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Abstract

Physics-informed machine learning is a novel approach to solving flow problems with physics-
informed neural networks (PINNs), that combines physical knowledge and machine learning.
This study aims to investigate the potential of the application of PINNs in fluid mechanics
problems by solving two practical flow problems.

The first case considers the reconstruction of the full, time accurate flow fields with PINNs
from partial data in the wake of an airfoil with periodic vortex shedding. The results have
shown a decent success in flow reconstruction case, but has trouble maintaining a high ac-
curacy at higher time values. This is likely due to the lack of a mechanism forcing a time
marching approach to prevent information flowing in the opposite direction of the positive
time axis.

The second case attempts to train PINNs on a steady flow problems with parametric NACA
airfoils first to devise a strategy for training PINNs on a parameteric airfoil and show its feasi-
bility. This is followed by using the found strategy to train PINNs for the more complex flow
cases with PARSEC airfoils to use them as fast surrogate flow solvers, while still producing
the full flow fields with a comparable accuracy to conventional CFD.

Overall, the flow fields inferred by the PINNs have shown a good qualitative match with the
OpenFOAM validation data, even in the most complex case with a PARSEC airfoil, which
makes them sufficiently accurate as a surrogate flow solver for a preliminary design opti-
mization. These results show not only the technical feasibility of PINNs for fluid mechanics,
but also a practical value with accelerating the computation time up to a factor of 3.7 when
accounting for the training time and producing the OpenFOAM training data.
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Nu Number of training samples

p Pressure

t Time

u Horizontal velocity component

upred The solution predicted by the PINN

utrue The true solution that upred needs to match

v Vertical velocity component

x Horizontal spatial coordinate

y Vertical spatial coordinate
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Chapter 1

Introduction

The combination of deep learning and availability of big data in recent years have brought a
revolution to solving problems in multiple fields and industries. Applications of deep learning
can already be found in society, such as the digital assistant on a smartphone or self-driving
electric cars. The fields of science and engineering have been less eager to adopt deep learning,
because the massive amount of data that is required for training a deep neural network is
often difficult and expensive for physical problems.

However, one of the recent developments in deep learning, physics-informed machine learning,
appears to be suited for such problems. A physics-informed neural network, or PINN, can
draw training data from the available physical knowledge on the problem of interest, while
regular deep learning will require a large amount of labelled data on the solution to train
a deep neural network to a sufficient degree to infer an accurate solution [22]. This thesis
will focus on the application of PINNs in fluid mechanics and investigate the case of flow
reconstruction of an fixed airfoil in transient flow and a parametric airfoil in steady flow in
detail. The potential of PINNs in solving fluid mechanics problems will be explored with
these two problems and the current capabilities and limits of PINNs are demonstrated to
evaluate the merits of PINN use in fluid mechanics.

This report starts with a summary of the state-of-the-art of physics-informed machine learning
and airfoil optimization, followed by the formulated research questions and objective. Next,
the relevant methods and theories to this work will be explained in detail and the used
software described. Following this, process and results of the airfoil flow reconstruction case
using a PINN will be described. The next case of solving a parametric airfoil in steady flow
with PINNs is divided in two parts: the first part will focus on verification and validation
with a NACA 4-digit airfoil parameterization and the latter part will expand the degrees of
freedom of the problem with a PARSEC airfoil representation and uses it for numerical design
optimization. Finally, the report will end with the conclusions on the findings of the previous
sections.
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Chapter 2

Literature review

The literature review will start by summarizing the current state-of-the-art of PINNs. Based
on this, the research goal an questions are formulated, followed by the relevant theory, methods
and software tools used during this project.

2.1 State-of-the-art

Conventional computational fluid dynamics (CFD) has come a long way in solving flow prob-
lems governed by the Navier-Stokes equations. However, integrating CFD in the design
process for problems with the complexity of industrial applications is often not seamless as
meshes at that level are time consuming to generate and on top of that, every design change
requires a new mesh and simulation [6]. In the recent years, great progress has been made
in machine learning and enabled us to solve problems in a way we could not do before. A
particular class of machine learning algorithms, deep learning, with the availability of big
data has already transformed some fields in the industry. Examples are big data analytics
[31], speech recognition and computer vision [10].

Deep neural networks, belonging to the family of deep learning architectures, can approximate
any function if it is deep and large enough according to the universal approximation theorem
[17]. In the field of fluid mechanics this can be used to directly solve non-linear problems,
without simplifying the problem by making assumptions beforehand or applying linearization
[36]. However, the predictive capabilities of the neural network is dependent on the quality
and quantity of the available training data. Obtaining high quality data in the necessary
amount to train a neural network by performing numerical and experimental simulations is
expensive and is detrimental to the cost-effectiveness of using machine learning in practice.
Another issue with a purely data-driven model is that it may lead to physically inconsistent
predictions, while fitting the training data well.

MSc. Thesis Dobbin Huang



4 Literature review

A promising solution to this problem is the recently introduced physics-informed neural net-
work (PINN) [36], which can use our knowledge on flow physics to aid the training of the
neural network. This method creates an additional loss term by using the partial derivatives
of the neural net with respect to the inputs to construct an additional network to enforce the
governing Navier-Stokes equations on collocation points sampled from the solution domain.
These partial derivatives are obtained at a minimal additional computational cost by using
automatic differentiation [3]. Application of PINNs on benchmark problems yielded promis-
ing results for cases such as the Schrodinger equation and Korteweg-De Vries equation in [36]
and flow past a cylinder in [6], but its value is mainly academic and has few practical uses so
far.

Despite that, PINNs have the potential to bring machine learning to the fields of physics and
engineering and become a new class of solver alongside the current methods as they show
their merits in problems where conventional methods struggle. They are especially effective
in solving ill-posed and inverse problems, which require data assimilation [22]. At this time,
current numerical grid-based solvers do outperform PINNs in well-posed forward problems,
when the training time is taken into account. However, a trained network is able to predict
the solution in a mere fraction of a second. The reduction of the solution computation time
to mere fractions of a second opens the door to many interesting applications that were not
possible with conventional methods. An instantaneous solution feedback could be used in
interactive design space exploration and numerical optimization. Another application is in
real-time simulations where this near instantaneous feedback is necessary, such as real-time
evaluation of aerodynamics for autonomous vehicles, robotic vision and control or digital
twins.

Another advantage of PINNs is the ability to integrate the data from simulations and ex-
periments with the information of the known physics seamlessly. This is useful when the
problem has both imperfect data and model, and research has shown that even then mean-
ingful results can be obtained [37]. As a PINN is a mesh-free solver, it can deal with complex
domain geometries and even moving-domain problems without trouble [47]. PINNs also offer
strong generalization when not a large amount of data is available by using the physics of
the problem as constraints or for data augmentation. This allows the training of a PINN
with only a small amount of data available. Examples of research on practical applications
of PINNs can be found in different fields, such as quantum chemistry [34], material sciences
[27] and geophysics [25].

The great potential PINNs show for solving problems also applies to problems in fluid mechan-
ics, but examples of these in literature are mostly limited to academic benchmark problems.
This work will take a step beyond that and investigates the application of PINNs in practical
fluid mechanics problems and specifically, the problem of an airfoil design optimization and
flow reconstruction. The airfoil design optimization problem will consider a parameterized
airfoil geometry in a steady freestream flow, which will be optimized for a objective function
that is dependent on the aerodynamic coefficients. The flow reconstruction problem attempts
to reconstruct the full flow fields of a transient flow by training a PINN on measurement data
that has a limited spatial coverage of the computational domain and using the trained PINN
to infer the complete time-accurate flow fields.
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Numerical airfoil design optimization is currently often done with the help of an adjoint
reduced order model [26] or a kriging surrogate model [30] to reduce computation time.
The flow reconstruction problem is commonly handled in a similar way, by linking sensor
measurements to a reduced state using a reduced-order model [30]. These approaches reduce
the full order model to a simpler model that is much cheaper to solve, but these simplifications
lead to a loss of information making analyzing and interpreting the results more difficult.

If trained PINNs are used here instead as surrogate models, they will still be able to predict
the full velocity and pressure fields, while also reducing the computation time of a function
evaluation to less than a second. Training of a PINN may not be less computationally
expensive currently than conventional CFD solvers when trying to obtain the solution for one
specific problem with fixed parameters, but a big advantage is the speed of inferring multiple
solutions using a trained network for a parametric problem. This means that when a PINN is
trained to predict the solution of a flow problem with a parameterized geometry, any solution
within the parameter ranges could be inferred in a fraction of a second without the need for
generating new meshes for every new geometry. In the flow reconstruction case with a PINN,
it will not be needed anymore to construct a reduced order model that is difficult to physically
interpret. Instead the PINN will attempt to solve the flow reconstruction directly using the
limited measurement data and boundary conditions.

2.2 Research Question, Aim/Objectives and Sub-goals

This work is an exploratory research in the application of PINNs in fluid mechanics. The
maturity of PINN technology is still low, so there are still many questions left unanswered.
The basic principles are observed and reported and some potential applications have been
studied by academics. Examples of real-world use in relevant and practical problems are few.
This work will investigate the possibilities of using PINNs to solve fluid mechanics problems
and will try to demonstrate it with some specific examples and record it in detail.

The flow cases will be set up under the assumption of incompressible and laminar flow with
Reynolds numbers of 5000 and below. We limit ourselves to these low Reynolds numbers
because PINNs have so far been unable to deal with turbulent flows. As a first case, the flow
reconstruction will be considered for an unsteady flow case of an airfoil at a high angle of
attack with periodic vortex shedding in the wake. An attempt will be made to train a PINN
to predict a time-accurate solution, which would reconstruct the flow in effect. Following this,
parametric airfoil cases with NACA and PARSEC airfoil parameterization will be attempted
in a steady flow, where the trained PINN will be able solve the full velocity and pressure
fields of all the airfoil geometries within the parameter bounds. The practical use of this
can be found in a fixed wing design of a Micro Air Vehicle (MAV). MAVs are a class of
small miniaturized UAVs with a size of around 10 centimeters and fly at these very low
Reynolds numbers where viscous forces dominate the flow. The maximum lift-drag ratio sees
a large decrease for conventional airfoils below a Reynolds number of 10,000 [49] and the
aerodynamic efficiency of similar sized insects has not been successfully replicated with man-
made machines. PINNs could bring a more efficient way of exploring and designing airfoils
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for such vehicles, while simultaneously allowing analysis of the full velocity and pressure fields
to improve our understanding of the aerodynamics at these low Reynolds numbers.

2.2.1 Research Objectives

The main research objective of this thesis is:

“To investigate the potential of physics-informed neural networks (PINN) as a
viable method for solving relevant real-world fluid mechanics problems by per-
forming PINN training and usage on the cases of a parameterized airfoil geometry
in steady free stream flow and flow reconstruction of a fixed airfoil geometry in
transient flow from limited measurements.”

2.2.2 Research Questions

Several research question can be formulated and need to be solved in reaching the project
goal. The research questions can be split between the ones related to the creation of the
PINN and the usage.

� How is a PINN trained as a solver for practical flow problems and what are its limits?

– How much data will be needed to train a PINN on the considered problems?

– How does the distribution of the sampled data affect the quality of the PINN
predictions?

– What are the limitations on the type of flow problems that PINNs can solve?

� How well is a PINN able to function as a surrogate model for a flow problem?

– What are the practical limitations of a PINN on the degrees of freedom and pa-
rameter ranges of a high dimensional parameterized problem?

– How does it compare to conventional CFD methods in accuracy?

– How effective is a PINN in predicting the transient solution in an unsteady prob-
lem?

– How well can a trained PINN perform in an airfoil geometry design optimization
in terms of speed?

– What is an appropriate optimization method when using a PINN as the flow solver?
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2.3 Theory and Methods

This section describes all the theory, methods and software that are used in this work to
explore the applications of physics-informed neural networks in fluid mechanics.

2.3.1 Deep Learning

A feed-forward fully-connected neural network approximates the solution of a problem that
is governed by a partial differential equation (PDE) and its boundary and initial conditions.
To train the neural network, a loss function needs to be constructed in order to quantify how
well the neural network approximates the solution of the PDE and constraints of the problem.
Then, a mean-squared error loss function can be formulated as Equation 2.1

MSEu =
1

Nu

Nu∑
i=1

|uipred − uitrue|2, (2.1)

where Nu is the number of training samples, utrue is true solution given by the training data
and upred is the solution inferred by the neural network. Minimization of this loss function will
produce a set of weights and biases θ that attempts to make the neural network an accurate
predictor for the PDE solution. As the trained neural network is able to infer a solution for
any input within the boundaries of the problem, it is a grid independent solution method of
the PDE.

The structure of the neural network for a 2D flow problem is drawn in Figure 2.1. The
network is a computational graph, where the inputs are propagated through the network in
one direction till it reaches the output layer.

Here, the input layer has the spatial and temporal variables x, y and t. The output layer
has the velocity and pressure variables u, v, p. In between the input and output layer, are
the hidden layers consisting of neurons with non-linear activation functions. Each neuron
of the hidden layer in a fully-connected neural network receives an input from every neuron
of the previous layer and gives and passes its out put to every neuron of the next layer.
When the neurons of an hidden layer are grouped together, the equation for this is given by
Equation 2.2.

ϕi(xi) = σ(Wixi + bi) (2.2)

Here, ϕi is the i
th layer of the network, xi is the input of this layer, σ is the activation function,

Wi and bi are the trainable weight and bias. The layers of the network with n layers can
be put together as a function composition as in Equation 2.3 to obtain the equation for the
neural network [16].

unet(x; θ) = Wn{ϕn−1 ◦ ϕn−2 ◦ · · · ◦ ϕ1 ◦ ϕE}(x) + bn, (2.3)

where x in the network input, θ are the trainable parameters θ = {W1,b1, · · · ,Wn,bn} and
ϕE is input encoding layer set to the identity function. Besides the trainable parameters of
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Figure 2.1: Structure of a fully-connected neural network.

the neural network, there are many other parameters that can be tuned outside of training
and affects the network performance. The optimal values for these so-called hyperparameters
are usually not easily learned with an optimization algorithm, but need manual tuning. Some
important hyperparameters will be explained below.

The network size of a neural network decides the capacity of the network. A larger network
will be able to approximate more complex systems and larger solution spaces. The capacity of
a neural network can be modified by changing the amount of neurons per hidden layer (width)
and the number of hidden layers (depth). There is no clear method currently to estimate the
required network width and depth beforehand and it needs to be determined experimentally.
However, previous research has shown that increasing the depth is a more effective way of
increasing the network capacity compared to increasing the width in general [11].

The activation function acts on the input at every neuron in the network. It is required
for the activation function to be non-linear in order to effectively create a network to solve
complex non-linear problems. Historically, the tanh (tanh(x) = (ex − e−x)(ex + e−x)−1) and
sigmoid (σ(x) = (1+ e−x)−1) functions were popular choices for their infinitely differentiable
property, which makes them suitable for gradient-based optimization methods. Later on,
it has been mostly replaced in the deep learning community by the Rectified Linear Unit
(ReLU) (ReLU= max{0, x}), because it makes networks easier to train despite its lower order
of continuity [15]. Figure 2.2 shows the curves of the aforementioned activation functions.

The Swish activation function has been gaining popularity lately as it offers consistent im-
provements over the ReLU function in a number of challenging benchmark problems [38].
This function is defined as x · σ(βx), where σ(x) = (1 + e−x)−1 is the sigmoid function and
β is a constant or trainable parameter. Depending on the value of β, the Swish function
becomes the scaled linear function f(x) = x

2 at β = 0 and becomes the ReLU function as
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Figure 2.2: Graph of the tanh, sigmoid and ReLU activation functions.

β → ∞. Thus, the Swish function can be viewed as a function that interpolates between the
linear function and the ReLU function as can be seen from Figure 2.3, which shows the curve
for different values of β.
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Figure 2.3: The Swish activation function for different values of β.

The trainable parameters of a neural network needs to be found in order to solve the problem.
For this, training data is needed, which is a set solution samples for different inputs. A neural
network can be trained with the training data using a numerical optimization algorithm to
find the values of the trainable parameters that result in a prediction that is close to the
validation samples. Amongst the many available iterative methods, which are extensively
covered in detail in books such as [21], the Adam optimizer is one of the most popular for
deep learning applications and has become the default choice over the years. This is a first-
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order gradient based optimizer for stochastic objective functions, which can handle problems
with large amounts of data and parameters in a computationally efficient way and compares
favorably to other stochastic optimizers with little tuning of its hyperparameters required
[23].

An important hyperparameter related to the optimizer is the learning rate or step size. The
value of this parameter decides how fast the network learns and its choice is a trade-off
between learning speed and accuracy: if the step size is too large, it may overshoot the
minimum between iterations and prevent it from finding an accurate enough minimum.

Machine learning deals often with very large data sets, which may exceed the available memory
on the GPU. For this reason the training data cannot be propagated all at once through the
network every iteration, but instead mini-batches are used. The total training data set will
be divided up into these mini-batches and the network is trained on those one at a time. This
approach sits in between the full-batch and the stochastic approach. Besides the necessity of
mini-batches in the case of physical memory limits, it offers faster network training compared
to the full-batch method in general [5]. As the weights are updated every iteration, the
mini-batch method updates its weights more frequently compared to the full-batch method
resulting in faster training. However, smaller mini-batches have the downside of less accurate
gradients and less stable training. When the whole data set has been propagated through the
network in this piece-wise manner, an epoch is reached. The epoch size is the number of full
passes of the training data set. Full passes need to be repeated till the loss value has reached
the convergence criteria.

2.3.2 Physics-Informed Machine Learning

A regular deep neural network will need a large amount of data for training to find the
trainable weights and biases to obtain a network that is able to make accurate predictions of
the solution of a PDE. Such a large amount of data is difficult to obtain for fluid mechanics
problems, because the amount of publicly available experimental and simulation data remains
limited. This makes a data-driven machine learning approach a very resource intensive method
when the training data needs to be gathered by yourself in the required quantities and often
not a practical method in this context. However, in problems involving physics such as fluid
mechanics problems, there is the vast amount of knowledge available on the physics governing
the problem. A PINN is able to leverage this knowledge to partially or entirely use this as a
substitute for the training data. Physical problems can be categorized based on the available
data and known physics as shown in Table 2.1.

Table 2.1: The 3 different categories of physical problems.

Small data Some data Big data

Available data low medium high
Known physics high medium low

Physics-informed machine learning can seamlessly integrate data from different sources with
the governing physical equations resulting in a trained PINN that can predict a solution that
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respects the underlying physics of the problem. For fluid mechanics problems a trained PINN
can predict the velocity and pressure fields of a flow problem, thus acting as a surrogate
model for conventional CFD that predicts the solution at orders of magnitude lower cost.
Also more complex flow problems as a multi-physics conjugate heat transfer problem with
a parameterized heat sink can be solved with PINNs [16], making it an efficient approach
to solving fluid mechanics problems when the computation time of the multitude of CFD
simulations exceed the training time of a PINN on the parameterized problem. In such cases
it has been demonstrated that computations can be accelerated up to 135,000x compared to
OpenFOAM [16].

Besides accelerating the solution of problems that can be solved by conventional means, PINNs
also feature the ability to solve problems that are difficult or impossible to solve before. Such
potential applications include the ill-posed problem of finding unknown parameters from
flow visualization without boundary conditions [37], 3D flow reconstruction from 2D data
of the flow [6] and determining the 3D velocity and pressure fields from 3D temperature
measurements [7].

Structure of a PINN

A physics-informed neural network is obtained when an additional part is added to compute
the residuals of the governing PDE. The PDE is not only a function of the output, but
also their derivatives with respect to the inputs, which can be computed at a low cost with
automatic differentiation. These residuals are then used to construct an additional loss term
that contributes to the total loss of the network. When the total loss is minimized during
training, the PINN will not only try to match its prediction to the training data of the solution,
but also tries to satisfy the governing equation on the interior collocation points where the
residuals are evaluated. So, the residual network provides extra training information on the
solution domain and also steers the network away from non-physical solutions during training
that do not satisfy the governing equations. In the case of incompressible flow, the Navier-
Stokes equations take the form of Equation 2.4.

ux + vy = 0 (2.4a)

ut + (uux + vuy) = −px + ν(uxx + uyy) (2.4b)

vt + (uvx + vvy) = −py + ν(vxx + vyy) (2.4c)

Then, Equation 2.5 defines the equations for the residual network.

f1 := ux + vy (2.5a)

f2 := ut + (uux + vuy) + px − ν(uxx + uyy) (2.5b)

f3 := vt + (uvx + vvy) + py − ν(vxx + vyy) (2.5c)

The derivatives for Equation 2.5 can be obtained by automatic differentiation, which a method
of computing derivatives by repeatedly using the chain rule and features a low computational
cost for deep neural networks [3]. This network will then be able to compute the residuals on
the collocation points Nf to set up the additional loss term in Equation 2.6.

MSEf =
1

Nf

Nf∑
i=1

|f(tiu, xiu, yiu)|2 (2.6)
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The final loss term is then the sum of the losses of Equation 2.1 and 2.6 as written in
Equation 2.7.

MSE = MSEu +MSEf (2.7)

In the case of surrogate modeling with a PINN without the use of simulation and experi-
mental data, all training information will need to come from the available physical knowledge
of the problem. Information about the solution is only present on the initial condition and
boundary conditions. These are uniformly sampled to create one part of the training data.
No information on the solution will be available in the interior of the solution space, so the
training of the PINN will have to rely on the collocation points in the interior as the true
value of the residuals of the governing equations are zero and will form the other part of the
training data. This method of training a physics-informed neural network without external
data on the solution has shown to be working on academic benchmark problems [36].

Figure 2.4 shows the structure of a PINN algorithm of a 2D flow problem, governed by the
Navier-Stokes equations.

Figure 2.4: Fully connected PINN with the Navier-Stokes residuals for the residual network.

On the left side is the neural network with x, y, and t inputs and the velocity and pressure
fields u, v and p as outputs. In between this input and output layer, the hidden layers are
present consisting of the non-linear activation functions σ. Connected to the output layer,
is the residual network where the required partial derivatives are computed for the Navier-
Stokes residual equations. Both the output layer and the residual network will have a loss
with the total loss being computed with Equation 2.7. While this error is larger than the set
convergence criteria the training will continue.
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2.3.3 Airfoil Design Optimization

One of the investigated practical application of a trained PINN is using it for an airfoil design
optimization problem.

Numerical optimization of a design problem is performed by framing the problem as a min-
imization problem. This minimization problem will have an objective function I, where its
minimization will result in desirable characteristics of the airfoil design and is a function of
the design parameters. Equation 2.8 is the standard form of an optimization function under
box constraints [43].

min
x

I(x)

s.t. li ≤ xi ≤ ui
(2.8)

In an airfoil optimization problem, the objective function will be an function of the aero-
dynamic coefficients, which in turn are functions of the airfoil design parameters. The aero-
dynamic coefficients for an airfoil can be computed by integrating the pressure and friction
around the airfoil [2].

Equation 2.9 and Equation 2.10 are the formulas for the pressure and friction coefficients
which are integrated using Equation 2.11 and Equation 2.12 to obtain the normal and axial
force coefficients.

cp =
p− p∞
1
2ρ∞V 2

∞
(2.9)

cf =
τ

1
2ρ∞V 2

∞
(2.10)

cn =
1

c

[∫ c

0
(cp,l − cp,u)dx+

∫ c

0
(cf,u

dyu
dx

+ cf,l
dyl
dx

)dx

]
(2.11)

ca =
1

c

[∫ c

0
(cp,u

dyu
dx

− cp,l
dyl
dx

)dx+

∫ c

0
(cf,u + cf,l)dx

]
(2.12)

The lift and drag coefficients can be computed from the force coefficients and the angle of
attack α with Equations 2.13 and 2.14.

cl = cn cosα− ca sinα (2.13)

cd = cn sinα− ca cosα (2.14)

The design parameters are defined by a parametric representation of the airfoil, such
as the NACA 4-digit airfoils. The airfoil geometry of this family of airfoils are defined by 3
parameters.
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The numerical optimization itself can be performed with a numerical optimization algorithm
that attempts to find the values for the design parameters that minimize the objective func-
tion. During this thesis, the L-BFGS-B implementation of SciPy will be used for airfoil op-
timization, which is a variation of the iterative Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm for solving non-linear optimization problems with the ability to prescribe simple
box constraints on its design parameters [4].

Numerical optimization of an airfoil requires a multitude of function evaluations of the ob-
jective function because of the iterative nature of the optimization method. If a high fidelity
solution is required of the aerodynamic coefficients, CFD will be needed to resolve the Navier-
Stokes equations to obtain the velocity and pressure fields to compute the lift and drag co-
efficients. These are computationally expensive to perform when hundreds of iterations are
required, so in practice the problem will be simplified or a surrogate model will be used.

NACA 4-digit airfoils

The NACA 4-digit family of airfoils is well known and extensively tested since its initial
development. Many test results are available such as [19], which makes these airfoils suited
for validating the PINN results. The geometries of this family of airfoils are defined by three
intuitive parameters, which are directly related to its geometry. These are summarized in
Table 2.2.

Table 2.2: Summary of the NACA 4-series geometrical parameters.

parameter description

m maximum camber as a percentage of the the chord length
p location of the maximum camber as tenths of the chord
t maximum thickness as percentage of the chord

The chord thickness is given by Equation 2.15.

yt = 5t
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1015x4

)
(2.15)

The camber line is described by Equation 2.16.

yc =


m

p2
(2px− x2) 0 ≤ x ≤ p

m

(1− p)2
[(1− 2p) + 2px− x2] p ≤ x ≤ 1

(2.16)

Then, Equation 2.17 the coordinates of the airfoil upper surface (xU , yU ) and lower surface
(xL, yL).

xU = x− yt sin θ, yU = yc + yt cos θ (2.17a)

xL = x+ yt sin θ, yL = yc − yt cos θ (2.17b)
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Here, θ is given by Equation 2.18.

θ = arctan
dyc
dx

,
dyc
dx

=


2m

p2
(p− x) 0 ≤ x ≤ p

2m

(1− p)2
(p− x) p ≤ x ≤ 1

(2.18)

PARSEC airfoil

While the equations of the NACA 4-digit series describe airfoil geometries with parameters,
they are all existing airfoils and will not be of much use for airfoil design optimization as
the result will be certainly an existing one with well documented characteristics. Thus, a
different parameterization method is needed with more degrees of freedom that can describe
a larger variety of airfoil shapes. The PARSEC method from [40] is a good candidate for
this. A comparison between airfoil parameterization schemes has been studied in [42], where
the PARSEC method scores well in most of their rating criteria. The main advantage is
the intuitiveness of the PARSEC method, where its eleven parameters are describing the
main geometrical features of the airfoil directly. This makes it suitable for aerodynamic
optimization because it enables physical understanding of the effects caused by the changes
in the geometric parameters, unlike methods with abstract parameters that have no clear
meaning. The PARSEC parameters are summarized in Table 2.3 and shown in Figure 2.5.

Table 2.3: Summary of the eleven geometrical PARSEC parameters.

PARSEC parameter Geometry parameter Description

p1 rle leading edge radius
p2 xup upper crest horizontal position
p3 zup upper crest vertical position
p4 zxx,up upper curvature at crest position
p5 xlo lower crest horizontal position
p6 zlo lower crest vertical position
p7 zxx,lo lower curvature at crest position
p8 zte trailing edge vertical position
p9 ∆zte trailing edge thickness
p10 αte trailing edge direction
p11 βte trailing edge wedge angle

The vertical airfoil coordinates are described by the polynomial in Equation 2.19.

z(x) =

6∑
n=1

anx
n− 1

2 (2.19)

The coefficients an for the upper side of the airfoil are found by solving the system of equations
in Equation 2.20, using the 11 PARSEC parameters [46].
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Figure 2.5: PARSEC parameters on an airfoil (adapted from [40]).
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The coefficients of the lower side are obtained in a similar way using Equation 2.21.
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2.3.4 Software

The success of deep learning in recent years have led to the rapid development of open-source
deep learning software tools. Two well known machine learning libraries are Tensorflow [1]
and PyTorch [33]. Use of such software tools requires sufficient computing power as training
deep neural networks is a time consuming process. GPU computing is available for most
of the popular software tools and have shown advantages in performance compared to CPU
based computing for deep learning [39]. NVIDIA SimNet [16] will be used as a software tool
to create and train the PINNs. This is a PINNs framework with a TensorFlow backend that
enables users to rapidly create, train and use physics-informed neural networks. This choice
has been made as it is actively developed and contains more features than competing projects
as SciANN [14] and DeepXDE [28] because their use has only been demonstrated on simple
1D and 2D benchmark problems.
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SimNet is distributed as a Docker image, so it is run in a Docker container on a Ubuntu
workstation system with a RTX8000 GPU. OpenFOAM is used to perform conventional CFD
simulations to produce training and validation data for the PINN solver. Meshes have been
generated with gmsh. The simulations are run on a Intel(R) Xeon(R) CPU E5-2660v3 with
20 threads in a cluster. Visualization of the flow field results are performed with Paraview.
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Chapter 3

Flow reconstruction

The first case to be investigated is the flow reconstruction of the transient flow solution of a
airfoil in free flow from limited measurement data. The airfoil is at an angle of attack of 25
degrees in an incompressible flow with a chord-based Reynolds number of Re = 200 to induce
vortex shedding as in [30]. First an OpenFOAM simulation of this case will be performed to
generate a data set to use for reference. A part of this data will be taken in order to emulate
measurement data to use in PINN training. Finally, the predictions of the trained PINN will
be compared to the OpenFOAM data to evaluate its performance.

3.1 OpenFOAM simulation

First, a mesh needs to be created of the computational domain. The mesh is created with
gmsh and is unstructured for the most part. It counts 48006 nodes and 133206 elements and
is shown in Figure 3.1.

This case is modeled in a non-dimensional way by choosing a value of 1 for the freestream
velocity u∞ and the airfoil chord length L. Then, the chord-based Reynolds number will only
depend on the viscosity ν as Re = u∞L

ν = 1
ν .

The simulation is performed with the IcoFoam solver at a Reynolds number of Re = 200 by
setting the viscosity to ν = 0.005. The rectangular computational domain of the OpenFOAM
simulation measures [−10, 20] × [−10, 10]. The airfoil is the optimized PARSEC geometry
from the last chapter with unit length 1. Inlet velocity is u = 1 and v = 0, top and bottom
boundary conditions are set to slip, pressure outlet is fixed at p = 0 and airfoil has the no-slip
condition. Time range is t = (0, 35) with a ∆t = 0.0008. Data is recorded for every 50 time
steps, so the recorded data has a time step of ∆t = 0.004 with 75 snapshots in total. A
snapshot of the u velocity is shown at t = 30 in Figure 3.2 where periodic vortex shedding
can be observed.
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Figure 3.1: Mesh for the transient OpenFOAM simulation of vortex shedding of an airfoil.

Figure 3.2: The u-component of the velocity field at t = 30.

The vortex shedding frequency can be observed from Figure 3.3 which shows the lift coefficient
fluctuating with time at approximately 0.35 hz.

The data will be limited to a time range of 3 in total from t = 30.00 to t = 33 to have a full
period of vortex shedding. At t = 30.00 the full velocity and pressure fields will be used as
an initial condition for the PINN. The time steps t = 30.04 to t = 33.00 with ∆t = 0.04 will
only have the pressure measurements on the airfoil surface and velocity and pressure data in
a square behind the airfoil.
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3.2 Flow Reconstruction with PINNs 21

Figure 3.3: Lift and drag coefficient as a function of time.

3.2 Flow Reconstruction with PINNs

All required preparations are completed with OpenFOAM data ready to start training the
PINN for the flow reconstruction case. The PINN will be created and trained with SimNet,
NVIDIA’s framework for physics-informed machine learning.

3.2.1 PINN set-up

The PINN for this problem is a fully-connected network with the Swish activation function
and has 9 layers with 128 neurons each. Adam optimizer parameters are left at the SimNet
defaults β1 = 0.9, β2 = 0.999 and ε = 1 · 10−8. The learning rate starts at 0.001 with an
exponential decay rate of 0.95 every 2000 iterations. Training is performed for 150k iterations.

The computational domain is [−1, 6]× [−2, 2] in space and [30, 33] in time. Collocation points
where the Navier-Stokes residuals are evaluated are generated beforehand by random sampling
the computational domain in space and time. This is done with a sampling density of a batch
size per area (BPA) of 64, meaning 64 points per unit area per batch. There is an increased
sampling density of 2048 points per unit area in a [−0.2, 1.2]× [−0.7, 0.7] square around the
airfoil to capture the sharp gradients. The no-slip condition is enforced by sampling the
airfoil boundary as with a sample density of 128 samples per unit length. These points are
added to the training data on the solution with their velocity components set to zero. The
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importance of the collocation points are weighted by area, so the increase in sampling density
around the airfoil does not lead to a higher importance locally, but remains constant across
the computational domain. This is helpful in avoiding the trivial solution in the densely
sampled area, which would slow down the training in the beginning. These collocation points
are divided in 1000 batches per epoch (BPE), so the full data set is propagated through the
network 150 times during training. Figure 3.4 shows the spatial domain of the PINN with
the dotted square indicating the area with increased sampling density and the dashed square
the measurement window where the time-dependent OpenFOAM data is available.

Figure 3.4: Computational domain of the PINN. The black rectangle shows the boundaries of
the computational domain where flow reconstruction will be attempted. An increased sampling
density of the collocation points is used in the area close to the airfoil, marked by the dotted
square. Training data from the OpenFOAM simulation is only available in the form of pressure
data on the airfoil perimeter and the flow field inside the square behind the airfoil.

The OpenFOAM data used for training consists of 3 parts: the initial condition with the full
solution at t = 30.00, transient pressure data on the airfoil surface from t = 30.04 to t = 33.00
and the transient solution in a simulated measurement window downstream of the airfoil of
the size [2, 4]× [−1, 1] from t = 30.04 to t = 33.00. The transient data has a constant spacing
of ∆t = 0.04, resulting in 75 snapshots in time. The OpenFOAM data is divided into 10
batches and its weighted with a additional weight factor of 100 for the loss calculation. This
was factor was experimentally determined to be the most suitable for this specific case as
both higher and lower weights led to poor predictions of the PINN, where the vortices in the
wake are mostly lost and steady state solution is approached.
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3.3 Flow Reconstruction Results

Two PINNs are trained for this case with different amounts of data available to investigate
the accuracy of the resulting PINNs depending on the amount of training data. The first
PINN will have full velocity an pressure fields u, v and p in the measurement window, while
the second will only have the pressure field p.

3.3.1 PINN results with full data in measurement window

The first PINN has the full OpenFOAM data available in the measurement window with the
important settings summarized in Table 3.1. The loss has been plotted in Figure 3.5 with a

Table 3.1: Summary of the parameters of the first PINN.

Parameters Setting

PINN size 9 layers of 128 neurons
Computational domain x = [−1, 6], y = [−4, 4], t = [30, 33]
Boundary conditions no-slip airfoil (u=v=0)
PINN Sampling density lr: BPA=64, BPE=1000

hr: BPA=2048, BPE=1000
airfoil: BPA=128, BPE=1000

Training iterations 150,000
Learning rate decay steps 2000
Reynolds number Re = 200 (by setting ν = 0.005)
OpenFOAM training data IC: full solution at t = 30.00

airfoil: p for t = [30.04, 33.00]
window: u, v, p for t = [30.04, 33.00]

OpenFOAM data number of batches IC: BPE=10, weight=100
airfoil: BPE=10, weight=100
window: BPE=10, weight=100

logarithmic vertical axis. Figure 3.5 shows the loss eventually settles below a value of 1, but
peaks often over the course of the training, implying a difficult optimization landscape.

The hyperparameters of the Adam optimizer are left at their default settings as mentioned
before. The learning rate varies during training as shown in Figure 3.6 due to the learning
rate decay.

The comparison between the PINN prediction and the OpenFOAM results are made at three
snapshots in time at t = 30.04, t = 31.52 and t = 33.00. Figure 3.7, Figure 3.8 and Figure 3.9
show the u-velocity at the three snapshots with the measurement window marked in white.
Pressure and v-velocity are found in Appendix A. The PINN predictions shows a decent
similarity with the OpenFOAM simulation. Especially in the window downstream of the
airfoil, where the full solution data was provided during training, the results are a close
match. The largest differences are observed in the area between the airfoil and window,
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Figure 3.5: Loss graph of the PINN training with u, v and p data in the measurement window.
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Figure 3.6: Learning rate graph of the PINN training with u,v and p data in the measurement
window.

meaning the PINN has trouble with making an accurate prediction in that area. On the time
axis, a better prediction can be observed closer to the lower bound. The likely reason for this
is the presence of the initial condition resulting in more training data nearby. Overall, the
PINN produces a decent prediction with the shape of the wake and the phase intact.

Dobbin Huang M.Sc. Thesis



3.3 Flow Reconstruction Results 25

(a) u-velocity PINN (b) u-velocity OpenFOAM (c) u-velocity difference

Figure 3.7: u-velocity comparison at t = 30.04 for the PINN trained on the full solution in the
measurement window.

(a) u-velocity PINN (b) u-velocity OpenFOAM (c) u-velocity difference

Figure 3.8: u-velocity comparison at t = 31.52 for the PINN trained on the full solution in the
measurement window.

(a) u-velocity PINN (b) u-velocity OpenFOAM (c) u-velocity difference

Figure 3.9: u-velocity comparison at t = 33.00 for the PINN trained on the full solution in the
measurement window.

3.3.2 PINN results with only pressure data in measurement window

The second PINN is trained with reduced training data to observe its effect on the PINN
accuracy. In this case the training data in the window only has the pressure available compared
to the full solution for the previous PINN. Other than the reduction of the training data, the
set-up is equal to the previous PINN as shown in Table 3.2. The loss graph of this PINN’s
training is shown in Figure 3.10, where similar peaking can be observed as in Figure 3.5. The
loss settles around a value of 1, which is higher to the previous PINN, suggesting a worse
accuracy. The identical hyperparameters for the optimizer results in the same learning rate
decay as shown in Figure 3.6.

In a similar fashion, the Figure 3.11, Figure 3.12 and Figure 3.13 show the PINN prediction
results compared to the OpenFOAM data. This PINN shows a similar performance as the
previous at the first snapshot at t = 30.04 in Figure 3.11. However, the accuracy drops for the
following snapshots in Figure 3.12 and Figure 3.13 when moving along the positive direction
of the time axis. The velocity gradients are less sharp in the wake and the extremes appear
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Table 3.2: Summary of the parameters of the second PINN.

Parameters Setting

PINN size 9 layers of 128 neurons
Computational domain x = [−1, 6], y = [−4, 4], t = [30, 33]
Boundary conditions no-slip airfoil (u=v=0)
PINN Sampling density lr: BPA=64, BPE=1000

hr: BPA=2048, BPE=1000
airfoil: BPA=128, BPE=1000

Training iterations 150,000
Learning rate decay steps 2000
Reynolds number Re = 200 (by setting ν = 0.005)
OpenFOAM training data IC: full solution at t = 30.00

airfoil: p for t = [30.04, 33.00]
window: p for t = [30.04, 33.00]

OpenFOAM data number of batches IC: BPE=10, weight=100
airfoil: BPE=10, weight=100
window: BPE=10, weight=100
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Figure 3.10: Loss graph of the PINN training with only p data in the measurement window.

smoothed. The periodic vortex shedding structure in the flow is gradually lost higher time
values and the PINN tends to predict as solution closer to the steady-state solution than the
transient.

3.3.3 Conclusion

Comparing the accuracy of the two PINNs, the first, trained with full solution data in the
measurement window, shows decent predictive capabilities. The predictions match the Open-
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(a) u-velocity PINN (b) u-velocity OpenFOAM (c) u-velocity difference

Figure 3.11: u-velocity comparison at t = 30.04 for the PINN trained on pressure in the
measurement window.

(a) u-velocity PINN (b) u-velocity OpenFOAM (c) u-velocity difference

Figure 3.12: u-velocity comparison at t = 31.52 for the PINN trained on pressure in the
measurement window.

(a) u-velocity PINN (b) u-velocity OpenFOAM (c) u-velocity difference

Figure 3.13: u-velocity comparison at t = 33.00 for the PINN trained on pressure in the
measurement window.

FOAM data qualitatively with clear periodic vortex shedding in the wake of the airfoil. The
same cannot be said about the second PINN, which has reduced training data in the window
behind the airfoil to only the pressure. Predictions close to the initial condition are close
to the OpenFOAM results, but get increasingly worse at higher values of time. Thus the
available data is insufficient to train an accurate PINN with this set-up.

This also reveals a weakness of how this PINN set-up handles time and its consequences. In
this set-up, the PINN is trained for the whole time range simultaneously, while for a flow
problem time has a dissipative effect and temporal information should only flow along the
positive time axis. For a transient flow problem, later states are dependent on the earlier
states. When during training, a prediction of a later state is corrected before that of an
earlier state, that correction together with other later states may become wrong when the
prediction of an earlier state is changed to fit the training data and governing equations better.
This makes the training of the PINN quite inefficient and is the likely cause of the peaks in
the loss value over the training process in Figure 3.5 and Figure 3.10. Also, this makes the
global optimum more difficult to find and more likely to get stuck in a local optimum.
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A clue to solving this can be found in the high accuracy of the predictions near the initial
condition. This suggests that a PINN with a small time range is likely to give an accurate
prediction. A larger time range can be tackled by discretizing the computational domain
along the time axis, thus dividing the problem in many smaller problems which can be solved
by individual PINNs. These are trained sequentially starting at the lower time limit, where
the previous trained PINN will predict an initial condition for the next PINN. This would
emulate a time-marching method and would provide a mechanism to make information only
propagate in one direction and all the trained PINNs together would cover the entire time
range. Similar approaches are described in [32] and [48], but research in such a discretized
approach with PINNs is limited and implementation complex, thus deemed out of the scope
of this project.

An alternative method to emulating time-marching is temporal weighting of the losses. This
increases the weights of the losses at lower time values to prioritize them over the lower
weighted losses at higher time values. However, a lower accuracy may still be observed at
higher time values at the end, because their importance is also reduced with the lower loss
weights, resulting in a lower contribution to the total loss.

As the PINN struggles to maintain a high accuracy in the latter part of the time range for
an unsteady problem, it is unlikely for a PINN to predict a time accurate-solution for more
complex cases with a parametric geometry. For this reason, the following cases in the next
chapters will only consider steady flow.
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Chapter 4

PINNs on parametric NACA 4-series airfoils
in steady flow

The previous chapter has shown that it is difficult for a PINN to deal with time in a continuous
way with the current set-up. This chapter will move on to the case of a parametric NACA 4-
series airfoil that is a regular well-posed forward problem, where the boundary conditions are
all defined. The complexity of the problem increases with the addition of the three NACA
parameters, which add extra dimensions to the flow case. The three NACA parameters
(maximum camber mNACA, maximum camber position pNACA and thickness tNACA) can be
added to the input layer of the PINN if they are not set to a fixed value. It is unlikely that a
PINN in a similar set-up will succeed in solving this problem in a transient setting, since only
moderate success was achieved in the previous chapter. Thus, starting from this chapter, the
time dependency of the flow will be removed and the steady-state flow case will be solved
instead of the transient flow case. While it is possible to train a PINN with only physical
information on a flow case with a fixed geometry, some preliminary test have shown difficulties
in reaching a satisfactory level of accuracy for parametric cases. So, some additional data
from OpenFOAM simulations will supplement the training data to improve the convergence
and accuracy of the PINN in addition to the available physical information. The OpenFOAM
results for PINN training and validation will be assumed to be the physical truth, which is
shown later to be valid with a comparison to results from literature.

So, this chapter describes the training of two PINNs on parametric NACA airfoils in a steady,
incompressible and viscous flow at a Reynolds number of Re = 600 and performing the re-
quired OpenFOAM simulations to obtain training and validation data. The flow condition
is selected to match the NACA 0008 airfoil at α = 0 and Re = 600 of [29]. Starting with
the training and validation data for the PINNs, meshes need to be created for various airfoil
geometries to run the OpenFOAM simulations on. Then, a PINN will be trained on a range
of symmetric NACA airfoils, which only has the thickness parameter added as an additional
input parameter. The remaining geometric parameters mNACA and pNACA have a fixed value
of 0 for symmetric NACA airfoils. The accuracy of this trained PINN is compared to the
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OpenFOAM validation data and reference data from literature to make sure that the Open-
FOAM simulations provide sufficiently accurate data to train and validate the PINNs. Next,
the full parametric case of a cambered NACA airfoil will be treated, where the PINN will
have three additional geometrical parameters spanning a 3-dimensional airfoil design space.
Lastly, the chapter concludes with the observations and findings on the PINN performance
on the NACA airfoil cases.

4.1 OpenFOAM simulations

Two cases will be investigated for the NACA 4-series airfoils: the symmetric and cambered
airfoils. The PINN on the symmetric NACA airfoils will be trained on the results of NACA
0008 and 0012 airfoils and validated on the NACA 0006, 0010 and 0014 airfoils. The simulation
on these airfoil cases are done on coarse, unstructured meshes. Figure 4.1 shows the NACA
0008 mesh, which has 31,712 nodes, 66,092 elements. The boundary conditions are set-up

(a) Full view (b) Close view

Figure 4.1: Unstructured mesh of the NACA 0008 airfoil.

like in the previous chapter with u = 1 and v = 0 at the inlet on the left side, slip condition
on the top and bottom boundary and p = 0 at the outlet on the right side. Viscosity is set to
ν = 0.0016666667 to obtain Re = 600. SimpleFOAM is used as a solver for the steady flow
problem.

In a similar fashion, the simulations of the cambered NACA airfoils are performed. NACA
1311, 3311, 1511, 3511, 1313, 3313, 1513 and 3513 form the training set and NACA 2412, 2413
will be used for validation. These simulations are performed on a higher resolution structured
meshes. Figure 4.2 shows the mesh of the NACA 2412 airfoil with 259,199 nodes and 265,000
elements.
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(a) Full view (b) Close view

Figure 4.2: Structured mesh of the NACA 2412 airfoil.

4.2 PINN set-up

The PINN set-up is similar to the previous chapter except for a few necessary changes to match
the current flow case. Regarding architecture, it is still a fully-connected neural network with
Swish activation functions. Adam optimizer settings are once again left at their default values
and the same exponential learning rate decay.

The input layer will have the time parameter omitted and a number of geometrical NACA
parameters take its place. In the computational domain, the spatial domain size increased
to x = [−10, 11] and y = [−5, 5]. There are 2 rectangular areas around the airfoil where the
sampling density of the collocation points are increased to capture the boundary layer. The
larger rectangle measures x = [−1, 2] and y = [−1, 1] and the smaller rectangle measures
x = [−0.2, 1.2] and y = [−0.2, 0.2]. In contrast to the case of the last chapter, this case has
properly defined boundary conditions for the PINN. The inlet, top and bottom boundary
will have their velocity defined as u = 1 and v = 0 and the outlet has its pressure fixed at
p = 0. Figure 4.3 shows the boundary sample points and the interior collocation points of
the symmetrical NACA 00XX case. Unlike the transient case, the OpenFOAM training sets

(a) Full PINN spatial domain (b) Close-up of the refinement zones in the airfoil area

Figure 4.3: Boundary and collocation points in one batch for the NACA 00XX case.

here are only weighted by the total area without any additional weight factor.
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4.3 Symmetrical NACA 00XX airfoils

The symmetrical NACA airfoil case has only the thickness tNACA as an additional geometrical
parameter in the input layer. It has a range of tNACA = [5, 15] as shown in Figure 4.4 and
OpenFOAM data on NACA 0008 (tNACA = 8) and 0012 (tNACA = 12) are marked with red
squares and will be used for training at a BPE of 10. The green circles indicate the validation
samples NACA 0006, 0010 and 0014.

5 6 7 8 9 10 11 12 13 14 15
tNACA

Figure 4.4: Design space of the NACA 00XX case.

The geometric parameter is implemented in a discrete manner allowing only integer values,
resulting in 11 slices for the 11 symmetrical NACA airfoils for the set thickness range. Ta-
ble 4.1 list the most important PINN parameters settings, where lr, hr and hr2 refers to the
basic sampling rate, high-res sampling rate in the larger rectangle around the airfoil and the
high-res sampling rate in the second, smaller rectangle around the airfoil respectively.

Table 4.1: Summary of the parameters of the PINN on the NACA 00XX case.

Parameters Setting

PINN size 12 layers of 64 neurons
Computational domain x = [−10, 11], y = [−5, 5]
Geometrical parameters tNACA = [5, 15]
Design space samples all NACA airfoils within design space boundaries

(11)
Boundary conditions inlet, top, bottom: u = 1, v = 0

outlet: p = 0
no-slip airfoil: u = v = 0

PINN sampling density boundaries inlet, top, bottom, outlet: BPA=64, BPE=1000
airfoil: BPA=128, BPE=1000

PINN sampling density interior lr: BPA=16, BPE=1000
hr: BPA=512, BPE=1000
hr2: BPA=16384, BPE=1000

Training iterations 150,000
Learning rate decay steps 2000
Reynolds number Re = 600 (by setting ν = 0.0016666667)
OpenFOAM training data u, v, p for NACA 0008 and 0012
OpenFOAM data number of batches NACA 0008 and 0012: BPE=10
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4.3 Symmetrical NACA 00XX airfoils 33

4.3.1 PINN training

The PINN has been trained for 150k iterations with the loss converging to a value of 0.01586.
Figure 4.5 shows the loss development during training and is smoother compared to the
Figure 3.5 and Figure 3.10 of the transient cases in chapter 3, especially in the latter 40k
iterations. This loss is composed from various sources, which can be split between the losses
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Figure 4.5: Total L2 loss of the PINN on the NACA 00XX case.

due to the difference in the predicted solution and training data and the losses due to the non-
zero Navier-Stokes residuals. The prediction losses, shown in Figure 4.6 for u,v and p are a
measure of how well the prediction matches the training data. This training data set consists
of all the data on the solution that is used for training. These are the boundary conditions
where data is sampled from and the additional solution data from OpenFOAM simulations.
Figure 4.6a shows a larger loss for the u-velocity at the end of training compared to the v-
velocity in Figure 4.6b and p in Figure 4.6c. A likely reason for this, is the horizontal direction
of the flow, resulting in larger range of gradient values for u. This makes the u-velocity field
more complex compared to the v-velocity field and pressure field, thus more difficult to predict.
For this reason, the focus will be on the u-velocity when evaluating the PINN performance
in the next section and pressure and v-velocity will be found in Appendix B. The Navier-
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Figure 4.6: L2 loss of prediction for the NACA 00XX case.

Stokes residual losses in Figure 4.7 are indicative of how well the PINN predictions satisfy
the continuity and momentum equations. It can be observed that these are minimized during
training and converging at a low values at the later iterations. The sharp rise of the loss value
at the start is caused by the initial values of the trainable PINN parameters, as they happen

MSc. Thesis Dobbin Huang



34 PINNs on parametric NACA 4-series airfoils in steady flow

to result in a prediction that satisfy the continuity and momentum equations well. Naturally,
the prediction itself shows a large deviation from the training data as can be observed from
the high losses in Figure 4.6 at the start, since the PINN training is just starting. The
x-momentum loss in Figure 4.7b ends up at a significantly higher value compared to the
y-momentum and continuity loss for likely a similar reason as the higher u-velocity loss.
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Figure 4.7: L2 loss of Navier-Stokes residuals for the NACA 00XX case.

4.3.2 PINN results

The trained PINN is able to predict the full velocity an pressure fields for any of the sym-
metrical NACA airoils with a thickness between 5% and 15%. In this 1D design space, the
airfoils can be divided in to 2 categories: the airfoils with OpenFOAM training data and
those without. A PINN is more likely to learn to predict a good solution for airfoils if there
is more data available to train it on, so it is expected that the NACA 0008 and 0012 should
have accurate PINN predictions. The pressure distributions of Figure 4.8 confirm this.

(a) cp distribution of the NACA 0008 airfoil (b) cp distribution of the NACA 0012 airfoil

Figure 4.8: Pressure distribution of the symmetrical NACA airfoils, which have OpenFOAM
training data.

Figure 4.8a shows a comparison between the pressure distribution predicted by the PINN,
the OpenFOAM simulation and the reference values from [29]. The data from [29] and the
OpenFOAM simulation match closely, thus confirming that the OpenFOAM simulations are
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4.3 Symmetrical NACA 00XX airfoils 35

a valid method to obtain accurate results to train and validate the PINNs. Figure 4.8b shows
a good match between the OpenFOAM training data and the PINN prediction in a similar
way.

Next, are the pressure plots of Figure 4.9 for the NACA 0006, 0010 and 0014 airfoils for which
no OpenFOAM training data was used. For these airfoils, the PINN did not have access to
the right solution during training, so these will be suited to evaluate the PINN performance
on.

(a) cp distribution of the NACA 0006 airfoil (b) cp distribution of the NACA 0010 airfoil

(c) cp distribution of the NACA 0014 airfoil

Figure 4.9: Pressure distribution of the symmetrical NACA airfoils, which have no OpenFOAM
training data.

The PINN appears to show an accurate prediction for NACA 0010 and NACA 0014 in Fig-
ure 4.9b and Figure 4.9c, but the results for NACA 0004 airfoil show a larger difference with
the OpenFOAM validation data in Figure 4.9a. Figure 4.10 shows the u-velocity fields of
the NACA 0010 airfoil. While there is no OpenFOAM data on this airfoil present during
training, it sits between the NACA 0008 and 0012 airfoils where OpenFOAM data is avail-
able. So effectively, the PINN can interpolate between these 2 points in the 1D design space
resulting in an accurate prediction as the difference between Figure 4.10a and Figure 4.10b
can be hardly observed. Only by directly visualizing the difference in Figure 4.10c some minor
inconsistencies can be found in the wake of the airfoil.
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36 PINNs on parametric NACA 4-series airfoils in steady flow

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure 4.10: u-velocity field of the NACA 0010 airfoil.

The PINN prediction on the NACA 0006 is clearly less accurate in Figure 4.11 as the pressure
plot in Figure 4.9a already suggested. Notably, the PINN underestimates the velocity in front
of the airfoil, behind the airfoil and in the area around the airfoil. Unlike the NACA 0010
airfoil, the NACA 0006 airfoil only has the NACA 0008 OpenFOAM training data to the
right with no other OpenFOAM data to the left. This makes it more difficult for the PINN
to learn how this airfoil relates to the others as it needs learn by extrapolating the relation
to the left of the NACA 0008 airfoil.

Similarly, the relation of the NACA 0014 airfoil also needs to be learned by extrapolating from
the NACA 0012 OpenFOAM data. The accuracy of the prediction around the airfoil is better
here as can be seen from Figure 4.9c and Figure 4.12, but the wake remains problematic.

The reason why the NACA 0014 prediction is more accurate than for the NACA 0006 airfoil,
despite the seemingly similar conditions, is how much these airfoils actually differ from the
nearest airfoil with OpenFOAM data. Both have a difference of 2%, however the change from
12% to 14% thickness is an relative increase of 17% while the decrease in thickness from 8%
to 6% is a relative decrease of 25%. So, the NACA 0012 and 0014 airfoils are more similar to
each other than the NACA 0006 and 0008 airfoils, resulting in better a better prediction for
the 0014 airfoil. At the end of the day, they are both not very accurate. The PINN appears
to have a harder time to learn by extrapolation than interpolation, so it would be beneficial
to have OpenFOAM data on the boundaries of the design space to enclose as much of the
design space as possible with the OpenFOAM training samples.

On a different note, the mesh for the symmetrical NACA airfoils on which the OpenFOAM
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(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure 4.11: u-velocity field of the NACA 0006 airfoil.

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure 4.12: u-velocity field of the NACA 0014 airfoil.

simulations are performed are rather coarse and as a consequence some detail is lost in the
wake and does not appear smooth as can be seen from Figure 4.10, Figure 4.11 and Figure 4.12.
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38 PINNs on parametric NACA 4-series airfoils in steady flow

The PINN prediction there has been performed on the same grid as the OpenFOAM simula-
tion to make a direct comparison, however the PINN is a meshless solver that is not bound to
a predefined grid. It is possible for the trained PINN to infer a solution on a finer grid, which
in essence fills in some gaps of the OpenFOAM results and increases its resolution in a way
that satisfies the governing equations. Figure 4.13 shows a comparison of a PINN inference on
a finer grid for the NACA 0010 airfoil with the OpenFOAM simulation results on the coarse
mesh.

(a) PINN on fine grid (b) OpenFOAM on coarse grid

Figure 4.13: Inference of the u-velocity of the NACA0010 airfoil on a fine grid compared to the
OpenFOAM simulation.

In the end, the trained PINN is able to predict accurate solutions for the airfoils that lie in
between the two OpenFOAM training samples for NACA 0008 and NACA 0012 with more
detail than the original OpenFOAM simulations. However, the PINN struggles with correctly
learning the relations between the airfoil geometry and flow fields through extrapolation
resulting in poor accuracy for airfoils thinner than NACA 0008 and airfoils thicker than
NACA 0012.

4.4 Cambered NACA XXXX airfoils

The cambered airfoil case of the NACA XXXX airfoils has all three NACA parameters as
additional input parameters added to the PINN’s input layer. This results in a parametric
problem with three geometrical parameters and a 3D design space as shown in Figure 4.14.

The OpenFOAM data samples are supplied for the corners of the design space, to cover the
entire volume so the geometrical relations can be learned from interpolating between the
OpenFOAM samples. Validation airfoils are chosen on points in the design space where no
OpenFOAM training data is used. In Figure 4.14 the OpenFOAM training samples NACA
1311, 3311, 1511, 3511, 1313, 3313, 1513 and 3513 are marked with red squares and the
validation samples NACA 2412 and 2413 are marked with green circles.

For this case, the PINN set-up requires a couple of changes to adapt it to a 3D design space.
The PINN size has been increased to learn a more complex problem and the collocation point
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Figure 4.14: Design space of the NACA XXXX case.

sampling density has been reduced to limit the memory and computational burden. Table 4.2
lists the PINN settings.

Table 4.2: Summary of the parameters of the PINN on the NACA XXXX case.

Parameters Setting

PINN size 14 layers of 96 neurons
Computational domain x = [−10, 11], y = [−5, 5]
Geometrical parameters mNACA = [1, 3], pNACA = [3, 5], tNACA = [11, 13]
Design space samples all NACA airfoils within design space boundaries

(27)
Boundary conditions inlet, top, bottom: u = 1, v = 0

outlet: p = 0
no-slip airfoil: u = v = 0

PINN sampling density boundaries inlet, top, bottom, outlet: BPA=64, BPE=1000
airfoil: BPA=128, BPE=1000

PINN sampling density interior lr: BPA=16, BPE=100
hr: BPA=256, BPE=100
hr2: BPA=1024, BPE=100

Training iterations 150,000
Learning rate decay steps 2000
Reynolds number Re = 600 (by setting ν = 0.0016666667)
OpenFOAM training data u, v, p for NACA 1311, 3311, 1511, 3511,

1313, 3313, 1513 and 3513
OpenFOAM data number of batches BPE=10
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40 PINNs on parametric NACA 4-series airfoils in steady flow

The spatial domain for each airfoil geometry remains the same as for the symmetrical case.

4.4.1 PINN training

The training of the PINN on the cambered airfoils has not shown any surprises. Figure 4.15
shows the total loss graph during training. The loss converges to a value of 6.21× 10−3 and
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Figure 4.15: Total L2 loss of the PINN on the NACA XXXX case.

finishes training successfully.

The loss components due to differences in the predicted solution are shown in Figure 4.16
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Figure 4.16: L2 loss of prediction for the NACA XXXX case.

They all converge to values below 8× 10−4 indicating a good agreement between the training
data and the PINN predictions. The u-velocity loss is consistently higher than the others as
was also observed for the symmetrical NACA airfoils case.

The continuity and momentum equations are satisfied well with none of the losses exceeding
8× 10−4 in Figure 4.17.

The loss in x-momentum is again the highest among the three.
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Figure 4.17: L2 loss of Navier-Stokes residuals for the NACA XXXX case.

4.4.2 PINN prediction results

Last section’s training results seem hopeful that a PINN, capable of accurately predicting the
solution for any NACA airfoil within the parameter constraints, has been successfully trained.
First, the pressure distributions from PINN inference will be compared the OpenFOAM
results and followed by a comparison on the full u-velocity fields. The pressure distributions
of the eight corner airfoils are shown to be matching closely in Figure 4.18. This hints at a
high accuracy of the PINN in predicting the full pressure and velocity fields of these airfoils
as expected for the airfoils where solution data was available during training.

The NACA 2412 and 2413 airfoil do not coincide with any of the OpenFOAM training samples.
Figure 4.14 shows the NACA 2412 airfoil siting in the center of the design space, while the
NACA 2413 airfoil lies on a rectangular plane formed by four OpenFOAM samples. Also for
these two airfoils, the PINN predict accurate pressure distributions in Figure 4.19.

These promising results for the PINN accuracy will be confirmed, starting with NACA 3513
as a representative for the airfoil geometries where simulation data was available. Figure 4.20
shows that the PINN prediction closely resembles the OpenFOAM results to the extent that
differences are hard to observe in a side-by-side comparison. When the difference between
the two fields is plotted as in Figure 4.20c, the PINN appears to overestimate the velocity
on upper side of the airfoil slightly while underestimating it slightly on the lower side. The
same difference is seen behind the airfoil in the wake. The differences do not exceed 3× 10−2

results a maximum relative difference of 3% when compared tot the freestream velocity of
u∞ = 1.

The NACA 2412 should be more challenging for the PINN as no OpenFOAM data on this
airfoil geometry was present during training. Figure 4.21 shows a comparable PINN perfor-
mance here as for the NACA 3513 airfoil, where the PINN prediction seems to mirror the
validation data. Similarly, Figure 4.21c show no differences larger than 3%, relative to the
freestream velocity.

The NACA 2413 is also an airfoil geometry without OpenFOAM training data. Figure 4.22
shows closely matching u-velocity fields again. The plotted difference observed in Figure 4.22c
is higher here compared to the two previous airfoil geometries, resulting in a relative difference
reaching a maximum of 5.2%.

MSc. Thesis Dobbin Huang



42 PINNs on parametric NACA 4-series airfoils in steady flow

(a) cp distribution of the NACA 1311 airfoil (b) cp distribution of the NACA 1313 airfoil

(c) cp distribution of the NACA 1511 airfoil (d) cp distribution of the NACA 1513 airfoil

(e) cp distribution of the NACA 3311 airfoil (f) cp distribution of the NACA 3313 airfoil

(g) cp distribution of the NACA 3511 airfoil (h) cp distribution of the NACA 3513 airfoil

Figure 4.18: Pressure distribution of the cambered NACA airfoils, which have OpenFOAM
training data.
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(a) cp distribution of the NACA 2412 airfoil (b) cp distribution of the NACA 2413 airfoil

Figure 4.19: Pressure distribution of the cambered NACA airfoils, which have no OpenFOAM
training data.

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure 4.20: u-velocity field of the NACA 3513 airfoil.
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(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure 4.21: u-velocity field of the NACA 2412 airfoil.

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure 4.22: u-velocity field of the NACA 2413 airfoil.
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4.5 Conclusion

Two PINNs have been trained in this chapter on the flow problems for a range of symmetrical
NACA airfoils and cambered NACA airfoils. Both physical information and OpenFOAM
results on a limited number of design space samples are used to train the PINNs. In a
comparison with [29], the OpenFOAM results have been shown to be sufficiently accurate to
assume it is the physical truth for PINN training and validation. The key lesson learned from
the symmetrical NACA airfoil case, is the importance of where the design space is sampled. It
has been observed that the PINN is much more effective in learning the relation between the
geometries in a parametric design space by interpolation than extrapolation. Thus, ensuring
the boundaries are well sampled results in a higher accuracy throughout the design space for
the trained PINN. Also, the trained PINN was able to infer a more detailed solution for the
flow fields compared to the original OpenFOAM data sets for the symmetrical NACA airfoils
that were produced on coarse meshes, because a PINN is a meshless solution method that can
infer a solution on any grid. As long as the collocation points are sampled densely enough
to capture all flow phenomena of interest, this can be used to fill in gaps or increase the
resolution of existing data sets while making sure the continuity and momentum equations
are still satisfied.

The lesson on design space sampling was used in setting up the PINN for the more complex
case of the parametric cambered NACA airfoil, where the trained PINN need to predict
the velocity and pressure fields of any of the cambered airfoils defined by the three NACA
parameters within the parameter boundaries. So, OpenFOAM samples were generated for the
eight corners for the 3D design space, enclosing the entire design space so interpolation can be
used during training to learn the relation between the geometrical NACA parameters and the
resulting flow fields. The trained PINN was shown to be able to infer accurate solutions for
all the analyzed airfoil geometries, which demonstrates the effectiveness of a trained PINN to
solve a parametric problem when provided with some boundary samples. With conventional
CFD such as OpenFOAM, every geometry change requires not only a new simulation, but
also a new mesh needs to be created.
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Chapter 5

PINNs on PARSEC airfoils in steady flow

After successfully training PINNs on parametric NACA airfoils, it is time to take the next step
towards a more practical problem of airfoil design. Airfoil design requires analyzing numerous
airfoils with different geometries in order to find one that has the desired characteristics to
fulfill a specific purpose. It is convenient to use an airfoil parameterization scheme for this,
which can a represent a large variety of airfoil geometries with a number of parameters. The
PARSEC method was chosen for this problem for its intuitive parameters that are directly
linked to geometrical features of the airfoil.

This chapter will describe two PARSEC problems, where the first has its independent geo-
metrical parameters to only five to limit the design space to only symmetrical airfoils. The
Reynolds number of this flow is raised to Re = 1000 to match [45], whose drag optimization
results will be used as a reference. The final problem will expand the design space to 10 of
the 11 PARSEC parameters and adds the airfoil angle of attack to a total of 11 independent
parameters with the Reynolds number further increased to Re = 5000, pushing the limits of
the PINN and finally reaching the Reynolds number range of MAVs. OpenFOAM will be used
in the same way as for the previous problems to generate training and validation data for the
PINN. After training the two PINNs they will be used in a numerical optimization routine in
an attempt to find the optimal airfoil geometries, according to the objective function.

5.1 OpenFOAM simulations

The aforementioned PARSEC problems have more geometrical parameters compared to the
previous problems resulting in higher dimensional design spaces. While they contain more
diverse airfoil shapes, they are more difficult to learn for a PINN, requiring a larger number
of solution samples. A similar design space sampling strategy is used as in the cambered
NACA case, where all the combinations of the parameter bounds are taken. For the three
parameter design space it was analogous to sampling all the corners of the cube shaped design
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space resulting in 23 = 8 samples. The five and 11 parameter design spaces a more difficult
to visualize, but the required number of sampling points for those can be computed in the
same way with 25 = 32 and 211 = 2048. The c-meshes are constructed in a similar fashion as
for the cambered NACA case, with the semicircle section has a radius of 10 measured from
its center at (1, 0). The rectangular extends to a distance of 20 behind the semicircle and the
airfoil lies in the semicircle with the leading edge coinciding with (0, 0). Boundary conditions
are also the same for the five parameter PARSEC case with the arc on the left side as the
velocity inlet, slip condition on the top and and bottom side, pressure outlet on the right
and no-slip condition on the airfoil perimeter. However, it is different for the 11 parameter
PARSEC case as it includes the angle of attack as an independent parameter. Changes in
angle of attack are implemented by rotating the inlet velocity vector. The slip boundary
conditions on the top and bottom boundaries need to be adapted as a result, because the
slip boundary condition would force a horizontal flow like how wind tunnel walls would in
contrast to the free flow that is modeled. So, to correctly model a free flow with a positive
angle of attack, the top boundary will be changed to a pressure outlet matching the right
boundary and the bottom boundary will match the velocity inlet of the left boundary. In
the case of a negative angle of attack the top and bottom boundaries are reversed. The
full OpenFOAM simulations for the five parameter PARSEC case completed without issue
resulting in 32 data sets for the boundary samples as expected. Unfortunately, of the 2048
boundary cases for the 11 parameter PARSEC case 1892 simulations converged, while 156 did
not. The higher Reynolds number makes the flow less stable and flow separation may occur for
some geometries even at low angles of attack. This results in unsteady flow behavior near the
training edge where the flow separates and causes the steady solver to fail. To compensate for
these gaps in the boundary of the design space, an additional 64 samples have been sampled
from the interior using Latin Hypercube Sampling (LHS), which is a near-random sampling
method that tries to distribute the samples evenly over the sample space. In addition, some
extra simulations will be performed for the optimized airfoils to create additional validation
data sets. Using these, the PINN performance will be evaluated in terms of accuracy. to
determine the suitability of PINNs as a surrogate flow solver for airfoil design.

5.2 Symmetrical five parameter PARSEC airfoil case

The PARSEC method defines airfoil shapes with 11 geometrical parameters in total. This
section will consider a simplified symmetrical airfoil case that reduces the number of indepen-
dent parameters. Due to the symmetry, only one side of the airfoil needs to be defined as the
other will mirror it. The three lower side parameters p5, p6 and p7 will become dependent on
the upper side parameters p2, p3 and p4. Also, the trailing edge vertical position and direction
need to be zero to keep the symmetry intact, so p8 and p10 will have a constant value of zero.
Finally, the trailing edge is kept sharp as a blunt trailing edge possibly complicates the flow
with unsteady phenomena due to flow separation. So, the trailing edge thickness p9 is fixed
at zero. Table 5.1 lists the relations of the 11 PARSEC parameters to the remaining five
independent parameters p1, p2, p3, p4 and p11.

The PINN set-up keeps the same size as for the cambered NACA airfoils and spatial domain,
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Table 5.1: PARSEC parameters for the symmetrical airfoil case.

PARSEC parameter Geometry parameter Description

p1 rle leading edge radius
p2 xup upper crest horizontal position
p3 zup upper crest vertical position
p4 zxx,up upper curvature at crest position
p5 = p2 xlo lower crest horizontal position
p6 = −p3 zlo lower crest vertical position
p7 = −p4 zxx,lo lower curvature at crest position
p8 = 0 zte trailing edge vertical position
p9 = 0 ∆zte trailing edge thickness
p10 = 0 αte trailing edge direction
p11 βte trailing edge wedge angle

but the three NACA parameters are replaced by the five independent PARSEC parameters.
The Reynolds number has been raised to Re = 1000 to compare the drag optimization results
with [45] later. Boundary conditions remain the same as well as the sampling density and
the sampling density of the interior collocation points, but with modified weighting scheme.
These PINN sample points were previously only weighted to assign a uniform importance
across the spatial domain. This PINN will weight them using the Signed Distance Function
(SDF), which is the distance of a point to the nearest boundary. The idea behind this
weighting method is to make the PINN training focus on areas that are the furthest away
from boundaries first, where the flow is less complex. Thus, the easier areas are prioritized
before attempting to learn the more complex areas, which may avoid local minima and result
in faster and smoother convergence as is claimed in [32]. Figure 5.1 shows the SDF values
plotted on the spatial domain.

Figure 5.1: SDF values plotted on the spatial domain.

Unlike the NACA design space that has only a discrete number of airfoil designs, the PARSEC
design space is a continuous one, requiring a decision on a sampling strategy. Taking a
conservative approach, the design space is sampled in a discrete way, similar to how the
boundary is sampled for the OpenFOAM simulations, except the mid point is added to the
parameter ranges resulting in a total number of combinations of 35 = 243. This results in
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PINN only data for 243 airfoils, consisting of boundary samples and collocation points for
the evaluation of continuity and momentum residuals. Of these, 32 airfoil geometries coincide
with the OpenFOAM training data, resulting in 32 airfoil with complete solution data and 211
airfoils with only physical information. Also, training process is extended to 200k iterations.
Table 5.2 lists the PINN settings.

Table 5.2: Summary of the parameters of the PINN on the five parameter PARSEC case.

Parameters Setting

PINN size 14 layers of 96 neurons
Computational domain x = [−10, 11], y = [−5, 5]
Geometrical parameters p1 = [0.0025, 0.0075], p2 = [0.2500, 0.3500],

p3 = [0.035, 0.045], p4 = [−0.1500,−0.3500],
p11 = [0.0873, 0.2618]

Design space sampling 243 sample points, including 32 coinciding with
OpenFOAM data

Boundary conditions inlet, top, bottom: u = 1, v = 0
outlet: p = 0
no-slip airfoil: u = v = 0

PINN sampling density boundaries inlet, top, bottom, outlet: BPA=64, BPE=1000
airfoil: BPA=128, BPE=1000

PINN sampling density interior lr: BPA=16, BPE=100
hr (x = [−1, 2], y = [−1, 1]): BPA=256, BPE=100
hr2 (x = [−0.2, 1.2], y = [−0.2, 0.2]): BPA=1024,
BPE=100

Training iterations 200,000
Learning rate decay steps 2000
Reynolds number Re = 1000 (by setting ν = 0.001)
OpenFOAM training data u, v, p for the 32 PARSEC parameter boundary

combinations
OpenFOAM data number of batches BPE=1000

5.2.1 PINN training

The total loss progression in Figure 5.2 shows a fairly smooth curve, converging to a loss of
0.020 after 200k iterations. The PINN training was completed successfully in approximately
six hours.

Loss components are shown in Figure 5.3 and Figure 5.4. In previous cases, the loss curves
for the different components were very similar in shape, while here a clear differences can
be observed. The loss curves for the prediction appear to be smoother than before, but the
residual loss curves are rougher, especially the curves for the momentum in Figure 5.4b and
Figure 5.4c. This can be explained by how the SDF weighting has increased the weights
further away from the boundaries while reducing it closer to the boundaries. The easier parts
of the spatial domain are prioritized first resulting in a rapid decline of the loss during the
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Figure 5.2: Total L2 loss of the PINN on the symmetrical PARSEC airfoil case.

earlier iterations, while the more difficult part near the airfoil in the boundary layer is left
for the later iterations, making the oscillations in the loss curve more apparent. In this case,
the use of the SDF weights seems to have a positive effect in the end, which can be seen in
the next section, when the PINN accuracy will be investigated, however the SDF weights also
assign lower weights to the areas where important flow features can be observed, which could
lead to a lower accuracy in these areas at the end of the training process, despite the initial
speed-up.
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Figure 5.3: L2 loss of prediction for the symmetrical PARSEC airfoil case.

3e-4

8e-4

4e-3

9e-3

0 40k 80k 120k 160k 200k

(a) Loss continuity

5e-4

2e-3

8e-3

0.05

0 40k 80k 120k 160k 200k

(b) Loss momentum x

3e-4

8e-4

4e-3

9e-3

0 40k 80k 120k 160k 200k

(c) Loss momentum y

Figure 5.4: L2 loss of Navier-Stokes residuals for the symmetrical PARSEC airfoil case.
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5.2.2 PINN results

After completing the training of the PINN, it should be able to predict the flow for any
airfoil described by the 5 parameters within their boundaries. The pressure plots for the 32
boundary samples and their airfoil shape are shown in Figure C.1 of section C.1. All of these
PINN predictions match the OpenFOAM data closely. Figure 5.5 shows a selection of four of
those airfoils as examples. The 5 letters in the airfoil name refer to the upper (u) and lower
(l) bound of the independent parsec parameters in the ascending order (p1, p2, p3, p4, p11).
For example, the PARSEC uuuuu airfoil of Figure 5.5a has the PARSEC parameters (0.0075,
0.3500, 0.045, -0.3500, 0.2618).

(a) cp distribution of the PARSEC uuuuu airfoil (b) cp distribution of the PARSEC llulu airfoil

(c) cp distribution of the PARSEC uluuu airfoil (d) cp distribution of the PARSEC uulul airfoil

Figure 5.5: Pressure distribution of the 5 parameter PARSEC airfoils on the boundary.

Next, is the NACA 0008 airfoil expressed in the PARSEC parameters, which are (0.0065,
0.3006, 0.04, -0.2949, 0.1968) for the independent parameters. This airfoil coincides with nei-
ther the boundary points where OpenFOAM data is present, nor the PINN sampled points
where only the physical data is available, thus making it a interesting validation point. Fig-
ure 5.6 does not show a near perfect fit as for the boundary points, but still a good fit with
minor deviations.

The pressure distributions suggest a great prediction accuracy for this PINN also on the more
complex five parameter PARSEC design space, but it still needs to be confirmed by inspecting
the full solutions. First is the PARSEC llulu airfoil of Figure 5.5b whose prediction may be
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Figure 5.6: Pressure distribution of a NACA 0008 airfoil equivalent, expressed in PARSEC
parameters.

more likely to turn out to be inaccurate due to its unusual airfoil geometry. Figure 5.7
confirms this with the u-velocity fields indistinguishable in a side-by-side comparison. The
difference plot in Figure 5.7c appears nearly uniform, showing minimal differences. Pressure
and v-velocity are found in Appendix C

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure 5.7: u-velocity field of the PARSEC llulu airfoil.

Similarly, the NACA 0008 airfoil in PARSEC parameters show a close match between the
PINN prediction and OpenFOAM data in Figure 5.8. The difference plot shows small differ-

MSc. Thesis Dobbin Huang



54 PINNs on PARSEC airfoils in steady flow

ences concentrated in the area close to the airfoil where the boundary layer is and downstream
of the airfoil in the wake in Figure 5.8c.

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure 5.8: u-velocity field of the NACA 0008 equivalent PARSEC airfoil.

Compared to velocity fields of last chapter such as Figure 4.21, thinner boundary layers are
observed in Figure 5.8 as a consequence of the higher Reynolds number. This results in
larger velocity gradients at higher flow Reynolds numbers, which makes PINN training more
difficult. Despite this, the trained PINN has been shown able to predict accurate solutions
within the geometrical parameter ranges and should be sufficiently accurate to serve as a
surrogate model for an airfoil design optimization.

5.2.3 Drag optimization

The computational TensorFlow graph of the PINN in SimNet is large and bloated with
numerous nodes and structures required for training or SimNet features simplifying producing,
recording and analyzing results. In this form, it is difficult to implement and use the PINN
as a surrogate model in an optimization loop, thus the graph needs to be exported in a more
convenient form by freezing the model. This trims away all unnecessary parts of the graph till
only the core remains that takes the tensor with all the spatial and PARSEC parameters and
computes the output tensor with the velocity and pressure fields. The trainable parameters
are converted to constants and the whole PINN model will be exported in TensorFlow’s
protobuff format as a singular file that can be loaded and used for inference with TensorFlow
outside the SimNet framework.
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5.2 Symmetrical five parameter PARSEC airfoil case 55

The airfoil design optimization here will start with the NACA 0008 airfoil geometry and will
try to improve the geometry to reduce the drag. For this case, the objective function is simply
the drag coefficient as given by Equation 5.1, so the minimization of the objective functions
leads to a drag minimization.

I(p1, p2, p3, p4, p11) = cd(p1, p2, p3, p4, p11) (5.1)

The optimization loop is implemented in Python using the L-BFGS-B optimizer of the SciPy
library. A flow chart of the optimization loop is shown in Figure 5.9.

Initial airfoil geometry
(p1, p2, p3, p4, p11)


Solve flow with PINN
(u, v, p)

Compute objective
function

(I)


no

yes

Converged?
Improve airfoil

geometry 

(p1, p2, p3, p4, p11)

Compute
aerodynamic
coefficients

(cl,cd)


Start

Save optimal solution
Stop

Figure 5.9: Flow chart of the optimization loop for the five parameter PARSEC airfoil.

Since the PINN showed accurate predictions for its entire design space, the optimization
was performed under the same parameter constraints. The optimization completed with
54 function evaluations in a negligible computation time of a few seconds, resulting in the
geometry shown in Figure 5.10.

Table 5.3 shows the PARSEC parameters of the optimized airfoil compared to the starting
NACA 0008 airfoil. The resulting drag of 0.0982 is a decrease of 5.5% compared to the
original value of 0.1039, confirming a successful optimization. From Figure 5.10 and Table 5.3
a number of geometrical changes can be observed that are directly related to the PARSEC
parameters. First, the leading edge of the optimized airfoil became sharper by reducing the
leading edge radius parameter to p1 = 0.0025, which is the lower bound of this parameter.
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Figure 5.10: Airfoil geometry of the optimized airfoil.

Table 5.3: PARSEC parameters of the optimized airfoil.

(p1, p2, p3, p4, p11) cd
NACA 0008 (0.0065, 0.3006, 0.04, -0.2949, 0.1968) 0.1039
Optimized airfoil (0.0025 , 0.3091, 0.0350 , -0.2893, 0.2618) 0.0982

Similarly, the maximum thickness has been reduced with the vertical upper crest position
parameter reduced to its lower bound of p3 = 0.035, which seems reasonable as it makes
the airfoil more slender thus reducing its form drag. The trailing edge wedge angle has been
increased to its upper bound of p11 = 0.2618 [rad]. These geometrical changes is what the
numerical optimization process has found to be effective in reducing the drag.

Similar results were found in [45], where their drag optimization of the NACA 0008 airfoil had
similar results and concluded that a sharp leading edge is a characteristic of optimal airfoil
shapes at very low Reynolds numbers. This finding is further supported by [18], [12] and [24].

The final step is to compare the pressure distribution and flow fields predicted by the PINN
to OpenFOAM simulation results of the optimized airfoil. This is to confirm that the op-
timization results are based on accurate predictions of the PINN and is able to function as
a surrogate model with similar accuracy to the full CFD simulations with OpenFOAM at a
lower computational cost. Figure 5.11 presents the pressure curve of the optimized airfoil,
which matches the OpenFOAM results closely to a similar degree as for the NACA 0008
validation point in Figure 5.6.

Figure 5.12 shows the same for the u-velocity field with the PINN prediction and OpenFOAM
results indistinguishable side-by-side. The plot of the difference between them in Figure 5.12c
shows some small differences in the proximity of the airfoil where the boundary layer is present
and in the wake.

Overall, the trained PINN is able to predict accurate solutions for the flow fields for all the
symmetrical PARSEC airfoils within the parameter ranges. This PINN has been implemented
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Figure 5.11: cp distribution of the drag optimized PARSEC airfoil

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure 5.12: u-velocity field of the drag optimized PARSEC airfoil.

in a numerical optimization loop to find an airfoil profile that has a lower drag compared to
the starting geometry of the NACA 0008 airfoil. The trained PINN functions as a surrogate
model that solves the flow at a lower computational cost compared to conventional CFD
solvers as OpenFOAM. Inference with the trained PINN is near instantaneous and offers a
tremendous speed boost over OpenFOAM, which takes up to 20 minutes to solve the flow
problem per airfoil geometry. Even when accounting for the PINN training time of around
six hours, a significant reduction in computational time has been achieved, considering the
54 function evaluations that were used. These would take around 18 hours with OpenFOAM,
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so using the PINN shortens the computation time with a factor of three, while still retaining
a high accuracy, comparable to a CFD solver. The PINN surrogate model is able to infer the
complete velocity and pressure fields, whereas most conventional surrogate models are based
on finding a statistical relation between the inputs and outputs. This obscures the physics
of the flow and information about the flow is lost, while the PINN is trained to satisfy the
Navier-Stokes equations in their full form by minimizing the Navier-Stokes residuals across
the computational domain during training.

5.3 Full 11 parameter PARSEC airfoil case

The final case of this thesis will try to push the limits of the current PINN set-up by expanding
the design space to 10 of the 11 PARSEC parameters and adds the angle of attack as a free
parameter. Only p9 of the PARSEC parameters remain zero to maintain a sharp trailing
edge. Also the Reynolds number is increased to Re = 5000. The OpenFOAM training data
reaches a total of 1892 airfoils on the boundary and 64 airfoils that are sampled from the
interior of the design space. As the problem complexity and the amount of training data
increases, some changes in the PINN set-up are required. The PINN size is increased to 16
layers with 196 neurons each to raise the capacity to deal with the increased complexity.
Boundary conditions of the inlet, top and bottom are dependent on the angle of attack with
the velocity components prescribed as u = cos(α) and v = sin(α). Design space sampling
also needs to be preformed in a different way, as the previous strategy does not scale well
with the number of dimensions. This method would require generating 311 = 177, 147 airfoils,
which is a time consuming task taking a few hours and results in an excessive number of total
boundary and interior sampling points exceeding memory limits. Reduction of the sampling
density to a practical level results in very sparsely sampled domains of every airfoil, so in this
case it is better to treat the geometrical parameters in a continuous way where the sampling
points are directly randomly sampled from the full 13 dimensional space, consisting of the 2D
spatial coordinates (x, y), 10 PARSEC parameters (p1, p2, p3, p4, p5, p6, p7, p8, p10, p11) and
angle of attack α. Near the airfoil however, sampling will still be done in a discrete manner by
first randomly sampling 4096 airfoil geometries from the design space, followed by sampling
physical information from the boundaries and interior for those airfoil geometries in the spatial
domain. The discrete approach is taken near the airfoil to avoid having to generate the airfoil
geometry for every generated sample, because they need to lie outside of the airfoil section
and removed if not. Since the airfoil geometry has been parameterized, it is not constant, but
depends on the geometrical parameters of the sample point. Thus the corresponding airfoil
geometry needs to be generated to determine whether a sample point lies outside the airfoil
or not, which is very time consuming to do for every randomly generated sampling point. For
this reason, the sampling points close to the airfoil in the hr2 area is generated in batches
for 4096 airfoil geometries, randomly taken from the design space. Table 5.4 summarizes the
PINN settings for this case.

Loss weighting has been reverted to the original uniform weighting scheme that keeps the
importance of different areas constant regardless of sampling density. The SDF weighting
method resulted in worse prediction in this case, which may be caused by the higher Reynolds
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Table 5.4: Summary of the parameters of the PINN on the 11 parameter PARSEC case.

Parameters Setting

PINN size 16 layers of 196 neurons
Computational domain x = [−10, 11], y = [−5, 5]
Geometrical parameters p1 = [0.0020, 0.0040], p2 = [0.3000, 0.6000], p3 =

[0.0200, 0.04000], p4 = [−0.2200,−0.1200], p5 =
[0.3000, 0.6000], p6 = [−0.0400,−0.0200], p7 =
[0.1200, 0.2200], p8 = [−0.0100, 0.0100], p10 =
[−0.0873, 0.0873], p11 = [0.1397, 0.2618], α =
[−3, 3]

Design space sampling lr, hr: direct random sampling, hr2:4096 airfoils
Boundary conditions inlet, top, bottom: u = cos(α), v = sin(α)

outlet: p = 0
no-slip airfoil: u = v = 0

PINN sampling density boundaries inlet, top, bottom, outlet: BPA=64, BPE=1000
airfoil: BPA=128, BPE=10

PINN sampling density interior lr: BPA=16, BPE=1000
hr (x = [−1, 2], y = [−1, 1]): BPA=256, BPE=1000
hr2 (x = [−0.2, 1.2], y = [−0.2, 0.2]): BPA=1024,
BPE=10

Training iterations 200,000
Learning rate decay steps 2000
Reynolds number Re = 5000 (by setting ν = 0.0002)
OpenFOAM training data u, v, p for the 1892 PARSEC parameter boundary

samples and 64 interior samples
OpenFOAM data number of batches BPE=1000

number. Compared to the previous case, the area where the boundary layer is present has
grown smaller resulting in a smaller contribution to the total loss. Also, the SDF weights of
the sample points in the boundary layer, which were already small due their proximity to the
airfoil, will be lowered even more when the boundary layer becomes thinner. This results in
a very low relative importance of the boundary layer area compared to the rest of the spatial
domain, where even large errors in this area will barely affect the total loss.

5.3.1 PINN training

The complexity of this problem has increased significantly from the larger number of geo-
metrical parameters, increasing the dimensionality of the problem. Also, the higher Reynolds
number makes the flow problem for the individual airfoils more difficult caused by the thinner
boundary layers, resulting in larger gradients. Figure 5.13 shows the overall loss decreasing
at a stable rate on average till 140k iterations are reached, but training slows down after. The
loss is reduced to 9.20× 10−3 after 200k iterations, with a training time of 19 hours.

Figure 5.14 and Figure 5.15 shows the makeup of the overall loss. The loss components show a
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Figure 5.13: Total L2 loss of the PINN on the 11 parameter PARSEC airfoil case.

similar, steady loss reduction up to 140k iterations and improvements made after small. The
training appears to have completed without problems and 200k iterations seem sufficient.
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Figure 5.14: L2 loss of prediction for the 11 parameter PARSEC airfoil case.

8e-4

2e-3

5e-3

8e-3

0.02

0 40k 80k 120k 160k 200k

(a) Loss continuity

3e-4

8e-4

4e-3

9e-3

0 40k 80k 120k 160k 200k

(b) Loss momentum x

4e-4

8e-4

3e-3

7e-3

0.02

0 40k 80k 120k 160k 200k

(c) Loss momentum y

Figure 5.15: L2 loss of Navier-Stokes residuals for the 11 parameter PARSEC airfoil case.

5.3.2 PINN results

As the number of training airfoil samples have increased to 1956, validating the PINN predic-
tions on those by hand would be a tedious process. For this reason, the differences between
the PINN prediction and OpenFOAM results for the pressure distribution are calculated as
in Equation 5.2 and plotted in a comparison in Figure 5.16.
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εi =
||cp,OF (x)− cp,NN (x)||2

(
∫
cp,OF (x)dx)2

(5.2)

When comparing the errors of the boundary airfoils in Figure 5.16a with the interior airfoils
in Figure 5.16b, the accuracy of the PINN is noticeably better for the interior points. The
prediction accuracy for the airfoils on the boundary of the design space varies, with some
similar to the interior airfoils, while others have a far larger error. The three most accurate
predictions are shown in Figure 5.17. Notably, all three of them lie in the interior of the
design space and show an good accuracy comparable to PINNs from earlier cases.

The three worst predictions in Figure 5.18, where significant differences between the PINN
prediction and OpenFOAM data can be observed that are large enough to have an effect
on the optimization result. When comparing the geometry of these airfoils, some common
features can be found. They are thin airfoils with a concave part on the lower surface near
x/c = 0.2 and are all located on the boundary of the design space. This hollow section may
lead to flow separation at some angles of attack, which result in a unsteady flow. The PINN in
this current set-up is not equipped to deal with unsteady behavior and will not likely be able
to infer accurate solutions in such cases. Despite lower accuracy of some prediction compared
to previous PINNs that were accurate across their design space, the PINN seems to perform
fairly well in the interior of the design space and the inaccurate predictions are clustered near
some parts of the boundary. As the PINN appears to be decently accurate for the most part
of the design space, it should still be able to function as the flow solver for the optimization.

5.3.3 Lift optimization

The airfoil geometry will this time be optimized for lift, while minimizing the drag. Also, a
minimum lift coefficient of cl,ref = 0.0705 will be added as an constraint, which is the lift
coefficient of the initial airfoil geometry. This section will first perform a design optimization
with one starting geometry, like for the symmetrical PARSEC case. The initial airfoil geom-
etry, where the optimization starts, is the airfoil geometry at the center of the design space.
For this optimization, the angle of attack will be set to a constant α = 1 [deg], resulting in a
design space with 10 free PARSEC parameters. The objective function of this optimization,
adapted from [41], is given in Equation 5.3.

I = −0.5c2l + 0.5c2d + 40 ·max(0, cl,ref − cl)
2 (5.3)

Here, the first and second term will maximize lift and minimize drag and the last term is a
exterior penalty function that increases the loss if the lift coefficient drops below the minimum
reference lift coefficient, but is zero when the lift coefficient is higher than the minimum
required value. The coefficient of 40 sets the steepness of the penalty function when the cl
drops below cl,ref . The final optimization will generate 20 random airfoil geometries to start
the optimization with. This will take advantage of the fast PINN prediction speed to look
into the effects of different starting points on the resulting optimized airfoil shapes.
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(a) boundary airfoils

(b) interior airfoils

Figure 5.16: Normalized error of the airfoil pressure distribution for the 11 parameter PARSEC
airfoil case.
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(a) boundary airfoil 1142 (b) boundary airfoil 1270

(c) boundary airfoil 1140

Figure 5.17: Pressure distribution of airfoils with the smallest deviation from OpenFOAM data.

Table 5.5: The 10 PARSEC parameters of initial center airfoil and resulting optimum with their
lift and drag coefficient.

(p1, p2, p3, p4, p5, p6, p7, p8, p10, p11) cl cd
Initial center airfoil (0.0030, 0.4500, 0.0300, -0.1700, 0.4500, -

0.0300, 0.1700, 0, 0, 0.2007)
0.0705 0.0433

Optimized airfoil (0.0023, 0.4644, 0.0400, -0.1646, 0.4810, -
0.0245, 0.1735, 0.0006, 0.0025, 0.2067)

0.0860 0.0434

Optimization with one starting geometry

The optimization took 583 function evaluations to complete and Table 5.5 presents the re-
sulting parameters and aerodynamic coefficients.

Figure 5.19a shows the geometries of the starting and optimized geometry, corresponding to
the parameter values. The net effect of the optimization seems to be an increased camber
compared to the starting airfoil. This results in a higher lift coefficient, while the drag
coefficient remains nearly the same as can be seen from the values in Table 5.5.

An additional OpenFOAM simulation has been performed on the optimized airfoil geometry
to investigate the PINN prediction accuracy. Figure 5.19b shows a comparison between
the pressure distribution of the airfoil inferred by the PINN and OpenFOAM. The results
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(a) boundary airfoil 1142 (b) boundary airfoil 1270

(c) boundary airfoil 1140

Figure 5.18: Pressure distribution of airfoils with the largest deviation from OpenFOAM data.

(a) optimized geometry (b) cp distribution

Figure 5.19: Optimized PARSEC airfoil with the design space center as initial geometry.

are mostly the same, but an error can be observed on the curve for the lower side of the
airfoil near the leading edge. Here, the PINN predicts a lower pressure compared to the
OpenFOAM simulation. Like discussed in the previous section, the accuracy of this PINN has
a comparatively lower accuracy than the previous PINNs on the less complex problems that
have been able mirror the OpenFOAM simulations near perfectly. Overall, the discrepancy is
still acceptable, as the PINN gets the shape of the curve largely correct. Next, the u-velocity
field will be inspected in Figure 5.20. Figure 5.20a and Figure 5.20b actually look very similar
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(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure 5.20: u-velocity field of the lift optimized PARSEC airfoil with initial geometry in the
center of the design space.

with no discernible difference. However, Figure 5.23c reveals the inconsistencies taking place
in close proximity of the airfoil where the boundary layer is present are the highest. This
was something something already observed earlier in the pressure plot of Figure 5.19b and
highlights the issue with thinner boundary layers at higher Reynolds numbers. With uniform
weighting by area, a thinner boundary layer results in a lower amount of samples inside the
boundary layer area, thus a lower importance of the boundary layer area during training,
relative to the rest of computational domain. Consequently, the errors in the boundary layer
remain the highest as it is also the most difficult area for the PINN to predict accurately due
to the large gradients. Unfortunately, this area is also the most important for computing the
aerodynamic coefficients as they are computed from integrating quantities along the airfoil
perimeter.

Optimization with 20 random starting geometries

The final optimization will start the optimization not with only one airfoil geometry, but
20 randomly selected airfoil geometries to find the global optimum. Using the high inference
speed of the PINN, the full optimization completed in 87 seconds with a total of 8107 function
evaluations. Of the 20 starting geometries, five failed to converge, suggesting a complex
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Table 5.6: The 10 PARSEC parameters of initial airfoil 11 and resulting optimum with their lift
and drag coefficient.

(p1, p2, p3, p4, p5, p6, p7, p8, p10, p11) cl cd
Initial center airfoil (0.0027, 0.3581, 0.0292, -0.1280, 0.5637, -

0.0349, 0.1548, -0.0063, 0.0701, 0.2259)
0.1097 0.0428

Optimized airfoil (0.0020, 0.3000, 0.0400, -0.1272, 0.6000, -
0.0200, 0.1719, -0.0100, 0.0861, 0.2298)

0.1839 0.0378

optimization landscape. The successfully optimized geometries are plotted in Figure 5.21.
Despite the 20 random starting points, the optimized airfoils have limited variation. They

Figure 5.21: Converged airfoil geometries.

either fall in the category of airfoils with the more unusual shape with a concave part on the
bottom surface near the leading edge or the more common cambered airfoils. Starting with
the 11th geometry, belonging to the former category, has the lowest objective function value
after optimization. Its parameters and those of the optimized are shown in Table 5.6 together
with the lift and drag.

The corresponding profiles are shown in Figure 5.22a and the pressure distribution in Fig-
ure 5.22b. This airfoil geometry is close to the boundary as can seen from the parameter
values, of which many are at or close to their limits leading to mediocre PINN accuracy. In
particular, the accuracy of the prediction is the least accurate on the bottom surface where
the PINN has difficulty with the flow in the concave area and near the trailing edge on the
top surface.

Figure 5.23c confirms this with clear errors visible in wake and close to the airfoil in the
boundary layer area, while the predicted velocity field of Figure 5.23a appears fine compared
tot the OpenFOAM result of Figure 5.23b.

The flow appears to separate near the trailing edge on the top surface, which may lead to
vortex shedding. This is not within the steady flow assumption of this case with this current
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(a) optimized geometry (b) cp distribution

Figure 5.22: Optimized PARSEC airfoil with sample 11 as initial geometry.

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure 5.23: u-velocity field of the lift optimized PARSEC airfoil with initial geometry 11.

set-up resulting possible inaccurate results for the PINN. Flow separation and vortex shedding
is likely to affect the airfoil performance negatively, so the lift and drag values from Table 5.6
may be too optimistic.

Thus this optimized design and the other similar shapes will be set aside to focus on airfoils
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Table 5.7: The 10 PARSEC parameters of initial airfoil 8 and resulting optimum with their lift
and drag coefficient.

(p1, p2, p3, p4, p5, p6, p7, p8, p10, p11) cl cd
Initial airfoil (0.0024, 0.4866, 0.0288, -0.1415, 0.5340, -

0.0345, 0.1476, 0.0060, 0.0800, 0.2466)
0.0442 0.0429

Optimized airfoil (0.0025, 0.5297, 0.0400, -0.1308, 0.4747, -
0.0200, 0.1604, 0.0057, 0.0873, 0.2487)

0.0872 0.0431

that do not cause problematic flow behavior.

The best performing airfoil among the remaining is the result from the eighth starting geom-
etry, whose parameters are presented in Table 5.7.

As the parameter values show, it is further away from the design space boundary than the pre-
viously discussed airfoil, where the PINN should predict more accurate solutions. Figure 5.24
confirms this indeed the case with a good match between the prediction and the OpenFOAM
results. The airfoil shape is similar to the initial optimization, starting from the design space
center. This optimum has a comparable sharp leading edge and a positive camber, resulting
in similar lift and drag coefficient values. The lift coefficient is slightly higher at a value of
0.0872 compared to the previous 0.0860 and the drag coefficient sees a minor improvement
to 0.0431 from 0.0434.

(a) optimized geometry (b) cp distribution

Figure 5.24: Optimized PARSEC airfoil with random sample 8 as initial geometry.

Figure 5.25 shows a good match for the u-velocity field, with the largest differences found close
to the airfoil. The velocity is slightly underestimated on the lower side, but overestimated on
the top side.

In general, the flow is inferred with high accuracy by the PINN as has been shown in a com-
parison with OpenFOAM validation data. This optimum, found by starting the optimization
from the eighth random starting geometry, is a good candidate for the global optimum as the
better scoring optimums have similar shapes to the 11th optimum, which all lie close to the
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(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure 5.25: u-velocity field of the lift optimized PARSEC airfoil with initial geometry 8.

boundary of the design space where prediction accuracy have shown to be lower. Here, the
predicted aerodynamic performance is questionable due to potential unsteady flow behavior
from flow separation, while the set-up for this case assumes steady flow. In regard to the com-
putational work, the PINN was able to complete the optimization in 87 seconds, requiring
8107 function evaluations. These evaluations would take 2702 hours of simulation time with
OpenFOAM at 20 minutes each or 113 days. Compared to this, PINN training itself only
took 19 hours, but the 2112 OpenFOAM simulations to produce training data required 704
hours. Even after taking the cost of producing the training data, solving this design problem
with a PINN reduces the computational cost by a factor of 3.7. If the problem would already
have a sufficient amount of training data available, the cost savings would increase to a factor
of 142.

5.4 Conclusion

Two airfoil optimization cases were studied in this chapter using PINNs as surrogate models
to solve the parametric flow problems. A drag optimization at a zero angle of attack and
Re = 1000 is treated first, which should have a symmetrical airfoil as the optimal shape. This
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simplifies the 11 parameter PARSEC airfoil geometry to a problem with only 5 independent
PARSEC parameters. The same approach has been taken for training this PINN as for
the previous cambered NACA case and completed without issues. The PINN, trained for
this case, was able solve the flow problems with a comparable accuracy to the OpenFOAM
solver, but is able to predict the full velocity and pressure fields instantaneously. Even when
accounting for the time it takes to produce the training data and completing the training, it
still features a net speedup of a factor three. With this, the PINN combines high accuracy
and faithfulness to the flow physics of CFD simulations with cheap computational cost of
conventional surrogate models, making it a powerful tool for solving parametric flow problems
and is able to compete with the current solution methods. The resulting optimal geometry
showed an expected increase in leading edge sharpness and reduction of airfoil thickness.

The final case raises the number of free parameters to a total of 11 with 10 PARSEC pa-
rameters and the angle of attack. Furthermore, the Reynolds number has been increased
to Re = 5000, bringing it in range of MAV flow conditions. This parametric flow problem
has proven to be more difficult to train a PINN on, because some parameter combinations
exist near the design space boundary that result in unsteady flows due to flow separation.
The current set-up for the PINN assumes steady flow, resulting in varying PINN accuracy
near the boundaries. Fortunately, most of the design space does not have this problem, so
the PINN is still an usable flow solver for the optimization. The numerical optimization was
performed for lift with a minimum reference lift coefficient as a constraint at a fixed angle
of attack of one degree. In the first optimization attempt, the center airfoil geometry was
taken as the starting point. The optimized geometry features a sharper leading edge and
a positive camber resulting in a higher lift and lower drag. Since function evaluations are
cheap to compute with the PINN, the optimization was repeated for 20 randomly generated
starting points to increase the chance of finding the global optimum. About half of the found
optimal shapes ended up close to the design space boundary, where the PINN accuracy has
been uncertain. After discarding these, the best of the remaining showed similar results to
the initial optimization attempt.

Overall, both trained PINNs have shown fair inference accuracy qualitatively and have shown
their value as a surrogate flow solver for parametric flow problems that is able to infer the
full velocity and pressure fields, similar to a CFD simulation, but reduces the computation
time up to a factor of 3.7 when accounting for training and training data generation. During
the numerical optimizations using the trained PINNs as flow solvers, plausible optimal shapes
were found confirming their applicability to the practical flow problem of numerical design
optimization.
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Chapter 6

Conclusion

Starting with the objective of investigating the prospects of PINNs in fluid mechanics prob-
lems, this project has started an exploratory research in order to answer this question. Specif-
ically, the focus has been on flow problems with an airfoil in freestream flow as the basis,
governed by the incompressible Navier-Stokes equations. Attempts have been made to train
PINNs on several cases to investigate the practical aspects of training and using PINNs to
solve flow problems.

The first problem considered a fixed airfoil geometry at an angle of attack of 25 degrees at a
low Reynolds number of 200 to induce vortex shedding. This case assumes an incompressible,
transient and laminar flow, where both the data on boundary conditions and the flow field
are incomplete: besides the initial condition, only the solution data on the airfoil perimeter
and in a square area downstream of the airfoil were used as training data. Using these two
incomplete data sets to train the PINN, the goal was to infer the complete solution with
the trained PINN to reconstruct the flow field in effect. The accuracy of the PINN inferred
solution varied depending on whether only the full solution was available in the square or
only the pressure. Both cases saw a steady decreasing accuracy with the increase of time and
convergence during training was not very smooth, as the time parameter has been treated as
an continuous parameter by the PINN. As information should only flow along the positive time
axis, some mechanism is needed to prevent the opposite from happening. Possible solutions
were the implementation of temporal weighting or temporal discretization of the problem.
Temporal weighting increases the weights on the losses at a lower time and reduces the losses
at higher times. This encourages the PINN to prioritize reducing the loss at lower time values
first before attempting higher time values, thus mimicking a time marching approach. While
this may make the PINN training more smooth and avoid local minima at the start, the
accuracy problem may not be solved at the end of the training. Due to the lower weights at
higher time values, larger error will be tolerated there compared to the solution at lower time
values, which still results in a lower accuracy at higher time values than lower time values.
Discretizing the computational domain along the time axis is an alternative, more forceful
approach to introduce time marching. With this method, the computational domain is divided
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into multiple small time windows on which separate smaller PINNs are trained sequentially
with limited exchange of information between the adjacent PINNs. Each resulting PINN will
be able to predict a time-accurate flow field on a small part of the time domain, but will cover
the entire time range together. With the aim of expanding the flow problem to a parametric
airfoil problem, both aforementioned solutions still have their issues: temporal weighting may
still result in varying accuracy depending on time, while temporal discretization is difficult
to implement. Therefore, steady flow was assumed for the parametric flow problems.

The investigation of parametric problems starts with the NACA 4-series airfoils and was
performed in two parts. A symmetrical NACA airfoil was the first part of the problem with a
Reynolds number of 600. This time, the training data set was composed of the full solution for
two airfoil geometries, obtained by OpenFOAM simulations. The boundary conditions were
also complete with the velocity components known on the inlet, top and bottom boundary,
pressure at the outlet and the no-slip condition on the airfoil perimeter. The PINN was
trained on this 1D parametric problem that has the airfoil thickness as a free parameter.
After training this PINN, it revealed accurate predictions for geometries that had a thickness
between the thickness of the two airfoils from the training data. However, inferences of airfoils
with thickness values outside this range were considerably less accurate. This highlights the
importance of choosing the sampling points of the design space of the parametric problem
as PINNs seem to be good at interpolating between the external training data sets, but less
effective when extrapolating.

Using this knowledge, the following case of the cambered NACA airfoils sampled the eight
corners of the 3D design space for to generate the training data with OpenFOAM. With this,
every geometry can be learned in the design space from interpolating between those training
data sets, which should result in a trained PINN with the ability to predict accurate solutions
for the entire design space. This was indeed confirmed after inspecting the predicted solutions
on the corners and validated for a few geometries where training data was not available. The
success of this trained PINN demonstrates the technical feasibility of training a PINN to solve
a parametric flow problem, where the trained PINN is able to infer the flow not only for one
airfoil geometry, but all the geometries inside the design space.

Next is the demonstration of the practical use of a PINN in two numerical airfoil design
optimization cases. For this the PARSEC method is used to describe a larger variety of
airfoils for airfoil design with 11 parameters. The first case was a drag optimization of a
symmetric airfoil at a Reynolds number of 1000 and a zero degree angle of attack. Assuming
symmetry, the number of free parameters of the PARSEC method drops to five. Following the
previous method of sampling geometries for the generating training data, the design space can
be seen as a 5-dimensional hypercube. There are eight corners or vertices in the 3D case of a
cambered NACA airfoil. A 5-dimensional hypercube has 32 vertices, for which training data
was created with OpenFOAM. The PINN completed training with success and the validation
showed that the trained PINN was able to infer accurate solutions for the entire design
space. Following this, the trained PINN was integrated in a optimization loop to demonstrate
an application of the PINN. The optimization successfully reduced the drag of the starting
geometry by increasing the leading edge sharpness and lowering the airfoil thickness, similar
to optimization results in literature for very low Reynolds number flows. Also, the PINN
showed the possibility of a significant amount of time saved, depending on the number of
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function evaluations are needed. PINNs have a large upfront cost from producing training
data and PINN training, but computing a solution with the PINN is nearly instantaneous
and has a negligible cost. With the numerous function evaluations needed for the numerical
optimization, a net gain has been observed of a computational work reduction of a factor
three compared to using OpenFOAM as solver. This demonstrates the practical value of the
PINN as a surrogate model that can infer a full flow field with a comparable accuracy to
conventional CFD at lower cost, even when taking the upfront costs into account.

The final case raises the complexity by increasing the number of free parameters to 11,
consisting of 10 PARSEC parameters and the angle of attack. Also, the Reynolds number
was further increased to 5000 to match the flow conditions of a practical problem of airfoil
design of a small fixed-wing MAV. Airfoil design optimization was performed to maximize
lift and minimize drag at the same time, with a minimum reference lift as a constraint. The
design space was sampled on the boundary in a similar way as before for generating the
training data, but due to some of the OpenFOAM simulations failing to converge an addition
number of samples of the interior were included. Using this data, the PINN was trained
on the 11 parameter design space, but the accuracy in some areas of the design space were
noticeably lower, in particular near the boundary. Some combinations of the parameters
appeared to create conditions that resulted in unsteady flow, which is more difficult for the
PINN to learn. Also, a slightly lower accuracy was observed in the interior, likely caused by
the thinner boundary layer due to the Reynolds number increase. This reduced the total area
the boundary layer occupies in the spatial domain, thus reducing the relative importance of
the boundary layer for the PINN, which is reflected in a smaller contribution to the total
loss. However, the main issue is likely to be the higher complexity of the problem with more
geometrical parameters, resulting in a much larger variety of airfoil shapes captured within
the design space boundaries. The more diverse flow cases resulting from this have a more
complicated relation with each other, which is more difficult for the PINN to learn. Despite
the lower accuracy of this trained PINN compared to those of previous cases, its accuracy
was sufficient for a preliminary design optimization, focusing on the qualitative aspects of the
resulting optimal shapes, rather than the quantitative aspects. The optimization was started
from 20 randomly generated starting geometries resulting in 15 successfully converged optimal
shapes. After removing the optimal shapes close to the boundary for their uncertain accuracy,
the best of the remaining showed a sharper leading edge and a positive camber. A sharper
leading edge has been shown to reduce drag in the drag optimization case and the addition of
camber increases the pressure difference between the upper and lower side of the airfoil, thus
increases lift. As the optimization produced a plausible optimal shape, the PINN fulfilled its
role as a flow solver successfully in the optimization. Performance-wise, the PINN showed
a computational work reduction of a factor 3.7, after taking training time and training data
production into account.

With all these cases together, this project takes a step beyond the use of PINNs on academic
benchmark problems in literature, by demonstrating its capabilities on a series of airfoil flow
problems. The research objective is reached by presenting the technical feasibility of training
a PINN on parametric flow problems and its potential as a flow solver for practical problems,
by demonstrating its implementation in a numerical airfoil design optimization loop.
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6.1 Recommendations

PINNs is still an immature technology with a low technological readiness level, meaning it
needs much research and investment to reach widespread adoption. Subjected to the resource
and time constraints, this project has explored some topics in order to advance our knowledge
on PINNs for fluid mechanics, but there are many more that deserve attention or further
investigation.

One of these is the trade-off between early convergence and the final accuracy if the area of
interest is also most difficult to learn for the PINN. In this case, it is beneficial to have the
difficult area have a smaller contribution to the total error, so the easier and larger part of
the computational domain is prioritized. This accelerates the convergence and prevents the
training from getting stuck at a local minima. However, the lower contribution of these losses
to the total loss also results in higher tolerance for errors in these areas, possibly resulting
in a lower final accuracy here compared to the rest of the computational domain. This
mismatch of high importance and its under-representation in the total loss can simply be
the result of how the computational domain looks like as was the case for the flow problems
where the boundary layer became thinner with increasing Reynolds number or a consequence
of a loss weighting scheme. A possible solution that may warrant investigation is the use
of spatial discretization to divide the computational domain into smaller parts and split
them between multiple PINNs that are individually easier to train on. Such a concept for
domain decomposition was presented in [20] with a number of benchmark problems including
the Burger’s equation and lid-driven cavity problem governed by the incompressible Navier-
Stokes equations, but its application to larger problems needs research. Alternatively, a
transfer learning approach can be taken to use the current results to partially retrain the
PINN with different loss weighting. This bears some resemblance to the method of [8], but
uses a combination of a PINN and a regular deep neural network.

All the PINNs in this project have used the fully connected network architecture. While this
architecture has wide applicability, it is not optimized for use in PINNs nor for flow problems.
Alternative network architectures are mentioned in SimNet’s manual [32]. Most of them are
a variation of the Fourier network, which aims to mitigate the spectral bias of the PINN
towards low frequencies [35], by using a Fourier feature mapping on the inputs to learn high
frequencies [44].

The currently used velocity-pressure formulation of the incompressible Navier-Stokes equa-
tions is widely used, but does have some issues, which may affect convergence and accuracy.
The first problem is that pressure boundary conditions are not given naturally in this formu-
lation [13]. The second problem is the absence op pressure in the continuity equation. The
vector potential formulation of [50] offers an alternative, where the velocity field automatically
satisfies the continuity equation and is divergence free. There are some comparisons between
the alternative architectures and the Navier-Stokes formulations in [32], but no published
works that have studied those in more detail.

Another area where improvements can be made is the optimizer. The Adam optimizer has
been the default choice for awhile in deep learning for their ability to deal with large amounts
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of data. This optimizer choice is inherited from the regular deep neural networks, but may
not be the optimal choice for PINNs. In many ways PINNs are similar to regular deep neural
networks, but there are still some clear differences. For this reason, the empirical evidence
supporting the optimizer choice in [23] may not apply to PINNs. One of the differences is the
quality and quantity of data. While external data from either measurements or simulations
contain noise like training data for data-driven deep learning, data sampled from the boundary
conditions or the collocation points are perfect. Also, in data-driven machine learning the
accuracy requirements are less strict, where a perfect prediction of the trained network is not
expected. In physical problems this is usually not the case as a decent local minimum is not
enough but the global optimum needs to be found so the trained PINN will predict a solution
that is as close to reality as possible.

These recommendations are not an exhaustive list of all areas in which physics-informed
machine learning can improve, but just a number of topics encountered during this project
that could not investigated in more detail considering the practical constraints of time and
resources. Fortunately, this is not the only research being performed on PINNs as the interest
in physics-informed machine learning has been growing since the introduction of PINNs in
[36] with the amount of papers referencing this or including PINN in their keywords or
abstract title is growing exponentially [9], hinting at a bright future for PINNs in the scientific
community. Out the many potential applications of PINNs, this work focused on solving
several incompressible airfoil flow problems. Hopefully the knowledge gained in this work will
contribute to the foundation of PINNs in the field of fluid mechanics.
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Appendix A

Flow reconstruction additional results

A.1 Velocity and pressure in measurement window

(a) velocity (v) PINN (b) velocity (v) OpenFOAM (c) velocity (v) difference

Figure A.1: Velocity (v) comparison at t = 30.04 for the PINN trained on the full solution in
the measurement window.

(a) velocity (v) PINN (b) velocity (v) OpenFOAM (c) velocity (v) difference

Figure A.2: Velocity (v) comparison at t = 31.52 for the PINN trained on the full solution in
the measurement window.
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84 Flow reconstruction additional results

(a) velocity (v) PINN (b) velocity (v) OpenFOAM (c) velocity (v) difference

Figure A.3: Velocity (v) comparison at t = 33.00 for the PINN trained on the full solution in
the measurement window.

(a) pressure (p) PINN (b) pressure (p) OpenFOAM (c) pressure (p) difference

Figure A.4: Pressure (p) comparison at t = 30.04 for the PINN trained on the full solution in
the measurement window.

(a) pressure (p) PINN (b) pressure (p) OpenFOAM (c) pressure (p) difference

Figure A.5: Pressure (p) comparison at t = 31.52 for the PINN trained on the full solution in
the measurement window.

(a) pressure (p) PINN (b) pressure (p) OpenFOAM (c) pressure (p) difference

Figure A.6: Pressure (p) comparison at t = 33.00 for the PINN trained on the full solution in
the measurement window.

A.2 Pressure only in measurement window
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A.2 Pressure only in measurement window 85

(a) velocity (v) PINN (b) velocity (v) OpenFOAM (c) velocity (v) difference

Figure A.7: Velocity (v) comparison at t = 30.04 for the PINN trained on pressure in the
measurement window.

(a) velocity (v) PINN (b) velocity (v) OpenFOAM (c) velocity (v) difference

Figure A.8: Velocity (v) comparison at t = 31.52 for the PINN trained on pressure in the
measurement window.

(a) velocity (v) PINN (b) velocity (v) OpenFOAM (c) velocity (v) difference

Figure A.9: Velocity (v) comparison at t = 33.00 for the PINN trained on pressure in the
measurement window.

(a) pressure (p) PINN (b) pressure (p) OpenFOAM (c) pressure (p) difference

Figure A.10: Pressure (p) comparison at t = 30.04 for the PINN trained on pressure in the
measurement window.

(a) pressure (p) PINN (b) pressure (p) OpenFOAM (c) pressure (p) difference

Figure A.11: Pressure (p) comparison at t = 31.52 for the PINN trained on pressure in the
measurement window.
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86 Flow reconstruction additional results

(a) pressure (p) PINN (b) pressure (p) OpenFOAM (c) pressure (p) difference

Figure A.12: Pressure (p) comparison at t = 33.00 for the PINN trained on pressure in the
measurement window.
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Appendix B

NACA cases additional results

B.1 NACA 00XX

NACA 0010

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure B.1: v-velocity field of the NACA 0010 airfoil.
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88 NACA cases additional results

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure B.2: Pressure field p of the NACA 0010 airfoil.

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure B.3: u-velocity field of the NACA 0006 airfoil.
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(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure B.4: Pressure field p of the NACA 0006 airfoil.

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure B.5: v-velocity field of the NACA 0014 airfoil.
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(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure B.6: Pressure field p of the NACA 0014 airfoil.
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B.2 NACA XXXX

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure B.7: v-velocity field of the NACA 3513 airfoil.

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure B.8: Pressure field p of the NACA 3513 airfoil.
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(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure B.9: v-velocity field of the NACA 2412 airfoil.

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure B.10: Pressure field p of the NACA 2412 airfoil.
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(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure B.11: u-velocity field of the NACA 2413 airfoil.

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure B.12: Pressure field p of the NACA 2413 airfoil.
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Appendix C

PARSEC cases additional results

C.1 PARSEC five parameter case
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96 PARSEC cases additional results

(a) cp distribution of the PARSEC lllll airfoil (b) cp distribution of the PARSEC llllu airfoil

(c) cp distribution of the PARSEC lllul airfoil (d) cp distribution of the PARSEC llluu airfoil

(e) cp distribution of the PARSEC llull airfoil (f) cp distribution of the PARSEC llulu airfoil

(g) cp distribution of the PARSEC lluul airfoil (h) cp distribution of the PARSEC lluuu airfoil

Figure C.1: Pressure distribution of the symmetric PARSEC airfoils on the boundary.
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(i) cp distribution of the PARSEC lulll airfoil (j) cp distribution of the PARSEC lullu airfoil

(k) cp distribution of the PARSEC lulul airfoil (l) cp distribution of the PARSEC luluu airfoil

(m) cp distribution of the PARSEC luull airfoil (n) cp distribution of the PARSEC luulu airfoil

(o) cp distribution of the PARSEC luuul airfoil (p) cp distribution of the PARSEC luuuu airfoil

Figure C.1: Pressure distribution of the symmetric PARSEC airfoils on the boundary. cont.
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(q) cp distribution of the PARSEC ullll airfoil (r) cp distribution of the PARSEC ulllu airfoil

(s) cp distribution of the PARSEC ullul airfoil (t) cp distribution of the PARSEC ulluu airfoil

(u) cp distribution of the PARSEC ulull airfoil (v) cp distribution of the PARSEC ululu airfoil

(w) cp distribution of the PARSEC uluul airfoil (x) cp distribution of the PARSEC uluuu airfoil

Figure C.1: Pressure distribution of the symmetric PARSEC airfoils on the boundary. cont.
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(y) cp distribution of the PARSEC uulll airfoil (z) cp distribution of the PARSEC uullu airfoil

(aa) cp distribution of the PARSEC uulul airfoil (ab) cp distribution of the PARSEC uuluu airfoil

(ac) cp distribution of the PARSEC uuull airfoil (ad) cp distribution of the PARSEC uuulu airfoil

(ae) cp distribution of the PARSEC uuuul airfoil (af) cp distribution of the PARSEC uuuuu airfoil

Figure C.1: Pressure distribution of the symmetric PARSEC airfoils on the boundary. cont.
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(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure C.2: Velocity field (v) of the PARSEC llulu airfoil.

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure C.3: Pressure field (p) of the PARSEC llulu airfoil.
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(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure C.4: Velocity field (v) of the NACA 0008 equivalent PARSEC airfoil.

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure C.5: Pressure field (p) of the NACA 0008 equivalent PARSEC airfoil.
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102 PARSEC cases additional results

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure C.6: Velocity field (v) of the drag optimized PARSEC airfoil.

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure C.7: Pressure field (p) of the drag optimized PARSEC airfoil.
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C.2 PARSEC 11 parameter case

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure C.8: Velocity field (v) of the lift optimized PARSEC airfoil with initial geometry in the
center of the design space.
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(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure C.9: Pressure field (p) of the lift optimized PARSEC airfoil with initial geometry in the
center of the design space.
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(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure C.10: Velocity field (v) of the lift optimized PARSEC airfoil with initial geometry 11.
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106 PARSEC cases additional results

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure C.11: Pressure field (p) of the lift optimized PARSEC airfoil with initial geometry 11.
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(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure C.12: Velocity field (v) of the lift optimized PARSEC airfoil with initial geometry 8.
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108 PARSEC cases additional results

(a) PINN prediction (b) OpenFOAM data

(c) difference

Figure C.13: Pressure field (p) of the lift optimized PARSEC airfoil with initial geometry 8.
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