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Abstract
The uncertainty paired with the effects of climate change impacts the design aspects of hydraulic struc-
tures. To comprehend the uncertainty of the evolving conditions, methods and models that differ from
the traditional ones could provide a better understanding of the uncertainty and potential risks associated
with a design. This thesis aims to provide a framework for combining such methods. The thesis considers
the Wide Green Dike project, which combines water safety and sustainability. The project, located in
the Ems-Dollard estuary, involves the reinforcement of a primary water defence using locally ripened
clay by removing sediment from the estuary. This helps to solve the silt problem in the Ems-Dollard.
The objective is stated by ‘develop a multivariate probabilistic tool to provide insight into incorporating
adaptive design strategies, and to gain extra information that contributes to assessing the feasibility of
the Wide Green Dike concept given the uncertainty of sea level rise’.

Hydraulic structures like the Wide Green Dike are designed to withstand extreme natural events. Such
events are characterized by the joint behaviour of random variables. Five variables are considered for
which modelling the joint behaviour could be of interest; nearshore water level, offshore significant wave
height and peak period, and nearshore wind speed and direction. The extremes of the design variables
are sampled by a Peaks-Over-Threshold method. The water level is considered to be the dominant
variable to which to method is applied, with a threshold of NAP +2.8 meters and a declustering time
of 45 hours. The extreme conditions for the remaining variables correspond to the coinciding times of
the dominant variable. The selected multivariate dataset contains 142 extreme events. A stationary and
non-stationary extreme value analysis is performed for the extreme water level. The analyses showed that
the water level is well-modelled using both approaches. The best model was found to be a non-stationary
Generalized Pareto distribution with the wave height as the covariate.

The joint behaviour of the extremes is modelled using a vine copula. A vine copula is a structure of
bivariate copulae, which are functions that examines the association of N = 2 variables. Connecting
the copulae creates a multivariate N > 2 model. It was investigated whether a non-stationary extreme
value analysis could be combined with copula modelling with the wave height as covariate. Introducing
the non-stationary marginal distribution into copula modelling resulted that the transformation from
the copula by the marginal distribution is no longer increasingly monotonic. This concluded that the
built dependence structure was not preserved. Hence, to model using a vine copula, the water level is
modelled by a stationary Generalized Pareto distribution. The best-performing vine copula was found a
C-vine with the water level as the central node. The vine copula was found using a Brute Force approach
by examining all possibilities using Morales-Nápoles et al. (2023). The vine copulae were assessed based
on the AIC and the predicted exceedance probabilities.

A hybrid approach proposed by Camus et al. (2011a) is used to propagate the offshore wave character-
istics to nearshore conditions. The method combines the numerical wave model SWAN with a surrogate
model. The surrogate model captures the input-output behaviour of SWAN using radial basis functions.
This approach significantly reduced the computational effort of the offshore-nearshore transformations.
The surrogate model was extrapolated to include the SSP5-8.5 sea level rise scenario for the Dutch coast
projected by KNMI (2021).

The Wide Green Dike is probabilistically assessed for its clay-erosion failure mechanism using a Monte
Carlo simulation. The model to determine the erosion volume and profile results from Sweco (2021c).
The vine-based design, with a design life of up to 2150, is selected by minimizing the cross-sectional area
of the design while meeting the required failure probability. This design is compared to a deterministic
design. The deterministic design resulted in significant increases; an increase of the crest height by 2
meters and the clay layer thickness of 52 centimetres. The mild outer slope of the Wide Green Dike of 1:7
resulted that the cross-sectional area of the deterministic design being +146% larger than the vine-based
design. Moreover, the deterministic design intruded 19 meters further into the adjacent Natura 2000
area.
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Figure 1: The vine-based and deterministic designs of the WGD for the year 2150.

To cope with the uncertainty of sea level rise, it is explored to incorporate an adaptive design strategy
into the project. An adaptive design handles the uncertainty in long-term decisions by emphasizing
adaptivity in its design (Haasnoot et al., 2013). Four different adaptive design strategies were created
and assessed against the baseline strategy. The baseline strategy implies creating the final design with
a sight-year of 2150 in one go. The strategies are assessed based on the amount of required clay, the
up-scaling capacity of the clay refinery in the ED2050 program, the possible benefits associated with
each strategy and the impact on the adjacent Natura 2000 area.

It was found that incorporating an adaptive design strategy into the WGD project can promote its
business case and help mitigate the risk of over-designing in a Natura 2000 area. Adaptive strategies
can help lower the initial clay capacity required for the construction of the WGD. Hence, the risk of not
meeting the ambitious up-scaling capacity goals could be reduced. If the goals are met, the excess clay
can be used for other purposes, resulting in an export product. Including adaptive strategies can also
be beneficial for the business case of the WGD. The possible benefits can be reinvested elsewhere and
compound over time. Moreover, the risk of over-designing can be mitigated by using adaptive strategies.
The uncertainty in SLR could result in the risk of over-designing when a milder SLR scenario becomes
a reality. The preferred strategy concerns constructing a design with a sight-year of 2090 in 2050 and
adding two possible adaptations with sight-years of 2120 and 2150 during its design life.
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Figure 2: The cross-section and construction phases of the selected adaptive design strategy.
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1 | Introduction
1.1 Context of the Problem
Hydraulic structures are essential for water management by creating protection against flooding, fresh-
water supply, and marine and inland navigation. The design of such structures is bound to meet current
and future social, economic and environmental needs (Erpicum et al., 2020). With evolving challenges
such as climate change, a design approach centred around sustainability and multidisciplinary perspect-
ives could be favoured.

The Dutch National Water Program 2022-2027 defines a new policy that aims to adapt the Dutch water
domain to clean, safe and sufficient water that is climate adaptive and future-proof (Rijksoverheid,
2022). In addition, it stimulates integral solutions between the water and common ground sectors.
Creative design in hydraulic engineering that integrates different aspects, such as water safety with
climate adaptation, sustainable freshwater supply, water quality, and various other functions, will be
necessary to adapt the water domain to the impact of climate change. The Wide Green Dike (in Dutch:
Brede Groene Dijk) project in the Ems-Dollard area is an example of such a creative design in hydraulic
engineering. The project combines water safety and sustainability by creating a green dike, without
any rock revetment, from local ripened clay acquired from the Ems-Dollard estuary. Implementing such
creative designs could encounter new uncertainties. Methods and models required to deal with these
uncertainties could also be different from the traditional ones used.

Figure 1.1: Demonstration project of the Wide Green Dike. Retrieved an modified from ‘Proef-
project Brede Groene Dijk’ (https://www.hunzeenaas.nl/projecten/brede-groene-dijk/brede
-groene-dijk/) by Waterboard Hunze and Aa’s (2022)

In traditional design, a deterministic design approach is often preferred for its simplicity. It relies on
well-known inputs, established design guidelines and deterministic models to determine the design para-
meters and dimensions of hydraulic structures. A deterministic approach does not explicitly consider
variability or the uncertainty paired with the design conditions. Nowadays, the switch to (univariate)
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semi-probabilistic and probabilistic approaches is increasing. A semi-probabilistic approach incorporates
some degree of probabilistic techniques by including statistical distributions or safety factors when se-
lecting design parameters while maintaining a predominantly deterministic framework. A probabilistic
approach explicitly considers uncertainty and variability throughout the design process. The uncertain-
ties associated with design parameters are quantified using statistical techniques and distributions. A
probabilistic approach is used to assess the failure probability or performance of a hydraulic structure
at a detailed level. It provides a more comprehensive understanding of the uncertainties and potential
risks associated with a design.

Climate change results in a change in hydraulic conditions over time, such as sea level rise. The Intergov-
ernmental Panel on Climate Change (IPCC, 2022) projected different climate scenarios, corresponding
to different emission scenarios. These scenarios showed that over a time span of 50+ years, climate
change can result in a significant sea level rise. If this is not taken into account in the design, the design
variables could be well misrepresented. In hydraulic structure design, a design life of 50+ years is very
typical, hence climate change should be accounted for. It is clear that climate change creates uncertain
future boundary conditions. In the current context of climate change, a deterministic approach should
be questioned and a probabilistic approach should be favoured.

Hydraulic structures are designed to withstand loading conditions related to extreme environmental
scenarios. To comprehend the uncertainty of changing environmental conditions in hydraulic structure
design, the introduction of new methods and models should be aspired. A method to model this change
is a non-stationary extreme value analysis (Gumbel, 1958). The non-stationarity of variables, such as
sea level rise, can be captured using statistical models to make a prediction for representative future
values of the variable. Moreover, natural hazards are characterized by the shared dependence of several
random variables (Salvadori et al., 2007). Multivariate probabilistic design clears the way for exploring
dependencies between design variables. A multivariate approach models the joint occurrence of a com-
bined condition, revealing new insights e.g., the correlation between wave height, wind speed and water
level.

Next to incorporating new models that estimate the uncertainty and changing conditions related to
climate change, there could be a leap forward could in design methodology. Adaptive design strategies
can provide a way to mitigate over-designing hydraulic structures. To cope with the uncertainty of
sea level rise, this methodology aims at handling the uncertainty in long-term decisions by emphasizing
adaptivity in a design. An adaptive design can adapt to new boundary conditions when new future
information is collected (Haasnoot et al., 2013).

1.2 Objective & Research Questions
This thesis provides a possible framework for combining non-stationary extreme value analysis, mul-
tivariate modelling and adaptive design strategies and explores the insights gained by incorporating such
pioneering approaches for a real hydraulic structure project. The objective of the thesis is stated by
‘develop a multivariate probabilistic tool to provide insight into incorporating adaptive design strategies,
and to gain extra information that contributes to assessing the feasibility of the Wide Green Dike concept
given the uncertainty of sea level rise’. This objective is rephrased into a main research question.

How can a multivariate probabilistic tool provide insight into incorporating adaptive design strategies
and how could it provide additional insights regarding the feasibility of the Wide Green Dike concept

given the uncertainty of sea level rise?

To reach the objective of this thesis three research questions (RQ) are posed:

RQ 1: Can a Non-stationary Extreme Value Analysis be applied in a multivariate design approach using
Vine-Copulae?
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RQ 2: What are the design differences between a multivariate probabilistic design and a deterministic
design for the Wide Green Dike project?

RQ 3: How can incorporating an adaptive design strategy to the Wide Green Dike concept promote its
feasibility given the uncertainty of sea level rise?

1.3 Methodology & Structure
To achieve the thesis objective, this thesis is structured as visualized in Figure 1.2. The thesis starts
with the collection and selection of data. The case study, the Wide Green Dike (WGD), results in the
design variables of interest. Data of the variables and project information is gathered in Chapter 2.
The design of the WGD is based on extreme conditions. To define and model such extremes, Chapter 3
performs an extreme value analysis on the selected data. The dependence structure of the extremes is
modelled in Chapter 4. This results in a multivariate model that models the extreme conditions for the
WGD while respecting the joint behaviour of the design variables during such extremes. To get design
values for the design, an offshore-nearshore transformation is performed and sea level rise is included.
The results are used to create a multivariate probabilistic base design in Chapter 5. This design is
compared to a deterministic design. In Chapter 6, multiple adaptive design strategies are explored for
the WGD project. The strategies are assessed based on several criteria ranging from the business case
to the environmental aspects. The assumptions made and the limitations and challenges found over the
course of this thesis are discussed in Chapter 7. Chapter 8 concludes the key findings of the thesis and
provides multiple recommendations for the case study, multivariate modelling and future works regarding
multivariate modelling for hydraulic structure design.

Figure 1.2: Thesis structure and chapter layout of Chapters 2 up to 6.

Chapter 2 introduces the WGD project. This thesis considers one of the dominant failure mechanisms
of the WGD, the clay-erosion failure mechanism (Sweco, 2021b). To assess the failure mechanism, data
is acquired for five design variables: the nearshore water level h, offshore significant wave height Hs

and peak period Tp and nearshore wind speed ws and direction wd. According to Sweco (2021a), the
governing wave impacts for the design result from distantly generated wind-generated waves. Therefore,
it is assumed that the offshore wave direction θ equals the wind direction during extreme conditions.
This assumption is grounded on Bowers et al. (2000) and Hildebrandt et al. (2019).

Coastal structures are designed for extreme events. To sample the extreme events from the collected
data, an extreme value analysis is performed. The extremes are defined using a Peaks-Over-Threshold
(POT, Salvadori et al., 2007) method; a sampling technique that involves selecting extremes based on
an appropriate threshold and declustering time. To perform the multivariate analysis, the extremes are
selected based on a dominant variable (Zachary et al., 1998), which in this project is the water level. The
other variables correspond to the coinciding time of the dominant variable. The selected extreme water
levels are then modelled using a stationary and non-stationary extreme value analysis. In the stationary
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extreme value analysis, the marginal distribution of the water level remains constant in time. For the
non-stationary extreme value analysis, the marginal distribution is non-stationary. This implies that the
distribution is dependent on a covariate, e.g. time (Shumway and Stoffer, 2011). A non-stationary distri-
bution could be useful in modelling phenomena with non-stationary characteristics, such as sea level rise.

The dependence structure of the selected extremes is modelled by a vine copula in Chapter 4. A vine
copula is a tree-like structure consisting of (marginal and conditional) bivariate copulae (Salvadori et al.,
2007). Bivariate copulae are functions that describe the joint distribution of N = 2 variables. In a vine
copula, the bivariate copulae are connected to create a multivariate (N > 2) model. Vine copulae have
proven to be a flexible tool that can model a wide range of complex dependencies, such as multivariate
modelling of flood characteristics (e.g. Tosunoglu et al., 2020; Zhang et al., 2020). Chapter 4 also exam-
ines the possibility to combine non-stationary extreme value analysis with copula modelling.

Sampling the multivariate model provides the design values for the variables. In Chapter 5, an offshore-
nearshore transformation is performed to propagate the sampled offshore wave characteristics to nearshore
conditions. This is done using a hybrid approach proposed by Camus et al. (2011a). This approach com-
bines a numerical wave model, SWAN, with a data-driven model (or surrogate model). This approach
is applied to significantly reduce the computational effort for the offshore-nearshore transformation. For
the offshore-nearshore transformation, sea level rise for the Dutch coast is included as projected by the
‘Klimaatsignaal 21’ report by KNMI (2021), based on the SSP5-8.5 emission scenario by IPCC (2022).

The design values resulting from the propagation are used to perform a probabilistic assessment of the
clay-erosion failure mechanism. The principles in the design of the WGD are similar to the WGD’s
demonstration project designed by Sweco (Sweco, 2021b). The vine-based design is designed with a
design life of 2050− 2150. The clay erosion is assessed using a Monte Carlo simulation to determine the
failure probability of the design. Figure 1.3 illustrates the failure cases for a Monte Carlo simulation.
The multivariate probabilistic assessment of the clay erosion results in an optimized design for the WGD.
This design is compared to a deterministic design.

Figure 1.3: Illustration of the failure cases for a Monte Carlo simulation.

In Chapter 6, possible adaptive design strategies are explored. The design strategies are developed on the
basis of Adaption Pathways and Adaptive Policymaking (Haasnoot et al., 2011; Kwakkel et al., 2010).
These are two approaches that help decision-making for long-term decisions under uncertainty, such as
sea level rise. The strategies are based on multiple designs created by the procedure from Chapter 5.
The different strategies are assessed according to criteria including the business case, the up-scaling of
the clay refinery in the Ems-Dollard area, the environmental impact on the adjacent Natura 2000 area
and feasibility. The exploration results in a preferred long-term strategic plan for the WGD.
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1.4 Thesis Scope
The scope of the thesis includes:

• The design life of the design is 2050− 2150.

• This thesis focuses on the clay-erosion failure mechanism of the WGD. This failure mechanism is
modelled by the adjusted model of Mourik (Sweco, 2021c).

• Required failure probability of the failure mechanism and other principles are reproduced from the
WGD demonstration project (Sweco, 2021b).

• The limitations of the equations used to derive the failure probabilities for the failure mechanisms
are respected and described.

• To account for sea level rise, the SSP5-8.5 emission scenario from the Sixth Assessment Report by
IPCC (2022) is considered. The sea level rise for the Dutch coast results from the ‘Klimaatsignaal
21’ report by KNMI (2021). In addition, it is assumed that the sea level rise at the coast translates
one-to-one to the sea level rise in the Ems-Dollard estuary.

• In the offshore-nearshore transformation, the wind characteristics measured near the dike are as-
sumed to be constant for the entire modelled domain.

• The measured nearshore water level is assumed constant along the entire dike’s trajectory.

• It is assumed that during extreme conditions, the offshore wave direction and wind direction are
equal (Bowers et al., 2000; Hildebrandt et al., 2019; Sweco, 2021a).

• It is assumed that the surrogate model for the offshore-nearshore transformation can be extrapol-
ated to extreme water levels that include sea level rise.

• In assessing the business case for the adaptive design strategies, a fixed interest rate at 4% and a
fixed inflation rate at 2% is assumed (European Commission, nd).

• For the up-scaling of the clay refinery at Ems-Dollard, the results of the pilot studies discussed at
the webinar ‘Kleirijpen voor dijkversterking’ by Deltares (2023) are used.

The following items are excluded from the thesis scope:

• The outer slope of the WGD is set at 1:7. Research by Waterboard Hunze and Aa’s (2022) selected
this slope as it was found optimal for the WGD project given the crest height and clay layer
thickness of the demonstration project.

• Development of the bathymetry of the Ems-Dollard estuary over time is not taken into considera-
tion. The salt marshes in the Dollard will remain at a level of approximately NAP +2 meters. This
is a crude assumption as Marijnissen et al. (2020) showed that the accreditation of the foreshore
could even outpace SLR for milder SLR scenarios and thus could play an important role in flood
risk safety.

• The design of the WGD does not include additional crest height or clay layer thickness due to e.g.
soil subsidence or construction margins.
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2 | Case Study: The Wide Green Dike
This chapter introduces the Wide Green Dike project and describes the data selection. Sections 2.1 and
2.2 introduce the case study and the associated clay refinery program. The failure mechanism of interest
is described in Section 2.3. The acquired datasets for the design variables, water level, wave and wind
characteristics, are found in Section 2.4. In Section 2.5, the accounted sea level rise scenario is stated.

2.1 Introduction to the Wide Green Dike project
The case study applied in this thesis is the Wide Green Dike (WGD) project, located in the Ems-Dollard
area. The WGD project forms part of the eastern primary water defences of the Netherlands, serviced
by the Waterboard Hunze and Aa’s. Its 12.5 kilometres long trajectory runs from the Kerkhovenpolder
to the border with Germany, as shown in Figure 2.1. The Dutch primary water defences are periodically
assessed according to the Dutch Legal Assessment Toolkit from 2017 (in Dutch: Wettelijke Beoordel-
ingsinstrumentarium 2017, WBI-2017). This assessment, performed by Sweco, showed that the current
dike does not comply with the safety standards on several dike aspects. Therefore, the dike design is
revised, creating the WGD project (Sweco, 2021b).

Figure 2.1: The Dutch Wadden Sea area, with the Ems-Dollard estuary enlarged. Retrieved from
OpenStreetMap (https://www.imergis.nl/) by van Aalst (2021).

A traditional dike reinforcement would replace the grass cover of the levee with asphalt or stone revet-
ment. Ambitions of the Waterboard Hunze and Aa’s resulted in the design of a natural embankment,
where the dike is reinforced by local materials. This created the possibility to fit the embankment into
the local environment of the Natura 2000 area. The project utilizes the clay refinery originating from
the Ems-Dollard 2050 Program (Dijk, 2022). An excess of silt in the Ems-Dollard estuary results in a
decrease in the local ecology. The variety and number of fish, birds and plants are heavily decreasing,
due to the turbid water and loss of habitats. The use of locally repined clay removes some of the silt
from the estuary, thus helping to solve the silt problem in the Ems-Dollard estuary. The scope of the
WGD project covers the technical potential of using locally ripened clay from new clay sources in dike
design and the possibilities of integration of the WGD into the Natura 2000 area. The WGD project
received the ‘Zonnetje’ award; a yearly award for innovative and inspirational projects of the Dutch Delta
program (Nationaal, 2022).
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To acquire knowledge, a demonstration project of 800 meters is constructed to act as a research field
that is closely monitored. This design is a grass-covered clay dike with a mild outer slope of 1:7. The
seaward side of the embankment meets with the Natura 2000 area. The foreshore is a 1-kilometre-long
salt marsh. The landward part of the dike meets with polders from the eastern part of Groningen. The
project is constructed seawards on top of the current dike. The WGD is designed by Sweco using a
mix of probabilistic and semi-probabilistic approaches to the failure mechanisms. The mechanisms are
assessed using empirical relations resulting from manuals and case-specific tests performed by Deltares.
The hydraulic boundary conditions for the design are generated with Hydra-NL, a software program
for the safety assessment of dikes (Duits, 2020). The WGD’s design takes into account some degree of
climate change by considering the largest prediction of sea level rise (SLR) of the Royal Netherlands
Meteorological Institute (KNMI) from 2006; climate scenario W+ (KNMI, 2006).

A clear understanding of the erosion characteristics of the clay and the model used to estimate the clay
erosion failure mechanism is of significant importance for the WGD. Insight into the erosion character-
istics of the clay is gained through lab results and expert judgement. The model used to determine the
erosion profile that develops during a storm, depends on the correlation between the different hydraulic
conditions, e.g. water level and wave height. This thesis employs the opportunity provided by Sweco
to investigate the uncertainty in these two key aspects of the WGD using a multivariate probabilistic
approach.

2.2 Up-scaling of the Clay Refinery from the Ems-Dollard 2050 Program
During the webinar ‘Kleirijpen voor dijkversterking’ by Deltares (2023) several preliminary studies were
presented. The studies involved the clay ripening process, vegetation on clay ripening, implementation
of the process and the clay refinery business case and up-scaling. The goal of the clay refinery is to help
reduce the silt concentration in the estuary. The WGD project serves as a haven for the clay originating
from the collected silt. Consequently, helping create a positive business case for the clay refinery. The
silt problem results from several causes. Over the years, large parts of the Ems-Dollard estuary were
reclaimed. The land reclamation shown in Figure 2.2, resulted in a large loss of area for the silt to settle.
In addition, dredging works deepened and widened the waterways to the local harbours. This resulted in
a larger import of sediment due to the strong tidal current, while less sediment could settle (Dijk, 2022).

Figure 2.2: The land reclamation in time of the Ems-Dollard estuary. Retrieved from Kirchhoff (1992).

The technical and environmental aspects of the ripening process were studied during a pilot study to
check the feasibility of maturing clay for dike adaptions (Deltares, 2023). The results showed that the
environmental requirements were met and that the clay is sufficiently erosion-proof. Several locations
were selected for the clay refineries. Two locations on land, near the Ems Harbour and Delfzijl, and
one location in the Natura 2000 area. The latter is a pilot study itself, called the ‘Klutenplas’. The
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Klutenplas is a small lake that traps sediment but also acts as a safe breeding ground for the avocet
bird using a small island. However, the up-scaling of the refinery is not feasible for locations within the
Natura 2000 area.

The studies provided great insight into the clay repining process. During the winter period, the depots
are filled such that the clay is matured and can be used in the summer. The ratio of silt (without
contamination) to densely packed clay, ready for use, is around 3.2 : 1. The capacity is thus limited
to the amount of clay that is matured each cycle. The maturing rate is heavily impacted by weather
conditions, resulting in a broad confidence interval for the production rate. The studies also looked at
the costs associated with the process. The location of the clay refinery proved to be of great influence on
the costs of clay. Land use costs for the clay refinery and transportation costs were around 50% of the
total costs. The final costs were estimated at e25− 35/m3 of clay (SCBA). This proved to be a positive
business case when comparing the costs of acquiring clay elsewhere.

2.3 The Clay-Erosion failure mechanism of the Wide Green Dike
The failure mechanism for clay erosion is the dominant failure mechanism for the WGD. Clay erosion is
assessed using the model of Mourik (Deltares, 2020). This model determines the total erosion volume
and erosion profile. Figure 2.3 shows the erosion profile. The black line shows the erosion profile, in
which: Ve is the erosion volume, de is the perpendicular erosion depth, d0 is the starting erosion depth,
αterrace is the slope of the terrace, αcliff is the slope of the cliff, Le is the erosion length and dt is the
erosion depth below the water level (Deltares, 2012).

Figure 2.3: Sketch of the erosion profile with variables. Retrieved and modified from ‘Prediction of the
erosion velocity of a slope of clay due to wave attack’ by Deltares (2020), p.3.

To verify the results of the model of Mourik several Delta Flume tests were performed by Deltares. The
tests and the model resulted in similar total erosion volume for the same wave heights and water levels.
However, Mourik’s model slightly overestimated de, underestimated the lower part of the erosion profile
and overestimated the upper part of the erosion profile. Using knowledge gathered from the Delta Flume
tests, the model is slightly adapted to comply with the WGD’s design criteria. This adaption resulted
in matching results between what was calculated by the model and what was observed in the Delta
Flume (Sweco, 2021c). The research done by Deltares resulted in the following adjustments, a visual is
represented in Figure 2.4.

1. The outer slope of the dike α equals 1:7
2. The slope of the terrace αterrace equals 1:10
3. The slope of the cliff αcliff equals 2:1
4. An erosion depth d0 of 0.5 meters on the seaside of the erosion profile is introduced
5. The entire erosion profile from Mourik’s model is lowered by half a meter

(shift of y-axis by −0.5 meters)
6. The entire erosion profile from Mourik’s model is translated by three meters to the left

(shift of x-axis by −3.0 meters)

Note: A positive coordinate system is assumed to have a positive x-axis to the right and a positive
y-axis upwards as shown in Figure 2.4.
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(a) Mourik’s model before the adjustments

(b) Mourik’s model after the adjustments

Figure 2.4: Erosion profile from the Delta Flume tests after 16 hours (bold green line) and calculated
from Mourik’s model (red line) (black line is the dike profile, the blue line is the water level). Retrieved
from ‘Vergelijking erosieprofiel Deltagoot en berekend’ by Sweco (2021d), p.5.

Equation 2.1 shows the WGD-specific formula that is used to determine the total erosion volume Ve

(Sweco, 2021c). The application of this formula is for wave heights Hm0 larger than 0.4 meters. Erosion
is neglected for wave heights below or equal to 0.4 meters. In addition, the application is restricted to a
wave steepness within 0.01 ≤ sop ≤ 0.05 (Deltares, 2020).

Ve = 16.7 ·H2
m0(1− e−0.55·ce(tanα)2·min(3.6;0.0061·s−1.5

op ·(1− 0.4
Hm0

)2·t)) (2.1)

Where:
Ve Erosion volume per m dike [m3/m]
Hm0 Average significant wave height [m]
ce Erosion coefficient [−]
α Outer dike slope [rad]
sop Wave steepness based on significant wave height

and peak wave period = Hs/(g · T 2
p /2π) [−]

t Time [h]

Using Ve, the erosion profile can be determined. The erosion depth de is defined by Equation 2.2.

de =

√√√√2 · Ve · tan (α− αterrace) + d20

1 + tan (α−αterrace)
tan (αcliff−α)

(2.2)

The erosion length Le is stated in Equation 2.3.

Le =
de − d0

tan (α− αterrace0)
+

de
tan (αcliff − α)

(2.3)

The location of the erosion profile is related to the water level during the storm. In Equation 2.4, the
erosion depth below the water level dt can be determined.

dt
Hm0

= min
(
0.4 · V

0.25
e

H1.5
m0

+ 0.7; 2
)

(2.4)

In the WGD design, the failure mechanism can lead to two types of failure. Failure occurs if the cal-
culated erosion depth de is larger than the thickness of the clay layer. If the clay layer thickness is
insufficient, the erosion profile reaches the sand core of the dike. This is considered type I failure. Type
II failure is due to the erosion of the outer slope reaching the crest of the dike. From calculations and
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the Delta Flume tests, this type of failure is considered the dominant failure mechanism. The erosion
volume is governed by the wave height. However, the water level determines the location of the erosion
profile. A large water level results in an erosion profile closer to the crest. Consequently, erosion of the
crest is reached earlier than for a lower water level. For a lower water level, the erosion volume at the
outer slope can be significantly larger before the crest is reached. In addition, due to the mild outer
slope of α = 1 : 7 and the WGD being constructed from the current dike seawards, the clay layer of the
WGD is thicker at lower levels of the outer slope. Hence, also the erosion depth for lower water levels
can be larger. This results that the water level is the dominant design variable for the failure mechanism.

The erosion volume is determined for an average wave height during a storm period. In Sweco (2021c),
the clay erosion is checked for three storm duration scenarios, namely for 14, 16 and 18-hour storm surge
averages for a storm with a 45-hour storm duration. The 18-hour average resulted in the governing
scenario. In this work, the required failure probability is assumed to be the same as in Sweco’s design
for the WGD. The required failure probability of this failure mechanism is Pf,req = 1/37, 500 per year.
Furthermore, a project principle requires that the minimum required clay layer thickness is 0.8 meters.
The current dike has a minimum clay layer thickness of 0.8 meters. As the WGD is constructed on top
of the current dike, failure of type I occurs if the erosion depth reaches the current dike. Failure type II
results when the erosion profile reaches the design crest height, with a minimum crest width of 1 meter
(project principle).

2.4 Data Collection & Selection
To perform the multivariate analysis five variables are considered: the near-dike water level, the near-
dike wind speed and direction, deepwater wave height and deepwater wave period. In this thesis, the
near-dike water level is assumed constant along the dike’s trajectory. The near-dike wind speed and
direction are also assumed constant in the Dollard for performing the offshore-nearshore transformation
of the wave height and period. In order to perform the multivariate analysis, coinciding data for all
variables is needed. Also, the bathymetry of the estuary is needed to perform the offshore-nearshore
transformation of the variables in Section 5.1. The data acquired for the data analysis and the sources
are listed in Table 2.1. Due to a lack of wave data from Rijkswaterstaat (2022), wave data from ERA5
is used. ERA5 is the fifth generation ECMWF Re-Analysis for the global climate and weather, created
by the European Centre for Medium-Range Weather Forecasts (ECMWF). It combines model data with
observations from across the world into a globally complete dataset. ERA5 provides hourly estimates
for a large number of atmospheric, ocean-wave and land-surface quantities, such as water level. More
explicit information on the datasets is given in Appendix A. Note, the locations of the data severely
differ from Sweco’s design. Therefore, the two designs cannot be compared one-to-one. This thesis is a
model study, therefore it compares the vine-based design to a deterministic design with the same data
locations.

Table 2.1: Acquired datasets and sources.

Kind of data Source Location Period [y]
Bathymetry EMODnet (2016) Ems-Dollard estuary 2012-2015
Deepwater wave data Rijkswaterstaat (2022) Randzelgat 2008-2022
Deepwater wave data ECMWF (2022) 53◦28′12.0′′N 6◦53′24.0′′E 1990-2022
Water level data Rijkswaterstaat (2022) 5 locations in the Dollard 1990-2022
Wind data KNMI (2022) Nieuw-Beerta 1990-2022

2.4.1 Water level Data Selection

Water level data is acquired for five locations in the Dollard estuary; Dollard West, Groote Gat, Nieuwe
Statenzijl, Reide and Schanskersdiep. The largest of these datasets, Nieuwe Statenzijl, spans from 1-12-
1990 to 20-11-2022. Data from the other four locations are more sparse. These measurements stray from
the years 1994 up to 2001. These four locations are used to verify the data from Nieuwe Statenzijl. The
datasets contain water level measurements taken every 10 minutes.
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Figure 2.5 shows the bathymetry, measurement locations and dike trajectory. It shows that the loc-
ations Dollard West, Nieuwe Statenzijl and Schanskersdiep are closest to the dike. Dollard West and
Schanskersdiep are at the ends of the channel branches, where the salt marsh starts. The salt marsh
has an average level of 2 meters above NAP, the Dutch measuring unit for water levels (Amsterdam
Ordnance Datum, in Dutch: Normaal Amsterdams Peil). Nieuwe Statenzijl is located at the mouth of
the Westerwoldse Aa canal where it meets the estuary. The measurement location Groote Gat is located
in one of the two main channel branches in the Dollard and is placed in deeper water depths compared to
the previous three locations. Reide is located before the main channel the Ems bifurcates. It is located
near the tip of a land section, at the inlet of the Dollard.

Legend

Water depth

NAP -31 m

Dike trajectory

NAP +5 m

NAP -4 m

NAP -13 m

NAP -22 m

Water level data

Wind data at Nieuw Beerta

ERA5 wave data

Reide
Groote Gat

Dollard West

Schanskersdiep

Nieuwe Statenzijl

Figure 2.5: Measurement locations in the Ems-Dollard. The water level measurement in the Dollard
estuary: Dollard West, Groote Gat, Nieuwe Statenzijl, Reide and Schanskersdiep.

In Figure 2.6, the data of the locations Dollard West, Schanskersdiep, Groote Gat and Reide is overlaid on
top of the measurements from Nieuwe Statenzijl. The figure shows that the corresponding data overlaps
quite well. A few significant differences are found for the locations Groote Gat and Schanskersdiep, in the
years 1999 and 1997 respectively. Figure 2.7 shows the station plots, where the four locations are plotted
against Nieuwe Statenzijl. If the measurements of both locations are equal, the data points should follow
the red line under an angle of 45 degrees, the one-one line. The station plots show a good match for
extreme water levels, starting at approximately NAP +2.0 meters. More deviation takes place for lower
water levels however, all plots appear to approximate the red line. The plots do show measurement
errors, the linear horizontal or vertical lines of data points can identify those. In the station plots of
Groote Gat and Schanskersdiep, these are found for water levels at approximately NAP −1.0 and NAP
−1.9 meters for Groote Gat and NAP +1.0 and NAP +2.5 meters for Schanskersdiep. These two plots
also show a vertical line at approximately NAP +1.3 meters for the Nieuwe Statenzijl station. Dollard
West and Schanskersdiep appear to have the best correspondence with the data from Nieuwe Statenzijl.
This was as expected from their relative locations in the Dollard. The station plot of Groote Gat shows
a decent fit, however, this location has a number of outliers with significant positive water levels. This
is caused by the much larger water depth of Groote Gat compared to Nieuwe Statenzijl. Therefore,
significant water levels will not be reduced by effects from the bottom and the salt marsh. Reide shows
the most deviation from the red line. This could be expected because this location is furthest away from
Nieuwe Statenzijl and is located in the Ems River, while the other locations are in the Dollard estuary.
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Figure 2.6: Water level comparison between Nieuwe Statenzijl and the other four locations Dollard West,
Schanskersdiep, Groote Gat and Reide for the years 1994 up to 2001.

Figure 2.7: Station plots of the water level with Nieuwe Statenzijl on the x-axis and the other four
locations Dollard West, Schanskersdiep, Groote Gat and Reide on the y-axis.

Table 2.2 shows the differences between the coinciding water levels for the four locations with Nieuwe
Statenzijl. The table shows that the deviation of the listed statistical values is limited. The largest
deviations are found for the differences in minimum and maximum values. Due to outliers for the
locations, Groote Gat and Schanskersdiep large variations for the maximum values are found, 3.76 and
1.50 meters respectively. However, differences for the median, mean, 1st and 3rd quartiles are limited,
with at most 0.18 meters for Groote Gat. The absolute average deviation is also determined. This value
can provide a general idea of which station corresponds best to Nieuwe Statenzijl. It shows that Dollard
West and Schanskersdiep have a slightly lower average deviation than Groote Gat and Reide, with an
absolute average deviation of between 0.24 and 0.28 meters. This was expected due to their relative
locations. However, this value does include outliers and measurement errors and can hence be skewed.
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Table 2.2: Statistical summary of the differences between the coinciding water level for the different
locations with Nieuwe Statenzijl. A negative value represents that the coinciding water level at the
location is lower than at Nieuwe Statenzijl.

Location Unit Absolute Min. 1st Median Mean 3rd Max.
mean value Quartile Quartile value

deviation
Dollard West m 0.242 0.11 -0.10 0.03 -0.004 0.11 -0.13
Groote Gat m 0.297 -0.63 -0.18 0.06 -0.094 0.02 3.76
Reide m 0.354 -0.16 0.03 -0.04 -0.016 0.07 -0.16
Schanskersdiep m 0.280 -0.19 -0.13 0.07 -0.019 0.09 1.50

Combining the information gathered from Figures 2.5, 2.6, 2.7 and Table 2.2 the water level data from
Nieuwe Statenzijl is adopted as an appropriate dataset to characterise the water level in the Dollard
estuary in front of the dike trajectory. The correspondence with the other measurement locations is
assumed as sufficient. The areas Dollard West and Schanskersdiep are next to Nieuwe Statenzijl of most
interest for this project. The absolute average deviation to these locations is in the order of 0.25 meters,
including measurement errors. Figure 2.7 shows that removing the measurement errors could reduce this
average deviation. In addition, the station plots show that the average deviation reduces significantly for
more significant water levels, which is important for this project since the dike is designed to withstand
storm surge conditions. In combination with a lack of datasets that match Nieuwe Statenzijl with a
large timespan of 30+ years, the deviation to other stations is assumed to be sufficient. The data at
Nieuwe Statenzijl is characterized by a mean value of µ =NAP +0.43 meters and a standard deviation
of σ =NAP +0.99 meters.

2.4.2 Wave Data Selection

The wave data used is sourced from ERA5 (ECMWF, 2022) and located at the inlet of the Ems River near
the Ems harbour. The exact location is 53◦28′12.0′′N 6◦53′24.0′′E, shown in Figure 2.5. The wave data
used is already propagated from the North Sea to the Wadden Sea. Therefore, some wave characteristics
could be affected due to the influence of the Wadden Islands and the Wadden Sea bathymetry. The
dataset spans from 01-01-1990 up to 31-12-2021 and has an hourly measurement frequency. The ERA5
wave data has a significantly larger time span than the wave data sourced from Rijkswaterstaat (2022)
which only spans from 20-08-2008 up to 01-02-2021. In this work, the wave and wind direction are
assumed equal for extreme conditions. According to Bowers et al. (2000); Hildebrandt et al. (2019), such
an assumption is grounded under extreme conditions. In addition, local knowledge from the Ems-Dollard
area indicates a similar conclusion that due to the dike’s location, wind-generated waves are governing
the design (Sweco, 2021a). This assumption is taken to reduce the number of design variables from six
to five. This significantly reduces the computational effort for the multivariate analysis in Chapter 4. A
statistical summary of the wave data sourced from ERA5 is presented in Table 2.3. The time series of
the wave height and period data is presented in Appendix A in Figures A.1a and A.1b, respectively.

Table 2.3: Statistical summary of the wave data from ERA5 by ECMWF (2022).

Variable Unit Min. 1st Median Mean 3rd Max. Standard
value Quartile Quartile value deviation

Wave height m 0.03 0.55 0.85 0.99 1.28 5.04 0.61
Wave period s 1.77 4.05 4.72 4.88 5.56 11.03 1.15

2.4.3 Wind Data Selection

The wind data is sourced from KNMI (2022). The data is measured at NAP +10 meters by a weather
station located near Nieuw-Beerta, as shown in Figure 2.5. The measurement station is approximately
4.5 kilometres away from the dike’s trajectory. The dataset contains hourly measurements of the wind
direction and several wind speed variables. The data spans from 01-01-1990 until 09-10-2022. In this
work, the considered wind speed variable is the maximum hourly mean wind velocity. This selection is
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made as the selected wind speed variable best represents the wind conditions during a storm compared
to the other available wind speed variables. Figure 2.8 shows the wind rose of the selected data.

Figure 2.8: Wind rose signifying the directional frequency and the maximum hourly wind velocities. The
wind data is sourced from KNMI (2022).

2.4.4 Bathymetry

The bathymetry data is obtained from the Federal Maritime and Hydrographic Agency at the ‘EMODnet
Bathymetry portal’ (EMODnet, 2016). The data is a high-resolution Digital Terrain Model (DTM) based
single beam, multi beam and Lidar covering the Ems-Dollard and Ems approach. The data is acquired
in the years 2012-2015 and originates from multiple data providers, e.g. hydrographic offices, authorities,
research institutes and the industry (EMODnet, 2016). The DTM is available with a spatial resolution
of 1, 7, 15 and 25 meters. In this work, the DTM with a spatial resolution of 25 meters is selected, as
this is sufficient for its application in the offshore-nearshore transformation.

2.5 Accounting for an Uncertain Sea Level Rise
The global sea level rose about 20 centimetres between 1901 and 2018. The rate at which the global sea
level increases accelerates. Between 2006 and 2018 the rate of global SLR was 3.7 mm per year. The rate
at which SLR will occur strongly depends on the amount of emissions that the world will pollute. The
latest SLR observations and projections are stated in the Sixth Assessment Report (AR6) by the IPCC
(2022). The different SLR scenarios are linked to emission scenarios. Exceeding 1 meter of global SLR
with a significant reduction in worldwide emissions (SSP1-2.6) is projected between 2150 and 2350. If
there is no reduction in emissions (SSP5-8.5), the 1-meter threshold is projected to be reached between
2090 and 2140 (both projections are for a 67% confidence interval).

For smaller areas, such as the North Sea basin, a larger time period is needed to observe the acceleration
of the trend. Such changes are distorted due to local effects, e.g. fluctuations in wind, sea currents and
seawater temperature. The ‘Klimaatsignaal 21’ by KNMI (2021) conducted analyses of the SLR for the
Dutch coast. This report includes numerous factors, such as an expansion of the oceans due to global
warming, self-gravitation, changes in salinity and the mass loss of glaciers and ice sheets in Antarctica
and Greenland. The projections by KNMI (2021) show that the SLR for the Dutch coast lags slightly

14



behind the global average. The SLR scenarios take into account a soil subsidence of 0.5 mm per year.
In Table 2.4, the SLR projections for three emission scenarios are found for the years 2050 and 2100.

Table 2.4: Projected SLR scenarios for the Dutch coast by KNMI (2021). The SLR is projected against
the period 1995-2014, with a 90% confidence interval. Soil subsidence is included in the SLR projections.

Year 2050 2050 2050 2100 2100 2100
Emission-scenario SSP1-2.6 SSP2-4.5 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP5-8.5
SLR in [cm] 14− 38 15− 41 16− 47 30− 81 39− 94 54− 121
SLR in [mm/year] 2.8− 8.7 5.2− 10.6 5.8− 12.1 2.9− 9.1 4.4− 10.5 7.2− 16.9

In Figure 2.9, the SLR projections for the Dutch coast are shown up to 2100 and 2300 for several emission
scenarios. The figure shows that the sea level will continue to rise beyond 2100 in all scenarios, even if the
emissions are significantly reduced and the global commitments in the Paris Agreement are respected
(Official Journal of the European Union, 2016). The reason is the long reaction time of the (deep)
oceans. The global warming and mass loss of ice sheets that already have taken place have started the
SLR processes. Due to the slow response of the processes, SLR cannot be stopped overnight.

(a) Sea level on the Dutch coast as observed and according
to the new, indicative sea level projections. The lines drawn
in green, purple, and red indicate the median of those projec-
tions, and the coloured area is the 90% confidence interval.
The zero point of the median lines are in the year 2005; the
bandwidth in 2005 corresponds to the natural variability.

(b) Sea level scenarios for the Dutch coast to 2300 for the
SSP1-2.6 and SSP5-8.5 scenarios and SSP5-8.5 with the in-
clusion of uncertain ice sheet processes such as the collapse
of ice cliffs at the edge of Antarctica (SSPS58.5 H++). The
median contours of those three scenarios can only be calcu-
lated up to 2150. The indicated range in colour corresponds
to a 67% confidence interval.

Figure 2.9: The observed and sea level projections for the Dutch coast up to the year 2100 (left) and
2300 (right). The images are retrieved and modified from KNMI (2021), pp. 29-30.

In this work, the SSP5-8.5 SLR scenario of the Dutch coast by KNMI (2021) is accounted for, for the
period between 2050 and 2150. It is assumed that the SLR for the Dutch coast is one-to-one related
to the SLR in the Ems-Dollard estuary. The potential growth of the salt marsh at the foreshore of the
WGD is not accounted for. Therefore, a rise in sea level results in the same rise in water depth on top
of the salt marsh. The distributions approximating the SSP5-8.5 scenario are found in Appendix J.
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3 | Extreme Value Analysis
This chapter aims to find the best model to approximate the extremes of the design variables of the WGD
project, using extreme value theory. The results from this chapter are used in the multivariate modelling
performed in Chapter 4. Section 3.1 provides an overview of the extreme value sampling techniques
that are used in the analysis. In Section 3.2 the extreme values of the design variables are selected.
These results are modelled in Sections 3.3 and 3.4, using a stationary and non-stationary approach,
respectively. Section 3.5 provides a conclusion of the chapter and provides which model will be used as
input of Chapter 4.

3.1 Extreme Value Sampling Techniques
Civil engineering structures are designed to withstand extreme loading conditions. Extreme value analysis
(EVA) consists of statistically modelling the distribution functions of extreme events (Gumbel, 1958).
Extreme events are either small or large values that deviate from the average observed events. The
selection of what an ‘extreme event’ is, is part of performing an EVA and depends on its application
(Coles et al., 2001). Subsections 3.1.1 and 3.1.2 describe two sampling techniques that can be used to
select extreme values.

3.1.1 The Block Maxima method

The selection of extremes can be performed using a Block Maxima (BM) method. Using the BM method
the time series of the variable is divided into non-overlapping periods of equal size (blocks). Samples
are taken from the maximum value in each block (Gumbel, 1958). The length of the blocks depends on
the characteristics of the variable and application. This method can for example provide daily, monthly
or annual maxima. The BM method does have some drawbacks. The method only samples the most
extreme value in a block, so some information could get lost. In addition, some values that are not
considered extremes could be included. An example of a BM method is shown in Figure 3.1. The figure
shows that the peaks of T1, T3, T4, T5 and T6 are selected as extreme values, shown by the orange dots.
The peak of T2 is not selected since it occurs within the same block as T1, despite it having a larger
value than the peaks of T3 and T6, shown by the red circle. The period of the blocks is Tblock.

Figure 3.1: An example of a Block Maxima method. The peaks of T1, T3, T4, T5 and T6 are selected as
extreme values. The peak of T2 is not selected since it occurs within the same block as T1.

16



3.1.2 The Peaks-Over-Threshold Method

The POT method is a sampling technique to define extremes. Any value that exceeds a set threshold
qualifies as an extreme (Salvadori et al., 2007). The POT method requires two parameters. The first
parameter is the value of the threshold u and the second parameter is the declustering time δ. According
to Salvadori et al. (2007), these two parameters must be chosen such that the filtered extremes are in-
dependent and identically distributed (i.i.d.) and therefore approximate a Poisson process. This implies
that each random variable has the same probability distribution whilst being independent of the others.
In addition, the excesses of the defined threshold should approximate a Generalized Pareto Distribution
(GPD, Picklands, 1975). The GPD is described in Subsection 3.3.1.

To do so, the threshold value u should be chosen such that u is neither too low and includes non-extremes,
nor too high and eliminates too much data. The declustering time δ is defined as the distance between
two peaks and makes sure that the selected extremes are independent. During a single storm, multiple
extreme waves can occur resulting in clusters of extremes. Therefore, δ is usually chosen such that it is
about the average storm duration. An inter-cluster time that is lower suggests that the corresponding
extremes might be related to each other. In this case, a POT only considers the maximum extreme
value. It is unlikely for extremes with an inter-cluster time larger than δ that result within each wave
storm, therefore they are independent.

An example of a POT method on a dataset is shown in Figure 3.2. It shows three peaks that exceed the
threshold u, the red horizontal line. From those, two are selected as extreme values T1 and T2, shown
by the orange dots, and one is rejected T3, shown by the red circle. The extreme value of T3 is rejected
due to an inter-cluster time C2 that is smaller than the required declustering time δ.

Figure 3.2: An example of a Peaks-Over-Threshold method. The peaks of times T1 and T2 are selected
extremes, where the peak of T3 is not suitable. This is due to an inter-cluster time that is smaller than
the declustering time, C2 < δ. The threshold u is shown by the red horizontal line.

The selection of extremes by a POT is done for univariate variables. To perform a multivariate analysis
a method is proposed by Zachary et al. (1998). The POT method is applied to only the dominant
design variable. The other variables are referred to as the concomitant variables, these are the values
that correspond to the coinciding time of the dominant variable (Zachary et al., 1998). The dominant
variable is chosen based on the maximum loading condition on the structure, so it is linked to the
relevant failure mechanism. In this project, the clay-erosion failure mechanism is considered. Resulting
of calculations by Sweco (2021c) and Delta Flume test results by Deltares (2020), the water level is
dominant for this failure mechanism.
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3.2 Peaks-Over-Threshold Method with water level as the dominant variable
The 10-minute frequency of water level measurements was transformed into hourly measurements by
selecting the maximum observation within each hour. This results in the same measurement frequency
as the wave data. In order to select proper values for the threshold parameter u and the declustering time
δ, multiple methods are used. The analysis is performed in the ‘POT ’ package by Ribatet (2011) in the
programming language R. First, appropriate threshold values are found by a graphical method suggested
by Davison and Smith (1990), a Mean Residual Life (MRL) plot. The MRL plot shows the mean excesses
over a range of thresholds. To select a proper threshold u, the excesses over u should approximate a
GPD. The threshold stability property of a GPD requires that the threshold u should be on the domain
where the mean excesses are a linear function of the thresholds. Suppose the GPD is a valid model for
the excesses over some threshold u0 for a series X1,...,Xn. The threshold stability property means that
if the GPD is a valid model for the excesses over u0, then it is valid for all excesses over all thresholds
for u > u0. Equation 3.1 shows this linear relationship between the mean excesses and the threshold u.
Figure 3.3 shows the MRL plot of the water levels. The plot shows two (approximate) linear sections, one
for lower water levels and one for large water levels. The domain of interest is for large water levels, this
results in a domain of [1.5, 3.5] for an appropriate threshold. To put this in perspective, 99th percentile
of the water level dataset equals NAP +2.26 meters and thus is in the domain of interest.

E(X − u|X > u) =
σu

1− ξ
=

σu0
+ ξ · u

1− ξ
(3.1)

Where:
u0 Threshold for which a GPD is valid
u Some threshold where u > u0

ξ Shape parameter of the GPD
σu0

Scale parameter of the GPD with u0

σu Scale parameter of the GPD with u

Figure 3.3: Mean Residual Life plot of the water level as the dominant variable.

Another graphical method that is widely used to determine an appropriate threshold is the parameter
stability plot. The parameter stability plot shows the distribution parameter over a range of thresholds.
An appropriate threshold should be chosen such that the parameters of the GPD remain constant. This
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ensures that the selected threshold is not largely influencing the distribution itself. Figure 3.4 shows the
parameter stability plots for the scale and shape parameter of the GPD, resulting in a domain of interest
of approximately [1.5, 3.0].

(a) Parameter stability plot of the scale parameter

(b) Parameter stability plot of the shape parameter

Figure 3.4: Parameter stability plots with the water level as the dominant variable.

To make sure that the selected extremes are i.i.d. and follow a Poisson process, also the Extremal
Index (EI) can be used. The EI is an indicator of how much clustering of the extremes occurs and is a
function of the threshold and declustering time. A set of extremes is independent for an EI=1 and some
dependency occurs for EI<1. In this case, the extremes are selected using a POT with a declustering
time δ. The intervals estimator of the EI described in Ferro and Segers (2003) is used, as shown in
Equation 3.2.

θ̃n(u) =

{
1 ∧ θ̂n(u) if max {Ti : 1 ≤ i ≤ N − 1 ≤ 2}
1 ∧ θ̂∗n(u) if max {Ti : 1 ≤ i ≤ N − 1 > 2}

(3.2)

with

θ̂n(u) =
2
(∑N−1

i=1 Ti

)2

(N − 1)
∑N−1

i=1 T 2
i

and

θ̂∗n(u) =
2
{∑N−1

i=1 (Ti − 1)
}2

(N − 1)
∑N−1

i=1 (Ti − 1)(Ti − 2)

Where:
u Threshold of the GPD [NAP +m]
N Number of observation exceeding u [-]
Ti Observed inter-exceedance times for i = 1, ..., N − 1 [h]
θ̃n(u) Intervals estimator for the Extremal Index by Ferro and Segers (2003) [-]

19



Figure 3.5 shows the EI for a range of thresholds. The plot shows that the excesses for all thresholds
are independent of the declustering time. This result could be a wrong representation of reality. Due to
the location of the gathered data, the clustering of the extremes could be damped. The presence of the
Wadden islands in front of the estuary and the estuary itself could obstruct the observation of clustering
by dampening the storms. To make sure that the selected extremes are independent a declustering time
of δ = 45 hours is selected. Dutch law prescribes a storm duration of 45 hours in the Wadden sea area.
According to Deltares (2015) a base duration of a storm surge at Delfzijl (at the inlet of the Ems) is 43
hours. Thus, a declustering time of 45 hours is deemed sufficient.

Figure 3.5: Extremal Index plot for the water level as the dominant variable.

According to extreme value theory, the excesses over the threshold of a POT method should be i.i.d. and
thus approximate a Poisson process. Equation 3.3 shows a random variable X that is Poisson distributed
with parameter λ. By definition, the Poisson process has the property that the intensity parameter λ
equals both the expected (mean) number of events within a given time or space and also the variance.

P{X = k} = exp (−λ) · λ
k

k!
, with k ∈ N, and E[X] = Var[X] = λ (3.3)

The Dispersion Index (DI) introduced by Cunnane (1979) uses this property to validate whether the
yearly number of excesses over the threshold of the POT method indeed approximate a Poisson process.
The DI is defined as the variance σ2 of the Poisson process over the yearly mean number of events µ,
as stated in Equation 3.4. Therefore, the assumption that the sample of extremes can be modelled by a
Poisson process is valid if the DI is significantly close to 1. The threshold u should be chosen such that
the sampled extremes are in accordance with the DI (Bommier, 2014). The threshold is rejected if the
corresponding DI is outside of the confidence interval of the DI plot.

DI =
σ2

µ
, for µ ̸= 0 (3.4)

Figure 3.6 shows the DI plot for the water levels with declustering time δ = 45 hours for a range of
thresholds. The grey area in the plot shows the 95% confidence interval. The plot shows that all
thresholds in [1.8, 3.5] lie within the confidence interval, thus providing a DI close to 1 and are appropriate
thresholds. The confidence interval is calculated by testing against a chi-squared (χ2) distribution with
a M − 1 degree freedom. Where M is the total number of years in the sample. The confidence interval
is given below, between the 2.5 and 97.5 quantiles for the χ2

M−1 distribution.[χ2
2.5,M−1

M − 1
,
χ2
97.5,M−1

M − 1

]
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Figure 3.6: Dispersion Index plot for the water level with δ = 45 hours.

Figure 3.7 shows the number of extremes per year for a range of thresholds for the water levels with
a declustering time of δ = 45 hours. This shows that the number of extremes significantly reduces for
larger thresholds. A threshold of u =NAP +2.8 meters is taken, resulting in 4.5 extremes per year,
with 145 extremes in total. This results in a minimum inter-exceedance time of 48 hours between the
extremes.

Figure 3.7: Number of extremes per year for the water level with δ = 45 hours.

3.3 Stationary Extreme Value Analysis
The distributions of the extreme values of a random variable are determined by the tails of their under-
lying distribution. The aim of EVA is to select the best model that fits the sampled extremes. However,
since limited data is available on extreme values, applications of the EVA differ and some assumptions
are made in the selection process, there is not one best model. Section 3.3.1 describes the models that
can be used to model the sampled extremes. In Section 3.3.2 different (stationary) models were applied
to the selected extremes to determine the best model for this project. This analysis is performed using
the ‘extRemes’ package by Gilleland (2022) in R.
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3.3.1 Selection of Extreme Value Distributions

Samples from the BM method are modelled using the Generalized Extreme Value (GEV) distribution,
shown in equation 3.5 (Salvadori et al., 2007). The GEV distribution is a parametrization of three types
of distributions into one formula. Type I is known as the Gumbel distribution, type II is the Fréchet
distribution and type III is the reversed Weibull distribution. The different distributions depend on
the shape parameter ξ, which dominates the behaviour of the tail of the distribution. The Gumbel
distribution is obtained for ξ = 0, the Fréchet is obtained for ξ > 0 and Weibull is obtained for ξ < 0.

G(x) = exp
{
−
(
1 + ξ · x− µ

σ

)−1/ξ}
(3.5)

for
(
1 + ξ · x− µ

σ

)
> 0 ; −∞ < µ < ∞ ; −∞ < ξ < ∞ ; σ > 0

Where:
µ Location parameter
ξ Shape parameter
σ Scale parameter

The extremal behaviour that is investigated by a POT method, can be expressed by conditional probabil-
ities. The conditional distribution of the exceedances is described by the Generalized Pareto Distribution
(GPD, Picklands, 1975). Equation 3.6 shows the GPD for an extreme event X with threshold u, where
Y = X − u. The GPD parameters are uniquely determined from the GEV parameters. The shape
parameter ξ of the GPD is equal to the shape parameter of the corresponding GEV distribution. The
scale parameter σu of the GPD is a function of the GEV parameters, where σu = σ + ξ(u − µ). The
shape parameter ξ of the GPD largely determines the behaviour of the tail. It shows that for ξ = 0, the
GPD reduces to an exponential distribution. If ξ < 0, the GPD has an upper bound at u− σu

ξ . If ξ > 0,
the GPD has no upper limit.

Hu(y) = P(X − u < y|X > u) =

1−
(
1 + ξ·y

σu

)−1/ξ

if ξ ̸= 0

1− exp
(
− y

σu

)
if ξ = 0

(3.6)

for y ≥ 0 if ξ ≥ 0 and 0 ≤ y ≤ −σu

ξ
if ξ < 0, where y = x− u

Nevertheless, many studies have applied a GEV distribution, such as the Weibull distribution, on POT
samples when it provided a better fit for the data. If one considers other distribution types than the
GPD on exceedances from a POT method, this should be done on some justification (Deltares, 2011).
Using goodness-of-fit models, the ’best’ distribution can be found. From the selected distribution one
can extrapolate extreme values for the desired return period T to derive the return levels for a design.
To go from Equation 3.6 to the exceedance probability per storm event Q, the number of extremes per
year Ns should be accounted for in the exceedance probability, resulting in Equation 3.7.

Q =
1

T ·Ns
(3.7)

To determine the N -year return level xN of the GPD, which is exceeded once every N years, Equation
3.6 is rewritten to Equation 3.8. Here ζu = P(X > u), meaning that ζu is the probability of occurrence
of X exceeding an threshold u.

P(X > x) = ζu

[
1 + ξ

x− u

σu

]−1/ξ

(3.8)

The assumption that the exceedances over the threshold u are Poisson distributed with parameter λ,
results that ζu can be estimated by λ, the mean of the number of exceedances per year, over ny, the
number of observations per year. The rate of the Poisson distribution λ is estimated using nu, the
number of exceedances over the selected threshold u, divided by M , the number of years of the dataset.
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Solving Equation 3.8 for 1/m, where m = N · ny, results in the N -year return level xN in Equation 3.9,
with the estimated ζ̂u and λ̂.

xN =

{
u+ σu

ξ · [(λ ·N)ξ − 1] if ξ ̸= 0

u+ σu log(λ ·N) if ξ = 0
(3.9)

with

ζ̂u =
λ̂

ny
and λ̂ =

nu

M

3.3.2 Application of the Stationary Extreme Value Analysis

In Section 3.2, the extremes were selected by a POT method, such that the extremes are i.i.d. and
approximate a Poisson process. According to Picklands (1975), the extremes selected by a POT are ap-
proximated by the GPD. The parameters of the GPD are estimated using both a Maximum Likelihood
Estimator (MLE) and using an L-Moments (LM) estimator, to check for significant differences. The
MLE is based on maximizing the log-likelihood that a set of values could be created by the model. The
LM theory is based on linear combinations of probability-weighted moments to estimate the distribution
parameters (Hosking, 1986). According to Anderson et al. (2001), the MLE is the one method that
combines theoretical efficiency and extends straightforwardly to models that include non-stationarity
and covariate dependency. Since these kinds of models are investigated in Section 3.4, using the MLE to
estimate the model parameters is preferred. To check the goodness-of-fit of the GPD, three other distri-
butions are fitted to the selected 145 extremes, the GEV, the Gumbel and the Exponential distributions.
These three distributions are estimated using the MLE method. Note, that the Gumbel and Exponential
distributions are obtained from the GEV and GPD for a shape parameter ξ = 0, respectively. The
equations describing the GEV and GPD are found in Subsection 3.3.1.

The results are compared by creating the return level plots, the quantile-quantile (Q-Q) plots and the
exceedance probability plots. The return level plots show the predicted variable value (return level) for
different return periods. Figure 3.8 depicts the return level plot for the fitted distributions. For the
application of the EVA, the interest lies in return levels corresponding to large return periods. The
return level plot shows that the GPD and Exponential distribution best approximate the extremes. The
GEV distribution overestimates the tail of the extremes, while the Gumbel distribution underestimates
the tail. The difference between the GPD and the Exponential distribution is small. However, the
Exponential distribution tends to slightly underestimate the tail compared to the GPD. Estimating the
GPD parameters using the MLE or LM method provide similar results. In Appendix B, the individual
return level plots are found, including the 95% confidence interval of the models.

Figure 3.8: Return level plot of the extreme water level for multiple distributions
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The Q-Q plot is a graphical method to check the goodness-of-fit by plotting the empirical and model
quantiles against each other. The data points should approximate the one-one line if the model accurately
predicts the empirical data. Figure 3.9 shows the Q-Q plots for the distributions. Comparing the results
provides the same representation as the results from the return level plots. The GPD shows the smallest
deviation from the one-one line compared to the other models, resulting in the best fit.

Figure 3.9: Q-Q plots for multiple distributions of the extreme water level.

The same conclusion is found when looking at the exceedance probabilities of the distributions. The
GPD provides the best fit of the extremes. The Exponential distribution also provides a reasonable fit,
while the Gumbel and GEV distributions perform poorly. In Appendix B the CDF of the models are
found.

Figure 3.10: Exceedance probability P(h > x) plot (logarithmic scale) of the extreme water level h.

In addition, several statistics are used to determine how the models perform relative to each other. The
Akaike Information Criterion (AIC, Akaike, 1974) and Bayesian Information Criterion (BIC, Schwarz,
1978) are estimators of the relative goodness-of-fit of a statistical model given the set of data. Both
criteria are based on the maximum value of the log-likelihood function of the models L̂. The likelihood
function L(θ|xxx) provides the probability that a i.i.d. dataset xxx = xi, ..., xn can be created by a model
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with parameter(s) θ, as shown in Equation 3.10. The log-likelihood function, found by lnL(θ|x), can
be solved to find the maximum log-likelihood value L̂. The AIC and BIC introduce a penalty for the
number of model parameters and attempt to counter overfitting. Overfitting occurs when too many
parameters are used to decrease the error of the model. Overfitting is prone to include noise from the
data in the model and results in a model that is unable to make predictions for situations that deviate
from the original data. Equation 3.11 and 3.12 show the AIC and BIC for the MLE models. For both
criteria, it applies that the fit is better for a low score.

L(θ|xxx) = f(xi, ..., xn|θ) =
n∏

i=1

f(xi|θ) (3.10)

AIC = −2 ln (L̂) + 2Npar (3.11)

BIC = −2 ln (L̂) + 2 ln (Nobs ·Npar) (3.12)

Where:
Nobs Number of observed data points [-]
Npar Number of model parameters [-]
θ Parameter of the distribution f(x) [-]
L(θ|xxx) Likelihood that xxx comes from f(xi, ..., xn|θ) [-]
L̂ Maximum log-likelihood estimator [-]

In order to evaluate the performance of the models, also the coefficient of determination R2 is used. The
R2 is a goodness-of-fit measure based on the proportion of variance explained by the model (Di Buc-
chianico, 2008). The value of R2 lies between 0 ≤ R2 ≤ 1, where the higher R2, the better the fit.
However, R2 can be negative for very poor fits. Equation 3.13 shows the R2, where No is the number of
observations, oi and ei are the ith observation and estimation, and ō is the average of the observations.

R2 = 1−
1
No

∑No

i=1(oi − ei)
2

1
No

∑No

i=1(oi − ō)2
(3.13)

The results of the estimated parameters and the criteria are found in Table 3.1. Note that the GPD
and the Exponential distribution do not have a location parameter µ and also that the Gumbel and
Exponential distributions do not have a shape parameter ξ. The criteria are only applied to the models
that are estimated by the MLE. This is done in order to keep a fair comparison, such that all criteria
are based on the maximum log-likelihood. For the criteria: AIC, BIC and the negative log-likelihood
−L, hold that a lower score corresponds to a better fit. For R2, the higher the better. The results
show that the GPD using the MLE and LM methods, to estimate the parameters, provides very similar
results. The goodness-of-fit criteria show that the GPD and the Exponential distribution have the best
fit. Comparing these results with the visual inspection, the Exponential distribution provides a slightly
better fit for extremes with lower return periods. Since there are more samples with lower return periods
than there are with large return periods, the criteria scores seem to favour the Exponential distribution.
However, the fit of the GPD and Exponential models is very close.

Table 3.1: Parameter estimates and goodness-of-fit criteria of extreme water level for different models.

Model GPDMLE GPDLM GEV Gumbel Exponential
Parameter:
Scale σ 0.4733 0.4722 0.2044 0.2930 0.4859
Shape ξ 0.0261 0.0282 0.5342 - -
Location µ - - 3.0179 3.0870 -
Criterion:
−L 40.31 - 41.92 65.43 40.36
AIC 84.63 - 89.85 134.87 82.71
BIC 90.58 - 98.78 140.82 85.69
R2 0.95 0.95 0.53 0.79 0.94
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For the application of the EVA, the interest lies in return levels corresponding to large return periods.
Therefore, the GPD is preferred as the model that best approximates extreme water levels. The results
from the visual comparison, in addition to the goodness-of-fit criteria, suggest that the GPD model best
approximates the sampled extreme water levels. Table B.1, in Appendix B, provides the return levels
for different return periods for all models, including the 95% confidence interval of the models.

3.4 Non-stationary Extreme Value Analysis
A non-stationary extreme value analysis (NEVA) is the use of statistical models in EVA when the
statistical characteristics are not stationary over a covariate, e.g. time (Shumway and Stoffer, 2011).
Such non-stationary behaviour is often linked with climate change. Where extreme weather conditions of
the present become more common or rare in the future. Sea level rise is an example of the non-stationary
behaviour of the variable water level. To check the significance of this non-stationary behaviour for the
sampled extremes, several NEVA models are investigated using the ‘extRemes’ package by Gilleland
(2022) in R. Subsection 3.4.1 elaborates on the definition of a NEVA and the differences compared to
stationary models. Several NEVA models are applied on the sampled extremes in Subsection 3.4.2.

3.4.1 Introduction of a Non-stationary Extreme Value Analysis

In observations that follow a clear trend, such as pictured in Figure 3.11, a stationary assumption is
no longer valid. For a stationary assumption the distribution parameters (µ, ξ and σ for a GEV) are
constant, a non-stationary assumption has parameters that depend on a covariate, such as time t. Such
a variable should be modelled by a NEVA, where the model parameters depend on a covariate. In a
GEV model, the non-stationarity of a variable could be accounted for in three cases, a changing mean
µ, shape ξ or scale σ parameter of its distribution, as illustrated by the figure.

(a) A visualization of a non-stationary trend of the mean
captured by observations

(b) Shift of the mean µ resulting in increasing maximum and
decreasing minimum extreme events

(c) Change of shape parameter ξ resulting in increasing max-
imum and decreasing minimum extreme events

(d) An increasing scale parameter σ resulting in both in-
creasing minimum and maximum extreme events

Figure 3.11: Displaying a non-stationary trend and parameters showing the change in tail probabilities
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The stationary GEV distribution from Equation 3.5 changes to one that depends on t, such as given in
Equation 3.14. This equation shows that the model parameters depend on the covariate t. This depend-
ence is to be estimated by assuming the function that describes this change of the parameter, resulting
in the need for additional parameters. Such a trend of a parameter could be assumed linear, resulting
in one more parameter in the distribution equation. This linear assumption is shown in Equations 3.15,
3.16 and 3.17, for the location µ(t), shape ξ(t) and scale σ(t) parameter.

Gt(x, t) = exp
{
−
(
1 + ξ(t) · x− µ(t)

σ(t)

)−1/ξ(t)}
(3.14)

for
(
1 + ξ(t) · x− µ(t)

σ(t)

)
> 0 ; −∞ < µ(t) < ∞ ; −∞ < ξ(t) < ∞ ; σ(t) > 0

with

µ(t) = µ1 · t+ µ0 (3.15)

ξ(t) = ξ1 · t+ ξ0 (3.16)

σ(t) = σ1 · t+ σ0, for σ(t) > 0 (3.17)

Where:
t The covariate, such as time
µ(t) Non-stationary location parameter for t
ξ(t) Non-stationary shape parameter for t
σ(t) Non-stationary scale parameter for t

Assuming a linear trend in one of the model parameters results in the expansion of the analysis by one
additional parameter (µ1, ξ1 and σ1). Performing a NEVA using a linear trend in one of the model
parameters should provide a clear insight into whether a trend of that parameter is present. If the
introduced µ1, ξ1 or σ1 parameter is significant compared to µ0, ξ0 or σ0, a trend is present for that
parameter. Equation 3.18 shows the non-stationary GPD that depends on the covariate t. The GPD
has two model parameters, the shape ξ(t) and scale σ(t) parameter, that depend on the covariate t. In
addition, the threshold u(t) can be non-stationary and thus depend on the covariate t.

Hu(y, t) = P{X − u(t) < y|X > u(t)} =

1−
(
1 + ξ(t)·y

σu(t)

)−1/ξ(t)

if ξ(t) ̸= 0

1− exp
(
− y

σu(t)

)
if ξ(t) = 0

(3.18)

for y ≥ 0 if ξ(t) ≥ 0 and 0 ≤ y ≤ −σu(t)

ξ(t)
if ξ(t) < 0, where y = x− u(t)

Non-stationarity of a design variable also affects the return period for a design (Salas and Obeysekera,
2014). For a stationary variable, the probability of occurrence of a certain value zq does not change over
time, therefore p0 = pt. However, for a non-stationary this probability does change, thus p0 ̸= pt. Figure
3.12 shows the differences between a stationary and non-stationary return level. The non-stationary case
shows that the probability pt that value zq0 occurs becomes larger over time. The initial probability p0
that zq0 occurred is pictured by the green-shaded area within pt, demonstrating that pt became larger
over time by the yellow-shaded area. This results that the return period for a non-stationary variable is
changing over time, as it is defined as the expected waiting time of the design flood zq0 to be exceeded for
the first time. The return period for non-stationary cases is therefore referred to as the effective return
period. The expression for the effective return level is defined in Equation 3.19 (Salas and Obeysekera,
2014).

T = E(X) = 1 +

xmax∑
x=1

x∏
t=1

(1− pt) (3.19)
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Figure 3.12: Return period for a stationary versus non-stationary random variable. Image retrieved and
modified from Salas and Obeysekera (2014), pp. 554–568.

3.4.2 Application of multiple Non-stationary models

Section 3.2 provides the selected extremes using a POT method with the water level as the dominant
variable. A linear regression on the results in Figure B.2 in Appendix B shows a first impression of
whether a trend in the selected extremes is present. A NEVA is performed to provide a better insight
into this trend. In performing the NEVA a linear trend of the model parameters in time is considered.
In addition, a NEVA is performed to check the influence of a non-stationary analysis for water level as
the dominant variable with the concomitant variable wave height as the covariate. This analysis is also
performed using a linear trend in the model parameters. Figure B.5 in Appendix B shows the selected
extreme water levels against the wave height values. The figure shows a clear (positive) dependence
between the two variables.

The stationary analysis showed that the selected extreme water levels are best represented by a GPD.
Therefore, the NEVA focuses on GPD models. A NEVA is applied for multiple GPD models with non-
stationary scale GPDt,σ and shape GPDt,ξ parameters with the covariate time t. Also, a GPD model
with a non-stationary threshold GPDt,u is investigated. A non-stationary threshold u(t) resulted in a
negative scale σ parameter and is therefore not viable. Furthermore, a combination of a non-stationary
scale σ(t) and shape ξ(t) is applied as the GPDt,σ,ξ model. The non-stationary parameters, as defined
in Equations 3.16 and 3.17, exist out of a constant part (σ0 and ξ0) and a coefficient part (σ1 and ξ1)
that is multiplied by the covariate. The results of the parameter estimates (σi and ξi) and the standard
errors (ϵ(σi, ξi)) are found in Table 3.2. The table shows that there is no statistical significance of the
time-dependent model parameters σ1 and ξ1. The values of these parameters are negligible compared
to the stationary part of the model parameters σ0 and ξ0. The standard error in the estimation of the
parameters is of the same order of magnitude as the estimated values. In addition, the goodness-of-
fit criteria are found in Table 3.3. Where the fit of the models is better for low −L, AIC and BIC
scores and high R2 scores. As found, the criteria do not improve over the stationary GPD. Therefore, a
time-dependent GPD model is not optimal.
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Table 3.2: Non-stationary GPD model parameters and standard errors for covariates (CV) t and Hs.

Model Parameter & Standard error CV
σ0 ϵ(σ0) σ1 ϵ(σ1) ξ0 ϵ(ξ0) ξ1 ϵ(ξ1)

GPDt,u <0 NA - - NA NA - - t
GPDt,σ 0.5413 0.0581 -6·10−11 2·10−8 0.0313 0.0914 - - t
GPDt,ξ 0.4767 0.0590 - - -0.1016 0.0923 1·10−10 2.0·10−8 t
GPDt,σ,ξ 0.7266 0.0572 -2·10−10 2·10−5 -0.4130 0.0877 4·10−10 2·10−5 t
GPDHs,σ -0.5455 0.0999 0.3458 0.0432 -0.2569 0.0524 - - Hs

GPDHs,ξ 0.4637 0.0611 - - -1.327 0.2544 0.3731 0.0993 Hs

GPDHs,σ,ξ -0.5855 0.1238 0.3630 0.0546 -0.1771 0.1583 -0.0306 0.0557 Hs

Table 3.3: Goodness-of-fit criteria of the non-stationary GPD models for covariates t and Hs.

Criterion t - models Hs - models
GPDt,u GPDt,σ GPDt,ξ GPDt,σ,ξ GPDHs,σ GPDHs,ξ GPDHs,σ,ξ

−L NA 40.20 40.21 39.53 12.73 28.53 12.60
AIC NA 86.40 86.42 87.05 31.46 63.06 33.21
BIC NA 95.33 95.35 98.96 40.39 71.99 45.12
R2 NA 0.94 0.94 0.94 0.78 -1.14 0.82

Besides time t, the wave height Hs is also investigated as a covariate. The same procedure is applied and
a GPD model with a non-stationary scale GPDHs,σ, shape GPDHs,ξ parameter or both GPDHs,σ,ξ is
considered. The results in Tables 3.2 and 3.3 suggest that this approach provides a better approximation
of the extreme water levels, compared to a stationary model. The non-stationary scale σ1 value is of
significance compared to the stationary scale σ0 value for the GPDHs,σ model. The standard error of the
estimates is an order of magnitude lower than the estimated values and thus the trend is not negligible.
The GPDHs,σ shows a relatively greater goodness-of-fit compared to the GPDHs,ξ model, suggesting
that the data is better approximated using a non-stationary scale parameter than a non-stationary
shape parameter. The effective return levels of the non-stationary models are shown in Figure 3.13.
The figure also shows that the introduction of a non-stationary shape parameter results in a significant
influence on the tail of the GPDHs,ξ model. The GPDHs,σ,ξ model shows a slightly better goodness-of-fit
compared to the GPDHs,σ model. However, the standard error of the non-stationary shape ϵ(ξ1) is of
the same order of magnitude as ξ1. Therefore, this trend is not of statistical significance. The error
of the estimate of ξ1 could be of larger influence than the ξ1 value itself. Thus, the GPDHs,σ model is
considered the best fit of the non-stationary models.

Figure 3.13: The 10-, 100- and 1000-year effective return levels for the non-stationary GPDHs models.
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3.5 Conclusion of the Extreme Value Analysis
The aim of the EVA is to define a model that best approximates the extreme observations of the random
variable for which the dike will be designed. In this project, the water level is considered the dominant
variable. A POT method with a threshold of u =NAP +2.8 meters and a declustering time of δ = 45
hours resulted in 145 selected extreme water levels. The extreme values of the variables wave height,
wave period, wind speed and wind direction, are the ones that coincide with the times of the extreme
water levels.

The application and assessment of several stationary models showed that the tail of the extremes is
best modelled by the GPD. The application of non-stationary models, with a linear trend in the model
parameters, is investigated to approximate the extreme water level. The analysis showed that the extreme
water levels do not show a statistically significant trend in time. Introducing a non-stationary GPD,
with the covariate wave height Hs, resulted in an enhanced fit compared to the stationary model. The
estimated model parameters are shown in Table 3.4.

Table 3.4: Comparison between the selected stationary and non-stationary GPD models.

Model Parameter Criterion
Scale σ Shape ξ −L AIC BIC R2

Stationary GPD 0.473 0.026 40.31 84.63 90.58 0.95
Non-stationary GPDHs,σ 0.346 ·Hs − 0.546 −0.257 12.73 31.46 40.39 0.78

The behaviour of the extreme water level is well described by both a stationary GPD and a non-
stationary GPD with the covariate wave height. However, when comparing the goodness-of-fit criteria
results that the non-stationary model is preferred. Therefore, the application of a non-stationary marginal
distribution in copula modelling is investigated in Section 4.4.
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4 | Copula & Vine modelling
In this chapter, multivariate modelling is performed by bivariate copulas and vine modelling. Section
4.1 provides the theoretical framework for multivariate modelling on which the application is based.
Sections 4.2 and 4.3 provide the selected models of the concomitant variables and a bivariate copula
analysis. Section 4.4 answers to RQ1 and aims to combine a variable with a non-stationary marginal
distribution with copula modelling. The bivariate copulas are combined using vines in Section 4.5. The
chapter is concluded in Section 4.6.

4.1 Theory on multivariate modelling
Hydraulic structures are designed to withstand extreme natural events. Natural events can be charac-
terized by the joint behaviour of several random variables, that usually share dependence. In hydraulic
structure design, it is of interest to model the joint probability of the extreme values of the design vari-
ables. The maxima of all variables of interest mostly do not occur at the same time, hence modelling
the dependence allows us to determine realistic loads and helps optimise the design. For instance, wind
speeds above a certain threshold result in the capping of significant wave height. The joint probability
could provide insights about significant wave heights to expect during storm surges with certain peak
wind velocities. A possible way, and the one applied in this thesis, is to model multivariate data by
separately studying the dependence function and the marginals. The dependence structure of random
variables, independently of their marginal laws, can be described by copulas (Salvadori et al., 2007). Cop-
ulas can be applied to a d-dimensional framework, however often bivariate (d = 2) copulas are preferred.
This is due to the larger extent of different copula models to be used and the larger flexibility to model
the dependence structures between pairs of variables. Vine copula modelling opens the way to combine
bivariate copulas to model multivariate (for d > 2) dependence structures, based on conditional prob-
abilities. The following sections provide information about methods to describe the correlation between
variables, copulae theory and copula families, vine modelling and multivariate return periods.

4.1.1 Measures of Association

There are several ways to measure the dependence between random variables. This thesis only con-
siders the correlation coefficients between two random variables. The measure of association quantifies
the degree of relationship between variables (Salvadori et al., 2007). Coefficients of association usually
vary between -1 and +1. The strength of the relationship increases as their values increase, where a
value of +1 (or -1) corresponds to a perfect positive (or negative) association. Two coefficients of associ-
ation, Pearson’s ρP and Spearman’s rS are discussed here, each measuring a different type of association.

The covariance indicates the amount of linear dependence. It is the expected value of the product of the
deviations of the variables from their respective means, stated by Equation 4.1.

cov(X,Y ) = E
[
(X − E[X]) · (Y − E[Y ])

]
(4.1)

Pearson’s product-moment correlation coefficient ρP relates to the covariance. Pearson’s ρP is the covari-
ance of two random variables divided by the product of their standard deviations, provided by Equation
4.2.

ρP =
cov(X,Y )

σX · σY
(4.2)

with σX =
√
E[(X − E[X])2]

Pearson’s ρP ranges between −1 ≤ ρP ≤ +1 for perfect negative to positive (linear) dependence between
random variables X and Y . However, in the case of ρP = 0 it does not result that X and Y are
independent. As Pearson’s ρP is purely a measure of linear dependence, therefore non-linear dependencies
between X and Y are not accounted for. In addition, Pearson’s ρP strongly depends on the marginal laws
of the two random variables. Therefore, if one would consider dependence measures that only depend
upon the copula, Pearson’s ρP cannot be used.

31



Spearman’s rank correlation coefficient rS is based on the ranks of two random variables X and Y . In
statistics, ranking is the transformation of the n values of the variables X and Y , by ordering the values
in ascending order. The smallest value is labelled as rank 1 and the largest value is ranked n. Spearman’s
rS is stated in Equation 4.3. The variables X and Y can be mapped into unity space by dividing their
respective ranks by n+ 1.

rS =
cov(RX , RY )

σRX
· σRY

(4.3)

with RX = Rank(X)

Spearman’s rS is a so-called scale-invariant measure, as stated by Salvadori et al. (2007). A scale-
invariant measure means that it remains unchanged under strictly increasing (monotonic) transforma-
tions of the variables of interest. A monotonic transformation makes sure that the ranks of the variable
are not changed. Spearman’s rS is a measure of concordance. Two random variables X and Y are
concordant if small (or large) values of one are likely to be associated with small (or large) values of the
other (Salvadori et al., 2007). Discordance is when a small value of one is likely to be associated with a
large value of the other and vice versa.

When transforming two random variables into unity space, Spearman’s rS can be used to measure the
correlation in the entire [0, 1]2. Figure 4.1 shows an example of positive and negative correlation for two
random variables X and Y .

(a) Positive correlation (b) Negative correlation

Figure 4.1: Examples of positive and negative correlation of two random variables X and Y in [0, 1]2.

This thesis applies both Pearson’s and Spearman’s correlation coefficients for different cases. The cor-
relation between two variables is determined using Spearman’s rS , unless stated otherwise. There are
multiple other measures of association. Another widely known and applied scale-invariant measure is
Kendall’s tau, τK , which is also a measure of concordance. If one is interested in τK , Salvadori et al.
(2007) provides the theoretical framework and various applications.

4.1.2 Bivariate Copulae

Copulae are functions for modelling joint probability distributions. A joint probability distribution of
d = 2 random variables is referred to as a bivariate distribution. A multivariate distribution is for d > 2
random variables. This thesis only focuses on bivariate cases. Equation 4.4 shows that by integrating the
joint density function f(x, y), one can determine the probability that (X,Y ) is within [a1, b1]× [a2, b2].
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P{a1 ≤ X ≤ b1, a2 ≤ Y ≤ b2} =

∫ b1

a1

∫ b2

a2

f(x, y)dxdy (4.4)

with

f(x, y) ≥ 0 ∀ x, y∫ +∞

−∞

∫ +∞

−∞
f(x, y)dxdy = 1

and

f(x, y) = f(x)f(y) for X ⊥ Y (independent)

A bivariate copula expresses the joint distribution of two random variables in unity space I2 = [0, 1]2.
The definition of a bivariate copula is provided in Definition 4.1.

Definition 4.1. (2-Copula).
Let I = [0, 1]. A 2-copula is a bivariate function C: I× I → I such that (Salvadori et al., 2007):

1. (uniform marginals) for all u, v ∈ I,
C(u, 0)= 0, C(u, 1)= u, C(0, v)= 0, C(1, v)= v;

2. (2-increasing) for all u1, u2, v1, v2 ∈ I such that u1 ≤ u2 and v1 ≤ v2,
C(u2, v2)−C(u2, v1)−C(u1, v2)+C(u1, v1)≥ 0.

Sklar’s theorem provided by Theorem 4.1, by Sklar (1959), is the foundation of copulae. It defines the
relationship between multivariate (or bivariate) distributions and the marginals by copulas. Copulas let
one express the joint probability as a function of the marginal distributions.

Theorem 4.1. (Sklar’s theorem (2-dimensional case)).
Let FXY be a joint distribution function with marginals FX and FY . Then there exists a 2-copula C
such that (Sklar, 1959; Salvadori et al., 2007):

FXY (x, y) = C(FX(x), FY (y)) (4.5)

for all reals x, y. If FX , FY are continuous then C is unique; otherwise C is uniquely defined on
Ran(FX)× Ran(FY ). Conversely, if C is a 2-copula and FX , FY are distribution functions, then the
function FXY given by equation 4.5 is a joint distribution with marginals FX and FY .

In fitting copulas to experimental data, the empirical copulas play an important role. As stated by
Salvadori et al. (2007), the empirical copula counts the number of pairs that satisfy given constraints,
defined by Definition 4.2, in order to approximate the copula linking the pair (X,Y ). Goodness-of-fit
procedures that are based on the empirical copula can provide insight into which copula models can best
be used to approximate the data.

Definition 4.2. (Empirical Copula).
Let {Rk, Sk} be the ranks associated with random sample {Xk, Yk}, k = 1, ..., n. The corresponding
empirical copula CnCnCn is defined as (Salvadori et al., 2007):

CnCnCn(u, v) =
1

n

n∑
k=1

111
( Rk

n+ 1
≤ u,

Sk

n+ 1
≤ v

)
, (4.6)

where u, v ∈ I and 111 is an indicator function.

Copula modelling provides a wide range of different models to fit the multivariate behaviour of the vari-
ables of interest. There are numerous copula families, each with different characteristics. The Elliptical
and Archimedean copulae are two widely used copula subclasses. The Gaussian and Student-t families
are part of the Elliptical class. Their name results from their elliptical shape, leading to symmetrical
tails. The Archimedean types are widely used for their versatility in terms of both the nature and
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strength of the association they produce between the variables. Two examples of Archimedean types
are the Clayton and Gumbel copulas. The measure of tail dependence is a useful indicator to determine
which copula to use. The definition will follow below.

Tail dependence is a measure of dependence focusing on the upper-right (UR) or lower-left (LL) quadrant
tail, for positive correlation. For negative correlation, the upper-left (UL) and lower-right (LR) quadrant
tails are of interest. Tail dependence can be measured by the tail dependence coefficients λU and λL,
defined in Definition 4.3.

Definition 4.3. (Tail dependence (2-dimensional case)).
Let Z = (X,Y ). The random vector Z is upper tail dependent if (Salvadori et al., 2007):

λU = lim
t→1−

P
{
X > F

[−1]
X (t)|Y > F

[−1]
Y (t)

}
> 0, (4.7)

provided that the limit exists. If λU = 0 then Z is upper tail independent. λU is called the upper tail
dependence coefficient. Similarly, Z is lower tail dependent if:

λL = lim
t→1+

P
{
X ≤ F

[−1]
X (t)|Y ≤ F

[−1]
Y (t)

}
> 0, (4.8)

provided that the limit exists. If λL = 0 then Z is lower tail independent.

Tail dependence is an essential quantity for estimating risk in EVA. Extremes of different variables
usually are more correlated than the average values, when they are generated by the same driver (storm).
Different copula families have different tail dependence characteristics. Tail dependence is considered
scale-invariant for relating dependencies and extremes, as the copula separates the dependence structure
of the bivariate distribution from its underlying marginals (Salvadori et al., 2007). In the selection of
a suitable copula family, tail dependence can provide useful indications for which copula to use. The
Clayton and Gumbel copulas are examples of copulas that allow for specific levels of lower and upper
tail dependence. Copulas can also be rotated to fit the tail dependence for a certain quadrant. A copula
CCC that is rotated 180 degrees is referred to as a Survival Copula CCC. In the case of negative correlation,
as shown in Figure 4.1b, a copula can be rotated 90 (or 270) degrees.

4.1.3 Vine Copulae

A vine is a set of nested trees V = {Tj , ..., Tn−1} that are used to represent high dimensional probab-
ility distributions (Cooke and Bedford, 2001; Morales-Nápoles et al., 2010). The vine structure defines
how joint distributions and conditional probabilities are modelled. A regular vine is a case in which all
constraints are two-dimensional or conditional two-dimensional. Combining regular vines with bivariate
copulae enables the extension from two-dimensional to arbitrary dimensions; such regular vines are called
vine copulae. Vine copulae have proven to be a flexible tool that can model a wide range of complex
dependencies, such as multivariate modelling of flood characteristics (e.g. Zhang et al., 2020; Tosunoglu
et al., 2020). This thesis considers vine copulae as means for multivariate modelling of the design vari-
ables of the WGD project. Next to vine copulae, also partial correlation vines are well studied. Detailed
specifications of such vines can be found in Cooke and Bedford (2001) and Kurowicka and Cooke (2006).

Regular vines consist of n nodes where the edges of the tree Tj are the nodes of the tree Tj+1 for
j = 1, ..., n−2. The nodes represent the variables, while the edges represent the conditional probabilities.
A labelled tree is an undirected acyclic graph with a set of nodes N = {1, ..., n} and edges E consisting
of a subset of pairs of N . A regular vine holds that two edges in tree Tj are only joined by an edge in
tree Tj+1 if they share a common node. The definition of a regular vine is provided in Definition 4.4 by
Joe and Kurowicka (2011) based on Kurowicka and Cooke (2006).

Definition 4.4. (Regular Vine).
V is a regular vine on n elements with E(V) = E1∪ ...∪En−1 denoting the set of edges of V if (Kurowicka
and Cooke, 2006; Joe and Kurowicka, 2011):

1. V = {T1, ..., Tn−1}
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2. T1 is a connected tree with nodes N1 = {1, ..., n}, and edges E1; for i = 2, ..., n − 1, Ti is a tree
with nodes Ni = Ei−1,

3. (proximity) for i = 2, ..., n−1, {a, b} ∈ Ei,#(a△b)= 2 where △ denotes the symmetric difference
operator and # denotes the cardinality of a set.

In a regular vine, the nodes that are reachable from a given edge are referred to as the constraint set
of that edge. The constraint set is found in tree T1 for a given edge. The intersection of two edges
that are joined by an edge in tree Ti for i = 2, ..., n − 1, forms the conditioning set of that constraint
set. The symmetric difference of the constraint sets is called the conditioned set. Figure 4.2 shows an
example of a regular and a non-regular vine for n = 4 variables. The conditioned and conditioning set
are separated by a vertical line ‘|’. The conditioning variables are shown to the right of the vertical line
and the conditioned variables are to the left. As the proximity condition from Definition 4.4 states, a
regular vine holds that the cardinality of all conditioned sets equals two. The figure shows that the vine
on the right has a conditioned set smaller than two, namely one. Therefore, it is a non-regular vine.

Figure 4.2: A regular vine (left) and non-regular vine (right) on n = 4 variables. The blue edge in the
non-regular vine shows a connection between two nodes which do not share a common node. Every edge
on the left vine represents a (conditional) bivariate copula. Retrieved from Timmermans (2021).

Figure 4.3 shows an example of a (drawable) D-vine and a (canonical) C-vine. Both class as a regular
vine, as can be observed that the number of conditioned variables equals 2 for every edge. For a D-vine,
all nodes are set in a straight line and connected without any side branches. The number of edges
connected to a node defines the degree of a node. In a D-vine, the degree of a node can be a maximum
of 2. Figure 4.3 shows that the nodes at the ends have a degree of 1, while the other nodes have a degree
of 2. A C-vine has one node in each tree with a maximum degree of n− 1. In other words, all nodes are
connected by a central node that has a maximum degree. All other nodes have a degree of 1.

Figure 4.3: A D-vine (left) and a C-vine (right) on n = 4 variables. Retrieved from Timmermans (2021).
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The number of possible trees and vines for n variables quickly grows to large numbers. The number
of labelled trees and regular vines on n nodes are provided by Equations 4.9 and 4.10, as proved by
Morales-Nápoles et al. (2010). In Table 4.1, the number of possible labelled regular vines is shown up to
n = 8 variables. Note, that there is exactly one object for 1 and 2 nodes.

Ntrees = nn−2 (4.9)

Nvines = (n2)× (n− 2)!× 2

(
n−2
2

)
(4.10)

Table 4.1: Number of possible labelled trees and regular vines on 3, 4, 5, 6, 7, and 8 nodes. This table
is retrieved and adapted from Morales-Nápoles et al. (2010).

Nodes Treesa Regular vinesb

3 3 3
4 16 24
5 125 480
6 1,249 23,040
7 16,807 2,580,480
8 262,144 660,602,880

a Number of labelled trees
b Number of labelled regular vines

As the number of vines grows to large numbers, the classification of vines becomes important when
comparing the different vines. Tree equivalence is used to define subclasses of vines. The classification of
tree-equivalent vines is based on Definitions 4.5 and 4.6. According to Definition 4.6, one could permute
the numbers in T1 of the D-vine in Figure(s) 4.2 (and 4.3) to get different labelled regular vines, but the
same tree-equivalent vine. The classification of vines can be useful in determining the number of vines
that still can be created after the construction of the first tree T1, for example. Also, when adding an
additional node to an existing vine, one could result in vines in different subclasses.

Definition 4.5. (Graph Isomorphism).
Two labelled graphs Gi = (Ei, Ni) and Gj = (Ej , Nj) are isomorphic if there is a bijection ϕ : Ni → Nj

such that for all pairs (a, b) ∈ Ei ⇐⇒ (ϕ(a), ϕ(b)) ∈ Ej. If two graphs are isomorphic they are the same
unlabeled graph.

Definition 4.6. (Tree-equivalent Vine).
If a bijection as in Definition 4.5 may be found for each Ti ∈ Vk(n) and Ti ∈ Vj(n) then we speak of
the same tree-equivalent vine and accordingly the same tree-equivalent regular vine when the proximity
condition holds.

Vine copula (or a pair-copula construction) are bivariate copula vine specifications (Kurowicka and
Cooke, 2006). A vine copula is created by allocating a bivariate copula Ce to each edge e in the union
E(V) = E1 ∪ ...∪En−1 of the vine. Resulting that n-dimensional vine copulae are based on (n2) copulae,
which can be selected independently of each other. The set of (n2) copulae is denoted by B. The joint
density of a regular vine copula V = {T1, ..., Tn−1} with margins F1, ..., Fn is given by Theorem 4.2. Note,
that Ce is a marginal bivariate copula in tree T1 and a conditional bivariate copula in trees T2, ..., Tn−1.
This leads to n− 1 marginal bivariate copulae and (n− 1)(n− 2)/2 conditional bivariate copulae.

Theorem 4.2. (Vine Copula Density).
Let V = {T1, ..., Tn−1} be a regular vine on n elements. For an edge e ∈ E(V) with conditioned elements
e1, e2 and conditioned set De, let the conditional copula and copula density be Ce1,e2|De

and ce1,e2|De
,

respectively. Let the marginal distributions Fi with densities fi, i = 1, ..., n be given. Then the vine-
dependent distribution is uniquely determined and has a density given by: (Kurowicka and Cooke, 2006):

f1···n = f1 · · · fn
∏

e∈E(V)

ce1,e2|De

(
Fe1|De

, Fe2|De

)
(4.11)
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From Theorem 4.2 the joint distribution can be determined using the selected marginal distributions
F1, ..., Fn and marginal and conditional bivariate copulae in B. The joint distribution, satisfying the
vine copulae specification, will preserve maximum entropy properties of the conditional bivariate copu-
lae (Cooke, 1997; Cooke and Bedford, 2001). For the application of the vine copulae, one could sample
the joint distribution to result in the joint probabilities to evaluate risks. There are two strategies for
sampling vine copulae, i.e. the cumulative and density approaches.

For the cumulative approach, first n independent uniform (0, 1) variables U1, ..., Un are sampled. Then
the uniform variable Xj can be expressed in terms Ui and Uj , using the conditional cumulative distri-
bution function. The realizations xi for the variables of interest X1, ..., Xn are obtained by applying
successive inverse cumulative distribution functions (also called quantile functions). A general algorithm
for sampling regular vines is provided by Kurowicka and Cooke (2007). The sampling procedure can
be graphically visualized using so-called staircase graphs, as can be found in Kurowicka and Cooke (2007).

The density approach can be used when a vine copula density is fully specified as in Equation 4.11.
The equation can be rewritten as Expression 4.12, whereby uniformity, the density fi(xi) = 1 (Joe and
Kurowicka, 2011). The Expression 4.12 can be used to sample the vine copula.∏

e∈E

cij|De

(
Fi|De

(xi), Fj|De
(xj)

)
(4.12)

4.2 Selection of the Marginals of the Concomitant variables
In Section 3.2, a POT is applied to sample the extreme water level observations. This resulted in 145
extreme events. The concomitant variables wave height Hs, wave period Tp, wind speed ws and wind
direction wd are selected at the same instances of the sampled extreme water levels, as visualized in
Figure 4.4. From these sampled extremes, 142 extremes remain due to the lack of wind data for three
events. A model is selected to approximate the 142 extreme values for each concomitant. Similar to the
EVA of the water level, this selection is based on the AIC, BIC and the coefficient of determination R2,
defined by Equations 3.11, 3.12 and 3.13 in Subsection 3.3.2. In addition, the exceedance probability
and CDF plots for the concomitants are used to check the fit of the investigated models. The various
models are fitted and assessed using the ‘fitdistrplus’ package by Delignette-Muller and Dutang (2020)
and ‘extraDistr ’ package by Wolodzko (2020) in R.

Figure 4.4: Selection of the concomitant variable Y at the coinciding times of the dominant variable X.
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Several models are investigated to approximate the concomitants. These are the: Normal, Log-normal,
Gamma, Weibull, GEV, Gumbel, GPD, Exponential and Rayleigh distributions. The AIC, BIC and R2

values of the different models for the wave height and period are found in Table C.1 and for the wind
speed and direction in Table C.2, in Appendix C. From these models, the six best-performing models in
terms of R2 are considered for further analysis. Their exceedance probabilities and CDF are plotted to
investigate the tail behaviour and visualize the overall fit. For the concomitant variables wave height,
wave period and wind speed, the most extreme values are of interest. Figure 4.5 shows the exceedance
probabilities in logarithmic scale for the wave height Hs. A model is selected based on its performance of
the goodness-of-fit criteria and exceedance probability and CDF plots. For the wave height, the Gamma
model performs best for both the goodness-of-fit criteria, found in Table C.1, and in approximating the
tail of the extremes. The GEV model provides similar results as the Gamma model. However, the
Gamma model performs slightly better and thus is selected as the best model for the wave height. A
similar procedure is performed for the wave period and wind speed. These results are found in Appendix
C. The CDF plots of the applied models and the histogram of the selected models for the concomitants
are also found in the appendix.

Figure 4.5: Exceedance probability P(Hs > x) of different models for wave height Hs.

For the wind direction wd, the best model is selected based on the one that best approximates its
entire range of values. The wind rose in Figure 4.6 shows the wind directions’ respectable occurrence
percentage and wind speeds in the 142 selected extreme events. To model the wind direction, the values
are transformed to [0,180] degrees. The coordinate system is rotated by 200 degrees clockwise. This
way, all wind directions lie within [0,180] degrees in the rotated system. Thus, the two most outer wind
directions of 16◦ and 203◦ North are transformed to rotated wind directions of 176◦ and 3◦, respectively.
The wind direction is modelled using truncated models in the rotated domain for [0,180] using the
‘truncdist ’ package by Novomestky (2016). Truncated models are models in which the samples of the
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modelled variable are truncated within certain ranges. In Figures C.3, C.4d and C.5d, the exceedance
probabilities, CDF and histogram for the wind direction and the applied models are found. The plots and
goodness-of-fit criteria show that the truncated Gumbel model best approximates the wind direction.

Figure 4.6: Wind rose of the selected extreme events.

In Table 4.2, the selected models and the model parameters are found for each concomitant variable.
The wave height, wave period and wind speed will be modelled using a Gamma distribution and the
wind direction using a truncated Gumbel distribution in the (rotated) domain of [0,180] degrees.

Table 4.2: Estimated parameters of the selected concomitant models using MLE.

Concomitant Model Parameters [−]
Shape k Rate θ Location µ Scale σ

Wave height Hs Gamma 25.925 8.040 −
Wave period Tp Gamma 62.276 7.682 −
Wind speed ws Gamma 18.855 1.422 −
Wind direction wd Truncated Gumbel − − 60.212 26.922

4.3 Application of Bivariate Copulae Modelling
In this section, it is investigated if the dependence structure of the variable pairs can be well-modelled
by bivariate copulas. The modelling is performed using the ‘copula’ package by Maechler (2023) and
‘VineCopula’ package by Nagler (2023) in R. In order to fit the copula models to the variable pairs, first
the global (Spearman’s) correlation between the variables is determined. Table 4.3 shows the correlation
for all pairs. Pairs with a positive correlation can be modelled by the copula models or the survival
models (rotated by 180 degrees). Pairs with a negative correlation can be modelled by rotating the
copula models by 90 or 270 degrees.
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Table 4.3: Spearman’s rS correlation for every variable pair.

rS Water level Wave height Wave period Wind speed Wind direction
[−−−] h Hs Tp ws wd

h 1.000 0.559 0.540 0.318 0.179
Hs 1.000 0.762 0.309 0.459
Tp 1.000 0.025 0.370
ws 1.000 −0.016
wd 1.000

The data of the selected extreme events is transformed from variable space to unit space by the pobs
function of the copula package. This function determines the so-called pseudo-observations based on the
ranks of the variables (Maechler, 2023). Given n realizations xxxi = (xi1, ..., xid)

T with i ∈ {1, ..., n} of a
random variable X, the pseudo-observations uij are defined by Equation 4.13. Where, rij denotes the
rank of xij among all xkj with k ∈ {1, ..., n}.

uij =
rij

n+ 1
, for i ∈ {1, ..., n} and j ∈ {1, ..., d} (4.13)

Given the pseudo-observations of the 142 extreme events, multiple copulas are investigated to model the
variable pairs. These are compared based on three criteria: the AIC, Cramér-Von Mises tests and the
semi-correlations. The AIC estimates the relative goodness-of-fit criteria based on a trade-off between
the goodness-of-fit for a certain model and its simplicity, as mentioned in Subsection 3.3.2. Equation
4.14 defines the AIC of a bivariate copula CCC family with parameter(s) θθθ, in which u and v are the
pseudo-observations of X and Y and k is the number of copula parameters (Akaike, 1974; Brechmann,
2010). A lower AIC corresponds to a greater fit.

AIC = −2

N∑
i=1

ln
[
CCC(ui, vi|θθθ)

]
+ 2k (4.14)

The Cramér-Von Mises (CM) tests indicate the deviation between the empirical copula and the fitted
copula model. Equation 4.15 and 4.16 show the CM score, where Ri and Si are the ranks associated with
random samples Xi and Yi (Salvadori et al., 2007). A low CM score indicates a small deviation between
the empirical copula and the copula model. To validate the CM scores, the p-values of the CM tests are
determined. A p-value is a statistical measurement to indicate the probability that the observed results
can be produced by a model, assuming the null hypothesis is correct. The null hypothesis states that no
statistical significance exists in a set of observations. Therefore, the lower the p-value, the greater the
statistical significance of the CM scores. A p-value of 0.05 or lower is generally considered statistically
significant. Using the VineCopula package, the CM scores are based on Kendall’s process proposed
by Wang and Wells (2000). The p-values are computed using the parametric bootstrap described by
Genest et al. (2006). The CM score can be calculated for a limited number of copula models using the
VineCopula package. Therefore, the following copula families are considered in this bivariate analysis:
Gaussian, Clayton, Gumbel, Frank and Joe (including all rotations of the copula families).

CMn = n

n∑
i=1

{
Cn(

Ri

n+ 1
,

Si

n+ 1
)− Cθn(

Ri

n+ 1
,

Si

n+ 1
)
}2 (4.15)

with

Cn(u, v) =
1

n

n∑
i=1

1(
Ri

n+ 1
≤ u,

Si

n+ 1
≤ v) (4.16)

The semi-correlations are the Pearson’s ρP correlations in each quadrant (UL, UR, LL, LR). The semi-
correlations of the empirical data are determined by transforming the pseudo-observations of the variables
into standard normal (a Normal distribution with a mean of µ = 0 and a standard deviation of σ =
1). Using Pearson’s ρP , the correlation in each quadrant can be determined. To determine the semi-
correlations of the copula models, 6000 samples are taken from each model. Using the rcorr function
from the ‘Hmisc’ package by Harrell Jr. (2023), the p-values of the semi-correlations are calculated. In
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Table 4.4, the results of the AIC, CM scores and semi-correlations are shown for the variable pair water
level h and wave height Hs. The quadrants that are of most importance are the quadrants with the
largest correlation and low p-values, showing the tail dependence of the pairs. For this application, low
p-values are considered p-values in the order of p < 0.05. The important quadrants are shown in bold
green. The semi-correlations of the model that performs best for those quadrants are also shown in bold
green, as are the best performances for the CM and AIC values. In Appendix D, the tables are found
for the other variable pairs.

Table 4.4: AIC, CM scores and semi-correlations for the pair water level h and wave height Hs.

Criteria Empirical Gaussian Survival Gumbel Frank Joe
[−] h & Hs Clayton
rUL 0.249 0.181 0.077 0.025 0.077 0.082
rUR 0.685 0.336 0.660 0.592 0.201 0.714
rLL 0.012 0.399 0.111 0.247 0.224 0.097
rLR 0.068 0.142 0.102 0.062 0.054 0.013
pUL 0.251 0 0.024 0.455 0.020 0.013
pUR 0 0 0 0 0 0
pLL 0.935 0 0 0 0 0
pLR 0.758 0 0.003 0.059 0.110 0.692
CM − 0.207 0.030 0.079 0.146 2.749
pCM − 0.010 0.990 0.400 0.040 0.360
AIC − −55.56 −74.76 −68.89 −50.02 −74.44

The table shows that the UR quadrant is of the largest significance for the water level and wave height,
suggesting upper tail dependence. This upper tail dependence is best approximated by the Survival
Clayton model. It also shows that the semi-correlations, the CM and AIC values do not necessarily
result in the same best copula model. Furthermore, the lowest CM score does not have to correspond
to the lowest p-value. In this case, the best CM scores are for the Survival Clayton copula. However,
the p-values show that the CM score is of low statistical importance. Therefore, the Gaussian model
performs better solely by looking at CM scores. In the selection of the best bivariate copula models, a
comparison between the three criteria is taken into consideration, respecting the p-values of the semi-
correlations and CM values. For the variable pair h & Hs, the Survival Clayton is selected as the best
copula model. The semi-correlations of the selected Survival Clayton model and the empirical data are
shown in Figure 4.7.

Figure 4.7: Semi-correlation of the Survival Clayton model for water level h and wave height Hs.
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In Figure 4.8, the CDF of the selected Survival Clayton and the empirical copula are shown for the water
level and wave height. The plot shows the cumulative probability of the Survival Clayton by a colour
scale ranging from red to yellow (from 0 to 1). The plot shows that the model and the empirical copula
have a decent fit, as the model approximates the black lines adequately.

Figure 4.8: CDF of the Survival Clayton and empirical copula for water level h and wave height Hs.

The samples from the Survival Clayton in unity space are depicted in Figure 4.9. The samples show the
underlying dependence structure of the variable pair. The figure shows that a large part of the samples
are found in the upper tail, indicating the upper tail dependency between the water level and wave
height.

Figure 4.9: Samples of Survival Clayton in [0, 1]2 for water level h and wave height Hs.

The samples from Figure 4.9 can be transformed into variable space to result in Figure 4.10. This is done
by substituting the samples into the quantile (inverse of the marginal) distribution of the variables. In
the figure, the samples of the water levels are substituted into the stationary GPD and the wave heights
into the Gamma distribution.
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Figure 4.10: Samples of Survival Clayton in variable space for water level h and wave height Hs.

Appendix D includes the results for a similar bivariate analysis for the other variable pairs. In Table
4.5, the results of the analysis are shown. The selected models and the copula parameters θ are shown
in the table for each variable pair. This analysis included a selection of the copula families: Gaussian,
Clayton, Gumbel, Frank and Joe (and the rotated families). From the analysis can be concluded that
the joint probability of the variable pairs can be well-modelled by bivariate copulas. Therefore, the
multivariate dependence structure can be modelled by a vine copula structure, as performed in Section
4.5. The insights from the analysis can be used to validate the modelled vine copulae. In addition, the
copula families that best represent the variable pairs are not only Gaussian. If this would be the case,
other approaches could be of interest for modelling the joint distribution, such as Bayesian Networks
(Couasnon et al., 2018).

Table 4.5: The selected bivariate copulas and copula parameter θ for every variable pair.

Copula Water level Wave height Wave period Wind speed Wind direction
h Hs Tp ws wd

h − Survival Clayton Gumbel Frank Independent
θ = 1.370 θ = 1.620 θ = 1.983

Hs − Survival Gumbel Gaussian Survival Gumbel
θ = 2.471 θ = 0.325 θ = 1.425

Tp − Independent Gaussian
θ = 0.374

ws − Joe
rotated 90◦

θ = −1.163

wd −

4.4 Application of Non-stationary marginals in Copula modelling
In this section, the first research question is concluded. This section aims to apply the non-stationary
marginal distribution of the water level into copula modelling. Subsection 4.4.1 introduces the proposed
algorithm that is used. Subsection 4.4.2 goes over the findings of the applied approach and Subsection
4.4.3 provides the conclusion and remarks.
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4.4.1 Proposed Algorithm

Chapter 3 showed that the non-stationary GPD, with the wave height as the covariate of the scale
parameter, was deemed the best model to approximate the extreme water levels. This model is presented
in Equation 4.17. The equation shows the relation between the model parameter σ(Hs) and the design
values of the wave height Hs.

Hu,σHs
(y,Hs) = 1−

(
1 +

ξ · y
σ(Hs)

)−1/ξ

(4.17)

with 0 ≤ y ≤ −σ(Hs)

ξ
for ξ = −0.257, where y = x− u = x− 2.8[m]

and σ(Hs) = σ1 ·Hs + σ0 = 0.346Hs − 0.546, for σ(Hs) > 0

The aim is to combine this model with the bivariate copula of the water level and wave height, to result
in design values for the water level. The bivariate copula, of the water level and wave height, expresses
the joint probability of the two variables in unity space. In Section 4.3, this bivariate copula is fitted
based on the selected extremes resulting from the POT method. The Survival Clayton copula, with
a parameter of θ = 1.370, resulted in the best fit for the joint density function of the water level and
wave height. Using this copula, the joint probabilities can be sampled and transformed into design val-
ues using the inverse of the marginal distributions (quantile functions) of the water level and wave height.

For the stationary marginal (Gamma distribution) of the wave height, the sampled joint probabilities can
directly be transformed into variable space using the quantile function. However, for the non-stationary
marginal of the water level first, the transformed values of the wave height must be known before the
scale parameter can be determined. The following steps describe the applied method.

Algorithm 4.1: Transforming copula samples into variable space using non-stationary marginals

Step 1: Take n samples from the Survival Clayton copula to obtain the joint probabilities of the water
level and wave height.

Step 2: Transform the n joint probabilities of the (Gamma distributed) wave height into variable space
Hs = {Hs,1, Hs,2, ...,Hs,n} using its quantile function.

Step 3: Use the transformed wave height values Hs to determine n scale parameters σ = {σ1, σ2, ..., σn},
resulting in a scale parameter value σi for every sample Hs,i taken.

Step 4: From σ, each scale parameter value σi is used to derive a (stationary) GPD. This results in a
list of GPD models corresponding to each sample Hu,σi

(y,Hs,i) from Equation 4.17.

Step 5: Each sampled joint probability of the water level from Step 1, can be transformed into variable
space using the quantile function of the corresponding Hu,σi(y,Hs,i) from Step 4.

4.4.2 Findings from the application

Using the proposed method, 10,000 samples are taken from the bivariate Survival Clayton copula and
are transformed into the variable space for the water level. In Figure 4.11 the results are found for both
the transformation using a non-stationary and stationary marginal distribution for the water level. In
red, the original extremes are plotted. Comparing the two plots suggests that the application of the
non-stationary marginal results in a more correlated combination of water levels and wave heights. For
the stationary marginal the samples seem to be more spread out.
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(a) Non-stationary GPD with σ(Hs) for the water level (b) Stationary GPD for the water level

Figure 4.11: The results of transforming the copula samples of the water level and wave height into
variable space using a non-stationary (left) and stationary (right) marginal for the water level.

The original extremes have a rS = 0.57. This correlation is reproduced by the Survival Clayton copula,
ensuring its dependence structure. The correlation is not affected by the transformation of the copula
samples to variable space when using the stationary GPD for the water level. However, the transform-
ation of copula samples into variable space using the non-stationary GPD does affect the correlation
between the samples. The correlation of the transformed samples changed significantly to rS = 0.75.
Therefore, the dependence structure of the marginals is not preserved.

This phenomenon is further investigated here. Figure 4.12 shows the original extreme values and the
Survival Clayton copula samples in unity space. From the original extremes, point 1 is selected. Regard-
ing point 1, two areas are identified, these are shown by the orange marked planes. In the unity space,
a larger value in [0,1] corresponds to a larger value in the variable space and vice versa. Therefore, the
upper left plane contains data and samples that correspond to larger wave heights and smaller water
levels compared to point 1. The lower right plane contains data and extremes with lower wave heights
but larger water levels compared to point 1. Since the model parameter σ(Hs) is related to the wave
height value (see Equation 4.17), a change in wave height results in a changed scale parameter and thus
affects the transformed water level. A hypothesis is formed:

The change in correlation is caused by a change in the ranks of the samples, due to the low (or large)
wave heights forcing low (or large) water levels.

Figure 4.12: Original extreme values and Survival Copula samples in unity space. Three extremes are
selected resulting in points 1, 2 and 3. The orange planes show the trouble areas for point 1.
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The hypothesis states that the wave height could cause an increase in the water level rank of a point in
the upper left area, such that it exceeds point 1. Likewise, the water level rank of a point in the lower
right area could decrease to one below point 1. The lower left and upper right areas are not of interest
when looking at point 1, as a lower (or larger) wave height than point 1 cannot result in a larger (or
lower) water level compared to point 1.

To investigate the hypothesis with regard to point 1, points 2 and 3 are selected from the original extreme
events. The points are chosen such that the ranks of the water levels of the original extremes are sorted
by: R3 < R2 < R1, where Ri is the water level rank of extreme i. Both points 2 and 3 lie in the upper
left area. For point 2, the wave height is significantly larger than that of point 1 and the water level
is slightly lower. For point 3, the water level is significantly lower than that of point 1 and the wave
height is around 10% larger. The three points are transformed according to the algorithm proposed in
Subsection 4.4.1. As stated in the algorithm, since each point has a different wave height, the scale
parameters are also different. Therefore, each point has its own GPD.

In Figure 4.13, the exceedance probabilities are shown for the resulting GPD models for points 1, 2 and
3 and the original extremes of the points. It shows that the larger modelled scale parameter of point 2
results in a significantly larger transformed water level compared to its original point. For point 1, the
smaller scale parameter results in a significant reduction of the original water level, resulting in a lower
transformed water level than point 2. Thus, the ranks are not preserved (R3 < R1 < R2). For point 3
the water level happens to stay approximately similar. The relation between wave height and water level
shows that an event with a relatively low wave height will be modelled using a lower scale parameter
compared to an event with a larger wave height. As Figure 4.13 shows, a GPD with a lower scale
parameter will result in a lower water level for a constant exceedance probability. Hence, introducing
a non-stationary marginal distribution, with the wave height as the covariate, in copula modelling can
result in changing the ranks of the original copula samples, as with points 1 and 2.

Figure 4.13: Exceedance probabilities of the original and transformed points 1, 2 and 3.

The transformed water level and wave height from variable space back into unity space are shown in
Figure 4.14. From the figure, it is clear that the non-stationary model with the wave height as the
covariate affects the correlation and thus does not preserve the dependence structure of the copula.
Wave height as the covariate of the non-stationary model and as a variable in the bivariate copula,
results in large wave heights forcing larger water levels and low wave heights forcing lower water levels,
increasing the correlation.
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Figure 4.14: Transformation of variable space back into copula space. Showing the original samples for
the Survival Clayton copula and the transformation by the non-stationary model.

In Table 4.6, the values of the original and transformed points 1, 2 and 3 are found. It shows the change
in ranks of the transformed water level to R3 < R1 < R2. In Appendix E, additional results of the
analysis are found, e.g. the change in the copula family.

Table 4.6: The original and transformed wave height Hs and water level h values for points 1, 2 and 3.

Points Original Transformed by σ(Hs)σ(Hs)σ(Hs) Scale
U[HsHsHs] HsHsHs U[hhh] hhh U[HsHsHs] HsHsHs U[hhh] hhh σ(Hs)
[−][−][−] [m][m][m] [NAP +m+m+m] [−][−][−] [−][−][−] [m][m][m] [NAP +m+m+m] [−][−][−] [−][−][−]

Point 1 0.315 2.88 0.790 3.58 0.315 2.89 0.664 3.39 0.460
Point 2 0.839 3.81 0.608 3.23 0.839 3.85 0.727 3.46 0.794
Point 3 0.497 3.14 0.308 2.99 0.497 3.18 0.357 3.00 0.561

4.4.3 Conclusion and Remarks

Based on the findings of the applied method, the non-stationary marginal distribution of the water level
with the wave height as covariate cannot be combined with copula modelling. In order to preserve the
dependence structure built by the copula, the transformation from copula space to variable space must be
increasingly monotonic. A monotonic transformation preserves the ranks of the variables and therefore
the copula. The use of the non-stationary model results that the transformation of the samples depends
on the covariate. Therefore, a different transformation is applied to each sample, changing the ranks of
the variable modelled by the non-stationary marginal. This finding resulted in creating Lemma 4.1.

Lemma 4.1. (Copula modelling with a Non-stationary marginal and a node as covariate).
Consider FX,y with covariate y, in which y is a node of the copula, as the non-stationary marginal distri-
bution and FY as the (stationary) marginal distribution of the random variables X and Y , respectively.
Let C (u,v) be the copula describing the joint distribution function FXY of the two random variables X
and Y , in which FX,y(x) = u and FY (y) = v. Then, the transformations of X or Y are not increasingly
monotonic, implying that the dependence structure is not preserved, as stated in Equation 4.18.

FXY

(
F

[−1]
X,y (u), F

[−1]
Y (v)

)
̸= C(u, v), (4.18)

for any (u,v) ∈ I2. Where, F [−1]
X,y and F

[−1]
Y denote, respectively, the quasi-inverses of FX,y and FY .

The conclusion that the non-stationary marginal in which the wave height is the covariate cannot be
combined with copula modelling, results in the use of a stationary GPD to approximate the water level.
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This has several consequences for the analysis. First of all, Section 3.4 showed that the non-stationary
model performed better in modelling the water level compared to the stationary model. Figure E.3
shows that the non-stationary model provides larger water levels for the larger ranks between ranks
7,000-10,000. Therefore, the use of a stationary GPD might underestimate the water level for the largest
extremes up to around 0.2 meters compared to the non-stationary model. Nevertheless, the stationary
GPD from Subsection 3.3.2 will be used in the vine copula modelling.

Coles et al. (2001) showed that a non-stationary model with time as the covariate could be used in copula
modelling. In such a case, the copula is built on observations based on the non-stationary transformation
to unity space. This differs from the proposed method in Subsection 4.4.1, where the copula is built
on the observations based on the empirical CDF of water level and wave height. Such a non-stationary
transformation to unity space would be possible for the covariate time. The transformation standardizes
the data conditioned on the fitted parameters of an estimation model, such as the GPD. As shown by
Coles et al. (2001), in the case of a GPD, u(t) is a set of thresholds that are possibly time-varying,
leading to the threshold excesses yt1 , ..., ytk . The estimated model is in the general form of,

Yt ∼ GPD(σ̂(t), ξ̂(t)).

As the exponential distribution is a special case of the GPD family with ξ → 0, a transformation is
applied to a standard exponential distribution, resulting in the standardized variable Ỹt:

Ỹt =
1

ξ̂(t)
log

{
1 + ξ̂(t)

(Ytk − ut

σ̂(t)

)}
.

The ordered values of the observed Ỹtj by ˜y(1), ..., ˜y(k), it follows that the probability plot is formed by
the pairs:

{(i/(k + 1), 1− exp (− ˜y(i))); i = 1, ..., k}

In this thesis, the non-stationarity of the water level with time as the covariate is not accounted for by
non-stationary copulae. As Section 3.4 showed, the non-stationary model with time as covariate did not
show any statistically significant trend of the extreme water level in time. Furthermore, the historical
trend of SLR may not represent the future SLR trend. As shown in Figure 2.9, the future SLR trend
is largely dependent on different emission scenarios. The assumed future SLR scenario in a hydraulic
structure design should be based on future projections. Therefore, this thesis relies on samples based on
stationary copula modelling and adds SLR to the sampled extreme water levels afterwards.

4.5 Vine Copula modelling
The results in Section 4.3 showed that the variable pairs can be well-modelled through bivariate copulae.
The set of selected copulas that resulted in the best fit contained multiple families. This section involves
modelling the multivariate distribution of the five variables using vine copulae. In Subsection 4.5.1, a
Brute Force procedure is applied to find the best fitting vine copula. Subsection 4.5.2 compares the
results from the Brute Force method with the Maximum Spanning Tree algorithm by Dissmann et al.
(2013). The results of Subsection 4.5.1 are validated in Subsection 4.5.3. The vine copulae will be
modelled using the ‘VineCopula’ package by Nagler (2023) in R.

4.5.1 Selecting Vine Copulae by a Brute Force procedure

As this thesis considers five variables, there are a total of 480 possible unique regular vines that can be
fitted, as shown in Table 4.1. A Brute Force approach is a method that relies on sheer computational
power by calculating every possibility to solve the problem. As the computational time is manageable for
480 unique regular vines, a Brute Force approach is preferred. The Brute Force method does not make
any sacrifices to improve efficiency as it goes over all possibilities. Therefore, this method results in the
vine structure that best approximates (based on the selected goodness-of-fit criteria) the variables, as it
is included in the computations. The vine structures can be written as matrices, as shown in Morales-
Nápoles et al. (2010). A catalogue of the 480 unique matrices from Morales-Nápoles et al. (2023) is
fitted for three procedures. Each procedure accounts for different copula families that can be allocated
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as the bivariate copulae Ce to the edges e in the union E(V) of the vine. Procedure 1 accounts for the
copula families that were selected as the best copula models in Section 4.3, excluding independence. In
Procedure 2, also independence is considered. For Procedure 3, all possible copulae families, including
rotations and independence, in the VineCopula package are considered. The copula families for the
procedures are listed below.

Procedure 1: Gaussian, Clayton, Survival Clayton, Gumbel, Survival Gumbel, Frank and Joe rotated
by 90◦

Procedure 2: Independence, Gaussian, Clayton, Survival Clayton, Gumbel, Survival Gumbel, Frank
and Joe rotated by 90◦

Procedure 3: Independence, Gaussian, Student-T, Gaussian, Clayton, Gumbel, Frank, Joe, BB1, BB6,
BB7, BB8, Tawn Type I, Tawn Type II and all rotations of the listed copula families

The vine copula selection is based here on the AIC. The AIC is commonly used as a goodness-of-fit
measure and is therefore selected as the one to select the best regular vines. The drawback of the AIC is
that it does not allow for statistical significance, such as p-values corresponding to statistical goodness-
of-fit tests. Goodness-of-fit criteria for multivariate cases are not yet widely accepted. There is a lack
of suitable goodness-of-fit criteria for regular vine copulae. Several goodness-of-fit tests based on the
information matrix equality of White (1982), first proposed by Huang and Prokhorov (2014) for copulae,
have been worked out by Schepsmeier (2019) for regular vine copulae. These tests are also included in
the VineCopula package. However, the proposed tests showed poor performance for small sample sizes
(smaller than 10,000 for 5 nodes) (Schepsmeier, 2019). Therefore, the AIC is preferred for the basis of
the best-fit vine copula.

In Table 4.7, the minimum and maximum AIC values are shown of the vine copulas for the three
procedures. A lower AIC provides a greater fit, therefore the vine copula with the lowest AIC is selected
as the best vine copula. The table shows that the best vine copula in Procedures 1 and 2 perform
similarly. Procedure 3, which includes all possible copula families and rotations, performs best and has
a significantly lower AIC score.

Table 4.7: The minimum and maximum AIC values for the three procedures of the Brute Force method
and the pi percentile and AIC of the Maximum Spanning Tree algorithm.

Procedure Brute Force MST Algorithm
min(AIC) [−−−] max(AIC) [−−−] AIC [−−−] pi [%]

Procedure 1 −319.05 −261.82 −292.66 62.50
Procedure 2 −319.77 −259.04 −275.69 94.17
Procedure 3 −355.77 −286.26 −323.10 49.58

The vine copulas with the best AIC scores from the three procedures are found in Appendix F. Each
procedure resulted in a different vine structure. The analysis in Section 4.3 is conducted by a limited
selection of copula families. There could be other families that perform better in approximating the
dependence structure of the variable pairs, which are included in Procedure 3. This could be the reason
for the different vine structures. In Appendix F, the (conditional) copulas for each vine copula are found.
The vine copula from Procedure 3 is selected as the best vine copula to approximate the variables. This
vine copula is a C-vine with the water level as the central node.
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Figure 4.15: The best-performing vine copula based on AIC from Procedure 3. The vine is a C-vine
with the water level as the central node.

4.5.2 Performance of the Maximum Spanning Tree Algorithm

The VineCopula package contains the function RVineStructureSelect that uses a Maximum Spanning
Tree (MST) algorithm to significantly reduce computational time by optimising the edges of each tree.
The MST algorithm based on Kendall’s τK is introduced by Dissmann et al. (2013). The performance of
the algorithm is investigated in order to check whether it could be a respected tool to use in the selection
of a vine copula in a significantly reduced computational time.

The algorithm is used for the three procedures described in Subsection 4.5.1. The performance of the
algorithm is based on its AIC value. Table 4.7 shows the percentile pi and AIC values of the algorithm
for all procedures. It shows that the algorithm performs poorly. The best performance of the algorithm
is the 49.6% percentile for Procedure 3. This result shows that 49.6% (or 238/480) of the possible vines
provide a better AIC value. The performance is visualized in Figure 4.16 using the CDF plot. Note, a
lower AIC provides a greater fit. For Procedure 2 the algorithm performs very poorly as 94.2% of the
possible vines perform better than the vine selected by the algorithm.
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Figure 4.16: CDF of the performance of the MST algorithm versus Brute Force fitting for Procedure 3.

In Appendix F, the vine copulas selected by the algorithm can be found. It shows that the algorithm
provides different vine structures compared to the best-performing vines from Procedures 1, 2 and 3.
The vines selected by the algorithm are all C-vines with the wave period as the central node and are
not tree-equivalent. This concludes that the use of the MST algorithm should be taken with care as the
performance of the algorithm should be questioned.

4.5.3 Vine Copula Validation

From Procedure 3, there is one vine copula that provides a similar AIC (−353.16) to the best-performing
vine copula (−355.77). This vine copula is found in Appendix F and is also further investigated here.
To validate the output of the vines, the predicted versus the empirical exceedance probabilities for the
142 observed extremes are plotted in Figure 4.17. The closer the predicted and empirical exceedance
probabilities for the observed extremes are, the closer the points follow the one-one line. The figure shows
that the goodness-of-fit of the best-performing vine (vine copula 3) is greater than that of the second best-
fitting vine (vine copula 3.2). The area of largest interest is that of the lower exceedance probabilities, as
these correspond to the greatest storms. Figure 4.17 shows that the predicted exceedance probabilities by
vine copula 3 are closer to the one-one line, especially for the lower exceedance probabilities. Therefore,
the best-performing vine, vine copula 3 from Figure 4.15, is selected to model the design variables.
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Figure 4.17: The predicted against empirical exceedance probabilities of the observations P(h > x∩Hs >
x ∩ Tp > x ∩ ws > x ∩ wd > x) for the two best-fitting vine copulas from Procedure 3.

4.6 Conclusions of the Multivariate Modelling
The five design variables are modelled by vine copulas. Vine copulas capture the multivariate dependence
structure by combining regular vines with bivariate copulae. In Section 4.3, the bivariate analysis showed
that the variable pairs could be well-modelled by bivariate copulae. The analysis resulted in the copula
families that best fit the variable pairs and provided insights for the vine copula modelling. The vine
copula modelling was performed using a Brute Force procedure. A catalogue of the 480 unique matrices
from Morales-Nápoles et al. (2023) was fitted for three procedures, each containing different copula
families. The vine copulae resulting from the procedure were compared based on the AIC. It showed
that the MST algorithm (Dissmann et al., 2013) performed poorly in selecting the best vine copula.
The goodness-of-fit of the best-performing vine copulae was validated by the predicted against empirical
exceedance probabilities of the observed extremes. The best-performing vine copula is a C-vine with the
water level as the central node, found in Figure 4.15. In addition, RQ1 as stated;

RQ1: Can a Non-stationary Extreme Value Analysis be applied in a multivariate design approach
using Vine-Copulae?

RQ1 resulted in the following findings; when combining a non-stationary marginal distribution with
copula modelling, the transformation from copula space to variable space is not increasingly monotonic.
Therefore, the dependence structure built by the copula is not preserved, thus a non-stationary marginal
cannot be combined with copula modelling. This resulted in Lemma 4.1. The marginal distribution of
the dominant variable, the water level, is modelled in Chapter 3. After concluding that copula modelling
cannot be combined with non-stationary marginals, the stationary GP is selected. The marginals of the
concomitant variables wave height, wave period and wind speed are Gamma distributed. A truncated
Gumbel distribution models the wind direction. The design values for the WGD are obtained by sampling
the selected vine copula and transforming the samples to variable space using the inverse of the selected
marginals.
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5 | Base Design of the Wide Green Dike
This chapter considers the base design of the WGD using the multivariate model resulting from Chapters
3 and 4. In Section 5.1, the offshore wave characteristics are transformed to nearshore. The clay-erosion
failure mechanism of the WGD is assessed and a vine-based design is created in Section 5.2. The base
design is compared to a deterministic design in Section 5.3. The comparison results in answering RQ2
to show the differences between a multivariate probabilistic and deterministic design for the WGD.

5.1 Offshore-Nearshore Transformation
In the propagation of wind waves in deep water to the coast, the waves are transformed due to their
interaction with the bathymetry. The interaction induces variations in the significant wave height and
the mean wave directions. Important processes causing this transformation are refraction, shoaling,
diffraction, bottom friction and wave breaking. By taking wave measurements offshore, the true wave
characteristics can be studied before these transformations take place. Studying the offshore wave char-
acteristics provides insight into i.e. the risk assessment of potential hazards. The nearshore wave char-
acteristics are also of great importance for a design, as they determine the loads that the design should
withstand. An offshore-nearshore transformation aims to model these interactions.

To transform the simulated offshore wave characteristics from the multivariate model to nearshore char-
acteristics a hybrid downscaling methodology, proposed by Camus et al. (2011a), is applied. This hybrid
approach is a combination of a dynamical approach and a statistical approach. A dynamical approach
consists of numerical modelling of the wave transformation processes (e.g. refraction, shoaling, diffraction,
bottom friction, breaking) in their propagation to shallow waters. This can be done by a phase-resolving
model, such as SWAN, which is based on mass and momentum balance equations. A statistical approach
uses the empirical relationship between a deepwater variable and a nearshore variable to obtain (local)
information on the coastal environment, usually by an interpolation scheme (Camus et al., 2011a). Al-
though the dynamical approach is the most accurate, it is also very computationally expensive. A hybrid
approach combines the dynamical and statistical approaches to reduce computational effort.

The considered hybrid approach aims to create a surrogate model that approximates the numerical model,
based on the input-output behaviour of the simulated offshore-nearshore transformation. The surrogate
is developed by selecting a subset of wave conditions, to represent the whole set of wave conditions,
and performing the offshore-nearshore transformation of the subset using the numerical model. The
input-output behaviour is captured through an interpolation scheme. Using the surrogate model, the
computational effort can be significantly reduced for the offshore-nearshore transformation. Subsection
5.1.1 selects the subset of wave conditions to train the surrogate. In Subsection 5.1.2, the subset is
transformed using the numerical model SWAN (Booij et al., 1999). The surrogate is built in Subsection
5.1.3. Subsection 5.1.4 shows the assumed storm progression in the Wadden Sea area, needed to create the
input for the surrogate model. In Subsection 5.1.5, the results of the offshore-nearshore transformation
are found.

5.1.1 Selection of representative Storm Conditions

The goal of the selection process is to select a subset of wave conditions that represent the entire data-
base of wave conditions. To select a subset, the considered approach uses a Maximum-Dissimilarity
Algorithm (MDA). The MDA was first described by Kennard and Stone (1969) and identifies a subset
of size M comprising the most dissimilar data in a dataset of size N . This selection technique results in
a fairly evenly distributed subset of points across the entire data space, with some points on the outline
of the data space. The implemented MDA methodology to transfer the wave climate from deep water
to shallow water is proposed by Camus et al. (2011b). This is the MaxMin version of the algorithm. A
subset size of M = 25 is selected. Camus et al. (2011a) showed that the quality of performance for such
a small subset is satisfactory.
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The multivariate input data is defined as X∗ = {X∗
1 , ..., X

∗
N} with X∗

i = {h∗
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1, ..., N , where N = 142 observed extremes. The obtained subset is Dj = {hD
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s,j , w
D
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j = 1, ...,M , where M = 25. The data consists of the (nearshore) water level h, offshore wave height Hs,
wave period Tp and wave direction θ, and the (nearshore) wind speed ws and wind direction wd. Note,
that it is assumed that θ = wd. Using the ∗ it is denoted that X∗ consists of the variable values. Each
data in X∗ is defined by scalar and directional variables of different magnitudes. The data is normalized
such that it is equally weighted in the similarity criterion. As the data contains directional variables,
this criterion is defined by the Euclidean Circular (EC) distance. The EC is defined by Equation 5.1,
where ‘∥ ∥’ stands for the EC distance.
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(5.1)
The scalar variables are normalized by scaling the variable values between [0, 1] using their minimum
and maximum values, denoted by Hmin

s and Hmax
s for variable Hs. The directional variables (in radians)

are normalized between [0, 1] by dividing the values by π. Note, the directional variables lie between
[0, 180] degrees. Thus, the maximum difference between the two directions is π and the minimum is
equal to 0. The transformations are shown in Equation 5.2. The dimensionless data is expressed as
Xi = {hi, Hs,i, Tp,i, θi, ws,i, wd,i}; i = 1, ..., N .
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(5.2)

The subset is initiated by transferring one of the vectors of X to the subset, resulting in D1. The other
M − 1 elements in the subset are obtained by the MDA. This is an iterative process, that calculates the
dissimilarity between the remaining data and the transferred elements in the subset, and then transfers
the most dissimilar one to the subset. The MDA finishes after M = 25 elements are selected in the
subset. The proposed MDA uses a more efficient algorithm to reduce the expected time complexity of
O(M2N) to O(MN), developed by Polinsky et al. (1996). The algorithm is described in detail in Camus
et al. (2011b). In this work, the sea state with the largest water level h is selected as D1.

Finally, the last step of the MDA is the denormalization of the subset. This is done by applying the
opposite transformation of Equation 5.2, as shown in Equation 5.3.
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wD
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s ·
(
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s

)
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s ; wD
d = wD

d · π

(5.3)

The selected subset is shown in Figure 5.1 for all variables. The black line represents the entire database
of variables. The red dots are the selected cases in the subset for each variable. The dashed red line
represents the times corresponding to the observed extremes in the subset.
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Figure 5.1: Selected cases for each variable using the MDA.

5.1.2 Transformation in SWAN

The subset of size M = 25 is propagated using the wave energy model SWAN, which stands for Simu-
lating WAves Nearshore (The SWAN Team, 2023). The bathymetry obtained from EMODnet (2016) is
transformed into a rectangular grid with a spatial resolution of 50 meters. The computational grid with
Cartesian coordinates overlaps the transformed bathymetry. The total domain has an area of 25 × 25
kilometres, resulting in 500 × 500 grid meshes. Each sea state defined by h, Hs, Tp, θ, ws and wd is
propagated by a stationary 2-dimensional SWAN model. In the model, a constant wind field is defined
by ws and wd. The boundary conditions are defined using a constant JONSWAP spectrum with a peak
enhancement parameter of γ = 3.3 and a directional spreading interpreted as a directional standard de-
viation of σ = 30◦ (default). This boundary condition is applied at the inlet of the Ems-Dollard estuary,
at the Northern boundary. One of the SWAN input files is found in Appendix G.

In Figure 5.2, one of the transformed 25 cases is shown. The filled contours show the significant wave
height, the values are found in the colour bar. The arrows show the mean wave direction. The WGD
location is indicated by the green line. From the 25 cases, three points of interest are indicated by P1,
P2 and P3. The dike orientation for each point is different. The consequence is that the angle of wave
attack β for each point is different for a constant wave direction. Waves that strike the WGD at an
angle have a reduced impact compared to waves that strike the dike perpendicular. Therefore, the loads
on the WGD result from a combination of wave height and angle of wave attack. By comparing the 25
propagated cases, these three points resulted in the largest wave heights for the dike segments with the
different dike orientations.
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Figure 5.2: The significant wave height and directions for one of the selected cases transformed by SWAN.

5.1.3 Surrogate model using Radial Basis Functions

To reduce the computational effort, a surrogate model is built to approximate the SWAN model. The sur-
rogate model is based on the input-output behaviour of the 25 propagated cases. The proposed method
by Camus et al. (2011a) uses an interpolation technique based on Radial Basis Functions (RBF); a
scheme which proved convenient for scattered and multivariate data (Hardy, 1990).

The selected subset of M = 25 data points is D = {D1, ..., DM} and has a dimension of n = 6, as
there are six variables h, Hs, Tp, θ, ws and wd. Suppose that the transformation of the input data
D to the real propagated data Dp by SWAN can be described by the associated real-valued functions
{f1, ..., fM}, where fj = f(Dj) = Dp,j ; j = 1, ...,M . The RBF interpolation method aims to approximate
these functions. By this approximation, a sea state Xi = {hi, Hs,i, Tp,i, θi, ws,i, wd,i}; i = 1, ..., N , can
be propagated using the RBF. The approximation function of the proposed method is in the form of
Equation 5.4.

RBF (Xi) = p(Xi) +

M∑
j=1

aj · Φ
(
∥Xi −Dj∥

)
(5.4)

Here, p(Xi) = b0 + b1 · hi + b2 ·Hs,i + b3 · Tp,i + b4 · θi + b5 · ws,i + b6 · wd,i is the monomial basis, with
b = {b0, ..., b6} the coefficients of the monomials. The a = {a1, ..., aM} are the coefficients of the RBF.
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The Φ is a Gaussian radial basis function described by Equation 5.5, where c is the shape parameter and
‘∥ ∥’ is the EC distance from the MDA.

Φ
(
∥Xi −Dj∥

)
= exp

(
−∥Xi −Dj∥2

2c2

)
(5.5)

The optimal c is determined by the Leave-One-Out Cross Validation (LOOCV) algorithm proposed
by Rippa (1999). The a and b coefficients are obtained by enforcing the interpolation conditions and
the linear equations in Equations 5.6 and 5.7 (Micchelli, 1984). Prior to solving the system of linear
equations, the scalar and directional variables in Dj are normalized in the same manner as in the MDA.

RBF (Dj) = fj(Dj) = Dp,j ; j = 1, ...,M (5.6)
M∑
j=1

aj · p(Xi) = 0; i = 1, ..., N (5.7)

The real propagated data Dp contains the propagated significant wave height HD
s−p,j , the propagated

wave period TD
p−p,j and the x- and y-components of the propagated wave direction θDx−p,j and θDy−p,j .

Note that after the interpolation, the propagated wave direction θp,j is reconstructed. The sea state
at deep water Xi is propagated to the point of interest through the RBF for each of the propagated
parameters Hs−p,j , Tp−p,j , θx−p,j or θy−p,j , found in Equation 5.8
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(5.8)

Here, the transfer of Xi to a point of interest at shallow water, results in the propagated wave condition
Xp,i = {Hs−p,i, Tp−p,i, θp,i}. Concluding from the real propagation in SWAN, there are three points
of interest P1, P2 and P3. Each point needs four interpolation functions, resulting in a total of twelve
RBFs. Using the created RBFs, the sampled sea states from the multivariate model can be propagated
to nearshore conditions at the three points. As an example, in this particular case, the interpolation
function of the significant wave height at P1 has a shape parameter of c = 2.267.

5.1.4 Storm Progression in the Wadden Sea area

Section 2.3 shows that the 18-hour average storm conditions are governing when assessing the clay-erosion
failure mechanism. Accordingly, the extreme (maximum hourly) water levels that are sampled from the
vine copula have to be transformed to an 18-hour storm average. To do so, a storm progression for the
Wadden Sea area is assumed.

Deltares (2015) studied the storm progression for the Wadden Sea area. One of the studied locations,
Delfzijl, is close to the WGD project as Figure 5.3 shows. Deltares (2015) selected 222 storms at Delfzijl
using a POT procedure with a threshold of µ =NAP +1.5 meters and declustering time of δ = 24 hours.
The findings at Delfzijl resulted in a storm duration of 43 hours and a peak duration of 2 hours. The
findings were combined with the other studied locations, resulting in a recommended approximation of
the storm surge in the Wadden Sea area. The recommended shape is a buckled trapezium with a base
duration of 45 hours and a peak duration of 2 hours. This shape is prescribed by the WBI-2017. To
result in the water level progression during a storm, the astronomical tide must be accounted for. The
study of Deltares (2015) resulted in a tidal amplitude of 1.5 meters and a phase difference between the
tide and the storm surge of 5.5 hours for Delfzijl. These tidal characteristics are used in Sweco’s design
for the WGD. The same tidal amplitude and phase difference is found for the observed data. Therefore,
a tidal amplitude of 1.5 meters and a phase difference of 5.5 hours is considered for all sampled extremes,
resulting in the assumed water level progression during an extreme storm.
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Nieuwe 
Statenzijl

Delfzijl

Figure 5.3: Locations of Delfzijl, the WGD trajectory and water level measurements at Nieuwe Statenzijl.

The assumed water level progression during an extreme storm is found in Figure 5.4. The figure shows
the water level, storm surge and tide progression during the 45-hour storm duration for Sweco’s design.
The 18-hour boundaries show the part of the storm that is considered when assessing the clay-erosion
failure mechanism. The shape is assumed to be true for all sampled extremes. The maximum water level
is transformed to an 18-hour average using a reduction factor r18. The reduction factor is determined
by dividing the 18-hour average water level by the maximum water level, resulting in r18 = 0.93.

Figure 5.4: The assumed water level progression (green line) for a storm with a 45-hour duration. Image
retrieved and modified from ‘Ontwerprapport Brede Groene Dijk’ by Sweco (2021b), p.21.

5.1.5 Simulating the Nearshore Wave conditions including Sea Level Rise

The created surrogate model in Subsection 5.1.3 is used to derive the nearshore wave conditions at the
three locations; P1, P2 and P3. To create the design values for the vine-based design, the vine copula
is sampled to derive the multivariate input data {h,Hs, Tp, ws, wd} in unity space. These samples are
transformed into variable space using the obtained distributions of the design variables. The effect of
climate change by SLR is not yet included in these samples. Including the SSP5-8.5 SLR scenario, can
be done in multiple ways. First, the SLR can be introduced by changing the marginal distribution of the
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water level. Secondly, the dependence structure between the water level and concomitant variables could
be altered, for example by increasing the pair correlation between the water level and wave height. Note,
that such an increase would also result in changing wave height samples. At last, both the marginal
distribution of the water level and the water level pair correlations could be altered. In this work, SLR
inclusion is achieved by changing the marginal distribution of the water level. The marginal distribution
of the SLR scenario is found in Appendix J.

The procedure for the offshore-nearshore transformation is stated in Algorithm 5.1. As the required
failure probability Pf,req = 1/37, 500 per year is very low, a total of n = 1, 000, 000 samples are taken.
The results from performing the procedure are found in Tables I.1 and I.2 in Appendix I.

Algorithm 5.1: Simulating the Nearshore Waves including Sea Level Rise

Step 1: Take n random samples from the vine copula obtained in Section 4.5.

Step 2: Transform the n samples into variable space using the quantile functions of the design variables
from Sections 3.3 and 4.2.

Step 3: Create n random samples of SLR using the marginal distribution of the year 2150, found in
Appendix J.

Step 4: Add the ith SLR sample to the ith water level sample, to create the extreme water levels for
the year 2150; hSLR.

Step 5: Reduce the extreme water level hSLR to the 18-hour average water level according to Figure
5.4. This is done by multiplying hSLR with r18 to create h18.

Step 6: Perform the offshore-nearshore transformation using the surrogate model created in Subsection
5.1.3 for each location; P1, P2 and P3. Use the multivariate input data {h18, Hs, Tp, ws, wd} to
create the nearshore wave characteristics {Hs−p, Tp−p, θp} at each location.

5.2 Vine-based Design of the Wide Green Dike
Using the results of the offshore-nearshore transformation, the clay-erosion failure mechanism can be
assessed. The clay erosion is evaluated for the three locations; P1, P2 and P3. The nearshore waves
are corrected for the angle of wave attack β by the influence factor fβ to determine the wave impacts
(Deltares, 2022a). The influence factor is defined in Equation 5.9.

fβ = max
(
0.35; (cosβ)0.67

)
where − 90◦ ≤ β ≤ 90◦ (5.9)

Where:
fβ Influence factor for the angle of wave attack [−]
β Angle of wave attack relative to the dike normal [◦]

The reduced waves are found by multiplying the nearshore wave height Hs−p with fβ . The wave steepness
sop of the reduced waves is determined by Equation 5.10. Note, that the range of applications of the
clay-erosion failure mechanism is for 0.01 ≤ sop ≤ 0.05, as stated in Section 2.3.

sop =
Hs

g · T 2
p /2π

where 0.01 ≤ sop ≤ 0.05 (5.10)

Where:
sop Wave steepness [−]
Hs Significant wave height [m]
Tp Peak wave period [s]
g Gravitational constant (= 9.81) [m/s2]
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As the locations P1, P2 and P3 have different dike orientations, the clay erosion is determined for all
locations. The dike normal orientations for the locations are stated in Table 5.1.

Table 5.1: The WGD dike normal at P1, P2 and P3.

Location Dike normal
P1 50 ◦N
P2 3 ◦N
P3 353 ◦N

The erosion volume Ve and erosion profile are determined using Equations 2.1, 2.2, 2.3 and 2.4 from
Section 2.3. To model the erosion coefficient ce, a truncated Normal distribution between [0.54, 1.00]
is considered, see Appendix I. This results from the Delta Flume results and expert judgement (Sweco,
2021c; Deltares, 2022b). Note, that Ve = 0 if Hs ≤ 0.4 meters (for the reduced waves) and if h18 < NAP
+2 meters as the salt marshes have a height of NAP +2 meters, thus no erosion of the WGD takes place.
The erosion volume and profile are determined according to Algorithm 5.2.

Algorithm 5.2: Determine the Erosion Volume and Profile for Clay-Erosion

Step 1: Acquire the multivariate data {h18, Hs−p, Tp−p, θp} of size 4× n, by performing Algorithm 5.1.
The data contains the 18-hour average nearshore water level h18,i and the corresponding nearshore
wave characteristics Hs−p,i, Tp−p,i and θp,i; i = 1, ..., n.

Step 2: Correct the nearshore waves for the angle of wave attack β using the influence factor fβ found
in Equation 5.9. This results in {Hs,i, Tp,i, θi}.

Step 3: Determine the wave steepness of the reduced waves sop,i using Equation 5.10.

Step 4: Take n samples of a truncated Normal distribution with a mean µ = 0.54 and a standard
deviation σ = 0.14 in the domain [0.54, 1.00] to get the erosion coefficients ce,i.

Step 5: Determine the erosion volume Ve,i for the data {ce,i, h18,i, Hs,i, Tp,i, θi} using Equation 2.1.

Step 6: Determine the erosion profile using de,i, Le,i and dt,i for Ve,i using Equations 2.2, 2.3 and 2.4.

Step 7: Using the erosion profile parameters from Step 5, determine the minimum needed crest height
using Equation 5.11, where α = 1 : 7 is the outer slope of the WGD. This results in a dataset
{Ve, de, Le, dt, hcr,min} of size 5× n.

hcr,min,i = sinα · Le,i + h18,i − dt,i (5.11)

By performing Algorithm 5.2, the erosion profile and minimum needed crest height are found for all
samples. The WGD design results from an iterative process in which the design crest height hcr,d and
design clay layer thickness de,d are assessed for the calculated erosion profiles. The selected WGD design
is based on the design on a failure probability of Pf ≤ Pf,req with a minimal cross-sectional area. As the
probabilistic assessment determines the erosion profile for a range of water levels and wave characteristics,
the locations of the erosion profiles and their size differ. To assess a dike design for the calculated erosion
profiles, the design dike’s geometry is used. The design parameters hcr,d and de,d are used to determine
the WGD design geometry. The WGD starts from the landward side of the current, beginning from the
inner berm next to the road, and constructing seawards. The design has the following constraints:

• The road is located at NAP +3.05 meters.

• There is a minimum crest width of bcr,min = 1 meter.

• An outer berm is constructed for maintenance activities. The outer berm is located at NAP +3.55
meters and has a width of 3 meters with a slope of 1 : 20.
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• The inner slope is αin = 1 : 3.

• The outer slope is α = 1 : 7.

From hcr,d and de,d a ‘design erosion profile’ can be determined. This is done to determine the design
crest width bcr,d. The design erosion profile is determined by solving Equation 2.1 for de to get Ve,d.
Using Ve,d, the design erosion profile location and shape are determined. This provides bcr,d, as the
WGD is constructed from the current dike seawards and a clay layer thickness of de,d is applied at the
design erosion profile location. The cross-sectional area Ad is the difference between the design area and
the current dike’s area, as shown in Figure 5.5.

Figure 5.5: Sketch of the plot from Algorithm 5.3. The green area shows the calculated cross-sectional
area Ad. The black line shows the current dike geometry.

Failure occurs when the calculated erosion profile hits the current dike’s clay layer or the design crest,
as stated in Section 2.3. The failure probability of a design Pf is determined by dividing the total
sum of failures over the number of samples n = 1, 000, 000. A design is valid if Pf ≤ Pf,req, with
Pf,req = 1/37, 500 per year. To select the final WGD vine-based design, the full procedure from the
calculated erosion profiles to the WGD design is automated in Algorithm 5.3.

Algorithm 5.3: Determine the WGD design with the minimal Cross-Sectional Area

Step 1: Perform Algorithm 5.2 to obtain the set of erosion profiles {Ve,k, de,k, Le,k, dt,k, hcr,min,k} cor-
responding to the data {ce,k, h18,k, Hs,k, Tp,k, θk}; k = 1, ..., n. Both sets are used as input.

Step 2: Create two arrays for the design parameters hcr,d and de,d. The arrays contain the range of
values that are assessed for a possible WGD design. The design crest height has a minimum value
of the current dike’s crest height.

Step 3: Create a data frame containing the x- and y-values of the current dike’s geometry dike_x,
dike_y. A positive coordinate system is assumed to have a positive x-axis to the right and a
positive y-axis upwards. The origin is set for x = 0 at the end of the crest of the current dike,
y = 0 at NAP +0 meter.

Step 4: Determine the Pf for all hcr,d,i and de,d,j combinations using a Monte Carlo simulation:

for(i in 1 :length(hcr,d)){

for(j in 1 :length(de,d)){

▷ Determine the design erosion profile parameters {Ve,d, Le,d, dt,d} using de,d,j .
▷ Determine the geometry of the design crest. The end of the crest xcr is found by finding
the x-value of the end of the design erosion profile. As the WGD is constructed seawards,
a large hcr,d combined with a small de,d could result in a bcr,d < bcr,min. Respect the
minimum crest width of 1 meter.
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▷ Create a data frame containing the x- and y-values of the design WGD geometry.
Respect the following set parameters: α = 1 : 7, αin = 1 : 3, the inner berm is located at
NAP +3.05 meters, the outer berm is located at NAP +3.55 meters and has a width of
3 meters and slope of 1:20.
for(k in 1 : n)){

▷ Using the calculated erosion profiles from Step 1 and the WGD geometry, for each
sample k determine the x- and y-coordinates of the ‘kink’ in the erosion profile at
which the terrace ends and the cliff starts; xkink, ykink, see Figure 2.3.
if(xkink,k < dike_x[dike_y == ykink] ∨ hcr,d < hcr,min,k){

▷ failure = failure+ 1

}
}
Pf = failure/1, 000, 000

if(Pf <= Pf,req){
▷ Save the WGD design data frame as possible WGD design geometries
▷ Save the Pf of the possible WGD geometries
▷ Calculate the cross-sectional area Ad of the possible WGD geometry

}
}

}
▷ Return the WGD geometry, Pf and Ad corresponding to the geometry for which min(Ad) is valid

Step 5: Plot the selected WGD geometry.

Algorithm 5.3 is run for all three locations P1, P2 and P3. The input of the design parameters is two ar-
rays with a step size of 1 centimetre. The design crest height is assessed for NAP +8.38m ≤ hcr,d, where
the lower boundary is defined by the current crest height. The design clay layer thickness is assessed for
0.50m < de,d, as d0 = 0.50m. The results show that location P2 is governing for the vine-based design,
with hcr,d = NAP +9.25 meters and de,d = 0.90 meters. The optimal design has a design cross-sectional
area of Ad = 98.0 m2, thus 98.0 m3/m of clay is needed for the design.

Algorithms 5.2 and 5.3 are also run for an erosion coefficient of ce = 0.8 for all samples at only the
governing location P2. This is done to check the influence of considering ce as stochastic and to check
the assumption of ce = 0.8 for the deterministic design. The results show a slight increase in design clay
layer thickness of +5 centimetres, compared to the vine-based design with ce as stochastic. This would
result in a small additional cross-sectional area of 2.6 m2.

The selected vine-based design is shown in Figure I.4 in Appendix I. The figure shows the WGD design
with the new to-be-constructed clay layer. The current dike geometry is shown by the bold black line,
with a current clay layer thickness of 0.8 meters. Also, the old dike core, on which the current dike is
constructed is shown. A road is located on the inner berm, hence the asphalt layer.

The 18-hour average water levels and wave heights for which the vine-based design failed, are found in
Appendix I. The failures show that the North wind direction is dominant when creating the governing
water levels and waves. This corresponds to the local knowledge by Sweco (2021a). The return period
of the water level for which the design failed can be analysed to check whether the assumption of the
storm progression in Subsection 5.1.4 was valid. This is done by determining the return period for the
minimum water level for which the design failed, this is NAP +8.85 meters. To determine the return
period, the 18-hour average is transformed back into an hourly maximum water level. From this water
level, different SLR scenarios are subtracted to result in a ‘present’ water level, without any SLR. The
return period for this water level is determined using the marginal distribution of the extreme water
level. The results are shown in Table 5.2. The table shows that without any SLR, the return period is

62



260,150 years. The return period for 2.5 meters of SLR is 3,410 years, which is still a significant storm.
Therefore, the assumption in Subsection 5.1.4 is deemed acceptable.

Table 5.2: The return period T in years for the 18-hour average water level h18 for different SLR scenarios
for the year 2150.

SLR [m] 0 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5
T [y] 260,150 112,075 73,230 47,700 30,975 20,050 12,935 8,320 5,330 3,410

5.3 Comparison with a Deterministic Design
In Appendix H, a deterministic design for the WGD is created. The design values result from the same
marginal distributions as the vine-based design. The design values are the values corresponding to a
return period of 37,500 years. To include SLR, the 95% value of the SSP5-8.5 scenario is considered,
resulting in 2.3 meters of SLR in 2150. The design values are transformed using SWAN to create the
nearshore wave conditions. The clay-erosion failure mechanism is assessed by performing Algorithms 5.2
and 5.3 in a deterministic manner. Therefore, the erosion profile is only assessed at one level on the
outer slope, determined by the design water level. This results in the design crest height and clay layer
thickness for the deterministic design. The full procedure and design are found in Appendix H.

In Table 5.3, the design crest height hcr,d, clay layer thickness de,d, cross-sectional area Ad and the
required total volume of clay Vtot are shown. The WGD trajectory is 12.5 kilometres long. By multiplying
Ad with 12,500, Vtot is found.

Table 5.3: Comparison of the deterministic and vine-based design.

Design hcr,d [NAP +m] de,d [m] Ad [m3/m] Vtot [m3]
Deterministic 11.24 1.45 241.2 3,015,000
Vine-based 9.25 0.93 98.0 1,225,000

The designs and their differences in dimensions are visualized in Figure 5.6. The current dike is shown
in black, the vine-based design in blue and the deterministic design in red.
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Figure 5.6: The vine-based and deterministic designs of the WGD for the year 2150.

Table 5.3 and Figure 5.6 show significant differences between the deterministic and vine-based designs.
For the vine-based design, hcr,d is increased by almost 2 meters and de,d by 0.52 meters. These are sig-
nificant increases, of 21.5% of NAP +9.25 meters and 56% of 0.93 meters. The large increase in design
parameters results in the deterministic design having a significantly larger footprint of +146% and an
additional intrusion of 18.7 meters into the Natura 2000 area. For the total amount of clay needed for
construction, this results in an additional 1,790,000 m3 of clay.

By comparing the combinations of water levels and (reduced nearshore) wave heights for which both
designs fail, it is clear that the deterministic design is designed for more extreme conditions. The design
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value of the water level for the deterministic design is hd,18 =NAP +9.95 meters and the wave height
is Hd,s = 1.96 meters. The failures for the vine-based design have water level values between NAP
+8.8 meters and NAP +10.6 meters. The wave heights are between 0.8 and 0.9 meters. The statistical
summaries of the water level and wave height are found in Appendix I. The design water level of the
deterministic design is 0.2 meters larger than the 3rd quartile of the failures from the vine-based design,
which is significant. The difference in design wave height is relatively even more significant. The accoun-
ted wave height is more than double that of the wave heights in the vine-based design. However, from
the vine-based design, it was found that the water level is the dominant variable for failure. The results
show that failure occurs due to very extreme water levels. Therefore, the corresponding wave height can
be significantly reduced as a much smaller wave height already results in an erosion profile for which
failure occurs.

It is concluded that accounting for such significant values, determined in a deterministic approach, results
in the large over-dimension of the WGD design. From these findings, RQ2 can be answered. RQ2 states;

RQ2: What are the design differences between a multivariate probabilistic design and a deterministic
design for the Wide Green Dike project?

To answer RQ2, significant reductions in the WGD footprint are found when designing the WGD using
a multivariate probabilistic approach. The multivariate approach resulted in design values that account
for measured correlation between the design variables and, thus, in lower design values than one would
consider using a deterministic approach. By doing so, close to 19 meters of intrusion into the Natura
2000 area could be saved. In addition, the probabilistic approach verified that the water level is the
dominant variable for the clay-erosion failure mechanism.
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6 | Adaptive Design Strategies
This chapter aims to answer RQ3; How can incorporating an adaptive design strategy to the Wide Green
Dike concept promote its feasibility given the uncertainty of sea level rise? Section 6.1 introduces the
adaptive design concept. In Section 6.2, the different adaptive strategies are created. The strategies are
assessed and a preferred strategy is selected in Section 6.3.

6.1 Introduction to Adaptive Design Strategies
The design of hydraulic structures is bound to meet current and future social, economic and environ-
mental needs (Erpicum et al., 2020). However, one cannot eliminate the uncertainties that lie in the
future, therefore a wide range of future needs should be considered. A sustainable plan is one that not
only performs for the current needs but should be robust, meaning that it also performs satisfactorily
for a wide range of futures, and needs to be adaptive, meaning that it can be adapted to changing future
conditions (Walker et al., 2013). In hydraulic engineering, such a sustainable plan, that is robust and
adaptive, provides a solid base to cope with these future uncertainties. By incorporating the possibility
of future adaptations, these uncertainties can be taken into in the design process. Ignoring these un-
certainties can result in limiting future corrective actions. Consequently, resulting in negative situations
that could have been prevented, thus leading to unsustainable plans. According to Walker et al. (2013)
there are four ways for dealing with future uncertainty in sustainable plans:

• Resistance: planning for the worst possible future scenario

• Resilience: a system that can quickly recover from unforeseen future conditions

• Static robustness: a system that performs satisfactorily for a wide range of futures

• Dynamic robustness: a plan to change the system over time, in case future conditions change

In hydraulic structure design, static and dynamic robustness are the preferred two strategies for a sus-
tainable design plan. Resistance would result in an over-investment. Resilience focuses on recovery,
which is not preferred for hydraulic structures. Resilience would suggest that the structure is likely to
fail. Static robustness is the traditional design strategy in a hydraulic structure design. The structure is
designed to perform satisfactorily up to the end of its lifespan. However, climate change is accompanied
by the uncertainty of future boundary conditions, such as SLR. The rate at which climate change will
proceed depends on a large number of social, economic and political developments. Therefore, estimating
future conditions cannot be done without uncertainty. Adaptive design strategies can provide a way to
mitigate over-designing hydraulic structures to cope with the unknown SLR. The focus of adaptive design
strategies differs from maintenance planning. Adaptive design strategies involve dynamic adjustments
in the hydraulic structure design or operational plans based on evolving data and insights in order to
optimize aspects of its performance, e.g. costs, safety, and efficiency. Maintenance planning focuses on
preventive actions to ensure the functionality, reliable operation and longevity of the hydraulic structure
over time.

Dynamic robustness aims to create a design that is suited to change over time and hence can be adapted
as new information becomes available. In the design of hydraulic structures, such an adaptive plan can
be used to protect against SLR. In the case of a static robust design, the design must be designed to
withstand the SLR up to the end of its lifespan. However, since the amount of SLR at the end of its
lifespan is paired with uncertainty, a choice must be made of the climate scenario taken into account.
Depending on if this climate scenario becomes a reality or not, the design can be over- or under-designed.
Adaptive design can be used to mitigate the risk of over-designing. The initial design can be developed for
a less severe SLR case and once more information becomes available, adaptions can be made to reinforce
the structure to withstand more severe SLR scenarios. There are two underlying approaches to creating
an adaptive plan, Adaption Pathways and Adaptive Policymaking (Haasnoot et al. 2011; Kwakkel et al.
2010). Both approaches aim at handling the uncertainty in long-term decisions and emphasize the need
for an adaptive design strategy to manage uncertainty (Haasnoot et al., 2013).
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Adaption Pathways introduces an adaption map that includes multiple adaption trees. These consist
of a sequence of possible actions after a tipping point is reached, similar to a road map. The Adap-
tion Pathways map shows multiple possible strategies to achieve the same point in the future. These
strategies or pathways are based on model results or expert judgement. All different pathways satisfy
a minimum level of performance, but each comes with its own cost and benefits. Therefore, a specific
pathway could be preferred. A comparison between the pathways can be made by a scoreboard where
the different costs and benefits are displayed. Using the Adaption Pathways approach, decision-making
in a changing environment can be supported by identifying opportunities, no-regret actions, lock-ins and
the timing of action (Haasnoot et al., 2013).

Adaptive Policymaking is a generic structured approach to designing dynamic robust plans and originates
from Assumption-Based Planning (Dewar et al., 1993). This method consists of several stages. First,
the current requirements and conditions for a system are studied and the objectives for future conditions
are specified. Then, a basic plan is assembled which is developed on how these objectives are to be
achieved. Stage three emphasizes making the basic plan more robust. This is done using four types of
actions: mitigating actions (actions that reduce likely adverse effects of a plan), hedging actions (actions
that reduce uncertain effects of a plan), seizing actions (actions that seize likely available opportunities
in a plan) and shaping actions (actions that reduce failure or enhance success). The next stage is called
contingency planning. This is the monitoring of the plan’s performance and taking action if needed. The
information that needs to be monitored is specified in signpost variables. Also, when critical values of the
signpost variables are triggered, the signpost specifies which actions need to be taken. Stage five considers
the different types of actions that can be triggered by a signpost. These consist of defensive actions
(actions that clarify, preserve and meet unforeseen challenges of the basic plan in response to triggers
that leave the basic plan unchanged), corrective actions (actions that adjust the basic plan), capitalizing
actions (actions that take advantage of opportunities to improve the basic plan) and reassessment (once
the core assumptions in the plan have lost validity). The design of the completed plan consists of the
initial actions from stages one up to three and the monitoring system from stage four. During its design
life, the signpost information is gathered and the corresponding actions are taken once a trigger occurs.

6.2 Creating the Adaptive Design Strategies
The key aspect of the WGD concept is constructing the embankment with locally ripened clay originat-
ing from the Ems-Dollard. The WGD project aims to tackle two main goals; restoring flood risk safety
and increasing the local ecology by helping to solve the silt problem in the Ems-Dollard estuary. Con-
structing the WGD with a design life of up to 2150 in one go could result in a lack of upscaling capacity
of the local clay refineries. The lack of locally repined clay must then be compensated by acquiring clay
elsewhere, which is contrary to the aims of the WGD concept. Moreover, the uncertainty of SLR may
lead to an over-design of the WGD. As the WGD is constructed seawards, over-designing results in a
loss of the Natura 2000 area in the Ems-Dollard. The loss of area can even amplify the silt problem,
as it results in less space for the silt to settle (Dijk, 2022). In addition, the loss of the Natura 2000
area must be compensated for, resulting in additional costs. In this work, the incorporation of adaptive
design strategies is explored for the WGD project.

There are two main parameters that determine the dike profile; the design clay layer thickness de,d
and the design crest height hcr,d. Figure 6.1 shows how the dike profile of a WGD design can change
by adjusting one of these parameters. An increase in de,d results in a more seaward outer slope. By
increasing the crest width, the increase in de,d can be accomplished without increasing hcr,d (shown in
blue). The figure also shows that an increase in hcr,d also results in an increase in de,d (shown in red).

Figure 6.1: Sketch of the change in dike profile due to an adaption by increasing de,d or hcr,d.

66



To create the adaptive design strategies, multiple probabilistic designs are created for the years 2050
up to 2150 for every 10 years. Each probabilistic design corresponds to a different SLR distribution,
according to the course and bandwidth of the SSP5-8.5 scenario from Figure 2.9 in Section 2.5. The
SLR uncertainty over time is modelled by a range of Log-Normal distributions with an interval of 10
years. This is done by fitting the 5th, 17th, 50th, 83rd and 95th percentiles provided by KNMI (2021)
of the SSP5-8.5 scenario from IPCC (2022). The resulting Probability Density Functions (PDFs) of the
distributions are shown in Figure 6.2. The figure shows that over time the mean of the distributions
shifts to larger SLR values and the standard deviation of the distributions increase. The Log-Normal
distribution parameters and a 2-dimensional figure of the PDFs are found in Appendix J.

Figure 6.2: The considered Probability Density Functions over time for the SSP5-8.5 scenario.

The SLR distributions are used to create the 11 (multivariate) probabilistic designs, according to the
same design methodology as in Chapter 5. The designs are created by performing Algorithm 6.1.

Algorithm 6.1: Create the Designs for the Adaptive Strategies

Step 1: Consider the SLR distributions from Figure 6.2, with the parameters stated in Appendix J.
This results in 11 SLR distributions, referred to as Ss; s = 1, ..., 11, in which s = 1 corresponds to
the year 2050, s = 2 to 2060, up to s = 11 corresponding to 2150.

Step 2: For every Ss perform Algorithm 5.1 at location P2. This provides the multivariate data
{h18, Hs−p, Tp−p, θp} for every SLR distribution Ss.

Step 3: Determine the erosion volume Ve and profile for clay erosion by performing Algorithm 5.2 for
every Ss.
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Step 4: Create the optimal probabilistic design with the minimal cross-sectional area by performing
Algorithm 5.3 for every Ss.

Performing Algorithm 6.1 results in the overview of the required designs. This results in Table 6.1,
showing the required hcr,d, de,d and Ad for every 10 years, governing the dike profile. The table shows
six designs with a design life up to 2090, 2110, 2120, 2130, 2140 and 2150. The first design shows that
the design with a design life of 2050 still complies up to 2090. The second design shows that the design
with a design life of 2100 also complies with a design life up to 2110.

Table 6.1: The required design parameters: crest height hcr,d, clay layer thickness de,d and cross-sectional
area Ad, over time for the WGD.

Design Unit Design Sight-year(s)
Parameters 2050 − 2090 2100 − 2110 2120 2130 2140 2150
hcr,d [NAP +m] 8.38 8.38 8.44 9.00 9.25 9.25
de,d

a [m] 0.50 0.60 0.70 0.74 0.83 0.93
Ad [m3/m] 79.3 82.7 87.0 90.8 94.2 98.0
a Note, de,d is the to-be-applied clay layer thickness on top of the current dike. The total clay layer thickness

includes 0.8 meters of the current dike.

Using this insight, four different adaptive design strategies are created. The adaptive strategies are
shown in Table 6.2. The table shows the first construction phase and possible adaptation phases. The
construction phase (1st phase) is the first design that is constructed on the current dike. The strategies
differ in the selected design for the different phases and in the number of possible adaptations. Each
strategy ends with the probabilistic base design for the year 2150, designed in Chapter 5. The baseline
constructs the final design in the 1st phase. The start of each adaptation phase differs for each strategy,
depending on the selected design. Strategy 1 is the most adaptive strategy. It performs a total of five
adaptions after the 1st phase. In the 1st phase, it constructs the design with a design life up to 2090.
In the 2nd phase, it constructs its successor with a life of up to 2110, and so on. Adaptation phases are
performed until the final design with a design life of up to 2150 is reached. Strategies 2, 3 and 4 lie
between Strategies 1 and the baseline.

Table 6.2: Overview of the design combinations for each adaptive strategy.

Strategies Construction Adaptation
1st Phase 2nd Phase 3rd Phase 4th Phase 5th Phase 6th Phase

Strategy 1 2050− 2090 2100− 2110 2120 2130 2140 2150
Strategy 2 2050− 2090 2120 2150 − − −
Strategy 3 2120 2150 − − − −
Strategy 4 2050− 2090 2150 − − − −
Baseline 2150 − − − − −

6.3 Assessment of the Adaptive Strategies
The four adaptive design strategies are assessed on several considerations. First, the required amount of
clay during the construction and adaptation phases is determined for each strategy. This is compared
to the up-scaling forecast of the clay refinery of the ED2050 program. The required clay per adaptation
is associated with material costs. The difference in clay per adaptation results in different material costs
per phase for the different strategies. The clay requirements and associated costs are found in Subsection
6.3.1. The introduction of the adaptation phases results in savings in material and construction costs
compared to the baseline for the adaptive strategies. These savings can compound over time, resulting
in benefits. The value of such benefits is subject to the uncertainty of different SLR scenarios. In
Subsection 6.3.2, these benefits are investigated. Based on the required amount of clay, up-scaling
capacity, associated costs, possible benefits and other considerations for the Ems-Dollard estuary, a
preferred strategy is selected in Subsection 6.3.3.
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6.3.1 The Required Clay and associated Costs per Adaptive Strategy

The amount of required clay in time depends on which design, from Table 6.1, is constructed at which
period. In addition, the construction time of the phases should be considered. The required amount
of clay divided by the construction time results in the required clay capacity for the clay refinery. An
adaptive strategy with a lower required clay capacity could be favoured compared to one with a larger
required capacity. A larger required capacity involves a larger up-scaling of the clay refinery, which
could be paired with feasibility issues. To assess the required clay during the lifetime of the WGD, the
construction phases are studied.

The goal of the ED2050 ambition program is to extract one million tons of (dry) silt each year starting
in 2026. The up-scaling of the refinery should account for 30 − 40% of this goal, resulting in roughly
400,000 m3 of densely packed clay. However, the WGD project does not aim to use this full capacity,
due to accounting for risks in construction capabilities, uncertainty in weather conditions and limita-
tions due to the Natura 2000 area. For the WGD project, 2 × 125 hectare of clay refineries are to be
constructed. The Waterboard Hunze and Aa’s (personal communication, June 13 and 23, 2023) stated
that such a refinery would approximately produce 260,000 m3 of densely packed clay each year. Using
this capacity, the aim is to construct around 2 kilometres of WGD per year. Such a construction rate is
estimated to be feasible. Construction in a Natura 2000 area requires electric equipment and vehicles.
As the energy transition is taking place, the availability of such equipment is still scarce. To minimize
uncertainties paired with weather conditions, the refinery is split up into compartments. The maturing
process for the compartments starts at different times, creating a variety of filling and harvesting periods.

This results that the construction time mandated for constructing the full WGD trajectory in 2050 is
assumed to be 7 years. The construction time of the adaptations is estimated at 3 years. The construction
time for the construction and adaptation phases for all strategies is assumed to be equal. The different
footprints of the designs are not accounted for in the construction times. Figure 6.3 shows the required
clay during the lifetime of the WGD design when accounting for these construction times. Note, that
this figure considers the construction of the 1st phase in 2043 and of the other phases 3 years prior to
the end of the lifetime of the to-be-constructed design.
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Figure 6.3: The required m3 of clay over time for four different strategies and baseline.

Figure 6.3 shows that the most adaptive strategy, Strategy 1, involves the lowest clay capacity for the
different phases. This is found by looking at the slopes during the construction and adaptation phases.
A lower slope corresponds to a smaller demand for required clay. Strategies 1, 2 and 4 all start with
the construction of the 2050− 2090 design. This results in the lowest demand for clay in the 1st phase.
The 1st phase demands the largest rate of clay for every strategy. Therefore, the 1st phase governs the
up-scaling capacity for the clay refinery in the Ems-Dollard. Table 6.3 shows the total required clay
during the 7-year-long construction phase and 3-year-long adaptation phases for each strategy. Dividing
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the total amounts by the length of the phases, it is found that the minimum required capacity is 141,600
m3 for Strategies 1, 2 and 4 in the 1st phase. The required capacity for the baseline is 175,000 m3.

Table 6.3: Required clay in m3 for the construction and adaptation phases.

Strategies Construction Adaptation
1st Phase 2nd Phase 3rd Phase 4th Phase 5th Phase 6th Phase

Strategy 1 991,300 m3 42,500 m3 55,000 m3 47,500 m3 42,500 m3 46,200 m3

Strategy 2 991,300 m3 97,500 m3 136,200 m3 − − −
Strategy 3 1,088,800 m3 136,200 m3 − − − −
Strategy 4 991,300 m3 233,700 m3 − − − −
Baseline 1,225,000 m3 − − − − −

Preliminary studies presented in the webinar ‘Kleirijpen voor dijkversterking’ by Deltares (2023), estim-
ated the costs to ripen clay in the Ems-Dollard estuary between e25− 35/m3 (based on the price level
for the year 2021). These costs are based on a social cost-benefit analysis (SCBA, in Dutch: MKBA).
SCBA costs also include non-financial effects, e.g. environmental effects, the economy and accessibility.
Further details of these studies are discussed in Section 2.2. In this work, a cost of e30/m3 of clay is
considered to account for SCBA costs. Table 6.4 shows the clay costs in millions e for the construction
phases. These costs are based on the 2021 price level and do not take into account inflation. The table
shows that around 19% of the initial costs for clay can be saved if Strategies 1, 2 or 4 are selected instead
of the baseline (since (29.74− 36.75)/36.75 · 100% = −19%). The savings in the 2nd phase for Strategy
1 are reduced to ((29.74 + 1.27)− 36.75)/36.75 · 100% = −15.6%.

Table 6.4: The total clay costs in million e for each phase for the strategies (based on the 2021 price
level and not accounted for inflation).

Strategies Construction Adaptation
1st Phase 2nd Phase 3rd Phase 4th Phase 5th Phase 6th Phase

Strategy 1 Me 29.74 Me 1.27 Me 1.65 Me 1.43 Me 1.27 Me 1.39
Strategy 2 Me 29.74 Me 2.92 Me 4.09 − − −
Strategy 3 Me 32.66 Me 4.09 − − − −
Strategy 4 Me 29.74 Me 7.01 − − − −
Baseline Me 36.75 − − − − −

6.3.2 Benefits per Strategy including the Uncertainty of Sea Level Rise

The introduction of adaptation phases reduces the starting amount of required clay and therefore material
costs for the 1st phase. Over the lifetime of the WGD, the savings could yield over time resulting in
benefits. Likewise, the construction and material costs of clay increase due to inflation. To determine
the compounded interest, a fixed interest rate of 4% and a fixed inflation rate of 2% are considered
(European Commission nd; Navarro et al. 2020). Although introducing these two concepts provides
additional insights into the strategies, the results should be taken with care. The assumed fixed rates
largely impact the compounded benefits and thus the outcome of the analysis. The real interest and
inflation rates can have large fluctuations and depend on the future global economy, e.g. the large
inflation hike in 2022 (Ferber, 2023). The assumed fixed rates are based on historical averages, which
are not guaranteed to be similar for future scenarios. Using the assumed rates, the compounded benefits
and costs can be calculated according to Equation 6.1.

R = I · (100% + i)t (6.1)

Where:
R Compounded investment [e]
I Starting investment (principal) [e]
i Interest or inflation rate [%]
t Accumulation period (time) [years]
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The moments in time at which adaptations take place depend on the uncertainty of SLR. To model the
benefits over time, different SLR scenarios should be considered. An adaptation takes place based on the
evolving data and insights, which determine whether the current design is still sufficient or not. If not,
an adaptation can be applied. If it still is sufficient, the adaptation can be prolonged into the future. The
possible benefits of the adaptive design strategies can be positive or negative. If the saved material costs
compared to the baseline compound into larger values than the compounding costs needed for possible
adaptations, then the benefits are positive. If the costs for the required adaptations become larger, then
the benefits can become negative. The costs associated with the adaptations consist of material and
construction costs. The material costs per adaptation for each strategy are found in Table 6.4. The
construction costs are assumed to be 13% of the total costs per adaptation. This assumption is based on
Lenk et al. (2017), which states that the construction costs are approximately 9% of the total costs for
flood protection works such as dikes. This includes e.g. site preparation, core material preparation and
site restoration. On top of this, an additional 2% is added to account for other one-time construction
costs and another 2% is added to account for general construction costs, based on expert judgement
by Anne Bonthuis from Sweco. Thus, the construction costs CC are calculated by CC = M · 13/87
per adaptation, in which M represents the material costs. Using these assumptions, the benefits of the
different adaptive strategies are modelled by Algorithm 6.2.

Algorithm 6.2: Modelling the Benefits for the Adaptive Strategies

Step 1: From Algorithm 6.1, consider the multivariate data {h18, Hs−p, Tp−p, θp} of size n× 4 for every
SLR distribution Ss; s = 1, ..., 11, in which s = 1 corresponds to the year 2050, s = 2 to 2060, up
to s = 11 corresponding to 2150.

Step 2: Reorder each multivariate dataset based on the ranks of h18. Create n SLR scenarios by
combining the data of the 11 multivariate datasets based on the ranks of h18 in each dataset. This
results in n SLR scenarios with {h18,s, Hs−p,s, Tp−p,s, θp,s}; s = 1, ..., 11. The ith SLR scenario
corresponds to the ith rank of h18; i = 1, ..., n. The h18,s values of the SLR scenarios are visualized
in Figure 6.4 for n = 10, 000.
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Figure 6.4: Samples of the SLR scenarios, connecting the SLR samples in each year based on their ranks.

Step 3: For each adaptive strategy, loop through all n SLR scenarios over time t and determine if a
failure occurs for the design constructed in the 1st phase at t1. If so, add an adaptation at time
t1 − 3, as the construction time of an adaptation is 3 years. After an adaptation is applied, loop
through the n SLR scenarios from time t1 − 3 up to tend = 2150 or the next failure, which implies
an adaptation at time t2 − 3. Using the derived times of required adaptations, the compounded
benefits can be determined for every n SLR scenario.
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for(i in 1 : n)){

▷ Determine the erosion volume Ve and profile for clay erosion by performing Algorithm 5.2.

▷ For all adaptive strategies, determine if a failure occurs for the 1st phase using Algorithm
5.3. If failure occurs, take the following steps:

▷ Save the time of failure as t1. Apply an adaptation at t1 − 3 as the construction time
of an adaptation is 3 years.
▷ For the applied adaptation, determine if failure takes place starting from time t1 − 3
using Algorithm 5.3.
▷ If failure takes place at t2, again apply an adaptation at t2 − 3.
▷ Go through this procedure until time tend = 2150 is reached or until the final design
in a strategy is reached. This results in an array for each strategy of the length of the
number of phases, containing the times of adaptations tadapt for every phase. The array
contains a 0 if no failure takes place for that phase. Note, if a strategy has four phases
and there is no failure in the 2nd phase, then tfail has a 0 for phases 2, 3 and 4.

▷ Determine the compounded benefits over time benefits[t, i]. The initial savings benefits[t =
2043, i] result from Table 6.4. Note, the savings created by introducing the adaptive strategy
compound by a fixed interest rate of 4%, while the material and construction costs compound
by a fixed inflation rate of 2%. The construction costs are assumed at 13% of the total ad-
aptation costs.

for(t in 2043 : 2150){

if(t ∈ tadapt){
▷ The benefits compound until t = tadapt is reached. At the times of adaptations, the
compounded costs are subtracted from the benefits. Note, tadapt has the length of the
number of phases of the adaptive strategy. In addition, several phases could fail at
the same moment in time. For example, for a certain SLR scenario, it could be that
phases 2 and 3 of Strategy 1 must be applied at t = t2 = t3. In this case, the sum of
the costs is accounted for.
▷ benefits[t+ 1, i] = benefits[t, i] · 1.04− costs · 1.02t

}
else{

▷ benefits[t+ 1, i] = benefits[t, i] · 1.04
}

}

}

Step 4: Step 3 results in four data frames of size 108 × n containing the compounded benefits for the
years 2043 until 2150 for every n SLR scenario, one data frame per adaptive strategy. For each
adaptive strategy, determine the 1st, 50th and 99th percentiles of the data frames for each year.
Return these percentiles.

Step 5: Plot the 1st, 50th and 99th percentiles for each strategy.

The results of performing Algorithm 6.2 are found in Table 6.5 and Figure 6.5. The results show a
wide range of possible benefit outcomes for each strategy. The benefits can compound into significant
values. The 50th percentile of Strategy 1 is e436.2 million for 2150. To provide a perspective, the
construction costs of the baseline strategy are e36.75 million in 2043. Adjusting the baseline costs from
2043 to a 2150 price level, accounting for 2% inflation, these would be e311.9 million. This would mean
that incorporating Strategy 1 could be a very positive business case, as the potential benefits could
compensate for the initial construction of the WGD and could result in net profits.
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Table 6.5: The total benefits in 2150 in million e for the 1st, 50th and 99th percentiles for each strategy,
based on a fixed 4% interest rate and 2% inflation rate per year.

Strategies Unit Total Benefits in 2150
p1 p50 p99

Strategy 1 Me 153.0 436.2 465.9
Strategy 2 Me 75.0 423.6 465.9
Strategy 3 Me 87.4 256.8 271.8
Strategy 4 Me −29.6 400.3 465.9
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Figure 6.5: Benefits in million euros created by investing the benefits in clay costs against 4% interest
per year. The costs of clay (e30/m3) increase by 2% per year, accounting for inflation. The shaded
areas enclose the 1st and 99th percentiles and the lines show the 50th percentile of the strategies.

The results show that the benefits can compound into significant values. This is due to the positive net
interest rate and the large design life of the WGD of 100 years (for example e1 compounds into e50
for a fixed interest rate of 4% in 100 years, while in 50 years it ‘only’ compounds into e7.1). The lower
bound corresponds to the most severe SLR scenarios. For these scenarios, the designs during the different
phases are more likely to fail and the adaptations are applied at earlier moments in time compared to
the less severe SLR scenarios. The upper bound corresponds to the mildest SLR scenarios, resulting in
the largest benefits. The 50th percentile value is very close to the 99th percentile value. This is due to
the small failure probability of the designs of Pf = 1/37, 500 per year. Therefore, failure of a design only
occurs for very severe SLR scenarios. For most scenarios, the design does not fail resulting in similar pos-
sible benefits. However, if the design in any phase does fail, the possible benefits are significantly reduced.

For the modelled WGD boundary conditions, introducing an adaptive design strategy thus seems to
result in positive benefits for most adaptive strategies. The 1st percentile value of Strategy 4 is the
only negative benefit. This strategy first constructs the design with a sight-year of 2090 and has one
adaptation which is the final design. The investment for this adaptation is significant. A failure in an
early stage of the design life can result that the benefits have not yet compounded into large enough
values to compensate for this investment. This results in a negative benefit, which then will compound
into larger negative values, as shown in Figure 6.5. Comparing Strategy 4 to Strategy 2 shows that
introducing a second adaptation increases the possible benefits. An additional adaptation helps mitigate
the possibility to result in negative benefits at an early stage of the design life, as the investment of
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the next adaptation is smaller. This enables more time for the benefits to compound in time and thus
larger than the required investment. Strategy 3 reduces this risk by constructing a design with a larger
sight-year of 2120 in its 1st phase, thus reducing the failure probability at early stages. However, this
results that the upper bound of the benefits is lower as the initial savings is less. Strategy 1 is the most
adaptive strategy and corresponds to the largest possible benefits.

6.3.3 The Preferred Adaptive Strategy

Resulting of the amount of required clay, the up-scaling capacity, the associated costs, possible benefits
and other considerations for the Ems-Dollard estuary, Strategy 2 is selected as the preferred strategy.
The up-scaling expectation of 260,000 m3 per year results in all strategies being feasible. Strategy 2
requires together with Strategies 1 and 4, the least amount of clay needed for the 1st construction phase.
The required capacity of 141,610 m3 per year could be preferable as the up-scaling capacity for the WGD
is more easily met than for Strategies 3 and the baseline strategy. If the full capacity of 260,000 m3 per
year is met, then the excess clay can be exported to other projects and purposes. This can result in
additional benefits for Strategies 1, 2 and 4.

Table 6.5 and Figure 6.5 show that Strategy 1 results in the largest benefits. However, the strategy
does involve three additional construction periods compared to Strategy 2. The 50th percentile value
of Strategy 2 is e13.4 million lower in 2150 compared to Strategy 1. This results in e1.6 million for a
2043 price level, accounting for a 2% inflation rate. Compared to the construction costs of the baseline
strategy of e36.75 million, this is 4.3%. This is not a significant increase when considering the three
additional adaptations from Strategy 1. Each adaptation disturbs the adjacent Natura 2000 area, thus
it is preferable to limit the construction works in the area. This results in a dilemma where the number
of adaptions should be limited. The disruption of the Natura 2000 area could also be introduced as ad-
ditional costs during each adaption. This would further close the difference in performance between the
most adaptive versus the least adaptive strategies. However, if one would select the baseline, one could
risk over-designing due to the uncertainty of SLR. Over-designing the WGD results in a permanent loss
of the Natura 2000 area, which counteracts one of the WGD project’s main goals. Therefore, Strategy 2
seems to combine both adaptability and limit the number of adaptions to around once per 30 years and
is preferred.

The phases of Strategy 2 are shown in Figure K.1 in Appendix K. The first design in Strategy 2 saves
1.7 meters of intrusion into the Natura 2000 area compared to its final design. The second design saves
0.7 meters. This corresponds to 21,250 m2 and 8,750 m2 less intrusion along its entire trajectory, re-
spectively. Due to the nature of adaptive design, this intrusion can be saved if in the future milder SLR
scenarios become a reality and a slimmer design suffices.

To conclude RQ3, stated by;

RQ3: How can incorporating an adaptive design strategy to the Wide Green Dike concept promote its
feasibility given the uncertainty of sea level rise?

Incorporating an adaptive design strategy into the WGD project can promote its business case and help
mitigate the risk of over-designing in a Natura 2000 area. Adaptive strategies can help lower the initial
clay capacity required for the construction of the WGD. Hence, the risk of not meeting the ambitious
up-scaling capacity goals could be reduced. If the goals are met, the excess clay can be used for other
purposes, resulting in an export product. Including adaptive strategies can also be beneficial for the
business case of the WGD. The possible benefits can be reinvested elsewhere and compound over time.
Moreover, the risk of over-designing can be mitigated by using adaptive strategies. The uncertainty in
SLR could result in the risk of over-designing when a milder SLR scenario becomes a reality.
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7 | Discussion
Over the course of this work, several assumptions were made and limitations and challenges were found.
This chapter discusses these points for topics including, but not limited to, data availability, offshore-
nearshore transformation and sea level rise.

7.1 Available Data in the Ems-Dollard estuary
The availability and quality of data used in this project are of significant influence on the models used
to describe the multivariate extreme events. To describe a multivariate extreme event, sufficient data
must be available for all variables of interest. In this work, the data is acquired from several sources.
Water level data by Rijkswaterstaat (2022) from five locations in the Ems-Dollard estuary are compared;
Dollard West, Groote Gat, Schanskersdiep, Reide and Nieuwe Statenzijl. The data available at Nieuwe
Statenzijl spans from December 1st 1990 up to November 11th 2022. Data for the other locations are
more sparse and stray between 1994 and 2001. Discrepancies between the datasets are inventoried in
Chapter 2. The found deviations in measured significant water levels for the locations were deemed
as limited, after which the data at Nieuwe Statenzijl is selected to proceed. As the data for the other
locations were limited, additional data would allow a better comparison of whether the data at Nieuwe
Statenzijl reflects the water level along the dike’s trajectory.

The wave data available from Rijkswaterstaat (2022) was limited to August 20th 2008 up to February 1st

2021. To perform the multivariate analysis, this was found insufficient. Therefore, model data by ERA5
was used (ECMWF, 2022). The ERA5 database combines historical data with model data to provide
hourly data estimates of e.g. ocean-wave quantities. The selected extraction point for the wave data
was selected in a deep part of the Ems River, with its exact location at 53◦28′12.0′′N 6◦53′24.0′′E. The
waves at this location are partly propagated by the influence of the Wadden Sea and the Wadden Islands.
Model biases from ERA5 could be introduced into the data. In this work, the possible introduced biases
by ERA5 are not investigated nor corrected. Therefore, the wave characteristics in this project, such
as wave height, could be under- or overestimated. According to (Kalverla et al., 2020), the extreme
significant wave height in the North Sea area could be underestimated by ERA5.

For the wind data, a dataset by KNMI (2022) spanning from January 1st 1990 up to October 10th 2022
is used. This was the only available dataset near the dike’s trajectory and was located approximately 4.5
kilometres from the WGD. To model the wind speeds during a storm, the maximum hourly mean wind
speeds are considered. The wind characteristics are used for offshore-nearshore transformations of the
wave characteristics. Considering the maximum hourly mean wind speed could result in an overestimation
of the representative wind speeds that transform an offshore wave to nearshore conditions.

7.2 Multivariate Modelling of Extremes by Vine Copulae
The WGD is designed to withstand extreme loading conditions. In Chapter 3, a POT method is applied
to the data of the considered design variables to determine what an ‘extreme event’ is. The POT method
resulted in a multivariate dataset of 142 extreme events on which the vine copula is based. Two main
points of discussion arise from this method. The vine copula is used to model representative extreme
events respecting the correlations between the variables. These modelled events are used as the design
values for the WGD design. The considered failure mechanism has a required failure probability of
Pf,req = 1/37, 500 per year. This results that n = 1, 000, 000 samples being taken from the vine copula
to assess such a failure probability. The Pf,req corresponds to approximately 27 failures for the n samples.
Multiple assessment criteria are used to verify the used models. Nevertheless, it could be questioned
whether the extrapolation of the 142 observed extremes to generate the n samples provides represent-
ative extreme conditions. Additional data on extreme events would provide great help in increasing the
confidence in creating representative conditions by sampling such large numbers.

Secondly, the definition of an ‘extreme event’ becomes more ambiguous for multivariate cases. A method
to define an extreme event, suggested by Zachary et al. (1998), is to select one dominant variable and
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consider the values at the same moments in time for the other variables (concomitant variables). In the
applied POT method, the water level is selected as the dominant variable. The definition of an extreme
event is therefore based on the selected extreme water levels. The corresponding extremes of the other
variables are thus the concomitants. Selecting the dominant variable could be not that straightforward.
In this work, lab results from the Delta Flume and preliminary calculations from Sweco provided insight
into the dominant variable for the assessed clay-erosion failure mechanism Sweco (2021b). However,
including another failure mechanism, for which the water level is not dominant would require creating a
second multivariate model based on a different dominant variable.

Another point of discussion is the number of variables considered in the multivariate model created in
Chapter 4. This project considered five variables: water level, wave height, wave period, wind speed
and wind direction. It assumed that the wave and wind direction are equal for extreme conditions to
reduce computational effort. This assumption is based on Sweco (2021a) as wind waves are governing
for the WGD and grounded by Bowers et al. (2000); Hildebrandt et al. (2019). Still, the assumption
provides additional uncertainty in the model. Including additional variables, such as wave direction or
storm duration could improve the ability of the model to create representative conditions. It should be
noted that accounting for additional variables drastically increases the computational effort needed as
the possible number of vines increases significantly, as proved by Morales-Nápoles et al. (2010).

At last, the goodness-of-fit of the models used to create extreme events should be discussed. In this work,
the number of models considered was limited by the availability of the R packages used and the scope of
the thesis. Although quite a wide range of models was available and a number of models were assessed
based on multiple criteria, it could be that the ‘best’ model was not selected. Moreover, the definition of
a ‘best model’ is ambiguous. A model could be the so-called best model based on certain criteria, while
another model approximating the same observed extremes could be the best model based on different
criteria. In this work, the models were assessed by multiple criteria and using engineering judgement
a model was selected. This thesis focused on describing multivariate data using a vine-copula-based
approach. Despite vine copulae being greatly flexible and useful for multivariate applications, as this
thesis and multiple other works showed (e.g. Zhang et al., 2020; Tosunoglu et al., 2020), multiple other
approaches could be considered to model multivariate data, such as Bayesian Networks (Couasnon et al.,
2018).

7.3 The effect of Climate Change on Extremes
The consequences of climate change on hydraulic boundary conditions, such as water levels and wave
heights, are very much uncertain. The reports by IPCC (2022) and KNMI (2021) aim to project possible
outcomes for different emission scenarios. The large bandwidths in, for example, the projected SLR
for each of those scenarios clearly show the uncertainty linked with climate change. In this work, the
effect of climate change is considered by accounting for the projected SLR for the Dutch coast by KNMI
(2021) according to the projected SSP5-8.5 scenario by IPCC (2022). A change in correlation between
the design variables over time is not considered. Neither is a change in wave and wind climate or storm
duration considered.

This thesis aimed to combine a non-stationary marginal of the extreme water level with vine copula
modelling. In Section 4.4, it was proved that non-stationary marginals could not be combined with
copula modelling if the covariate is one of the variables, e.g. water level. Therefore, the extreme water
level was modelled by a stationary marginal distribution. To account for SLR, the distribution of the
projected SSP5-8.5 scenario was added to the extreme water level for the sight year of interest, i.e.
for a design with a design life of up to 2150, the projected SLR distribution in 2150 was added. This
assumption is a simplification of reality. It is unknown if a certain amount of SLR of the mean sea level
at the Dutch coast translates one-to-one to an increase in the extreme water level in the Ems-Dollard
estuary. The translation of SLR from the coast to the estuary could be affected by numerous elements,
e.g. temperature difference, sanity difference, and bathymetry. Additionally, the effect of a changing
mean sea level on extreme water levels is to be well studied and much is still unknown.
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7.4 Offshore-Nearshore Transformation by SWAN and a Surrogate model
The samples from the multivariate model are used to derive the nearshore wave characteristics. This
offshore-nearshore transformation is performed by a hybrid approach, where a numerical model and a
data-driven model are combined, see Section 5.1. The methodology, proposed by Camus et al. (2011a),
significantly reduced the computational effort compared to a transformation performed using only nu-
merical modelling. A group of 25 empirical cases are selected to represent 142 empirical extremes by
selecting the most dissimilar data. These 25 cases are propagated by the numerical model SWAN to
create the transformed cases. The input-output behaviour is approximated using an interpolation tech-
nique based on RBFs, the surrogate model. Both models have limitations, which should be discussed.

The surrogate model is based on the results of the 2-dimensional SWAN model. Therefore, the short-
comings in SWAN also create shortcomings in the surrogate. The limitations of SWAN are stated in
The SWAN Team (2023). For this project, a 2-dimensional SWAN model was created with a grid with
a spatial resolution of 50 meters. The model accounted for water level setup, quadruplet wave-wave
interactions, white capping, breaking (limited) and diffraction (limited). A constant JONSWAP spec-
trum is applied at the inlet of the estuary, a constant wind field is defined and most parameters are held
constant. The SWAN model could be further optimized for the area of interest. In addition, the effects
due to the 1-kilometre-long salt marsh could be further investigated.

To reduce the number of SWAN runs and thus computational effort, a total of 25 cases are selected
to represent the 142 empirical extremes. This number could be increased, to for example 100 cases, to
decrease possible errors by the surrogate model (Camus et al., 2011a). Furthermore, a similar point of
discussion to Section 7.2 can be addressed. The surrogate model is trained using limited empirical data
to describe extreme events. In addition, significant levels of SLR are included in the offshore-nearshore
transformation. The water levels for which the design fails are in the order of NAP +9.5 meters, while
the surrogate is trained for water levels up to NAP +5.4 meters. The physical behaviours of the waves
for these larger water levels could be different. The extrapolation of the surrogate model to these larger
water levels could thus be questioned.

7.5 The Design and Clay-Erosion failure mechanism
In creating the designs several assumptions were made. These assumptions range from loading condi-
tions to the scope of the design. The critical cross-section of the WGD was determined by studying three
locations resulting from the offshore-nearshore transformations. The water level was assumed constant
along the dike’s trajectory. The location of the critical cross-section for the deterministic design was
different than for the probabilistic design. In the adaptive designs, only the critical location resulting
from the probabilistic design was considered. It could be that the actual critical cross-section of the
WGD was not one located at one of these three locations.

The storm duration and progression were assumed constant for all extremes, with a storm duration and
profile according to Deltares (2015). The extreme water levels were reduced to 18-hour average storm
conditions based on the assumed storm profile. The water level extremes for which the design failed,
corresponded to significant return periods. Nevertheless, storms with such return levels could have a
different storm duration and profile. The assumption that the 18-hour storm average is governing res-
ulted from Delta Flume tests and Sweco’s calculations (Sweco, 2021c). For longer storm durations, the
governing storm average could also change.

The assessed clay-erosion failure mechanism for the WGD is unique and case-specific. The outer slope
of the embankment of 1:7 resulted in an adaptation of the model used to assess the mechanism. The
adaptations resulted from multiple Delta Flume tests by Deltares (Sweco, 2021b). The formula results
from minimizing the error of the fit for a range of tests in the Delta Flume. Hence, the formula has an
intrinsic prediction error that should be accounted for (Deltares, 2020). In addition, such a case-specific
failure mechanism results in a larger uncertainty in the range of applications compared to a widely used
and better-studied mechanism. The inaccuracy of the clay-erosion formula increases as it is used for
situations outside of which it is tested. For example, the application is restricted to a wave steepness
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between [0.01, 0.05]. For waves outside this range, a wave steepness of sop = 0.05 is applied. Such
assumptions could skew the results and it could be advised to perform a greater number of Delta Flume
tests or account for an additional margin of safety for the design.

To create the WGD design and geometry, several assumptions are included. First of all, the construction
of the WGD starts at the end of the inner berm next to the road at NAP +3.05 meters and is construc-
ted seawards. It follows the inner slope of α = 1 : 3 until the design crest height is reached. The crest
width results from the design clay thickness, with a minimum width of 1 meter. At the seaward side,
an outer berm is located as NAP +3.55 meters to act as a maintenance road. These aspects resulted
from the WGD demonstration project designed by Sweco. However, whether these principles are similar
for the full project along the entire trajectory is not known. In addition, the design results from the
assessed failure mechanism. The required additional height and thickness, due to e.g. soil subsidence
and construction margins, are not taken into account.

Another important assumption is made for the foreshore. It is not considered that the salt marsh grows
or shrinks over time, it is assumed to remain at the current height. This assumption is to simplify the
design. Much is unknown about the potential accumulation of sediment at the foreshore of the WGD for
different SLR scenarios. Marijnissen et al. (2020) showed that the accreditation of the foreshore could
even outpace SLR for milder SLR scenarios and thus could play an important role in flood risk safety.

7.6 Adaptive Design Strategies and the Clay Ripening process
To cope with the uncertainty in SLR, the incorporation of an adaptive design strategy for the WGD is
explored. To select a preferable strategy, several assumptions are made. The emphasis lay on selecting
a strategy that fits into the main WGD project’s aims. Aspects such as minimizing the required clay
during the construction phases, exploring the business case, the up-scaling of the clay refinery and the
Natura 2000 area were considered. For each aspect, a point of discussion could be made.

While minimizing the required clay during the 1st construction phase was emphasized, each of the
strategies could be constructed if the ED2050 program goals are met. A reduction of the required
amount would thus result in an excess of clay. This clay could be used as an export product for other
projects and thus beneficial. However, an excess could be unfavourable by introducing for example dis-
posal costs. In addition, it is assumed that the ED2050 goal of capturing one million tons of (dry) silt
each year remains constant along the design life of the WGD. Retrieving such large quantities of sediment
each year could affect the growth of the salt marshes. Flood risk safety would benefit from the growth
of the salt marshes, which could partly compensate for SLR. Hence, this goal could be altered in the
future for flood risk safety.

Introducing adaptive design strategies results in benefits that compound in time. In this work, a fixed
interest rate of 4% and a fixed inflation rate of 2% are accounted for. These assumptions are based
on historical averages. Therefore, great care should be taken when examining the results. Due to the
fixed rates and the large design life, the compounded interest benefits the most adaptive strategies. The
disruption of the Natura 2000 area could also be included in the costs for each adaptation. The case
of incorporating an adaptive strategy is contradictory. On one hand, constructing the WGD in one go
could result in over-designing. Therefore, significant parts of the Natura 2000 area could be lost. A more
adaptive strategy could mitigate this potential loss. On the other hand, the mild outer slope and the
connection of the WGD with the Natura 2000 area could provide benefits for the ecology and the Natura
2000 area could extend up the outer slope. In addition, introducing adaptations could harm the recovery
process of the Natura 2000 area. To conclude, there is a range of multidisciplinary arguments for and
against introducing an adaptive design strategy. Several of which lie outside the scope of this thesis.

At last, the capacity of the clay refinery and construction times were assumed based on the latest studies
and projections. These could change in the future. The capacity of the clay refinery is greatly dependent
on the ED2050 program and weather conditions. Electric equipment needed to construct near a Natura
2000 area is still scarce and upcoming. As the construction starts in 2043, it is assumed that the
availability of such equipment is sufficient.
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8 | Conclusion & Recommendations
This chapter covers the key conclusions of this thesis and aims to answer the proposed research questions
in Section 8.1. The recommendations resulting from these findings are found in Section 8.2.

8.1 Conclusion
The WGD project is a project that combines flood risk safety and sustainability. Hydraulic structures like
the WGD are designed to withstand extreme natural events. Studying the joint behaviour of the variables
of interest could provide additional insights to determine realistic loads and help optimize the design.
Vine copulae are a technique for multivariate modelling and provide a tool to study the dependence
structures between the variables. This thesis aimed to apply vine copulae to model the multivariate
probabilities of the hydraulic loads for the WGD given the uncertainty of SLR. The knowledge gathered
from the multivariate analysis was applied to assess its design and explore the possible adaptive design
strategies for the project. The main objective of the thesis is stated by ‘develop a multivariate probabilistic
tool to provide insight into incorporating adaptive design strategies, and to gain extra information that
contributes to assessing the feasibility of the Wide Green Dike concept given the uncertainty of sea level
rise’. This objective was achieved by answering three research questions.

RQ 1: Can a Non-stationary Extreme Value Analysis be applied in a multivariate design approach
using Vine-Copulae?

Investigating the application of a non-stationary marginal of the extreme water level with the wave
height as covariate into the dependence structure described by a copula, resulted in the conclusion
that a NEVA cannot be applied in copula modelling if the covariate is one of the nodes in the
copula. A copula builds the dependence structure of a variable pair based on the ranks of the
variables. In order to preserve the dependence structure, the transformation from unity to variable
space must be increasingly monotonic. A non-stationary applies a different transformation to each
sample based on its covariate. Therefore, the transformations are not increasingly monotonic and
thus the dependence structure is not preserved. These findings resulted in creating the lemma
shown here. Note, accounting for non-stationarity is possible with time as covariate as shown by
Coles et al. (2001). However, it could be questioned whether accounting for SLR based on its
historical trend is representative of the future SLR trend.

Lemma. (Copula modelling with a Non-stationary marginal and a node as covariate).
Consider FX,y with covariate y, in which y is a node of the copula, as the non-stationary marginal
distribution and FY as the (stationary) marginal distribution of the random variables X and Y ,
respectively. Let C (u,v) be the copula describing the joint distribution function FXY of the two
random variables X and Y , in which FX,y(x) = u and FY (y) = v. Then, the transformations of
X or Y are not increasingly monotonic, implying that the dependence structure is not preserved,
as stated in Equation 8.1.

FXY

(
F

[−1]
X,y (u), F

[−1]
Y (v)

)
̸= C(u, v), (8.1)

for any (u,v) ∈ I2. Where, F
[−1]
X,y and F

[−1]
Y denote, respectively, the quasi-inverses of FX,y and

FY .

This result led to the use of a stationary marginal distribution to describe the extreme water
level. Accordingly, the defined ‘extreme event’ by the POT method remains constant in time. To
account for SLR in vine copula modelling, changing the stationary distribution or changing the
dependence structure for a particular moment in time could be introduced. This thesis showed the
implementation of SLR using the marginal distribution of the water level. To create a design with
a different design life, a different marginal distribution of the SLR is accounted for.

RQ 2: What are the design differences between a multivariate probabilistic design and a deterministic
design for the Wide Green Dike project?

Significant differences are found when comparing the vine-based and deterministic designs. The
design values from the deterministic design are significantly larger than the design values for which
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the vine-based design failed. The design water level of the deterministic design is NAP +9.95
meters, compared to NAP +9.53 which is the median of the failures from the vine-based design.
The wave height was more significant at 1.96 meters compared to (reduced nearshore) wave heights
ranging from 0.8 to 0.9 meters for the vine-based design. Note, the vine-based design showed that
the water level is the governing variable for failure. Therefore, a lower wave height paired with an
extreme water level can already result in failure.

The large differences in design values and the full probabilistic approach to asses the clay erosion
in the vine-based design resulted in significant differences in the dimensions of the WGD, as shown
in Figure 8.1. Considering a deterministic approach would result in an additional 2 meters of crest
height compared to the vine-based design with a crest height of NAP +9.25 meters. The design
clay layer thickness would increase in the order of 56%, resulting in a thickness of 1.45 meters
compared to 0.93 meters. The increase in crest height and clay layer thickness have significant
consequences for the cross-sectional area of the WGD. This is due to the mild outer slope of 1:7,
resulting that a small increase in crest height or layer thickness resulting in significant volume
increases. The deterministic design has a cross-sectional area of 241 m3/m compared to 98 m3/m
for the vine-based design.

Current clay layer
Asphalt layer
Densely-packed sand

Units: [m]

NAP +3.00m

NAP +3.55m
3

Current dike

Vine-based

New clay layer

Polder Salt marsh

1:7

1:7
1:201:3

NAP +2.20m
Old dike

NAP +11.24m

NAP +3.55m
3

Deterministic

1:7

1:7
1:20 NAP +2.20m

NAP +9.25m
NAP +8.38m

48,54 18,88
1

2,87
3,11

18,65

Figure 8.1: The vine-based and deterministic designs of the WGD for the year 2150.

From the results, it is concluded that accounting for the dependence structures of the design vari-
ables by a multivariate approach such as vine copulae, can be of added value for the WGD project.
Where a deterministic approach simply combines the extreme loads, the multivariate approach
considers the joint behaviour of the extremes. The gained knowledge of the joint behaviour of
the local extreme conditions results in a better-optimized design. In addition, considering a full
probabilistic assessment compared to a deterministic one can optimize the design further. This
could result in a reduction of the WGD dimensions and thus a reduction of the intrusion into the
Natura 2000 area.

RQ 3: How can incorporating an adaptive design strategy to the Wide Green Dike concept promote its
feasibility given the uncertainty of sea level rise?

In this thesis, the incorporation of adaptive design strategies for the WGD is explored. Four
adaptive strategies were created and assessed against a baseline strategy, which constructs the
WGD for 2150 in one go. The strategies were formed by combining different designs with different
designs lives in multiple construction phases. The strategies were assessed based on the following
requirements: the required clay needed during the construction phases, the up-scaling of the clay
refinery of the ED2050 program, potential benefits and the effects on the Natura 2000 area.

The exploration showed that incorporating an adaptive design strategy into the WGD project can
promote its business case and help mitigate the risk of over-designing. The potential benefits from
including an adaptive strategy could compound into significant values over time. It also helps lower
the risk of over-designing, which would result in a loss of the Natura 2000 area. From the analysis,
Strategy 2 was preferred. This strategy included two adaptation phases after the construction of
the 2090 design in the 1st construction phase, as shown in Figure 8.2. Including a limited amount
of reinforcements was found beneficial as the disruption in the Natura 2000 area would be limited.

80



However, due to the uncertainty of SLR, the most adaptive design strategies resulted in the largest
benefits.

Current clay layer
Asphalt layer
Densely-packed sand

Units: [m]
NAP +9.25m

NAP +3.00m

Current dike

Phase 3: Design life 2150

New clay layer
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1:3

NAP +8.38m

Old dike

NAP +8.44m

NAP +2.20m

Phase 2: Design life 2120
Phase 1: Design life 2090

0,93 0,72

Figure 8.2: The cross-section and construction phases of the selected adaptive design strategy.

To summarize the overall conclusion of the thesis, the main research question is answered, as stated here:

How can a multivariate probabilistic tool provide insight into incorporating adaptive design strategies
and how could it provide additional insights regarding the feasibility of the Wide Green Dike concept

given the uncertainty of sea level rise?

In this thesis, it was found that a multivariate design approach could result in significant insights for the
WGD in the Ems-Dollard area. The vine-based design showed that significant reductions in the loading
conditions could be made when compared to a deterministic design. This resulted in a better-optimized
design for the vine-based approach, with a significantly smaller cross-sectional area as shown in Figure
8.1. The vine-based design resulted in less intrusion into the Natura 2000 area, which is of great import-
ance for the WGD project.

The vine-based design approach was used to create the designs that were applied in the adaptive design
strategies. These designs helped to assess different strategies and their feasibility. It was concluded
that an adaptive design strategy could be beneficial for the WGD project. However, the number of
construction phases for a strategy should be limited. A large number of adaptations could negatively
impact the Natura 2000 area. A strategy with two reinforcements was found optimal in this thesis. In
the 1st construction phase, it was found that a design up to 2090 was most beneficial.

8.2 Recommendations for future work
The recommendations based on the conclusions, points of discussion and limitations are discussed below.

8.2.1 Case Study: The Wide Green Dike

Measurement Program Ems-Dollard:
To provide greater insight into the local hydraulic conditions in the Ems-Dollard a 12-year-long measure-
ment program is initiated in 2019 by Waterboard Noorderzijlvest (2019). In the program, measurements
of storms are taken at the dike. The findings and conclusions of this program could be of great value
to gaining further insights into the hydraulic conditions in the Ems-Dollard estuary. The findings could
also be a great opportunity to create a nearshore multivariate model. Nonetheless, it is recommended
to extend the program. The program could be used to gain insight into the behaviour of extreme con-
ditions. However, as the design is based on extremes with return periods in the order of 38,000 years,
large extrapolations are still necessary. Such extrapolations are paired with large uncertainties in the
estimation models. In addition, if an adaptive design strategy would be proposed in the WGD project,
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having up-to-date data on the hydraulic boundary conditions, e.g. water level and wave height, available
is crucial for the planning of possible adaptations. Thus, extending such measurement programs to larger
time periods (50+ years) is highly recommended.

Incorporating an Adaptive Design Strategy:
It is recommended to do further research on possible adaptive design strategies for the WGD. This
thesis explored the possibility of incorporating an adaptive design strategy. The exploration showed
possible benefits in reducing the required clay during a construction phase and mitigating the risk of
over-designing. It is advised to study the consequences of an adaptive strategy for the Natura 2000 area.
The area is disrupted during the adaptation phases, and the consequences of such disruptions could have
a significant impact on the adaptive strategy to be chosen. In addition, the logistics around adaptive
design strategies, e.g. construction time and permit applications, should be investigated further. It
could be favourable to decrease the construction time of an adaptation. However, this would increase
the required clay capacity. Moreover, aspects such as license applications could limit the number of
possible adaptations. Also, the effects on the clay layer should be investigated. The introduction of
adaptations results in a final design which contains several layers of clay that are constructed at different
time periods. The effect of interaction between those layers could negatively impact the resistance of the
final design, such effects should be investigated.
Up-scaling of the Clay Refinery:
The pilot studies that were shared in the webinar ‘Kleirijpen voor dijkversterking’ by Deltares (2023)
regarding the up-scaling of the clay refinery will be published in the near future. It is recommended
to study these publications in assessing the design strategy for the WGD. These publications include
the future projections of the capacity of the clay refinery in the Ems-Dollard estuary, expected clay
characteristics, and the business case of the clay refinery. The clay capacity and business case provide
information about the availability of clay and are of large importance in the assessment of adaptive design
strategies. A positive business case of the clay refinery could benefit the adaptive design strategies.

Updated Climate Change Scenarios:
This thesis accounts for the SLR projections according to the ‘Klimaatsignaal 21’ by KNMI (2021). The
updated version ‘Klimaatsignaal 23’ will be published in October 2023. This publication could provide
new insights into SLR scenarios.

8.2.2 Results of the Multivariate Design

Goodness-of-fit of Vine Copulae:
In the selection of a vine copula, it is recommended to assess the predicted against the empirical ex-
ceedance probabilities for all vines considered. In this work, this assessment was performed graphically
for a limited number of vines from a preselection using the AIC. A goodness-of-fit criteria such as the
coefficient of determination could be introduced to review the goodness-of-fit on the empirical exceedance
probabilities. This criterion could be used in combination with the AIC to select the best vine copula.
Especially in extreme value modelling, the goodness-of-fit at the tail of the exceedance probabilities is
of large importance. Including this criterion at the start of the selection could therefore be of value. In
addition, great care should be taken in selecting a vine copula using the MST algorithm introduced by
Dissmann et al. (2013). The results based on the AIC showed poor performance of the algorithm for this
specific dataset.

Surrogate model for the Offshore-Nearshore Transformation:
It is recommended to study the limitations of a surrogate model in the offshore-nearshore transformation
of waves. A surrogate model can be used to significantly reduce the computational effort in performing
a large number of offshore-nearshore transformations. However, to design for extreme conditions and
include SLR, the surrogate model is extrapolated to larger values than what is it trained on. Additional
research on the performance of the surrogate model for extreme conditions would provide great insights
into the applicability of the model.
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8.2.3 Future Applications of a Multivariate Approach

Including Additional Nodes:
In this work, the vine-based design is created using five variables. Morales-Nápoles et al. (2023) showed
the potential of performing multivariate analysis of up to eight variables and provided the atlas con-
taining all unique (regular) vine combinations. It is recommended to increase the number of nodes in
the multivariate model to assess some of the assumptions made in this work. An assumption that could
be investigated is the offshore wave direction being equal to the wind direction during extreme conditions.

Nearshore Multivariate model:
Creating a multivariate model for purely nearshore conditions could be of great interest to study the
dependence structure of the variables near the dike. Such a model could also be used as a surrogate
model. The vines could be fitted to the output of a numerical model. This creates the possibility to
describe the dependence structure of the numerical model and then sample from this copula for the hy-
draulic structure design. The performance of such a model could be compared to the performance of the
surrogate model based on RBFs. It could be interesting to compare the two models in their performance
of the extrapolation of the water level due to SLR.

Accounting for Sea Level Rise:
To account for SLR in copula modelling, it was concluded that the historical trend of SLR might not
be representative of the future SLR trend. Therefore, combining NEVA with copula modelling with
time as covariate was not performed. Nevertheless, it is interesting to determine the effect of a changing
dependence structure between the water level and other design variables due to SLR.
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A | Information on the Datasets used
This appendix contains information about the datasets and variables used in this thesis. Table A.1 shows
the information on the datasets used and their sources, locations and the variables that each dataset
contains. Table A.2 shows the information on the variables, such as start and end dates and times. The
dates are provided in [dd-mm-yyyy ] and the times in [hh:mm:ss]. Note that the data amount provided
in table A.2 includes NA-values. Figure A.1 shows the data points from datasets 2 and 3.

Table A.1: Information on the original datasets used in this project

Dataset Source Data Type Location Variable(s) Symbol
1 Rijkswaterstaat (2022) Buoy Randzelgat Wave height Hm0,b

Wave period Tp,b

2 ECMWF (2022) ERA5 53◦28′12.0′′N Wave height Hm0

6◦53′24.0′′E Wave period Tp

3 Rijkswaterstaat (2022) Measurement Nieuwe Statenzijl Water level hNS

4 Rijkswaterstaat (2022) Measurement Dollard West Water level hDW

5 Rijkswaterstaat (2022) Measurement Schanskersdiep Water level hSc

6 Rijkswaterstaat (2022) Measurement Groote Gat Water level hGG

7 Rijkswaterstaat (2022) Measurement Reide Water level hRe

8 KNMI (2022) Measurement Nieuw Beerta Wind speed ws

Station 286 Wind direction wd

9 EMODnet (2016) Bathymetry Ems-Dollard - -

Table A.2: Information of the original wave, water level and wind variable data used in this project

Variable Dataset Start End Freq. Data Unit Decimals
amount

Hm0,b 1 20-08-2008 01-02-2021 10 min.a 654,770 [m] 2
00:00:00 21:30:00

Tp,b 1 20-08-2008 01-02-2021 10 min. 654,770 [s] 0
00:00:00 21:30:00

Hm0 2 01-01-1990 31-12-2021 hourly 280,512 [m] 7
00:00:00 23:00:00

Tp 2 01-01-1990 31-12-2021 hourly 280,512 [s] 7
00:00:00 23:00:00

hNS 3 01-01-1990 31-12-2021 10 min. 1,726,423 [NAP+m] 2
00:00:00 23:50:00

hDW 4 27-03-1996 04-11-1996 10 min. 32,040 [NAP+m] 2
00:00:00 11:50:00

hSc 5 05-04-1995 22-09-1997 10 min. 87,335 [NAP+m] 2
00:00:00 23:50:00

hGG 6 21-03-1994 30-07-2000 10 min. 144,432 [NAP+m] 2
00:00:00 23:50:00

hRe 7 27-03-1996 27-06-1996 10 min. 87,204 [NAP+m] 2
00:00:00 23:50:00

ws 8 01-01-1990 09-10-2022 dailyb 11,970 [m/s] 1
wd 8 01-01-1990 09-10-2022 daily 11,970 [◦]c 0
a The measurement frequency in minutes is abbreviated to ‘min.’
b In this dataset, the measurement frequency depends on the variable considered
c Degrees where: 360=North, 90=East, 180=South, 270=West, 0=windstill/varying
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(a) Wave height (dataset 2)

(b) Wave period (dataset 2)

(c) Water level at Nieuwe Statenzijl (dataset 3)

Figure A.1: Data points of the water level, wave height and wave period.
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B | Results Extreme Value Analysis
This appendix provides additional figures and results from the EVA. The results can be found in the
following sections of the applied POT method, data overview, stationary analysis and non-stationary
analysis.

Additional results of the Peaks-Over-Threshold method
Figure B.1 shows the selected extreme water levels and threshold on top of the time series of the complete
water level dataset.

Figure B.1: Selected extreme water levels on top of the hourly water level data points.

Data overview
The result of the selected extreme water levels is found in Figure B.2a. It shows that when taking the
water level as the dominant variable with a threshold ranging from [1.1, 3.2], the extremes do not have
a clear trend over time (slightly negative). A threshold selection above 3.2 meters NAP does result in a
clear positive trend over time, as shown in Figure B.2b. Similar results are found when comparing the
concomitant variables (the coinciding wave height and wave period) for these thresholds. Figure B.3,
in Appendix B, shows the concomitant wave height and period for a threshold of u = 2.8 meters NAP.
The linear regression on the selected values shows a slightly decreasing trend over time. However, Figure
B.4 shows that the concomitant variables for a threshold of u = 3.3 meters NAP result in a positive
trend over time. This could be caused by a lack of data, implying that 30 years of data could be too
little to observe a clear trend in the extremes over time (for this specific threshold range). It could also
be because of the dependence of extremes on other events than climate change, meaning that extreme
water levels rely on other meteorological events rather than on climate change. Figure B.2c shows a BM
sampling method by selecting the yearly maxima of the water level. This selection approach shows a
minor increase in the maximum water level by 1.7 millimetres per year. This would suggest that climate
change only affects the extremest events, but not those you can see every year due to damping caused
by the islands. The damping is not that felt in the largest events.
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(a) Selected extreme water levels with u = 2.8 meters NAP and δ = 45 hours

(b) Extreme water levels for u = 3.3 meters NAP and δ = 45 hours

(c) Yearly maxima of the water level over time

Figure B.2: Extreme water levels for a threshold u of 2.8 and 3.3 meters NAP and the yearly maxima
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In Figures B.3 and B.4, the concomitant wave height and period are shown for the selected extreme
water levels. The concomitant variables are those corresponding to the same time of occurrence as the
dominant variable, in this case, the water level. The linear regression in Figure B.3a shows that the
concomitant wave period, for the dominant water level with a threshold of u = 2.8 meters NAP, follows
a slight negative trend in time. In Figure B.3b, the linear regression on the concomitant wave height
stays approximately constant in time.

(a) Wave period as concomitant variable over time

(b) Wave height as concomitant variable over time

Figure B.3: The concomitant variables with water level as the dominant variable. A threshold of u = 2.8
meters NAP, showing a slightly decreasing trend over time.
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A positive trend of the variables is found when the threshold of the extreme water levels is set at > 3.2
meters NAP. This is also found in Figure B.4b, where both linear regressions of the concomitant wave
height and period show a positive trend in time.

(a) Wave period as concomitant variable over time

(b) Wave height as concomitant variable over time

Figure B.4: The concomitant variables with water level as the dominant variable. A threshold of u = 3.3
meters NAP, showing a clear positive trend over time.
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Figure B.5 shows the selected extreme water levels against the concomitant wave height for the thresholds
u = 2.8 and u = 3.3 meters NAP. Both figures show a strong correlation between the extreme water
levels and the coinciding wave heights.

(a) Selected extreme water level with u = 2.8 meters NAP

(b) Selected extreme water level with u = 3.3 meters NAP

Figure B.5: Selected extreme water levels with u of 2.8 and 3.3 meters NAP against the concomitant
wave height.
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Additional results of the Stationary analysis
In this section, the return level plots and CDF plots are found for the different models that are applied.
In addition, a table is found providing the return levels for different return periods, including the upper
and lower bounds. Figure B.6 up to Figure B.10 show the return level plots for the fitted GPD using
MLE, GPD using LM, GEV, Gumbel and Exponential distributions. The return level plots include a
95% confidence interval of the estimated models.

Figure B.6: Return level plot of the extreme water level for GPD using the MLE.

Figure B.7: Return Level plot of GPD with the LM method.

Figure B.8: Return Level plot of GEV with the MLE.
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Figure B.9: Return Level plot of Gumbel with the MLE

Figure B.10: Return Level plot of Exponential with the MLE

In Figure B.11 the histogram of the extreme water level and the GPD model is found.

Figure B.11: Histogram of the extreme water level and the fitted GPD.
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In Figure B.12 the CDF plot is shown for the fitted models, showing a similar fit for the Exponential
and GPD models.

Figure B.12: CDF plot of all models for the extreme water levels.

In Figure B.13 the CDF plot is shown for the GPD using MLE.

Figure B.13: CDF plot of GPD with the MLE for the extreme water level.
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Table B.1 shows the return levels for a range of return periods for all fitted models. It also includes the
lower bound (L.B.) and upper bound (U.B.) of the 95% confidence interval of the fitted models. The
results show that the difference between the GPD by MLE and GPD by LM is minimal. In addition,
it shows that the GEV distribution severely overestimates the tail of the extremes. The estimates of
the return level for large return periods of the GEV are significant compared to the other models.
The Gumbel distribution shows an underestimation of the tail compared to the GPD and Exponential
distribution.

Table B.1: Return levels of extreme water level for different stationary models.

Return level Return period [year]
of the fit [m] 10 20 50 100 200 500 1,000 2,000 5,000 10,000
GPDMLE L.B. 3.73 3.99 4.27 4.43 4.54 4.62 4.62 4.57 4.42 4.25
GPDMLE 3.92 4.27 4.75 5.12 5.49 5.99 6.38 6.78 7.31 7.73
GPDMLE U.B. 4.11 4.56 5.23 5.81 6.44 7.37 8.15 8.99 10.21 11.20
GPDLM L.B. 3.72 3.99 4.29 4.48 4.64 4.86 4.97 5.08 5.20 5.28
GPDLM 3.92 4.28 4.75 5.12 5.50 6.01 6.40 6.80 7.35 7.77
GPDLM U.B. 4.12 4.58 5.33 5.95 6.70 7.86 8.89 10.06 11.89 13.61
GEV L.B. 3.61 3.90 4.28 4.50 4.55 4.02 2.69 -0.15 -8.16 -19.88
GEV 3.91 4.51 5.71 7.10 9.11 13.21 17.96 24.83 38.85 55.07
GEV U.B. 4.20 5.11 7.15 9.71 13.67 22.41 33.23 49.81 85.85 130.03
Gumbel L.B. 3.63 3.81 4.05 4.23 4.40 4.63 4.81 4.98 5.21 5.39
Gumbel 3.75 3.96 4.23 4.43 4.64 4.91 5.11 5.31 5.58 5.79
Gumbel U.B. 3.86 4.10 4.41 4.64 4.88 5.18 5.41 5.65 5.95 6.18
Exponential L.B. 3.74 4.02 4.39 4.67 4.96 5.33 5.61 5.89 6.27 6.55
Exponential 3.92 4.26 4.70 5.04 5.37 5.82 6.16 6.49 6.94 7.28
Exponential U.B. 4.10 4.49 5.01 5.40 5.79 6.31 6.70 7.09 7.61 8.00

Additional results of the Non-stationary analysis
In Figure B.14 the histogram of the extreme water level and the non-stationary GPDHs,σ model is found.

Figure B.14: Histogram of the extreme water level and the non-stationary GPDHs,σ model.
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C | Modelling the Concomitants
This appendix shows the results of approximating the concomitant variables: wave height, wave period,
wind speed and wind direction. In this appendix, the goodness-of-fit criteria, exceedance probability
plots, CDF plots and histograms of the concomitants are found.

Goodness-of-fit Criteria of the applied models
Table C.1 shows the goodness-of-fit criteria for the wave variables. In Table C.2, the goodness-of-fit
criteria for the wind variables are found. The goodness-of-fit is greater for lower values of the −L, AIC
and BIC and for values close to 1 for R2. The best scores are displayed in bold green. The tables also
show some models with a negative R2 value suggesting very poor fits, see Equation 3.13. The models
with values between 0 < R2 ≤ 1 are selected for the exceedance probability plots and CDF plots.

Table C.1: Goodness-of-fit criteria of wave height Hs and wave period Tp for several models. The best
scores are displayed in bold green.

Model Wave height Hs Wave period Tp

−L AIC BIC R2 −L AIC BIC R2

Normal 137.06 278.11 284.03 0.988 204.99 413.98 419.89 0.993
Log-normal 134.96 273.93 279.84 0.995 204.96 413.92 419.84 0.992
Gamma 134.77 273.53 279.44 0.996 204.57 413.15 419.06 0.994
Weibull 142.63 289.25 295.17 0.958 212.34 428.69 434.60 0.952
GEV 134.60 275.19 284.06 0.996 204.66 415.32 424.19 0.992
Gumbel 138.07 280.14 286.05 0.960 212.14 428.27 434.18 0.901
GPD 158.64 321.28 327.19 −9.254 241.56 487.12 493.04 −31.35
Exponential 308.25 618.49 621.45 −14.68 439.17 880.35 883.30 −43.78
Rayleigh 217.98 437.97 440.92 −1.212 344.14 690.28 693.24 −7.016

Table C.2: Goodness-of-fit criteria of wind speed ws and wind direction wd for several models. The best
scores are displayed in bold green.

Model Wind speed ws Wind directionawd

−L AIC BIC R2 −L AIC BIC R2

Normal 360.57 725.15 731.57 0.961 −693.24 1390.48 1396.40 −8.72
Log-normal 358.04 720.08 725.99 0.961 −703.93 1411.86 1417.77 0.982
Gamma 357.45 718.89 724.81 0.969 −691.42 1386.83 1392.74 0.992
Weibull 365.84 735.68 741.59 0.936 −690.21 1384.41 1390.32 0.982
GEV 357.53 721.05 729.92 0.966 −687.05 1388.97 1380.10 0.991
Gumbel 360.68 725.36 731.27 0.895 −688.21 1380.40 1386.32 0.993
GPD 396.82 797.63 803.55 −3.690 −714.13 1432.27 1438.17 0.721
Exponential 509.00 1020.01 1022.96 −688.21 −755.30 1512.59 1515.55 0.456
Rayleigh 421.77 845.55 848.50 −714.13 −695.32 1392.64 1395.60 0.955
a The models that model wd are truncated models in [0, 180] degrees

Exceedance Probability plots for Concomitants
Figures C.1, C.2 and C.3 show the exceedance probabilities of the concomitants wave period, wind speed
and wind direction. The exceedance probability of the wave height is shown in Figure 4.5 in Subsection
4.2. The exceedance probability plots show the models resulting from the first selection by the goodness-
of-fit criteria in Tables C.1 and C.2. In the application of extreme value modelling, the tail of the
concomitants is of great interest. Therefore, the model that best represents the tail of the concomitants
is selected as the best model for the wave height, wave period and wind speed. For the wind direction,
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the tail is not necessarily of interest. For this variable, the best model is the one that best models the
entire range of values.
Figure C.1 shows that the Gamma model, as indicated by the goodness-of-fit criteria, results in the best
approximation of the wave period. The Gamma model is the best model to approximate the tail. In
addition, it is also the model that best models the entire range of values. The GEV model performs
similarly to the Gamma model, showing very close goodness-of-fit criteria and exceedance probabilities.
This is surprising since, as stated in Subsection 3.3.1, the GEV model can be used for an EVA sampled
by a BM method. However, the concomitants are selected from the coinciding times of the extreme water
levels by POT. In addition, also the Normal and Log-normal models provide decent results. Especially
the Log-normal model shows a decent fit of the exceedance probabilities. Nevertheless, the Gamma
model performs slightly better and is therefore chosen as the best model for the wave period Tp.

Figure C.1: Exceedance probability P(Tp > x) of different models for wave period Tp.

Figure C.2 shows the exceedance probabilities of the wind speed. For this variable, also the Gamma
model performed best by the goodness-of-fit criteria in Table C.2. From Figure C.2 all shown models
could be argued to have a decent fit of the exceedance probabilities. The Normal and Weibull models
show a decent fit for the tail, however, underestimate the most extreme value of 24.7 meters per second.
The Gumbel model is closest to the most extreme value, however, overestimates the wind speed for
smaller exceedance probabilities. The behaviour of the Gamma, GEV and Log-Normal models is in
between the previous models. The Gamma model is selected as the best model to approximate the wind
speed ws, following the goodness-of-fit criteria.
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Figure C.2: Exceedance probability P(ws > x) of different models for wind speed ws.

Figure C.3 shows the exceedance probabilities of the wind direction. The Weibull model clearly shows
the best fit of the wind direction over the entire range of values. Therefore, the Weibull model is selected
to approximate the wind direction wd.

Figure C.3: Exceedance probability P(wd > x) of different models for rotated wind direction wd.
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CDF plots for Concomitants
Figure C.4 shows the CDF plots of the concomitants and the several models that were fitted. Although
the tail of the concomitants is of the largest significance, it is wise to validate the models over the entire
range of values. The CDF plots provide another visualization to check that the selected models well
approximate the values over the entire range of values. From the figure, it is clear that the selected
models do provide a decent fit over the entire range. Some of the models perform very similarly for the
lower exceedance probabilities, resulting in the overlap in the CDF plots.

(a) CDF of wave height Hs (b) CDF of wave period Tp

(c) CDF of wind speed ws (d) CDF of rotated wind direction wd

Figure C.4: CDF plots of the concomitant variables and the selected models.
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Histograms for Concomitants
Figure C.5 shows the histograms of the concomitant variables and the selected models for each concomit-
ant. In green, the empirical (yearly) probabilities are found for the variables. In red, the selected models
are shown to approximate the concomitant variables.

(a) Histogram of wave height Hs (b) Histogram of wave period Tp

(c) Histogram of wind speed ws (d) Histogram of rotated wind direction wd

Figure C.5: Histograms of the concomitant variables and the selected models.
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D | Selection of Bivariate Copulae
This appendix shows the results of the bivariate copula modelling. The appendix contains the goodness-
of-fit criteria, semi-correlations, CDF and copula samples in unity space and in variable space.

Tables of Goodness-of-fit Criteria and Semi-Correlations
In the tables below the semi-correlations, CM and AIC values for all variable pairs and a selection of
copula models are found. The most important quadrants and the best model performances are shown in
bold green. Important quadrants or the best models with p-values of less significance (p > 0.1) are shown
in bold orange. Table D.1 shows that the UR and LR quadrants are of statistical significance. Therefore,
a copula model is selected that best represents these two quadrants. This results in the Gumbel copula.
The best CM score is found for the Frank copula, as the CM score of the Gumbel copula is of low
statistical value (p = 0.31). The Survival Clayton provides the lowest AIC value. However, the Gumbel
model also performs adequately for the AIC value. Therefore, the Gumbel copula is selected as the best
model.

Table D.1: AIC, CM scores and semi-correlations for the pair water level h and wave period Tp.

Criteria Empirical Gaussian Survival Gumbel Frank Joe
[−] h & Tp Clayton
rUL 0.244 0.130 0.040 0.096 0.052 0.052
rUR 0.497 0.332 0.620 0.543 0.232 0.666
rLL −0.139 0.342 0.613 0.244 0.169 0.694
rLR −0.378 0.094 0.101 0.068 0.156 0.068
pUL 0.287 0 0.214 0.003 0.124 0.100
pUR 0 0 0 0 0 0
pLL 0.329 0 0.006 0 0 0.002
pLR 0.091 0.004 0.002 0.042 0 0.038
CM − 0.173 0.031 0.093 0.138 2.512
pCM − 0.050 0.950 0.310 0.040 0.660
AIC − −48.550 −63.420 −58.000 −45.120 −61.130

From Table D.2 it is found that UL is the most important quadrant. However, this is not of large
statistical importance as p = 0.16. The overall (Spearman’s) correlation, from Table 4.3, is positive.
Therefore, this variable pair cannot be modelled by a copula rotated by 90 (or 270) degrees using the
VineCopula package. For this variable pair, the Frank copula is selected as the best model. The Frank
model provides the best CM scores and has an AIC value that matches the Gaussian copula. The
Gaussian copula performs marginally better in approximating the semi-correlations.

Table D.2: AIC, CM scores and semi-correlations for the pair water level h and wind speed ws.

Criteria Empirical Gaussian Survival Gumbel Frank Joe
[−] h & ws Clayton
rUL 0.242 0.089 0.051 −0.014 0.063 −0.011
rUR 0.063 0.159 0.347 0.365 0.074 0.444
rLL −0.096 0.125 0.034 0.0564 0.104 0.0387
rLR −0.027 0.138 0.058 0.080 0.062 0.025
pUL 0.161 0.003 0.075 0.638 0.035 0.699
pUR 0.679 0 0 0 0.001 0
pLL 0.516 0 0.153 0.017 0 0.108
pLR 0.878 0 0.044 0.004 0.038 0.368
CM − 0.130 0.041 0.067 0.146 1.975
pCM − 0.140 0.900 0.560 0.070 0.450
AIC − −12.620 −12.830 −11.730 −12.620 −10.310
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In Table D.3, the semi-correlations of water level and wind direction are found. The semi-correlations
show that the LR quadrant could be assumed as the most important quadrant. However, the semi-
correlations do not seem to be adequately approximated by the selection of copula models. As the
overall correlation of the empirical data is positive, found in Table 4.3, the data cannot be approximated
by rotating the copula models 90 or 270 degrees. Therefore, these variables are considered independent.

Table D.3: AIC, CM scores and semi-correlations for the pair water level h and wind direction wd.

Criteria Empirical Gaussian Clayton Survival Frank Survival
[−] h & wd Gumbel Joe
rUL −0.152 0.084 −0.033 −0.008 0.032 −0.007
rUR 0.138 0.040 0.189 0.158 0.062 0.249
rLL 0.009 0.109 −0.022 0.108 0.051 0.013
rLR 0.214 0.069 0.003 0.036 0.087 0.036
pUL 0.391 0.002 0.233 0.781 0.249 0.801
pUR 0.405 0.103 0 0 0.012 0
pLL 0.957 0 0.369 0 0.037 0.595
pLR 0.224 0.014 0.919 0.182 0.001 0.185
CM − 0.049 0.033 0.051 0.057 0.542
pCM − 0.820 0.950 0.770 0.630 0.550
AIC − −1.965 −1.908 −1.689 −2.572 −0.914

The wave height and wave period show three quadrants of statistical significance, namely UR, UL
and LL, shown in Table D.4. From these three quadrants, the UR and LL quadrants are of the largest
significance, as these define the tails (positive overall correlation). These quadrants are best approximated
by the Survival Gumbel copula. This model also provides the best CM score and AIC value. Therefore,
this variable pair is best approximated by the Survival Gumbel copula.

Table D.4: AIC, CM scores and semi-correlations for the pair wave height Hs and wave period Tp.

Criteria Empirical Gaussian Clayton Survival Frank Survival
[−] Hs & Tp Gumbel Joe
rUL −0.680 0.235 0.072 0.115 −0.013 0.097
rUR 0.645 0.591 0.133 0.485 0.436 0.178
rLL 0.678 0.609 0.787 0.735 0.432 0.787
rLR 0.061 0.175 0.025 0.058 0.126 0.048
pUL 0.015 0 0.054 0.004 0.783 0.011
pUR 0 0 0 0 0 0
pLL 0 0 0 0 0 0
pLR 0.850 0 0.510 0.163 0.003 0.205
CM − 0.024 0.178 0.105 0.0781 1.248
pCM − 0.980 0.020 0.030 0.200 0.990
AIC − −134.500 −120.200 −143.500 −129.600 −119.400

Table D.5 shows that the UR quadrant is of significance for the wave height and wind speed pair. The
LR quadrant shows some degree of importance as p = 0.11. The UR quadrant is best approximated
by the Gaussian model. The Frank model has the best CM score, however, this is of low statistical
significance as p = 0.19. The Frank also has the lowest AIC, however, the Gaussian’s AIC value is very
similar. Therefore, the Gaussian is selected as the best model.
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Table D.5: AIC, CM scores and semi-correlations for the pair wave height Hs and wind speed ws.

Criteria Empirical Gaussian Clayton Survival Frank Survival
[−] Hs & ws Gumbel Joe
rUL −0.005 0.085 0.073 0.041 0.008 0.041
rUR 0.278 0.148 0 0.109 0.005 0.014
rLL 0.175 0.125 0.281 0.310 0.050 0.367
rLR 0.276 0.080 0.028 0.051 0.037 0.010
pUL 0.979 0.004 0.010 0.152 0.789 0.149
pUR 0.053 0 0.992 0 0.030 0.563
pLL 0.241 0 0 0 0.032 0
pLR 0.114 0.005 0.319 0.069 0.212 0.729
CM − 0.064 0.062 0.068 0.099 1.391
pCM − 0.660 0.720 0.540 0.190 0.590
AIC − −12.080 −11.010 −11.390 −12.580 −8.552

As Table D.6 shows for the wave height and wind direction, the LR quadrant is of some importance. The
Gaussian model best approximates this quadrant and has the best AIC. However, the semi-correlations
in LR are modelled rather low. The Frank model provides a slightly better CM value. Nevertheless, the
Gaussian is considered the best model to approximate the wave height and wind direction.

Table D.6: AIC, CM scores and semi-correlations for the pair wave height Hs and wind direction wd.

Criteria Empirical Gaussian Clayton Survival Frank Survival
[−] Hs & wd Gumbel Joe
rUL 0.107 0.130 0.029 0.096 0.058 0.031
rUR 0.061 0.261 0.036 0.110 0.170 0.011
rLL 0.405 0.218 0.442 0.428 0.195 0.518
rLR −0.047 0.075 0.109 0.043 0.088 0.020
pUL 0.610 0 0.340 0.001 0.079 0.296
pUR 0.683 0 0.117 0 0 0.645
pLL 0.005 0 0 0 0 0
pLR 0.818 0.016 0 0.163 0.007 0.492
CM − 0.068 0.083 0.067 0.078 1.558
pCM − 0.620 0.370 0.550 0.330 0.890
AIC − −29.943 −26.983 −29.774 −31.491 −24.702

Table D.7 shows that there is no quadrant of statistical significance for the wave period and wind speed.
Therefore, this variable pair is considered independent.

Table D.7: AIC, CM scores and semi-correlations for the pair wave period Tp and wind speed ws.

Criteria Empirical Gaussian Clayton Survival Frank Survival
[−] Tp & ws Gumbel Joe
rUL −0.069 0.0285 0.026 −0.006 0.026 −0.018
rUR −0.022 0 −0.021 0.017 0.010 0.006
rLL 0.031 0.036 0.024 0.024 −0.044 0.072
rLR 0.090 −0.017 −0.022 −0.009 0.008 0.0224
pUL 0.678 0.273 0.312 0.806 0.339 0.496
pUR 0.889 0.987 0.411 0.519 0.686 0.828
pLL 0.841 0.156 0.359 0.369 0.088 0.006
pLR 0.590 0.523 0.401 0.722 0.742 0.374
CM − 0.117 0.097 0.044 0.126 0.044
pCM − 0.310 0.280 0.930 0.170 0.920
AIC − 1.952 2.001 2.002 1.910 2.003
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Table D.8 shows that there is no quadrant of statistical significance for the wave period and wind
direction. Therefore, this variable pair is considered independent.

Table D.8: AIC, CM scores and semi-correlations for the pair wave period Tp and wind direction wd.

Criteria Empirical Gaussian Clayton Survival Frank Survival
[−] Tp & wd Gumbel Joe
rUL 0.068 0.168 0.070 0.058 0.039 0.078
rUR 0.251 0.193 0.369 0.393 0.114 0.402
rLL 0.274 0.159 0.037 0.128 0.123 0.028
rLR 0.130 0.117 0.029 0.038 0.058 0.007
pUL 0.728 0 0.017 0.043 0.204 0.005
pUR 0.104 0 0 0 0 0
pLL 0.076 0 0.118 0 0 0.252
pLR 0.500 0 0.319 0.205 0.064 0.813
CM − 0.047 0.060 0.074 0.070 1.322
pCM − 0.830 0.720 0.470 0.400 0.820
AIC − −17.356 −15.342 − −17.471 −13.595

The LR quadrant is of some significance for the wind speed and wind direction as shown in Table D.9.
This semi-correlation is best modelled by the rotated Clayton model by 90 degrees. The rotated Clayton
also provides the best CM scores. The rotated Joe by 270 degrees performs slightly better for the AIC.
However, the rotated Clayton is considered as the best model for the wind speed and wind direction.

Table D.9: AIC, CM scores and semi-correlations for the pair wind speed ws and wind direction wd.

Criteria Empirical Gaussian Clayton Gumbel Frank Joe
[−] ws & wd rotated by rotated by rotated by

270◦ 90◦ 90◦

rUL −0.534 −0.030 −0.169 −0.151 0.046 −0.244
rUR −0.077 −0.020 −0.005 0.002 0.006 0.014
rLL 0.393 0.038 −0.213 −0.079 −0.020 0.007
rLR −0.020 0.023 0.021 0 −0.065 0.022
pUL 0 0.243 0 0 0.073 0
pUR 0.636 0.446 0.838 0.954 0.829 0.600
pLL 0.010 0.144 0.425 0.004 0.433 0.793
pLR 0.901 0.357 0.396 0.991 0.010 0.384
CM − 0.161 0.356 0.316 0.164 1.937
pCM − 0.210 0 0 0 0.030
AIC − 1.838 −1.226 −2.506 1.961 −4.482

Figures of the Semi-Correlations of the Copula models
Below the semi-correlations are found for the samples of the selected copula models. The semi-correlation
plot of the copula pair: water level h and wave height Hs, is found in Section 4.3. The semi-correlations
in each quadrant of the models result from the tables above. The empirical data points are shown in red
squares. The samples of the models are shown as black dots. The title of each plot shows the overall
(Pearson’s) correlation of the copula samples.
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Figure D.1: Semi-correlation of the Gumbel model for water level h and wave period Tp.

Figure D.2: Semi-correlation of the Frank model for water level h and wind speed ws.

Figure D.3: Semi-correlation of the Survival Gumbel model for wave height Hs and wave period Tp.
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Figure D.4: Semi-correlation of the Gaussian model for wave height Hs and wind speed ws.

Figure D.5: Semi-correlation of the Survival Gumbel model for wave height Hs and wind direction wd.

Figure D.6: Semi-correlation of the Gaussian model for wave period Tp and wind direction wd.
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Figure D.7: Semi-correlation of the Joe rotated by 90◦ for wind direction wd and wind speed ws.

CDF of selected Copula models and Empirical Copulas
Below the CDF plots of the selected copula models are found, as well as the empirical copula of the
variable pairs. The CDF of the copula pair: water level h and wave height Hs, is found in Section 4.3.
The CDF plots show the cumulative probability of the copula models by a colour scale ranging from red
to yellow. The variable pairs between water level, wave height and wave period show a decent fit of the
model on the empirical copula. For the pairs including the wind speed and wind direction, the models
still approximate the empirical copula, however, these fits are less decent.

Figure D.8: CDF of the Gumbel and empirical copula for water level h and wave period Tp.

Figure D.9: CDF of the Frank and empirical copula for water level h and wind speed ws.
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Figure D.10: CDF of the Survival Gumbel and empirical copula for wave height Hs and wave period Tp.

Figure D.11: CDF of the Gaussian and empirical copula for wave height Hs and wind speed ws.

Figure D.12: CDF of Survival Gumbel and empirical copula for wave height Hs and wind direction wd.
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Figure D.13: CDF of the Gaussian and empirical copula for wave period Tp and wind direction wd.

Figure D.14: CDF of Joe rotated by 90◦ and empirical copula for wind direction wd and wind speed ws.

Samples of the selected Copula models in [0, 1]2

In the figures below, the samples in the unity space of the selected copula models are shown for all
variable pairs (except water level and wave height, found in Figure 4.9).

Figure D.15: Samples of Gumbel in [0, 1]2 for water level h and wave period Tp.
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Figure D.16: Samples of Frank in [0, 1]2 for water level h and wind speed ws.

Figure D.17: Samples of Survival Gumbel in [0, 1]2 for wave height Hs and wave period Tp.

Figure D.18: Samples of Gaussian in [0, 1]2 for wave height Hs and wind speed ws.
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Figure D.19: Samples of Survival Gumbel in [0, 1]2 for wave height Hs and wind direction wd.

Figure D.20: Samples of Gaussian in [0, 1]2 for wave period Tp and wind direction wd.

Figure D.21: Samples of Joe rotated by 90◦ in [0, 1]2 for water level h and wave period Tp.
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Copula samples transformed to variable space
In the figures below, the samples in variable space of the selected copula models are shown for all variable
pairs (except water level and wave height, found in Figure 4.10).

Figure D.22: Samples of Gumbel in variable space for water level h and wave period Tp.

Figure D.23: Samples of Frank in variable space for water level h and wind speed ws.

Figure D.24: Samples of Survival Gumbel in variable space for wave height Hs and wave period Tp.
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Figure D.25: Samples of Gaussian in variable space for wave height Hs and wind speed ws.

Figure D.26: Samples of Survival Gumbel in variable space for wave height Hs and wind direction wd.

Figure D.27: Samples of Gaussian in variable space for wave period Tp and wind direction wd.
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Figure D.28: Samples of Joe rotated by 90◦ in variable space for wind direction wd and wind speed ws.
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E | Additional Results for Non-stationary
marginals in Copula modelling

This appendix shows additional results of the analysis of a non-stationary marginal for the water level
in copula modelling. The relation of the wave height and water level with the scale parameter can be
found. As well as the changed ranks for all samples. In addition, the change in the copula family is found.

In Figure E.1, the (linear) relation between the wave height Hs and the scale parameter σ(Hs) is shown.
The sampled joint probabilities of points 1, 2 and 3 are transformed to wave heights using the quantile
function of the (Gamma distributed) wave height.

Figure E.1: The relation between the wave height and the scale parameter σ(Hs).

Figure E.2 shows the transformed joint probabilities for the water levels using the non-stationary model.
Each transformed sample i from Figure 4.12 has its own scale parameter σ(Hs,i) that depends on the
wave height Hs,i, according to the relation shown in Figure E.1.

Figure E.2: The transformed samples to water levels against the scale parameter σ(Hs).
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The change in the ranks of the water level for all samples is shown in Figure E.3. The black solid line
shows the transformed water levels by a stationary GPD model for the original ranks. The cyan solid
line shows the transformed water levels by the non-stationary model plotted for the original ranks. The
line shows an oscillating behaviour, concluding that the ranks of the water level change. The dashed
blue line shows the sorted ranks for the transformed water levels by the non-stationary model.

Figure E.3: The water level plotted against its ranks. The ranks of the original samples change due to
the introduction of the non-stationary model.

In Table E.1, the change in semi-correlations for the upper right (UR) and lower left (LL) quadrants are
shown when transforming the original Survival Clayton into variable space by the non-stationary model.
The semi-correlations of the samples increase in both quadrants. In the LL quadrant, the correlation
changes significantly from rLL = 0.003 to rLL = 0.299. To check whether the copula family remains
unchanged, a bivariate copula is fitted for the transformed samples from Figure 4.14. The results in
Table E.1 show that the copula family changes to a Survival BB1 copula. In addition, a Survival
Clayton copula is forced to fit these values. The table shows that the semi-correlations in the quadrants
are better approximated by the Survival BB1 copula. Also, the Survival BB1 copula provides a greater
AIC.

Table E.1: Parameter, semi-correlations and AIC of the original copula and transformed variable space
and copulas samples from the non-stationary model Hu,σHs

.

Transformed Original Hu,σHs model
by Survival Variable Survival Survival
Hu,σHs Clayton space BB1 Clayton
Parameter:
θ1 [−] 1.370 − 2.110 2.444
θ2 [−] − − 1.108 −
Criteria:
rUR [−] 0.734 0.800 0.816 0.806
rLL [−] 0.003 0.299 0.309 0.092
AIC [−] − − −10,671 −10,590
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F | Vine Copulae Analysis
This appendix contains additional information on the Vine Copulae Analysis from Section 4.5.

Best Vine Copulas of Procedures 1 and 2
Figure F.1 shows the best-performing vine copulas from Procedures 1 and 2.

(a) Vine copula of Procedure 1 (b) Vine copula of Procedure 2

Figure F.1: Best vine copulas of Procedure 1 and 2.

Table F.1: The (conditional) copulas and parameters θ for the vines of Procedures 1, 2 and 3.

Tree Procedure 1 Procedure 2 Procedure 3
Edge Copulaa, b, c θ Edge Copula θ Edge Copula θ

T1 12 SC 1.37 13 SC 1.18 12 SC 1.37
14 F 1.09 34 F 2.49 14 Ta2 5.21
31 SC 1.18 32 SGu 2.47 15 SC 0.46
45 J 90◦ −1.16 45 J 90◦ −1.16 13 SC 1.18

T2 15|4 SC 0.60 12|3 Ga 0.32 23|1 STa2 2.80
42|1 Ga 0.42 14|3 J 90◦ −1.09 24|1 Ga 0.42
34|1 Gu 1.25 35|4 I − 25|1 STa 1.85

T3 25|14 F 1.39 15|34 SC 0.65 34|21 T 0.08
32|41 SGu 1.85 24|13 C 0.39 35|21 BB8 270◦ -2.87

T4 35|214 F −3.16 25|134 SGu 1.39 45|321 Ta2 90◦ −20.00
a The following abbreviations are used for the copula families: I: Independent; Ga: Gaussian; T: Student-T; C:

Clayton; Gu: Gumbel; F: Frank; J: Joe; Ta: Tawn; Ta2: Tawn 2.
b If a copula is a Survival copula, an ‘S’ is set in front of the abbreviations, e.g. SC: Survival Clayton
c If a copula is rotated by 90◦ or 270◦, it is indicated behind the abbreviation
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Selected Vine Copulas by the MST algorithm
Figures F.2 show the selected vine copulas using the MST algorithm for Procedures 1, 2 and 3. It shows
that the selected vine copulas for Procedures 1 and 2 are tree-equivalent. The vine copula for Procedure
3 is not tree-equivalent but is very similar. Both vine structures are C-vines with the wave period Tp as
the central node. In Figure F.3, the CDF plots of the performance of the MST algorithm are found for
Procedures 1 and 2.

(a) Vine copula by MST algorithm of Procedure 1 and 2 (b) Vine copula by MST algorithm of Procedure 2

Figure F.2: Vine copulas of Procedure 1, 2 and 3 selected by the MST algorithm. Note, the vine copulas
selected for Procedures 1 and 2 are tree-equivalent.

Table F.2: The (conditional) copulas of the selected vines using MST for Procedures 1, 2 and 3.

Tree Procedure 1 Procedure 2 Procedure 3
Edge Copulaa, b, c θ Edge Copula θ Edge Copula θ

T1 21 SC 1.37 21 SC 1.37 21 SC 1.37
23 SGu 2.47 23 SGu 2.47 23 STa 3.26
24 SG 1.43 24 SG 1.43 24 SBB8 3.49
52 F 2.03 52 F 2.03 52 STa2 2.12

T2 51|2 SC 0.19 51|2 SC 0.19 51|2 T2 1.55
53|2 I − 53|2 F −2.53 53|2 BB8 90◦ −2.10
54|2 J 270◦ −1.24 54|2 J 270◦ −1.24 54|2 J 270◦ −1.28

T3 31|52 SC 0.23 31|52 SC 0.25 31|52 SC 0.27
43|52 I − 43|52 SG 1.03 43|52 Ta 15.92

T4 41|352 I − 41|352 J 270◦ −1.07 41|352 I −
a The following abbreviations are used for the copula families: I: Independent; Ga: Gaussian; T: Student-T;

C: Clayton; Gu: Gumbel; F: Frank; J: Joe; Ta: Tawn; Ta2: Tawn 2.
b If a copula is a Survival copula, an ‘S’ is set in front of the abbreviations, e.g. SC: Survival Clayton
c If a copula is rotated by 90◦ or 270◦, it is indicated behind the abbreviation
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(a) Performance of the MST algorithm for Procedure 1

(b) Performance of the MST algorithm for Procedure 2

Figure F.3: CDF of the performance of the MST algorithm versus Brute Force fitting for Procedures 1
and 2.

The 2nd best-fitting vine copula of Procedure 3
The performance of the AIC for all matrices is visualized in Figure F.4. It shows that the best-performing
vine copula with an AIC of −355.77 is matrix 424. The 2nd best-performing vine copula with an AIC of
−353.16 is matrix 243.

Figure F.4: Plot of the performance of the MST algorithm and all possible matrices for Procedure 3.

In Figure F.5, the 2nd best-performing vine copula from Procedure 3 is shown. The vine copula has a
similar vine structure as the best vine copula of Procedure 1. The (conditional) copulas are found in
Table F.3.
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Figure F.5: 2nd best-fitting vine copula from Procedure 3.

Table F.3: The (conditional) copulas of the 2nd best-fitting vine copula of Procedure 3.

Tree Edge Copulaa, b, c θ
T1 31 SC 1.18

12 SC 1.37
14 Ta2 5.21
25 STa 2.12

T2 15|2 Ta 1.55
24|1 Ga 0.42
32|1 STa2 2.80

T3 35|12 BB8 270◦ −3.50
34|12 T 0.08

T4 45|312 Ta2 90◦ −5.77
a The following abbreviations are used for the copula families: I: Independent; Ga: Gaussian; T: Student-T; C: Clayton;

Gu: Gumbel; F: Frank; J: Joe; Ta: Tawn; Ta2: Tawn 2.
b If a copula is a Survival copula, an ‘S’ is set in front of the abbreviations, e.g. SC: Survival Clayton
c If a copula is rotated by 90◦ or 270◦, it is indicated behind the abbreviation
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G | SWAN Input File
This appendix contains one of the input files of the 25 propagated cases.

SWAN Input file case 1/25

PROJ ’EEMSDOLLARD’ ’O1’
SET LEVEL 5.36
MODE STAT
COORD CART
CGRID REG 0 25000 0 25000 25000 500 500 CIRCLE 360 0.03 1
INPGRID BOT REG 0 25000 0 500 500 50 50 EXC -9999
READINP BOT 1 ’z_mesh.bot’ 1 0 FREE
WIND 16.0 216
BOUN SHAP JONSWAP 3.3 PEAK DSPR DEGR
BOUND SIDE N CCW CON PAR 4.548729 10.598121 216 30
SETUP
QUAD
WCAP
BREA
DIFFR
NUM ACCUR STAT MXITST=50
POINTS ’loc’ FILE ’mypoints.loc’
TABLE ’loc’ HEAD ’table1’ XP YP HS TM01 TPS DIR DEP WATLEV WIND
BLOCK ’COMPGRID’ NOHEADER ’chris1.mat’ LAY 3 XP YP DEP HSIGN TM01 TPS DIR WIND
COMPUTE
STOP
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H | The Deterministic Design of the
Wide Green Dike

In this appendix, a deterministic design is created to act as a benchmark for the probabilistic design.
The design is created by performing Algorithm H.1. This algorithm is stated and performed below.

Algorithm H.1: Deterministic Design

Step 1: Acquire the design values {hd, Hs,d, Tp,s, ws,d} for the required failure probability of Pf,req =
1/37, 500 [1/year]. The design values result from evaluating the quantile functions of the water
level (GPD-distributed) and the concomitant variables, wave height, wave period and wind speed
(each is Gamma-distributed), at the Pf,req probability.

Step 2: Determine the governing wind direction wd,d for offshore-nearshore transformation. According
to Sweco (2021b), the North-West direction governs the water level set-up during storm conditions.

Step 3: The 95% value of the SSP5-8.5 SLR scenario for the year 2150, is added to the hd design water
level. This results in an extreme water level design value that includes SLR; hd,SLR.

Step 4: Transform hd,SLR to an 18-hour average water level hd,18 according to the assumed storm
progression from Figure 5.4. This is done by multiplying hd,SLR by the reduction factor r18.

Step 5: Perform the offshore-nearshore transformation in SWAN using the input data {hd,18, Hs,d, Tp,d,
ws,d, wd,d} to create the nearshore wave characteristics {Hs−p, Tp−p, θp}.

Step 6: Determine the angle of wave attack β of the nearshore waves at the three locations P1, P2 and
P3. Determine the reduced wave height and reduced wave period by multiplying Hs,p and Tp,d

with the influence factor fβ . The WGD orientation for the three locations is found in Table 5.1.

Step 7: Determine the wave steepness sop for the reduced waves from Step 6. Note, the wave steepness
must lie in the domain [0.01, 0.05] in order to be in the range of application of the failure mechanism.

Step 8: Determine the erosion volume Ve, erosion length Le, erosion depth de and the start of the
erosion pit relative to the 18-hour average water level dt at P1, P2 and P3. Use a safe erosion
coefficient of ce = 0.8 [−], resulting from expert judgement (Sweco, 2021c).

Step 9: Using the derived erosion profile at the governing location, determine the design crest height
hcr,d and dike profile.

In the deterministic design, the design values result from the required exceedance probabilities for the
design. The required failure probability is Pf,req = 1/37, 500 per year. The design values result from
evaluating the quantile functions of each variable for an exceedance probability of P(X > x) = Pf,req.
The design wind direction is North-West (Sweco, 2021b). In addition, the 95 percentile value of the
SSP5-8.5 SLR scenario is added to hd, resulting in hd,SLR. The water level hd,SLR is then reduced by
r18 to result in an 18-hour average water level during a storm event. The resulting design values are
shown in Table H.1.

Table H.1: Design values of the deterministic design.

hd Hs,d Tp,d ws,d wd,d hd,SLR hd,18

[NAP +m] [m] [s] [m/s] [◦N ] [NAP +m] [NAP +m]
8.38 6.44 12.94 29.32 315 10.70 9.95
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The values from Table H.1 are propagated by SWAN to result in the nearshore wave characteristics. The
propagated values for the locations of interest are found in Table H.2.

Table H.2: Propagated wave characteristics at points P1, P2 and P3 of the deterministic design.

Location Hs,p [m] Tp,p [s] θp [◦N ] fβ [−]
P1 2.61 4.23 132 −
P2 2.45 4.04 146 0.80
P3 2.31 3.90 158 0.88

The angle of wave attack β at each of the locations determines the reduction factor for the design wave
loads. The wave characteristics from Table H.2 are reduced by fβ . Using the reduced wave height,
wave period and wave steepness (limited between [0.01, 0.05]), the erosion profile at each location is
determined. The governing location for the deterministic design is P3, as found in Table H.3. Note, the
|β| > 90 for P1.

Table H.3: Erosion profile at point P3 of the deterministic design.

Location Ve [m3/m] de [m] Le [m] dt [m]
P3 22.60 1.45 23.45 2.03

The erosion profile at P3 results in a design crest height of hcr =NAP +11.24 meters and a design clay
layer thickness of de = 1.45 meters. Using the design crest height, the dike profile is constructed. The
new dike profile starts at the road at the inside of the current dike and is constructed outwards. The
following items are accounted for:

• The road is located at NAP +3.05 meter.

• There is a minimum crest width of 1 meter.

• The outer berm is located at NAP +3.55 meters and has a width of 3 meters with a slope of 1 : 20.

• The inner slope is αin = 1 : 3.

• The outer slope is α = 1 : 7.

The final design is shown in Figure H.1. The deterministic design resulted in a clay volume of 241.2
m3/m. This results in a total of 3,015,000 m3 of clay for the entire dike trajectory of 12.5 kilometres.
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Figure H.1: The deterministic design of the WGD.
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I | Additional results of the Vine-Based
Design

This appendix provides additional results and information on the vine-based probabilistic design. Tables
I.1 and I.2 show the input and output of the offshore-nearshore transformation.

Table I.1: Statistical summary of the input for the offshore-nearshore transformation.

Input Unit Min. 1st Median Mean 3rd Max. Standard
value Quartile Quartile value deviation

h [NAP +m] 2.87 3.86 4.22 4.33 4.68 10.58 0.66
Hs [m] 1.05 2.78 3.18 3.22 3.63 6.96 0.63
Tp [s] 4.13 7.39 8.06 8.11 8.77 13.42 1.03
ws [m/s] 2.91 11.09 13.02 13.26 15.17 34.94 3.05
wd [◦N ] 200a 251.2 269.6 274.0 292.7 360.0 30.8
a Note, wd shows where the wind direction comes from and is truncated between [200, 360] ◦N (clockwise)

Table I.2: Statistical summary of the input for the offshore-nearshore transformation.

Location & Unit Min. 1st Median Mean 3rd Max. Standard
Output value Quartile Quartile value deviation
Point 1
Hs−p [m] 0.43 0.72 0.76 0.77 0.82 1.56 0.08
Tp−p [s] 3.86 5.18 5.47 5.46 5.75 7.55 0.40
θp [◦N ] 76.4a 106.1 116.4 118.2 128.6 173.7 16.3
Point 2
Hs−p [m] 0.50 0.59 0.62 0.62 0.65 0.96 0.05
Tp−p [s] 4.11 4.75 4.89 4.91 5.05 6.67 0.22
θp [◦N ] 45.1a 77.6 90.4 93.8 106.7 173.4 22.0
Point 3
Hs−p [m] 0.49 0.63 0.67 0.67 0.70 1.05 0.05
Tp−p [s] 3.80 4.83 4.98 4.96 5.11 6.15 0.24
θp [◦N ] 54.6a 79.2 88.2 91.0 100.0 163.3 16.2
a Note, θp shows where the waves move towards in ◦N (clockwise)

In Figure I.1, the modelled erosion coefficient ce is found. The orange bars show ce modelled by a
truncated Normal distribution with a mean of µ = 0.54 and standard deviation of σ = 0.14 for the
boundaries [0.54, 1.00]. This distribution results from the Delta Flume results and expert judgement
in Sweco (2021c) and Deltares (2022b). The experts stated that for a deterministic design, an erosion
coefficient of ce = 0.8 is advised to be used. Moreover, the expert stated that it is unwise to design
a WGD for a ce outside the boundary of [0.54, 1.00]. A lower ce results in a stronger clay layer. A
ce < 0.54 corresponds to a very strong clay layer, which is also very well applied during construction. A
ce > 1.00 corresponds to an erosion-prone clay layer which is applied poorly during construction. The
experts stated that an ce between [0.54, 1.00] should be feasible for the locally ripened clay and a decent
construction plan. Comparing the results with a design that only accounts for ce = 0.8 shows that the
clay layer thickness increases with 5 centimetres.
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Figure I.1: The modelled erosion coefficient ce for n = 1, 000, 000 samples.

The 18-hour water level and offshore wave height combinations for which the probabilistic design failed
are shown in Figure I.2a. Figure I.2b shows the 18-hour water level and reduced nearshore waves from
the offshore-nearshore transformation and the influence factor fβ . Notice that there are two failures that
solely depend on h18 since Hs = 0.

(a) The sampled offshore wave height Hs versus 18-hour av-
erage water level h18. The red squares indicate the combin-
ations, for which the probabilistic design failed

(b) The reduced nearshore wave height Hs versus 18-hour
average water level h18. The red squares indicate the com-
binations, for which the probabilistic design failed

Figure I.2: The 18-hour average water level and wave height combinations for which the probabilistic
design failed.

Tables I.3 and I.4 show the statistical summaries of the vine copula samples and reduced nearshore waves,
for which the probabilistic design failed. Comparing the tables and Figure I.2b shows that h18 is the
dominant cause for failure. The large h18 causes the erosion profile to reach the design crest. Furthermore,
Table I.3 clearly shows that the dominant wind direction for the failures is North. This corresponds to
the local knowledge in Sweco (2021a). The dominant wind direction for the most significant waves is
North. For the water level set-up, this is slightly more from the North-West. In the vine copula samples,
the North wind direction is most predominant for both the most significant water levels and wave heights,
as found in Figure I.3. The figure shows that most failures are for wind direction between 350 and 360
◦N (clockwise).
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Table I.3: Statistical summary of the 18-hour average water level h18, offshore wave height Hs,o and
period Tp,o and wind speed ws and direction wd for which the probabilistic design failed.

Variable Unit Min. 1st Median Mean 3rd Max. Standard
value Quartile Quartile value deviation

h18 NAP +m 8.85 9.39 9.53 9.55 9.75 10.58 0.43
Hs,o m 2.23 5.83 6.16 5.94 6.58 6.96 1.00
Tp,o s 8.57 11.73 12.49 12.15 12.76 13.40 1.13
ws m/s 6.48 20.94 25.97 23.89 27.99 31.06 5.85
wd

◦N 222.5 355.7 358.7 348.3 359.7 359.9 31.5

Table I.4: Statistical summary of the reduced nearshore wave height Hs and period Tp for which the
probabilistic design failed.

Variable Unit Min. 1st Median Mean 3rd Max. Standard
value Quartile Quartile value deviation

Hs m 0 0.81 0.82 0.76 0.84 0.89 0.23
Tp s 4.82 5.23 5.28 5.26 5.32 5.51 0.27

(a) The sampled wd versus the sampled h18 (b) The sampled wd versus the reduced wave heights Hs

Figure I.3: The combinations of wind direction wd and 18-hour average water level h18 and reduced wave
height Hs that led to the failure of the probabilistic design.
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Figure I.4: The probabilistic design of the WGD for the year 2150. A water line is drawn to emphasize the seaward side of the dike.
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J | SSP5-8.5 Sea Level Rise scenario
This appendix shows the accounted SLR distributions for the SSP5-8.5 scenario. The SLR distributions
are selected by fitting the percentiles provided by KNMI (2021) for the SSP5-8.5 scenario of the IPCC
(2022). For the years 2050 to 2100, five percentiles are provided. The 5th, 17th, 50th, 83rd and 95th

percentiles. Three percentiles are provided for the years 2110 up to 2150, namely the 17th, 50th and 83rd

percentiles. Figure 2.9 show that the mean of the distribution is not in the middle of the confidence in-
terval. Therefore, these percentiles are fitted by Log-Normal distributions. The fits from the Log-Normal
distributions also provided better approximations than other distributions; Normal, Weibull and Gamma.

The resulting parameters are found in Table J.1.Note, that for a Log-Normal distribution µ and σ are
not the mean and standard deviation, but the parameters of the distribution.

Table J.1: Log-Normal distribution parameters of the SLR for different years.

Log-Normal Sight-year for SLR
Year 2050 2060 2070 2080 2090 2100
µ −1.24 −0.97 −0.75 −0.55 −0.37 −0.23
σ 0.30 0.27 0.28 0.27 0.26 0.25
Year 2110 2120 2130 2140 2150
µ −0.10 0.00 0.09 0.16 0.25
σ 0.27 0.31 0.32 0.35 0.36

In Figure J.1, the PDFs of the distributions are shown. In the figure, it is clearly shown that the
confidence interval of the distributions becomes larger over time. It also shows the shift of the mean of
the distribution over time towards a larger SLR.

Figure J.1: The considered Probability Density Functions for different years for the SSP5-8.5 scenario.
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K | Selected Adaptive Design Strategy
The design and construction phases of the selected adaptive design strategy, Strategy 2, are shown in
Figure K.1. The 1st phase is shown in the red dashed-dotted line, the 2nd phase by the orange dashed
line and the 3rd phase by the solid black line. The solid bold black line represents the current dike. This
phase has a hcr,d =NAP +8.38 meters. The 2nd phase has a hcr,d =NAP +8.44 meters. The final design
has a hcr,d =NAP +9.25 meters. The figure shows that the additional intrusion into the Natura 2000
area is 0.93 meters from the 1st to 2nd phase and 0.72 meters from the 2nd to 3rd phase.
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Figure K.1: The cross-section and construction phases of the selected strategy, Strategy 2.
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