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Abstract—An event-based camera enables capturing a video
at a high temporal resolution, high dynamical range, reduced
power consumption and minimal data bandwidth while
the camera has minimal physical dimensions compared
to a frame-based camera with the same vision properties.
The limiting factor, however, of an event-based camera is
the spatial resolution which ranges between 40 × 40 and
1280× 960. To counter this deficiency, a method is researched
to super resolve event-based vision in order to enhance spatial
resolution. A selection of different neural network types
and configurations are researched in a step-by-step fashion.
Subsequent experiments tested the selected networks on their
ability to process event-based data and extract features from
it. Followed by experiments that exploited the limitations of
the networks to super resolve at different ratios, lengths of
eventstreams and more complex event-based data.

Results of various experiments showed that a network
configuration that utilizes a transformer architecture was best
able to super resolve event-based vision. This type of network
leverages the ability to extract features based on dependencies
between events which aligns with the characteristics of event-
based vision. Based on the obtained results from the exper-
iments, a pipeline is proposed to super resolve event-based
vision and consists of a combination of a transformer network,
multilayer perceptrons and a k-nearest-neighbor algorithm.
Using this pipeline, eventstreams can be super resolved in the
spatial resolution at a scaling ratio of 4. Visually, these super
resolved eventstreams resemble more detailed and enhanced
version to the low-resolution input. This proposed pipeline can
be considered as a starting point in further research toward the
super-resolution of event-based data and thereby contributes to
the extension of application possibilities of event-based vision.

Index Terms—event-based vision, event-space, k-NN, machine
learning, MLP, N-Caltech-101, N-MNIST, neural network, neu-
romorphic vision, self-attention, super-resolution, transformers

1. Introduction

Capturing a video with a high temporal resolution
(in the order of MHz), with a reduced data bandwidth
and energy consumption while having a higher dynamical
range (140 dB vs 60 dB) with a camera the size of a
small handheld recorder is unthinkable with a frame-based
camera, but made possible with an event-based camera [1],
[2]. Applications for this new technology are among others:
a flying drone that navigates by video input [3], [4], [5], a
camera mounted on a vehicle [6], [7], [8], [9], or for super
slow motion visualization [10]. Inspired by the biological
eyes, researchers have come up with a different paradigm
called neuromorphic or event-based vision that enables
these properties [11], [12]. Both names are interchangeable;
neuromorphic vision indicates that the paradigm is inspired
by neuroscience, while event-based vision refers to the
principle of the paradigm in which visual input is translated
into events. In this research, the name event-based vision
will be used as the name is derived from the technical
principle.

Research towards event-based vision has come to a
point at which it is possible to build Dynamic Vision
Sensors (DVS) which enables event-based vision. However,
currently, one of the limitations of event-based vision is
due to the large physical size of pixels. Large pixel sizes
inherently increases the needed distance between pixels
(also called pixel pitch) and thus fewer pixels can be fitted
on the sensor which reduces the resolution. Event-based
vision sensors generaly have a resolution between 40 × 40
and 240 × 180 [13], [14] although there is progress
in reducing the pixel pitch to realize larger resolution
sensors of 1280 × 960 [15]. Nevertheless, the resolution
of event-based vision is much lower compared to what is
possible with frame-based vision. Therefore, depending on
the purpose, diminishing this shortcoming can be beneficial.
There is a class of techniques to enhance the resolution
of imaging after being captured. This class is referred to
as super-resolution or super resolving. The task of these
techniques is to find higher-resolution representatives of
low-resolution inputs. A high-resolution representative
is a plausible high-resolution imaging that reassembles
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a low-resolution input but with enhanced resolution.
Super-resolution is an ill-proposed problem meaning that
the solution is not deterministic since data that results in
the high-resolution is missing and ought to be found. There
are proposed solutions in which event based vision is super
resolved. Still, all of these models inflict a conversion from
events to frames [16], [17], [18], [19]. This conversion
counters its beneficial properties of having a minimal data
bandwidth and a high temporal resolution. Therefore, it
should be omitted.

In this research, a method will be proposed that
performs super-resolution directly on the data structure of
event-based data. Super resolving in this fashion does not
compromise the event-based vision properties of minimal
data bandwidth and a high temporal resolution and enables
converting events-towards at a variable frame-rate after
being super resolved. In addition, with respect to earlier
proposed solutions that inflict a conversion to a frame-based
representation, this method makes super-resolving events
potentially less power-demanding and faster to process
since eventstreams occupy less memory and more accurate
since temporal information is not discretized.

1.1. Characteristics of event-based vision

The paradigm behind event-based vision is only dis-
cussed on a high level in the introduction. The principles
of event-based vision will be deliberated in more detail
in this section to give a better understanding. The sensor
used in event-based vision is continuously exposed to light.
The pixels in this sensor will trigger an event whenever the
observed brightness (It) has surpassed a preset threshold
(θ) with respect to the previously observed event (It−1).
Therefore, each event only visualizes relative brightness
changes. This can be mathematically described as:

log (It)− log (It−1) ≥ θ. (1)

This happens independently and asynchronously for
each pixel continuously in time. It results in pixelwise
visual observation only when there is a change in scenery
(and thus a brightness change) and no visual observation
when there is no visual change in that particular pixel. This
is contrary to frame-based vision in which the absolute
value of brightness is captured at a fixed frame rate
regardless of the change in scenery.

A visualization of the differences between event- and
frame-based vision is made by [20] and is depicted in
Figure 1. It shows a schematic overview of a test setup.
Above is a Standard camera (frame-based camera) and
beneath is an Event camera, both observing a spinning disc
with a black dot on its surface. Successively, the disc spins
at high, no, and slow angular velocities. Obtained data by
both cameras are depicted in a timeline in which the spatial
plane reflects the camera sensor. Noticeably, the data of the

Standard camera is prone to motion blur which is visible
when the disc rotates at a high velocity, while in the period
when the disc did not rotate it produces redundant data as
all the frames include the same visual information. The data
of the Event camera is color-coded blue or red for positive
and negative brightness changes respectively. It shows a
high temporal resolution when the disc spins fast. Yet, it
does not produce data when there is no change in scenery,
this is also visible in the period when the disc did spin
since the events only occur in the area in which the black
dot moves and not its surroundings. Another characteristic
feature of event-based vision is that moving objects will
result in a manifold in space-time. The surface of this
manifold could be a useful feature for super-resolving as it
marks a region where brightness changes.

The obtained data structure of event-based vision is a
4-dimensional tuple sequence:

{ei}N = {xi, yi, pi, ti}N (2)

also referred to as eventstream containing N events,
where (xi, yi) ∈ RH×W indicates the position on the
sensor grid, pi ∈ {0, 1} the event polarity respectively
positive or negative brightness change and ti the timestamp
at which event ei is observed. Events can be plotted in a
3-dimensional space-time continuum as depicted in Figure
1. This continuum is called event-space and consists of both
spatial- (x, y) and time dimension t. The term event-space
is also used as an indication that the event-based vision is
in its original data format.

Figure 1. Visualization of differences in perceived data by a frame-based
camera (top) and an event-camera (bottom) when filming a spinning disc
with a black dot [20].

Eventstreams are usually converted towards a frame-
based representation since a raw tuple sequence nor the
representation in event-space are visually easy to interpret.
This conversion can be made in various fashions. In this
research, the most elementary fashion will be used, namely
event-frames. Eventstreams are converted using the pseu-
docode as depicted in Algorithm 1. In short, all events
occurring in a set time-bin are accumulated according to
their polarity (with +1 or -1) and spatial address onto an
array of the same spatial dimension with initialized values
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of a gray tint (brightness equals 128 for 8-bit representation).
A visualization of this process is depicted in Figure 2.

Algorithm 1 converting eventstreams ({ei}N ) to event-
frames (F )
Input: {ei}N = {xi, yi, ti, pi}N , tbin
Output: F(W,H,#bins)

1: #bins = tN/tbin
2: F = 255

2 × 1(W,H,#bins)

3: for e0 to eN do
4: if (pi == 1) then
5: bin = floor(ti/tbin)
6: F(xi,yi,bin)+ = 1
7: else
8: F(xi,yi,bin)− = 1
9: end if

10: end for
11: return F

Figure 2. Visualization of the converting process to obtain event-frames
(right) from eventstreams depicted in event-space (left).

1.2. Super-resolution

The problem of super resolving data should be seen
as finding missing data. Although it is an ill-proposed
problem, there are differences that make one solution
perform better than other solutions in a given circumstance.
The most elementary analogy is: given a set of data
points x1[0, 2, 4, 6] results in y1[0, 2, 4, 6], which values
would belong to x2[0, 1, 2, 3, 4, 5, 6]? Without further
knowledge in this example, the trivial prediction would be
y2[0, 1, 2, 3, 4, 5, 6] but this does not necessarily have to be
true (e.g. given x1, the function f(x) = sinπx + x would
also result in y1). This is just a brief example that clarifies
what an ill-proposed problem defines and highlights the
need for an algorithm to have a policy that aligns the
dynamics of a system in order to super resolve it properly.

There are two global categories that will be featured
in this research, namely naive and learning-based. In a
naive algorithm, the dynamics of a system are modeled
by a fixed set of rules. In the previous analogy, this could
very well have been f(x) = x or f(x) = sinπx + x. For
a naive algorithm, it is key that the model is according
to the underlying characteristics of the system. It is

therefore crucial to have an understanding of the system in
order to formulate this model. While in a learning-based
(also referred to as machine learning) approach, the
characteristics of the system, analogous to the name, are
learned during a process called training. In short, during
training, the algorithm is fed both inputs x and outputs
y numerous times at which it fits a model that seems
to project the input to the output the best according to
the set criterion which is defined as a loss function. This
process will be deliberated in detail later in this report. It
is therefore not key to have a thorough understanding of
the underlying characteristics of a system, which makes it
ideal to implement on systems with complex or unknown
characteristics. Yet, a good understanding is needed to
formulate a loss function that quantifies the performance of
the network appropriately in order to make the algorithm
converge toward the desired solution. While a high-level
understanding is granted to make decisions on the type and
shape of the machine learning algorithm to find the best
solution.

In frame-based vision, the amount of to be predicted
data points is deterministic to the scaling factor. For
example, 4 × H × W data points need to be predicted
when scaling an image of resolution (H,W ) by factor 2 to
(2H, 2W ). Super-resolution in event-based vision does not
translate to a predetermined number of events to be present
in the higher resolution. This is a direct consequence of the
asynchronous method in which each pixel observes vision
in the form of events independently from other pixels. It
requires a method that enables variable length sequence
to sequence prediction. However, since the primary scope
is to find suitable fundamental methods, super-resolution
of events is considered as a fixed length vector to vector
prediction in order to prevent a too-narrow initial scope for
solutions.

1.3. Related Work

Event-based vision is a novel research area that is
reflected by the amount of found literature on this research
topic. In [21] a naive sampling technique named Thinning
is used to super resolves events. This sampling technique
is based on the principles of Poisson Point Process and
samples points (or events) based on probability. Both[17]
and [18] propose a model which uses converted event-
frames combined with images. A model which uses
eventstreams and an image is proposed in [22]. These
models which use a combination of events and images
leverage the advantages of both data sources. Yet, these
models are limited to the use of captures made by event-
cameras which utilize both a DVS and an Active Pixel
Sensor (APS). What makes our research unique is the input
and output both comply with the eventstream datastructure
whereas available solutions use a frame-based datastructure.
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There is an undeniable similarity upon projecting the
datastructure of eventstreams ({ei}N = {xi, yi, pi, ti}N )
on pointclouds ({pi}N = {xi, yi, zi}N ). Namely, both
datastructures consists of 3 Euclidean dimensions the
polarity of events is neglected. In literature, various
upsampling algorithms are proposed for the super-resolution
for pointclouds. This makes the proposed models in the
pointcloud domain a potential inspirational source. Used
architectures for these pointcloud upsampling networks are
Convolutional Neural Networks (CNN) [23], [24], Graph
Convolutional Network (GCN) [25], [26] and Transformer
Neural Networks (Transformer) [27], [28]. Both GCN and
Transformer architectures have been used for classification
tasks of event-based data in event-space [29], [30], [31],
but not for super-resolving like done with pointclouds.

1.4. Research questions

The proposed solutions in literature for the task of
super-resolution applied to event-based vision involve
a discretization somewhere in the process. However, to
cherish the advantage that comes along with the data
sparsity and embedded temporal information of the event
representation, discretization and conversion towards a
frame-based representation should be omitted. Therefore,
a solution is researched which enables super-resolution
of eventstreams in event-space. For this research, a wide
range of computer vision techniques is considered to find a
solution. The most prominent technique used in computer
vision is neural networks (also referred to as networks). This
is a sub-section of machine learning and is an overarching
term for every computing system which consists of a
network with a topological resemblance to the biological
brain [32]. This means that these networks consist of a
likewise structure (also referred to as architecture) with
layers of neurons that are connected to each other to
surpass data and perform abstractions of data, together they
form a large system that realizes a powerful computation
tool. There are various different neural network types, and
combinations of these lead to an even more vast variety of
advanced networks. This research suggests the applicability
of a solution in the form of a pipeline that is divided into
three distinctive modules. A schematic of this pipeline,
consisting of a Feature extractor, Coordinate reconstructor,
and Polarity reconstructor is depicted in Figure 3.

The Feature extractor module extracts features from the
given input. For this module, it is key to handle the data
representation efficiently while being able to extract the
right features from it. Features are then encoded toward
a feature space. The Coordinate reconstructor predicts the
coordinates of the super-resolution based on the extracted
features in the previous module. After this step, solely
the locations of the events are predicted in the (x, y, t)
dimension. In the third step, the Polarity reconstructor
module predicts the polarity at predicted event locations.
This step can be seen as a supervised classification problem

Figure 3. Schematic overview of the suggested super-resolution pipeline
consisting of 3 modules with an eventstream length (N ), 2-dimensional
coordinate(x, y) of the concerning event with respect to the sensor grid,
polarity (p) of the event, feature channel (C), scaling ratio (r) between
input and output length of eventstream.

in which the polarity is represented by a positive {1} or
negative {0} label. Features that can be used to predict the
polarity are events with the polarity of the low-resolution
input. k-Nearest-Neighbors (k-NN) is often used for these
types of tasks, although it has never been used before
for this specific case to predict the polarity of events. In
this study, different experiments are conducted in which
multiple methods are tested and compared in order to find
suitable solutions for this distinctive module.

In order to validate a found solution, a baseline method
will be reproduced which is based on Poisson Point Process
sampling, specifically Thinning, as is proposed by [21].
Although this method initializes a small discretization, it is
the next closest option to super resolve event-based vision
in an event-to-event fashion. If the found techniques are
performing poorer to a specific metric with respect to the
baseline, the found technique has a small chance to be
suitable for further investigation and vice versa.

This raises the following research question: To what
extent and by which method can event-based vision be
super resolved in event-space?

With sub-questions:

1) To what extent can a naive algorithm be used to
super resolve events or would it suffice to have a
learning-based algorithm?

2) Which type of neural network is best capable to
extract features in event-based data when used in
the Feature extractor module?

3) To what extent can we predict the coordinates of
events of high-resolution eventstream based on a
given feature-set using a Coordinate reconstructor
module?

4) To what extent can we retrieve polarity after super-
resolving using k-NN as a Polarity reconstruction
module?
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1.5. Approach

The goal of this research is to find a proof of concept
to super resolve event-based vision in event-space which
can be used as a stepping stone in further research. The
expected solution has the form of a pipeline as defined
in Figure 3. This pipeline consists of 3 separate parts, a
Feature extractor, Coordinate reconstructor and Polarity
reconstructor. Solutions for the first two modules will
be found by researching currently available methods for
pointcloud super-resolution and for event-based vision
classification and evaluating their applicability based on
results from conducted experiments. This study focuses
mainly on the development of the feature extractor module
since it is expected to demand the most unique and tailor-
made solution whereas more generic solutions are suitable
for the Coordinate reconstructor and Polarity reconstructor
modules.

The initially used Coordinate reconstructor is based on
a module used in [33] with a similar utility. Premature
experimenting during the literature study prior to this
research proved the suitability of a k-NN algorithm to
be used as a Polarity reconstructor. With the use of this
algorithm, predictions about the polarity of newly predicted
events can be made based on their location in relationship
with the k nearest neighbors with known polarity from the
low-resolution eventstream. In Experiment 1 the suitability
limitations of k-NN as a Polarity reconstructor will be
thoroughly researched under different super-resolution
scaling ratios and settings for k.

The research starts by defining a baseline method
which is based on the Poisson Point Process (PPP). Then,
solutions for the suggested pipeline are researched using a
step-by-step approach in which sequential experiments are
conducted with increasing complexity. Using this approach
makes it possible to take a broad set of initial proposed
solutions into consideration which can be narrowed down
early on in the experiments. Experiment 2 concerns a
classification task. For this test, the network only consists
of a Feature extractor and tests the ability of a Feature
extractor to (1) handle event-based data and (2) extract
features in general from the eventstreams data structure.
Although the extracted features needed for classification are
most likely to be different with respect to super-resolution
of event-based data, it will give a first indication of its
ability to feature in this data structure. In Experiment 3
selected networks - based on the results from the previous
experiment - are extensively tested on their ability to super
resolve under various test configurations (values for scaling
ratio (r) and input sequence length (N )) and different
datasets. Comparison between different methods must be
fair in order to enable valid consideration between them
based on the results of the experiments. Each experiment
in which a comparison ought to be made should thus only
have a deviation in one of the modules. To realize this,
the modules have to be interchangeable i.e. all Feature

extractors modules should be compatible with identical
Coordinate reconstructors. A boundary condition is set in
order to secure the validity of comparison, the designed
feature extractor should output a feature set with the
dimensions N = 1024 and C = 128. After this test, a
network type will be selected based on analyzing the
obtained results and complemented by arguments based on
theory. The final experiment is conducted in Experiment 4
in which the obtained solution is compared to the defined
baseline solution which is based on the PPP.

2. Methods

2.1. Baseline method

In [21], event-based vision is super resolved using a
naive algorithm named Thinning. Thinning [34], [35] is
a sampling method based on the characteristics of a one-
dimensional nonhomogeneous Poisson Point Process (PPP).
It enables generating a specified amount of events (S∗)
on a set timeline (0, T ] according to a given probability
density function. This algorithm is of the naive kind. To
use this algorithm on event-based data, the probability
density function and the accumulated amount of events S∗

are properties that need to be calculated per pixel address.

The probability density function (λ(t)) is derived from
a histogram Peristimulus Time Histogram (PSTH). The
rate function at the spatial grid location i, j is Pi,j and
resembles a histogram divided in time-bins with length tbin
in which the value of each time-bin depicts the concerning
value of occurring events. This division into small non-
overlapping bins is the part that establishes a discretization
into the process. A pseudocode for the calculation of the
rate-function is depicted in Algorithm 2. The number of
occurring events S∗ is calculated per spatial address i, j,
together they form a countmap (C). This calculation is
depicted in pseudocode in Algorithm 3. For example:
consider a sensor consisting of only two neighboring pixels
(resolution of 1 × 2) named p0 and p2 respectively which
can be super resolved to obtain a resolution of 1 × 3. PPP
characteristics S∗

0 , S∗
2 , λ0(t) and λ2(t) are derived after

which S∗
1 =

S∗
0+S∗

2

2 events can be sampled according to
the probability function λ1(t) = λ0+λ2

2 using thinning to
find the predicted observations of p1. The same principle
is used in [21] but then in two dimensions, width and height.

These two characteristics (λ(t) and S∗ of each event) are
then used to predict the PPP characteristics of neighboring
pixels from a super resolved perspective by interpolation,
after which the thinning algorithm is used to sample events.
This procedure is executed separately for positive and
negative events. Per spatial address i, j with 0 < i < W
and 0 < i < H , S∗ is set to the concerning value in
the countmap Ci,j . The nonhomogeneous rate function
λ(t) is derived from the concerning PSTH (Pi,j), and the
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homogeneous rate function (λ∗) is set to the maximum
value of λ(t) factored by 1.2. Then a value tgen is generated
as a fictive event in the range [0, T ], and v is generated in
the range [0, 1]. If and only if v ≤ λ(tgen)/λ

∗, the fictive
event is accepted and appended to the list of generated
events (S) with value e{i, j, tgen, pol} from which pol
equals 1 or 0 depending on the concerning polarity. This
process is repeated until the list S contains S∗ events. The
pseudocode of this process is depicted in Algorithm 4. A
visualization of the Thinning process is depicted in Figure 4.

Algorithm 2 PSTH (P+, P−)
Input: {ei}N = {xi, yi, ti, pi}N , tbin
Output: P+

(W,H,#bins), P
−
(W,H,#bins)

1: #bins = tN/tbin
2: for e0 to eN do
3: if (pi == 1) then
4: bin = floor(ti/tbin)
5: P+

(xi,yi,bin)
+ = 1

6: else
7: P−

(xi,yi,bin)
+ = 1

8: end if
9: end for

10: P+
(2W,2H,#bins) ← interpolation(P+

(W,H,#bins))

11: P−
(2W,2H,#bins) ← interpolation(P−

(W,H,#bins))

12: return P+, P−

Algorithm 3 positive and negative countmap (C+, C−)
Input: {ei}N = {xi, yi, ti, pi}N
Output: C+

(W,H), C
−
(W,H)

1: C+
(W,H), C

−
(W,H) = 0(W,H)

2: for e0 to eN do
3: if (pi == 1) then
4: C+

xi,yi
+ = 1

5: else
6: C−

xi,yi
+ = 1

7: end if
8: end for
9: C+

(2W,2H) ← interpolation(C+
(W,H))

10: C−
(2W,2H) ← interpolation(C−

(W,H))

11: return C+, C−

2.2. Neural Networks

Neural networks (referred to as networks) belong to
a subset of machine learning algorithms which are self-
learning algorithms. A network can consist of a combination
of different neural network types. Input to the network is
processed through a set of mathematical operations, the
different types of networks result in different mathematical
operations each with its unique properties. A network should
leverage these properties in order to be optimal. Background
information in this section concerning different network

Figure 4. Visualization of Thinning according to the rate functions λ(t)
and λ∗ (top), generated fictive event locations tgen (bottom) and accepted
event locations v (middle).

Algorithm 4 super resolved events sampling {ei}N →
{ei}M
Input: {ei}N , C, P, pol ∈ [0, 1]
Output: {ei}M

1: Esr = 0(1,4)
2: i, j = 0
3: for 0 to W do
4: for 0 to H do
5: S∗ = Cpol

(i,j)
6: S = 0(1,4)
7: λ(t) = f(P pol

(i,j,:))

8: λ∗ = 1.2max(λ(t))
9: while len(S) < S∗ do

10: generate tgen random in time interval [0, T ]
11: generate v random between [0, 1]
12: if v ≤ λ(tgen)/λ

∗ then
13: if (pol == 1) then
14: append(S, {i, j, tgen, 1})
15: else
16: append(S, {i, j, tgen, 0})
17: end if
18: append(Esr, S)
19: end while
20: end if
21: i+ = 1
22: j+ = 1
23: end for
24: end for
25: {ei}M ← Esr

26: return {ei}M
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types is primarily focused on encountered network types
in the literature of related work and includes Multilayer
Perceptron (MLP), CNN, GCN and Transformers. How well
a network performs is quantified by a loss function and is
tailored for the task that is ought to be performed.

2.2.1. Multi-Layer Perceptron (MLP). An MLP is the
most elementary type of neural network and consists of
layers with artificial neurons [36]. In each layer, each input
is connected to each neuron and each neuron is in turn
connected to each output entry. The mathematical operations
are basic but together they form a network that enable the
detection of complex patterns in data. Detected patterns can
be used as features. Networks that consists of multiple layers
are referred to as deep networks; the deeper a network the
higher the ability to detect complex (or referred to as hidden)
features. The mathematical operation of a MLP layer can be
described as:

z = XW + b (3)

where X is the input vector, W the weight vector and
b the bias and z the output. This is a linear operator, a
activation function σ(z) is needed in order to detect non-
linear patterns.

2.2.2. Convolutional Neural Network (CNN). A CNN
layer was first proposed in [37]; it extracts features by
convolving a set of kernels with learnable parameters over
input in a sliding window fashion and prevents global spatial
bias to where features are positioned in the input and a
reduced amount of learnable parameters when compared to
MLPs. CNNs are designed to extract features from data
that have a grid-like topology and have features embedded
in local spatial relationships. ResNet [38] is a deep CNN
with residual connections. Deep refers to the existence of
multiple layers in the network’s architectures, and residual
connections to the branched data flow through a CNN layer
and a data flow around this layer which is concatenated
afterward. It has applications for both super-resolution and
classification tasks, although being initially designed to clas-
sify images. There are different variations concerning the
number of convolutional layers often indicated as a postfix
[18, 34, 50, 101, 154] after ResNet. Despite the fact that
eventstreams are expected to have no explicit spatial ordered
relationships presented, it is quite possible that CNNs can
extract features if they are deep enough. The mathematical
operation of a 1-D convolution layer can be described as:

z[n] = (X ∗K)[n] =
∑
m

X[n−m]K[m]. (4)

where X is the input vector of size n, K the kernel of
size m and z[n] the output at position n. The output is
padded with zeros in order to prevent the kernel to reduce
the dimensionality of the output by m− 1.

2.2.3. Graph Convolutional Neural Network (GCN).
A graph is a data structure existing of nodes and vertices.
A vertex connects a node to its neighbor. A well-known
graph is a map of train connections in which train stations
are translated as nodes and the connections between train
stations as graphs. Convolution operations as used in
CNN can not be applied directly to this data since it
is not structured in a matrix form. Graph Convolutional
Neural Networks (GCN) solve this problem by applying
a convolution operator on each node with a specified
amount of closest neighboring nodes and resulting in
neighbor-based feature extraction instead of grid-like
spatial based as extracted using CNNs. Events presented
in event-space (x, y, t, p) have a similar format as graphs
which makes GCNs applicable to process events. In [39],
a GCN architecture (specifically EdgeConv module from
PyTorch Geometric) is used for the classification and
segmentation of point clouds.

2.2.4. Transformer neural networks (Transformers).
Transformers were first proposed in [40] and showed state-
of-the-art (SOTA) results in natural language processing.
Processing natural language or other types of sequences was
done using Recurrent Neural Networks (RNN) [recurrent]
and Long-Short-Term-Memory (LSTMs) networks prior to
the invention of transformers. Transformers make use of
self-attention (SA) mechanisms that selectively focus (atten-
tion) on the most relevant information. SA extracts features
based on found dependencies between each independent
element in a sequence to each other element of a sequence
in the form of cross-relevance without being affected by
the relative distance contrary to RNNs and LSTMs. In
addition, transformers feature the ability to parallelizable
computations (which decreases computation time) resulting
in decreased computation time which is not possible using
RNNs and LSTMs. Models using a transformer architecture
for event-based data classification have been proposed by
[30] and [31]. A major benefit of using transformers to
process event-based data is that it is already encoded into
quantitative values (x, y, t) which makes it directly usable as
input, unlike natural language which has to be transformed
into so-called tokens. The input of the self SA-layer (X with
length N ) is processed to obtain the Query (Q ∈ RN×C),
Key (K ∈ RN×C) and Value (V ∈ RN×N ) matrices with
channel (C) using convolutional layers. The self-attention
mechanism (Attention(Q,K,V)) is described as the fol-
lowing mathematical operation:

Attention(Q,K,V) = softmax(
QKT

√
N

V ) (5)

where T denotes a transpose operator and N is used as a
scaling factor to prevent values from becoming too large.
The dot product between Q and K realizes obtaining the
cross relevance between events.

2.2.5. Training. The answer (or output) of a network, when
given an input, is based on a prediction that follows from a
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series of mathematical operations with the learnable param-
eters (or simply referred to as parameters) of the network.
To the set of parameters belongs W , b and K. The right
set of parameters results in the right policy for successful
predictions and is found during a process named training.
This process requires 1) data consisting of paired input
(X) and ground truth (Y ) and 2) loss function L(Y, Ỹ )
which is a method to quantify how well or how poor
related the predicted output (Ȳ ) is compared to Y . In the
training process, the network is fed X after which L(Y, Ỹ ) is
calculated. Then, the parameters of the network are adjusted
according to the loss during back-propagation. This cycle is
repeated multiple times. How much a network learns from
each training cycle is controlled by the learning rate (lr)
and is implemented as a factor to the loss. A network is
said to be fully trained when it is converged towards an
optimal solution indicated by the seemingly lowest possible
obtained loss.

2.2.6. Loss functions. The loss function is used as a quan-
titative metric to evaluate how a prediction Ŷ is related to
the ground truth Y . Therefore, it is key that the used loss
function reflects the essence of the aimed task in order for
the network to converge to an optimal solution. Different
tasks require different loss functions. In this research Cross-
Entropy (CE) 6 will be used in the training of networks for
the classification task. Chamfer Distance 7 will be used in
the training networks for the task of super resolving. Mean
Squared Error (MSE) 8 will be used as a similarity metric
between the converted event-frames of the ground truth and
predictions, it calculates the avarge quadratic error between
corresponding entries and will not be used as a loss function
during training.

LCE(Y, Ỹ ) = −
∑
i=1

yi log (ỹi) (6)

LCD

(
Y, Ỹ

)
=

1

n

∑
y∈Y

min
ỹ∈Ỹ
∥ỹ − y∥22 +

1

n

∑
ỹ∈Ỹ

min
y∈Y
∥ỹ − y∥22

(7)

LMSE(Y, Ỹ ) =
1

n

n∑
i=1

(yi − ỹi)
2 (8)

2.3. Suggested Pipeline

2.3.1. Feature extractor. The Feature extractor is the first
module in this pipeline. As the name suggests, this module’s
priority is to extract features from eventstreams. Based
on these features, the subsequent Coordinate reconstructor
module predicts the coordinates of super resolved events
and is thus dependent on the ability of the Feature extractor
to extract a complete set of features. Currently, the Feature
extractor is a black box, for which this study aims to find a
solution. Yet, the researched solution has to comply with the
set boundary conditions of input dimension (N,C) = (N, 3)
and output dimension (N,C) = (N, 128).

2.3.2. Coordinate reconstruction. The Coordinate recon-
struction module is linked to the Feature extraction module.
It reconstructs the coordinates based on the extracted fea-
tures which are directly fed as an input. Inspired by point-
cloud upsampling architecture from PU-GCN [33], the input
of dimensionality (N,C) is periodically shuffled (Reshape)
towards the shape (Nr,C/r). It is then fed into successive
multibranch MLP-layers with shared parameters in which
the channel dimension is contracted in the following order:
64, 16, 3. It has an output of dimension (Nr, 3), a schematic
of this module is depicted in Figure 5.

Figure 5. Overview of the Coordinate reconstruction module with Input
eventstream length (N ), feature channel (C), scaling ratio (r).

2.3.3. Polarity Reconstruction. The predicted coordinates
of events by the Coordinate reconstruction module only
entail a coordinate. The module Polarity reconstructor
will be designed to predict the polarity of those events.
Available information about the polarity of events in the
low-resolution eventstream (ELR) can be used in this task.
One of the most simple and commonly used algorithms for
classification (or labeling) in a certain latent space is k-NN.
When this algorithm is fitted on the ELR, it predicts the
polarity of given events based on the k most frequent labels
of its nearest neighbors in ELR. Distance is calculated as
Euclidean distance.

As k-NN classifies based on labels of nearest neighbors,
it is key to assure those nearest neighboring events indeed
indulge information. The suitability of this algorithm to
be used as a Polarity reconstructor was tested in a small
experiment prematurely as part of the literature study prior
to this thesis study found in the Hypothesis section in
Appendix F. In this small experiment, k-NN’s ability to
predict the polarity has been tested. Half of the events were
masked after which the polarity was retrieved by k-NN with
an accuracy of 93.8 %. Initially, this accuracy indicates that
k-NN could be usable for predicting the polarity of events.

2.4. Experiments

The experiments are conducted using the GPU of
Google Colab1 The neural network architectures are
defined using PyTorch2 and extended 3rd party libraries
Pytorch3d3 and torch geometric4.

There are two types of tasks that will be performed
during our experiments. The types are classifications in

1. https://colab.research.google.com/
2. https://pytorch.org/
3. https://pytorch3d.org/
4. https://pytorch-geometric.readthedocs.io/en/latest/
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which the category (or label) of the data instance will be
predicted, and super-resolution in which a higher resolution
representation of a given input will be predicted. Classifying
is often found an easier task compared to super resolving in
computer vision. Therefore, we will use the classification
of event-based vision as a starting point for our experiments
to obtain insight into the applications of different networks
on eventstreams. This insight enables a first selection of
network types to be used as Feature extractors for the super-
resolution task. The selected Feature extractors will be
exploited on both N-MNIST and N-Caltech-101 in order to
form a valid argumentation that the found solution is proper.

2.4.1. Data. The two neuromorphic datasets used in
this research are N-MNIST and N-Caltech-101 [41].
Both datasets, N-MNIST and N-Caltech-101 [41], are
neuromorphic vision conversions of two renowned datasets
in computer vision; MNIST [42] and Caltech-101 [43]
respectively. MNIST contains 70,000 images of handwritten
digits (0, 1,.. 9) of resolution 28 × 28, it is used as a ‘toy
dataset’ meaning that it is frequently used as a starting
point for testing potential computer vision solutions early
on. Caltech-101 is a more complex dataset that consists of
101 categories of images ranging from airplanes to dolphins
and pizza with a resolution of 245 × 302 and is often
issued in a late development stadium of computer vision
solutions. The datasets are converted using a physical setup
with an event camera recording a monitor which displays
the image of the datasets. Since events are triggered by
changing brightness in the pixels, the scenery has to be
dynamic. To make the scenery dynamic, the event camera
is moved over a micro distance at a fast pace, also named
saccade, in a triangular motion. The duration of each
recording is 300 ms and the spatial resolution of N-MNIST
is 37× 37 and N-Caltech-101 is 180× 240. The N-MNIST
dataset contains eventstreams with lengths in the order
of 103 while N-Caltech-101 contains eventstreams with
a length in the range of 104 to 105. For the experiments
in this study, eventstreams will be preprocessed to make
them have equal lengths and normalized values to lay in
[0, 1]. These resulting eventstreams lengths depend on the
testing condition. Also, each available category inside the
dataset is represented by the same number of eventstreams
to prevent categorical biases. For N-MNIST this will be
in the range of [1024, 4096] and for N-Caltech-101 in the
range of [12, 288, 49, 152].

2.4.2. Experiment 1. During the literature study prior to
this thesis, an initial experiment was conducted to indicate
the applicability of a k-NN algorithm to predict polarities
of events which is included in the Hypothesis section of
Appendix F. In that experiment, performance was measured
by the accuracy at which k-NN could predict polarities of an
eventstream from which half of the events had a masked po-
larity. Events to be masked were chosen at random. The re-
sult was an accuracy of 93.8%. In this experiment, additional

testing will be conducted to measure the accuracy at which
k-NN predicts the polarity of eventstreams from which a
different portion is masked and at different values for k. The
masked portion illustrates the super resolved coordinates and
the portion with polarity illustrates the low-resolution input
and the ratio between the masked portion and the portion
with polarity illustrates the scaling ratio r. Tests will be con-
ducted at test circumstances r ∈ [2, 4, 8] and k∈ [1, 3, · · · 9],
the length of the masked portion eventstreams are fixed
at N = 4096 and the portion with polarity is shaped
proportional the the ratio. Results will indicate which setting
for k results in the highest accuracy and how applicable the
use of k-NN is in the suggested pipeline.

2.4.3. Experiment 2. Prior to this experiment, there is little
known about the appliances of available standardized neural
network architectures on eventstreams. This experiment is
the starting point of this research in which we will perform
classification on the N-MNIST dataset. With the purpose to
obtain insight into which architectures can cope efficiently
with the data structure of eventstreams and which are able
to extract information from evenstreams. Argumentation
as to which extent an architecture can efficiently cope
with eventstreams can be deducted from the time it takes
to do a full epoch in the training loop and also how
many eventstreams can be processed parallel to each other
(batch size). Insight into the ability of the network to
extract information (also referred to as features) can be
obtained by the measured accuracy at which the network
can classify. These architectures are: ResNet [38], PointNet
[44], Dynamical Graph CNN (DGCNN) [39] and Point
Cloud Transformer (PCT) [27] and Transformer heavily
based on [30].

X consists of eventstreams of equal lengths of
N = 1024 with coordinates (x, y, t) and Y consists of one-
hot encoded labels. There are in total 10,000 evenstreams,
1,000 of each class. The networks are trained for 10 epochs
using Adam as an optimizer, lr = 0.005 and Cross-Entropy
(CE) Equation 6 as loss function.

2.4.4. Experiment 3. This experiment contains all
conducted tests concerning the task of super-resolution
under various test circumstances and data. The results
of these conducted tests will provide insight into the
suitability and limitations of different architectures which
will motivate design choices for further development of
a solution. For super-resolution, the focus lies upon the
discovery of network architectures to extract features that
are needed to predict missing data in a low-resolution to
form a complementary higher resolution. We will refer
to these network architectures as Feature extractors 2.2.
The Feature extractors are implemented as a module into
the pipeline as depicted in Figure 3. The used Coordinate
reconstructor is based on PU-GCN [33] and for the Polarity
reconstructor 2.3.3 k-NN is used. The basic idea is that
a neural network - consisting of Feature extractor and
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Coordinate reconstruction 2.3.2 modules - is used to
predict coordinates of the events in event-space (x, y, t),
the polarity of these predicted coordinates are then labeled
by applying K-NN fitted on the initial low-resolution
eventstream. This results in an end-to-end pipeline that
predicts a EHR of dimension (Nr, (x, y, t, p)) with scaling
ration r based on low-resolution input ELR of dimension
(N, (x, y, t, p)).

In this experiment, different network architectures will
be tested on their performance to super resolve events,
the performance is quantified by the Chamfer Distance
(CD) Equation 7. The choice of Feature extractors is based
on the findings in Experiment 2, these include PointNet
[44], ResNet-18, ResNet-34 and PCT [27]. Overviews
of the resulting network configurations are included in
Appendix A. The capabilities of these Feature extractors
will be exploited through testing on both N-MNIST and
N-Caltech-101 under various test conditions. This test
condition concerns the scaling ratio r between X and Y ,
the eventstream length N of X and different subsample
techniques to sample X ∈ Y from Y . The purpose is to get
a better insight into both the behavior and limitations. This
insight will enable the formation of stronger arguments
about the legitimacy of our found solutions.

Variating r tests to which scale a network can super
resolve and how this factor affects its performance and
variating N tests how the performance of a network is
relatable to the number of events in the input eventstream.
Fewer events in the input limit the ability of the network
to have a semantic understanding of the data e.g. in
the case of cropping the eventstream by a half (output
eventstream N = 2048) or a quarter (output eventstream N
= 1024) the network has less information about what the
evenstream is portraying. Variating N will give insight if
the network is extracting features based on the underlying
manifold/semantics or uses a policy in which it predicts
point just around the input events. The last policy is
motivated by the fact that since xi ∈ X are subsampled
from Y , there is a higher chance that yi are located around
the xi in the more dense areas in the event-space.

The two different subsample techniques include
subsample at random and subsample based on the spatial
coordinate address of the events. The first subsample
technique results in a sparse representation of Y , the
task for the algorithm is then to predict a more dense
representation. Although it lacks a realistic comparison to
the essence of super-resolving, this sample fashion enables
subsample by an unbounded to integer scaling ratio which
makes it favor exploiting the limitations of the Feature
extractors at ease. The second subsample technique results
in more realistic counterparts of low- and high-resolution
eventstreams. In which events are sampled based on their
address with respect to the observed position with respect
to the physical sensor (x, y), this fashion of sampling
is closely related to the essence behind super-resolving.

For example, N-MNIST is observed by a sensor with
dimensions (34 × 34), we will sub-sample to imitate
how a sensor with dimensions of (17 × 17) would have
observed. A visualization of sampling events by address
is depicted in Figure 6. This sub-sampling method is
refered to as True downsampling (TDS). By using TDS,
downsampling ELR from EHR is based on pixel-address. A
visualization of sampling by pixel-location from the spatial
perspective is depicted in Figure 6. It can be described
as ei ∈ ELR if eix mod 2 = 0 and eiy mod 2 = 0.
The difference between subsampling by TDS and at
random is observable in event-frames. However, as the data
is processed directly in event-space, differences between
these two sub-sampling techniques are expected to be minor.

Figure 6. Visualization of the subsample process with respect to the sen-
sor/spatial plane to obtain the low-resolution (LR) from the high-resolution
(HR) eventstream.

Initially, the test condition for super resolving event-
based vision is set at a scaling factor (r) of 4 on the input
eventstream with length (N) of 1024 events sub-sampled at
random on the N-MNIST dataset. These results are used to
compare the results obtained in the altered test conditions
later on in this experiment.

The altered test conditions can be divided into four
sections. 1) r is altered while having a fixed output length
of Y , this results in the following paired test circumstances
r ∈ [8, 4, 2] and N ∈ [512, 1024, 2048] . 2) r is fixed
to be 4 but input length N is altered, this results in the
following test circumstances N ∈ [256, 512, 1024]. 3) X is
obtained by the TDS sub-sample technique at r = 4 and
N = 1024. 4) The network configurations are trained and
tested on a more complex dataset N-Caltech-101, which
includes eventstreams with longer sequence lengths. In
this test, r = 4 and N = 1024. For the fourth part, none
of the network configurations are optimized nor adjusted
for usage on this data in order to test how generalizable
this research potentially is. In this test, r = 4 and N = 3072.

The different networks will be trained for 100 epochs
using Adam optimizer and lr = 0.005 and CD Equation 7
as loss function. The network is combined with the Polarity
reconstructor with k = 3 after it is trained to predict EHR.
Visualizations of both event-space and event-frames will be
made. Event-frames are converted using Algorithm 1.

2.4.5. Experiment 4. In this experiment, the found solution
for the pipeline will be compared to the earlier defined
benchmark which is based on PPP [21]. Before testing,

10



the network part of the solution will be optimized during
hyperparameter tuning. The test will be conducted on the
N-MNIST dataset which is downsampled by TDS at r = 4
and N = 1024. Quantification is made in two ways. (1) By
CD on the predicted eventstream, this enables to compare
the ability of the algorithm to predict the coordinates of the
events. (2) MSE on converted event-frames, this metric is
dependent on the algorithm’s (complete pipeline including
Polarity reconstructor) ability to predict coordinates and
polarity. Together, these two metrics deliver an overcomplete
quantization of performance to super resolve event-based
vision. Based on the results, conclusions will be drawn about
the applicability of the found solution to super resolve event-
based vision in event-space.

3. Results

This section depicts the obtained results from the con-
ducted experiments. Results will be further deliberated in
the discussion chapter 4.

3.1. Experiment 3: k-NN

The results of this experiment in which the accuracy
is measured at which k-NN can predict the polarity of an
event stream from which a portion has a masked polarity are
depicted in Table 1. An overview of the process is depicted
in Figure 7.

TABLE 1. OBTAINED ACCURACY IN PERCENTAGES (%) WHEN USING
k-NN TO PREDICT THE POLARITIES OF A EVENTSTREAMS

r k
1 3 5 7 9

2 98.2 97.3 96.6 95.8 95.1
4 93.1 93.7 92.3 90.7 89.2
8 90.3 87.4 84.6 82.1 80.0

This table shows the obtained accuracy when using k-
NN to predict the polarity of eventstreams with masked
polarity based on a smaller subset with polarity. Tests
are conducted at different scaling ratios r between the
masked eventstream and its subset wit and set values for
k.

Figure 7. Overview of the predicting process of the polarities of event
coordinates based (bottom left) on low-resolution (top left) input using k-
NN.

3.2. Experiment 2: Classification N-MNIST

The results of the first experiment in which data from
the N-MNIST dataset is classified are depicted in Table 2.
Noticeable is the high accuracy of PointNet in combination
with the lowest amount of parameters and a short epoch
time. A second observation is the highest epoch calculation
time of DGCNN in combination with the lowest accuracy
which indicates its inability to process from event-streams
and extract features. These observations encourage further
investigation of PointNet, PCT and ResNet for their
application to be used as a Feature extractor to vision super
resolve eventstreams.

TABLE 2. RESULTS OF DIFFERENT NETWORKS ON THE
CLASSIFICATION OF DATA FROM N-MNIST

Network Param.a Timeb Acc.c B. sized

106 s %
ResNet-18 7.69 15 63.5 512
ResNet-34 14.4 30 62.7 256
ResNet-50 16.0 87 56.6 64
ResNet-101 28.3 132 52.4 64
ResNet-152 38.5 215 42.4 32
PointNet 0.68 17 77.4 256
PCT 1.47 14 61.3 256
Transformer 1.47 65.2 59 64
DGCNN 1.8 320 41.2 8
aNumber of learnable parameters
bTime it takes for 1 epoch to be calculated
cFinal accuracy to predict labels in the testset
dBatch-size which is the maximum number of
data-instance to be parallel processed overloading
the GPU

This table shows various quantities obtained from the
tested network configurations during the task of classi-
fying data from N-MNIST.

3.3. Experiment 3: SR of eventstreams

3.3.1. Results the initial experiment on N-MNIST.
Performance to predict locations of the super resolution of
the different Feature extractors measured by CD and are
depicted in Table 3. The Feature extractor which uses the
PCT-based architecture results in the highest performance.
In several instances, the epoch calculation time of the
PCT in the given test circumstances of input sequence
length (N = 1024) resulted in the longest computation
time contrary to Experiment 2 in which the input sequence
length was shorter (N = 256). This difference is important
to note since it reveals insight into the scalability of the
network type as a function of input sequence lengths. This
is important since an input sequence length of 1024 is small
compared to the expected sequence lengths of eventstreams
of more realistic event-base footage which is several times
larger.

Visualization of the coordinates prediction of events of
Xcoor, Ycoor, and Ȳcoor by the PointNet Feature extractor
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are depicted respectively in Figure 8a. The polarity of
Ȳcoor is retrieved using the k-NN module, and the result is
visualized in Figure 8b. Event-frames are converted from
event-space using Algorithm 1. Visualizations of event-
frames predicted by the networks using the different Feature
extractors are depicted in Figure 9. Visually, converted
event-frames from the predictions of the networks using
PCT and PointNet modules are similar to the same degree
to its ground truth while predictions made using a ResNet
module only slightly resemble the ground truth. These
visual observations made from the event-frames are analog
to the resulting losses.

TABLE 3. RESULTS OF DIFFERENT FEATURE EXTRACTORS ON SR OF
N-MNIST

Feature extractor Param.a Timeb CDc B. sized

106 s 10−3

ResNet-18 7.71 71 1.67 256
ResNet-34 14.46 121 1.83 128
PointNet 0.88 55 1.30 256
PCT 0.94 179 1.22 64
aNumber of learnable parameters
bTime it takes for 1 epoch to be calculated
cMeasured Chamfer Distance on testset
dBatch-size which is the maximum number of data-instance
to be parallel processed overloading the GPU

This table shows various quantities obtained from the tested
network configurations during the task of super resolving
data from N-MNIST at scaling ratio r = 4 with eventstream
length N = 1024.

(a) Event coordinates (b) events with polarity

Figure 8. Visualization of input (X), Ground truth (Y ) and Prediction (Ȳ )
made using a PointNet based Feature exractor in event-space.

Figure 9. Event-frames converted at tbin = 10−3s from super-resolution
predictions made on data from N-MNIST with r = 4, N = 1024 using
networks utilizing a PCT, PointNet, ResNet-18 and ResNet-34 Feature
extractor.

3.3.2. Exploiting limitations of networks to super
resolve. In order to exploit the limitations of networks to
super resolve, an altered test was conducted which consists
of 4 parts. Results are shown in Table 4.

In the first part, it was tested how the performance of
a network, measured by the CD loss function, is affected
by the scaling ratio r. In line with triviality, the resulting
loss becomes larger when r becomes larger and vice versa.
The test circumstances in which r = 8 and N = 512
resulted in the highest loss. Visualizations of the predicted
eventstreams are shown in Figure 19 of Appendix B for
both event-space and event-frames. This figure shows the
difference in density between the input sequence and the
ground truth which emphasizes the level of difficulty to
super resolve at this scaling ratio.

In the second part correlation between input eventstream
lengths N and the ability to super resolve was tested. Data
shows all network configurations benefit from having a
longer sequence length since it results in a lower loss. Test
circumstances in which r = 4 and N = 256 resulted in the
highest loss. Visualization of the predicted eventstreams
are depicted in Figure 23 and converted event-frames in
Figure 22 and 25.

In the third part network configurations were trained

12



and tested on a dataset in which X is sampled by the true
downsample (TDS) technique from Y . It was expected
that performance would not be affected significantly, this
expectation is supported by the quantified results in Table 4.
Yet, Figure 11 depicts converted event-frames that show a
checkerboard pattern to appear on the predictions made by
the network which uses a PCT Feature extractor. Predicted
events in event-space are shown in Figure 10.

In the fourth and final part of this experiment, a test
is performed in which the networks were trained on the
N-Caltech-101 dataset with N = 3072 and r = 4 and
TDS as downsampling technique. Comparing the obtained
loss between each network configuration gives a similar
ranking as previous parts. Figure 12 depicts the event-space
representation of a data instance from N-Caltech-101.
Figure 13 depicts predicted event-frames on some of
the more simple data instances from N-Caltech-101.
Predictions of the network configuration on more complex
datainstances of the N-Caltech-101 dataset are depicted in
Figure 24 of Appendix B.

Solely based on the quantified loss obtained by the
Chamfer Distance in extensive tests that have been con-
ducted in this experiment, it can be concluded that PCT-
based Feature extractor results in the best performing net-
work and PointNet-based Feature extractor as second best.
ResNet would be the least-suited Feature extractor to be
implemented in our network.

Figure 10. Event-frames converted at tbin = 10−3s from super-resolution
predictions made on data from N-MNIST with r = 4, N = 1024
subsampled by TDS using networks utilizing a PCT, PointNet, ResNet-
18 and ResNet-34 Feature extractor.

(a) (b)

Figure 11. Super-resolution predictions made on data from N-MNIST with
r = 4, N = 1024 subsampled by TDS using networks utilizing a PCT,
PointNet, ResNet-18 and ResNet-34 Feature extractor.

TABLE 4. RESULTING LOSS OF FEATURE EXTRACTORS ON SR OF
N-MNIST UNDER VARIOUS TEST CONDITIONS

Test conditions PointNet ResNet-18 ResNet-34 PCT
r = 8, N = 512 1.50 1.81 1.70 1.33
r = 4, N = 1024 1.30 1.67 1.83 1.22
r = 2, N = 2048 0.83 1.30 1.42 0.74
r = 4, N = 256 3.34 4.68 4.4 3.20
r = 4, N = 512 1.83 2.53 2.64 1.85
r = 4, N = 1024 1.30 1.67 1.83 1.22
r = 4, N = 1024 1.30 1.67 1.83 1.22
TDS 1.21 1.74 1.76 1.18
N-Caltech-101 1.10 1.89 1.75 1.04

This table shows obtained Chamfer Distance (10−3) between the super
resolved- and the ground truth eventstream when using PointNet, Resnet-18,
ResNet-34 and PCT as a Feature extractor in the network. Tests are conducted
using different test condictions defined by scaling ratio r, input eventstream
N , subsample technique TDS and dataset N-Caltech-101.
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(a) (b)

Figure 12. Super-resolution predictions made on N-Caltech-101 with
r = 4, N = 3072 subsampled by TDS using networks utilizing a PCT,
PointNet, ResNet-18 and ResNet-34 Feature extractor.

Figure 13. Event-frames converted at tbin = 10−3s from super-resolution
predictions made on data from N-Caltech-101 with r = 4, N = 3072
subsampled by TDS using networks utilizing a PCT, PointNet, ResNet-18
and ResNet-34 Feature extractor.

3.4. Experiment 4: Benchmark solution to the base-
line method

The obtained pipeline to super resolve event-
based vision will be compared in this final test to
the defined baseline method. The baseline method uses PPP
characteristics to supersample given input as described in
section 2.1. The pipeline final configuration of the obtained
network architecture obtained after hyperparameter tuning is
depicted in Figure 14. The process of hyperparameter tuning
is included in Appendix D in which altered configurations
of hyperparameters were exploited. However, the tested
altered network configuration did not result in performance
gains. Consequently, the tuned architecture is the same
as the initial (vanilla) architecture. The network was then
trained on an augmented dataset which led to convergence
to a lower loss value, for consecutive 50 epochs with a
lr=0.005, 50 epochs with lr=0.0035 and 50 epochs with
lr=0.002 using Adam as optimizer. The trained network is
used next to the PPP-based method in the final test from
which its results are depicted in Table 5. Visualization of
the predictions made by PPP and trained network (referred
to as proposed model) in combination with the given Input
and Ground truth is depicted in Figure 15.

Data shows that the found network, as opposed to the
baseline method, was able to predict the coordinate of super
resolved events more similar to the ground truth with a
resulting Chamfer Distance of 0.779e-3 vs 2.034e-3 at a
smaller standard deviation 0.779e-3 vs 2.034e-3 in the given
test circumstances with r = 4 and N = 1024.

TABLE 5. RESULTS OF DIFFERENT NETWORKS ON THE
CLASSIFICATION OF N-MNIST

Algorithm CD MSE
avga (µ) 10−3 stdb (σ) 10−4 avg (µ) std (σ)

PPP 2.034 1.869 1.511 0.5491
PCT 0.779 0.549 0.336 0.0620
aaverage
bstandard deviation
This table shows obtained averages and the standard deviations of
the measured Chamfer Distance and Mean Squared Error between the
ground truth and predictions.
obtained on N-MNISTS validation set under conditions defined by
scaling ratio r, input eventstream N , using the PPP basline method
and the proposed pipeline with PCT implemented as Feature extractor.
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Figure 14. Overview of the obtained network configuration implemented in the proposed pipeline.

Figure 15. Event-frames converted at tbin = 10−3s from super-resolution
predictions made on data fromN-MNIST with r = 4, N = 1024 subsam-
pled by TDS using PPP and the proposed model.

4. Discussion

In this study, methods are explored to super resolve
event-based vision in event-space. The research gap was
broad as no solution had been proposed to this problem
prior to this research. This resulted in a large solution space
in which various methods had to be considered.

4.1. Experiment 1

Experiment 1 was conducted in order to test the ap-
plicability of k-NN when used to predict the polarity of
events, results are depicted in Table 1. The main focus of
this study is to super resolve at a scaling ratio for 4 (r = 4)
for which the highest accuracy is obtained (93.7%) when
k= 3. A secondary choice would be the use of k= 1 since it
performs second best when in test circumstances with r = 4
and best when r = 2 and r = 8. Another observation is
the strong correlation between a higher r and a decrease
in the accuracy at which k-NN can predict the polarity.
Although this correlation can be explained as a result of
more information missing when r becomes larger. Yet, this
correlation should be noted as it indicates that alternatives
should be researched when the aim is to super resolve at
higher scaling ratios.

4.2. Experiment 2

The aim of Experiment 2 was to filter out potential
networks from a large considered selection. Initial filtering
was based the network’s ability to process event-based
data efficiently and extract features from it measured by
respectively the calculation time per epoch and the accuracy
of the network to classify N-MNIST. Results from this
initial experiment, shown in Table 2, indicate the potential
applicability of ResNet-18, ResNet-34, PointNet and PCT
for further research.

Notably, the PointNet configuration resulted in higher
accuracy than the ResNet configuration while having
significantly fewer parameters. This result is counter-
intuitive since both configurations rely on convolutional
layers as a backbone and the fact that ResNet consists of ten
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times more parameters which should enhance the ability to
extract features and thus logically predict more accurately
accordingly. This observation indicates that PointNet extract
features more effectively. Also, data suggest an inverse
relationship between the complexity of the used ResNet
variant and the obtained accuracy. This inverse relationship
may be due to a combination of training with an insufficient
large dataset (containing of 10,000 data instances) and
a limited number of training epochs which leads to
insufficient resources to train larger networks. Another
explanation can be that convolutional networks do not
benefit from deep architectures (i.e. multiple layers) when
used for classifying a relatively simple event-based dataset
like N-MNIST. However, it is plausible that these deeper
architectures would be beneficial for other tasks such as
super-resolution. Therefore ResNet-18 and ResNet-34 were
included in this initial selection despite lower measured
performance compared to the PointNet configuration.

4.3. Experiment 3

In Experiment 3 various tests were conducted to exploit
the limitations of the selected network types when used as a
Feature extractor module in the suggested pipeline. The data
in Table 3 shows that, contrary to the results of Experiment
2, the PCT configuration has the longest epoch time.
This can be attributed to the fact that the computational
complexity of transformers increases quadratically to the
sequence length of the input. Since the sequence length
of the input was increased from 256 in Experiment 2 to
1024 in this experiment, a transformer architecture needs
roughly 16 times more time to do the same calculation.
This property of transformers is important to note since it
results in poor scalability with respect to longer sequence
lengths and could potentially make this type of architecture
impractical due to long calculation times.

When comparing the converted event-frames in Figure
9, it can be seen that the PCT and PointNet configurations
performed similarly. Both enable the prediction of event
coordinates to match the appearance of the digit in the
ground truth. Yet, the predicted event-frame had a noisy
appearance which does not reflect the same smooth
gradient as appeared in the ground truth. The noisy
appearance is possible due to either wrongly predicted
polarities or an inconsistent number of events occurring
at neighboring spatial addresses. In the case of wrongly
predicted coordinates, this would be the result of the
used polarity reconstructor and is instantiated outside of
the network. If this appearance is due to an inconsistent
number of predicted events, it would be caused by the
network and could be vanished in the final solution when
the network is optimized and fully trained. As for the
converted event-frames from the ResNet predictions, the
digit appears on different coordinate locations as ground
truth. Also, it misses out on details and only has a similar

shape from a high-level point of view.

In additional tests consisting of four parts, the ability of
the networks to super resolve under different scaling ratios
(r), input sequence lengths (N ), data that is downsampled
with respect to the spatial address, as well as more complex
data from N-Caltech-101, was evaluated.

4.3.1. First part. The first part of the additional tests
researched to what extent the scaling ratio affects the
networks. It was found that lower scaling ratios result in
a lower number of data points to be predicted, which is
inherently easier. Nevertheless, the obtained loss did not
vary significantly between tests with r = 4 and r = 8.
Furthermore, ResNet-34 even obtained a lower loss in
the test with r = 8 than in r = 4. This variation in
results can be attributed to the volatility of the obtained
learning curve in combination with the non-deterministic
nature of the training-process. Despite the small difference
in the obtained result between r = 8 then in r = 4, it
indicates tested network configurations’ indifference to
higher scaling ratios. However, there is a catch that can
explain this observation, the used technique to downsample
the data was at random as opposed to based on spatial
address. When a network is trained on this resulting dataset,
it learns how to predict a more dense event stream based
on a sparse input. The sparse dataset still holds a certain
level of information about the perimeter of the depicted
digit, which can be seen in the input column in Figure
18. It is likely that the visible perimeter is used by the
network as a feature to predict features, thus leading to
indifference in predicting under higher scaling ratios. A
downsample technique based on the spatial address of
events was utilized in the third and fourth parts of this
experiment and the final experiment to test under more
realistic test circumstances.

4.3.2. Second part. In the second part of the additional
tests, the relationship between input sequence lengths
and the obtained loss was tested. The results in Table 4
indicate that all networks benefit from having a larger input
sequence length. This observation supports the argument
that all networks do take semantics into account when
super resolving. Another plausibility is that the calculation
of the loss is biased towards spatial correctness when N
is larger. In both cases (relatively shorter and longer input
sequence lengths) the maximum values are bounded to
equal 1 which is not compensated in the loss calculation,
resulting in the calculation of the loss being more biased
towards spatial correctness when N is larger. Since spatial
coordinate is assumable to be easier to predict as opposed
to temporal coordinate, the loss would be probably lower.
While the essence of this test seems to be ambiguous, it
still has relevance as a sanity check and is insightful in the
behavior of the tested network configurations.
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4.3.3. Third part. In the third part of Experiment 3,
networks were tested on a dataset that was downsampled
with respect to the spatial address of events (TDS). This
downsampling technique was different from the previously
used downsample technique which was based on sampling
at random. The obtained loss from this test, with the same
test circumstances (r = 4, N = 1024), were similar to
the results obtained from the previous test as can be seen
in Table 4. However, upon inspection of the visualized
results shown in Figure 11 and Figure 25 in Appendix
B, it was observed that the shown predictions made by
PointNet Feature extractor displayed distortions. Since only
the sub-sample technique prior to these tests changed, it is
likely that this effect is highlighted as a result of the TDS
subsample technique. This checkerboard pattern suggests a
failing in the policy of the PointNet network configurations
to super resolve. Assumable, this pattern indicates that the
network uses a policy in which it super resolves by simply
predicting the location of the events to fall into the same
coordinates as the events in the input.

4.3.4. Fourth part. In the final part of Experiment 2,
a different dataset is used that includes eventstreams
with much larger sequence lengths that are captured at
a higher spatial resolution. The results are depicted in
Table 4. It should be noted that the resulting loss should
not be compared to the obtained losses in previous tests
as this would result in misleading interpretations due to
the differences in N-MNIST and N-Caltech-101 datasets.
These differences originate in the fact that events in
eventstreams in N-Caltech-101 are to a higher degree
scattered distributed compared to N-MNIST which is
observable when comparing Figure 10 to Figure 12.
As the scattered distribution is more closely related to
a homogeneous distribution, predictions are inherently
closer related which yields a lower loss. Both PointNet
and PCT network configurations seem capable of super
resolving more complex eventstreams like N-Caltech-101.
Nevertheless, it should be noted that the quadratic scaled
computational complexity of the transformer architecture
resulted in 12 hours for PCT to train for 100 epochs
as opposed to 1 hour for the PointNet-based network
configuration.

To summarize the observations, the PointNet and PCT-
based configurations perform on par with respect to the
resulting loss throughout all conducted tests in Experiment
3. still, it is important to note that both have their own
shortcomings. The usage of a PCT module results in
quadratic scaled computational complexity which possibly
makes this module obsolete when super-resolving much
larger eventstreams (N >> 10, 000). While the predictions
made by the PointNet configuration show, specifically in
the event-frames, distortions to appear in a checkerboard
pattern. Speculations about the origin of the distortions are
formulated which argue it to be due to a too simplistic found
policy by the PointNet configurations. But explanations of

observed behavior based on theoretical knowledge of the
concerning network dynamics are necessary in order to
form solid argumentation and be able to decide between
the PCT- and PointNet-based Feature extractor for further
development. This is done in Appendix C.

The results from the additional tests in this experiment
and the detailed theoretical knowledge in Appendix C
support the hypothesis that the PointNet-based network
lacks semantic awareness. This lack of semantic awareness
results in a too simplistic policy to super resolve events
which is motivated by the perceived checkerboard effect
on predictions made by the PointNet-based network. This
policy rather predicts super resolved points around the
coordinates of the given inputs instead of predicting based
on semantics. The lack of semantic awareness is caused
by kernel sizes in the convolution layers (only the first
convolutional layer has a kernel of 9 while the rest of 1)
in combination with the channel-wise MLP layers which
isolates data in each neuron and avoid data to flow trough
parallel neurons. Attempts to prevent this isolation in order
to enhance semantic awareness did not seem to work out
but can be used for further research. While transformers,
like PCT, use layers named self-attention modules which
selectively focus on the most relevant information per event
with respect to each other event. Self-attention incorporates
the semantics of the input into the predictions and enables
the network to use a more advanced prediction policy.
A small ablation study was performed in an attempt to
gain insight and explain the used policy by the obtained
network, this is included in Appendix E. Unfortunetaly, the
abblation study did not result in a explicit understanding
of the used policy. Based on the theoretical knowledge and
additional test, the decision was made to choose PCT for
further development.

4.4. Experiment 4

After the hyperparameter tuning process which is
included in Appendix D, the solution in the form of
a pipeline consisting of a PCT-based Feature extractor,
Coordinate reconstruction based on PU-GCN and a Polarity
reconstructor based on k-NN with k= 3 is our proposed
solution. This solution is depicted in Figure 14 and was
compared to the baseline method, based on principles from
PPP, in Experiment 4. It should be noted that the proposed
solution is compatible with CUDA5 which enables parallel
computations which is not possible with the baseline
method. This deviancy results in a large computation time
of approximately 15 seconds for a single data instance
while the proposed solution can process data instances
almost instantaneously. Results show that the proposed
solution performed superior compared to the baseline
method in every quantified aspect and provides a proof of

5. CUDA (Compute Unified Device Architecture) is a parallel computing
platform

17



concept of this pipeline. Also from a visual perspective
when looking at the converted event-frames, the proposed
solution retrieves details from the low-resolution input
and thereby contributes towards enhanced quality of the
event-stream which is debatable for baseline method as
can be seen in Figure 15. However, the baseline method
enables sequence-to-sequence data handling, which results
in the ability to handle arbitrary lengths of eventstreams
and predict variable lengths of SR eventstreams. While
the proposed pipeline is restricted to vector-to-vector
data handling which means that it is both configured
and trained for fixed input and output lengths. In this
research, the scope was set to super-resolve with respect
to the spatial resolution by factor 2. This translate to the
practical interpretation that a solution is researched which
enables eventstream captured by a low-resolution sensor
of size (W,B) to be predicted as it was captured by a
high-resolution sensor of size (2W, 2B). Although there
are 4 times as many pixels, the resulting sequence lengths
of the eventstreams captured by an HR sensor are not
strictly fixed by factor 4. The inability of the proposed
solution to process a sequence is a disadvantage but can
be overcome when processing large eventstreams in parts
in a convolving/sliding fashion. Another caveat of the
comparison, is the degree of underdevelopment of the
baseline method as opposed to the suggested pipeline.
Significant performance gains are expected to be realized
from the baseline method if it is developed further. This
expectation is based on the fact that the publishers of this
method claimed far better performance in their paper [21]
as we were able to realize.

5. Conclusion

Event-based vision has many promising vision properties
which makes it potentially applicable for a wide range of
computer vision implementations. The limiting factor of
an event-based camera, however, is the spatial solution.
This research aimed to overcome this limiting factor by
super resolving the spatial resolution of eventstreams. The
solution was suggested to be in the form of a pipeline.
From a high-level point of view, this pipeline consists
of three distinctive modules, namely: Feature extractor,
Coordinate reconstructor and Polarity reconstructor. In
order to find solutions for these modules, the following
sub-questions were formulated:

1) To what extent can a naive algorithm be used
to super resolve events or would it suffice to have a
learning-based algorithm?

Literature showed a proposed naive algorithm that
uses the Thinning sampling technique to super resolve
eventstreams [21]. Implementing their proposed method
did yield a solution that could super resolve events, but
visually this did not match the proclaimed results from
the paper. This naive method was used as a baseline

method and functioned as a benchmark of the solution that
was eventually found. This suggests that a learning-based
algorithm would result in a more sufficient solution.

2) Which type of neural network is best capable to
extract features in event-based data when used in the
Feature extractor module?

Various experiments have been conducted in Experiment
2 and Experiment 3 in order to find the answer to this sub-
question. After analyzing the results, it was concluded that
a PCT-based network was most capable to extract features
from event-based data. This conclusion was supported by
theoretical knowledge that transformers enable the finding
of dependencies in data that do not follow a grid-like
structure like eventstreams.

3) To what extent can we predict the coordinates of
events of high-resolution eventstream based on a given
feature-set using a Coordinate reconstructor module?

Throughout this research, a module inspired by PU-
GCN [33] was issued which performed reasonably well
when implemented in the suggested pipeline. Arguably,
this research lacks a dedicated test to benchmark the used
solution. At the same time, it was not part of the primary
scope of this research as it performed reasonably well right
from the start and was not considered a bottleneck.

4) To what extent can we retrieve polarity after super-
resolving using k-NN as a Polarity reconstruction module?

Initial tests in the literature research as part of this
study proved the applicability of the use of k-NN to retrieve
polarity and additional tests were conducted in Experiment
1. Results from the additional tests confirmed this initial
proof of concept in a more extensive fashion. Nevertheless,
the use of k-NN as a Polarity reconstructor is limited in
this pipeline which scales at r = 4. For larger r, the k-NN
algorithm is not suitable as the accuracy drops significantly
for which alternative methods should be researched.

The answers to the sub-questions enable answering the
main question which was formulated as:

To what extent and by which method can event-based
vision be super resolved in event-space?

A solution that enables spatial super-resolution of event-
based vision in event-space was found after implementing
the used methods used to answer sub-questions 2, 3, 4 as
modules in the stated pipeline. The found pipeline was com-
pared with the baseline solution in Experiment 4 in which
performance was measured in the form of two metrics.
Firstly, Chamfer Distance measured the distance between
the predicted and ground truth eventstreams and thereby
quantified how similar the predictions were. Secondly, Mean
Square Error measured the similarity between the converted
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event-frames from the super resolved and ground truth
eventstreams which is dependent on the ability to predict
both the coordinates and the polarity of the events and
thereby quantified the overall similarity. Based on results
from both metrics, it was concluded that the found solution
was superior to the baseline method. In addition, from
a visual perspective, the converted event-frames from the
super resolved eventstreams depict a more detailed version
of the low-resolution input. Therefore, the found solution is
considered to enhance the spatial resolution from a practical
perspective also. The found solution should be considered
as a starting point in further research toward the super-
resolution of event-based data and thereby contributes to the
extension of application possibilities of event-based vision.

6. Recommendations

The proposed model in this solution is a mere first
contribution towards super-resolution of event-based vision.
The main focus of this study was on finding the most
suitable type of neural network architecture to be used as
a feature extractor. As a result, the other modules in our
proposed pipeline, Coordinate reconstructor and Polarity
reconstructor, received less attention. These modules were
optimized during the hyper-parameter tuning, but this
was limited to the settings within the algorithm itself and
lacks consideration of different types of algorithms. This
leaves room for research towards alternative solutions for
the Coordinate reconstructor and Polarity reconstructor.
Therefore, in further research, we highly recommend
considering our proposed pipeline as a starting point and
researching alternative methods in order to optimize the
Coordinate reconstructor and Polarity reconstructor.

Also, solutions can be researched to counter the caveat
of quadratic scalability of the computational complexity
with respect to the input sequence length which makes
usage of its transformers on long sequence lengths possibly
obsolete. We expect that sliding box operation can be used
to process long sequence eventstreams. Another possibility
is to use an operation like k-NN before the transformer
which limits the calculation of dependencies of each event
to only the k nearest neighbor. A similar method is applied
in PU-GCN [33]. Unfortunately, the publishers have not
made the code of PU-GCN publicly available yet and an
attempt to reproduce this architecture failed due to the
absence of the needed functions in supporting standard
libraries in order to define the needed modules. It is,
however, expected that the concerning code will be made
publicly available at the time their paper is accepted and
standard libraries will adopt these functions which enable
reproducing PU-GCN.

Lastly, to make the solution generalize better, a
downsample technique with inflicted noise into X can be
considered.
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Appendix A.
Network configurations

TABLE 6. ARCHITECTURE OVERVIEW OF THE PCT CONFIGURATION

Layer (type) Output Shape Param #
Conv1d-1 [-1, 128, 1024] 2,688
BatchNorm1d-2 [-1, 128, 1024] 256
ReLU-3 [-1, 128, 1024] 0
Conv1d-4 [-1, 128, 1024] 114,688
BatchNorm1d-5 [-1, 128, 1024] 256
ReLU-6 [-1, 128, 1024] 0
Conv1d-7 [-1, 32, 1024] 4,096
Conv1d-8 [-1, 32, 1024] 4,096
Conv1d-9 [-1, 128, 1024] 16,512
Softmax-10 [-1, 1024, 1024] 0
Conv1d-11 [-1, 128, 1024] 16,512
BatchNorm1d-12 [-1, 128, 1024] 256
ReLU-13 [-1, 128, 1024] 0
SA Layer-14 [-1, 128, 1024] 0
Conv1d-15 [-1, 32, 1024] 4,096
Conv1d-16 [-1, 32, 1024] 4,096
Conv1d-17 [-1, 128, 1024] 16,512
Softmax-18 [-1, 1024, 1024] 0
Conv1d-19 [-1, 128, 1024] 16,512
BatchNorm1d-20 [-1, 128, 1024] 256
ReLU-21 [-1, 128, 1024] 0
SA Layer-22 [-1, 128, 1024] 0
Conv1d-23 [-1, 32, 1024] 4,096
Conv1d-24 [-1, 32, 1024] 4,096
Conv1d-25 [-1, 128, 1024] 16,512
Softmax-26 [-1, 1024, 1024] 0
Conv1d-27 [-1, 128, 1024] 16,512
BatchNorm1d-28 [-1, 128, 1024] 256
ReLU-29 [-1, 128, 1024] 0
SA Layer-30 [-1, 128, 1024] 0
Conv1d-31 [-1, 32, 1024] 4,096
Conv1d-32 [-1, 32, 1024] 4,096
Conv1d-33 [-1, 128, 1024] 16,512
Softmax-34 [-1, 1024, 1024] 0
Conv1d-35 [-1, 128, 1024] 16,512
BatchNorm1d-36 [-1, 128, 1024] 256
ReLU-37 [-1, 128, 1024] 0
SA Layer-38 [-1, 128, 1024] 0
Conv1d-39 [-1, 1024, 1024] 524,288
BatchNorm1d-40 [-1, 1024, 1024] 2,048
LeakyReLU-41 [-1, 1024, 1024] 0
Linear-42 [-1, 1024, 128] 131,200
Linear-43 [-1, 4096, 64] 2,112
Linear-44 [-1, 4096, 16] 1,040
Linear-45 [-1, 4096, 3] 51
Total params: 944,515
Input size (MB): 0.01
Forward/backward pass size (MB): 87.59
Params size (MB): 3.60
Estimated Total Size (MB): 91.21

Overview the successive layers used in the PCT-
based network for super-resolution of eventstreams
at r = 4 and N = 1024.

TABLE 7. ARCHITECTURE OVERVIEW OF THE POINTNET
CONFIGURATION

Layer (type) Output Shape Param #
Conv1d-1 [-1, 64, 1024] 960
BatchNorm1d-2 [-1, 64, 1024] 128
Conv1d-3 [-1, 64, 1024] 20,480
BatchNorm1d-4 [-1, 64, 1024] 128
Conv1d-5 [-1, 64, 1024] 20,480
BatchNorm1d-6 [-1, 64, 1024] 128
Conv1d-7 [-1, 128, 1024] 40,960
BatchNorm1d-8 [-1, 128, 1024] 256
Conv1d-9 [-1, 1024, 1024] 655,360
BatchNorm1d-10 [-1, 1024, 1024] 2,048
Linear-11 [-1, 1024, 128] 131,200
Linear-12 [-1, 4096, 64] 2,112
Linear-13 [-1, 4096, 16] 1,040
Linear-14 [-1, 4096, 3] 51
Total params: 875,331
Input size (MB): 0.01
Forward/backward pass size (MB): 24.59
Params size (MB): 3.34
Estimated Total Size (MB): 27.94

Overview the successive layers used in the PointNet-
based network for super-resolution of eventstreams
at r = 4 and N = 1024.
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TABLE 8. ARCHITECTURE OVERVIEW OF THE RESNET-18
CONFIGURATION

Layer (type) Output Shape Param #
Conv2d-1 [-1, 64, 3, 512] 512
MaxPool2d-2 [-1, 64, 3, 256] 0
BatchNorm2d-3 [-1, 64, 3, 256] 128
ReLU-4 [-1, 64, 3, 256] 0
Conv2d-5 [-1, 64, 3, 256] 28,736
BatchNorm2d-6 [-1, 64, 3, 256] 128
Conv2d-7 [-1, 64, 3, 256] 20,544
BatchNorm2d-8 [-1, 64, 3, 256] 128
ResBlock-9 [-1, 64, 3, 256] 0
Conv2d-10 [-1, 64, 3, 256] 28,736
BatchNorm2d-11 [-1, 64, 3, 256] 128
Conv2d-12 [-1, 64, 3, 256] 20,544
BatchNorm2d-13 [-1, 64, 3, 256] 128
ResBlock-14 [-1, 64, 3, 256] 0
Conv2d-15 [-1, 128, 3, 128] 24,704
BatchNorm2d-16 [-1, 128, 3, 128] 256
Conv2d-17 [-1, 128, 3, 128] 57,472
BatchNorm2d-18 [-1, 128, 3, 128] 256
Conv2d-19 [-1, 128, 3, 128] 82,048
BatchNorm2d-20 [-1, 128, 3, 128] 256
ResBlock-21 [-1, 128, 3, 128] 0
Conv2d-22 [-1, 128, 3, 128] 114,816
BatchNorm2d-23 [-1, 128, 3, 128] 256
Conv2d-24 [-1, 128, 3, 128] 82,048
BatchNorm2d-25 [-1, 128, 3, 128] 256
ResBlock-26 [-1, 128, 3, 128] 0
Conv2d-27 [-1, 256, 3, 64] 98,560
BatchNorm2d-28 [-1, 256, 3, 64] 512
Conv2d-29 [-1, 256, 3, 64] 229,632
BatchNorm2d-30 [-1, 256, 3, 64] 512
Conv2d-31 [-1, 256, 3, 64] 327,936
BatchNorm2d-32 [-1, 256, 3, 64] 512
ResBlock-33 [-1, 256, 3, 64] 0
Conv2d-34 [-1, 256, 3, 64] 459,008
BatchNorm2d-35 [-1, 256, 3, 64] 512
Conv2d-36 [-1, 256, 3, 64] 327,936
BatchNorm2d-37 [-1, 256, 3, 64] 512
ResBlock-38 [-1, 256, 3, 64] 0
Conv2d-39 [-1, 512, 3, 32] 393,728
BatchNorm2d-40 [-1, 512, 3, 32] 1,024
Conv2d-41 [-1, 512, 3, 32] 918,016
BatchNorm2d-42 [-1, 512, 3, 32] 1,024
Conv2d-43 [-1, 512, 3, 32] 1,311,232
BatchNorm2d-44 [-1, 512, 3, 32] 1,024
ResBlock-45 [-1, 512, 3, 32] 0
Conv2d-46 [-1, 512, 3, 32] 1,835,520
BatchNorm2d-47 [-1, 512, 3, 32] 1,024
Conv2d-48 [-1, 512, 3, 32] 1,311,232
BatchNorm2d-49 [-1, 512, 3, 32] 1,024
ResBlock-50 [-1, 512, 3, 32] 0
Linear-51 [-1, 512, 3, 128] 4,224
Linear-52 [-1, 1024, 128] 24,704
Linear-53 [-1, 4096, 64] 2,112
Linear-54 [-1, 4096, 16] 1,040
Linear-55 [-1, 4096, 3] 51
Total params: 7,714,691
Input size (MB): 0.01
Forward/backward pass size (MB): 24.22
Params size (MB): 29.43
Estimated Total Size (MB): 53.66
Overview the successive layers used in the
ResNet-18-based network for super-resolution of
eventstreams at r = 4 and N = 1024.

TABLE 9. ARCHITECTURE OVERVIEW OF THE RESNET-34
CONFIGURATION

Layer (type) Output Shape Param #

Conv2d-1 [-1, 64, 3, 512] 512
MaxPool2d-2 [-1, 64, 3, 256] 0
BatchNorm2d-3 [-1, 64, 3, 256] 128
ReLU-4 [-1, 64, 3, 256] 0
Conv2d-5 [-1, 64, 3, 256] 28,736
BatchNorm2d-6 [-1, 64, 3, 256] 128
Conv2d-7 [-1, 64, 3, 256] 20,544
BatchNorm2d-8 [-1, 64, 3, 256] 128
ResBlock-9 [-1, 64, 3, 256] 0
Conv2d-10 [-1, 64, 3, 256] 28,736
BatchNorm2d-11 [-1, 64, 3, 256] 128
Conv2d-12 [-1, 64, 3, 256] 20,544
BatchNorm2d-13 [-1, 64, 3, 256] 128
ResBlock-14 [-1, 64, 3, 256] 0
Conv2d-15 [-1, 64, 3, 256] 28,736
BatchNorm2d-16 [-1, 64, 3, 256] 128
Conv2d-17 [-1, 64, 3, 256] 20,544
BatchNorm2d-18 [-1, 64, 3, 256] 128
ResBlock-19 [-1, 64, 3, 256] 0
Conv2d-20 [-1, 128, 3, 128] 24,704
BatchNorm2d-21 [-1, 128, 3, 128] 256
Conv2d-22 [-1, 128, 3, 128] 57,472
BatchNorm2d-23 [-1, 128, 3, 128] 256
Conv2d-24 [-1, 128, 3, 128] 82,048
BatchNorm2d-25 [-1, 128, 3, 128] 256
ResBlock-26 [-1, 128, 3, 128] 0
Conv2d-27 [-1, 128, 3, 128] 114,816
BatchNorm2d-28 [-1, 128, 3, 128] 256
Conv2d-29 [-1, 128, 3, 128] 82,048
BatchNorm2d-30 [-1, 128, 3, 128] 256
ResBlock-31 [-1, 128, 3, 128] 0
Conv2d-32 [-1, 128, 3, 128] 114,816
BatchNorm2d-33 [-1, 128, 3, 128] 256
Conv2d-34 [-1, 128, 3, 128] 82,048
BatchNorm2d-35 [-1, 128, 3, 128] 256
ResBlock-36 [-1, 128, 3, 128] 0
Conv2d-37 [-1, 128, 3, 128] 114,816
BatchNorm2d-38 [-1, 128, 3, 128] 256
Conv2d-39 [-1, 128, 3, 128] 82,048
BatchNorm2d-40 [-1, 128, 3, 128] 256
ResBlock-41 [-1, 128, 3, 128] 0
Conv2d-42 [-1, 256, 3, 64] 98,560
BatchNorm2d-43 [-1, 256, 3, 64] 512
Conv2d-44 [-1, 256, 3, 64] 229,632
BatchNorm2d-45 [-1, 256, 3, 64] 512
Conv2d-46 [-1, 256, 3, 64] 327,936
BatchNorm2d-47 [-1, 256, 3, 64] 512
ResBlock-48 [-1, 256, 3, 64] 0
Conv2d-49 [-1, 256, 3, 64] 459,008
BatchNorm2d-50 [-1, 256, 3, 64] 512
Conv2d-51 [-1, 256, 3, 64] 327,936
BatchNorm2d-52 [-1, 256, 3, 64] 512
ResBlock-53 [-1, 256, 3, 64] 0
Conv2d-54 [-1, 256, 3, 64] 459,008
BatchNorm2d-55 [-1, 256, 3, 64] 512
Conv2d-56 [-1, 256, 3, 64] 327,936
BatchNorm2d-57 [-1, 256, 3, 64] 512
ResBlock-58 [-1, 256, 3, 64] 0
ResBlock-58 [-1, 256, 3, 64] 0
Conv2d-59 [-1, 256, 3, 64] 459,008
BatchNorm2d-60 [-1, 256, 3, 64] 512
Conv2d-61 [-1, 256, 3, 64] 327,936
BatchNorm2d-62 [-1, 256, 3, 64] 512
ResBlock-63 [-1, 256, 3, 64] 0
Conv2d-64 [-1, 256, 3, 64] 459,008
BatchNorm2d-65 [-1, 256, 3, 64] 512
Conv2d-66 [-1, 256, 3, 64] 327,936
BatchNorm2d-67 [-1, 256, 3, 64] 512
ResBlock-68 [-1, 256, 3, 64] 0
Conv2d-69 [-1, 256, 3, 64] 459,008
BatchNorm2d-70 [-1, 256, 3, 64] 512
Conv2d-71 [-1, 256, 3, 64] 327,936
BatchNorm2d-72 [-1, 256, 3, 64] 512
ResBlock-73 [-1, 256, 3, 64] 0
Conv2d-74 [-1, 512, 3, 32] 393,728
BatchNorm2d-75 [-1, 512, 3, 32] 1,024
Conv2d-76 [-1, 512, 3, 32] 918,016
BatchNorm2d-77 [-1, 512, 3, 32] 1,024
Conv2d-78 [-1, 512, 3, 32] 1,311,232
BatchNorm2d-79 [-1, 512, 3, 32] 1,024
ResBlock-80 [-1, 512, 3, 32] 0
Conv2d-81 [-1, 512, 3, 32] 1,835,520
BatchNorm2d-82 [-1, 512, 3, 32] 1,024
Conv2d-83 [-1, 512, 3, 32] 1,311,232
BatchNorm2d-84 [-1, 512, 3, 32] 1,024
ResBlock-85 [-1, 512, 3, 32] 0
Conv2d-86 [-1, 512, 3, 32] 1,835,520
BatchNorm2d-87 [-1, 512, 3, 32] 1,024
Conv2d-88 [-1, 512, 3, 32] 1,311,232
BatchNorm2d-89 [-1, 512, 3, 32] 1,024
ResBlock-90 [-1, 512, 3, 32] 0
Linear-91 [-1, 512, 3, 128] 4,224
Linear-92 [-1, 1024, 128] 24,704
Linear-93 [-1, 4096, 64] 2,112
Linear-94 [-1, 4096, 16] 1,040
Linear-95 [-1, 4096, 3] 51

Total params: 14,459,651
Input size (MB): 0.01
Forward/backward pass size (MB): 39.22
Params size (MB): 55.16
Estimated Total Size (MB): 94.39

Overview the successive layers used in the
ResNet-34-based network for super-resolution of
eventstreams at r = 4 and N = 1024.
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Appendix B.
Figures

Figure 16. Prediction of PCT depicted in event-
space.

Figure 17. Prediction of ResNet-34 depicted in
event-space.

Figure 18. Converted event-frames at tbin =
10−1 from super-resolution predictions.

Figure 19. Super-resolution predictions made on data from N-MNIST with r = 8, N = 512 using networks utilizing a PCT, PointNet, ResNet-18 or
ResNet-34 basedFeature extractor.
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Figure 20. Prediction of PCT and PointNet de-
picted in event-space.

Figure 21. Prediction of PointNet and ResNet-34
depicted in event-space.

Figure 22. Converted event-frames at tbin =
2.5× 10−4s from super-resolution predictions.

Figure 23. Predictions made on data from N-MNIST with r = 8, N = 256 using networks utilizing a PCT, PointNet, ResNet-18 or ResNet-34 basedFeature
extractor.

25



Figure 24. Event-frames converted at tbin = 10−3s from super-resolution predictions on data from N-Caltech-101 with with r = 4, N = 3072 subsampled
by TDS using networks utilizing a PCT, PointNet, ResNet-18 and ResNet-34 based Feature extractor.

Figure 25. Event-frames converted at tbin = 10−3s from super-resolution predictions on data from N-Caltech-101 with with r = 4, N = 1024 subsampled
by TDS using PointNet-based Feature extractor. Data shows the appearance of a checkerboard pattern on the predictions.
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Appendix C.
Comparing PCT to PointNet Feature extractors

In Experiment 3, the PCT-based module performed comparably to the PointNet-based module when used as a Feature
extractor in the researched network. Yet the PN-Net resulted in a far lower computation time ranging between factor
4 and 10 depending on the length of the event sequence. Also, it was noticed that the PN-Net is prone to visualize a
checkerboard pattern in its predictions. One-one comparison of the obtained converted event-frames from Experiment 3
are depicted in Figure 30 in which these checkerboard patterns are observable in the prediction column made by PN-Net.
This section will go into detail about the differences between both networks to find explanations of the occurred behavior
in order to make a structured verdict as to which network will be elaborated further on. Both PCT and PointNet are
developed for the classification and segmentation of 3D pointclouds, and the example given in the paper [27] is depicted in
Figure 28. Although the purpose of both networks differs from super-resolution it processes 3D point cloud data and has
similarities to events. This set the interest in this research to experiment with the Feature extractor parts of these networks
for super-resolution purposes of events.

Figure 26. PCT-based network for super-resolution

Figure 27. PointNet-based network for super-resolution

Figure 28. Classification and segmentation of pointclouds by PCT source: [27]

C.1. In-dept PointNet Feature extractor

PN-Net is based on the Feature extractor sub-module inside PointNet [44] named T-Net. It uses five convolutional from
which the first layer has a kernel size of k = 9 while the rest of k = 1 is followed by a channel-wise MLP layer. The
channel-wise MLP-layers isolate data in each neuron and avoid data to flow through parallel neurons. From this point of
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view, it is questionable if this type of network filters semantics into its feature extraction. This suspicion is based on the
fact that its limited receptive6 field of 9. Also, convolutional layers are designed to process data with a grid-like topology
like images or a 1D sequence. Eventstreams are tuple sequences consisting of 3 euclidean dimensions but can only be
ordered in one dimension. Meaning, the first convolutional layer can filter data from 8 neighbors (9 minus itself) from a
time (t) perspective, but these neighbors do not necessarily entail the most useful information needed to super-resolve.
We argue that this implementation of the PN Feature extractor can not incorporate semantics into its extraction but uses
a simplistic policy in which it predicts super resolved points around the coordinates of the given inputs which results in
the perceived checkerboard effect. We proved this argument by experimenting with how the network would predict if it
only has kernels of size k = 1 bringing its receptive field equally to 1, it resulted in almost identical predictions although
being even more prone to this checkerboard effect. Afterward, we experimented by initiating kernel sizes of k = 5 in each
convolution layer to enhance the network’s understanding of semantics. This configuration gives the network a receptive
field of the whole input length ((k − 1)5 = 1024), yet this configuration performed worse compared to the previous one.
This can be due to the kernels having fixed values that are designed for grid-like data which the characteristics of the data
structure of eventstreams do not feature, this insight indicates a design flaw in our implementation. This raises questions as
to how the use of this Feature extractor scored the highest accuracy in Experiment 2, how its policy to predict coordinates
around the coordinates of the given inputs was not detected before, why it is able to extract features when implemented
in PointNet? As for the first question, we have to take a look at the architecture that was used for the classification task
which is depicted in Figure 29. From this overview it can be said that different from the super-resolution implementation,
the MLP layers are not channel-wise operated and thereby provide the network the ability to obtain semantic awareness.

As for the second question, sub-sampling technique at random was used to obtain the low-resolution eventstream
(input) from the high-resolution eventstream (ground truth) in the initial experiments. This sub-sample technique enables
unlimited scaling ratio possibilities since it was not restricted by spatial address as the later used true downsampling (TDS)
technique 2.4.4. Unfortunately, sub-sample at random ’camouflaged’ the checkerboard pattern since the predictions were
likewise randomly distributed which is the reason why it was only detectable in the final part of Experiment 3. A second
reason is an apparent loophole in the calculation in the CD loss function which left occurrences of predicted events on the
same coordinate unpunished. This loophole ’allowed’ the network to converge to this simplistic policy and is undetected
by the quantification of the loss function.

As for the latter question, this Feature extractor is issued as a residual connection in a vast network. The semantics are
obtained outside this Feature extractor and thus are not obstructive in that sense.

Figure 29. Architecture for classification of N-MNIST using a PointNet based Feature extractor

C.2. In-dept PCT Feature extractor

The PCT Feature extractor in our network is an exact copy of the one proposed in [27] and uses it as a core-component
self-attention layers. These self-attention layers, contrary to convolutional layers, allow to selectively focus on the most
relevant information given in a sequence of each event to each other event. This cross-relevance is referred to as dependencies
between data points. This allows self-attention mechanisms to capture dependencies in sequential data. We see an alignment
in need when we project the ability of selective focus onto the characteristics of events and the process of super-resolution.
Namely, in order to super-resolve, the network must have an understanding of the spatial and temporal dependencies between
each event. These dependencies are not grid-like structures like an image but depend on deeper data structures and semantics.
The downside of self-attention is its time complexity being O(n2) per layer which is inherently caused by the calculation
of dependencies by the self-attention mechanism.

6. The receptive field of a convolutional neural network is the region of the input data that is processed by a given neuron in the network. It is determined
by the size and stride of the convolutional filters that are applied to the input data, as well as the number of layers in the network.
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C.3. Verdict

In conclusion, the PointNet-based Feature extractor as implemented in our network does not provide the ability to extract
sufficient features for super-resolution. The reason for this originates in the false implementation in our network in which it
is used as a primary module to extract all features while the original PointNet implementation is used to process data in a
residual connection. The PCT-based Feature extractor seems to be a perfect fit to extract features by dependencies between
each event. Although the self-attention results in a time complexity of O(n2), in future research there can be search methods
to work around this single deviancy.

Figure 30. One-on-one comparison of converted event-frames from super-resolution prediction made by networks using a PCT and PointNet Feature
extractor
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Appendix D.
Hyperparameter Tuning

Various experiments have been conducted to compare various types of networks from which the network which utilizes
the Feature extractor as used in PCT performed the best. Up until now, experiments were conducted with the initial
architectural configuration used in the PCT network. This configuration is referred to as vanilla. To enhance performance
right set of hyperparameters has to be found. The search for this set is referred to as hyperparameter tuning and covers
fine-tuning all non-learnable parameters in order to improve its performance according to the loss function. We are bound
to make a selection of hyperparameters to be considered due to the time constraints of this research. Among the selection
of hyperparameters are:

1) Number of MLP layers
2) Number of self-attention layers
3) Number of neurons in the MLP layers
4) Regularization methods
5) Data augmentation

The resulted network will be fully trained after the hyperparameter tuning process.

D.1. Number of MLP layers

Having more layers leverages the network’s ability to extract hidden features. But it also makes the network more
complex and has a larger amount of parameters to train which causes the network to converge slower. On the other hand,
you can remove layers which makes the network less complex and thus faster converging but possibly, not able to extract
the right hidden features which results in an overfitting network. There is an optimum for a network between converging
at a reasonable pace and the value of the loss it is converging to. In this experiment, we define two extra configurations
named Shallow Coordinate Reconstructor (SCR) and Deep Coordinate Reconstructor (DCR). The SCR configuration has
two MLP layers in the coordinate reconstructor module with channels [64, 3]. The DCR configuration has 5 MLP layers
in the coordinate reconstructor module with channels [64, 64, 64, 16 3].

The resulting learning curves of these configurations together with the vanilla network are depicted in Figure 31. From
this result, it can be concluded that the DCR is much slower converging with respect to the other configurations and is also
prone to an unstable learning course. Also, the SCR is converging in a similar way as the vanilla configuration although being
more prone to volatility. These results suggest it is best to keep the amount of MLP layers in the coordinate reconstructor
to 3.

Figure 31. Number of MLP layers configurations

D.2. Number of self-attention layers

Increased number of self-attention (SA) layers in the network result in the increased ability of the network to capture
more complex features in the data but also the computational complexity. Finding the right balance between the number
of SA layers and the ability to extract appropriate features is key especially since the SA layers form the bottleneck in the
network. The configurations that are tested are Shallow Self-Attention (SSA) with 2 SA layers and Deep Self-Attention
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(DSA) with 6 SA layers.

The resulting learning curves of these configurations together with the vanilla network are depicted in Figure 32. Both
SSA and DSA have a peak around the 10th epoch after which SSA converges to the same value as the vanilla architecture
and DSA converges to a constant higher but decreasing value. Plausible does the DSA configuration converges to the same
value or even lower when trained for more epochs. But since SSA converges to almost the same value but over a more
volatile course, we conclude that SSA is probably too shallow and is less capable to extract the required deeper features.
From these observations, we continue with the vanilla architecture since it seems to have the right balance between extracting
the required deep features while preventing it from becoming overly computationally complex.

Figure 32. Number of SA layers configurations

D.3. Number of neurons in the MLP layers

Increasing the number of channels will result in a higher ability to reconstruct coordinates since there it entails more
features for reconstructing the coordinates. We test a Wide Coordinate Reconstructor (WCR) configuration with MLP(128,
64, 3) and the vanilla configuration with MLP(64, 16, 3). Results are depicted in Figure 33. From this result, it can be
concluded that the WCR configuration does enhance the loss value with respect to the vanilla architecture. From this, we
conclude that the vanilla channel configuration in the coordinate reconstruction is near perfect.

Figure 33. Number of neurons in the MLP layers of the coordinate reconstructor configurations

D.4. Regularization methods

Regularization methods improve the networks to generalize their performance to unseen data. Therefore it is best used
in cases in which there is a gap between the test and train learning curves. Looking at the learning curve we can conclude
with confidence that there is no gap between the train and test curves. Unless there appears a gap between these curves
during the final training, regularization methods would be obsolete for research.

D.5. Data augmentation

Data was augmented by rotating the eventstreams spatially by swapping the x and y dimensions and also with
downsampling with respect to different spatial addresses. Theoretically, there are 4 different spatial addresses to respectively
can be downsampled from. We only used two addresses to prevent memory overloading of the hardware of Google Colab.
Together with the spatially rotated augmentation resulted in a four times larger dataset.
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D.6. Final network configuration and training of the network

The resulting network after the hyperparameter tuning is equal to the vanilla architecture. There are still some optional
hyperparameters left to be tuned which makes an interesting research for further research. The obtained network with learned
parameters from the initial 50 epochs long training loop on the normal dataset will be trained further on the augmented
dataset. The result is depicted in Figure 34. After the first 50 epochs, the network was trained on the augmented dataset in
combination with a lowered learning rate of 0.0035 and show a large drop in loss from 9.5e− 4 to converging at 8.5e− 4.
From epoch 100 and onward we trained the network with a learning rate of 0.002, it shows another drop in the loss function
after which it converges to a value of between 7.8e− 4 and 8e− 4 eventually. Remarkably, compared to the train learning
curve, the test learning curve is consequently higher which indicates that the network can predict the test dataset better
although it is trained on the training dataset. This also means that the network does not need any addition of regularization
methods. In the end, the network converges towards a loss of 7.79e − 4, the final obtained network is depicted in Figure
35.

Figure 34. Learning curve of the final training, black dashed line indicates a change of set learning rate [0.005, 0.0035, 0.002] at epoch number [0, 50,
100]

Figure 35. Overview of PCT-based network configuration
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Appendix E.
Ablation study

Insight into the learned policy used by a trained network enables explaining perceived behavior. Unfortunately,
a well-known caveat of neural networks is the inability to acquire this insight. Obtaining insight is complicated by
the paradigm of neural networks in which a network as a whole is able to apply a policy, but each parameter on
its own does not. This section attempts to obtain insight by investigating the self-attention mechanisms by the means
of an ablation study. The final network consists of 4 consecutive SA-layers as depicted in Figure ??. As mentioned
before, the SA-layers calculate dependencies between events, this results in a SA map (A) of the size (N,N ) with
N being the sequence length. Value ai,j symbolizes the dependency between event ei and ej , the higher the value
the higher the dependency. It is expected that there is a correlation between both spatial and temporal proximity.
With in mind the fact that eventstreams are ordered in the temporal dimension, the expectation would result in a
diagonal region in A with relatively higher values. Yet, visualized A of each SA-layer in Figure 36 do not align with
our expectations as there is no observable diagonal region with increased interest which would take the form of a
brighter diagonal region compared to the rest of the matrix. Instead, these self-attention maps show horizontal and vertical
lines, which suggests that certain events are valued as important in principle independent of their relationship to other events.

There is, however, a possibility that the expected diagonal region does not appear in A due to the existence of multiple
SA-layers and that there could be such a diagonal region hidden in a higher dimension. As a sanity check of the hypothesis
of attention to be located in the diagonal region, a simpler configuration with a singular SA-layer is trained and tested.
The obtained SA-maps from a network configuration containing a singular SA-layer are depicted in Figure 37. From these
SA-maps we have to conclude that the expected correlation between both spatial and temporal proximity is either false or
the focus on this relationship is established outside of the SA-mechanism.

Figure 36. Visualization of SA-maps, each row shows from left to right the SA-maps of the successive layers processed by from the same input. Each
row depicts results obtained of different inputs.

Figure 37. Visualization of four different SA-maps, obtained from a train network containing a singular SA-layer on four different datainstances.
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Appendix F.
Literature study
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Summary
The human brain is capable of performing extremely complex computations while it only has a power
consumption as low as 20 Watts [29], this makes the brain to form a major source of inspiration for
designing a computer that shares the same specifications. This research topic is named neuromorphic
computing and a subsection, named neuromorphic vision, is occupied with mimicking the way humans
perceive vision. The retina is the part of the human eye that translates vision to signals that the human
brain can process. The vision sensor in neuromorphic vision consists of pixels that trigger an event
e(t, x, y, p) (neuromorphic vision is often referred to as event-based vision contrary to the frame-based
vision of conventional video cameras) timestamp t, at pixel location (x, y) with polarity p{−1,+1} when-
ever the observed brightness surpasses a threshold. This is done asynchronously for each pixel just like
the photosensitive cells in the retina. This paradigm results in some interesting properties that make it
besides neuromorphic computing also interesting to be implemented directly on computer vision tasks.
Compared to frame-based vision, these properties of neuromorphic cameras include a greater dynamic
range (140 dB versus 60 dB), no motion-blur, high temporal resolution as it can observe at a frequency
of 1 ∼ 10 MHz, a one-hundreds times lower power consumption, and a high data sparsity in which
redundant data is omitted. However, the main limitation of neuromorphic cameras is their resolution
of 128× 128 pixels which is quite low.

Super-resolution is a computer vision problem in which it is tried to predict a higher resolution
counterpart of a lower resolution input. Various research is done on the super-resolution of frame-based
videos and images. But found solutions for frame-based super resolution are not directly interchange-
able for event-based vision since data representation of frame-based vision differs from neuromorphic
vision. There are some proposed models that claim to super resolve event-based vision, but all of these
models inflict a conversion from event representation -also referred to as event-space- to frames. This
conversion is a discretization in which (to some extent) temporal information is lost while extra data is
introduced to fill in pixels in which no events have occurred. This counters the sparse data representa-
tion which is needed for power-efficient applications. In this literature research possibilities are exploited
to realize super-resolution on event-based vision in event-space. For a complete overview of the prob-
lem, state-of-the-art super-resolution models in frame-based vision, event-based vision, and pointclouds
(which share similar data representation) are reviewed. The reviewed models are then used as inspi-
ration to find options to incorporate temporal information while keeping the data representation sparse.

Reviewed state-of-the-art image super-resolution algorithms make use of convolutional neural net-
works. These types of networks are commonly used in computer vision tasks as they have beneficial
properties for processing image representations in the form of an array. The same type of network
is also used to realize super-resolution in conventional videos, but with the addition that consecutive
frames are also used as they embed some extra information about the super-resolution. When look-
ing at current state-of-the-art super-resolution models for the event-based vision, it can be concluded
that these models are inspired by the frame-based vision. Events are discretized into a frame-based
vision-like representation to make them fit those algorithms. Doing so results in the following cons: (i)
temporal information is lost in the discretization, and (ii) the transformation from events to frames
counters the sparsity of the data which is one of the key properties of event-based vision.
To exploit the possibilities to incorporate temporal information while keeping the data representation
sparse, we reviewed papers about implementations of spiking neural networks. This is a special class
of neural networks that is optimized to process data representations like events. Nevertheless, this
class of network is not far enough developed to be used in more complex computer vision tasks -like
super-resolution-. This is due to both lacks of performance on even simple computer vision tasks as
well as the lack of available mature toolboxes to implement spiking neural networks.
Except for polarity information, pointclouds share the same data representation compared to events
from a euclidean perspective. There are different methods reviewed regarding how pointcloud upsample
models cope with the data representation. From the reviewed methods, Graph convolution network-
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based algorithms seem to be the most applicable class of networks to realize super-resolution on events.
This type of network is used in models to super-resolve noisy and sparse pointclouds. Yet, this type of
network is not used to realize super-resolution on events.

We see a promising option to realize super-resolution of events without the loose of temporal infor-
mation by the use of a graph convolutional neural network. This raises the following research question:
To what extent can event-based vision be super-resolved in event-space?

With sub-questions:

1. To what extent can naive algorithm be used to super-resolve events or should a learning-based
algorithm be used instead?

2. To what extent is it power and computational efficient to realize super resolution in event-space
instead of super-revolve event-frames?

3. Do events converted to frame-based video result in a lower mean squared error with respect to a
ground truth when the events are super-resolved in eventspace rather then after the conversion?

During the thesis, research will be done to find answers to the research questions. The model that
is capable to realize super-resolution directly on event representation will be evaluated in threefold.
This threefold include evaluation (i) in event space by a combination of a pointcloud similarity metric
like Chamfer distance or Hausdorff distance and a precision metric for the binary classification of the
polarities. (ii) Computation time will be compared with other models. (iii) frame-based conversion will
be compared by performing super-resolution in event space and then converting events to frames using
E2VID to review models that first convert to event frames and then super-resolve.
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1
Introduction

The human brain is capable of performing extremely complex computations while it only has a power
consumption as low as 20 Watts [29], this makes the brain to form a major source of inspiration for
designing a computer that shares the same specifications. Neuromorphic computing describes this field
of study that tries to mimic the physics of the human brain. The first contribution of neuromorphic
computing was made in 1940 [17] in which a simple artificial neuron model was created that was able to
make computations which we would call an artificial neural network (ANN) to date. During this time
span, huge progress has been made and we are now able to design deep neural networks (DNN) -which
are ANNs but then consist of multiple layers of neurons- with a wide diversity of different architectures
and properties. In combination with the large computation power we possess and the option to do
parallel computations Graphical Process Unit (GPU) and Tensor Processing Unit (TPU), algorithms
can be trained that sometimes even out-compete the human brain especially when the data have ab-
stract correlation or when there is a massive amount of data that needs to be calculated. Although
performances with respect to the calculated results are perfected, the power efficiency is downright
abysmal. For example, it can cost up to 650 MWh to train a single state-of-the-art DNN which is a
carbon dioxide emission equivalent to the lifespan of 5 cars [31].

So, despite the fact that we are able to mimic the physics of the brain, the power efficiency of state-
of-the-art DNNs are not comparable with the human brain. Although DNNs are topological inspired by
the human brain, the data representation differs in paradigm which is one of the reasons why it is not as
energy efficient. One way to obtain data with a representation more close related to its biological coun-
terpart is by mimicking how it is instantiated. Neuromorphic vision -often referred to as event-based
vision- is a subsection of neuromorphic computing in which the way humans perceive vision is mimicked.

Research towards neuromorphic vision has come to a point at which it is possible to build vision
sensors that work with the same paradigm as the retina in the human eye. This type of sensor captures
vision in bio-inspired event-space, which has some interesting properties which will be deliberated on
in the literature review. However, currently, the main limitation of neuromorphic vision is its low res-
olution of 128 × 128 pixels. Finding higher resolution representatives of low-resolution input is called
super-resolution (or super resolving) and could overcome this shortcoming in event-based vision. There
are some proposed models that claim to super resolve event-based vision, but all of these models inflict
a conversion from event-space to frames and thus counter the data representation needed for power-
efficient applications.

Therefore, the aim of this literature review is to find an answer to the following research question:
Is it possible to super resolve event-based vision in event-space?

With the following sub-questions to exploit all possibilities:

1. How does event-based vision differ from frame-based vision and why should we bother?

2. To what extent is super-resolution acquired on conventional frame-based vision?

3. Which different techniques are proposed to realize super-resolution on frame-based vision and how
can this be used for event-based vision?

1
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4. Which algorithms are proposed to realize super-resolution on event-based vision to date, and how
does it cope with the data representation?

5. Are there data representations that are comparable with events, and are there proposed algorithms
to realize super-resolution on this data?



2
Literature Review

2.1. Neuromorphic vision
The way human eyes process visual input is different from how a conventional video camera works. The
retina is a part of the eye that makes it possible to translate observed vision into signals that are both
transmittable through the nervous system and interpretable by our brains. This is due to the photo-
sensitive cells named photoreceptors -which are located in the retina-, it can be seen as the counterpart
of an independent pixel in a photosensitive sensor of a camera. Each of the photoreceptors transmits
signals to the brain whenever a brightness change is observed that surpasses a certain relative threshold
which is done independent of other photoreceptors and continuous in time. This results in the fact that
eyes do not have a shutter time nor a frame rate at which vision is processed. Additionally, the signal
does not even include absolute brightness values but so-called spike trains and patterns that embed ob-
served brightness changes. This data representation results in a highly compressed form of vision when
compared with conventional video cameras in which absolute brightness is processed at a fixed frame
rate regardless of occurring scenery [25]. Due to photoreceptors operating in an asynchronous way, the
exposure time is inherently asynchronous which prevents motion blur in the observation whenever a
projection on the retina is moving with a high velocity. In addition, the brightness threshold that is
used to trigger signals to the brain is scaled logarithmically which inflicts the advantage that eyes have
a high dynamic range (140 dB versus 60 dB). This translates in practice to enhanced performance in
distinguishing bright and darker objects in the same scene.

A lot of research is performed towards the realization of neuromorphic cameras which make use of
a similar paradigm as the way retinas process vision. This research area is named neuromorphic vision
and the type of sensor is often referred to as retinamorphic. In 1980 the first retinamorphic sensor
was made in the form of a silicon model [18] with a resolution of 48 × 48. Since then, they have been
improved and currently possess the desired properties of eyes which were mentioned previously. These
are summarized to be: no motion blur due to asynchronized exposure time of pixels, a high dynamic
range of 140 dB due to the logarithmic scale, highly compressed visual representation, a high temporal
resolution -although not continuous- in the order of microseconds which is equal to a frame rate of 1
MHz [6], and a power consumption of ∼ 10 mW which is one-hundreds of the power consumption of a
frame-based camera.

Whenever a pixel observes a brightness change that surpasses the lower or higher threshold, a signal
in the form of an event is triggered. This kind of neuromorphic vision is named event-based vision.
An event ei(ti, xi, yi, pi) is triggered at timestamp ti, at pixel location (xi, yi) with polarity pi{−1,+1}
whenever the observed brightness (It) surpasses a threshold (θ) with respect to the previous observed
event (It−1)

log (It)− log (It−1) ≥ θ. (2.1)
N events together forms a stream of events or eventstream EN×4(t, x, y, p). This eventstream can be
depicted as a list and also visualized when plotted in a continuous space-time which is called the event-
space. It is also possible to convert the events towards frames using conversion algorithms which in its
turn can be used to depict a video in a conventional way. Figure 2.1 depicts the eventstream representa-
tion, events plotted in eventspace in which the blue and red color-coding indicates the polarity -positive
or negative observed brightness change-, and conversion of the events to frames captured by the DAVIS
240C camera [20]. DAVIS stands for “Dynamic and Active-pixel Vision sensor”, it is a special type of
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sensor enabling it to capture vision as events as well as grayscaled frames named APS.

Figure 2.1: Different kinds of event-based vision representation and its conversion from eventstream to plot in
eventspace to frames

Two concepts are often used in computer vision namely: spatial and temporal. These words are
used to indicate if it is respectively time- or space-relating. A more practical explanation would be if
something is temporal, it is only variable in time and not in space. These two concepts are requisite in
order to study event-based cameras as events have space-time relatedness and thus are spatial-temporal
(or spatio-temporal).

Although the temporal resolution is dense, meaning that the refresh rate at which the pixels can
observe events with a rate of 1 ∼ 10 MHz is considered to be high, the spatial resolution of the sensor
is sparse 128 × 128 pixels [16]. In addition, off-the-shelf event cameras have a maximum bandwidth
at which they can process events, deviancy in the captured data collection occur when the observed
amount of events exceeds this bandwidth. Namely, photoreceptors on every 2nd row do not process
any events as long as the bandwidth is exceeded. This results in a corrupted data collection on which
no solution is found yet. On both shortcomings -low spatial resolution as well as retrieving corrupted
data- potential solutions can be thought of which inherits the same backbone. In the first case, spatial
resolution is increased by finding the values of a higher resolution representative should have. While in
the second case, values of the missing blank column in the spatial plane are retrieved.

2.2. Super Resolution
There is various research done to enhance spatial resolution by reconstructing a higher spatial resolution
representation of the original lower resolution. A representative in the higher dimension is referred to as
super-resolution or super-revolve (SR) and the original resolution as low resolution (LR). This problem
of obtaining SR from LR is a classical computer vision problem wherein it is tried to obtain an SR that
is as similar as possible to the ground truth high resolution (HR) and research is done extensively both
on images as well as frame-based vision [14].

To start with, reconstructing the SR is an ill-posed problem as the ground truth of the SR is not
explicitly embedded in the LR which leads to a variety of possible solutions. So the predicted SR
is in all cases an approximation of the actual HR. But some techniques result in better performance
than their counterparts. Performance is most often evaluated by the mean squared error between the
super-resolved image and the groundtruth. Datasets used for this research topic consists of paired LR-
and HR frames which are respectively the input (x) to predict SR and ground truth (y) for evaluation.
y is usually the original sized image while x is derived from the y by downsampling with kernel (k) by
factor (s) and applying some noise (n) to it. This is mathematically described as x = (y ⊗ k) ↓s +n.
In super-resolution, a method is sought to reverse this process, a high-level overview of this process is
depicted in Figure 2.2.
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Figure 2.2: High-level overview of creating low resolution image from original high resolution image and reversing this
process [36] which is called super revolving

2.2.1. Image Super Resolution
An LR image can be described as an array ILR ∈ [0, 1]H×W×C and a SR is then said to be ISR ∈
[0, 1]H×W×C in which height is denoted as pixel height H, pixel width W , color-channel C and scale
factor s. The process of approximating SR for images is referred to as Single Image Super-Resolution
(SISR). The dimension of the color channel is 1 when grey scaled and 3 when color is encoded for
example Red Green Blue (RGB). Note that an image has only spatial relatedness.

Interpolation-based SISR method
The most elementary method to find ISR is to find the intermediate pixel values by averaging the
surrounded values. This is referred to as bilinear interpolating in the x and y direction, but there are also
more advanced techniques like bicubic interpolation. These interpolation methods are straightforward
and computationally easy to perform. Yet, interpolation tends to neglect the existence of sharp edges
as it introduces unwanted fading between all pixels.

Reconstruction-based SR method
Reconstruction-based SR methods consists of a class of algorithms that can cope with both smooth
reconstruction of gradients and sharp edges [3] [10]. These methods have great performance and are
applicable to a wide range of different scenery as they do not have a bias like learning-based methods
do. Unfortunately, reconstruction-based SR method still struggle when the scaling factor is large and
are computational far more complex than the interpolation-based SISR method.

Learning-based SISR method
Over the years, many different learning-based approaches have been developed in order to perform
SISR. Learning-based refers to the parameters being found in a learnable fashion in which the SR
output (ypred) of the network is evaluated by a defined metric -often called loss function (L)- to the
HR ground truth (y). Depending on the loss value between ypred and y the parameters are optimized
by a process called backpropagation. During backpropagation, the gradient is calculated between each
output entry, and the accountable parameters are then adjusted according to the negative direction of
the gradient.

One of the disadvantages of applying learning-based methods to computer vision tasks is the number
of input arguments as this determines the number of neurons in the input layer of the learning-based
method in a default NN. The amount of input arguments is equal to the number of pixels of the image
multiplied by the number of channels in each pixel -3 for RGB-. This results in an enormous amount
of trainable parameters which makes it difficult to find the right values that make the NN converge
towards a solution. This makes it prone to have spatial bias whenever it is trained on a data set in
which the images have the focus in the middle of an image and vague background on the border. Both
disadvantages are countered by a special class of NN named convolutional neural networks (CNN). This
special kind of neural network consists of a set of filters with trainable parameters which are convolved
over the input image. A CNN has the property to have a reduced amount of learnable parameters due
to the same filters being used in a convolution over the whole image instead of being designated to be
applied to a single input argument. At the same time, this prevents the possible spatial bias which can
occur in a default NN.
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SRCNN is a two-layered CNN architecture that super resolves images and was proposed by [4], an
overview of this architecture is depicted in Figure 2.3. A key feature of this architecture is the ability to
extract nonlinear patterns due to the non-linear mapping between the two layers and the second layer
which enables to the extraction of hidden features.

Figure 2.3: Overview of the SRCNN architecture which uses a Convolutional Neural Network to super resolve images
[4]

Due to the preferable properties of CNN on computer vision tasks, CNNs can be found in the base
of state-of-the-art SR architectures. SRResNet is a residual network composed of CNNs. Further per-
formance gains have been made by generative adversarial network (GAN) which is based on SRResNet
[12]. With this network, it is possible to obtain photo-realistic results by even a scale factor as large as
four.

2.2.2. Frame Based Vision Super-resolution
The conventional paradigm representation of a video is by a series of images It ∈ [0, 1]H×W×C in which
t indicates the timestamp the frame is observed -which has constant intervals- and the amount of pro-
ceeded frames per second is referred to as frames per second (FPS). As independent frames have the
same characteristics as images, algorithms that realize spatial SR for frame-based vision have commonly
the same backbone as image SR. The existence of multiple frames through time introduces a time rele-
vance which makes a video spatio-temporal. In combination with the fact that consecutive frames are
taken at relatively short intervals, there is much overlap in the data which enables both spatial and
temporal features can be used to super-resolve.

Besides spatial super-resolution, temporal relatedness introduces the option for temporal super-
resolution. Whereas in spatial super-resolution intermediate pixels are predicted, in temporal super-
resolution intermediate frames are predicted and thereby enhance the frame rate. Temporal super-
resolution in combination with deblurring is done by [30] but will not get into detail as it is somewhat
out of the scope for event-based vision purposes.

Spatio Super Resolution
Most video spatial SR algorithms have a base of an image SR algorithm that makes use of temporal
relevance to further optimize its prediction. Temporal information enables for example flow estimation
which can be used to have motion compensation (MC) to diminish blurriness but also boost the ability
to predict texture or details that is exposed to motion in frames as is done in [1]. Their proposed
architecture uses ILR

t−1, ILR
t , ILR

t+1 to predict IHR
t . Using MC leads to good performance on video

reconstruction as is shown in Figure 2.4. The downside of this approach, however, each frame is used
three times. This results respectively in computational redundancy and the inability of the system
to produce temporally consistent results which are noticeable by flickering inconsistent frames when
visualizing the video. To these flaws, [28] has proposed a recurrent framework that realizes temporally
consistent results while reducing the computational cost. The framework and the results are depicted
in Figure 2.5. The consistency is secured due to the results of previously calculated SR frames being
weighed in the calculation of the current SR frame.
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(a) Ground truth (b) No MC x3 (c) MC x3 (d) Framework

Figure 2.4: An overview of the proposed framework (d) in comparison with the ground truth (a), spatial
super-resolution without motion compensation (b) and motion compensated super-resolution (c) [1]

(a) Ground truth (b) Bicubic SR x4
(c) Frame

Recurrent SR x4 (d) Framework

Figure 2.5: An overview of the proposed Frame-Recurrent Video Super-Resolution results (c) in comparison with the
ground truth (a) and super-resolution by bicubic interpolation (b), and an overview of their proposed framework (d) [28]

A less frequently applied deep learning technique to frame SR is via dictionary-based learning. This
approach tends to learn a set of patterns of coupled LR and HR which is said to be the dictionary [2].
Then, when an LR frame is fed to the algorithm, small patches of the frame are “looked up” in the
dictionary by comparing by similarity. The representative HR of the coupled LR -which is the most
similar to the LR patch- is used in the reconstruction of the SR. All super-resolved patches together
form the frame SR.

2.2.3. Event Based Video Super Resolution
The algorithms for realizing spatial super-resolution are not interchangeable between frame-based vision
and event-based vision as they process vision in a totally different paradigm. This is a direct conse-
quence of the difference in the data structure. To begin with, frame-based vision captures data at an
explicit FPS regardless of there being a change in observed scenery. But even if the process rate of
event-cameras of 1 MHz is considered as the FPS, it is still will not possible to make a simple CNN
converge. This is due to the following property: whereas frame-based vision captures absolute bright-
ness values, event-based vision only depicts relative brightness changes with respect to the previously
observed event. In combination with the density of events at 1 µs interval being extremely sparse. This
results in the chance of events being observed in neighbouring photoreceptors in the same microsecond
being very low. When a convolution is applied at this time interval, the expected value is zero and thus
CNNs will not be of any use.

To cope with the sparsity of the data, [14] proposed a model that discretizes the eventstream
into temporal bins. In each time bin, the positive and negative events are separated and processed
accordingly. Their model is a two-stage scheme mathematical model based on probability theory. The
first step consists of two parallel actions, the number of occurred events per pixel is accumulated and
denoted in the form of a countmap. This countmap is then upsampled by interpolation to the expected
countmap of HR. The second action is to simulate the probability of occurring events per LR pixel by
a rate function then use a convolution kernel to determine the new pixels of HR. In this, they assume
that the rate function of a pixel is related to its neighbours.

In the second stage, an approximation of the HR is made by generating events according to a
homogeneous Poisson process based on the interpolated event countmap and the found rate function.
As eventstreams are not a viable option to represent results, especially not in 2-D, a conversion is
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made. The most straight forward conversion is to discretize the eventstream into k temporal bins
Wk = {ek, . . . , ekN−1} each containing N . For each Wk the pixel values (x, y) are set to 0, 1, 0.5 in the
case of respectively a negative, positive, or no events have occurred. This is formulated as

Ik (x, y) =


0, if p = −1

1, if p = +1

0.5, otherwise
(2.2)

and results in a intensity image (Ik (x, y)) [21]. This does however neglect the number of occurring
events per pixel and even can lead to the cancellation of depicted events in the case of two events with
opposite polarity occurring at the same pixel inside the temporal bin. Using this conversion, the results
of the SR are depicted in Figure 2.6, and a high-level framework is depicted in Figure 2.7.

This proposed framework is quite simple, computationally efficient, and performs reasonably well as
can be seen in Figure 2.6 and a high-level framework is depicted in Figure 2.7. However, the proposed
method is not learning- but interpolation-based and although the results seem promising when com-
paring a 2-d render, it is arguable if performance is likewise when the predicted events are compared
in event-space. This is due to the fact that temporal information between consecutive time-bins is not
used, which will result in temporal inconsistencies. This is comparable to the case when frame-based
vision SR is realized by applying SISR methods independent on frames. In addition, as was the case by
interpolation-based SISR, interpolation does not have the ability to restore detailed patterns but rater
has a fading effect which is most often not optimal.

Figure 2.6: On the right side, the result of the proposed two-stage method [14] of super-resolved event-frame on
low-resolution input data which is depicted on the left side. This is compared to the high-resolution ground truth which

is depicted in the middle.

Figure 2.7: An overview of the proposed two-stage framework which uses a probability-based methodology to realize
super-resolution on events [14]
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Yet, despite the potential of this proposed mathematical method, most research on SR of event-based
vision is done by the use of deep learning. Frame-based SR networks are not suited for evenstreams, but
it is a research area that has been developed extensively and has proven performance. So conversions,
like used to depict the results in Figure 2.6, are often used as a preprocessing step in order to make
an eventstream representation ’fit’ the frame-based SR algorithms. Various ways have been developed
to convert an eventstream to a representation that is interpretable by frame-based SR algorithms [7].
This section will deliberate on proposed solutions and the conversions they used as a preprocessing step.

The method with the most citations (32) is EventSR [19], they propose a framework that realizes
SR on intensity images. The intensity images are compiled according to Equation 2.2, but with a little
tweak to enable overlapping of the time bins to allow more temporal information which can lead to a
better consistent prediction. An overview of the framework is depicted in Figure 2.8. Noticeable are the
similar modules as the earlier discussed frame-recurrent video super-resolution framework 2.5d. The
main difference is the conversion to intensity images in the preprocess step -which is needed to make the
data fit the algorithm-, and the output is evaluated with respect to the observations of an active sensor
pixel (APS). This framework is thereby optimized towards training on the data of a DAVIS camera but
not on a plain event camera.

Figure 2.8: An overview of the framework of EventSR which uses intensity images as input to super-resolve it to a
gray-scale frame [19]

Other conversions have invented such as, which results in a frame that yields the number of occurring
events per pixel. Event-frames are almost identical to the introduced countmap in [14] but without a split
between positive and negative events. EventZoom [5] is capable to perform super-resolution on these
countmaps and even reconstruct these super-resolved countmaps to a super-resolved eventstream while
it also denoises the events. The framework is depicted in Figure 2.10. First, they stack 16 consecutive
event-frames, to take some temporal information into account, each event-frame is converted from
a 10 ms time bin. The event-frames are converted to an image by E2VID which is then used in a
concatenation in the early stage -after which it undergoes a 3D U-Net shaped architecture- and super
revolved by FSRCNN to an HR image which is concatenated at the final stage of the framework. Finally,
the super-resolved event count is redistributed to an HR eventstream. Keep in mind that although the
input and output are both eventstreams, the way it is processed is still as a frame representation
neglecting some degree of temporal information. There are two ambiguous claims in this paper. (i)
They claim to use event-frames but the E2VID [27] module is made to directly convert events to frames
not suited for. (ii) They claim to reconstruct super resolves event-frames to events but it is not explicitly
noted how they do use a reference to [9] in section 5 (Applications) but their proposed conversion works
on intensity images and not event-frames which the dimension of the output suggests. In addition, code
is not provided with the paper which makes it harder to check the validity and it only has 3 citations
which are low. However, the paper is published in 2021 so there was not much time for other researchers
to cite this paper.
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Figure 2.9: An overview of the framework of EventZoom which uses raw-event stream as input and super resolves it to
a high-resolution eventstream [5]

EvIntSR-Net (Event Intensity Super Resolution-Net) [8] is another event super revolving architec-
ture. Although the amount of citations is limited, the methodology is interesting as their method
preserves temporal information by encoding it into the input. This is realized by transforming the
events into a spatial-temporal voxel grid as they propose in [40]. Both the APS frame at time t and
the voxel grid representation are used as input into their framework. The first stage consists of a U-Net
and produces latent frames which are in the second step used to super resolve into the SR frame by
multi-image-fusion net (MIF-Net). The disadvantages are (i) that it takes a lot of data as input which
will make it computationally complex. (ii) As the network does not compute in a recurrent fashion,
events are used multiple times which results in even more computational complexity. (iii) The voxel
grid does allow for more temporal information but as the LFR-Net produces latent frames, it is arguable
if it is that useful. This paper is like the previous paper published in 2021 and also only has 2 citations.

Figure 2.10: An overview of the framework of EvIntSR-Net which uses both APS frame and events to super-resolve
APS frames [8]

eSL-Net [34] stands for event Sparse Learning-Net. They manage to deblur, denoise and super
resolve APS frames in combination with events to intensity images. It enables SR in both the temporal
(with respect to the framerate of APS) as well as the spatial space by predicting the latent frames. The
temporal SR can achieve a frame rate equivalent to the frequency of occurring events. It is published
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in 2020 and so far has already 17 citations. The performance seems promising and the code is made
publicly available.

Figure 2.11: An overview of the framework of eSL-Net which uses both APS frame and events as input to deblur,
denoise and super-resolve APS frame (in temporal and spatial context) [34]

As the DAVIS camera is the only event-based camera that is equipped with an APS, most research
is done towards a combination of a grayscaled image from the APS with events. But there is already a
model proposed which uses an input of colored RGB frames and intensity frames named Event-based
VSR framework (E-VSR) [11]. The framework is depicted in Figure 2.12 and is quite overwhelming, but
is actually a combination of a newly proposed event-based asynchronous interpolation (EAI) module
from which its outputs are fed into a recurrent video super-resolution module [28].

Figure 2.12: An overview of the framework of E-VSR which uses both colored frames (ILR
t−1, ILR

t and ILR
t+1) and events

to super-resolve the colored frame in a recurrent fashion [11]

Spiking Neural Network
All the reviewed super-resolution methods for events inflict a conversion from event-space to frames
and thereby lose some temporal information as the exact timestamp of the events is neglected in the
frame. This makes sense because it enables the use of frame-based SR methods from which perfor-
mance is proven extensively. There is however also a special class of neural network that is designed
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to cope with the representation of events by spikes directly. Spikes is a representation of data that is
biologically inspired on the human nervous system. These networks are called Spiking Neural Networks
(SNN) [32] [24] and is only recently been successfully implemented. A major challenge is to train an
SNN as backpropagation is not applicable. Backpropagation is not applicable as the spiking signals are
not derivable which is key for backpropagation to work. There are methods developed to transform
a trained conventional DNN counterpart of the SNN. This training fashion is used in [23] to find the
parameters of their proposed model which does classification on the neuromorphic MNIST (N-MNIST)
dataset. There is also a temporal credit assignment policy designed as an alternative for backpropa-
gation and is used in [35] to train their proposed network which was able to do action classification
on a hand gesture dataset with an accuracy of 96.59% for 10 category classification and 90.28% for
11 category classification. Another challenge is the lack of mature software toolboxes that includes
functions to create an SNN. This makes it currently challenging to create SNNs and in return prevent
more difficult computer vision tasks -like image segmentation or super-resolution- to be performed as
they need far more complex architectures. Inherently, it is not proven to work in the first place for
more complex computer vision tasks.

From this, we conclude that SNNs are currently not far enough developed to be used to realize
super-resolution of events. But looking at data representation we see similarities between events and
pointclouds from which we will review upsampling algorithms in the next section.

2.2.4. Point Cloud Super Resolution
A point cloud is a representation in two or more dimensions of data in which coherence between the
data points is not explicitly present, it is comparable with a scattered plot. This makes it interesting
to study how architectures that are designed to cope with point cloud representation are able to do so
as it could be of inspiration for processing events. One example of a sensor that outputs this kind of
representation is a LiDAR. This sensor consists of multiple laser pointers which are spinning around an
axle while each laser measures distances. The measured data is represented by the physical euclidean
dimensions (x, y, z) of each measured point. With the LiDAR -or other point cloud representation- the
data density is often sparse which results in a likewise urge for super resolving the LR pointcloud by
predicting an HR representation.

The first proposed network that was able to super resolve (or upsample) is Point Upsampling-Net
(PU-Net) [39] in 2018. This network is designed to upsample point cloud representatives of an item
which tend to have more coherence with respect to events as it resembles one object. The data is fed to
the network as an unordered stacked list of size (N, 3) of the N points, each with 3 euclidean dimensions.
Then the proposed model searches for geometric patterns of the presented object which are used to find
its the surface on which points are generated by a Poisson disk sampling. Results of this network are
shown in Figure 2.13. Using the same geometric features as a principal to determine the surface of the
object, [38] proposes a multi-step progressive upsampling (MPU) network one year later in 2019. MPU
has an even better edge awareness which enhances the performance to retain details in the upsampled
pointcloud.

Figure 2.13: Results of super-resolving pointclouds each iteration with scaling factor 2 using PU-Net [39]
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Other methodologies have been invented like Point Upsampling Generative adversarial Network (PU-
GAN) [15]. A GAN is a special type of neural network and consists of two separate networks -hence
adversarial-. One of them is the generator which -in this case- predicts the HR pointcloud given an LR
pointcloud. The second network is called the discriminator which has the goal to determine if it is fed
the output of the generator or the ground truth. Depending on whether the generator is making a valid
verdict on its decision, the parameters of either the generator or discriminator. In this way, over time
both the generator as well as the discriminator are converging towards an optimization in which the
generator is keep generating more similar representatives of the ground truth, and the discriminator is
getting better in distinguishing generated input versus a ground truth.

In PU-GAN, the generator consists of three components that successfully extract features, expand
features and generate the HR pointcloud. The discriminator has a more basic architecture but with
a self-attention layer to enhance the feature learning. An overview of the network can be seen in
Figure 2.15.

Figure 2.14: An overview of the framework and its different modules in the Generator and Discriminator of PU-GAN
which super-resolves pointcloud using a GAN network [15]

Graph Convolutional Network (GCN) is a type of CNN. Whereas CNNs are made for 2D array
convolutions, GCNs can be used on graph-structured data directly. In GCNs a specified amount of
neighbour nodes are used in each convolution. The points in a pointcloud are also not aligned in
a 2d array but each point does have neighbours at a certain distance. Neighbouring points have
embedded information about the coherence of the pointcloud and thus can be exploited to find hidden
features in order to make predictions about the SR of the pointcloud. Pointcloud Upsampling - Graph
Convolutional Network (PU-GCN) [26] is a network that makes use of GCN to upsample a pointcloud.
Its performance is compared in Table 2.1 to the previously discussed networks whilst it has the least
amount of parameters and computation time. The used metrics are Chamfer distance (CD), Hausdorff
distance (HD), and point-to-surface distance (P2F) [33]. In addition, their proposed algorithm is made
to upsample noisy and complex data and thus have some degree of resemblance with the coherence of
events.

Figure 2.15: An overview of the framework of PU-GCN which super-resolves point clouds using a graph convolutional
network architecture [26]
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Table 2.1: Performance comparison of the previous discussed pointcloud upsampling networks with different metrics
Chamfer distance (CD), Hausdorff distance (HD), and point-to-surface distance (P2F)

Network CD ↓ HD ↓ P2F ↓ Param. Time
10−3 10−3 10−3 Kb ms

PU-Net [39] 0.556 4.750 4.678 814.3 10.04
MPU [38] 0.298 4.700 2.855 76.2 10.86
PU-GAN [15] 0.280 4.640 2.330 684.2 14.28
PU-GCN [26] 0.258 1.885 2.721 76.0 8.83

The latest (2021) proposed pointcloud upsampling network is proposed by [37]. Meta-PU makes
likewise use of GCNs as in PU-GCN, but while PU-GCN is trained for a fixed scale factor, the scale
factor can be adjusted in Meta-PU. The ability to adjust the scale factor is preferable in practical cases
for example in LiDAR data when sparsity is divergent depending on the distance of the detected object
to the LiDAR sensor. The variable scaling factor is made possible by implementing a meta-learning
block which dynamically changes the graph convolutional weights depending on the desired scale factor.

Figure 2.16: Results of Meta-PU on unseen sparse and non-uniform LiDAR data. Every first row is depict LR input
data and every second row its corresponding SR. Meta-PU can predict both isolated objects (depicted on the 2nd row)

as well as scenery (depicted on the 4th row)[37]



3
Discussion

Super-resolution is a problem in computer vision on which research is done extensively. Literature shows
that convolutional neural networks form the backbone of both image as frame-based video resolution.
Additionally, state-of-the-art frame-based video super-resolution makes use of consecutive frames It−1

and It+1. Those frames embed hidden information which is relevant to uncovering ’unseen’ information
about details. Recurrent networks prevent frames from being used multiple times in the calculation
of their neighbouring super-resolved frames which is preferable to keep reducing the computational
complexity.

After reviewing the proposed super-resolution methods, it is concluded that (except for the non-
learning-based method [14]) the same methodologies as reviewed in frame-based super-resolution are
applied. To do so, event-based data are converted to a frame-based representation to make the algo-
rithms fit. Conversion is done by discretizing events into frame-like representations. Discretization has
inherently the following disadvantages: (i) temporal information is lost, and (ii) the transformation
from events to frames counters the sparsity of the data which was one of the key properties of event-
based vision. Except for [5] -from which it is unclear how they are managed-, all proposed models
return a super-resolved frame instead of events. Having a super-resolved event frame is interesting
for human interpretability, but there is no necessity for machine interpretability. From this we argue
that it should be omitted to transform the input to frames if there is no need for human interpretability.

To maintain the temporal information of the events whilst cherishing the sparsity of event-based
vision, we should seek techniques that enable event representation as directly input. One class of net-
works that cope with event representations are spiking neural networks. These networks enable the
processing of bio-inspired spiking signals (similar to the event representation). Unfortunately, research
towards spiking neural networks is still in a fairly early stage and thus is not far enough developed to
implement them in complex tasks like super resolving. It is however most likely to be a crucial class of
neural network for processing event-based vision in the future.

After comparing data representations, it was concluded that events and pointclouds are similarly
structured. This lets us get inspiration from pointcloud upsampling algorithms. We reviewed two
different state-of-the-art methodologies. Namely, one which is suited to upsample pointclouds represen-
tations of self-contained surface of single items (e.g. chairs, cars, and coffee cups). They realize this by
finding the surface of the items and generating points on that surface, this is not possible in the way
how events are observed as they do not form a self-contained surface nor represent a single item and
are in practice quite noisy and have much less coherence with nearby points. The second method is
by the use of graph convolution networks which is a special type of convolutional network, but instead
of convolving a filter of a 2-dimensional array it directly convolves points with a specified amount of
nearest neighbours. This method is used in algorithms to super-resolve LiDAR generated pointclouds
that are quite noisy and share a certain level of similarities with events.
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4
Research Questions

A lot of different computer vision architectures are developed and the combinations of these lead to even
a more vast variety of advanced networks. These are however optimized for frame-based representation
which results in needed conversions of events to make it fit the frame-based algorithm. But we should
cherish the advantage of data sparsity and embedded temporal information of the event representation
as it is one of its key features and can be used as an extra feature to enhance super-resolution of events
in both power efficiency as well as quality. Conversion to intensity- or reconstructed images should thus
be prevented as much as possible. Of course, this is necessary in order for humans to visualize the data,
but when this may not necessary this conversion could be skipped. So to assure the data sparsity and
to make optimal use of temporal information, we should look for techniques that are able to process
the data in event-space. Research towards super-resolution in event-space is a novel area in which no
results are made nor solutions proposed.

Looking at other data representations, it can be concluded that a pointcloud representation has
similarities with events. Reviewed upsampling algorithms for pointclouds by the use of a graph con-
volutional network seems to have potential for super-resolution applications of events. There could
be thought of a two-step framework in which (i) an eventstream is transformed to a pointcloud repre-
sentation by neglecting the polarity which is upsampled by a pointcloud upsampling framework, and
(ii) the polarities of the upsampled points are predicted by either a K-nearest neighbor or a trainable
classifier/segmentation algorithm.

This raises the following research question: To what extent can event-based vision be super-
resolved in event-space?

With sub-questions:

1. To what extent can naive algorithm be used to super-resolve events or would it suffice to have a
learning-based algorithm?

2. To what extent is it power and computational efficient to realize super resolution in event-space
instead of super-revolve event-frames?

3. Do events converted to frame-based video result in a lower mean squared error with respect to a
ground truth when the events are super-resolved in eventspace rather then after the conversion?
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5
Hypothesis

We see in the literature currently no proposed solutions for super resolving event-based vision in event-
space. All the solutions in the topic of super-resolution applied to event-based vision involve a dis-
cretization somewhere in the process. There is, however, a special class of neural network that is suited
for event-based vision representation, but its development still needs major progress before complex
computer-vision tasks like super-resolution can be performed. Also, it is unsure if it will work ever.

Fortunately, we see potential in applying graph convolutional networks on event-based vision as was
done in [26] and [37]. With these types of networks, it is not necessary to discretize events and it is
already proven to super-resolve noise sparse pointclouds. Although pointcloud (x, y, z) representation
is the same as event representation (t, x, y, p), we still see potential to overcome this. One way is to
neglect the polarity initially and thus convert the events to a pointcloud as both have now 3 euclidean
dimensions. The polarity could be predicted after it is super-resolved, this converts it back to events.
A visualization these conversion steps are shown in Figure 5.1.

Retrieving the polarity using a naive k-NN algorithm is shortly tested, which gave a 93% accuracy
without optimizing. Some more advance (learnable) binary classification algorithms can be investi-
gated if optimization of the k-NN algorithm does not improve accuracy. Another possibility is to split
the events based on their polarity into a set of positive events and a set of negative events. In this
way, you can super-resolve the point clouds apart from each other and concatenate in the end with-
out losing information about the polarity. It is, however, expected that splitting by polarity prevents
coherence to be used by the network as a hidden feature in its prediction and thus worsens performance.

Power and computational complexity are almost entirely induced by the given amount of input
arguments and the amount of made computations to each input parameter. Keeping the events in
sparse representation results in a lower amount of input arguments than when events are converted to
event-frames. The reduction of input parameters is not explicit as it is depending on the number of
observed events in an arbitrary time. The difference in the number of parameters between proposed
event super-resolution networks and a network that is able to super-resolved events in event-space needs
investigation. From the reviewed papers it was not clear how many parameters event super-resolution
networks have. But looking at the difference between pointcloud networks in Table 2.1 it is clear
that graph convolution network-based models have 10 times fewer parameters than their competitors.
Although pointcloud super-resolving networks are not comparable with event-based super-resolution
networks, it still gives insight that graph convolution-based networks do not require the most amount
of parameters. Reasons behind this can be explained due to the fact that graph convolution networks
have shared parameters like a convolutional neural network, which is a type of network that we see
being used in state-of-the-art frame-based super-resolution networks.

We see potential in performing super-resolution directly on events as the data representation is sparse
and includes temporal information, unlike discretized conversions that are currently used. This makes it
a data representation that is potentially less power-demanding to super-resolve while including a more
complete set of features makes it feasible to super-resolve more accurately compared to discretized
events. It will be interesting to see if a model can be found that maximizes the potential of event-
based data representation to super-resolve more accurately while being less power demanding than
event-frame-based super-resolution counterparts.
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(a) LR (b) SR without polarity (c) SR with predicted polarity

Figure 5.1: A two-stage scheme results of super resolving a set and retrieving its polarity back in the second stage



6
Methodology

Our research differs from available solutions to super-resolve events in both methodology and output.
The proposed working principle has similar input and output as the EventZoom model [5], but with a
different methodology. Namely, EventZoom makes use of convolutional neural networks while we see
potential to use graph convolutional networks like done in [26] and [37] instead. Because of this, it is no
longer necessary to discretize events which in it self is unique, and therefore an interesting research topic.
EventZoom, however, is a network that makes an interesting option to use as a benchmark. All other
reviewed models do not have solely eventstream as input and output not directly usable as a benchmark.

At the beginning of the research, an investigation will be performed on ’simpler’ naive algorithms
to realize super-resolution of events. The found algorithm will then be used as a benchmark, next to
EventZoom, to test more advanced algorithms later on in the research. This initial investigation also
contributes to even more insight into event-based vision which will be of use when implementing more
advanced algorithms like the graph convolutional network.

During the research, various validations will be done at different phases of the research using datasets
ranging from simple to complex. In this way, more simple models can be found in an early stage which
will be upgraded into more powerful and complex models within each phase. The majority of neuro-
morphic datasets can be categorized into (i) artificial conversion of existing frame-based data set, (ii)
conversion of an image datasets by filming a static image using an event camera [13], or (iii) actual
neuromorphic captures. The first dataset which will be used to validate our model is N-MNIST [22]
followed by N-CIFAR10 [13], and finally, N-Caltech101 [22] these are all conversions of an image data
set. Depending on how well our proposed model converges towards a solution, a validation can be done
on an actual event-based vision.

Answers to our research question will be found by a final evaluation to verify and validate our
hypothesis. This evaluation will consists of three separate tests, (i) in event space by a combination
of a pointcloud similarity metric like Chamfer distance or Hausdorff distance and a precision metric
for the binary classification of the polarities (if applicable). (ii) Computation time will be compared
with other models and our found naive algorithm as a benchmark. (iii) Frame-based conversion will
be compared by performing super-resolution in event space and then converting events to frames using
E2VID to review models that first convert to event frames and then super-resolve.
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7
Important Dates

Out of the office due to vacation from 27.07.2022 - 09.08.2022

• Literature research – 07.02.2022 - 15.04.2022

• MSc Thesis – 19.04.2022 - 02.09.2022

– Midterm Review – 01.07.2022
– Submitting the draft version of thesis – 22.07.2022
– Green light – 05.08.2022
– Thesis deadline – 02.09.2022

• Presentation and defense – 07.10.2022
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