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Abstract: Localization microscopy offers resolutions down to a single nanometer but currently
requires additional dedicated hardware or fiducial markers to reduce resolution loss from the
drift of the sample. Drift estimation without fiducial markers is typically implemented using
redundant cross correlation (RCC). We show that RCC has sub-optimal precision and bias,
which leaves room for improvement. Here, we minimize a bound on the entropy of the obtained
localizations to efficiently compute a precise drift estimate. Within practical compute-time
constraints, simulations show a 5x improvement in drift estimation precision over the widely used
RCC algorithm. The algorithm operates directly on fluorophore localizations and is tested on
simulated and experimental datasets in 2D and 3D. An open source implementation is provided,
implemented in Python and C++, and can utilize a GPU if available.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Single molecule localization microscopy (SMLM) [1–5] has provided unique insights into
molecular biology by allowing optical microscopy to be used beyond the diffraction limit (∼ 250
nm). It is possible to separate the signal of individual fluorescent molecules, by using fluorescent
molecules that can individually turn on and off. This way their location is estimated with high
precision (∼ 10 nm). Many images of the same sample are recorded, processed, and combined
into a single super-resolution image.

Slight drift of the sample during acquisition results in a loss of resolution. Therefore, any
super-resolution reconstructions need to be compensated for drift during the measurement. This
can either be done through active compensation during the measurement or in post-processing.
Early work on active drift correction using a fiducial spot created with a pinhole achieved
sub-nanometer localization precision [6]. Other methods use fiducial markers embedded in the
sample [7,8], or use image processing of bright field imaging from the sample itself to estimate
drift [9]. If active drift correction is limited to purely z-drift (along the optical axis), commercially
available interferometry autofocusing systems are frequently used. This still leaves 2D drift
uncorrected, but because drift within the focal plane does not deteriorate the image quality, it can
be corrected afterwards without any negative consequences as long as the estimation of the drift
is accurate enough. If the sample is not sufficiently static, fiducial markers can be embedded
in the sample [10]. For SMLM however, although different sets of fluorophores are visible
through time, the underlying structures that are being imaged are often static and thus suitable
to use as input for a drift estimation algorithm. Several such approaches have been explored:
[11] estimated drift by binning localizations over time, and performed image cross-correlation
of the first bin against all remaining bins. Redundant cross correlation [12] (RCC) improves
on this by computing the cross-correlations between all bin pairs. Due to the quadratic scaling
of the number of bin-pairs, this method is fast if the number of bins remains relatively small
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(<20), but can be much slower if a higher time resolution is required. RCC was further extended
into 3D SMLM in ZOLA-3D [13]. To our knowledge, further improvements of post-process
drift correction over RCC have been limited: [14] demonstrated Bayesian sample drift inference
(BaSDI), an optimal approach using Bayesian statistics and expectation-maximization, in which
the drift can be estimated per-frame. However, this approach internally uses an image-based
representation of the localizations, which means that memory use and compute time do not
scale well with either large fields of view, or very precise measurements. Sub-nm precise drift
estimation has been demonstrated [15] specifically on DNA-PAINT origami, using markers and
taking advantage of the separable clusters and known sparsity of binding sites, but this renders
the approach incompatible with larger and denser biological structures such as microtubules.
In practice, we note that in the absence of fiducial markers or active drift correction, RCC is
currently the method of choice for researchers using SMLM. Despite its widespread use, the
precision and bias of RCC and how much room is still left for improvement, is poorly understood.

Here, we propose a new method for drift estimation in both 2D and 3D datasets based on
the minimization of a bound of the entropy. Our method, Drift at Minimum Entropy (DME),
runs directly on localization data, supports both 2D and 3D drift estimation, and does so with
a compute time similar to RCC. The method is tested on DNA-PAINT origami measurements
(Fig. 2), simulated SMLM measurements of filaments Fig. 4, experimental STORM imaging
of microtubules (Fig. 5) and simulated 3D microtubules (Fig. 6). The outline of the paper is as
follows: in section 2.1 to section 2.4, we describe the concept and mathematical definition of the
estimation method; in section 2.5 describes preparation and measurement of a DNA-origami
sample that was used to compare fiducial markers and localization based drift estimation; section
3 describes the various experiments we performed, comparing the performance of DME, RCC
and fiducial markers drift estimation; and section 4 discusses the results and open questions.

2. Methods

2.1. Drift at minimum entropy

A SMLM reconstruction can be regarded as a probability distribution of the true distribution
of the localized molecules. The entropy of a random variable is a measure for the level of
uncertainty about it’s outcome. Drift during the measurement will increase the uncertainty of the
reconstruction and therefore it’s entropy. The idea behind DME is that the entropy metric can be
used as an optimization goal: We can estimate the drift by choosing drift coefficients such that
the entropy is minimized.

The emitter localization estimate has, under mild assumptions, a normal distributed error with
respect to its true position [16]. The localization microscopy reconstruction can therefore be
expressed as a probability distribution

p(rrr) =
1
N

N∑︂
i=1

pi(rrr), (1)

where N is the total number of localizations and rrr is a K-dimensional position vector representing
the emitter position.

pi(rrr) is the probability distribution of a single localization:

pi(rrr) =
exp

(︂
− 1

2 (rrr − µµµi + ddd(ti))T Σi
−1 (rrr − µµµi + ddd(ti))

)︂
√︂
(2π)K |Σi |

, (2)

with µµµi as the estimated position, Σi the estimated covariance matrix (representing the uncertainty
in the position estimation), and ddd(ti) is the drift in frame t of the i-th emitter.
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The drift is estimated by minimizing an upper bound on the statistical entropy of p(rrr). We note
that p(rrr) is a Gaussian Mixture Model (GMM) with equal weights for each component [17]. The
entropy of a GMM does not have a closed form solution, but various closed form upper bounds
have been found [18–20]. DME uses a variational approximation of the entropy from [20] for its
computational simplicity:

H(DDD) ≤ UH(DDD) =

N∑︂
i=1

Hi(DDD) −
1
N

N∑︂
i=1

log ⎛⎜⎝
N∑︂

j=1

1
N

e−DKL(pi(rrr) | |pj(rrr))⎞⎟⎠ , (3)

where D = {d(1), . . . , d(L)} is the drift at all frames (1 to L), H(DDD) is the entropy of distribution
p(rrr), Hi(DDD) is the entropy of a single GMM component pi(rrr). The entropy of a single GMM

component is given by Hi(DDD) =
1
2

ln det(2πeΣi), which will stay constant under drift change.
Therefore, the first term of UH(DDD) can be ignored during the drift estimation. DKL

(︁
pi(rrr)| |pj(rrr)

)︁
is the Kullback-Leibler divergence [20] between the probability distributions for localization i
and j. In our implementation, we assume localization errors to be uncorrelated between axes, so
Σ is a diagonal matrix. The method is not limited to diagonal Σ matrices, but the calculation is
faster and to our knowledge, no localization software package actually stores the full covariance
matrix for each localization. DKL (i, j) can then be expressed as follows:

DKL
(︁
pi(rrr)| |pj(rrr)

)︁
=

1
2

K∑︂
k=1

(︄
log

(︄
σ2

j,k

σ2
i,k

)︄
+
σ2

i,k

σ2
j,k
+

(︁
µi,k − dk(ti) − µj,k + dk(tj)

)︁2

σ2
j,k

)︄
−

K
2

, (4)

Here σ2
i,k is the k-th diagonal of the covariance matrix Σi for localization i. To compute the

covariance matrix we use the Cramer Rao Lower Bound (CRLB), which defines a lower bound
on localization precision of a fluorophore [21]. The achieved localization precision is estimated
by evaluating the CRLB for the estimated single-molecule parameters [22,23]. This information
is used in DME to convert the list of localizations into a probability density function. While
Eq. (3) appears to be very computationally demanding, scaling quadratically with the number
of localizations, this is effectively not the case in typical SMLM datasets. The exponential
term e−DKL(i,j) goes to zero with increasing distance between localizations. To decide which
localizations to include in the inner sum of Eq. (3), we set a fixed distance threshold based on the
average CRLB times 3 and ignore any localizations further than that. At that point, assuming
equal CRLB, the entropy contribution of a localization pair is at the 3σ level (0.3%). An efficient
Kd-tree [24] implementation is used to find localizations within this distance. Whenever the
drift estimate has moved more than half the distance threshold, the localization neighbors are
recomputed.

Runtimes of DME are on the same order of magnitude as those of RCC, typically less than a
minute (see Fig. 2(b)). For large datasets, if compute time is still too long or too much memory
is used, the number of localizations can be reduced to include only the brightest spots. The
default maximum is set to 1M localizations, which we found to be more than sufficient for drift
estimation in all tested datasets.

2.2. Cubic spline based drift parameterization

To reduce the number of estimated parameters, we define the drift ddd(t) as a Catmull-Rom spline
i.e. a piecewise cubic spline where the value at time t is determined by the 4 control points closest
to t. Such a spline function is computationally efficient to evaluate and differentiate, and tunable
to the specific dataset by changing the number of control points. Cubic splines are chosen over
higher-order splines, as higher order splines would complicate calculation and have a similar
effect as simply reducing the frame binning size. To do this, the global frame index t has to be
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translated into a local coordinate on the spline τ and an index j, defining which of the spline
segments corresponds to frame t. The drift at frame t is defined as:

ddd(t) = ggg (t/b − ⌊t/b⌋, ⌊t/b⌋) (5)

where

ggg(τ, j) =
4∑︂

i=1
wi(τ)uuuj+i−2 (6)

with

www(τ) =
[︂
τ3 τ2 τ 1

]︂ ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5 1.5 −1.5 0.5

1 −2.5 2 −0.5

−0.5 0 0.5 0

0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

here j is the spline segment index, τ is an interpolating fraction between 0 and 1, uj is the j-th
spline control point, and wi(τ) the i-th element of www(τ) the Catmull-Rom spline. The matrix
coefficients in www(τ) follow from the definition of a Catmull-Rom spline [25]. We define M drift
spline control points, uj with j ∈ {0, M − 1} and M = ⌈L/b⌉, with b being the binning size, i.e.
the number of frames in a single spline segment and L being the total number of frames.

2.3. Gradient descent

The drift is estimated by finding a set of values for uuuk that minimize H(DDD(uuuk)) (Eq. (3)), using
gradient descent (see Supplement 1). Fig. 1 illustrates the general idea of the algorithm. By
dynamically adjusting the gradient step size we optimize the speed of convergence (see Fig. 1).
Because DME uses gradient descent in a complex optimization landscape, it is susceptible to
converge to a local minimum. To prevent this, we use 2D RCC with a small number of (4 to 10
depending on sparsity) bins to quickly compute a rough initial estimate. In the case of datasets
with too few localizations (typically >10000 frames, < 50k localizations), such as microtubules,
convergence of the algorithm can be difficult (see Supplement 1, Fig. S4). To further improve
the initial RCC estimate, DME can also be performed with an initial coarse estimation step. In
this step, ΣΣΣi is increased (typically 2x larger) during drift estimation and using a larger binning
size (typically 20x larger). After this coarse estimation, the DME is performed using the true
ΣΣΣi. This approach attempts to smooth the optimization landscape and results in a more robust
convergence (see Supplement 1).

2.4. Spot detection and localization

All conversion of raw images to 2D and 3D localizations has been done using a custom
implementation of conventional SMLM methods. Details can be found in Supplement 1.

2.5. Comparison with BaSDI and RCC

We compared DME with the implementation of RCC in Picasso [26], and BaSDI (using the
BaSDI source provided with the paper). DME also uses an internal python based implementation
of RCC to create an initial 2D drift estimate, but for fair comparison to existing methods currently
in use, we have chosen to use the Picasso implementation, which is widely used and accepted. In
this paper, we used the Picasso master branch version of 21-11-2020. The RCC drift estimation
was performed by directly invoking the ’picasso undrift’ command from our own python code,
and subsequently loading the resulting drift values from the text file.

To compare with BaSDI, we used MATLAB 2020a to run BaSDI 1.1. Prior to executing the
BaSDI code, the localization frame numbers are divided by frame binning size, and positions are

https://doi.org/10.6084/m9.figshare.14961270
https://doi.org/10.6084/m9.figshare.14961270
https://doi.org/10.6084/m9.figshare.14961270
https://doi.org/10.6084/m9.figshare.14961270
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Fig. 1. Schematic representation of the DME algorithm. a) The RCC algorithm is used
in X,Y with a minimal number of bins to create an initial estimate of drift. This makes
DME more robust in cases of large drift displacement, and can alternatively be replaced
with DME running on a large bin size. b). Given the spline-based definition of drift, we
compute the derivative of the entropy upper bound w.r.t all of the spline coefficients that
describe the drift. c) Using the computed gradient and current step size, we compute a new
set of spline coefficients. d) The entropy score is defined as upper bound of the entropy,
except for the parts that stay constant during change of the drift. If the entropy score has
improved, we accept it as a new drift estimate (e). f) Gradient descent can converge very
slow if a sub-optimal step size is used. To maintain a close to optimal step size, we increase
it on successful steps and decrease it whenever the entropy score is not improving. g) The
algorithm is stopped when there are no improvements in the score, even after decreasing
the step size 10 times. At that point, we can conclude we have reached a (global or local)
minimum in the entropy score.

rescaled (BaSDI uses a discrete pixel grid). Specific details for the BaSDI pixel size can be found
in the figure description. BaSDI’s ’viterbi’ method is used to compute the final drift estimate
from posterior drift distributions, without considering a prior for the drift distribution.

2.6. DNA origami experiments

2.6.1. Sample preparation

The DNA origami plate (Tilibit nanosystems, Munich, Germany) was designed using CADNano
[27] on a square lattice design as described previously [28]. Assembly occurred in a 100 µL
reaction volume containing 10 nM p8064 scaffold strand, 100 nM core staple strands, 100 nM
target handles, 100 nM biotin handles in 1x TE folding buffer with 11 mM MgCl2. The DNA
plate was annealed by setting the thermocycler to 65◦C for 10 min, after which a temperature
gradient was applied from 60◦C to 40◦C in steps of 1◦C/hour. Subsequently, the assembled plate
was separated from the staple, target and biotin handles using an Amicon spin filter (100 kDa).
The plates were kept inside T50 buffer (50mM Tris-HCl, pH 8.0, 50 mM NaCl) supplemented
with 11 mM MgCl2 (origami buffer).

Quartz slides were pegylated according to Chandradoss et al. [29] to avoid non-specific
interactions. After assembly of microfluidic plates, slides were incubated with streptavidin (0.1
mg/mL, ThermoFisher) for 1 min. followed by washing with origami buffer. DNA origami plates
were introduced inside the chamber at a concentration of approx. 50 pM and incubated for 1 min
after which the chamber was rinsed with origami buffer. DNA imager strand was subsequently
introduced into the chamber with imaging buffer (50 mM Tris-HCl, pH 8.0, 50 mM NaCl, 1 mM
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MnCl2, 5 mM MgCl2, 0.8% glucose, 0.5 mg/mL glucose oxidase (Sigma), 85 ug/mL catalase
(Merck) and 1 mM Trolox (Sigma)).

2.6.2. Microscope setup and data acquisition

Experiments were performed on a custom built prism-TIRF setup. An inverted microscope
(IX-73, Olympus) is used with a 532 nm (Sapphire 532-100 mW CW CDRH) laser to excite
the DNA imager strand. The resulting fluorescence signal was collected using a 60x water
immersion objective (UPLSAPO60XW, Olympus). A longpass filter blocks the excitation light
(LDP01 - 532RU - 25, Semrock) after which the fluorescence signal is then projected onto the
EM-CCD camera (iXon3, DU - 897 - C00 - #BV, Andor Technology). The images were recorded
using Andor Solis. Prior to acquisition, we calibrated the camera photon counts as described in
Supplement 1, using 100 frames to estimate the dark camera offset, and 1000 frames to estimate
per-pixel variance.

3. Results

3.1. DNA-PAINT based nanorulers

We quantified the performance of DME in a range of experimental conditions and simulations.
An experimental comparison was performed on a DNA-PAINT sample that contains both DNA
origami nanostructures and fiducial markers (Fig. 2). The recorded images were processed in our
localization pipeline (see Supplement 1), and Picasso Render [26] was used to manually mark all
the beads to separate them from the DNA-paint localizations. 18 beads were removed from the
set of localizations, and 4 best beads (with the least noisy traces) were used for fiducial marker
based drift correction. The non-bead localizations from this experiment were drift-corrected
using using RCC, BaSDI and DME at different frame bin sizes. It can be seen that DME is able
to reach an equal or better precision as fiducial markers at small bin sizes. BaSDI is also able to
do so, but at a much longer compute time and adds discretization error due to discrete grid in
which the drift is represented. The estimated precision of localization clusters agrees with the
CRLB, and is even slightly lower (potentially due to camera calibration model bias of photon
counts and/or PSF model bias). This indicates that for DME, BaSDI, and fiducial markers, the
drift is fully corrected and the remaining cluster width can be attributed to localization error.
In this particular DNA-PAINT acquisition, RCC will make cluster precision a few nanometer
worse, and can correct drift only at a time resolution that is orders of magnitude worse than
DME. A visual comparison between the 3 algorithms based on zoomed-in regions can be found
in Supplement 1. There, we can see a clear visual improvement for DME over RCC, but visual
quality appears the same for BaSDI and DME.

Fig. 2(d) shows a smoother error distribution for DME compared to BaSDI, likely caused by
the discretization error of BaSDI. At a binning size of 1 frame/bin, DME shows a wider and
smoother distribution than at 5 frames/bin. This is not surprising, considering this dataset has, on
average, 30 localizations per frame. The best possible (unbiased) estimate of drift on a particular
frame, if you would know exactly which localizations correspond to which binding sites, would
then be limited by the combined precision of those localizations (CRLB/

√
30 ≃ 2.4 nm for 30

localizations, or ∼ 1 nm for 5 frames/bin). Interestingly however, the cluster precision in b is
slightly better at 1 f/b than at 5 f/b. We hypothesize that this could be caused by overfitting: If
there are not enough localizations per frame to constrain the optimization problem, it can be that
DME finds a set of drift coefficients that improve the cluster precision but are further away from
the true drift. This idea is tested further in Supplement 1. Here, we observe that some amount of
overfitting occurs, but that it remains minor even for an intentionally sparse dataset with only 1
emitter per frame on average. In more realistic datasets, with >10 emitters per frame, overfitting
is likely negligible.

https://doi.org/10.6084/m9.figshare.14961270
https://doi.org/10.6084/m9.figshare.14961270
https://doi.org/10.6084/m9.figshare.14961270
https://doi.org/10.6084/m9.figshare.14961270
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Fig. 2. Drift correction using 3 different methods for a DNA-PAINT experiment done
on a TIRF microscope, imaging 16256 frames at 200 ms exposure time. The sample
consists of square DNA origami binding sites of 60 nm x 80 nm, with fluorescent tetraspeck
beads as fiducial markers. A subset of the binding sites are shown in a, visualized using
Picasso Render [26]. Converting the image data to localizations was done as described
in methods. The DNA-PAINT localizations have an average emitter photon count of 462
photons, with 4.4 photons/pixel background, whereas the bead localizations have an average
photon count of 12635 photons, and 28.7 photons/pixel background. The disparity in
background is most likely caused by PSF model mismatch with the 2D Gaussian PSF. b)
compares drift estimation precision with required computation time. The drift estimate from
fiducial markers (black) is compared to DME (purple), RCC (green) and BaSDI (red) on the
localizations without beads. The dataset was chosen as it has several discrete jumps in it due
to pausing of the recording, which is suitable to demonstrate the improved time resolution of
the DME algorithm. The precision is estimated from the standard deviation of localization
positions corresponding to a binding site (cluster), with the mean standard deviation of the
clusters plotted. The plotted drift traces (c) are shifted by one pixel each to prevent overlap
in the plot. 5 frames/bin was used for DME (showing the sharpest peak in d) and 400
frames/bin for RCC (lowest RCC cluster precision in b). For BaSDI, a subset of the dataset
was used, cropped to 120x120 pixels, and the number of frames was reduced by 4x using
binning. 5.414 nm/pixel was used for as BaSDI grid spacing. The difference between the
estimate from fiducials markers and the estimate from the algorithms (d) indicates potential
drift bias on the shape of resolved structures in a sample. Noticeable is that in the X axis the
DME drift difference does not follow a Normal distribution. Since this shape is also seen in
the BaSDI drift, it could be caused by a bias in the fiducial marker localization due to PSF
abberrations. Panel e shows standard deviation of localizations in 2604 clusters. Clusters
with < 30 localizations are discarded.



Research Article Vol. 29, No. 18 / 30 Aug 2021 / Optics Express 27968

As it is hard to estimate true drift estimation precision without the ground truth drift, we
performed an additional simulation (Fig. 3) with clusters of localizations (similar to DNA-PAINT
measurements). Here, it is clear that DME has a better precision versus compute time ratio, and
outperforms BaSDI and RCC on a typical SMLM localization reconstruction.

Fig. 3. Drift correction using various algorithms on a simulation of blinking spots at
fixed positions, similar to DNA-PAINT measurements. The drift (b) was simulated using a
cumulative normal distribution, sampling a new offset from a N(µ = 0.02nm,σ2 = 4nm2).
A sub-interval of the drift is shown in (a). 1000 binding sites were simulated within an area
of 300x300 pixels (100 nm/px), with 3000 photons per localization and 10 photons/pixel
background. 10000 frames were simulated resulting in a total of 353901 localizations. A
subsection of the localization dataset is shown before drift correction (c), and after drift
correction (d). The root-mean-square deviation w.r.t the ground truth drift is plotted versus
the required computation time (e). Picasso RCC with bins smaller than 50 frames fails to
complete due to too few localizations per bin. It can be seen that with this particular set
of parameters, such as image size, localization precision and underlying structure, DME is
computationally more efficient than BaSDI and achieves a better estimation precision. The
best precision for DME, RCC and BaSDI plotted here are 1.05 nm, 5.44 nm and 2.85 nm
resp.

We explored the effect of a mismatch between the CRLB used by DME and the true localization
uncertainty. Supplement 1 shows the effect of simulated emitters that produce localization errors
with a full covariance matrix (one with significant off-diagonal components), while the DME
algorithm is provided with average and isotropic localization errors that do not include correlation
between the axes. The resulting increase in drift estimation error remains small even when the
assumed localization error already has a strong mismatch with the true localization error. From
this we conclude that DME is likely insensitive to a small CRLB mismatch.

3.2. Experimental and simulated microtubules

DNA origami samples as demonstrated in Fig. 2 have a relatively large number of localization
events per binding site. Real biological structures typically use a similar number of frames in

https://doi.org/10.6084/m9.figshare.14961270
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the acquisition, but the localizations from these frames are spread over many more fluorescent
molecules in the sample. We therefore tested the algorithm performance on simulated microtubule
acquisitions, shown in Fig. 4.

Fig. 4. Drift correction on simulated microtubule measurements. To estimate the true error
of drift correction methods, we generated 10 datasets with binding sites positioned along
randomly generated 2D splines (see panel a). Each dataset has 20000 frames of 100x100
pixels (100 nm/pixel), each sampled from Poisson distributed noise. The simulation was
done with 20 photons/pixel of fluorescence background, between 500 and 1500 photons per
emitter per on frame, and an average of 10 emitters per frame with an average on-time of 10
frames. Drift was simulated as cumulative normally distributed noise, typically around a
few pixels as is common in real measurements. (c) For each dataset, both RCC and DME
drift correction was performed for a range of binning sizes. The mean absolute error (MAE)
in the estimate is plotted, with each line representing one of the 10 datasets. (d) The true
drift trace plotted next to both estimates. Bin sizes are chosen to be optimal for each the
algorithm in terms of MAE (20 fr/bin for DME, 600 fr/bin for RCC). (b) The FRC for both
RCC and DME is plotted for the same dataset as (b), showing a resolution improvement
from 27.15 nm (RCC) to 23.35 nm (DME). (a) The dataset used in (b) visualized, with a
subsection shown in yellow indicating the zoomed in area.

It can be seen that DME outperforms RCC on (sparser) microtubule localization microscopy
data: when the number of localizations within one bin becomes a limiting factor for RCC, DME
will still perform well. The effect of improved drift correction on this particular dataset can be
clearly seen in the two zoom-in sub panels. The visual improvement can also be partly due to
the shape of the drift trace, as the image blurring might be more significant for the simulated
cumulative Gaussian noise in Fig. 4 than for the thermal drift seen in Fig. 2.

To quantify DME performance on experimental microtubule data, we used a publically
available STORM microtubule dataset from SIMFLUX [30]. Results of this are shown in Fig. 5.
The dataset is split up in two subsets with equal number of localizations. The drift is estimated
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independently on each of these subsets, which allows us to compute an estimate of the drift
estimation precision. The histograms of the difference between these two drift traces for RCC
show a significantly non-Gaussian shape of errors, which could indicate potential artifacts of
several nanometers in size. This non-Gaussian distribution is caused by the combination of
having few time points in the RCC result, and the spline interpolation to interpolate between
those points. In typical STORM measurements with a localization precision of >10 nm these
artifacts will be hidden, but they could become apparent for more precise localization microscopy
methods.

Fig. 5. Drift correction comparison done on a STORM acquisition of microtubules from
SIMFLUX [30]. The comparison was done on uniform excitation localizations, by summing
every 6 frames to get raw images equivalent to uniform excitation measurements. The
resulting localization dataset was split up in two sets of 410401 localizations each (a), and
both RCC and DME was performed on each subset using different binning sizes (b). The
Fourier ring correlation (FRC [31]) of both subsets, and root mean square difference (RMSD)
between the two drift estimates is plotted for a range of drift estimation bin sizes (c). (d)
Histograms of the difference between the two drift estimates, for the two methods in both
axes. Apparent is that DME errors are normally distributed at small binning sizes (d.3), or
have a low variance compared to RCC at equal binning size (d.1 and d.2). RCC is likely
creating drift related artifacts on the scale of ∼ 2 nm in the result due to errors not being
normally distributed.

We have performed a separate comparison including BaSDI in Supplement 1, with additional
zoomed-in regions showing visual quality differences. Here, due to BaSDI algorithm scalability,
drift estimation is performed on a smaller subset of the data. While cross validation in Fig. 5
shows an improvement in drift estimation for DME over RCC, there does not seem to be a clear

https://doi.org/10.6084/m9.figshare.14961270
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visual improvement of DME over RCC or BaSDI in Supplement 1, Fig. S5. From this we
conclude that the visual quality of this dataset is limited by labelling and localization precision,
as opposed to drift.

The computed Fourier ring correlations (FRC) show a surprising drop in FRC at low bin
sizes. After visual inspection of microtubule structures, no clear improvement can be seen. From
this we conclude that the FRC improvement is at least partially due to overfitting. At a binsize

Fig. 6. 3D drift correction on 2 simulated SMLM measurements of microtubules, done
the same as in Fig. 4 but spread over a 2 µm Z range. The simulation was done with 10
photons/pixel background, and an average of 3000 photons/emitter. Both datasets use the
same ground truth structure and drift, but two different experimentally measured PSFs were
used: an astigmatic PSF (Tubulin-A647-3D [32]) (a), and a tetrapod PSF from our custom
build microscope using a deformable mirror (b). (c) An example of raw frames from the
2 datasets. The simulated camera frames were processed by our 3D localization pipeline
as described in Supplement 1, section 3.C. (d) The drift was estimated first using RCC,
followed by a coarse estimation using 4x larger localization Σ values and 2000 frames per
bin, and finally a precise estimation using 50 frames per bin. (e) 3D rendered version of
the tetrapod PSF dataset, using Picasso Render [26] and Z position encoded as color. (f
& g) The drift estimation errors plotted in histograms for both astigmatic (f) and tetrapod
(g) datasets, showing a clear normal distribution for the drift estimation errors. σx,y,z
and CRLBx,y,z indicate the standard deviation of drift estimation error and mean CRLB
of invidiual localizations, resp. The difference in drift error can be attributed to different
numbers of localizations in the datasets. Due to difference in size and shape of the PSF,
spot detection efficiency varies between the datasets and the astigmatic dataset has 241910
localizations whereas the tetrapod data has 144443.

https://doi.org/10.6084/m9.figshare.14961270
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of 1 frame, each frame on average has only around 16 localizations. At such low counts, we
argue that the DME algorithm will move localizations directly on top of each other and assign a
non-physical drift that coincides with an FRC improvement. The increase in drift estimation
precision as measured by the RMSD (Fig. 5(c)) around low binsizes also supports this conclusion.
Fig. 4 possibly also shows overfitting of the DME algorithm, noticeable by the peak in mean
absolute error at low binsizes.

The application of DME on 3D drift estimation is demonstrated in a simulated experiment,
shown in Fig. 6, where two experimentally measured PSFs were used to generate 2 3D microtubule
datasets. In 3D drift estimation, we again computed an initial estimate in 2D using Picasso’s
drift estimation implementation. Then, we applied a coarse drift estimation by running DME
with a larger CRLB assigned to the localizations, which smoothes the optimization landscape
and prevents the Z drift estimation getting stuck in a local minima. One caveat of this approach is
that the number of neighboring localizations increases quickly with an increasing CRLB, so it
quickly increases compute time and memory use. This could alternatively be replaced with a 3D
estimate using RCC as done in ZOLA-3D.

4. Discussion and conclusion

On experimental DNA-PAINT origami measurements, DME shows an approximate five fold
improvement over RCC in drift estimation precision on DNA-PAINT nanorulers, and is able
to achieve the same localization precision as fiducial marker based drift correction (Fig. 2(b)).
We show that DME achieves a better drift estimation precision and is able to do so at a much
smaller frame binning size (Fig. 5(d)), indicating a higher time resolution. In a typical SMLM
reconstruction, a binning size of around 50 frames per bin is optimal for DME, versus 500 for
RCC (Fig. 4(c)). Depending on the drift in the system, this can result in an improvement in image
quality as measured by the FRC (Fig. 4(b)) and localization cluster precision (Fig. 2(b)). Simulated
SMLM acquisitions demonstrate that DME is able to perform precise 3D drift estimation as
well, at a near-isotropic 3D precision (Fig. 6, panel f and g). Compared to the BaSDI drift
estimation algorithm, DME achieves a similar or better drift estimate with a much lower compute
time (Fig. 2(b)). We find that performance of the drift estimation depends very much on the
characteristics of the datasets. While BaSDI performs very well on small, sparse datasets, we
found it to be prohibitively slow on realistic larger datasets.

The improved performance of DME on sparser datasets also makes it feasible to estimate
the precision of the drift estimation itself by cross validation (Fig. 5(c)). Our implementation
reports this using the RMSD between the drift estimates of the dataset split two-fold, which is
used to inspect the quality of the DME output and tune the bin size. We observed that the drift
error increases both at low binsizes due to low number of localizations per frame and potential
overfitting (see Fig. 3(c) and Supplement 1), and at high binsizes (see Fig. 3(c)). Therefore, we
recommend to the user to search for a binsize that minimizes the RMSD.

Drift estimation in SMLM is an inverse problem with potentially many local minima. As a
result, DME’s gradient descent approach requires parameter tuning (especially on datasets with
few localization events per binding site). We have explored this in Supplement 1, showing that the
initial estimate cannot be too far away from the ground truth. In this particular simulation, initial
estimates above 20nm precision would already be unable to fully converge. We expect that the
algorithm’s robustness could be improved further, perhaps using smoothing of the optimization
landscape or by divide-and-conquer approaches. Additionally, the minimum entropy metric can
potentially be used for other SMLM applications, such as alignment of different sample FOVs in
image stitching, or multicolor channel alignment.

In conclusion, we developed a novel algorithm for drift estimation on point-based datasets using
a minimum entropy optimization metric. We anticipate that for many experiments, especially
those with sparse binding sites as found in Fig. 2, DME can replace fiducial markers and achieve

https://doi.org/10.6084/m9.figshare.14961270
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the same image resolution, simplifying sample preparation. The method scales well to 3D
drift estimation, and with 3D SMLM becoming more popular and mainstream, we expect this
algorithm to find widespread practical use.
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