quarter of the work and so αu

λ
does another quarter

step, and so is given by:

αu
λ = 0.25

um
∑

n∈Ωm Gm,n

[
V

W

]
(3.66)

The αu
u formulation

This tuning parameter serves to rise, or lower, the voltage in regards to the λ difference between nodes. If
power is flowing from m to n and there is no line congestion, µm,n = 0, and no voltage limit has been reached,

µU
m =µ

U
m = 0, then, in order to reduce losses, the voltage of node m should rise. Since the current direction is

from m to n, this means λm < λn , which makes it so ∂L /∂um < 0. Thus, in order to make um vary positively
with this LMP mismatch, an “-” sign is added before αu

u , in Equation (3.65).

Now, in [27], it is suggested that this variation of um accordingly to the LMP mismatch is made so it is
linear, therefore, it could be written as:

αu
u
∂L

∂um
≈ k(λm −λn) (3.67)

Expanding the derivative term, and assuming µm,n =µU
m =µ

U
m = 0, wields:

αu
u

( ∑
n∈Ωm

im,n(λm +λn)+um
( ∑

n∈Ωm

Gm,n(λm −λn)
)≈ k(λm −λn) (3.68)

where im,n is assumed to be relatively small compared to um
∑

n∈Ωm Gm,n , and so αu
u is defined to be:

αu
u = k

um
∑

n∈Ωm Gm,n

[
V2

m.u.

]
(3.69)

Taking the results from [27] as a starting point and through trial and error, it was found that k = 5 W·V
m.u

provided the best results and, as such:

αu
u = 5 W·V

m.u

um
∑

n∈Ωm Gm,n

[
V2

m.u.

]
(3.70)



3.2. Nodal Equations 27

Congestion Management
As mention previously, a line cannot transfer an unlimited amount of current, or power, due to physical limi-
tation. In the simulation context, this limitation is done by setting a limit on the maximum current capabili-
ties of a line: I m,n . As such, the optimisation algorithm must account for this constraints and act accordingly.

The solution presented in [27] was to bound the nodal voltage to such a value that the resulting current
would be the maximum current limit of the conngestion line, as such:

um(l +1) = I m,n∑
n∈Ωm Gm,n

+un(l ) (3.71)

Since un is no longer a variable in the optimisation problem, (3.37) is applied to (3.71), wielding:

um(l +1) = um(l )+ I m,n − im,n∑
n∈Ωm Gm,n

(3.72)

The dual variable of the line constraints also needs to be updated and it will depend only on the state of
the line, i.e., if it is congested or not. With this in mind, the following update strategy was developed:

µm,n(l +1) =P

[
µm,n(l )+βm,n

∂L

∂µm,n

]
(3.73)

P⇒µm,n(l +1) = 0, if (µm,n ∩ ∂L

∂µm,n
) ≤ 0 (3.74)

where βm,n is a tuning parameter, and it translates to the rate of change of price in regards to the excess of
current. In (3.73) the P means, as stated in (3.74), that µm,n can update normally unless both the variable and
the Lagrangian derivative are negative. As such, the update strategy bounds the minimum value of µm,n to
0, since the only way to become negative would be if ∂L /∂µm,n < 0. But if the µm,n has a positive value, it is
free to increase or decrease in order to reach the optimal value.

In order to better understand this an example can be given. If node m is outputting a high amount of
power, the maximum current limit is reached in line (m,n). This congestion will make it so that µm,n increases
and, consequently, through (3.50), increases the price in node m and n. Increasing the LMP in node n, makes
it so that it will start genmerating its own power and, as such reduce the current flowing through (m,n), and
solving the congestion problem.

The αu
u formulation

Through trial and error, it was estimated that 5 m.u./A2 was a good value and, as such:

βm,n = 5

[
m.u.

A2

]
(3.75)

Voltage Limits
The voltage limit dual variable update was done in a similar way to the congestion limit update, since the
reasoning behind it is analogous. As such, the chosen update strategy, based on [27], was:

µU
m(l +1) =P

[
µU

m(l )+βU ∂L

∂µU
m

]
(3.76)

µ
U
m(l +1) =P

[
µ

U
m(l )+βU ∂L

∂µ
U
m

]
(3.77)

βU =βU = 10

[
m.u.

V2

]
(3.78)

where βU and βU tuning parameters which, through trial and error, were chosen to be set as 10 m.u./V2,
compared to the 15 m.u./V2 chosen in [27]. The higher gain value meant that the voltage and LMP update
were very reactive to the voltage limits and caused an unwanted oscillatory behaviour in the system.
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Power Limits
The power limit dual variable update was done, once more, resembling the line and voltage constrain dual
variable updates. µP and µP have the particularity that they are not used in any other update, and so, they are
not vital for the convergence of the algorithm. However, in order to know if the algorithm is working correctly,
this values should also be taken into account. That said, the updates are given by:

µP
m(l +1) =P

[
µP

m(l )+βP ∂L

∂µP
m

]
(3.79)

µ
P
m(l +1) =P

[
µ

P
m(l )+βP ∂L

∂µ
P
m

]
(3.80)

βP =βP = 0.5

[
m.u

V2

]
(3.81)

3.3. Power and Voltage Setpoints to control the Droop Curve
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Figure 3.6: Scheme of the interaction of the physical and cyber layers

As it was mention in sections 3.1 and 3.2 there is an interaction between the cyber layer, which takes
measurements from the grid in order to preform the optimisation process, and the physical layer, which has
droop control implemented in every node with a PE interface that needs to be defined by the optimisation
layer. This interdependent interaction it the core of the control and optimisation strategy which will provide
the grounds to develop online optimisation.

For simplification purposes, the current limits on the PE converter were set high enough that they can be
disregarded, for now.

3.3.1. Building the droop curve
Referring back to Figure 3.2 and the section where Droop Control was previously discussed, five zones of
operation can be identified: two for power limits, two for voltage limits and fifth one which would be set by
the main droop curve. If it is assumed that neither the power limits nor current limits of a PE interface would
change, meaning there would not be a change in the generator/load side of the converter, then only the droop
linear curve will be subject to change during the optimisation process. As such, it is important to explain how
this line is set in I-V coordinates.

From (3.9) it is possible to see that there are two components that need to be defined in order to obtain
the function: d ′ and i 0

m .

Defining d ′

The term d ′ is the slope of the droop function and as such it establishes the rate at which the current should
change in case there is a voltage variation. As such it can be written as:
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d ′ =−∆i S

∆u
(3.82)

This poses a problem since d ′, which describes current in terms of voltage, is being calculated in the
optimisation layer, which is being described in terms of voltage and power, i.e., the generation setpoint is pS

m

and not i S
m . And so, the ∆i S must be obtained from a ∆pS . However, this was solved by defining i S and i S as:

i S = pS /u, i S = pS /u (3.83)

and by using this result in (3.82), d ′ is formulated as is then:

d ′ =
pS /u −pS /u

∆u
(3.84)

In accordance with DC standardisation discussions, ∆u = 5V while ∆pS = P
S
m −P S

m , which means that
in any operating point, it would take a deviation of 5 V to decrease power output from the maximum to the
minimum limits. If the PE interface is connected to a variable load, the same 5 V difference would mean that
power consumption would go from minimum consumption to maximum. And so, d ′ is chosen as:

d ′ =
pS /u −pS /u

∆u

[
A

V

]
(3.85)

Defining i 0
m
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Figure 3.7: Finding the i 0
m of a generator, for iteration l

Once the slope has been defined, the i 0
m can be calculated. This point will be derived from the power and

voltage setpoints, um(l +1) and pS
m(l +1) for the next iteration. From Figure 3.7 it is possible to see that i 0

m is
the point of the droop function for which um = 0 and so, from (3.9), its value can be obtained as:

i 0
m = i S

m(l +1)+d ′ ·um(l +1) = pS
m(l +1)

um(l +1)
+d ′ ·um(l +1) (3.86)
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3.3.2. Droop in the Marginal Generator Region vs Constant Power Region
Now that the mathematical base behind the generation of the droop curves as been established, the strategy
to generate said setpoints is going to be explained for both the Marginal Generator Region and the Constant
Power Region, since they differ slightly.

On one hand, when generating d ′, the main difference comes from the values that are chosen as u and u,
since it is assumed that the power limits are fixed for the entire duration of the optimisation process. And on
the other hand, the setpoints which generate i 0

m also differ from one zone to the other.
This difference was necessary for the droop curves to be in accordance with the DC standardisation dis-

cussions and because it made sure a solution was found when running the power flow calculation, something
that will be discussed later in more detail.

Generating Droop in the Constant Power Region
By definition, the Constant Power Region is a region where the node is either at minimum or maximum power.
When looking at the whole droop control, this means that the point of operation will not be in the linear droop
section defined by (3.9) and, a such, it cannot be used to calculate i 0

m .
Whenever the converter is in this region, the droop curves need to be set such a way that allows for the

correct functionality of the optimisation and at the same time, safeguards the integrity of the devices.

um[pu]

im[pu]

0

Limit defined by P
S
m

Limit defined by P S
m

Maximum Power Region Minimum Power Region

Droop Setpoint in

Maximum Power Region

Droop Setpoint in

Minimum Power Region

Figure 3.8: Current and Voltage setpoints for the maximum and minimum power region

Generating Droop in the Minimum Power Region
When the converter is in the minimum power region, the chosen values for u and u were U m and U m −5 V.
This allows for a 5 V margin beyond the defined minimum for the node which help act in cases of extreme

necessity. As for the values of power and voltage used to calculate i 0
m , P

S
m and U m −5 V are used.

As such, the PE interface will always be providing minimal power unless the local voltage is under the de-
fined nodal limit. As an example, this would mean taht, in case of small voltage oscillations when the system
is not in stress, um >U m , would not result in expensive generators turning on and off, which would increase
costs, but if the system is subject to stronger disturbances and is near its limits, even the more expensive gen-
erators would be used to secure voltage stability, since it would be more important to safeguard the integrity
of the devices then to minimise operation costs.

Looking at Figure 3.8, the green dashed line represents the limit between normal operation (um ≥ U m),
in a green tint, and emergency operation (um ≤U m), and the red dashed line represents the voltage limit at
which the generator would be generating full power, U m −5 V.
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Generating Droop in the Maximum Power Region
The reasoning behind the droop curve generation in this zone is the exact opposite. When in this operation
state, it is not optimal for a PE interface to be reducing power in case there are small voltage oscillations,
unless it is near the operation limits, since the converter that are at the highest power output are the ones
connected to the cheaper sources, and, therefore, to minimise costs, should be the ones providing power
while any marginal generator would then manage those voltage oscillations.

Hence, the chosen values for u and u were U m +5 V and U m , in order to account for the same 5 V margin,

and, to generate i 0
m , P

S
m and U m were used.

Figure 3.8, the red dashed line represents the limit between normal operation (um ≤ U m), in a red tint,
and emergency operation (um ≥ U m), and the green dashed line represents the voltage limit at which the
generator would be turned off, U m +5 V.

Generating Droop in the Marginal Generator Region
The approach to generate d ′ in this region is pretty straight forward. u is chosen to be U m and, as such,
u =U m +5 V, in order to be consistent with the Maximum Power Region which was previously discussed.

After the local variable updates are preformed, both pS
m(l +1) and um(l +1) are used to generate i 0

m . It is
important to note that if either um(l +1) >U m or um(l +1) <U m , then the um(l +1) is set as the limit value.

Generating Droop in a Load with no Cost Function
There can also be the case that there are loads in the system which don’t have any cost function, meaning that
they are to be on whatever the local cost is. In that case, the same approach is taken as for the Minimum power
region, since it was conventioned that loads would have currents, i S

m < 0, and, therefore, negative power. As

such, the P S
m is the maximum power that it can draw and P

S
m the minimum, which is usually taken as 0 W.

The same reasoning applies, meaning that if the voltage drops to low, then the PE interface connecting
the load to the grid would reduce the power consumption of said load in order to preserve system stability
and, otherwise, power consumption would stay at maximum level.

3.4. Simulation vs. Real Life Implementation: Pros and Cons

λm
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im,n

pS
m

um

d ′
i 0
m

Figure 3.9: Same scheme from 3.6, with the information traded between nodes and between the cyber and physical layer specified.

Up until now, the optimisation process was described in the way that it is intended to be applied in real
life scenarios. However, due to the limitations associated with trying to implement and test it in DC grid, such
as safety and implementation costs, the whole algorithm was developed and tested with the help of computer
simulations.

However, this meant that some approximations had to be made in order for the tests to be feasible and
that some limitations were found, meaning that the full potential of this algorithm could not be tested.

In order to run simulations of the whole system, the physical and cyber layers were separated into two
different parts. The physical layer was simulated in a central computer, which also served as the simulation
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controller and where the simulation data was stored for future analysis. This computer would then commu-
nicate with the cyber layer, which represented the different nodes. The central computattional unit would
then send the grid measurements necessary to the optimisation process,i.e., local power, voltage and line
current measurements, and receive the droop curve setpoints, as represented in Figure 3.9.

Physical Network Simulation
In section 3.1, the educations for EDC power flow calculations were presented and lay the foundation for the
DC grid simulations. This grid was then implemented in Python [29], with the help of a modified version
of the pandapower library [30] which was used to save the network description and run centralised OPF to
verify the results obtained with decentralised OPF, as well as the SciPy [31] library, which included the solvers
necessary to run EDC power flow, and the pandas [32] library, which was used to store all important data from
the simulations. The simulation results were plotted with matplotlib [33].

Node Simulation
The nodal behaviour was also programmed in Python [29] with some of the above mentioned libraries. These
nodes were simulated both as different processes running in the same machine as the main grid, if commu-
nication induced errors and delays were to be ignored, or in separate microcomputers which were subjected
to those communication constraints. The chosen microcomputer was the Raspberry-Pi, due to its flexibil-
ity and processing power, and they are connected to each other in a private WiFi network, similarly to the
implementation on [27].

In a real world implementation, these nodes would also be subject to communication delays and loss of
information, and as such, it was important the algorithm was also tested in those conditions. However, it also
introduced a random element to the simulations which made it harder to correct problems that might have
been related to the implementation of the algorithm. As such it was important to have both implementations,
in order to benchmark and develop solutions for problems that might arise in communication dependent
implementations.

Differences between the implemented solution and real life solution
Having described the implementation in the simulated environment, it becomes important to highlight its
differences to an implementation on a physical DC grid:

1. Communication between the physical and cyber layer

Since in the simulation environment the physical grid is implemented in one place and the cyber layer
in another, there needs to be communication between the nodes and the grid so the droop curves can
be generated in each iteration and, after the power flow calculation is done, the grid measurements
need to be sent back to the nodes. When running the nodes and the grid simulation on the same
machine, this is not a problem because the communication delay is negligible, but, once every node is
implemented in a single Raspberry-Pi, the communication between nodes and grid becomes subject
to the same loss rate and delays as inter-node communication.

In a real world implementation that would not be the case. The PE interface would have multiple mod-
ules, one responsible for actively controlling the power with droop which would be directly connected
to a microprocessor responsible for handling the optimisation and the communication with other
nodes, meaning the communication delay would be substantially smaller. The grid measurements
would also be obtained by the PE converter, and so, obtaining them would be a matter of increasing or
decreasing the sample frequency.

2. Grid Simulation is not instantaneous

Once every iteration, the physical layer simulation must run the powerflow calculation. In order to do
so, the computer has to solve a system of N +M non-linear equations, as described in Section 3.1.
This simulation will take, at best, at least 10 ms to complete and, in some cases, it can take up to 1 s,
for relatively small grids of 4 or 5 nodes. As the scale of the network increases, so does the calculation
time. Many solvers were tried in order to mitigate the problem and the best solution was found in a
combination of both the “hybr” and “broyden1” methods from the SciPy optimise package, but, non
the less, the simulation still took a non negligible amount of time.

In the real world, any changes in power or voltage would manifest themselves immediately on the grid.
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3. System dynamics are not taken into account

In an ideal DC system, the lines that connect the different nodes would only have a restive element,
meaning current and voltage could change instantaneously. However this is not the case. Every line
has an associated inductance and capacitance and, as such, no change in current or voltage is instan-
taneous, meaning there are dynamic phenomena every time the current or voltage changes.

This, however, is not taken into account in the grid simulation since what is done every iteration is a
steady state powerflow calculation, i.e, it is calculated what the would be the state of the system after the
transient phenomena has passed. The main reason why this was not taken into account is the fact that
adding this elements to the simulation would then increase the computational complexity immensely
and, as such, trying to simulate and preform online optimisation would not be feasible.

3.5. Synchronous Simulations
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Figure 3.10: A three node radial grid with two differently priced generators and a load.

Having described the algorithm in the previous sections and keeping in mind the limitations that it is sub-
ject to while running it in a simulated environment, it is now possible to see how it performs. It is important
to note that, in all voltage the figures in this report, x̂m stands for the measured parameter at node m and x̂m

is the setpoint for said parameter, in that same iteration.
The first tested case was a simple 3 node network with two generators, one which has less capacity, but is

cheaper and another one more expensive but with higher capacity.
Looking at Figures 3.11-3.14 it is possible to observe that the system reaches the optimal solution around

the 500th iteration, when the dual variable for the maximum voltage limit on node 3, the node with the highest

voltage, stabilises at µU
3 ≈ 49 [m.u./V]. The algorithm converged, for this case, around the same number of

iterations as the implementation on [27] and, as such, no conclusion could be drawn from the increase speed
of the new strategy, compared to the previous ones.

When the solution is reached, node 1 is at maximum power output, 20 kW, node 2 is at maximum power
consumption, 50 kW, and node 3 is generating the 30 kW necessary to meet the demand on node 2, with an
additional ≈ 910 W to compensate for the grid losses. This losses are being payed by the load in node 2, seen
in Figure 3.11 by the higher value of λ2 ≈ 9.41 m.u./W.

Analysing the simulation more carefully, it is possible to observe that, in the beginning of the process,
the LMP in every node reached 4 m.u./W, where generator in node 1 entered the marginal zone and started
to allow the local power set point to increase until it reached the maximum power output, seen as a blue
dash-dotted line in Figure 3.13. Then, the generator entered the maximum power region and its LMP started
increasing again. This increase in power can also be seen in the local voltage, since more power was put in
the grid, the local voltage was allowed to rise a to around 328V, 3 V above the minimum level. But since the
load in node 2 also increased its consumption at the same rate, seen as the orange line in Figure 3.13, the
overall system voltage could not increase to the maximum voltage limits. Only when the generator in node 3
reached its minimum marginal price, 9 m.u./W, the power was then allowed to increase again and, as such,
the voltage also increased.

The small voltage dip around 100th iteration can be explained by the big spike in µU
3 , seen in Figure 3.14.

Since µU
3 is taken into account on the voltage update, as given by 3.65, the high values taht it takes actually

makes it so that −αu
λ
∂L /∂λm −αu

u∂L /∂um < 0, and so the voltage starts to decrease. The cause of this large
spike is the fact the high voltage increase rate after the generator in node 3 reaches its marginal region, which

is given mostly by ∂L /∂um , which, once the limit is reached, is going to translate to high increase rate of µU
3 .
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Figure 3.11: LMP at all the nodes in the case presented in 3.10.
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Figure 3.12: Local voltage levels at all the nodes in the case presented in 3.10. The difference between the voltage setpoints, dotted lines,
and measured voltage can be seen in the first 100 iterations.
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Figure 3.13: Local nodal power at all the nodes in the case presented in 3.10. The difference between the voltage setpoints, dotted lines,
and measured voltage can be seen in the first 100 iterations.
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Figure 3.14: Dual variable for the maximum voltage constraint at all the nodes in the case presented in 3.10.
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It is important to also note that, while the setpoints, seen as dash-dotted lines in Figure 3.13, are 0 W, the
generators 1 and 2 are producing some power in order to account for the demand on the load in node 2. The
amount of power generated by nodes 1 and 3 is fully dependant on the droop curves and the on network.
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Figure 3.15: Grid in 3.10 with a 20 kW increase power output limit in node 1.

Increasing the output of node 1 by 20 kW will turn the grid in Figure 3.10 into the one in Figure 3.15. In [27],
this was the case where oscillations where verified for non-quadratic cost funtions and the found solution
limited the algorithm to only be able to handle situations where Am ̸= 0, as discussed in 3.2.4. Running the
same case with the strategy described in this report, the results are very different, as can bee seen in Figures
3.11-3.14.

In Figures 3.16 and 3.17 it is shown a comparison between this and the previous implementations, respec-
tively, and it is possible to observe that before the λm ’s rate of increase is lower, meaning the algorithm will
take more time to converge, and, more importantly, there are oscillations around what would be the optimal
solution, shown in Figure 3.16. Now, even though the marginal generator is again in node 3, since node 2 can-
not accommodate for the whole demand, λ1 ≈ 8.62 m.u./W, which is lower than the marginal cost of λ3 ≈ 9
m.u./W. Once more, the LMP in node 2 is the highest since it is the load, but in this case it presents a lower
value than in the previous case, λ3 ≈ 9.15 m.u./W, even though there are more losses on the grid, ≈ 1231 W.
This can be explained by the fact that most of the power is now coming from a cheaper source meaning it is
less expensive to the grid to have more losses coming a cheaper source than having less losses, but the power
coming from a more expensive source. This make sense from an optimisation point of view since the whole
purpose is to minimise the costs, and not the losses, and, although they are connected, sometimes having
more losses in the grid is cheaper in the long turn, as it was demonstrated in this case.

In Figures 3.18 and 3.19 is now possible to see that node 1, the one with the highest voltage also has the
highest power output. From a physical point of view, these results make sense because the higher the voltage
difference the higher the current and power being transmitted in a line and, as such, the generators supplying
the highest amount of power will tendentiously be the ones with the highest voltage.

Once more, the small voltage and power oscillations are caused by a very steep rise in µU
1 , which, as

before, causes this oscillations to happen. In this case power also shifts since the the voltage responsible for
the voltage oscillation is node 1, which is in the maximum power zone, thus having a fixed droop curve. Once
the voltage droops in 1, it translates to a voltage drop in other nodes, which triggers the droop in node 3 to
act and provide more power to reestablish the previous voltage levels. Since the load cannot accommodate
for this increase in power, then the droop in node 1 reduces the power output, meaning the power imbalance
between the power setpoint and the actual power increases, and so increase

∣∣∂L /∂λ1
∣∣. This differential term

is part of the voltage update and so, once the influence of µU
1 is small enough, the voltage level increases once

more to u1 =U .
This feedback system, if not properly tuned, can cause oscilations and this is the main reason why βU =

βU = 10 m.u/V2.
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Figure 3.16: LMP at all the nodes in the case presented in 3.15.
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Figure 3.17: LMP at all the nodes in the case presented in 3.15, taken from [27].
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Figure 3.18: Local voltage levels at all the nodes in the case presented in 3.15.
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Figure 3.19: Local nodal power at all the nodes in the case presented in 3.15.
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Figure 3.20: A six node meshed grid with line limit (denoted by the red lines). The line connecting node 1 to node 6 has a current limit of
50 A while the current flowing in the line from node 2 to node 3 is limited to 20 A

The optimisation algorithm also has to account for congestion in the grid, both current congestion as well
as voltage congestion.

Current congestion, as explained previously, happens when the current that is flowing in a line is higher
than the limit that was defined, violating then (3.15), while voltage congestion happens when trying to trans-
mit power over a highly resistive element, like a long line. The higher the resistance in a line, the bigger voltage
drop the same current that flows through. If the current increases to much, and since voltage is fixed from the
marginal generator, the connected node’s voltage can hit the minimum limit, meaning that no more current
should be allowed to flow.

In order to test the behaviour of the new optimisation strategy under these conditions, test networks from
[27] where used, with the added benefit that,in this way, the convergence speeds could be compared.

The first test was preformed in a 6 node grid, seen in Figure 3.20, where some of the lines have current
limits set in such a way that it will constraint power flow.

Analysing Figures 3.21-3.25 it is possible to observe the algorithm converges and respects to an optimal
point which respects the previously defined line limits.

From the grid layout in Figure 3.20 it is possible to conclude that, if there was no congestion, node 1
would be able to supply all of the loads, since it has a maximum power output of 40 kW and the network is
only demanding 30 kW and, at 30 kW, λ1 = 5.17+0.02×30 = 5.77 [m.u./W] which means there would be no
need for node 4 to generate power, since it would be much more expensive.

The problem arises when both the (1,6) and (2,3) exceed the maximum limit for current which can be
seen in Figure 3.24, from the increase in the dual variable which starts around the 100th iteration. This line
overload is caused by the natural flow of current over the line after the steep increase in supplied power in
node 1, visible in Figure 3.23, means the µ1,6 and µ2,3 will begin to increase, as a consequence of the update
described in (3.73). This increase in the dual variable will translate in a rise of the LMP of, firstly, nodes 2,3 and
6 as due to µ2,3, for nodes 2 and 3, and µ1,6, for node 6. The λ1 is not affected since it is a marginal generator
and, as such, λ1 ∝ pS

q . These 3 nodes will increase then the LMP of the other 2 nodes in the system and it will
continue to rise until the minimum marginal cost of the generator in node 3 is reached, at which point it will
start to generate power, which can be seen around iteration 150. Once there is some power output at node
3, the current flowing in lines (2,3) and (1,6) decreases to a point where is no longer violating the maximum
limit, which can be seen by a slowing rise of µ2,3, meaning this line is at the maximum current limit, and even
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Figure 3.21: LMP at all the nodes in the case presented in 3.20.
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û5

û6
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Figure 3.22: Local voltage levels at all the nodes in the case presented in 3.20.
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Figure 3.23: Local nodal power at all the nodes in the case presented in 3.20.
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Figure 3.24: Line currents in the case presented in 3.20.
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Figure 3.25: Dual variable for the line current limits in the case presented in 3.20.
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Figure 3.26: Four node serial case with a long line connecting node 2 and 3 (depicted in blue). The line is very long, and due to the
voltage limits and losses, all the required power cannot be delivered from the cheapest generator in node 2.

a decrease of µ1,6 → 0, meaning this line is no longer congested, which can be confirmed in Figure 3.24.

The second congestion test was preform in a 4 node network, shown in Figure 3.26, where there is a long
tie line that connects node 2 to node 3. In this case, the cheaper generators are in one side of the line and the
loads on the other, which means power will flow from the area (1,2) to (3,4), hence creating voltage congestion
in line (2,3).

Initially, it can be seen that the power in node 2 starts to increase, since λ1 = 0 m.u./W is the minimum
marginal price for that generator. However power and voltage start to climb, there is a big voltage drop on
the line that connects both areas. As such, once u2 reaches its maximum value, there is no more power that
can be transferred from the left most area. The voltage over the long line also forces u3 <U , which means the
dual variable for the voltage limits will rise, as seen in Figure 3.31. This rise will push the LMP of the (3,4) area
up as a consequence of the differential term ∂L /∂um in (3.65).

Only when λ4 = 45 m.u./W, then the generator 4 is allowed to start increasing its power and then the
local voltage also increases, although this rise happens very fast and is shown as a peak in Figure 3.28. This
rise in voltage means, however, that node 2 will be transferring less power, as seen in Figure 3.29 as a small

dip in p̂S
2 , which is not optimal since power from node 4 is much more expensive, and also means µ

U
3 → 0

very quickly and, consequently, will cause the voltage and LMP to drop at the same rate. The systems shows
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Figure 3.27: LMP at all the nodes in the case presented in 3.26.
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Figure 3.28: Local voltage levels at all the nodes in the case presented in 3.26.
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Figure 3.29: Local nodal power at all the nodes in the case presented in 3.26.
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Figure 3.31: Dual variable for the maximum voltage limit at all the nodes in the case presented in 3.26.

damped oscillations as of result of this process, but, after 1000 iterations, it converges to a optimal steady
state solution.

Both this cases were tested with the exact same grid as in [27]. In the case of line current congestion,
an optimal solution was reached in ≈ 750 iterations which, when compared to the 3000 iterations obtained
in[27], mean it takes a quarter of the time. Likewise, for the voltage congestion case, convergence was attained
in less than 1000 iterations, which means hat for that case, the new solution is 3 times faster.

In order to test the convergence speed difference for larger networks, a test grid based on the IEEE 9 bus
system was used. The layout of the network, as well as the costs and power output of the nodes can be seen
in Figure 3.32 and the values for the line resistances are specified in Table 3.1.

Table 3.1: Line data for the IEEE 9 bus system. This values were taken from [27], as double the line resistance values of the grid in [34].

Line Index Resistance (Ω)

(1,4) 0.1152
(2,7) 0.1250
(3,9) 0.1772
(4,5) 0.184
(4,6) 0.184
(6,9) 0.34
(5,7) 0.322
(7,8) 0.144
(7,9) 0.2016

Initially, this grid was ran with the exact same tuning parameters has all the other cases, but it led to the
oscillations seen in Figure 3.33. These oscillations where created by the rapid increase in the dual variable of
the maximum voltage in node 2, which led to the decrease in voltage and power, in a similar phenomena as
the one explained for the previous cases. However, when the voltage would then again reach the maximum

level, the rise and descent in µU
1 would happened to fast, meaning the oscillations would start again, instead
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Figure 3.32: The IEEE 9 bus system topology with the modification in the generator and load capacity rating. The resistance values are
taken from Table 3.1. Moreover, the generators’ cost function are added to create an optimisation problem, as described in [27, 34].
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Figure 3.33: LMP at all the nodes in the case presented in 3.32, previously to the change of the tuning parameters.

of dampening throughout the iterations. A more exact explanation of this oscillatory process will be given in
Chapter 4.

In order to prevent this oscillation process, βU was reduced to 0.5 m.u./V2, from 10 m.u./V2, which meant

the rise in µU
1 would be much slower and oscillations would not happened. After this change, the results in

Figures 3.34-3.36 show that the system converges in around 2000 iterations which means it converged 6 times
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Figure 3.34: LMP at all the nodes in the case presented in 3.32.
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û6

û7
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Figure 3.35: Local voltage levels at all the nodes in the case presented in 3.32.
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Figure 3.36: Local nodal power at all the nodes in the case presented in 3.32.

as fast as the solution presented in [27].
One thing to take into account is that there are still voltage and power oscillations in the system which are

caused by the steep increase in voltage of node 4, as seen in Figure 3.35. This means, that for this case, the

βU was also to high. Tuning both of this parameters, βU becomes vital to both assure the convergence of the
algorithm without many oscillations, but, if set to low, they can mean that the network may take to long to
reach an optimal point. How this issue can be tackled is discussed in Chapter 4 as well.

In regards to the 1st research question, the results and discussion presented so far lead to the conclusion
that using grid measurements will have a positive effect on the optimisation process, reducing the amount of
iterations it takes to converge.

3.6. Asynchronous Behaviour
As mentioned in [27], asynchronous algorithms have different definitions. For example, in [35], the network
is divided into areas and those areas preform asynchronous communication, meaning they only send infor-
mation after a few iterations have passed, while inside the area, it is required the buses exchange information
after every iteration, meaning that inside the area, communication is synchronous.

Following the lines of [27], the suggested implementation for an asynchronous algorithm is the following:

[
λn(l ),µn,m(l )

]={[
λn(l ),µn,m(l )

]
if received[

λn(l −1),µn,m(l −1)
]

if not received
(3.87)

In addition, as previously mentioned in section 3.4, there is also communication between the grid and the
node. This means one of two things: either every node has to wait for the same grid measurements after every
iteration or they treat the main computer which is running the grid simulation like they would any other node
and asynchronous communication would mean if some measurements where not received in time, the last
ones would be used.

The first option has a very strong implication which is: all the nodes will wait for central grid simulation
to receive the data, process it and resend it, and this can take some time. This means, that if even some nodes
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are faster than others, they’ll have to wait for each other to send the information to the grid and, as such, its
like running a synchronised simulation once more.

The second option means that we are considering that the equipment might have some problems. For
example, if an error occurs in the converter and the latest measurements cannot be used, the old ones would
then have to suffice, although they might not be the more accurate. As such, the power, current and voltage
measurements can also be given as:

[
pm(l ),um(l ), in,m(l )

]={[
pm(l ),um(l ), in,m(l )

]
if received[

pm(l −1),um(l −1), in,m(l −1)
]

if not received
(3.88)
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Figure 3.37: Voltage measurements and setpoints for all the nodes, for the grid shown in 3.26, with a 500 ms timeout period.

The second option makes more sense considering the real world implementation, where there would
not be a central coordinator and no synchrony between nodes. However, when tested in this simulation
environment this implementation did not work properly, as can be seen in Figures 3.37 and 3.38, which are
the results of the simulation of the grid in Figure 3.26, using 500 ms and 300 ms of wait time.

Table 3.2: Number of failed communication attempts in the simulation of the grid in 3.26 with a 500 ms timeout, in asynchronous
mode, as seen in Figure 3.37 . In the columns in the left is identified the origin of he information and the top row is identified what was

the target of that information which failed to arrive.

To node 1 node 2 node 3 node 4
From

node 1 0 - - - - - -
node 2 9 2 - - -
node 3 - - - 1 1
node 4 - - - - - - 1
Grid 109 102 101 104

In the results of the first simulation, Figure 3.37, it is possible to see that for the first 150 s of simulation
the system is converging to the same optimal point as the one in Figure 3.28, but after then the system starts
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û3

û4
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Figure 3.38: Voltage measurements and setpoints for all the nodes, for the grid shown in 3.26, with a 300 ms timeout period.

Table 3.3: Number of failed communication attempts in the simulation of the grid in 3.26 with a 300 ms timeout, in asynchronous
mode, as seen in Figure 3.38 . In the columns in the left is identified the origin of he information and the top row is identified what was

the target of that information which failed to arrive.

To node 1 node 2 node 3 node 4
From

node 1 0 - - - - - -
node 2 31 5 - - -
node 3 - - - 0 6
node 4 - - - - - - 0
Grid 331 301 306 310

to oscillate out of control and does not converge anymore. In addition, in Figure 3.38, the results are even
worse, since the system is oscillating during the entire simulation time, especially after 150 seconds, when it
starts wildly oscillating, with an amplitude of around 60 V. As such, it is clear that the system is not working
as intended.

In Tables 3.3 and 3.3 its is possible to see in detail, the amount of information that was not sent on time
from the grid, to the nodes. As explained previously in point 2 of Section 3.4, the grid simulation can take up
to one second, which means that, in the case of running it with a 300 millisecond timeout, the node would
go 3 iterations without updating voltage, power and current, which have vital information for the updates. As
such, once the new grid measurements were received, that information would be to outdated, which would
mean that the new droop setpoints would be very different from what they previously, which would translate
to more simulation time since the initial guess, taken as the last result, would not be accurate.

Furthermore, looking at the loss of information between nodes, which in the real world would be much
more significant, it is possible to see that is one degree of magnitude lower than the grid, hence the conclusion
that this implementation is not the most correct.

As such, in order to simulate the asynchronous optimisation, the algorithm is ran synchronously and,
for each connection, in each iteration, there is s defined chance that the information is dropped, simulating
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Table 3.4: Number of failed communication attempts in the simulation of the grid in 3.26 with a 25% chance of failure, in synchronous
mode, as seen in Figure 3.39 . In the columns in the left is identified the origin of the information and the top row is identified what was

the target of that information which failed to arrive.

To node 1 node 2 node 3 node 4
From

node 1 792 - - - - - -
node 2 771 720 - - -
node 3 - - - 782 730
node 4 - - - - - - 728
Grid 0 0 0 0

a network communication failure. This way, the node is assured to get all the information necessary and
it is easier to control the rate of information lost and analyse how does the algorithm react to that. The
results of this new approach can be seen in Figures 3.39 and 3.40, which show the um for a loss rate of 25%
and 70% respectively, during a 3000 iteration simulation. In Tables 3.3 and 3.3, the exact number of failed
communication attempts can be seen.
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Figure 3.39: Voltage measurements and setpoints for all the nodes, for the grid shown in 3.26, with a 25% failure rate in the
communication between nodes.

It is possible to see that, with this simulation strategy the results are very different. Although there are
some oscillations in the beginning of the simulation, the whole system ends up converging to the same opti-
mal point as when there were no communication losses.

When the communication losses are at 25%, it is possible to see that the whole system converges in ap-
proximately the same amount of iterations as in 3.28, but for a 70% information loss rate, it takes more time
than previously. That being said, a possible solution for reducing information loss in a system would then be
increasing the time out period, which would work until a certain point, but that would come at the cost of the
time to reach convergence and, as such, it would be a matter, of finding a balance between both parameters.
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Figure 3.40: Voltage measurements and setpoints for all the nodes, for the grid shown in 3.26, with a 70% failure rate in the
communication between nodes

Table 3.5: Number of failed communication attempts in the simulation of the grid in 3.26 with a 70% chance of failure, in asynchronous
mode, as seen in Figure 3.40 . In the columns in the left is identified the origin of the information and the top row is identified what was

the target of that information which failed to arrive.

To node 1 node 2 node 3 node 4
From

node 1 2148 - - - - - -
node 2 2069 2086 - - -
node 3 - - - 2071 2058
node 4 - - - - - - 2079
Grid 0 0 0 0



4
Adaptive Behaviour

As discussed in the previous chapters and in [16, 27], the convergence of the algorithm is highly dependant
on the tuning parameters. If badly tuned, the whole system might not converge and oscillate wildly. This
becomes a even bigger problem if online optimisation is to be implemented, since the whole process would
have to adapt itself to the changing system and could become badly tuned if the networked changed.

In this chapter, a new adaptive behaviour will be discussed, focusing on the online adaptation of tuning
parameters in order to increase convergence speed and flexibility of the algorithm.

For simplicity sake, when voltage is discussed in this chapter, it is referring to the voltage setpoints given
by the optimisation layer of the system, mentioned the in the previous chapter, and, if need be, ûm will be
referred as measured voltage.

4.1. Adaptive Optimisation of tuning parameters
One of the most important variables in this optimisation problems are the dual variables of the local voltage

limits µU , since they are fundamental to either push the voltage up, or down, during the optimisation. In

Figure 3.33, it was clear the influence of µU in the convergence of the system, which was solved by lowering
the gain of the update in question from 10 m.u./V2 to 0.5 m.u./V2. However, in order to understand why this

worked and the approach which was used to better update µU , it is necessary to understand why do this
specific dual variables cause oscillations.

Lets take Figure 4.1 as an example. Here, the voltage can be seen rising until it reaches the maximum

level. Once the maximum level is reached, µU
m starts to rise accordingly to the update given by (3.76), until

it reaches a maximum point, which is in the same iteration um(l ) < U m . This decrease in voltage happens

when µU
m becomes the most significant value in ∂L /∂um , meaning ∂L /∂um > 0, and so, will push the voltage

down. The higher the value of the dual variable when compared to the other terms in (3.42), the higher the
value of the differential term and, therefore, the more um will decrease each iteration.

However, as the voltage decreases under the maximum limit, so does µU
m . This means that the relevance it

has in ∂L /∂um also diminishes and voltage starts to decrease less, until it reaches a point where the it starts

to rise again. At this point µU
m is no longer the most relevant term and is no longer pushing the voltage down.

If ∂L /∂λm = 0, then when the voltage stops decreasing means ∂L /∂um = 0, and, as such, µU
m is close to the

optimal value. However, while the voltage rises and is still not at the limit, the dual variable continues to
decrease.

What distinguishes an undamped oscillatory state from the damped one is the following:

1. Undamped Oscillations happen when µU
m = 0 before um(l ) = U m , highlighted as a purple point in

Figure 4.1. When this happens, the voltage will rise until it reaches the maximum value once more,

which will then increase the µU
m again, and restart the whole process. The system will oscillate around

the optimal values, but since the gains are to big, it will never be able to converge.

2. Damped Oscillations happen when um(l ) =U m before µU
m = 0, highlighted as a green point in Figure

4.2. In this case, when the voltage reaches the maximum value again, µU
m > 0 which means ∂L /∂um

53
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has a lower value than the first time um(l ) =U m and, as such, its rise above the limit will also be lower.
A lower rise, translates to a smaller increase in µU

m and so the system will dampen the oscillations until
it reaches the optimal point.

µU
m

um

U

Figure 4.1: Example of the undamped oscillatory process over the iterations, similar to the one in Figure 3.33. Here µU
m can be seen int

the top half and um can be seen in the bottom half.

µU
m

um

U

Figure 4.2: Example of the damped oscillatory process over the iterations, similar to the one in Figure 3.34. Here µU
m can be seen int the

top half and um can be seen in the bottom half.

Hence, a solution for the oscillation in the system is reached by shifting theβU
m during the iterative process

as to make sure that maximum voltage is reached before the dual variable is null.

The process for µ
U
m is the similar and the same reasoning can be applied, but in terms of U instead of U ,

and, therefore, it will not be discussed further.
In order to make sure the system does not oscillate, it is better to take a conservative approach for the gains

of the system, meaning the gains should start small and, as time advances, adjust them as necessary. This
will work towards minimising oscillatory behaviour in the system and make sure it converges to an optimal
solution. This is important because, in a real world implementation, the system would run in the background
of the users’ daily lives and should require minimum input and control from said users. As such, the system
should adapt to the current situation and should not oscillate out of control, assuring the safety and integrity
of the system.

Following this approach, the initial gain values for the maximum and minimum voltage dual variable
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update were reduced to:

βU =βU = 1

[
m.u.

V2

]
(4.1)

This approach, however, has the drawback of making the convergence much slower if no extra measures
are taken. Because it takes longer the dual variables to rise and lower the system takes more time to converge
to the optimal state, which is also not intended.

Therefor, two strategies were implemented in order to adapt the gains during the optimisation process:
Gain Adaptation and Voltage Error Integration.

4.1.1. Gain Adaptation
As described before, in order to reduce oscillations, it is necessary to better control the µ

U
m , and for that, a

variable gain was introduced in (3.76) and (3.77), which will be reformulated as such:

µU
m(l +1) =P

[
µU

m(l )+βU (l )
∂L

∂µU
m

]
(4.2)

µ
U
m(l +1) =P

[
µ

U
m(l )+βU (l )

∂L

∂µ
U
m

]
(4.3)

βU (0) =βU (0) = 1

[
m.u.

V2

]
(4.4)

where βU (0) and βU (0) are the initial values of βU (l ) and βU (0) respectively.

Node at dum
dl = 0

Node at µU

Node reaches UµU
m

um

U

Figure 4.3: Scheme of the 3 zones of operation for the gain adaptation.

Following the previous sections description of the oscillatory behaviour, three zones can be identified
which will determine how the current iterations gain is calculated, highlighted in Figure 4.3, which are: the
zone where the local voltage level is above U , between the leftmost red circle and the grey circle; the zone
where um <U and dum/dl < 0, i.e, when the voltage is decreasing in comparison to the previous iteration,
which is the figure, between the grey and green circles; the zone where um <U and dum/dl > 0, in the figure,
between the green and the rightmost red circles.

In the first zone βU (l ) =βU (0). In this case the Voltage Error Integration will be in charge of increasing, or

not, the rate of climb of µU , and thus the gain is not changed.

Node with um <U and dum/dl < 0

When um is decreasing and µU > 0, this means that the value of the dual variable is too high. As such, it is
important that it decreases faster in order to make sure that um can rise again. Although this decrease should
be proportional with the dum/dl , i.e., if the voltage is decreasing slowly it is important that the gain is not
very high, as not to overshoot the optimal value by much. And so, the tuning parameter is given, when these
conditions are met, is given by:
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βU (l ) = min
(
1−k · dum(l )

dl
,10

) [
m.u.

V2

]
(4.5)

with: k > 0

where k is a positive constant.
It was observed that the maximum dum(l )dl , in these conditions, was in the order of the 10−2V and so,

k was chosen as 103 m.u./V3. Using this strategy to calculate the tuning parameter, it is possible to make it
proportional to the rate at which the voltage is decreasing, in order to, on one hand, reach the optimal point
as fast as possible and, on the other hand, once the voltage starts to level out make sure the gain is small. It
is important to note that the minus sign before the differential term comes from the fact that the voltage is
dropping and, therefore, the derivatives is negative. As seen by (4.5), the minimum allowed value for the gain
while the voltage is decreasing is the initial tuning parameter value, 1 m.u./V2, since the differential term will
always be negative. Applying k = 103 m.u./V3 in (4.5) wields:

βU (l ) = max
(
1− dum(l )

dl
·103,10

) [
m.u.

V2

]
(4.6)

(4.7)

Node with um <U and dum/dl > 0
Once the voltage stops decreasing, the opposite operation is necessary, meaning that the gain must be in-

versely proportional to the rate of climb, in order to attenuate the decrease in µU over the iterations and to
make sure its value is as close as possible to the optimal value once um =U . And so, when these conditions
are met, the tuning parameter is given by:

βU (l ) = max

(
1

1+k · dum (l )
dl

,0.1

) [
m.u.

V2

]
(4.8)

with: k > 0

where k is a positive constant.
Using (4.8) to calculate βU (l ) makes it so that the bigger the the voltage rise the smaller will be the gain

on the µU , since the minimum value the differential term is allowed to be is 0, which would mean a βU (l ) =
1 m.u./V2, and otherwise, as dum(l )/dl rises, the gain becomes smaller. Using the same rationale of the
previous subsection, k = 103 m.u./V3 was the value chosen for the constant, and so, (4.8) wields:

βU (l ) = max

(
1

1+ dum (l )
dl ·103

,0.1

) [
m.u.

V2

]
(4.9)

k > 0

Equations for βU (l )
The same reasoning can be applied to the tuning parameter calculation of βU (l ). When um < U , βU (l ) =
1 m.u./V2. When the voltage is higher than the minimum, and rising, βU (l ) must be βU (l ) > 1, for the same
motives βU (l ) > 1 , and when the voltage is decreasing once more, the gain must be βU (l ) < 1. Using the same
constant k as for the maximum voltage limit case, the update is given by:

βU (l ) = 1

[
m.u.

V2

]
, um <U (4.10)

βU (l ) = min
(
1+ dum(l )

dl
·103,10

) [
m.u.

V2

]
, um >U ,dum/dl > 0 (4.11)

βU (l ) = max

(
1

1− dum (l )
dl ·103

,0.1

) [
m.u.

V2

]
, um >U ,dum/dl < 0 (4.12)
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4.1.2. Voltage Error Integration
While the adaptive tuning parameter works on preventing oscillations caused by the voltage limit dual vari-
able, the Voltage Error Integration is a strategy used to increase those dual variables faster, once the voltage is

at the limit. This is necessary because, when the tuning parameters have lower values, the µU update can be
very small, meaning that the system will take a more time to converge to an optimal value.

In order to tackle this problem, a solution was devised where the integrated difference between um and U

would be an additional factor in ∂L /∂µU , as to increase the rate at which µU increases. The new derivative
terms can then be written as:

∂L

∂µU
m

= (um +ϵm)−U m (4.13)

(4.14)

where ϵm is the integrated voltage error.
Since this optimisation process has discrete iterations, the error integration was calculated as follows:

ϵm(l +1) = ϵm(l )+um(l )−U m , if
∂L

∂um
< 0∩ ∂L

∂um
> 0.01 · ∂L

∂um
(4.15)

ϵm(l +1) = 0, if
∂L

∂um
> 0∪ ∂L

∂um
< 0.01 · ∂L

∂um
(4.16)

where ∂L
∂um

is the minimum value of this differential term has taken.

Iterations

ϵm

um

U

Figure 4.4: Illustration on how the error integration is calculated. The integral of the voltage error, shown as a line on the top plot is also
highlighted as the red area on the bottom plot.

The two conditions in this calculation strategy are present to avoid creating oscillations on the system by

increasing the µU
m to much, something that was avoided by reducing the gains. Such balance is then obtained

by, firstly, making sure that this added error is only active while the voltage is increasing, i.e., while ∂L /∂um

is negative which, as discussed previously, means µU
m is not yet higher then the optimal point. To control the

rate at which µU
m is rising, the second condition exists, and it means that the rate at which the µU

m is changing

cannot make it so µU
m changes more than 1% of the highest registered peak in a near past. In Figure 4.4, it is

possible to better visualise the zone of operation of this strategy.
This solution was not applied to the minimum voltage because the system has more difficulty in increas-

ing µU
m than µ

U
m , since there are usually more elements pushing the voltage down, loads, than trying to in-

crease the voltage, the marginal generator, and, as such, µ
U
m increases faster than µU

m . Implementing the same
strategy for lower voltage limit dual variable could introduce oscillations, something which this strategies are
working to avoid.
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For the same reason, this strategy only works when applied on the marginal node. As discussed in the pre-
vious chapter, the marginal node is the one pushing up the voltage and, as such, has more control over this
parameter than the nodes at maximum generation capacity. If this was to be applied to to every node, the in-

formation about the µU
m would have to be transferred from the maximum voltage node to the marginal node,

through the λm , and only then the voltage would stop rising. This, however, has some inherent associated
delays in the information transmission, and thus creating more oscillations in the system.

In order to test this new strategies, the two grids where the system was most sensitive to the dual variables
were tested: the : four node serial case with a long line, presented in Figure 3.26, and the adapted IEEE 9 node
case, presented in Figure 3.32. This simulations were ran in synchronous mode in order to have make it easier
to understand and to reduce the number of variables that might affect the system.

Firstly, the IEEE 9 bus case will be presented in order to demonstrate the oscillation attenuation and then
the 4 node case, where the benefits of using the error integrator are more evident.
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Figure 4.5: Nodal values for µU , over 4000 iterations, without the adaptive behaviour, for the network presented in Figure 3.32.

As can be seen in Figures 4.5 and 4.6, before and after the adaptive behaviour was implemented respec-
tively, when the adaptive gain is working the amplitude of the oscillations is reduced, meaning the system

can converge faster. Although the first two peaks have the same amplitude in both simulations, the rise ofµU
m

is not affected by the adaptive gain, after the second peak, the oscillations starts to dampen, from a ∆µU
m ≈ 22

m.u./V to a∆µU
m ≈ 17 m.u./V, around the 1000th iteration mark. This process will continue over the simulation

and, in the end, will result in a reduction of 1000 iterations to reach convergence.
In the four node case, Figures 4.7-4.13, the benefits of the adaptive gain on µU and the voltage error

integration on µU are more evident. In Figures 4.7 and 4.8, there is a clear difference between the rise of µU ,
which in the first figure is clearly slower than on the second one. This fast increase can is due to the addition
of the integrated error, which can be seen in Figure 4.9 as the orange spikes between the 100th and the 500th

iteration. It is worth noting that if the conditions for the integrated error were not included, especially the cap

on the rate increase rate, ∂L /∂µU 2 would present a much higher amplitude, meaning µU would rise to fast
and cause oscillations.

The effect of the gain adaptation on theµU is very evident in Figures 4.10-4.13. When comparing both dual
variables, it is visible that the rate at which both increase is the same, however, around the 375th iteration, the
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Figure 4.6: Nodal values for µU , over 3000 iterations, with adaptive behaviour, for the network presented in Figure 3.32.
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Figure 4.7: Nodal values for µU , over 3000 iterations, without adaptive behaviour, for the network presented in Figure 3.26.
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Figure 4.8: Nodal values for µU , over 2000 iterations, with adaptive behaviour, for the network presented in Figure 3.26.
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Figure 4.10: Nodal values for µU , over 3000 iterations, without adaptive behaviour, for the network presented in Figure 3.26.
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Figure 4.11: Nodal values for µU , over 2000 iterations, with adaptive behaviour, for the network presented in Figure 3.26.
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Figure 4.12: Setpoints and measured values of um , over 3000 iterations, without adaptive behaviour, for the network presented in Figure
3.26.
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Figure 4.13: Setpoints and measured values of um , over 2000 iterations, with adaptive behaviour, for the network presented in Figure
3.26.
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βU
3 is reduced in such a way that the steep decrease in µU 3 is severely halted, and it becomes a much smother

decrease until it reaches the convergence point. This modified behaviour of the dual variable translates to a
decrease in u3 and u4 which is much less steep and avoids the voltage oscillations seen in 4.12.

4.2. Power Supply and Demand Changes
Until this point, it has been assumed that power demand and supply did not change during the extent of the
simulation. However, this is not true for a real world implementation, where the system would be subject to
power supply and demand changes. As such, the system needs to account for those changes.

There are two different scenarios that may happen during the normal operation of the system, which have
different consequences:

1. One of the generators increases its maximum power output.

2. One of the generators decreases its maximum power ouput or there is a shift in the demanded power.

Scenario 1 is important because it might lead to a shift in prices of the network. If the generator which
sees its maximum power increasing was in the maximum power region, i.e. the LMP of that node is higher
than the power generation cost of the generator, there is an opportunity for that generator to increase its
production. Once this shit occurs, the power setpoint will increase, and the ∂L /∂λ will become negative and
as such, reducing λm . This will then LMP of other nodes until node m is the Marginal Generator Zone. This
phenomena can be seen in Figures 4.14 to 4.16.
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Figure 4.14: Nodal values of local power measurements and setpoints for the network presented in Figure 3.15, starting at iteration 950.

Initially, the system was at the optimal point shown in Figures 3.16 to 3.19. At the 1000th iteration, the
maximum power limit of the generator in node 1 is raised from 40 kW to 60 kW, meaning that this node is
no longer at the limit, which can be seen as the shift in the power setpoint for node 1 in Figure 4.14. Con-
sequently, the LMP of the other nodes starts to decrease, as seen in Figure 4.15 and, as such, the node 3 will
decrease its power production, since it enters the Minimum Power Region. The LMP will continue to de-
crease until node 1 enters the Marginal Generation Zone, around the 1200th iteration. Here, according to the
update strategy show in 3.2.4, pS

1 is free to change, and it will converge to the optimal point, around 51 kW.
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Figure 4.15: Nodal values of LMP for the network presented in Figure 3.15, starting at iteration 950.
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û1

û2
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Figure 4.16: Nodal values of the local voltage measurements and setpoints for the network presented in Figure 3.15, starting at iteration
950.
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The voltage drop seen in 4.16 around iteration 1200 is a consequence of u1 being slightly over U 1 while the

power converges to the optimal point, which increases the µU
1 , hence reducing the voltage level of node 1

and, consequently, all other nodes.
In the same simulation, at iteration 1700, P 1 is reduced back down to 45 kW, meaning that the generator

in node 1 will be unable to fully supply the load in node 2. This means that both the load and the generator
in node 3 will react to this power mismatch, the scenario presented in 2.

In this case, the physical system reacts immediately to the supply/demand mismatch according to the
defined droop curves. This can be verified by the steep decrease in voltage shown in Figure 4.16. When P 1 is
decreased, the system doesn’t have any marginal generator, which means that the voltage must reduce all the
way to the lower limit in order be able to reduce the power demand of the load, as a consequence of the way
the droop curve are created, explained in section 3.3.2. Ideally, the generators and loads should react to the
power mismatch with as little voltage droop as possible.

Hence, in theory, the way the droop curves are generated could be changed in a way as to make sure
that pS

m = P m for um and pS
m = P m for um +5. However, this hypothesis could not be tested because the grid

simulation could not find the mathematical solution for the grid state when the droop curves where modified
in this way, making it impossible to get the optimisation results.
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Figure 4.17: Nodal values of the local power measurements and setpoints, for the network presented in Figure 3.32, starting at iteration
1950.

In Figures 4.17 to 4.19 the adapted IEEE 9 bus grid, shown in Figure 3.32, was also subject to power shifts.
In this case, at iteration 2000, the generator in node 2 is shutdown and the generators in node 1 and 3 increase
their maximum power output, in order to accommodate for the loss of generation power. Then, at the 2500th

iteration, the load in node 8 is reduced to 5 kW. Finally, at the 3000th iteration, the power demand at node 6 is
increased to 16 kW.

Is is possible to observe that the system, in the end, converges to a new optimal state which is very differ-
ent from the initial one.

Then, similarly to what happened in the previous simulation, the way the droop curves are set means that
there is an abrupt fall in voltage when generator 2 is shut down. However, 500 iterations later the system has
already converged to a new optimal point, where the generator in node 3 is at maximum power output and
the one in node 1 is a marginal generator.
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û8

û9
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Figure 4.18: Nodal values of the local voltage measurements and setpoints, for the network presented in Figure 3.32, starting at iteration
1950.
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Figure 4.19: Nodal values of LMP, for the network presented in Figure 3.32, starting at iteration 1950.



4.3. Price Changes 67

Once the load decreases, both generators reduce its power while the voltage increases, once more, due to
the droop. Afterwards, the value of all LMP starts to lower as a consequence of the power in node 1 decreasing
as well, meaning that node 3 will increase its power output to the maximum once more. While the system is
still converging, there is an increase in the load. This causes a voltage drop once more which is now smother
than the previous one, as the marginal generator is able to account for the power imbalance in the grid. As a
consequence of the update strategy, the values of um continue to decrease since, after the increase in power,
∂L /∂u1 > 0 which drives the voltage down. In the other nodes, this differential term takes negative values
driving the LMP up. This difference in positive and negative terms can be explained by the consensus part of
the updates which is dependent on the line currents and voltage, as explained previously.

It is important to note that every simulation, the power shift accounts for a big percentage of total power
of the grid. E.g, in the last case, and increase of 7 kW accounts for a≈ 26% increase in the total energy demand.
In a bigger system, this changes would be less significant and, as such, its effects would also result in lesser
voltage swings.

4.3. Price Changes
The same way there might be power shifts on the network, the online optimisation must also account for price
changes. This changes might occur because a generation unit is not fully independent for external factors and
so, the price at which it operates is subject to change. As an example, if we consider a diesel generator, the
operation cost is dependent on fuel prices and, as such, is subject to change.

In order to test the algorithm to price changes, the grid in 3.15 was taken as starting point. Once the
system was running for 1500 iterations and the optimal point had been reached the cost of for the generator
in node 1 was increase from 4 m.u./W to 9.16 m.u./W. Then, at the 2500th iteration, the price for the generator
in node 3 shifts from being a linear cost, given C3 = 9 ·pS

3 m.u., and becomes a quadratic cost function given

by C3 = 0.003 · (pS
3 )

2 +9 ·pS
3 m.u. The results for this test can be seen in Figures 4.20 to 4.22.
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Figure 4.20: Nodal values of LMP for the network presented in Figure 3.15, starting at iteration 1400.

Initially, the node 1 is at maximum power but once the cost increases, the LMP becomes lower than the
Minimum Marginal Cost, meaning the generator should shut down. This creates a spike in the power of node
3, and the demand is curtailed in ≈ 20%, which causes the voltage to drop significantly. The reason why there
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Figure 4.21: Nodal values of local power measurements and setpoints for the network presented in Figure 3.15, starting at iteration 1400.
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Figure 4.22: Nodal values of local voltage measurements and setpoints for the network presented in Figure 3.15, starting at iteration
1400.
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Figure 4.23: Nodal values of LMP for the network presented in Figure 3.15, starting at iteration 1400, with an increased price for node 1.
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Figure 4.24: Nodal values of local power measurements and setpoints for the network presented in Figure 3.15, starting at iteration
1400, with an increased price for node 1.
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is such big voltage drop is the same as explained in the previous section. However, λ2 and λ3 are quick to
rise, meaning the generator in node 1 becomes marginal as well. Then, the power in node 1 can increase
and around 2100th iteration, a new optimal point is reached. Once the cost function of node 3 is changed, it
becomes more expensive to generate power in that node and, as such, the λ1 rises, leading to a rise in λ2, and
the pS

2 drops, until optimally is once again reached.
It is important to note that, even though node 3 is not at the maximum limit and has a LMP lower than

the Minimum Marginal Cost of node 1, the latter is also generating power. This might seen counter intuitive
and give the impression that the optimisation process is incorrect.

However, the losses, which are paid by the loads, have also to be taken into account. This means that,
although it might be cheaper to produce more power in node 3, the load in node 2 would have an increased
price when compared ot the optimal solution in Figure, meaning that, overall, having node 1 supplying all
the power would be less optimal. In fact, observing Figures 4.23 and 4.24, it is possible to confirm the previ-
ous statement. In this case, the generation cost for node 1 was set at such an high value that the generator
never reach marginal operation, while the rest of the parameters where kept the same, and so, node 1 is fully
supplying the demand in node 2.

As can be seen at the end of the simulation, all the LMP values are higher, meaning that the overall system
operation is more expensive.

4.4. Line Parameter Estimation
One assumption that has been made so far is that, when the system is initialised, the exact line resistances
are known, i.e, that the values for Gm,n are known. This assumption is, in a field application, not correct. In
order to know the exact resistance of a line, it is necessary to know its exact length and value of Ω/km, or
test every line before installing them. However, neither of the options before mention are applicable to the
implemented distribution systems. Sometimes, the cables used might be old enough that there might not be
accurate information and even in newer systems, the length of the cables registered in the databases is just
an approximation of the real value. Furthermore, even if the information was accurate, the temperature of
the lines changes during the operation, either by influence of external factors and due to heating by Joule’s
effect, which means the resistance of the line will inevitably change during operation of the system.

As such, in order to make sure the algorithm is tuned accordingly to the physical system, it becomes
necessary to estimate the value of the Gm,n at the same time the system is operating, represented by Ĝm,n .

Initially, the system has no information and a conservative approach for the updates must be followed in
order to makes sure the system does not oscillate.

From Chapter 3, it is possible to observe that most of the tuning parameters are inversely proportional
to Gm,n , α∝ 1/Gm,n . In order to keep the updates small, α must also have smaller values, meaning Ĝm,n is
initialised with a very high value, ≈ 107. As time progresses, it becomes then necessary to approximate Ĝm,n

to its real value. Recurring to Ohm’s law, it is possible to get an estimation of the line conductance by using:

Ĝm,n(l ) = îm,n(l )

ûm(l )− ûn(l )
[S] (4.17)

where îm,n and ûm are the line current and voltage measurements, respectively.
This estimation does not need to be preformed every iteration because the shift in the line conductance is

slow compared to the rate at which the iterations are preformed, meaning that the value neighbours voltage
level does not need to be received every time the updates are preformed.

In asynchronous operation, the time at which the measurements are taken is different and, as such, when
the local voltage level is sent, it also needs a time stamp. Once un is received, it is compared to a stored value
of um which has the closer timestamp to the received value, making the approximation as close as possible.

In the simulations that were preformed until now, the measured values for voltage and currents where the
exact results from the grid simulation. In a real world implementation, however, perfect measurements are
not possible, and as such, getting the exact values of voltage and currents from the physical layer becomes an
increasingly invalid assumption. This is important to test because, in this case of imperfect measurements,
the line resistance approximation will never take its exact value, but the system needs to converge, non the
less. To reduce the effect the noise might have on the line conductance calculations, every new value was
updated using the following expression:

Ĝm,n(l ) = Ĝm,n,meas(l )+Ĝm,n,old

2
(4.18)
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This update strategy means that the new approximated value of Gm,n was averaged between the old value
and the one obtained by using the expression in (4.17).

In order to test performance under non-ideal conditions, white noise was introduced in all the measure-
ments, with a maximum amplitude of 0.1% of the real value. This means, for example, that for a voltage of
375 V, the measured value could be ûm = 375±0.375 V.

In Figures 4.27 to 4.25, it is possible to see the results for the 4 node linear network, shown previously in
Figure 3.26.
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Figure 4.25: Nodal values of local voltage measurements and setpoints for the network presented in Figure 3.26, with an introduced
noise of 0.1%.

When looking at the results it is possible to observe the small amplitude oscillation caused by the the
introduced white noise, especially if Figure 4.25 is compared to the previous results, shown in Figure 4.13,
for example. The introduced noise means that LMP will never converge to a stationary point, since the local
voltage and power is never constant. However, the oscillatory behaviour is centred around the solution and
has a very small amplitude, meaning that the algorithm is working as intended, as the system is in the most
optimal state possible with the measurements.
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Figure 4.26: Nodal values of local power measurements and setpoints for the network presented in Figure 3.26, with an introduced
noise of 0.1%.

0 250 500 750 1000 1250 1500 1750 2000

Iteration

0

10

20

30

40

50

60

70

80

λ
m

[m
.u

./
W

]

λ1

λ2

λ3

λ4

Figure 4.27: Nodal values of LMP for the network presented in Figure 3.26, with an introduced noise of 0.1%.



5
Case Study

Until now, every test was done in relatively small synthetic grids. And although these tests give good insight on
how is the algorithm preforming, it is also important to run this algorithm in conditions that better resemble
the real world. In order to do so, a test case was devised, base on a section of the street lighting grid at
Zoetermeer’s municipality, in the Netherlands.

5.1. Description of the Test Case

H6A21 G6C2

G5D1

G6C22

G6C1G6C23

G6C21 G6A3

G5B2 G6A1

G6A2

G6A23

G6A21

Figure 5.1: Scheme of the selected section of Zoetermeer’s street lighting grid. The junction boxes where the lines are connected to each
other can be seen in red and green, with the difference being that the red boxes also serve as the feeding points for the grid.

In order to preform the simulations, it was necessary to, firstly, define the grid.
Initially, a section with an area of approximately 47 Hectares was chosen, mainly because it had few con-

nections to the rest the lighting network and, as such was easier to isolate, and hence, easier to test. Within
that zone, there where two identified types of junction boxes: the ones connected to the power grid, from
where power was being supplied from, which will be called Feeding Boxes, and he ones which served as end-
points for the cabling, which will be named Connection Boxes. A list of all the boxes can be seen in Table
5.1.
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Table 5.1: List of boxes from the selected section of Zoetermeer’s street lighting grid.

Feeding Boxes Connection Boxes
Box Name Bus Number Maximum Power Limit [kW] Box Name Bus Number

G5B2 1 1000 G6A21 5
G5D1 2 1000 G6A23 6
G6A1 3 1000 G6C21 10
G6A2 4 1000 G6C22 11
G6A3 7 1000 G6C23 12
G6C1 8 1000 H6A21 13
G6C2 9 1000

As it currently stands, the system runs in AC and is arranged radially, from the feeding boxes and ending
up in the connection boxes. Both boxes can house multiple cables, however, as it stands, they are not inter-
connected between them. For this test, the whole grid was meshed and, as such, there is copper connection
between all the lines inside a junction box. A scheme of the grid can be seen in Figure 5.1, where the different
box types are in different colours, the generators, which model the connection to the external grid, are shown
as a circle with an line in the middle, and every line connecting two boxes is a underground cable.

Currently, the network serves only as a lighting grid, meaning that there is a constant load at every light
pole. Since the system would be switched so it operates in DC, the chosen illumination technology is LED,
which translates to a consumption of 25W [36] per light pole. However it was conceived that every pole
would also have a electric car charging station attached, which would add an extra 5 kW of load at every
point. Finally, it was assumed that there was a light pole every 25 meters, meaning that every 25 meters of
cable, there would be a total load of 5.025 kW. However, although the 25 W lighting is fixed, the power fed to
the converters is variable and, as such, a price was given to these loads, in order to make demand response
possible.I.e., seting a cost function on the loads meant that if the LMP was higher than the assign cost, the
local power demand would reduce.

For the feeding boxes, a cost function of Cm = 0.001pS
m

2 +2pS
m m.u. was given and, for the light poles, a

cost function was given as Cm =−0.001pS
m

2 −10|pS
m |, where pS

m ≤ 0.
Although the exact installed cable type is unknown, some information was available: it had a 4 core copper

conductor, each with 10 mm2 cross section. As such, a similar cable was chosen: the VG-YMvKas Dca, from
Nexans [37]. A list of all lines shown in Figure 5.1 can be seen in Table 5.2.

Contrary to previous cases, the voltage range of the system is from 650V - 750V with an additional 5V
margin for the droop, meaning that the full range of voltage is set from 645V to 755V.

There was no induced communication failure or measurements errors because the system is already very
complex and adding more uncertainty to the system would mean it could become to complicated to analyse.

5.2. Test Results
Although testing the grid with a node every 25 m of line would be ideal, it made it so the grid had more than
400 nodes. This made it very computationally complex to test, and a new solution was found. In order to
reduce the number of nodes, but maintain the characteristics of the test, loads were aggregated into sets of 6
or 8, i.e, instead of having a pole with a 5.025 kW demand every 25 m, there would be a pole with a 40.2 kW
demand every 200 m, in case of agregating 8 loads into 1.

As such, two tests were preformed: one with a load every 200 m, which totalled 53 nodes, and another
with a load every 150 m, which totalled 67 nodes.

The results for the first set of simulations can be seen in Figures 5.2 to 5.5.
From the analysis of the simulations, the first conclusion that can be drawn is the fact that the system

converges in less than 4000 iterations. Also, from Figure 5.3, it is possible to observe that feeding boxes with
more connections, node 8 and node 9, are supplying more power than the other ones and that, overall, the
nodes which are supplying power are all at maximum voltage, as seen in Figure 5.4.

What is also important to highlight is the fact that the loads, due to the fact that they were given a cost
function, are preforming demand side response to line congestion. This is possible to observe by the many
different levels of load consumption observed as grey lines in Figure 5.3. Every grey line in this figure represent
the agglomeration of 8 light poles with EV charging.
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Table 5.2: List power cables in the selected section of Zoetermeer’s street lighting grid.

Line Index Line resistance [Ω/m] Length [m] Maximum Current [A]

(1,5) 0.00168 232 61
(1,5) 0.00168 275 61

(1,11) 0.00168 429 61
(1,11) 0.00168 444 61
(2,9) 0.00168 591 61

(2,11) 0.00168 327 61
(2,11) 0.00168 464 61
(3,4) 0.00168 546 61
(3,5) 0.00168 241 61
(3,5) 0.00168 557 61
(3,5) 0.00168 607 61
(4,6) 0.00168 257 61
(7,6) 0.00168 314 61
(7,6) 0.00168 209 61

(7,10) 0.00168 259 61
(8,6) 0.00168 301 61
(8,6) 0.00168 423 61

(8,10) 0.00168 371 61
(8,10) 0.00168 204 61
(8,10) 0.00168 316 61
(8,11) 0.00168 286 61
(8,12) 0.00168 397 61
(9,11) 0.00168 227 61
(9,12) 0.00168 235 61
(9,13) 0.00168 837 61
(9,13) 0.00168 374 61
(9,13) 0.00168 262 61
(9,13) 0.00168 245 61

(12,13) 0.00168 179 61

Due to current congestion near the feeding boxes, seen in Figure 5.5, the LMP of the non-power supplying
nodes increases and, due to the losses in the network, the further away a node is from a box, the more expen-
sive it is to consume power and, hence, the demand is reduced. It is also possible to observe that some loads
have a LMP lower than the minimum marginal cost, which means they are at maximum power consumption
and there is no line congestion in the connecting lines.

When testing for 68 nodes, meaning a load every 150 m, the convergence time was approximately the
same, 4000 iteration. This means that for a system 25 % larger, there was no significant increase in the conver-
gence time. This gives a good indication that this algorithm is scalable and can work well under increasingly
bigger networks, which is one of the advantages of fully decentralised systems.

Comparing this result with the ones in previous chapters, it suggests that the algorithms speed of conver-
gence might be more heavily dependent on the network characteristics and topology and less on the actual
number of nodes of a network, since previous tested networks were very different between them and the
results showed a big difference in the number of iterations it took to reach convergence, while the main vari-
able that changed in this test scenario was the number of nodes of the network, which had little impact on
the convergence speed.
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Figure 5.2: Nodal values of LMP for the network presented in Figure 5.1, with 53 nodes.In coloured lines is possible to observe the
feeding and connection boxes, while the light poles present grey lines.
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Figure 5.3: Nodal values of local power measurements and setpoints for the network presented in Figure 5.1, with 53 nodes.In coloured
lines is possible to observe the feeding and connection boxes, while the light poles present grey lines. The setpoints are presented as

dash-dotted lines.



5.2. Test Results 77

0 500 1000 1500 2000 2500 3000 3500 4000

Iteration

640

660

680

700

720

740
u

m
[V

]

Other Nodes

û1
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Figure 5.4: Nodal values of local voltage measurements and setpoints for the network presented in Figure 5.1, with 53 nodes.In coloured
lines is possible to observe the feeding and connection boxes, while the light poles present grey lines. The setpoints are presented as

dash-dotted lines.
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Figure 5.6: Nodal values of LMP for the network presented in Figure 5.1, with 67 nodes.In coloured lines is possible to observe the
feeding and connection boxes, while the light poles present grey lines.
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Figure 5.7: Nodal values of local power measurements and setpoints for the network presented in Figure 5.1, with 67 nodes.In coloured
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Figure 5.8: Nodal values of local voltage measurements and setpoints for the network presented in Figure 5.1, with 67 nodes.In coloured
lines is possible to observe the feeding and connection boxes, while the light poles present grey lines. The setpoints are presented as

dash-dotted lines.
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6
Conclusion and Future Research

6.1. Conclusion
As previously stated in the introduction chapter, the main objective of this thesis report is to improve the
speed and flexibility of the C+I fully decentralised online optimisation algorithm of DC Microgrids using lo-
cal physical system measurements. The discussion of this objective will be done by answering the research
questions presented in 1.5.2.

How can physical measurements be used to improve the convergence rate?
In Chapter 3 physical measurements were included in the optimisation process. This was possible by mea-
suring the current that was flowing in or out of the node and the local voltage. The local power was then
obtained as a product of the local voltage and current measurements. Using these new variables, the updates
were changed in order to use the line currents and local voltage instead of needing the neighbours voltage
level. This meant less information had to be shared between nodes. This new update strategy also meant that
the optimisation layer had to control the droop control curve, in order to try to make the physical node follow
the optimal setpoints.

The inclusion of physical measurements had 2 main objectives: to reduce the number of iterations neces-
sary for the system to converge to an optimal point and to take steps into making this an online optimisation
strategy.

As it was previously implemented, the algorithm had to solve two problems while running the optimi-
sation problem: the nodes had to agree on a feasible physical solution and, on top of that, it should be the
less costly solution. By including the physical network, the first problem is solved automatically by the grid,
meaning that the optimisation layer only has to work on making the network converge to the most cost ef-
fective solution. This also included a feedback system, where the cyber layer would introduce the setpoints
for power and voltage and would get a reaction from the grid, meaning it could react to the actual grid state
as the optimisation process develops, achiving online optimisation.

As a matter of fact, it was possible to see that the developed implementation, when compared to previous
ones in [27], led to an increase in convergence speed, especially on bigger networks. In comparative terms,
the online optimisation converged to the same solution 6 times faster in the best case, and at the same speed
in the worst tested case.

What is the impact of communication loss on the convergence?
In Section 3.6, the effects of communication where tested in the system.

Initially, the same approach as [27] was taken to run the algorithm asynchronously: set a timeout and if
the nodes didn’t receive the necessary information within that time period, the update would be run with old
information. This turned out not to be the best option because the same timeout period would apply to the
grid simulations. This meant that the nodes would not receive measurements every iterations and the overall
system would oscillate wildly.

Therefore, a new solution was implemented where a communication failure rate was set for each simula-
tion and, every iteration, the nodes would either use previous information or use new received information
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depending on a predefined chance. This ways, it was also possible to have having consistent data over multi-
ple simulations, since every consecutive run of the algorithm, the nodes would use newly received values at
the same iterations.

When tested for both 25% and 70% communication loss, in both occasions the system successfully con-
verged to an optimal point, although a 70% failure rate meant that there were was an increased oscillatory
behaviour. This was possible because the only exchanged variables in the system are the LMP and the dual
variables for the line limits, with every other variable being obtained locally. This means that, compared to
previous implementations, there is a bigger autonomy from other the nodes and, therefore, a failure in com-
munication is not as critical.

It is important to note that it was not possible, because of the before mention limitations, to test if this
application was faster in terms of time. However, from research question 1 it was concluded that this appli-
cation took less iterations to converge and from this section it was concluded that this algorithm is relatively
resistant to communication failures, meaning that, in a real world application, time out periods could be re-
duced, which is a very strong indication that, overall, this new implementation will take less time to converge
to optimal values than previously developed work.

How can the optimisation parameters be adapted online to improve convergence rate?

In Chapter 4, a new solution in order to adapt the tuning parameters of µ
U
m was devised, in order to increase

convergence rate and reduce oscillations in the online optimisation process.

One of the proposed solutions was to make βU invertly proportional to the rate at which the local voltage
was varying. This meant that if the rate was low, the gain would increase but in case the variation rate was
high the gain would reduce in an attempt to reduce the oscillations in the system. Simulations showed that
this approach was successful in reducing both oscillations in the maximum and minimum voltage, which
helped convergence time.

Another solution that as implemented was the addition of a voltage error integrator, which increased the
rise on the maximum voltage limit dual variable under certain conditions. The use of this strategy was shown
to have a great effect in reducing convergence time, when applied to the marginal generator, reducing the
number of iterations, in some cases, in 25 %.

One other parameter that was changed during the optimisation process was the value of the line conduc-
tance, Gm,n . Although it didn’t change the convergence speed directly, it made the algorithm more adaptable
to changes in the network, since it would approximate the line parameters on its own, without input from the
user. In case there are changes in the network, the algorithm would adapt automatically to those changes,
and, in that sense, make the algorithm more flexible.

What is the impact of changing supply and demand on the convergence rate?
In Chapter 4, is Sections 4.2 and 4.3, the effects of modifying the power of loads and generators, as well as the
cost of production of said power.

From the simulation results, two instances could be differentiated: the first is the instantaneous response
of the physical system to an event, e.g. an increase in power demand, and the second is the following optimi-
sation process to the new optimal point.

The first instance is dependent on the droop and how the curves are drawn. It was possible to observe
that the strategy that was used in this project meant that, if the marginal nodes didn’t have enough margin to
accommodate for the shift in power, then the voltage could decrease very rapidly until the local voltage was
low enough that some loads could reduce their demand. It was suggested that the droop curves were created
differently, however, this new approach could not be tested due to computational limitations.

Then, it was up for the optimisation process to make sure the system converged to a new optimal state.
The previously described behaviour meant the operating point after the power shift could be further away
from the optimal point, meaning it spent more iterations converging to the optimal values than it would be
optimally be required.

That being said, the systems were always able to converge to a new optimal values, in less or around the
same number of iterations it took to initialise the system, which are positive results.

For the price changes, the results were similar. It was possible to change the characteristics of the nodal
cost functions by changing the values of both Am and Bm . If the price change meant there would be no
marginal generator which would be able to account for the power shift caused by the changing cost, then the
same voltage decrease was observed. Otherwise, the system was fast to converge to a new optimal state.
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6.2. Future Research
As it stands, the algorithm can only run in a unipolar DC grid. Although they are simpler, unipolar DC grids
are not as efficient and flexible as bipolar DC grids for power transmission. As such, investigative work will
have to go into researching and developing a way of turning the developed solution into an algorithm that is
able to optimise bipolar DC grids.

Another point for further research is to test how the algorithm behaves in a truly asynchronous mode. For
that, it is necessary to remove the grid simulation constraints, both in terms of simulation time and commu-
nication with the nodes, which limited the ability to test the full potential of this solution.

One last point for research in the future would be how to improve on the adaptive behaviour of the al-
gorithm during the optimisation process. Although the presented solutions worked, more thought and new
ways to better tune the updates can be developed in order further reduce oscillations on the system and in-
crease the convergence speed. Furthermore, it is necessary to test some of the suggested modifications on
the droop in order to reduce the large voltage drops which happen when changing power and cost during the
optimisation process.





A
Simulation Results

A.1. Results for the simulation of the 6 node grid with congestion
The following plots are the results of the simulation of the network shown in 3.20.
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Figure A.1: From top to bottom: nodal values of maximum power limit dual variable and nodal values of minimum power limit dual
variable.
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Figure A.2: From top to bottom: nodal values of maximum voltage limit dual variable, nodal values of minimum voltage limit dual
variable and local derivative of the Lagrangian function in terms of voltage.
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Figure A.3: From top to bottom: local derivative of the Lagrangian function in terms of power, local derivative of the Lagrangian
function in terms of the dual variable for the line current limits and local derivative of the Lagrangian function in terms of the dual

variable for the maximum voltage limit.
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A.2. Results for the simulation of the 4 node grid, with voltage
congestion, after tuning parameters were made adaptive.

The following plots are the results of the simulation of the network shown in 3.26.
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Figure A.5: From top to bottom: nodal values of local power measurements and setpoints, nodal values of LMP variable and line current
measurements.
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Figure A.6: From top to bottom: nodal values of maximum power limit dual variable, nodal values of minimum power limit dual
variable and maximum current limit dual variables.
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A.3. Complete simulation 3 node grid subject to changes in power
The following plots are the results of the simulation of the network shown in 3.15.
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Figure B.1: Net schematics of the Zoetermeer grid and its cable layout, provided by the municipality of Zoetermeer
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