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Abstract

3D scene reconstruction is a common computer vision task with many applications.
The synthesized virtual environments are beneficial for many downstream applications
such as 3D modeling, building inspection, virtual reality, etc. As conventional scene
reconstruction methods often require expensive data collections and prior information
on the geometry, a learning-based method named Neural Radiance Fields (NeRF) has
gained a surge of interest within the computer vision community recently for its ca-
pacity to achieve state-of-the-art view synthesis performance and achieve photorealistic
rendering from only a sequence of RGB images as the input. However, NeRF has a strict
requirement for input images with accurate camera poses, which is often not available
in real-life applications. To this end, we provide an end-to-end guideline for 3D scene
reconstruction using NeRF under a real-world scenario the objective is to reconstruct
the HDB facade in Singapore. This guideline requires only RGB images as the input
and can achieve photorealistic rendering results which are competitive with the results
from the conventional point cloud-based method. Besides, we build our own models
upon NeRF and also improve its performance in representing fine details. We first
research that the ability to represent high-frequency contents in the signal is limited by
its ReLU activations in the Multi-layer Perceptron (MLP) network, and demonstrate
that mapping the input to the MLPs from low dimensional space to high dimensional
space significantly improves the reconstruction and view synthesis quality. Afterward,
We make several attempts to perform input mapping. We first use Gaussian-distributed
Fourier features to replace the original positional encoding used in NeRF. Then, we re-
search the activations in coordinate MLP and propose an embedding-less NeRF model
equipped with parameterized sine activations called SIRENeRF. Next, we extend the
use of parameterized activations from sine activations to a class of non-periodic acti-
vations and propose a trainable activation scheme that not only achieves higher scene
reconstruction results but also enjoys better flexibility to different datasets. Experi-
ments show that all of the above attempts outperform the positional encoding in terms
of scene reconstruction and view synthesis results.
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Introduction 1
1.1 Motivation & Research Statement

3D reconstruction is a process of capturing shape and appearance of real objects and
building a 3D profile for the targets. With a determined 3D profile, many downstream
applications such as 3D modelling and novel view synthesis are unlocked. Therefore,
3D reconstruction has been a core problem of a wide variety of fields including com-
puter vision, computer graphics, and virtual reality. However, applying photorealistic
3D scene reconstruction and rendering in the real world is highly challenging. This is
because real-world scenes often contain structures and topology of high complexity, and
some of the objects might be semi-transparent or shaded under certain circumstances.
Moreover, these structures/topology are evolving over time due to many factors includ-
ing the motions from the objects, the varying light conditions, etc. What is more, in a
real-world scene the environment is possibly unbounded, which means that the objects
in the background are of various distance and can be extremely far away. All these
facts increase the difficulty of reconstructing a real-world scene.

Conventional 3D reconstruction methods usually represent the shape and appear-
ance of the target objects in the form of point cloud models, mesh models or geometric
models. As the most basic model, point cloud requires a collection of points in a 3D
space which usually include x, y, z coordinates, vector information, colour, and other
relevant information related to the points. These points can be joined together to form
objects or surfaces, which can then be used to build a complete model of the targets.
To collect these points, a laser scanning system is often used where laser beams are
transmitted and bounces off a specific point and the time is recorded. With the time,
the distance between the target and the transmitter is measured and a point cloud
model is then built. On the basis of point clouds, a mesh model can be further con-
structed to illustrate clearer appearance. However, constructing a point cloud model
for a real-world scene is always expensive in terms of both the labour of data collection
and hardware requirements. Besides, to generate an accurate point cloud model, a lot
of prior information about the targets is required, which is also difficult to acquire. To
this end, recent researches leverage deep networks to save the work to acquire expen-
sive data and generate point clouds. Many deep network-based methods work towards
scene reconstruction and novel view synthesis with only RGB images as the input data.
Since RGB images are much cheaper to collect in the real world applications, these
deep network-based methods are supposed to show more flexibility and a significant
advantage in terms of the cost.

Our research is in collaboration with TUV SUD, a company that is applying the
3D reconstruction technique in a real-world scenario and synthesizing the HDB facade
in Singapore. There are over 4,000 buildings in Singapore, thus follow-up applications
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Figure 1.1: Novel views synthesized by Neural Radiance Fields [32] with posed RGB images
as the input.

Figure 1.2: The target building in our research.

such as building inspection and repair can be seamlessly managed through the 3D
synthesized model. However, regularly monitoring a large number of buildings using
conventional 3D reconstruction methods requires huge time and work. Therefore, the
motivation of our research is to find a solution that we can feed only the RGB images
as the input to the algorithm to generate the 3D virtual environment in a much cheaper
way. In our research, the objective scene is a building shown in figure 1.2.

At present, TUV SUD uses software named ContextCapture to do the view synthesis
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Figure 1.3: The view synthesis results from ContextCapture.

tasks in real life. Figure 1.3 presents the reconstruction results of the target building.
ContextCapture provides a sophisticated point cloud-based method to automatically
generate high-resolution 3D models without any human intervention. This method
has a high requirement on the input dataset, which is supposed to be captured at a
constant focal length during the acquisition and under suitable light conditions. It also
requires a large number of input views to ensure the accuracy of the output 3D models.
However, ContextCapture is commercial software that is not open-sourced and not free.
Therefore, a secondary goal of this research is to build a free method that can achieve
competitive performance compared to ContextCapture.

1.2 Research Objectives and Expected Outcomes

The primary objective of this research is to provide an effective and cheap guideline to
synthesize the target building with only RGB images as the input data. This guideline
is expected to serve as an alternative way that requires fewer data and resources than
the commercial software they are using to do the same task. We perform the following
tasks in this research:

1. Study a Neural Radiance fields (NeRF) method [32] which can achieve state-of-
the-art view synthesis results with cheap resources required.

3



2. Conceptualize the coordinate MLP in NeRF and implement enhancements on
NeRF to improve the performance.

3. Provide detailed analysis of the data cleaning and pre-processing strategies.

4. Perform a quantitative and qualitative evaluation of the generated 3D scenes.

5. Provide a detailed comparison between the existing NeRF model and our proposed
methods.

1.3 Research Contributions

In this research, we study the recent works of view synthesis and focus on implementing
and improving NeRF [32] to synthesize novel views of our target scene. We specifically
research the use of coordinate MLP in view synthesis tasks. Combine Fourier Features
[52] with NeRF, we propose an alternative way of mapping the inputs of the coordinate
MLP from lower dimensional space to higher dimensional space and show that this
method can help represent the reconstruction of the scene in better detail and reduce the
noise in the background. What is more, this method outperforms the original positional
encoding method used in NeRF [32] in terms of the qualitative results. We also study
the activations in coordinate MLP. Inspired by recent works on activations [48][39],
we propose our frameworks that leverage parameterized activations to achieve better
results on our target scene than NeRF, and leave out the need for positional encoding.
We propose SIRENeRF, which uses sine activation-based SIREN layers to replace the
MLP in NeRF and achieves better qualitative results. We also theoretically discuss
the importance of the parameters in activations and provide a principle of tuning these
parameters. Further, we extend our research to a more general class of parameterized
activations and propose a trainable activation-based NeRF (TARF) which not only
outperforms NeRF in terms of the qualitative results and quantitative results on our
target scene but also shows significantly better flexibility and efficiency than SIRENeRF
by leaving out the need of manually tuning the parameters in activations. In addition,
we also provide a guideline to clean the data and pre-process the data, and we discuss
and show two different manners of reconstruction: reconstruct the target with forward-
facing renderings and reconstruct the target with one 360-degree spherical rendering. In
the end, we also outline the drawback and limitations of our methods in training speed
and resolution and suggest possible future work that can be pursued for improvement.

In summary, we present the following contributions:

• We implement a neural radiance fields-based method to achieve novel view syn-
thesis on our own target scene with only RGB images as the input.

• We leverage Fourier Features as an alternative positional encoding method in
NeRF and outperform the original positional encoding.

• We leverage parameterized activations in NeRF, and propose a SIRENeRF frame-
work that uses sine functions instead of conventional activations. We show that
SIRENeRF can achieve better results on our target scene, and we provide princi-
ples for tuning the parameters in activations.
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• We further propose a class of general trainable activations and achieve better
results on our target scene with our proposed TARF framework. We also show that
TARF outperforms SIRENeRF in terms of flexibility and efficiency on different
datasets.

• We provide a guideline to clean and pre-process the data, and discuss different
data preparation and rendering strategies

We demonstrate that our research successfully achieves the research objectives and
paves the way for implementing NeRF in other real-world applications.

1.4 Report Structure

The following research report contains 5 chapters. In chapter 2, We begin with an
analysis of recent works related to our view synthesis task, then introduce NeRF as our
base method. In chapter 3, a more detailed theoretical analysis of NeRF is given. In
chapter 4, we demonstrate our study on coordinate MLP and demonstrate our proposed
methods related to positional encoding and parameterized activations. In chapter 5,
We demonstrate our data preparation strategy and related discussion, then we present
the experiment results. A discussion about the results and limitations of our work is
also given.In chapter 6, a conclusion of our research is given.
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Related Research 2
2.1 Structure from Motion

Structure from Motion (SfM) is a technique of reconstructing 3D structures from 2D
images of an object taken from different viewpoints. As a fundamental goal of a large
number of researches in the field of computer vision, SfM is used in many applications
such as 3D scanning, visual simultaneous localization, and 3D reconstruction. Gener-
ally, SfM includes three main stages. The first stage is to extract the features such
as points or lines from the images and match the features between a pair of images.
One of the most popular methods is the scale-invariant feature transform (SIFT) [27]
[35] [1], which is widely used as the backbone of many corresponding point-based SfM
methods. As a multidimensional descriptor, SIFT transforms an image into a collection
of local features that are invariant to the scaling and rotation of the underlying image.
Other methods such as PCA-SIFT [22] [60], gradient location and orientation histogram
(GLOH) [42] [28], and ORB [1] [34] are also universal feature descriptors. The second
stage is then to estimate the camera motion, where the corresponding extracted fea-
ture points are used to measure the relative motion between a pair of images. The
estimated motion is then decomposed into the pairwise rotation and translation mea-
surements. The final step is to recover the 3D structure by minimizing the reprojection
error. Most of the recent methods utilize bundle adjustment techniques which optimize
a cost function known as the total reprojection error. This cost function enables SfM
methods to simultaneously determine the structure and the calibration parameters of
each viewpoint given several images of a stationary scene.

2.1.1 Incremental SfM and COLMAP

Among various SfM strategies, incremental SfM has been shown up as the most fre-
quently used strategy for the reconstruction of unordered photo collections. Schon-
berger et al [43] propose an incremental SfM pipeline that has been proved effective
on various datasets and can serve as a solution for general purposes. Meanwhile, an
open-source implementation of this pipeline named COLMAP is also released. This
pipeline involves two stages. The first stage is the correspondence search, where the
scene overlap in the input sequence is found and projections of the same points in over-
lapping images are identified. The process starts by doing feature extraction, where the
local feature set at each location is detected for each input image. Then, SfM matches
images that observe the same view of the scene by using the features as an appearance
description of the images. The following step is to verify the matching by estimating
a transformation that maps feature points between images using projective geometry.
The correspondence search stage outputs a set of geometrically verified image pairs and
a graph of image projections for each point. The scene graph then serves as the input

7



Figure 2.1: The pipeline of Incremental Structure-from-Motion (COLMAP) [43].

for the second stage, incremental reconstruction.
Moving to the reconstruction stage, SfM first initializes the model by carefully se-

lecting an initial pair for the two-view reconstruction. A well-chosen initial pair can
bring more robustness and accuracy to the reconstruction because initializing from a
dense location with more overlapping cameras increases redundancy. Then new im-
ages are registered to the current model. The image registration procedure is achieved
by solving a Perspective-n-Point problem [14] using feature correspondences to trian-
gulated points in registered images (2D-3D correspondences). Image triangulation is
another significant step that serves to increase the stability of the existing model by
adding more redundancy and boosting the image registration procedure by providing
additional 2D-3D correspondences. Bundle adjustment then conducts a joint refine-
ment of camera parameters and point parameters to minimize the reprojection error.
The whole process is summarized in figure 2.1.

2.2 Novel view synthesis

Novel view synthesis methods can be divided into three main groups including image-
based methods, learning-based methods, and geometry-based methods. Image-based
methods attempt to visualize 3D scenes and objects in a realistic way without full
3D model reconstruction [8] [55] [47]. image-based methods treat the view synthesis
and rendering problem as a multidimensional sampling problem, where new views are
generated from a collection of densely sampled images or videos instead of an accurately
pre-built 3D model of the scenes. Well-known image-based methods include panoramas
[51] [44] [4], light fields [25] [23] [13], concentric mosaics [45] [46], etc.

Geometry-based methods refer to techniques that utilize explicit scene geometry
to synthesize new views from unstructured input views. Different from image-based
methods, geometry-based methods need to reconstruct a 3D model first before render-
ing novel views. Geometry-based methods can be categorized based on either using
global or local geometry. Methods that leverage the global geometry of the scenes at-
tempt to compute a single global mesh. Methods that globally texture mapping the
global mesh generally fit in constrained scenes such as a panoramic view with limited
rotation and translation [16], but they mostly require accurate geometry from dense
range scans and hundreds of captured images to sample the outgoing radiance at points
on an object’s surface. In addition, some rendering strategies are designed to compute
per-pixel blending weights for reprojected images [5]. However, these strategies expect

8



an estimation of high-quality meshes whose geometric boundaries align well with edges
in images, which is difficult for global geometry-based methods. Some methods [17]
[53] [18] try to overcome this limitation by combining both global mesh and local depth
estimation, but precisely defining view sampling requirements for robust mesh estima-
tion remains difficult for these methods, and make them not effective for casual content
capture scenarios. Many methods, instead, turn to leverage the local geometry to leave
out the global mesh estimation which is often too expensive. local geometry-based
methods compute local geometry in detail for each input image and render novel views
by reprojecting and blending nearby input images [9][6]. Geometry-based methods can
produce high-quality rendering results, though they are often limited in the applications
by their requirements on the amount of data and the computation capacity.

Learning-based methods train deep learning networks to provide an end-to-end so-
lution for novel view synthesis and have been a trend recently. Deep learning-based
methods often transform view synthesis into a supervised learning problem. Some
methods that make a combination of light fields and deep networks are proposed to
achieve tasks including synthesizing a 4D RGBD light field from a single image[49],
synthesizing novel views for light fields cameras[21] [56], or synthesizing novel views di-
rectly from pixels[15]. These methods utilize deep networks to predict depth separately
for each view. However, these methods often face a shortcoming that rendering from
varying viewpoints can lead to inconsistency because of the principle that predicting
local geometry separately for each view. In order to reduce the inconsistency, Zhou
et al. [59] introduce a pipeline that enforces consistency by using the same predicted
scene representation to render all novel views. Similar to [59], Mildenhall et al. pro-
pose a local light field fusion [31] method which also makes use of multiplane images.
Local light field fusion adopts multiplane images as the light field representation and
predicts multiple multiplane images for each input view. The predicted multiplane im-
ages are optimized through a convolutional neural network (CNN) architecture which
dynamically adjusts the number of depth planes based on the input view sampling
rate. Recently, Neural Radiance Fields (NeRF) [32] has been trending as a novel view
synthesis method that can achieve state-of-the-art rendering results. NeRF represents
a scene as neural radiance fields and can synthesize novel views of complicated scenes
by optimizing an underlying continuous volumetric scene function.

2.3 Neural Radiance Fields

Mildenhall et al. [32] propose Neural Radiance Fields(NeRF) in 2020, which is a method
to synthesize novel views of complex scenes from a collection of posed images. Over
the last couple of years, NeRF has drawn dramatic attention within the Computer
Vision and Machine Learning community because of its state-of-the-art performance in
synthesizing novel views and surprisingly simplicity. NeRF models the target scene as
continuous radiance fields(volume density and view-dependent color at any continuous
location), and optimizes the representation by optimizing a continuous volumetric scene
function with the help of a fully-connected network (Multilayer Perceptron), following
up a differentiable volume rendering technique to accumulate samples of this scene
representation along rays to render the scene from any viewpoint.
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Figure 2.2: Neural Radiance Fields [32] encodes a 3D scene as a continuous function which
takes 5D coordinates including the 3D position x = (x, y, z) and the 2D viewing direction
d = (θ, ϕ) as the inputs, and predicts the color c(x,d) = (r, g, b) and volume density σ(x)
via MLPs. Later using volume rendering techniques to composite the volume density and the
color into an image. The mean squared error between the predicted image and the ground
truth are back-propagated to optimize the representation.

Figure 2.2 shows the pipeline of NeRF. NeRF takes 5D coordinates (extracted from
a set of posed images) as the input, feeds each input (location (x, y, z) and viewing
direction (θ, σ) for one single spatial location) into the MLP, and obtains the volume
density and view-dependent emitted radiance at that location as the output. Differ-
entiable volume rendering is then adopted to n composites the volume density and
view-dependent emitted radiance into an actual image. The rendering loss is computed
on a per-pixel basis.

There are two additional strategies used in NeRF to improve performance. Posi-
tional encoding is adopted to map the input from lower dimensional space to higher
dimensional space, which overcomes a limitation that coordinate MLPs are not capa-
ble of handling high-frequency content in the signal. Hierarchical volume rendering
is adopted to improve the efficiency of rendering by allocating samples along the ray
proportionally to their contribution to the scene. More details about the NeRF are
discussed in section 3.

2.4 Recent trends in improving Neural Radiance Fields

The impressive results achieved by NeRF have started a trend within the research
community, and it has been extended to many fronts. Some extensions target a better
performance of implementing NeRF in real-world scenarios, where NeRF might be
limited by many factors. One of the limitations is that NeRF assumes a geometrically
and photometrically static object and a constant density and radiance of the world,
which means two images taken at the same location and from the same direction should
be identical. This assumption can hardly be satisfied in real-world scenarios. NeRF in
the wild [29] manages to overcome this limitation and achieve state-of-the-art results
on unconstrained internet photo collections where the images are taken from different
time of the day, weather, and environmental conditions. The key ideas of NeRF in
the wild are two-fold: Firstly, it models per-image appearance variations in a learned
low-dimensional latent space. This appearance embedding process means learning a
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Figure 2.3: (a) internet photo collections (b) view synthesis results from NeRF in the wild
[29].

shared appearance representation across the entire photo collection. The learned low-
dimensional latent space enables extra controls of the appearance of output renderings.
Secondly, it models the scene as the union of shared and image-dependent elements,
which allows unsupervised decomposition of scene content into “static” and “transient”
components. These enhancements allow NeRF in the wild to demonstrate novel view
renderings from some internet photo collections of famous landmarks, as shown in figure
2.3.

Some extensions aim to use NeRF with fewer input views. NeRF has been proved
to work on a large number of images (the LLFF NeRF Real dataset [31] has around
50 images for each narrow forward-facing scene). With fewer images in the dataset,
NeRF is often challenged by a higher risk of fitting incorrect geometries. However, in
real-life tasks, data is expensive and a sufficient number of input views of the target
scene is not always guaranteed. Depth-supervised NeRF [12] addresses this issue by
leveraging depth as additional supervision to guide the geometry learned by NeRF.
It shows that an RGB image combined with depth can make a stronger signal than
only RGN images in the 3D reconstruction scenario, and the depth supervision can
dramatically reduce the number of training data needed and help produce the results
with the same quality. An additional merit of Depth-supervised NeRF is that depth
is a cheap resource and can be obtained with no extra effort. This is because NeRF
requires camera poses as the input, and the poses are often estimated from COLMAP.
Apart from the camera poses, COLMAP also outputs sparse 3D point clouds along
with their reprojection errors, which provide depth information. Similarly, MVSNeRF
[10] also focuses on modeling 3D geometry correctly with fewer input views. To achieve
this goal, It leverages plane-swept cost volumes for geometry-aware scene reasoning

11



and combines this with physically based volume rendering for neural radiance field
reconstruction.

Another limitation of NeRF is that it has a strict requirement on the accuracy of
the poses, while in real-life tasks, accurate camera poses are not always accessible.
Some extensions attempt to overcome the downgrade of performance out of inaccurate
poses by jointly optimizing the camera poses and learning the NeRF representation.
Self-Calibrating NeRF [20] adopts a self-calibration algorithm for generic cameras with
arbitrary non-linear distortions. It also leverages a geometric loss function consisting
of projected ray distance loss to incorporate geometric consistency. These enhance-
ments enable it to learn the geometry of the scene and the accurate camera intrinsic
and extrinsic (pose) without COLMAP. NeRF– [57] introduces a two-stage pipeline
that treats camera poses and intrinsics as learnable parameters. This pipeline allows
NeRF– to be an end-to-end approach without pre-processing the RGB images using
COLMAP. Bundle adjusting NeRF [26] borrows the ideas from image alignment ap-
proaches and showcases that the coarse-to-fine registration strategy can improve the
positional encoding in NeRF and help recover scene representations from imperfect
camera poses.
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Backgrounds: Neural Radiance
Fields 3
NeRF models the target scene as radiance fields and optimizes the representation in-
cluding the volume density and the view-dependent color using MLP networks, then
uses a differentiable volume rendering technique to project the volume density and the
color into an image. The details of the MLP networks are discussed in section 3.1, and
the details of the volume rendering used in NeRF are discussed in section 3.3. The hier-
archical volume sampling strategy used to improve the rendering efficiency is discussed
in section 3.3. Positional encoding serves to map the input of the MLPs from lower
dimensional space to higher dimensional space. This technique significantly improves
the performance of MLPs because MLPs cannot learn the information contained in
higher frequency contents of the input images well. The positional encoding used in
NeRF and some other strategies which can achieve a similar or even better performance
are discussed in section 4.

3.1 Optimizing NeRF via MLP networks

NeRF [32] encodes a 3D scene as a continuous 3D representation by using two concate-
nated MLP networks. The input is a 5D coordinates, which contains the 3D location
x = (x, y, z) and the 2D viewing direction (d = (θ, ϕ). The output is an emitted
color c = (r, g, b) and a volume density σ. The MLP networks can be summarized
as FΘ : (x, y, z, θ, ϕ) → (r, g, b, σ), where Θ are the weights of the networks that are
optimized to map from each input 5D coordinate to its corresponding volume density
and emitted color.

Figure 3.1 shows the architecture of the concatenated MLP networks. The first
MLP takes the location x = (x, y, z) as the input, where the corresponding volume
density σ for each input location is learned through a fully-connected network. In the
experiments, the MLP is set to have 8 layers with 256 channels per layer by default.

Figure 3.1: Overview of the MLPs used in NeRF.
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ReLU activations are used to bring about the non-linearity. Apart from the volume
density, the first MLP also outputs a 256-dimensional feature vector. The feature vector
is then combined with the viewing direction d as the inputs for the second MLP, where
the RGB color c is learned through a 1-layer fully-connected network with 128 channels.
To conclude, the volume density σ is purely predicted by the location x, while the RGB
color c is predicted by both the location (the feature vector) and viewing direction. This
allows a multi-view consistency of the representation [32].

3.2 Volume Rendering with Radiance Fields

NeRF adopt principles from classical volume rendering. The volume density σ(x) is
defined as the differential probability of a ray terminating at an infinitesimal particle
at location x. Assume a camera ray is represented as r(x) = o+ td, the expected color
C(r) of this ray can be represented as:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (3.1)

where

T (t) = exp(−
∫ tf

tn

σ(r(s))ds) (3.2)

In equation 3.1, tn and tf represent the near and far bound. The function T (t)
denotes the accumulated transmittance along the ray from tn to tf , which can be
interpreted as the probability that the ray travels from tn to tf without hitting any
other particle. Rendering a view from an imaginary camera requires the estimate of
this integral C(r). In NeRF, this integral is estimated using quadrature. Different from
deterministic quadrature which is often used for rendering voxel grids, NeRF adopts a
stratified sampling on the quadrature. The stratified sampling segments [tn, tf ] into N
equally spaced bins and draws one sample uniformly at random from within each bin:

ti ∼ U [tn +
i− 1

N
(tf − tn), tn +

i

N
(tf − tn)] (3.3)

The the samples are used to estimate C(r) with the quadrature rule:

Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))(c)i, where Ti = exp(−
i−1∑
j=1

σjδj) (3.4)

In 3.4, δi = ti+1 − ti represents the distance between two adjacent samples. The
function 3.4 is trivially differentiable and reduces to traditional alpha compositing with
alpha values αi = 1− exp(−σiδi).

Once the predicted image is composited, it is used to be compared with the corre-
sponding ground truth. NeRF is trained to minimize the mean-squared error (MSE)
between the predicted renderins and the ground truth:

ℓMSE =
∑
p∈φ

∥Ĉ(rp)− C(rp)∥22 (3.5)
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In 5.2, φ denotes all the pixels in the training set images, and rp(t) = o+tdp denotes

the ray shooting from camera center to the corners of a given pixel p. Ĉ(rp) and C(rp)
denotes the predicted RGB value of the pixel and the corresponding ground truth. The
MSE loss is back-propagated to the MLPs mentioned in section 3.1 to optimize the
representation.

3.3 Hierarchical volume sampling

A trick called hierarchical volume sampling is adopted in the volume rendering strategy
of NeRF mentioned in section 3.2. Inspired by another work in volume rendering [24],
NeRF leverage a hierarchical representation which proves to be able to increase the
efficiency of rendering. The motivation behind is that volume rendering is meant to
densely evaluate the neural radiance field network at all N query points along the ray
between the near and far bound. However, this strategy cannot achieve the highest
efficiency because free space and occluded regions are also repeatedly sampled, though
they do not contribute to the rendered image.

To increase efficiency, instead of optimizing only one network, two networks are
simultaneously optimized to represent the target scene. These two networks consist
of a coarse network and a fine network. When adopting the hierarchical volume sam-
pling, a set of Nc locations is firstly sampled by stratified sampling, and the coarse
network is evaluated at these locations according to equation 3.3 and equation 3.4. To
achieve these, the alpha composited color from the coarse network Ĉ(r) is rewritten as
a weighted sum of all sampled colors ci along the ray:

Ĉ(r) =
Nc∑
i=1

wi(c)i, where wi = Ti(1− exp(−σiδi)) (3.6)

and the weights are normalized as in 3.7, which can produce a piecewise-constant
PDF along the ray

ŵ(i) =
wi∑Nc

j=1wj

(3.7)

With the output of the coarse network known, a biased sampling of points along
each ray is then performed where samples are chosen according to the relevance of
the volume. This is achieved by sampling the second set of Nf locations based on
the piecewise-constant PDF along the ray using inverse transform sampling. With the
combination of samples Nc and Nf , the fine network is then evaluated and the final

rendered color of the ray Ĉf (r) is then computed (using both sets of samples). This
coarse-to-fine strategy can ensure more samples are allocated to regions that have more
visible contents and contribute more to the rendered scene.

3.4 Camera parameters and Normalized Device Coordinate

Camera parameters include extrinsic parameters and intrinsic parameters. The extrin-
sic parameters consist of a translation and a rotation, which define the location and the
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Figure 3.2: The process of coordinate transformation.

orientation of the camera relative to the world space. The intrinsic parameters consist
of a focal length f , principle points cx and cy for a pinhole camera model, and the skew
coefficient. The camera intrinsic matrix k is defined as:

fx 0 0
s fy 0
cx cy 1

 (3.8)

Generally, camera principle points are defined as the center of the camera, which
means that cx ≈ W/2 and cy ≈ H/2, where H and W are the height and the width of
the image.

A coordinate system is a system that uses coordinates to determine the position of
the points on a manifold. In the field of computer vision, the vertices of the target
object are normally transformed into several coordinate systems. Figure 3.2 illustrates
the process. As can be seen, the vertices coordinates are firstly transformed from local
space to world space. Local coordinates of an object are a set of x, y, and z axes
associated with each node of that object, while world coordinates define the position
of the object (relative to other objects) in the world. Then the world coordinates are
transformed into view space (also known as camera space), where the coordinates are
seen from the camera or viewer’s point of view. The next step is to project the view-
space coordinates to clip-space coordinates, and finally transform the clip coordinates
to screen coordinates. This 3D to 2D projection determines which vertices will be pre-
sented on the screen. In the application of Neural Radiance Fields, when reconstructing
a ”forward-facing” scene, the camera coordinates are transformed to a Normalized de-
vice coordinate (NDC) space which is a screen coordinate system. In an NDC space,
the x, y, and z coordinates of each vertex should be ranged between -1.0 and 1.0, and
coordinates outside this range will not be visible.

The transformation process is briefly explained as follows. The standard 3D per-
spective projection matrix for homogeneous coordinates is:
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M =


n
r

0 0 0
0 n

r
0 0

0 0 −(f+n)
f−n

0

0 0 −1 0

 (3.9)

where n, f define the near and far clipping planes and r and t are the right and
top bounds of the scene at the near clipping plane. A homogeneous point (x, y, z, 1) is
projected from 3D to 2D by left-multiplying by M :

n
r

0 0 0
0 n

r
0 0

0 0 −(f+n)
f−n

0

0 0 −1 0

 =


x
y
z
1

 =


n
r
x

n
t
y

−f+n
f−n

z − 2fn
f−n

−z

 (3.10)

Then divide by the fourth coordinate:
n
r
x

n
t
y

−f+n
f−n

z − 2fn
f−n

−z

 →

 n
r

x
−z

n
t

y
−z

−f+n
f−n

− 2fn
f−n

1
−z

 (3.11)

The projected point is now in normalized device coordinate (NDC) space, where the
original viewing frustum has been mapped to the cube [1, 1]3. Rendering the forward
facing scene in a NDC space brings some convenience because in forward-facing captures
the far bound of the scene is assumed infinity. Converting to NDC can preserve parallel
lines while converting the z axis (camera axis) to be linear in disparity.
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Methodology 4
Learning the implicit neural representations by means of continuous functions param-
eterized by MLPs has been proved to be effective in computer vision fields. Different
from traditional representations which use meshes or voxel grids to represent objects,
scene geometry, and appearance, MLPs take low-dimensional coordinates as inputs and
are optimized to output a representation of shape, volume density, and color for each
input. As a result, these MLPs are often called “coordinate MLPs”. Coordinate MLPs
unlock the possibility of leveraging gradient descent and deep learning methods in the
field of computer vision. The performance of coordinate MLPs has been compelling,
thus they are used to perform various tasks such as representing shape [11], occupancy
[30], signed distance [37], volume density [32], etc. As mentioned in chapter3, NeRF also
benefits from leveraging coordinate MLPs to learn and represent the volume density
and the emitted color for each input 5D coordinate.

However, an analysis [52] which models the behavior of deep networks using kernel
regression with a neural tangent kernel regression shows that simple MLPs are limited
to learning high-frequency functions due to a phenomenon called ”spectral bias” [3][38]
[41]. According to the analysis, the high-frequency fitting error decreases exponentially
slower than the low-frequency error. This means that simple coordinate MLPs (nor-
mally equipped with ReLU activation) have difficulty representing the high-frequency
content in the signals. To address this issue, multiple attempts have been proposed.
One effective attempt is to leverage a heuristic sinusoidal mapping of input coordinates,
which is also called ”positional encoding”. Positional encoding is first introduced in the
Neural Language processing fields, where it is used to describe the 1D position of an
entity in a sequence. The use of positional encoding in Neural Radiance Fields proves
to be capable of improving the coordinate MLPs and allowing MLPs to approximate a
higher frequency function more easily.

4.1 Positional Encoding in NeRF

Mildenhall et al. [32] demonstrate that directly feeding the x,y,z,θ,ϕ coordinates to the
MLPs returns poor performance on representing high-frequency variation in color and
geometry in NeRF. This is because neural networks are biased towards learning lower
frequency functions [38][40]. Therefore, mapping the inputs to a higher dimensional
space before feeding them to the MLPs is a necessary step. The positional encoding
in NeRF uses the sinusoidal functions as the encoding function which maps the input
to a higher dimensional space on sinusoidal frequency bases. The encoding function is
defined as:

γ(x) = [x, γ0(x), γ1(x), ..., γL−1(x)] ∈ R3+6L (4.1)
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Figure 4.1: We show the difference between synthesizing our target scene using NeRF with
and without Positional Encoding.

For the k − th frequency, the encoding function γk(x) is:

γ0(x) = [cos(2kπx, sin(2kπx] ∈ R6 (4.2)

In this way, the inputs are mapped from R3 to R3+6L, where L defines the number
of the frequency bases. The encoding functions γ(·) are separately applied to three
location coordinates xyz and viewing direction unit vector d. Therefore, L for the
3D location inputs and L for the viewing direction are set differently based on the
network structure and the data. Figure 4.1 shows how positional encoding affects the
view synthesis performance on our target scene. Positional encoding can significantly
improve the ability of NeRF model to depict details of the scene and represent objects
with complex shapes and structures (small windows on the wall, texture of the ground,
reflection on the glass, etc).

4.2 Fourier Features

Other than mapping the input with sinusoidal functions in NeRF, a series of mappings
called Fourier features are proposed by Tancik et al. [52]. Among these Fourier features,
one mapping leveraging Gaussian distribution shows higher flexibility and capability
of representing high-frequency contents. Function 4.14.2 shows that positional encod-
ing maps the input coordinates along the axes, either X-axis or Y-axis. Take image
reconstruction tasks as an example, the positional encoding assumes that the variation
of the pixel values (color, shape, content) only changes rapidly along the axes of the
image. However, this mapping is limited when the variation of the pixel values does
not only fluctuate along the X or Y-axis but also fluctuates along random directions.
To address this issue, Gaussian mapping enables mapping along random directions by
concatenating the mappings along X-axis and Y-axis. Gaussian mapping is defined as
follows:
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γ(x) = [x, γ0(x), γ1(x), ..., γL−1(x)] ∈ R3+6L (4.3)

For the k − th frequency, the mapping γk(x) is:

γ0(x) = [cos(2πBx, sin(2πBx] ∈ R6 (4.4)

In function4.4, each entry in B is sampled from N (0, σ2. σ is hyperparameter which
should be chosen carefully for each task and dataset.

4.3 Parameterized Activations in Coordinate MLPs

Apart from mapping the inputs to a higher dimensional space with the help of Fourier
features, some other attempts focus on the activation functions in the coordinate MLPs.
Most of the coordinate MLPs use ReLU as the activation function. However, ReLU-
MLP without a positional encoding cannot represent the high-frequency content in
signals, which leads to a blurry and insufficient reconstruction of the images in the view
synthesis tasks as shown in figure 4.1. This is partly because the properties of ReLU
(ReLU can be regarded as a piecewise-linear function, whose first-order derivative is
either 1 or 0, and the second-order derivative is 0) significantly limit the ability of MLP
to represent high-frequency signals. In this section, we first discuss how activations
affect the capacity of coordinate MLPs in memorization and generalization and why
parameterized activations can handle high-frequency signals better than ReLU. Then,
we introduce an attempt that uses the sine function to replace ReLUs in coordinate
MLPs [48] to overcome the limitations of ReLU-MLP. We implement this attempt
in NeRF and propose a SIRENeRF framework as an alternative method in our view
synthesis task. Further, we draw inspiration from a recent work [39] which extends
the use of the sine function in MLP to a class of non-periodic functions and proposes
a trainable activation scheme that not only benefits from being parameterized as the
same as sine functions but also enjoys higher flexibility and efficiency to different tasks
and data. We also combine our proposed activation scheme with NeRF and propose a
TARF( NeRF with trainable activations) framework which serves as an embedding-less
method for our view synthesis task.

4.3.1 Memorization and generalization of a coordinate MLP

The efficacy of a coordinate-MLP significantly depends on its ability to memorize and
generalize the training data. Ramasinghe et al. [39] research the key factors that affect
the memorization and generalization abilities of a coordinate-MLP.

A coordinate-based MLP with L layers can be formulated as:

F (x) = (g[L] ◦ ϕ[L−1] ◦ g[L−1] ◦ ...ϕ[1] ◦ g[1])(x[1]) + b[L] (4.5)

where g[l] = W [l]x[l] + b[l], W [l] are trainable weights at the lth layer, b[l] is the
bias, and ϕ[l(·) is the activation function. Considering only the last layer of a MLP
(normally in a k-layer MLP the last layer is linear, while the non-linearity comes from
the preceding k − 1 hidden layers), assume that the input is X, which equals to:
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X ∈ RD×N := [ϕ(x1)
Tϕ(x2)

T ...ϕ(xN)
T ] (4.6)

where N is the dimension of the layer, D is the depth of the MLP network, and Xn
N
n=1

is the raw inputs. The output of the last layer is then an affine projection of X:

Ŷ ∈ Rq×N := AkX (4.7)

Suppose Y ∈ Rq×N is the ground truth that the MLP tries to reconstruct, a perfect
memorization means that the learned Ŷ is very close or even equal to the ground truth
Y . Observe that the memorization depends on the rank of X. A higher rank can
lead to a better reconstruction, and perfect reconstruction of Y can be guaranteed if
rank(X) equals N . Therefore, the memorization ability of a coordinate MLP correlates
with the ability of non-linear hidden layers to induce high-rank representations.

The generalization ability of an MLP correlates to the Lipschitz smoothness of the
activation function ϕ(·). Natural signals may have varying local Lipschitz smoothness,
for example, in the view synthesis tasks, an input image may consist of highly fluctu-
ating areas where the variations of pixels values are high and constant areas where the
variations are relatively low. The local Lipschitz smoothness thus varies among these
fluctuating and constant areas. The ability to construct the representations with vary-
ing local Lipschitz smoothness for an MLP is highly related to the first and second-order
gradients of the activation function [39].

To be able to encode the signals with high fluctuations (same meaning as ’high fre-
quency), the activation function should meet two requirements. The first requirement
is that the activation functions should be parameterized so that the magnitude of the
first-order derivative of the activation function can be controlled via the parameters.
This is because the upper-bound on the Lipschitz constant of the angle variation in a
local interval can be increased by increasing the local Lipschitz constant of the activa-
tion function, while the local Lipschitz constant of the activation function correlates to
the magnitude of its first-order derivative. Therefore, a higher magnitude of the first-
order derivative brings better performance to encoding signals with large fluctuations.
However, though an activation with a high magnitude of the first-order derivative can
handle high-frequency signals, it is not good at handling smooth signals with fewer fluc-
tuations. Therefore, a more suitable activation function should be able to control the
magnitude of its first-order derivative via parameters based on different signals. The
first requirement is however not necessarily sufficient for ensuring a good performance
of encoding signals with extremely varying fluctuations across different intervals. To
handle these situations, the activation function should also have non-negligible second-
order derivatives to obtain varying Lipschitz smoothness. This allows the linear layer
in the MLP to project the points to different regions of the activation function and
achieve varying local Lipschitz smoothness.

it is apparent that ReLU activation ϕ(x) = max(0, x), as the most commonly used
activations in coordinate MLP, does not meet the both requirements. The first-order
derivative of the ReLU function is either 1 or 0, while the second-order derivative is 0.
Some other popular activation functions such as Sigmoid, Tanh, and PReLU violate the
requirements either. To address these issues, sine function ϕ(x) = sin(wx) shows up
as an alternative activation function. The first-order derivative of the sine function is
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wcos(wx), thus its magnitude can be adjusted by a parameter w, and it also has a non-
negligible second-order derivative as −w2sin(wx). Therefore, the sine function satisfies
both requirements. In section 4.3.2, we will discuss how the sine function can encode
higher frequency content in the signals better because of its better generalization ability,
and how to leverage the sine function in NeRF and eliminate the need for positional
encoding.

4.3.2 SIREN: MLPs with Periodic Activations

SIREN [48] is a neural network architecture that uses sine functions as activations:

x[l] 7→ ϕ[l](x[l]) = sin(2πwx[l]), (4.8)

Φ(x) = wn(ϕn−1 ◦ ϕn−2 ◦ ... ◦ ϕ0)(x) + bn, x
[l] 7→ ϕ[l](x[l]) = sin(2πwx[l]), (4.9)

where w is a hyperparameter.
The periodicity brought from the sine function helps SIREN cope with high-

frequency content in the target signals better than ReLU-MLP. Observing the first-
order derivative −w2πsin(wx) of the sine function ϕ(x) = sin(2πwx), it can also be
regarded as a phase-shifted sine as the derivative of sine is a cosine. Therefore, the
derivatives of a SIREN can be regarded as the SIREN itself. According to the analysis
in section 4.3.1, this periodic property also brings a better generalization in SIREN.
The inheritance between the derivatives allows SIREN to retain the same ability to
represent signals in the derivatives. Embedding SIREN in NeRF can eliminate the
need for positional encoding, and significantly decrease the number of neurons used in
the network. The decrease of weights to be optimized can lead to faster convergence
and a shorter training time in NeRF.

4.3.2.1 A principled initialization scheme designed for SIREN

Experiments show that SIRENs are very sensitive to the weight initialization scheme
of the MLPs. Popular initialization schemes such as Xavier uniform initialization and
Xavier normal initialization cannot ensure effective training of SIRENs. To solve this
problem, a principled initialization scheme is specially designed for SIREN [48], which
should be strictly followed to avoid a significant drop in training performance. The
key idea behind the proposed initialization scheme is that to eliminate the dependency
between the output at initialization and the number of layers, the distribution of acti-
vations should be preserved throughout the whole network.

To achieve this goal, the input to a neuron should be kept the same as the dis-
tribution of its output. Since SIRENs are used to take coordinates as the inputs,
assume an input X which is uniformly distributed in the interval [−1, 1]. Passing this
input to a simple sine function will generate an output Y = sin(π

2
X) which meets

Y ∼ Arcsin(−1, 1). The Arcsin distribution is defined as:

X ∼ Arcsin(a, b), with CDF : FX(x) =
2

π
arcsin(

√
x− a

b− a
, with b > a. (4.10)
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The variance of the outputs meets 4.11:

For X ∼ Arcsin(a, b), V al[X] =
1

8
(b− a)2 (4.11)

Then, the next layer will take these Arcsin distributed outputs as the new inputs,
and a linear combination will be calculated. According to Lindeberg’s condition for the
central limit theorem, the linear combination will be normal distributed. The variance
of the linear combination can also be calculated via :

V al[X] = V al[X] · V al[Y ] + E[Y 2]V al[X] + E[X2]V al[Y ] (4.12)

Now, assume that at the layer l + 1, the linear combination is (for simplification,
the bias is not considered):

wT
l Xl =

n∑
i

wi,lXi,l (4.13)

By initializing the weights as wl
i ∼ U(−c, c), the variance of the linear combination

is then:

V ar[wT
l Xl] = V ar[wl] · var[Xl] =

1

12
(2c)2 · 1

2
=

1

2
c2 (4.14)

If choosing c =
√

6
n

with the fan-in n, then the variance can be calculated as

V ar[wT
l Xl] = n · 1

6
6
n
according to Central Limit Theorem. Meanwhile, a Normal dis-

tribution of the output wT
l Xl ∼ N (0, 1) can be gained, which is the same as the

distribution of the input.
To sum up, When initializing each element of the weight w to meet the uniform

distribution wi ∼ U(−c/
√
n, c/

√
n), c ∈ R, the linear combination at each linear layer

will meets the normal distribution wTX ∼ N (0, c2/6), and passing this normally dis-
tributed linear combination into another sine activation will also yield an output that
meets the arcsin distribution if c >

√
6. In this way, the distribution of the output from

each layer remains the same throughout the whole network.

4.3.2.2 The choice of w

w in the sine function ϕ(x) = sin(2πwx) is an important hyperparameter. A larger
w increases the bandwidth of the network, allowing it to encode increasingly higher
frequency functions.

4.3.3 A Trainable Activation Scheme for Coordinate MLPs

Despite Sitzmann et al. [48] have theoretically and empirically proven that sine activa-
tions used in SIREN can successfully achieve a performance as good as the positional
encoding on encoding high-frequency signals, there are still some limitations existing
for sine activations. Firstly, applying sine activation requires strictly adhering to the
initialization scheme proposed in [48], otherwise, the performance drops significantly.
Secondly, sine activations bring more hyperparameters to the network compared to
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Figure 4.2: we compare the results from SIREN with Xavier initialization scheme and SIREN
with the proposed initialization scheme[48] in our view synthesis task. The results show that
without the carefully designed initialization scheme, a deep SIREN network might not be able
to converge and the performance significantly drops.

normal activation functions such as ReLU or sigmoid, and tuning the w in each SIREN
layer takes more time and effort. To address these issues, Ramasinghe et al. [39]
propose a unifying framework for the use of activation functions in coordinate MLPs,
showcasing that non-periodic activations can also be suitable for encoding signals and
bring more robustness against different initialization schemes. Based on the research
on non-periodic functions used in coordinate MLPs, we combine them with NeRF and
explore their applications in 3D view synthesis fields. Moreover, we simplify the way of
tuning hyperparameters in these activation functions by making them trainable. This
strategy saves the effort of tuning hyperparameters in activation functions and also
significantly improves performance.

4.3.3.1 Non-periodic activations

Besides the sine activations used in SIREN, non-periodic functions can also serve as
activation functions used in coordinate MLPs. Table 4.1 shows several non-periodic
functions, including Gaussian function, Quadratic function, Laplacian function, and
super-Gaussian function. Take the Quadratic function as an example, in Quadratic-
based MLPs, the activation function is defined as:

x[l] 7→ ϕ[l](x[l]) =
1

1 + (ax[l])2
, (4.15)

where a is an important parameter which affects the bandwidth of the network. a
larger a corresponds to a lower bandwidth, and vise-versa. Similar to sine function,
the derivatives of these non-periodic functions are not zero (unlike ReLU), and this
property enables them to encode high-frequency content of the signals.
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Activations Equation Parameterized First-order derivative Second-order derivative

ReLU max(0, 1) % Lδ =

{
1 if x < 0
0 otherwise

0

Sine sin(wx) ✓ wcos(wx) −w2sin(wx)

Gaussian e
−0.5x2

a2 ✓ −xe
− x2

2a2

a2
− (x2−a2)e

− x2

2a2

a4

Quadratic 1
1+(ax)2

✓ − 2a2x
(a2x2+1)2

−2a2(3a2x2−1)
(a2x2+1)3

Laplacian e
−|x|
a ✓ xe

|x|
a

a|x|
e
|x|
a

a2

Super-Gaussian [e
−0.5x2

a2 ]b ✓ − bxe
− bx2

2a2

a2
− b(bx2−a2)e

− bx2

2a2

a4

Table 4.1: A set of parameterized activations whose derivatives meet the requirements men-
tioned in section 4.3.1

4.3.3.2 Make activations trainable

In complex tasks such as 3D view synthesis, a rather deep MLP networks with more than
5 layers is often required. This means that, take Gaussian activations as an example,
one more hyperparameter a is added along with each layer, and the total number adds
up quickly with the number of layers increasing. Therefore, exhausting work is often
required to find the best combination of these a if keeping them fixed in each layer and
tuning them as hyperparameters. Besides, the flexibility of Gaussian activations should
be questioned if these combination only works on their own dataset and same effort
should be taken again every time the dataset changed. To overcome this limitation, we
come up with a strategy, which is that, instead of tuning the hyperparameters, making
the activations trainable. The a are then no longer fixed for each layer, and their value
will be updated during the training. By doing this, the MLP network can enjoy more
flexible activations adapted to the input data.
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Experimental Setup and
Results 5
5.1 Data Analysis and Pre-processing

Data preparation is of extreme importance and often underestimated in real-world
tasks, especially in view synthesis tasks which are sensitive to the data. Here we will
discuss our methods of cleaning the data, obtaining geometry information, and adjust-
ing the input views included in the datasets. The first step is the data cleaning. Given
thousands of images taken by drones from different angles and at different heights, one
of the principles is to ensure a single-scale dataset. This means that in the dataset all
the images should be taken from the same distance. We recommend a faraway view of
the object (taken more than 50 meters away depending on the size of the object). This
is because relatively panoramic views can ensure a higher accuracy when extracting the
poses and camera parameters from the images. Another tip is that the images should
be selected consecutively in a dataset. The translation and rotation of the camera
between two consecutive images is lower the better because this reflects a more stable
camera trajectory. A turbulent camera motion leads to higher risks of failure in pose
estimation and worse scene representation [57].

The second step is to estimate the poses and extract camera intrinsic and extrinsic.
NeRF is not originally an end-to-end solution for view synthesis because it relies heavily
on photogrammetry. NeRF has a strict requirement on accurate camera poses and it
cannot work without known poses initially. Therefore, since most of the researches
on NeRF are tested and evaluated on well-prepared synthesis data with known and
perfectly accurate camera parameters, obtaining accurate camera poses from noisy
real-world datasets becomes an important but hidden problem in the applications of
NeRF. Some extensions of NeRF [36][7] provide an solution to enable view synthesis
from raw RGB images. However, these methods cannot achieve satisfying results on
our own data according to the experiments. An alternative way, which is adopted in
our task, is to run a SfM pipeline called COLMAP to recover the 6-DoF camera poses
of the images, by which the location and direction of the camera for each image are
estimated as shown in figure 5.1, and the near/far bound of the scene can also be
computed.

Though COLMAP can help obtain the poses, the performance of NeRF is still
strictly limited by the accuracy of pose estimation and the complexity of the target
scene. Wang et al. [57] study how camera motions affect the pose estimation by
COLMAP. In our task, the data is collected by a drone flying around the target building.
Therefore, our images are collected in a track-to-object style. In ideal cases, a track-to-
object camera is supposed to move within the xy plane all the time and turn towards
the z direction. However, perturbations of the camera trajectory are inevitable in real-
world scenarios because of the turbulence or manual control. Wang et al. [57] show that
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Figure 5.1: Recover the 6-DoF camera poses by COLMAP.

the breaking points for translation and rotation are ±20% in COLMAP, which means
that camera motions with a rotation larger than ±20% or a translation larger than
±20% might significantly decrease the accuracy of the pose estimation from COLMAP,
or even cause a failure. This finding explains why the view synthesis results on our own
data are less competitive with the results on standard NeRF-LLFF data, and can also
serve as a guideline for collecting data in future research or applications.

Besides, the inaccurate pose estimation also affects our choice in the data prepa-
ration. We observe that for a narrow range of forward-facing viewpoints of the scene,
the camera motion can be considered averagely less turbulent and the pose estimation
from COLMAP is more accurate. Meanwhile, the viewpoints are generally of higher
density if the input views are carefully selected. Therefore, one strategy is to observe
the target building from different angles separately, that is to say, render several narrow
forward-facing views. Figure 5.2 presents how we choose the views and the range of
these views. As can be seen, the whole view of the target is segmented into front-view,
back-view, and side-views. The experiment results show that this strategy enables a
relatively more accurate pose estimation and better view synthesis qualities. Therefore,
these forward-facing views are used as major input views to test our methods in the
following sections.

Another strategy is to render the 360-degree view of the target at once. This can be
operated by turning off the normalized device coordinate (NDC) transformation when
reconstructing the scene. NDC assumes forward-facing captures in the normalized
device coordinate space. This space is convenient because it preserves parallel lines
while converting the z axis (camera axis) to be linear in disparity. Without NDC, the
scene can be then reconstructed in a spherical manner. Figure 5.3 shows rendering
results with or without NDC on a 360-degree dataset.

However, a 360-degree spherical view synthesis faces two major difficulties. First,
the input views are more sparse than those of the forward-facing dataset. This is
partly because of the data collection. In our available data, the images taken from
some angles are sparser than others. For forward-facing datasets, we carefully select
the views with the densest taken images, while for a 360-degree dataset we have to
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Figure 5.2: we split the 360 view of the target building into front view, back view, and side
view scenes.

Figure 5.3: 360-inward view synthesis is problematic when NDC transformation is operated.
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tolerate that some of the angles are easier for our methods to reconstruct because of
the sparser inputs. Second, as mentioned above, a spherical camera motion makes it
harder for COLMAP to estimate the poses. We will show that both the qualitative and
quantitative results on the 360-degree dataset are worse. Therefore, this 360-degree
dataset will be regarded as an additional dataset that is only used to validate our
methods in the following experiments.

5.2 Quantitative Evaluation

Evaluating the results in the computer vision and view synthesis tasks can be very
subjective, and the standards of the image quality could vary from person to person.
Therefore, it is also significant to find a quantitative standard to measure the results,
for example, the quality of the images, coming from different methods.

In our experiments, three metrics including Peak Signal to Noise Ratio (PSNR),
Structural Similarity Index Metric (SSIM), and Learned Perceptual Image Patch Simi-
larity (LPIPS) [58] are taken into consideration as the quantitative evaluation metrics.

5.2.1 Peak Signal to Noise Ratio

Peak Signal to Noise Ratio (PSNR) measures the ratio between the maximum power
of a signal and the power of distorting noise that affects the signal. The unit of PSNR
is decibel (dB). PSNR is a common metric that is widely used in novel view synthesis
methods such as NeRF and its many extensions. PSNR can measure how closely
a learned representation resembles its original ground truth images. PSNR can be
calculated as in 5.1:

PSNR = 20log10(
MAXf√
MSE

) (5.1)

where MSE is the mean square error expressed as:

MSE =
1

mn

m−1∑
0

n−1∑
0

∥ f(i, j)− g(i, j) ∥2 (5.2)

MSE is used to compute the difference in pixel values between the generated image
and the ground truth image, thus the MSE measures the average of the squares of the
errors. In 5.1 and 5.2, f represents the matrix of the ground truth image, g represents
the synthesized image (learned representation). m represents the number of rows of
pixels of the images and i represents the index of that rown represents the number of
columns of pixels of the image and j represents the index of that column. For PSNR,
the value is higher the better.

5.2.2 Structural Similarity Index Metric

A limitation of PSNR is that it can only compare two images pixel by pixel, and no
biological factors about the similarity between images are taken into consideration.
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To address this issue, The structural similarity index measure (SSIM) is introduced.
SSIM is a method used to predict the perceived quality of images. SSIM measures
the similarity between two images. Pixels that are spatially close to each other have
inter-dependencies. These dependencies carry structural information, which is used in
SSIM. SSIM is calculated as 5.3:

SSIM(x, y) = l(x, y)α · c(x, y)β · s(x, y)γ

=
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

x + c1)(σ2
x + σ2

x + c2)

(5.3)

When α, β, γ equal to 1. In 5.3, x is the ground truth image while y is the generated
image. µx, µy are averages of x, y, σ2

x, σ
2
y are variances of x, y, σxy is the covariance of x

and y. c1 and c2 are two variables that stabilize the division with a weak denominator.
SSIM has a range between 0 and 1. Closer to 1 means that two images have higher
structural similarity.

5.2.3 Learned Perceptual Image Patch Similarity

Though PSNR and SSIM are widely used, they are believed to be very simple and shal-
low assessments that cannot measure many nuances of human perception. To better
assess the perceptual similarity between images, a method named Learned Perceptual
Image Patch Similarity (LPIPS), which is also often called ”Perceptual Losses”, is pro-
posed by Zhang, Richard, et al [58]. With the help of pre-trained CNN networks, LPIPS
is capable of matching human perceptual judgements on the images well according to
the experiment results [58]. A lower LPIPS value means that two images resemble more
to each other perceptually.

5.3 Experiment results

In this section, we show the experiment results of our attempts to improve the perfor-
mance of NeRF on our view synthesis task. The baseline method in all the experiments
is NeRF [32], which is referred to as ref-NeRF in the following sections. In section 5.3.1,
we demonstrate the experiment results on using Gaussian distributed Fourier Features
to replace the positional encoding in ref-NeRF. For simplicity, we refer to our method
as GFF-NeRF. In section 5.3.3, we demonstrate the experiment results on building an
embedding-less NeRF model with parameterized activations to achieve view synthesis.
For simplicity, we refer to our model which leverages SIREN layers as SIRENeRF, and
we refer to our models which leverage a class of trainable non-periodic activations as
TARFs.

In all the experiments, the performance is evaluated from two aspects. First, we
demonstrate the qualitative evaluations where synthesized images are shown. We first
show the scene reconstruction capacity of our models by comparing the test images
reconstructed by our models and baseline ref-NeRF with the ground truth images.
Then we show and compare the novel views synthesized by both models. For the
quantitative evaluation, we present the measurements of PSNR, SSIM, and LPIPS.
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Figure 5.4: The ground truth used to test the scene reconstruction performance in the front-
view scene.

Figure 5.5: The ground truth used to test the scene reconstruction performance in the back-
view scene.

In all the experiments, the performance of the models is evaluated in our three
forward-facing scenes. To begin with, We present the ground truth of these three
scenes in figure 5.45.55.6.
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Figure 5.6: The ground truth used to test the scene reconstruction performance in the side-
view scene.

5.3.1 GFF-NeRF

5.3.1.1 Experimental Settings

We compare our proposed GFF-NeRF with ref-NeRF. We use our forward-facing
datasets in the experiments. We assume known intrinsic in all the cases.

5.3.1.2 Implementation details

We implement our GFF-NeRF method as follows: We train a 7-layer SIREN with 256
hidden units in each layer to learn the volume density and features, and a 2-layer SIREN
with 256 hidden units in each layer to learn the RGB colors. We resize the images to
480× 640 pixels and randomly sample 2048 pixel rays every iteration, each sampled at
N = 128 coordinates. We use the Adam optimizer and train all the models for 200k
iterations. For both ref-NeRF and SIRENeRF, the learning rate begins at 1 × 10−3

and decays exponentially to 1× 10−3. For ref-NeRF, the number of frequencies in the
positional encoding is set as L = 10, while for our GFF-NeRF, we set the frequency as
L = 256 following the instructions from [52].

5.3.1.3 Results

Figure 5.11 compares the reconstruction results of the front-view scene from our GFF-
NeRF model and the ref-NeRF model. From the observation, we can clearly find
that GFF-NeRF achieves better reconstruction of the complex background. The figure
shows that ref-NeRF, as the baseline, fails to represent any objects in the background,
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Figure 5.7: We compare the test image reconstruction results between GFF-NeRF and ref-
NeRF on the front-view scene.

even the dividing lines of regions with different shapes and colors (e.g. the dividing
line between the gray parking lot and green grassland). This means that ReF-NeRF
is less capable of representing unrestricted scenes, where the distance between the
camera and the objects in the background is various and unlimited. Our model, on
the contrary, achieves a much better reconstruction of the background. By comparing
the reconstruction from GFF-NeRF and the ground truth shown in figure 5.4, we can
find that GFF-NeRF can represent the background with fine qualities. As can be seen,
different regions are clearly divided with much slighter blur and noise, and the shape of
the small objects is also sketched. The zoom-in figures on the bottom 5.11 show more
details. As the reconstruction of tiny objects such as vehicles in the parking lot and
trees on the riverbank is a failure by ref-NeRF with huge noise and mess, our model
manages to achieve a recognizable reconstruction of these objects though the qualities
are not as good as the ground truth. It is also seen that GFF-NeRF achieves clearer
reconstruction of the edges on our target building (e.g. edges between the gray wall
and the blue glass, edges between the roads and the grasslands) and the dividing lines
in the background (e.g. riverbanks that separate the yellow-green river and dark-green
grassland, edge of the parking lot). Edges and dividing lines separate two regions that
highly vary in pixel values. Therefore, a clearer sketch of the dividing lines proves
that Gaussian-distributed Fourier features to handle the high-frequency content better
than positional encoding. Besides, as can be seen from the zoom-in figure on the left-
bottom that our model also improves the representation of some small but complicated
structures, where the guardrails are represented with clearer details.
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Figure 5.8: We compare the synthesized novel view from GFF-NeRF and ref-NeRF on the
front-view scene.

Figure 5.8 compares the novel views synthesized by Ref-NeRF and GFF-NeRF. We
can also draw similar conclusions that though both methods manage to represent the
target object, GFF-NeRF performs better in representing the background such as the
white traffic signs on the road shown in the zoom-in figure on the left bottom and the
gray parking lot on the zoom-in figure on the right-bottom. In addition, GFF-NeRF
also produces a clearer representation of some complex details such as the grids of the
guardrails in the zoom-in figure on the middle bottom.

We also test our model on the side-view scene dataset. This dataset contains a wider
range of viewpoints, thus the actual input views are sparser than the front-view scene
dataset. Therefore, the reconstruction results are less competitive in terms of both
qualitative and quantitative measurements. However, it is still shown that our model
can produce better results than ref-NeRF. Figure 5.9 presents the scene reconstruction
results from both methods. We can find that Gaussian-distributed Fourier features
dramatically reduce the noise and can smooth the transition of fluctuating pixel regions.
The zoom-in figures on the bottom support our observation that our model outperforms
ref-NeRF by improving the resolution and depicting cleaner edges and lines. As for
the view synthesis results shown in figure 5.10 which are of better quality and higher
resolution than the scene reconstruction results, we can still see that our model produces
a cleaner image with sharper details.
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Figure 5.9: We compare the test image Reconstruction results between GFF-NeRF and ref-
erence NeRF on side-view scene.

Figure 5.10: We compare the synthesized novel view from GFF-NeRF and ref-NeRF on the
side-view scene.
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Front-view

Models PSNR ↑ SSIM ↑ LPIPS ↓
ref-NeRF 17.97 0.43 0.63

GFF-NeRF 19.31 0.48 0.53

Back-view

Models PSNR ↑ SSIM ↑ LPIPS ↓
ref-NeRF 12.76 0.17 0.63

GFF-NeRF 14.56 0.26 0.53

Side-view

Models PSNR ↑ SSIM ↑ LPIPS ↓
ref-NeRF 15.42 0.30 0.86

GFF-NeRF 17.43 0.39 0.71

Table 5.1: Comparisons of quantitative metrics between GFF-NeRF and ref-NeRF

5.3.2 SIRENeRF

5.3.2.1 Experimental Settings

We compare our proposed SIRENeRF model with ref-NeRF. We assume known intrinsic
in all the cases.

5.3.2.2 Implementation details

We build and implement the SIRENeRF following the instructions from [48] with our
own modifications and adjustments. We train a 8-layer SIREN with 256 hidden units
in each layer to learn the volume density and features, and a 2-layer SIREN with 256
hidden units in each layer to learn the RGB colors. We resize the images to 480× 640
pixels and randomly sample 2048 pixel rays every iteration, each sampled at N = 128
coordinates. We use the Adam optimizer and train all the models for 200k iterations.
For both reference NeRF and SIRENeRF, the learning rate begins at 1 × 10−3 and
decays exponentially to 1 × 10−3. For hyperparameter w in sine activations, different
from the suggestions in [48], we set w = 5 in the first SIREN layer, and w = 1 in
the rest of the layers. We believe that this is the most optimal setting combination
according to our experiments.

5.3.2.3 Results

We first test our SIRENeRF model on the front-view scene dataset. Figure 5.11 presents
the reconstruction results of the front-view scene from SIRENeRF and ref-NeRF. We
can learn from the results that SIRENeRF outperforms ref-NeRF overall. Similar to
GFF-NeRF, SIRENeRF is capable of producing a significantly cleaner reconstruction
of the complex background. As can be seen in the zoom-in figures on the bottom, our
model handles the unrestricted scene better as it clearly depicts the objects which are of
various distances to the camera. Besides, the cleaner sketch of the edges and boundaries
of different regions in the image is also produced by producing a smoother image. This
can prove that SIREN layers can encode the high-frequency content better than the
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Figure 5.11: We compare the test image reconstruction results between SIRENeRF and ref-
NeRF on the front-view scene.

position encoding used in ref-NeRF. The quantitative measurements presented also
support this observation as can be seen in the table. However, we can also conjecture
that better scores and clearer overall reconstructions are achieved at the cost of some
trivial details. Comparing the results from GFF-NeRF in the figure 5.7, we can find that
the target building reconstructed by SIRENeRF is less sharp, and some slight variations
(e.g. the dark-gray/white color blocks on the light-gray facade) are smoothed out. This
unpleasant smoothing effect also happens when high-frequency contents take up a large
part of one region. For example, the sign of the company name is reconstructed in a
blurry manner by SIRENeRF. This is because the sign varies a lot in terms of the RGB
values compared to its surroundings but only contains a small number of pixels. When
SIRENs smooth the boundary between the sign and the surroundings, it is inevitable
that the major part of the sign is also affected. Therefore, a conclusion can be drawn
that though SIRENeRF outperforms ref-NeRF, it is less competitive with GFF-NeRF
on the front-view scene.

The novel view synthesis results also support our observation. Though both models
manage to synthesize the target building, the zoom-in figures on the bottom show
that SIRENeRF synthesizes a more accurate background. As ref-NeRF fails to learn
the shape and position of the objects in the background, SIRENeRF can learn and
represent objects such as traffic signs and small lanes. However, SIRENeRF can only
produce a less sharp synthesis of the same details discussed above including the sign of
the company name and color blocks on the facade.

Then we test our model on the side-view scene dataset. Figure 5.13 shows the scene
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Figure 5.12: We compare the synthesized novel view from SIRENeRF and ref-NeRF on the
front-view scene.

reconstruction results from SIRENeRF and ref-NeRF. As can be seen, SIRENeRF
achieves a much better reconstruction, where the noise level is significantly decreased
and the messy background is remarkably cleaned. The zoom-in figures allow us to
observe the details of the scene. Compared to the ground truth shown in figure 5.6,
we can see that SIRENeRF can reconstruct fine details such as the window grids that
are made of two colors. As ref-NeRF finds it difficult to distinguish the light-blue
windows and the dark-blue windows, SIRENeRF succeeds in depicting the grids and
windows in different colors. By comparing the results from GFF-NeRF in the figure
5.9, we can clearly see that SIRENeRF also outperforms GFF-NeRF in representing
these window grids. We can also see from the zoom-in figure on the right bottom that
SIRENeRF achieves much better reconstruction of the edges and boundaries which are
assumed high frequency. While ref-NeRF fails to deal with almost all the boundaries
(e.g. boundaries between the facade and the terrace, boundaries between the grey
ground and the green grassland), SIRENeRF clearly distinguishes these boundaries
and produces a clean sketch of the shapes of the target objects. This proves that
SIRENeRF is capable of encoding high-frequency content better than ref-NeRF. We
can also find that SIRENeRF outperforms GFF-NeRF in representing these boundaries
as GFF-NeRF fails to reconstruct the boundaries on the right side of the target building.

The synthesized views shown in figure5.14 also support our analysis. The zoom-
in figures show that SIRENeRF remarkably outperforms ref-NeRF in learning and
representing clearer and sharper details including the window grids and white car stop
lines on the ground.
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Figure 5.13: We compare the test image reconstruction results between SIRENeRF and ref-
NeRF on the side-view scene.

Figure 5.14: We compare the synthesized novel view from SIRENeRF and ref-NeRF on the
side-view scene.
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Figure 5.15: We compare the test image reconstruction results between SIRENeRF and ref-
NeRF on the back-view scene.

Figure 5.16: We compare the synthesized novel view from SIRENeRF and ref-NeRF on the
back-view scene.

As we discussed in the section 5.3.1, the side-view scene dataset is less accurate and
properly prepared than the front-view scene dataset, we may conjecture that SIREN-
eRF is capable of handling datasets that are of low quality better than ref-NeRF. This
can be further proved by testing our model on the back-view scene dataset which is of
even less quality. Figure 5.15 shows the scene reconstruction results from our model
and ref-NeRF. Since the back-side scene dataset has fewer input views and a wider
range of viewpoints than the side-view scene dataset, it is a failure for ref-NeRF to
reconstruct the image. SIRENeRF, however, succeeds in recovering the scene. The
novel view synthesis results shown in figure 5.16 also show that while ref-NeRF can
only produce a seriously noisy image, SIRENeRF can synthesize a much better and
clearer view.

The quantitative results are shown in table 5.2. The scores of PSNR, SSIM, LPIPS
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Front-view

Models PSNR ↑ SSIM ↑ LPIPS ↓
ref-NeRF 17.97 0.43 0.63

SIRENeRF 19.29 0.47 0.54

Back-view

Models PSNR ↑ SSIM ↑ LPIPS ↓
ref-NeRF 12.76 0.17 0.63

SIRENeRF 14.36 0.26 0.58

Side-view

Models PSNR ↑ SSIM ↑ LPIPS ↓
ref-NeRF 15.42 0.30 0.86

SIRENeRF 17.80 0.36 0.76

Table 5.2: Comparisons of quantitative metrics between SIRENeRF and ref-NeRF

agree with our qualitative observations that SIRENeRF outperforms ref-NeRF on all
of the three datasets.

5.3.3 TARFs

5.3.3.1 Experimental Settings

We compare our proposed SIRENeRF and TARFs models with ref-NeRF. We assume
known intrinsic in all the cases.

5.3.3.2 Implementation details

We implement our TARF framework following the settings from [32][26] with some
modifications. Similarly, we train a 8-layer MLP with 256 hidden units in each layer to
learn the volume density and features, and a 2-layer MLP with 256 hidden units in each
layer to learn the RGB colors. We resize the images to 480× 640 pixels and randomly
sample 2048 pixel rays every iteration, each sampled at N = 128 coordinates. We use
the Adam optimizer and train all the models for 200k iterations. For ref-NeRF, the
learning rate begins at 1×10−3 and decays exponentially to 1×10−3. For our proposed
TARFs, the learning rate begins at 1 × 10−4 and decays exponentially to 5 × 10−5.
In Gaussian activation function, the initial parameter a = 1. In Laplacian activation
function, the initial parameter a = 1. In SuperGaussian activation function, the initial
parameter a = 1, b = 1. In Quadratic activation function, the initial parameter a = 1.

5.3.3.3 Evaluation Details

We evaluate the performance of SIRENeRF, TARFs, and ref-NeRF in terms of view
synthesis quality for the scene reconstruction and their quantitative metrics. For sim-
plicity, we only present the qualitative results from NeRF with trainable Quadratic
activations (Q-TARF). The quantitative metrics used in the experiments are PSNR,
SSIM, and LPIPS.
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Figure 5.17: We compare the scene reconstruction results between Q-TARF and ref-NeRF on
front-view scene

5.3.3.4 Results

We first test our Q-TARF model on the front-view scene dataset. The scene recon-
struction results from Q-TARF and ref-NeRF shown in Figure 5.19 clearly indicate
that Q-TARF remarkably outperforms the baseline. Compared to ref-NeRF, Q-TARF
is not only able to reconstruct the unrestricted background accurately, but also rep-
resents better details of the target building. The zoom-in figures show that similar
to GFF-NeRF and SIRENeRF, Q-TARF achieves a fine representation of the objects
in the background. Moreover, Q-TARF outperforms GFF-NeRF and SIRENeRF in
representing fine details. Compared to the reconstruction results from GFF-NeRF in
figure 5.7 and from SIRENeRF in figure 5.11, the zoom-in figure on the right shows
that Q-TARF can depict the branches and leaf on the canopy of the trees, while both
GFF-NeRF and SIRENeRF can only depict a rough silhouette of the tree canopy. The
zoom-in figure on the left also indicates that Q-TARF can produce a clear representa-
tion of the grids on the guardrails, while by SIRENeRF the guardrails are represented
with more vagueness. This means that Q-TARF is more capable of handling high-
frequency content in the signals than both the baseline and our previously proposed
models. The novel view synthesis results shown in figure 5.18 also support our ob-
servation that Q-TARF has a better ability to represent fine details and the complex
background. The zoom-in figures on the bottom show that Q-TARF produces a clearer
representation of details.

We then test our model on the side-view scene dataset. Figure 5.19 shows the scene
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Figure 5.18: We compare the synthesized novel view from Q-TARF and ref-NeRF on the
front-view scene

reconstruction results from our model and ref-NeRF. From the observation, we can find
that Q-TARF easily outperforms ref-NeRF and is also competitive with our other pro-
posed models. By significantly reducing the noise, Q-TARF produces a much cleaner
reconstruction than the baseline. What is more, Q-TARF is capable of representing
better details than others. Compared to the reconstruction results from SIRENeRF in
figure 5.13, we can see that though Q-TARF is unable to reach as good noise-reducing
effects as SIRENeRF, it depicts more accurate details. The zoom-in figure on the left-
bottom shows that Q-TARF can reconstruct the grid of windows with accurate shapes
and colors. As a comparison, ref-NeRF can only produce a vague and blurry represen-
tation without a clear distinction of the color changes, while SIRENeRF smooths the
grids to stripes though it is better for reducing the noise. The zoom-in figure on the
right-bottom also indicates that Q-TARF represents finer details than both ref-NeRF
and SIRENeRF.

The synthesized views shown in figure 5.20 also indicate that Q-TARF achieves the
best performance among all our proposed models and the baseline. As can be seen,
Q-TARF can render a near photo-realistic novel view with fine resolution. The zoom-in
figure on the left-bottom shows that Q-TARF can depict the windows with a clarity
close to the ground truth. We can also see that the reconstruction of the windows
by Q-TARF remarkably outperforms SIRENeRF and GFF-NeRF which are unable to
represent the windows with such fine details. The zoom-in figure on the right-bottom
also suggests that Q-TARF outperforms other models in depicting the edges and corners
which are assumed high-frequency contents.
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Figure 5.19: We compare the scene reconstruction results between Q-TARF and ref-NeRF on
side-view scene.

Figure 5.20: We compare the synthesized novel view from Q-TARF and ref-NeRF on the
side-view scene.
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Figure 5.21: We compare the synthesized novel view from SIRENeRF and Q-TARF on the
back-view scene.

Similar to SIRENeRF, Q-TARF can also recover the scene from the back-view scene
dataset which is of lower quality. Figure 5.21 compares the scene reconstruction results
from SIRENeRF and Q-TARF. As can be seen, Q-TARF achieves a reconstruction
with higher clarity. Though both models are able to recover an understandable scene,
Q-TARF performs better on reducing the noise and representing details. The zoom-in
figures on the bottom show validate our observation that Q-TARF provides a clear
representation of some complex details such as small windows on the facade and the
reflection on the window. The zoom-in images also support that Q-TARF raises the
quality of the image by achieving better noise reduction.

The synthesized views shown in figure 5.22 also show that Q-TARF outperforms
SIRENeRF with higher clarity. The zoom-in figure on the left-bottom indicates that,
while SIRENeRF can only render a rather blurry representation of the windows on
the facade which is believed a difficulty for our models, Q-TARF manages to render a
near photo-realistic representation with fine quality. The zoom-in image on the right-
bottom also suggests that while SIRENeRF fails to learn and represent some complex
structures such as the objects on the rooftop, Q-TARF succeeds in depicting distinct
colors and shapes of these objects. However, we can also see that both models are not
able to eliminate the huge noise at the edge of the background.

Quantitative results are given in table 5.3. In table 5.3, we illustrate the measure-
ments of PSNR, SSIM, and LPIPS for all the TARF models and ref-NeRF. The results
supports our observation that TARFs achieve better performance than the baseline and
also outperform SIRENeRF.

46



Figure 5.22: We compare the synthesized novel view from Q-TARF and Q-TARF on the
back-view scene.

5.4 Comparison with ContextCapture

In this section, we briefly compare the qualitative reconstruction results from our best-
performed model TARF with the reconstruction results from ContextCapture. As
shown in figure5.23, our model can achieve a competitive performance with looser
requirements on the dataset. Besides, our model can also render a photorealistic back-
ground while ContextCapture only extracts the main body of the target objects.

5.5 Discussion

According to the experiment results shown above, we can draw the following con-
clusions: Firstly, all of our attempts including Gaussian-distributed Fourier features,
SIRENeRF, and Trainable-activated NeRF outperform the reference NeRF in terms of
both qualitative measurements and quantitative measurements. Gaussian-distributed
Fourier features expand the frequency mapping directions, which enables GFF-NeRF
to recover the representation of the background and represent the details with higher
fidelity. SIRENeRF and TARFs eliminate the use of positional encoding and build
a self-contained architecture by leveraging parameterized activations. Parameterized
activations enable SIRENeRF and TARFs to outperform reference NeRF in represent-
ing better details and significantly reducing the noise. SIRENeRF shows fine noise
reduction and image smoothing effects, while TARFs show an ability to achieve a rep-
resentation with high clarity. Besides, SIRENeRF and TARFs show higher robustness
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Front-view scene

Models PSNR ↑ SSIM ↑ LPIPS ↓
Ref-NeRF 17.97 0.43 0.63
SIRENeRF 19.31 0.48 0.53
Laplacian TARF 19.86 0.46 0.60
Gaussian TARF 19.97 0.48 0.56
Quadratic TARF 20.08 0.48 0.58
SuperGaussian TARF 19.87 0.47 0.58

Back-view scene

Models PSNR ↑ SSIM ↑ LPIPS ↓
Ref-NeRF 12.76 0.17 0.63
SIRENeRF 14.36 0.26 0.58
Laplacian TARF 14.56 0.26 0.63
Gaussian TARF 14.60 0.26 0.58
Quadratic TARF 14.70 0.27 0.57
SuperGaussian TARF 14.57 0.27 0.61

Side-view scene

Models PSNR ↑ SSIM ↑ LPIPS ↓
Ref-NeRF 15.42 0.30 0.86
SIRENeRF 17.80 0.36 0.76
Laplacian TARF 17.97 0.34 0.78
Gaussian TARF 18.05 0.36 0.78
Quadratic TARF 18.20 0.36 0.76
SuperGaussian TARF 17.96 0.34 0.79

Table 5.3: Comparisons of quantitative metrics between SIRENeRF, TARFs and ref-NeRF

to the low-quality dataset in which the reference NeRF fails to learn the scene accu-
rately. Both the qualitative observations and quantitative measurements indicate that,
among all our proposed models, TARFs achieve the best performance which is mostly
close to the ground truth. Besides, TARFs also stand out for their better flexibility
since the proposed trainable scheme eliminates the need for exhaustively tuning the hy-
perparameters in the activation functions when applying SIRENeRF. We also compare
the results from our best-performing model with those from ContextCapture. The com-
parison shows that our model can achieve competitive performance to ContextCapture
with a simplier architecture and less requirements on the input data.
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Figure 5.23: We compare the our reconstruction results with the results from ContextCapture
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Conclusions 6
6.1 Contributions

In the research report, we address all the research objectives listed in section 1.2. The
initial goal is to synthesize novel views of a large object, the facade of our target building
in Singapore, with only RGB images as the inputs. To solve this problem, we provide
an effective guideline that can serve as an end-to-end approach to reconstructing the
scene and achieving photorealistic rendering from RGB images taken by drones. In
this guideline, we first use COLMAP, an incremental SfM pipeline to estimate the
camera poses. With the posed images, we then use NeRF, which stands out as a
proper method among other point cloud or mesh-based traditional methods for its
simplicity and outstanding performance, as the base method to reconstruct our target
scene. NeRF encodes a 3D scene as a continuous function that turns the 5D coordinate
inputs (3D location and 2D viewing direction) into color and volume density and uses
a differentiable volume rendering technique to composite the volume density and the
color into an image. This continuous representation is optimized via a fully-connected
network to minimize the loss between the composited image and the ground truth. We
demonstrate that representing scenes as neural radiance fields can produce rendering
results that are competitive with the results from the point cloud-based method used
in the commercial software ContextCapture.

We also take a step forward and address the deficiencies of NeRF in reconstructing
high-frequency content by researching the coordinate MLP and how inputs are mapped
in NeRF. We demonstrate that coordinate MLPs cannot handle the high-frequency
content in the input images because they are biased towards learning low-frequency
content. NeRF solves these problems by using positional encoding to map the inputs
from low-dimensional space to high-dimensional space. We further find that this is not
the best strategy for mapping, and we make three attempts to improve the performance
of NeRF. We first use Gaussian-distributed Fourier features to replace the original po-
sitional encoding. Different from positional encoding that assumes the variation of
pixels only fluctuates rapidly along the X and Y axes, Gaussian-distributed Fourier
features enable a mapping along other directions (different angles between X-axis and
Y-axis). We empirically show that this mapping outperforms positional encoding both
visually and numerically. Next, we build a self-contained coordinate MLP architecture
to achieve the input mapping within the network. We first study the memorization and
generalization of a coordinate MLP. We find that to encode the high-frequency content
in the signals, the activation functions in the MLP are supposed to meet two require-
ments. First, the activation functions should be parameterized so that the magnitude
of its first-order derivative can be controlled via the parameters. This is because the
upper-bound on the Lipschitz constant of the angle variation in a local interval can be
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increased by increasing the local Lipschitz constant of the activation function, while
the local Lipschitz constant of the activation function correlates to the magnitude of
its first-order derivative. Therefore, a higher magnitude of the first-order derivative
enables a better capacity to encode signals with large fluctuations. The first require-
ment is however not necessarily sufficient for ensuring a good performance of encoding
signals with extremely varying fluctuations across different intervals. Therefore, the
second requirement that should be obeyed is that the activation function should also
have non-negligible second-order derivatives to obtain varying Lipschitz smoothness.
The reference NeRF uses ReLU as the activation function in MLPs, while ReLU does
not meet both requirements. Therefore, we use a set of other functions as activation
functions. Our first attempt is to use sine functions to replace the ReLUs in the co-
ordinate MLP. The choice is based on the fact that the periodicity is inherited along
the derivatives of the sine function that the derivative of sine can be regarded as a
phase-shifted sine. Besides, the magnitude of the derivatives is controlled over the
parameter in the sine. We empirically present that this carefully-chosen activation
function can enable a better fitting of the high-frequency content in the images, and a
NeRF model combined with sine activations (referred to as SIRENeRF in the report)
outperforms the reference NeRF in recovering the unbounded background and depict-
ing the target building with sharper details. We also illustrate that SIRENeRF has two
major limitations. First, sine activations are very sensitive to the initialization scheme.
Without strictly following a carefully-designed initialization scheme demonstrated in
section 4.3.2.1, the view synthesis performance drops significantly. Second, a sine ac-
tivation, which is parameterized by a fixed coefficient w, brings more hyperparameters
to the networks. This adds cumbersome hyperparameter tuning work in complex tasks
where a deep fully-connected network is required. We empirically find that there are
no general settings for these hyperparameters when applying SIREN-based NeRF with
different input data. Therefore, the flexibility of sine activations is significantly limited
in real-world applications where the inputs vary all the time. Moreover, we find that
a fixed parameter in the activation function limits the ability to control the magni-
tude of its first-order derivative according to the varying content in the signals. A
high magnitude though enables better fitting of the high-frequency content, lessens
the ability to encode less-fluctuated content. We address these issues by proposing
a trainable scheme for parameterized activations, which omits the effort to manually
adjust the parameters in the activations by automatically optimizing these parameters
along with other parameters in the deep network. We show that our model, referred
to as TARF, achieves better performance than the reference NeRF and SIRENeRF in
reducing the noise and representing better details. We demonstrate that TARFs are
also more capable of recovering unbounded scenes with imperfect camera poses.

Besides, we also present an analysis of the raw data provided by TUV SUD and the
data preparation strategies in the report. We demonstrate that there are two strategies
for synthesizing the target building. The first strategy is to synthesize a 360-degree
view, while the second strategy is to divide the scene into several separated forward-
facing views. We show that an important difference between implementing these two
strategies is the coordinate transformation. When rendering forward-facing scenes, the
camera coordinates are transformed to a Normalized device coordinate (NDC) space
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where the x, y, and z coordinates of each vertex are ranged between -1.0 and 1.0, and
coordinates outside this range will not be visible. This space is convenient because
it preserves parallel lines while converting the z axis (camera axis) to be linear in
disparity. For 360-degree spherical renderings, this NDC transformation should not be
operated. We then use COLMAP to estimate the camera poses, which are necessary
for implementing NeRF.

6.2 Future work

While our models can produce photorealistic reconstruction and rendering of our tar-
get building with a sequence of sampled RGB images as the input and outperform the
baseline model NeRF, there are still several limitations. Firstly, the accuracy of the
camera pose estimation remains a huge problem in real-life applications. Though CO-
LAMP stands out as an effective and convenient method to estimate the camera poses
from raw RGB images, in the experiments we find that the robustness of COLMAP is
correlated to the camera motions. A forward-facing capture assumes that the camera
moves within the xy plane and the vertical height keeps unchanged along the whole tra-
jectory. However, this assumption cannot be always held in the real life. A study [57]
shows that COLMAP starts breaking when trajectory perturbations exceed a certain
level. Though our best-performed models can cope with the camera calibration errors
better than NeRF, it is still very sensitive to the accuracy of the pose estimation. The
experiment results show that covering a similar range of viewpoints, sparser views lead
to a less accurate estimation of the camera poses, and the reconstruction performance
degrades accordingly. This indicates that our models still require an adequate amount
of images as the input data and still cannot achieve a fine rendering performance with
only a few shots. Besides considering a better pose estimation method than COLMAP,
many recent studies are working towards producing a scene representation from one or
just a few input images. Some methods condition NeRF by utilizing convolutional neu-
ral networks to extract the image features. For a query point along a target camera ray
with view direction, a corresponding image feature is extracted from the feature volume
via projection and interpolation. These features are then fed to the MLP network as a
residual. This architecture can enable a few-view novel-view synthesis and train NeRF
on multi-view data without additional supervision. Other studies [19] leverage auxil-
iary semantic consistency loss to achieve a 3D neural scene representation from only
a few images. These methods use a pre-trained visual encoder called CLIP, a Vision
Transformer trained on millions of diverse online photographs with natural language
supervision, to extract the semantics from the images. This semantic loss allows for im-
proving the perceptual quality of few-shot view synthesis and enables rendering novel
views with as few as one observed image when pre-trained on a multi-view dataset.
These studies point out directions for us to improve the performance of our models in
situations where the input data are sparse.

Another limitation is that our models, similar to most of the NeRF-based ap-
proaches, downsample the input images before feeding them into the neural networks
out of the training speed and storage. This limits the use of our models in many real-life
applications. A possible way to tackle this problem is to combine NeRF with super-
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resolution techniques. A study [54] indicates that 3D consistency can help NeRF pro-
duce better representations where an observed pixel absorbs information from nearby
views. To this end, an extension of NeRF called NeRF-SR[54] has been proposed that
leverage this property by applying a super-sampling strategy that shoots multiple rays
at each image pixel to enforce multi-view constraint at a sub-pixel level. NeRF-SR
then further boosts the performance of super-sampling by a refinement network that
leverages the estimated depth to complete details from related patches on only one
high-resolution reference image. This technique paves a road for us to further modify
our models and let them able to improve the resolutions of the synthesized images.

Furthermore, another factor that hampers the use of our models in real-life appli-
cations is the lengthy training speed. On the one hand, the training process in our
experiments is restricted by the limited GPU resources (all our experiments are run
on Google Colab with an NVIDIA K80 GPU). On the other hand, optimizing the
hundreds of millions of parameters in a deep fully-connected network in NeRF is no
doubt time-consuming. As a result, training the reference NeRF model often requires
12-15 hours (depending on the size of the input data), while training our models re-
quires less time but still around 10 hours for one single scene. This limitation not
only omits the possibility of a real-time application but also restricts the efficiency
of modeling and inspecting buildings using our models. To speed up the training
time, an effective approach presented in [50] replaces the coordinate MLP with a voxel
grid. Different NeRF, this approach uses a dense voxel grid to model the 3D geometry
(volume density) and a feature voxel grid to model the complex view-dependent ap-
pearance (color). The key ideas that enable a fast convergence include introducing a
post-activation interpolation on voxel density that allows for producing sharp surfaces
in lower grid resolution and modifying the voxel density optimization process to cope
with the suboptimal geometry solutions. This approach is believed to significantly re-
duce the GPU memory consumption and cut the training time from a few hours to
15 minutes. Another compelling method proposed by NVIDIA named Instant Neural
Graphics Primitives (Instant NGP) [33] has achieved extraordinary training speed that
can train a NeRF model in under 5 seconds. The key contribution of this approach is
a proposed multi-resolution hash encoding that is used to map the input coordinate.
This study demonstrates that the positional encoding, along with its further extensions
including our randomly oriented Fourier features and level-of-detail filtering [2], can be
generalized into a frequency encoding family. Though the frequency encoding plays a
key role in extracting high approximation quality from compact models, it complicates
the training process and usually requires a large and deep MLP to learn complex tasks
such as 3D novel view synthesis, which limits the performance on GPUs where control
flow and pointer chasing are expensive. The multi-resolution hash encoding, in contrast,
allows using a smaller network without sacrificing quality, where the small network is
augmented by a multi-resolution hash table of trainable feature vectors whose values
are optimized through stochastic gradient descent. The multi-resolution structure al-
lows the network to disambiguate hash collisions, making for a simple architecture that
is trivial to parallelize on modern GPUs. The parallelism is leveraged by implementing
the whole system using fully-fused CUDA kernels with a focus on minimizing wasted
bandwidth and compute operations. This work paves the road for using a much smaller
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network to train the 3D scene and reduces the training time by more than a thousand
times.

In summary, all the research objectives have been properly achieved in our research,
and in the end, We outline the drawbacks and limitations of our methods and suggest
possible future work that can be pursued for improvement.
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