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A B S T R A C T

Research on sustainable landfill management has been studied since 30 years ago in the
Netherlands, the principle of which is to reduce the emission of harmful substances from the
landfill to the surrounding soil and groundwater. As for this purpose, the active treatment
is applied on Wieringermeer landfill, meanwhile, the long-term monitoring of substance con-
centration is of great importance. The measurement frequency of chemical concentration is
twice per month, which costs around 48000 €/ year. To save money by reducing the measure-
ment frequency, SARIMAX model is studied as a tool of data interpolation. For this analysis,
we currently focus on the concentration measurements of chloride and ammonium. By com-
paring the SARIMAX interpolated data and the data with reduced size, the results indicate
that directly dropping half of the measurements can be regarded as an acceptable way to
reduce the measurement frequency, as the data properties are well preserved and the errors
in estimating the mass of substances leaching out are in the acceptable range. However, in-
terpolating using SARIMAX model doesn’t have significant improvements in preserving the
data properties. Further quartering the data can lead to large deviations in data properties.
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A C R O N Y M S

ACF Auto-correlation Function.
AIC Akaike Information Criterion.
AR Auto Regressive.
ARIMA Autoregressive Integrated Moving Average.

EC Electrical Conductivity.
ECDF Empirical Cumulative Distribution Function.

MA Moving Average.

PACF Partial Auto-correlation Function.
pEV Potential Evapotranspiration.

RMSE Root Mean Squared Error.

SARIMAX Seasonal Autoregressive Integrated Moving Average with Exogenous Regressors.
STL Seasonal and Trend Decomposition Using Loess.
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1 I N T R O D U C T I O N

1.1 project overview

The Wieringermeer landfill leachate contains a series of chemical compounds that are poten-
tially harmful to soil, groundwater and surface water under and next to the landfill. In order
to protect the environment, the emission potential of harmful substances needs to be reduced
to an environmentally protective level. This is done by active treatment on the waste body
[Rohwerder, 2017]. Long term monitoring of substance concentrations in the leachate is of
great importance. At present, the frequency of lab measurements is about twice per month.
In this research, the possibility of reducing the measurement frequency is investigated. We
currently focus on the concentration measurements of chloride and ammonium.

1.2 statistical time series modelling

The concentration data obtained from the monitoring system can be considered as time se-
ries containing a series of data points indexed in time order. Time series analysis comprises
methods for analyzing time series data, which are to extract meaningful statistics of the data.
Based on the information extracted, there are several types of time series modelling. For ex-
ample, explanatory analysis [Tukey, 1993], curve fitting [Kolb, 1984] and forecasting [Rob and
George, 2018].

Forecasting is about predicting the future with all of the given information, including his-
torical data and knowledge of any future events that might impact the forecasts. Proper
forecasting of future values can be used as interpolation.

Exponential smoothing and ARIMA (autoregressive integrated moving average) models are
the two most widely used approaches of time series forecasting [Rob and George, 2018]. For
the exponential smoothing framework, forecasts are the weighted averages of past observa-
tion values, with the weights decaying exponentially as the observations get older. In the
ARIMA model, the AR part indicates that the evolving variable of interest is regressed on its
own lagged (i.e., prior) values. In the MA part, the regression error is a linear combination of
error terms whose values occurred at various times in the past [Wikipedia, 2019b].

As an extension to ARIMA, SARIMAX (seasonal autoregressive integrated moving average
with exogenous regressors) supports the direct modelling of the seasonal component, and it
also makes use of the information from other related time series. As the concentration data is
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highly seasonal related, meanwhile, some time series, such as rainfall and outflow data, are
available to provide extra information, SARIMAX is chosen to do the forecasting.

1.3 research questions

To reduce the measurement frequency, one strategy is to directly reduce the size of the data
sets (less measurements). Another strategy is by applying SARIMAX to interpolate in the
data set with a low frequency and to estimate measurement points at a higher frequency.
Two methods are investigated and compared in this research.

The intention of this research is to find out how the SARIMAX model performs on modelling
the missing measurements. To accomplish that, the error generated by the modelling process
must be quantified. The changes in data properties after modelling should be analyzed. All
the results need to be clearly interpreted in order to provide support for policy decisions by
the landfill manager. For this reason, the present study must give clear-cut answers to the
questions listed below:

• Are the SARIMAX model simulations accurate enough (are the quantified error of the
model results in an acceptable range)?

• Are the data with reduced size and the raw data from the same distribution?

• Are the SARIMAX modelled data and the raw data from the same distribution ?

• Does the application of SARIMAX model have significant improvement in preserving
the data properties compared to directly reducing the size of the data?

3



2 M E T H O D O LO GY

The flow chart of the main steps in methodology is presented in Figure 2.1. There are mainly
five parts. The first part is data regularization which aims at preparing equidistant input data
for SARIMAX model. The regularized time series are analyzed to extract information for
the model. After parameter selection, model training and diagnostics, the model is ready for
simulating. The results are analyzed in three aspects: error generated by the model, changes
in data properties and estimation on mass of substances. In the end, sensitivity analysis is
performed.

Figure 2.1: Flow chart of the methodology
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2.1 data regularization

Data sets available for this study are: chloride concentrations (mg/L), ammonium concentra-
tions(mg/L) and electrical conductivity (EC) values (ms/cm) which are sampled from landfill
leachate roughly every 14 days; cumulative outflow (m3) which is measured by sensor every
15 minutes in the drainage system; rainfall and evaporation measurements that are obtained
from the Berkhout Weather Station of the Royal Netherlands Meteorological Institute (KNMI).

The concentrations and EC data are not collected strictly equidistant in time. The collection
frequencies are different between some data sets. However, one precondition for conducting
SARIMAX modelling is that all data sets should have equal time interval, thus, data regu-
larization is needed. In this study, the interval is set to be 14 days corresponding to the
measurement frequency of twice a month. There are different approaches to achieve equidis-
tant time interval for different data sets:

Chloride, ammonium concentrations and EC data:
For chloride and ammonium concentrations data, the cubic-spline interpolation (interp 1d
(kind = cubic)) is used to generate a continuous time series. Afterwards, a new data frame
with an equidistant time interval of 14 days is generated by picking out the data of the desig-
nated dates.

Outflow data:
The cumulative outflow data (m3) are measured every 15 minutes by sensors. First, resample
() function is used to turn the data frequency into 1 day, the data of every 14 days are picked
out and formed a new DataFrame. Because the data are given in the cumulative form, diff ()
function is applied to obtain the outflow volume of every 14-days-period.

Rainfall data and potential evapotranspiration (pEV) data:
The rainfall and pEV(m) are given in daily frequency, the first step is to cumulate it up using
the cumsum () function, after whichthe data of every 14 days are picked out and formed a
new DataFrame. In order to keep the consistency of the units between exogenous data, the
rainfall and pEV should be multiplied by the landfill area to change the unit from m to m3.
The bottom layer area of the landfill is 28355 m 2.

What should be noticed is that interpolating should not change the properties of the data
sets, therefore, the mean values and density plots are used to check if the underlying proper-
ties of the data sets have been changed after interpolating.

2.2 time series analysis

The methods of time series analysis used in this research consist of time series decomposition
in Section 2.2.1, stationarity test in Section 2.2.2 and correlation analysis between endogenous
and exogenous data in Section 2.2.3.
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2.2.1 Time series decomposition

The long-term increase or decrease in the data set is trend. Seasonality is the variation oc-
curred regularly with a specific time interval that is less than a year, such as monthly and
weekly. Identifying the trend and seasonal pattern can help us make a better decision on
selecting the model parameters. One tool to identify trend and seasonality in the time series
is decomposition. Decomposition is the primary step for studying time series data, the infor-
mation extracted out consists of three components: trend, seasonality and residual [Rob and
George, 2018]. In this research, a robust and versatile method for time series decomposing is
used, which is called seasonal and trend decomposition using Loess (STL) decomposition.

2.2.2 Stationarity of the time series

Stationarity means the property of the time series does not depend on the time it is observed
[Rob and George, 2018]. Stationarity is an assumption underlying the SARIMAX modelling
procedures [Palachy, 2019]. Two types of statistical test are used in the stationarity analysis:
the Augmented Dickey-Fuller Test and the KPSS Test.

The Augmented Dickey-Fuller Test:

The time series can be described by a characteristic equation which consists of a series of
monomials, each monomial has a root. If the characteristic equation of a time series has a
root of 1 (unit root), such a time series is non-stationary [Stephanie, 2016]. The Augmented
Dickey-Fuller is one of the most widely used unit root tests [Brownlee, 2016]. The test allows
one to calculate a quantitative value (p-value) which is based on the probability that one of
the following two hypotheses is true.

Null Hypothesis (H0): It suggests the time series has a unit root, meaning the time series is non-
stationary.

Alternate Hypothesis (H1): It suggests the time series does not have a unit root, meaning the time
series is stationary.

If the returned p-value < 0.05, the null hypothesis (H0) can be rejected and the alternative
hypothesis (H1) can be supported at a 95% confidence limit, which means the data does not
have a unit root and is statistically stationary. Conversely, if the returned p-value >= 0.05, it
means we cannot reject the null hypothesis (H0), the data has a unit root and is statistically
non-stationary.

The KPSS Test:

The KPSS test can also be used to check the presence of a unit root [Kwiatkowski et al., 1992].
Contrary to the Dickey-Fuller tests, the null hypothesis assumes the data is stationary around
a linear trend or a mean, while the alternative is the presence of a unit root (non-stationary).
The KPSS test is often used to complement Dickey-Fuller-type tests. The two hypotheses are:
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Null hypothesis(H0): It suggests the time series does not have a unit root, meaning the time series
is statistically stationary.

Alternate Hypothesis (H1): It suggests the time series has a unit root, meaning the time series is
statistically non-stationary.

If the returned p-value < 0.05, we can reject the null hypothesis (H0) and support the al-
ternative hypothesis (H1) at a 95% confidence limit, which means the data has a unit root and
is statistically non-stationary. Conversely, if the returned p-value >= 0.05, null hypothesis
(H0) cannot be rejected, which indicates the data does not have a unit root and is statistically
stationary.

2.2.3 Correlation between endogenous data and exogenous data

There are two types of data involved in the SARIMAX model: endogenous and exogenous
data. Endogenous data is the measured data set that we fit the model and make future pre-
dictions on. Exogenous data can be input to the model as extra information that might help
the model estimation and plays the role as the regressor in the SARIMAX model. In this case,
the endogenous data are chloride and ammonium concentrations. The exogenous data are
EC, outflow, rainfall and pEV data.

In a simplified example, we can write an AR(1) with an exogenous regressor as:

y(t) = ay(t − 1) + bx(t) + e(t) (2.1)

Where y(t) is the output, y(t-1) is the lagged values, x(t) is the exogenous variable and e(t) is
the random error term. This function reveals the idea of how the exogenous data is function-
ing in the model. By investigating the correlation between exogenous data and endogenous
data, one can better make use of the exogenous information and make it a helpful source to
increase the model accuracy. Two types of correlation coefficients - Pearson and Spearman
are used to reveal the relation between exogenous and endogenous data. A larger Pearson
coefficient corresponding to a stronger linear correlation. A linear relationship means that the
variables move in the same direction at a constant rate. The Spearman coefficient corresponds
to monotonic relationship, in which the variables tend to move in the same direction, however
it is not necessary to move at a constant rate [Minitab, 2019].

2.3 modelling process

The SARIMAX modelling process consists of parameter selection in Section 2.3.1, model
training in Section 2.3.2, model diagnostics in Section 2.3.3 and SARIMAX simulation in
Section 2.3.4.
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2.3.1 Parameter selection

After preparing the data, the next step is to determine the model parameters. The proper
selection of parameter plays a decisive role in the model performance.

The parameters in the SARIMAX model are in the form of (p, d, q) × (P, D, Q)m. The
seven parameters: p, d, q, P, D, Q, m, are all non-negative integers. p is the order (number of
time lags) of the AR model, q is the order of the MA model. d is the degree of differencing
(the number of times to take difference on the data set to make it stationary).

The lowercase letters (p, d, q) are the short term parameters that operate on the adjacent
lags. Accordingly, the capital letters (P, D, Q) hold the same meanings as corresponding low-
ercase letters, but they are the long term seasonal parameters that operate on a seasonal time
scale. m is the number of time steps for a single seasonal period.

Autocorrelation function(ACF) and partial autocorrelation function(PACF) to determine d,D

The first and the most important step in parameter selection is the determination of the dif-
ferencing orders (d, D) needed to stationarize the time series. Usually, the correct amount of
differencing(d, D) is the lowest order of differencing that yields a time series which fluctuates
around a well-defined mean value. ACF and PACF plots can help us to guess the reasonable
values for the order of differencing[Robert Nau, 2019]. Some rules should be mentioned:

• The ACF will drop to zero relatively quickly for a stationary time series. Meanwhile,
the ACF decreases slowly for a non-stationary data .

• It probably needs a higher order of differencing on the series if positive autocorrelations
are present out to a high number of lags.

• A higher order of differencing is not needed if the autocorrelations are all small and
patternless or the lag-1 autocorrelation is zero or negative.

• The series is possibly over-differenced if the lag-1 autocorrelation is -0.5 or more nega-
tive.

According to the rules above, by plotting out the ACF and PACF curves of the time series, the
proper d, D parameters can be determined.

Grid search to determine p,q

After differencing, the next step in fitting a SARIMAX model is to determine whether AR or
MA terms (p,q) are needed to correct any autocorrelation that remains in the differenced se-
ries. According to Robert Nau [2019], adding an AR term corrects for mild under-differencing,
while adding an MA term corrects for mild over-differencing.

The literature indicates that,in some cases, the ACF plot and the PACF plot can be used
to determine appropriate p and q values, however, there might be a degree of subjectivity in
selecting which values to apply [Rob and George, 2018]. Beyond that, the Akaike information
criterion (AIC) can also be used in parameter selection. AIC is used to estimate the relative
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amount of information lost by a given model. The lower the AIC value, the less information
loss of the model, so the higher the quality of it[Wikipedia, 2019a].

Therefore, in this study, a grid search over different combinations of p,q (limited to a maxi-
mum order of 2 for simplicity) is used. The configuration that leads to the lowest AIC value
will be used in the following modelling process.

2.3.2 Model training

When training the models, it is a common practice to separate the available data into two
portions, training and testing data. The training set is what we will use to fit the model for
each possible value of the manually-set parameters, and the test set is what we use to evaluate
our results for reporting and get a sense for how well our model will do on new data in the
real world [Ramesh Sridharan, 2011].

The time series in this study contains data points from 2012-6-28 to 2019-1-1 with a time
span of roughly 6.5 years, the first 4.5 years (122 points) are used as training data and the last
2 years (48 points) are used as testing data.

The SARIMAX () function from the statsmodels.tsa.statespace package is used to fit the model.
The concentration data of chloride and ammonium in the first 4.5 years are used as endoge-
nous training data. Meanwhile, rainfall, pEV, outflow and EC in the first 4.5 years are used
as exogenous data. The optimal parameters identified in the previous step are applied. After
that, model.fit () function is used to fit the model by maximum likelihood via Kalman filter. By
executing the command of print (model fit.summary()), the model results can be presented as
a table.

2.3.3 Model diagnostics

Definition of model diagnostics

The property of the residuals (the difference between the initial data and fitted values) should
be evaluated after fitting the model, this step is called model diagnostics. A good model
should yield residuals with the following properties [Rob and George, 2018]:

1. The mean of the residuals is zero. If the mean of the residuals is not zero, then the
fitting is biased.

2. The residuals are uncorrelated. If there is information left which is not used in the
model estimation, correlations would be remained between residuals.

3. The variance of the residuals is constant.

4. The residuals are normally distributed.

Checking these properties is important in order to see whether all of the available information
is used in the model. Any results that do not satisfy the first and the second properties can
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be improved. In addition to the essential properties(the first and the second), it is useful (but
not necessary) for the residuals to also have the third and the fourth properties.

Methods of model diagnostics

The first step in model diagnostics is to print the mean of the residuals and see if it meets
the first requirement. The second step is to test the diagnostics by applying plot diagnostics
() function to check if the residuals meet the other three requirements, this function returns
four plots:

1. The standardized residuals (residuals divided by the standard deviation of residuals)
are plotted over time.

2. The histogram and the estimated density of standardized residuals are plotted in the
same graph with a normal(0,1) density as reference.

3. A normal Q-Q plot are plotted with a normal reference line.

4. Correlogram plots of the autocorrelation are plotted versus time lags (the autocorrela-
tions should be near zero for all time lag).

If the residuals have a mean m, by simply subtracting m from all fitted values, the bias
problem will be solved. Besides, the Box-Cox transformation is a way to transform non-
normal variables into a normal shape [Box and Cox, 1964]). By conducting the transformation
on endogenous data, the model performance might be improved [Rob and George, 2018].

2.3.4 SARIMAX simulation

To generate the 48 points in the two testing years, all the odd positions in that 48 points are
SARIMAX simulations and the even positions are the real measured data. The idea behind
this is to reduce the measurement frequency from twice a month to once a month by interpo-
lating one of the measurements in a month by SARIMAX simulation. The programming idea
is described below:

HD is the historical data available for modelling. Starting from a specific point of time (t),
SARIMAX is applied to make one-step ahead forecasting. P is the value obtained and is
appended to the historical data with t as index. Going on to the next point of time (t), HM is
the measured data at this specific time (t) and is appended to the historical data with a index
of t. The loop will be repeated until tend is reached.
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2.4 results evaluation

After generating the data sets, the results evaluation section consists of error analysis in
Section 2.4.1, change in data properties after modelling in Section 2.4.2 and estimation on
mass of the substances leached out in Section 2.4.3.

2.4.1 Error analysis

Absolute error and relative error

The difference between the real observed value and the model simulation is the simulation
error, which can be described as:

et = yt − ŷt (2.2)

Where yt is the testing data (measured value), ŷt is the modelled value.

The relative error is calculated as:

Ret = (yt − ŷt)/yt (2.3)

RMSE

Root mean squared error (RMSE) is the standard deviation of the model errors, which can be
described as:

RMSE =

√
1
n

Σn
i=1

(
yt − ŷt

)2
(2.4)

What should be mentioned is that RMSE is a scale-dependent error, the errors are on the same
scale as the original data. therefore, it can only be used to make comparisons between data
sets that have the same units. By comparing the RMSE, we can get an impression of model
performs in different scenarios.

2.4.2 Changes in data properties

By looking at the change of the mean values after modelling, one can tell how well the model
performs in different cases. Moreover, the difference in standard deviation can also offer
us the information on how the model behaves. Besides this, the empirical cumulative dis-
tribution function (ECDF) plots provide us with insight into the data distribution. Further,
the Mann-Whitney U test[Rosie Shier, 2004] is used to test whether the two data sets can be
considered originating from the same distribution. The null hypothesis for this test is that
the two input groups have the same distribution. One fails to reject the null hypothesis if
the returned p-value is larger than 0.05, in another word, the two groups can be considered
originating from the same distribution [Deborah J. Rumsey, 2016].

Three scenarios are formulated to do the comparisons:
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Scenario 1: complete raw measurements in the two testing years (48 points) & complete modelled
data in the two testing years (halved measurements + SARIMAX simulations) (48 points).

Scenario 2: complete raw measurements in the two testing years (48 points) & halved measurements
in the two testing years (24 points).

Scenario 3: complete raw measurements in the two testing years (48 points) & quartered measure-
ments in the two testing years (12 points).

2.4.3 Estimation on mass (kg) of the substances

Another important aspect for the evaluating system is the mass of substances leaching out
from the landfill. The cumulative mass leaching out in the two testing years is calculated for
the four scenarios below:

Scenario 1: complete raw measurements (48 points).

Scenario 2: halved measurements (24 points) + SARIMAX simulations (24 points).

Scenario 3: halved measurements (24 points).

Scenario 4: quartered measurements (12 points).

The equation to calculate cumulative mass is:

M =
∫ N

n=1
(qout,t × Ct)dt (2.5)

Sampling frequency of the concentration is once every 14 days, we assume the measured
concentration to represent the average concentration over that 14 days.

2.5 sensitivity analysis

Exogenous data act as regressors in the model estimating process. SARIMAX is a linear
model [Fulton, 2018], thus, exogenous regressors can only enter in linearly. For this reason,
exogenous data sets that have weak linear correlations with endogenous data should be dis-
carded from the model.

Larger Pearson correlation coefficient indicates stronger linear relationship between two data
sets. By looking at the Pearson coefficients, one can decide on which exogenous data to be
kept and which to be discarded (as all of the four exogenous data sets are used in the base
case scenario). By comparing the results of different scenarios (with different exogenous data),
one can better improve the model performance.
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2.6 sarimax interpolation on history data in 2014-2016

The regularization step on the history data (EC, chloride and ammonium data) before being
used in the SARIMAX model, is in principle an interpolation step. It is noticed that the mea-
surement frequencies in 2012-2013 and 2017-2019 are roughly twice a month. However, the
measurement frequency and the number of the data points are halved in 2014-2016 at the
middle stage of the data set. In this period, the cubic-spline interpolation used in the base
case scenario may generate large errors during interpolating. Thus, the SARIMAX model is
considered as an alternative to do the interpolation in 2014-2016, as the contributions from
the related exogenous data are also involved.

For EC data, there is no highly correlated exogenous data available (as it will be used later
as exogenous data for chloride and ammonium concentrations interpolating). Therefore, the
SARIMAX interpolating on EC data is only based on autocorrelation. The cubic-spline in-
terpolation is first applied to make the whole data set equidistant in time. In the middle
three years (2014-2016), the SARIMAX model is used to do the interpolation, in another word,
SARIMAX model simulates the missing measurements, the programming idea is the same as
what is mentioned in Section 2.3.4.

For chloride and ammonium data, cubic-spline interpolation is first applied on the whole
data sets in the middle three years (2014-2016), then, the SARIMAX model is used to do the
interpolation. Additionally, the SARIMAX interpolated EC data is used as exogenous data in
the model. The results will be discussed in Chapter 3, Section 3.7.
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3 R E S U LT S A N D D I S C U S S I O N S

In this chapters, all the results are presented. The discussions are from seven aspects: time se-
ries analysis in Section 3.1; error quantification in Section 3.2; comparisons on data properties
in Section 3.3; estimation on mass of the substances leaching out in Section 3.4; the change of
correlation between endogenous and exogenous data after modelling in Section 3.5; sensitiv-
ity analysis in Section 3.6 and SARIMAX interpolation on history data in Section 3.7.

3.1 time series analysis

3.1.1 Data visualization

Figure 3.1 shows the rainfall, pEV and outflow data after regularization. The EC, chloride and
ammonium data are the raw data without interpolation. From Figure 3.1(b),(c) and (d), poten-
tial evaporation, cumulative outflow and bi-weekly outflow data show clear seasonal patterns.
The potential evaporation is higher in the summer and lower in the winter, consequently, the
outflow is the opposite. The seasonal dynamics are mainly controlled by evaporation.

From Figure 3.1(e), (f) and (g), in EC, chloride and ammonium data, it can be observed that
there are more noisy signals in 2012-2013 and 2018-2019, and less noisy signals in 2014-2016.
This is because of the lower measurement frequency in the middle three years compared to
the other years. Contrary to the outflow, the seasonal patterns in EC, chloride and ammonium
concentrations have higher values in summer and lower values in winter. Higher evaporation
and less outflow in the summer period might lead to the peak values of the concentrations.
The seasonal dynamic of EC is similar to that of the concentration.
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(a) Rainfall (b) pEV
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(c) Ammonium concentration

Figure 3.1: Data visualization

3.1.2 Decomposition and stationarity

STL decomposition is a robust and versatile method for decomposing time series[Rob and
George, 2018]. The time series is split into three components, trend, seasonality and resid-
ual. The concentration data (raw and interpolated data) are decomposed and displayed in
Figure 3.2 and Figure 3.3.
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(a) Chloride (b) Ammonium

Figure 3.2: STL decomposition on raw data(without interpolation)

(a) Chloride (b) Ammonium

Figure 3.3: STL decomposition on data after interpolation

As Figure 3.2 (a) shows, the STL decomposed trend in chloride data varies in the range of
595-625 mg/L. The variation amplitude is around 30 mg/L, which is relatively a small num-
ber compared to the magnitude of the‘aw data. The ADF and KPSS test both indicate that the
chloride time series is statistically stationary. The seasonal pattern of the raw data (Figure 3.2
(a)) is less distinct than in the interpolated cases (Figure 3.3 (a)), it is dense at both ends and
sparse in the middle. The decomposition after interpolation shows a clear yearly seasonal
pattern, where chloride concentration is high in summer and low in winter.
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As for ammonium, Figure 3.2 (b) seems to indicate a slow ascending trend in the data set
from 450 to 650 mg/L, where the slope of the trend becomes steeper after 2017. Despite this
observed trend in the decomposition, it is statistically insignificant as the ADF and KPSS test
both indicate that it is a stationary series. The yearly seasonal pattern of the ammonium data
is similar to that of the chloride data.

From what has been discussed above, some conclusions can be drawn. As the data frequency
is changed by the interpolation, one can infer that the data frequency has impacts on the es-
timation of the seasonal pattern. Moreover, both two concentration data sets are statistically
stationary.

3.1.3 Correlation between endogenous data and exogenous data

To show the correlation visually, the exogenous data are plotted versus the endogenous data,
the results are displayed in Figure 3.4. The Pearson and the Spearman correlation coefficients
are calculated between data sets and displayed in Table 3.1.

Table 3.1: Correlation coefficients

Chloride Ammonium

Pearson Spearman Pearson Spearman

Outflow -0.450 -0.440 -0.302 -0.197

EC 0.775 0.690 0.576 0.510

Rainfall -0.134 -0.261 -0.216 -0.357

pEV 0.665 0.625 0.497 0.448

In both cases of chloride and ammonium, the Pearson coefficients of outflow, EC and pEV
are larger than their Spearman coefficients, which means they are more likely to be linearly
correlated to the concentration. On the contrary, the Pearson coefficient of rainfall is smaller
than its spearman coefficient, which indicates that the rainfall is more likely to be in a mono-
tonic relationship with the concentration.

In addition, the relatively large Pearson coefficient of EC reveals a strong linear correlation
between EC and substance concentration. What else should be noticed is that all coefficients
related to chloride are larger than ammonium, and the strength of correlation might have
impacts on the model performance, which will be discussed further in Section 3.2.
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(a) Rainfall and Chloride (b) pEV and Chloride

(c) Outflow and Chloride (d) EC and Chloride

(e) Rainfall and Ammonium (f ) pEV and Ammonium

(g) Outflow and Ammonium (h) EC and Ammonium

Figure 3.4: Correlation between exogenous data and endogenous data

3.2 error quantification

The modelled and raw data are plotted in the same figure (Figure 3.5). The RMSEs of the
SARIMAX simulation based on corresponding measurements are calculated for both chloride
and ammonium (according with Equation 2.4). The relative error is calculated according with
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Equation 2.3, the mean of the relative errors for all simulations is shown in Table 3.2. The ab-
solute error and the relative error are plotted in Figure 3.6 and Figure 3.7 with respect to time.

According to Table 3.2, the RMSE of the ammonium model is higher than that of the chloride
model. The reason for this might come from the effect of the exogenous data. Back to Table 3.1,
one can see that the correlation coefficients between ammonium and EC/outflow/pEV are all
lower than that of chloride. However, the exogenous regressors play important roles in the
model estimation based on their correlation with the data to be simulated. Therefore, stronger
correlation might lead to better results. Another reason for this could be that there is a sudden
increasing trend in ammonium data since 2017, and this emerging trend could have added
uncertainty to the model output.

Figure 3.5 shows good fitness of the model, as the blue dots match well with the green
dots. Despite some large spikes of absolute error in Figure 3.7, the relative error against the
magnitude of the real measurements are small. As shown in Table 3.2, the mean of the rela-
tive errors are only -0.251% and -1.568% for chloride and ammonium, respectively. Thus, the
error generated by the modelling process can be regarded as being in a acceptable range.

Table 3.2: Quantified error

Chloride Ammonium

RMSE of simulated data(mg/L) 88.212 113.397

Mean of relative error -0.251% -1.568%

(a) Chloride (b) Ammonium

Figure 3.5: Raw data and modelled data
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(a) Chloride (b) Ammonium

Figure 3.6: Absolute simulation error

(a) Chloride (b) Ammonium

Figure 3.7: Relative simulation error

3.3 comparison on data properties

In order to check whether the simulated values for the missing points and the measured val-
ues can be considered to come from the same distribution, the mean and standard deviation
of the data, together with the Mann-Whitney U test are checked for both. The ECDF plots are
presented to give the visual results on the data distributions.

Scenario 1: complete raw measurements in the two testing years & modelled data in the
two testing years (half simulated and half measured)

The data properties for scenario 1 are shown in Table 3.3. The density distributions of the
modelled and measured data are plotted together in Figure 3.8 in order to make comparisons.

Table 3.3: Data properties scenario1

Chloride Ammonium

Mean of raw measurements (mg/l) 605.615 564.321

Mean of modelled data (mg/l) 598.839 548.885

STD of raw measurements (mg/l) 181.267 161.151

STD of modelled data (mg/l) 162.768 141.016

P-value of Mann-Whitney U Test 0.474 0.368
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(a) Chloride ECDF plot (b) Ammonium ECDF plot

Figure 3.8: Scenario1 Density plots of raw data and modelled data

For the modelled chloride data, the change of mean is 598.839 - 605.615 = -6.776 mg/L. The
relative change is 6.776/605.615 = 1.12 %, which is small compared to the measurement error
in reality (assumed to be 10 %). For the modelled ammonium data, the change of mean is
548.885 – 564.321 = -15.44 mg/L, with a relative change of 15.44/564.321 = 2.73 %, which is
larger than that in the chloride model but still smaller than the assumed measurement error
of 10%. Therefore, the mean values of the data do not change significantly after modelling.
The standard deviation of the data both decrease after modelling, which illustrates that the
SARIMAX interpolated data are less volatile compared to the raw data.

By looking at the ECDF plots for chloride (Figure 3.8 (a)), the two curves overlap to a large
extent, which means the data density distribution is well retained in the chloride case. How-
ever, in the ammonium case, it shows larger deviation between the two curves (Figure 3.8 (b)),
which means the density distribution changes in a perceptible range after modelling.

A large p-value (> 0.05) indicates that the evidence against the null hypothesis is relatively
weak, hence one cannot reject it [Deborah J. Rumsey, 2016]. The null hypothesis in this
scenario is that the two groups have the same distribution, the p-values for chloride and am-
monium are both larger than 0.05 from Table 3.3, hence we conclude that the two distributions
are similar. Despite the perceptible deviation on the ECDF plot in ammonium case, from the
perspective of the statistical test, one can still say that the modelled data and raw data are
from the same distributions.

Scenario 2: complete raw measurements in the two testing years & halved raw data in
the two testing years

In this scenario, the data properties before and after halving the number of measurements
are compared and the results are shown in Table 3.4. The Mann-Whitney U test can not be
used as the numbers of data points are different.
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Table 3.4: Data property scenario2

Chloride Ammonium

Mean of raw measurements (mg/l) 605.615 564.321

Mean of halved raw data (mg/l) 606.370 564.152

STD of raw measurements (mg/l) 181.267 161.151

STD of halved raw data (mg/l) 183.616 163.348

(a) Chloride ECDF plot (b) Ammonium ECDF plot

Figure 3.9: Scenario2 Density plots of raw data and modelled data

Comparing the results in Table 3.3 and Table 3.4, one can see that the changes in mean and
standard deviation are smaller in scenario 2. The deviations between the orange curves and
the blue curves in the ECDF plots are also less obvious than that in scenario 1, especially in
the ammonium case. Thus, the halved data and raw data can be regarded as from the same
distribution.

Scenario 3: complete raw measurements in the two testing years & quartered raw data in the
two testing years

Further on, the mean value and the standard deviation are compared after quartering the
data, the results are shown in Table 3.5. The density distributions of the two data sets are
plotted together in Figure 3.10.

Table 3.5: Data property scenario3

Chloride Ammonium

Mean of raw measurements (mg/l) 605.615 564.321

Mean of quartered raw data (mg/l) 591.948 536.189

STD of raw measurements (mg/l) 181.267 161.151

STD of quartered raw data (mg/l) 190.771 166.153
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(a) Chloride ECDF plot (b) Ammonium ECDF plot

Figure 3.10: Scenario3 Density plots of raw data and modelled data

By comparing the results in Table 3.3, Table 3.4 and Table 3.5, the change of mean in scenario
3 is the largest among the three scenarios. The change of standard deviation in scenario 3 is
larger than that in scenario 2 but smaller than that in scenario 1. It shows obvious deviations
between the blue curves and the orange curves, which means the density distributions are
significantly changed after quartering the data. Thus, the quartered data and raw data can
no longer be regarded as coming from the same distribution.

In conclusion, by comparing the three scenarios, it can be inferred that halving the mea-
surement points better preserved the data properties compared to SARIMAX interpolating,
however, further decreasing the measurement frequency by quartering the data is inadvisable.

3.4 estimation on mass (kg) of the substances

The cumulative mass of substances leaching out in the two testing years are calculated in four
scenarios according to Equation 2.5. The results are shown in Figure 3.11.
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(a) Chloride

(b) Ammonium

Figure 3.11: Cumulative mass leached out in the last 2 years (kg)

In the case of chloride (Figure 3.11 (a)), the blue curve(raw data) and the orange curve(modelled
data) overlap to a large extent except for the slight deviation after May 2018, which means the
model gives a result that is close to the real situation in the perspective of cumulative mass. In
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the case of ammonium (Figure 3.11(b)), the blue curve and the orange curve overlap to a large
extent until an obvious deviation shows up in May 2018. This deviation is due to the rela-
tively large simulation error occurs in the later stage and is amplified by the cumulative effect.

The green curves (halved measurements) show relatively large deviation from the blue curves
compared to the orange curves, the deviations between the red curves(quartered data) and
blue curves are the most obvious one, which means the decreasing of the measurement fre-
quency leads to a miscalculation on the cumulative mass.

To further quantify the error, the RMSEs on the mass estimation are calculated for the three
experimental datasets (using the results of raw measurements as reference), the values are
displayed in Table 3.6. According to the estimation based on raw measurements, the total
mass leaching out in the testing two years is 9422.821 kg for chloride, and 9154.657 kg for
ammonium. By normalizing the RMSEs to the total mass (RMSE/masstot), the results are
shown in Table 3.7.

Table 3.6: RMSE of cumulative mass

Chloride Ammonium

Modelled data (kg) 54.726 125.248

Halved raw data(kg) 153.316 169.638

Quartered raw data(kg) 661.669 641.974

Table 3.7: Normalized RMSE of cumulative mass

Chloride Ammonium

Modelled data 0.581% 1.368%
Halved raw data 1.627% 1.853%
Quartered raw data 7.021% 6.813%

As the results in Table 3.6 show, by applying the model, the accuracy of mass estimation is
improved compared to decreasing the number of measurements. However, in case 2 with
halved data, the errors are small with respect to the total mass in that two years according to
Table 3.7, thus, halved data sets can still be used to estimate the mass with a relatively high
accuracy.

3.5 the change of correlation between endogenous and ex-
ogenous data

One important factor considered in SARIMAX is the correlation between its endogenous and
exogenous data. By figuring out how do the correlations change after modelling, one can
better understand SARIMAX model. The Pearson, Spearman coefficients before and after
modelling are calculated respectively and shown in Table 3.8 and Table 3.9.
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Table 3.8: Correlation coefficients changes of chloride model

Chloride raw measurements Chloride model

Pearson Spearman Pearson Spearman

Outflow -0.450 -0.440 -0.487 -0.467

EC 0.775 0.690 0.815 0.740

Rainfall -0.134 -0.261 -0.160 -0.241

pEV 0.665 0.625 0.637 0.602

Table 3.9: Correlation coefficients changes of ammonium model

Ammonium raw measurements Ammonium model

Pearson Spearman Pearson Spearman

Outflow -0.302 -0.197 -0.332 -0.242

EC 0.576 0.510 0.622 0.534

Rainfall -0.216 -0.357 -0.391 -0.408

pEV 0.497 0.448 0.528 0.470

By looking at Table 3.8 and Table 3.9 , the Pearson and Spearman coefficients are increased
after modelling in all the cases, it reveals that the SARIMAX process may artificially create
correlations that do not exist in the raw data.

3.6 sensitivity analysis

For chloride, the coefficients in Table 3.1 indicate that the correlation between rainfall and
chloride is apparently lower than that of the other three exogenous data, thus, it’s of interest
to find out the impact of removing rainfall from the exogenous data.

For ammonium, Table 3.1 tells us that only EC has a strong correlation with ammonium
concentration, so the model of only considering EC as exogenous data will be investigated.
All the scenarios are defined in Table 3.10 and the model results are displayed in Table 3.11.

Table 3.10: Sensitivity analysis scenarios

Endogenous data Exogenous data

Scenario 1 Chloride Outflow, EC, rainfall, pEV
Scenario 2 Chloride Outflow, EC, pEV
Scenario 3 Chloride none
Scenario 4 Ammonium Outflow, EC, rainfall, pEV
Scenario 5 Ammonium EC
Scenario 6 Ammonium none
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Table 3.11: Model results of sensitivity analysis on exo-data

RMSE of Concentration (mg/L) RMSE of mass (kg)

Scenario 1 61.904 48.055

Scenario 2 60.901 54.276

Scenario 3 95.009 201.815

Scenario 4 79.697 122.761

Scenario 5 76.331 119.941

Scenario 6 77.196 137.202

For chloride, the RMSE of concentration simulation in scenario 2 is lower than that in scenario
1, however, the RMSE of the mass estimation is larger. From these results, one can conclude
that the rainfall data doesn’t have much effects on the model performance. The reason for
this might be: the accuracy of the model results largely depends on the strongly correlated
exogenous data, for example, EC and pEV. The weakly correlated one might not have many
effects on the results, either being considered or not. What’s more, the two RMSEs of scenario
3 are both larger than that in scenario 1 and 2, which indicates that the involving of strongly
correlated exogenous data indeed improves the model performance.

As for ammonium, comparing the results of scenario 4 and scenario 5, one can see that
the discarding of less correlated data indeed lead to better results for both concentration and
mass estimation. In the case where all the exogenous data are weakly correlated, it’s better to
only involve the one with the strongest correlation.

3.7 sarimax interpolation on history data in 2014-2016

Before conducting SARIMAX simulation in the two testing years, SARIMAX model is used
to interpolate the historical data in the period with low-frequency (2014-2016), the results are
compared to that of cubic spline interpolation.

3.7.1 Data visualization and decomposition

The blue lines in Figure 3.12 are the SARIMAX interpolated (in 2014-2016) data, the red lines
are the raw data without any interpolation.

In 2014-2016, the blue line adds some small fluctuations in the intermediate points based on
the red line, but the two lines substantially follow the same variation trend. When perform-
ing SARIMAX interpolation in 2014-2016, the available history data for training the model
are all the data points before 2014, which are from June 2012 to December 2013. However,
only 1.5 years of data available might not be sufficient for training the model, therefore, the
accuracy of the prediction in 2014-2016 is reduced. Once the deviation exists in the historical
data, eventually, the accuracy of the later modelling process (SARIMAX modelling on the two
testing years) will be affected.
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(a) EC (b) Chloride

(c) Ammonium

Figure 3.12: Raw data and SARIMAX interpolation

The STL decomposition is applied on cubic-spline interpolated and SARIMAX interpolated
data. The results are displayed in Figure 3.13 and Figure 3.14.

(a) Cubic spline interpolation (b) SARIMAX interpolation

Figure 3.13: STL decomposition of chloride data
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(a) Cubic spline interpolation (b) SARIMAX interpolation

Figure 3.14: STL decomposition of ammonium data

From Figure 3.13 and Figure 3.14, one can see that the trend and the seasonality are similar
in the two interpolation cases.

3.7.2 Error generated

For the two cases, the RMSEs of the model simulation in the two testing years (2017-2018) are
listed in Table 3.12.

Table 3.12: RMSE of concentration estimation

Chloride Ammonium

SARIMAX interpolating on the history data (2014-2016)(mg/L) 94.518 120.926

Cubic interpolating on the whole history data(mg/L) 87.546 112.708

From the table, the simulation errors in the two testing years are larger in the case of SARI-
MAX interpolation than in the case of cubic spline interpolation.

3.7.3 Mass estimation

Table 3.13 shows the RMSEs of the cumulative mass estimation in the two testing years (2017-
2018).

Table 3.13: RMSE of mass estimation

Chloride Ammonium

SARIMAX interpolating on the history data (2014-2016)(kg) 55.460 205.334

Cubic interpolating on the whole history data(kg) 48.055 122.761

30



Both in the case of chloride and ammonium, the SARIMAX interpolation gives higher RMSEs
on the total mass estimation.

What should be mentioned is that, as for the equidistance of the time series is necessary
when using SARIMAX model, the cubic spline interpolation is still needed in the first step
to regularize the data set. When conducting the iterative interpolation during 2014-2016, the
appended measurements are the corresponding cubic spline interpolated results rather than
the real raw data.

To sum up, the cubic spline interpolation on the whole historical data set might be a bet-
ter choice compared to SARIMAX interpolation in 2014-2016. Because to be used as history
data in the later modelling process, the cubic spline interpolated data gives smaller errors
both in concentration and mass simulation.
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4 C O N C L U S I O N S

In this chapter, the most important findings in the thesis will be summarized.

From the decomposition results, it is noticed that the trend in chloride data is not obvious. A
slowly ascending trend in the ammonium data is observed and the slope of the trend becomes
steeper after 2017. However, despite the observed trend of ammonium data in decomposition,
the statistical tests indicate that both chloride and ammonium data are statistical stationary.

The 2 years’ SARIMAX simulation generated an RMSE of 88.212 mg/L for the chloride model
and an RMSE of 113.397 mg/L for the ammonium model. Because of the stronger correlation
with exogenous data and the more stable data structure, the accuracy of chloride model is
higher than that of ammonium model. The mean of the relative simulation errors are both
small and negligible in two cases, also, the data dynamics are well preserved after modelling.

The sensitivity analysis of the SARIMAX model indicates that the strongly linear correlated
exogenous data is helpful to the model simulation. In the case where all available exogenous
data are of weak linear correlation, discarding of the data with weaker correlation may im-
prove the model performance.

In both chloride and ammonium cases, the modelled data and raw data can be regarded
as from the same distribution according to the Mann-Whitney U test. However, the data
properties (mean, std, density distribution) are better preserved with the data of halved mea-
surements, and the halved data and raw data are more likely to come from the same dis-
tribution. After further decreasing the number of measurements, the quartered data shows
obvious deviations on data properties.

By looking at the estimation of the cumulative mass leaching out in the last two years, the
modelled data gave the result that is closer to the real case compared to the data with lower
frequency. However, in case with halved data, the errors with respect to the total mass leached
out in that two years (which are 1.627% for chloride case and 1.853% for ammonium case) are
small and can be neglected.

In general, directly dropping half of the measurements can be regarded as an acceptable
way to reduce the measurement frequency, with well preserved data properties and accurate
estimation on mass of substances leached out. However, interpolating using the SARIMAX
model doesn’t have significant improvement in preserving the data properties. Further de-
creasing the measurement frequency by quartering the data is inadvisable.
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For the future study, repeating the analysis with EC data obtained with a 15-minutes interval
may give more insight in the error generated by this approach.
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A A P P E N D I X A

In this appendix, a complete example going through all steps of the SARIMAX model on
chloride data will be described.

Step 1

Following the method described in Section 2.1, all data sets are made equidistant in time.
The ADF and KPSS results show that the data can be considered to be stationary.

Step 2

The autocorrelation and partial autocorrelation plots are used to determine the order of dif-
ferencing.

Figure A.1: ACF and PACF on raw chloride data

As the ACF graph showes, the raw data is clearly not stationary enough giving the repeating
pattern and not dropping to zero after 50 lags. By conducting a seasonal differencing and
then a first order differencing, the ACF and PACF give the results as following.

Figure A.2: ACF and PACF on chloride data after differencing
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As the ACF graph showes, the lag-1 autocorrelation is negative and the ACF drops to zero
relatively quickly, therefore, it can be regarded as stationary after differencing twice.

Seasonal differencing: a 26-lag difference of the series. This corresponds to a seasonal dif-
ference order of 1(d).

First order differencing: a 1-lag difference of the 26-lag differenced series. This corresponds
to a non-seasonal difference order of 1(D).

From the above, the parameter can determined as SARIMA(?, 1, ?)x(?, 1, ?).

Step 3

By conducting a grid search for p, q, P, Q values, the combination give the lowest AIC is
ARIMA(0, 1, 1)x(1, 1, 0, 26) - AIC:1283.8095231963698.

Step 4

Fitting the model on chloride data using the selected parameter. Then conducting the model
diagnostics.

Figure A.3: Model diagnostics

Correlogram lookes quite well as no significant spikes appeared. However, the mean of the
residual is 29.520 which is not close to zero, thus, adjustment on the data is needed.
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Step 5

The Box-Cox transformation is used to fix this problem. After transforming the data, the
proper parameters are identified using the same methods as before. Afterwards, we fitted
a new model on the transformed data. As expected, the model diagnostics give the better
results that the mean of residuals is 0.0362. This step finalizd the forward model.

Step 6

Conducting the iterative forecasting described in Section 2.3.4, predicted one point at a time,
adding the predicted value to the training data set for fitting the next model.

Step 7

The simulated data is now in the Box-Cox transformed scale, it should be transformed back
to the original scale using reverse Box-Cox transformation to obtain the modelled data.
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