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Abstract

There are about 70 prestressed concrete T-beam girder bridges built between 1953 and 1970 in the
Netherlands. Ensuring the safety of these existing bridges under current traffic conditions is
imperative. Upon initial assessment of these existing prestressed concrete T-girder bridges, half of
them didn’t meet the safety requirement specified by the design code even though they didn’t show
any sign of distress during inspection. This is because the system behaviour of the T-girder bridges
(i.e.) load transfer mechanisms such as CMA (compressive Membrane Action) and load redistribution
were not considered, which could potentially increase the calculated strength capacity of these
existing bridges. Therefore, a computationally efficient method for evaluating these bridges is needed.
This research addresses the challenge of accurately predicting the strength capacity of prestressed
concrete T-girder bridges using a computationally efficient approach.
The study involves modelling the 2D bridge deck in the horizontal plane using orthotropic plate
elements and 2D individual girders in the vertical plane with non-linear material properties. The 2D
bridge model was compared with a 3D linear bridge deck model, showing a variation in bending
moment between 10% to 13%, sufficient for studying load effects. The 2D individual girder model built
was validated using experimental data of the disconnected T-beam test of the Vecht Bridge,
incorporating a quasi-Newton solution method with the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm. The predicted load versus deflection curve from the 2D non-linear individual girder model
closely followed the load versus deflection curve obtained from the experimental test results.
To combine the 2D bridge deck model with the 2D non-linear individual girder model, an equivalent
loading technique was developed by numerically solving the shear force distribution of the critical
girder in the 2D bridge deck model. The staggered 2D Non-Linear Finite Element Approach
developed utilising the equivalent loading technique accurately predicted the ultimate failure load of
the connected T-beams (system behavior) within 10% of experimental values, despite neglecting the
effect of end crossbeams.
The 2D bridge deck model without considering crossbeam effects showed conservative stiffness
estimates. Crossbeam inclusion in the model indicated significant improvements in stiffness, load
distribution and redistribution.
The 3D non-linear finite element model predicted 87% to 95% of the failure load of the connected
T-beam tests [10]. The 2D non-linear individual girder model using the staggered non-linear approach
predicted up to 96.5% of the ultimate failure load of the connected T-beam test, achieving this with a
run time of approximately 18 to 21 minutes. Overall, the staggered 2D Non-Linear Finite Element
Approach developed shows promise for preliminary bridge safety assessments offering a balance
between computational efficiency and accurate prediction of strength capacity.
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1
Introduction

1.1. Background
Many of the bridges made of prefabricated prestressed concrete beams were built shortly after WWII.
Consequently, the bridges built in the early period are reaching their end of theoretical service life.
The main question to answer is whether these bridges are structurally safe to withstand today’s traffic
conditions. The road traffic has seen significant increases in both numbers and axle loads since these
bridges were built. These changes have prompted revisions to the design codes in the Netherlands
over the last 80 years [16]. Even if the bridges don’t show any signs of distress, it is important to
assess the conditions to current needs such as increased traffic demands and deficiencies related to
shear resistance.
In the Netherlands, there are about 70 prestressed T-beam bridges with cast-in situ decks built
between 1953-1977 that are still present in service today [10], see Figure 1.1 for the typical
cross-section of prestressed T-beam concrete bridges.

Figure 1.1: Typical cross-section of pre-stressed concrete T-beam bridge [10]

There’s an increasing need to use an accurate technique to assess the existing bridges. There is also
a discrepancy in checking the safety of the bridge since the system behaviour of the bridge is not
taken into account. Consequently, the loading capacity of the prestressed T-beam bridge is severely
underestimated. From research [3], it is observed that integrated deck slabs with transverse
prestressing can withstand higher load capacities due to the effect of arching action, also known as
Compressive Membrane Action (CMA). Arching action or CMA is activated when a load is applied
directly to the T-beam or when the slab begins to bend after cracking has initiated in the concrete. The
horizontal movement (lateral direction) of the slab is restricted by adjacent T-beams, and longitudinal
movement is restricted by crossbeams, inducing compressive membrane forces. This results in the
deck slab not being the governing section for failure, but rather the T-beam. Arching action
substantially increases the strength capacity of prestressed concrete T-beam bridges, a phenomenon
referred to as the system behavior in prestressed concrete T-beam bridges. This thesis focuses on
assessing the load-carrying capacity of prestressed concrete girder bridges by considering system
behavior like compressive membrane action (CMA), and load distribution and redistribution between
connected T-girders using a simplified 2D Non-Linear Finite Element Approach.

1
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1.2. Research Questions
The main research question that will be answered in this thesis:

“How can we use a simplified 2D Non–Linear Finite Element Approach using a 2D individual girder
model and a 2D bridge deck model to verify the capacity of prestressed concrete girder bridges that

represent a full bridge system; avoiding computationally costly 3D Finite Element models?”

To answer the main question, the following sub-questions are answered in the process:

1. How can we model the integrated deck slab in the 2D horizontal plane? How can we
incorporate the change in stiffness in longitudinal and transverse direction due to the presence
of cross beams and integrated slab deck?

2. How can we model an individual T-beam girder, with material Non-linearity in the 2D vertical
plane?

3. How can we connect the 2D bridge deck in the horizontal plane and 2D single beam girder in
the vertical plane in such a way that the resistance of a single T-beam correlates to the system
behaviour of connected T-beams?

1.3. Research scope
The focus of this research is to develop a simple 2D Non-Linear Finite Element Approach to
predict the strength capacity of existing prestressed concrete T-girder bridges, taking into
account system behavior. For this purpose, two Finite Element Models are built: 2D linear
bridge deck model in the horizontal plane and 2D non-linear individual girder model in the
vertical plane. The 2D bridge deck is purely for studying the load effects. Subsequently, an
equivalent loading that can be applied on the non-linear individual girder which can predict the
full strength capacity of the bridge is studied in this thesis.
Although a 3D non-linear Finite Element model is available that can accurately predict the
strength capacity of bridges, including the effect of system behavior, it is computationally
time-consuming and not feasible for practical use. Currently, a Live Load Distribution Factor
(LLDF) is available that can be applied to individual girders to estimate the full capacity of the
bridge. However, this approach provides a very conservative estimate of the load effect and is
based on linear analysis. Therefore, there is a need to develop an equivalent loading method
that incorporates material non-linearity to accurately predict the bridge’s load capacity.
This thesis is limited to assessing the load-carrying capacity of existing prestressed concrete
T-girder bridges. The study focuses on the most common layout of the crossbeams—bridges
with four cross-beams (two end cross-beams and two intermediate cross-beams), including the
Vecht bridge, which is used as a case study. The emphasis is on creating a simplified 2D
Non-Linear Finite Element Analysis to determine the equivalent loading that integrates the
bridge deck and individual girder by comparing results from both experimental tests and a 3D
Non-Linear Finite Element model of the case study.

1.4. Research Methodology
The goal is to investigate the system behaviour of existing T-beam bridge resistance by utilising
a 2D non-linear finite element model approach. The research of this thesis builds upon a case
study of a multi-span T-beam bridge named ‘Vecht Bridge’ built in the Netherlands in 1962, for
validation purposes.
The case study progresses as follows: initially, two separate models—an individual T-beam
girder and an integrated deck slab—are built in the vertical and horizontal planes, respectively.
The 2D bridge deck model is a linear model. Variations in stiffness in the longitudinal and
transverse directions, due to the presence of crossbeams and variations in concrete properties,
are incorporated as geometrical orthotropy. This 2D bridge model is then compared with an
available 3D linear model [10] to ensure that the behavior of the 2D bridge deck model aligns
with that of the 3D linear bridge deck model. To improve the accuracy of the 2D bridge deck
model, the element type and the element size are varied.
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The individual girder model, built in the vertical plane, incorporates material non-linearity. The
material properties used are based on tests conducted on the Vecht Bridge [10]. The
constitutive model and solution method are the same as those used for the 3D non-linear
analysis of the Vecht Bridge. Only the element type and size are optimised to get the improvised
model of the individual girder that are comparable to the experimental results of the case study.
Then, the improved models of the 2D non-linear individual girder model and 2D linear bridge
deck model are correlated by developing an equivalent method that can be applied on the
individual girder which can determine the full load capacity including the system behaviour of
the prestressed concrete girder bridge.
Finally, the validation of the 2D Non-Linear Finite Element Model approach is done by
comparing the real-time experimental data obtained from the Vecht bridge [11].
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Figure 1.2: Theoretical framework
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1.5. Thesis outline
The outline of this master’s thesis is described briefly in this section to guide the reader. This
thesis contains seven chapters. The second chapter ’Literature Study’ describes the strategies
for assessing the existing bridges analytically, numerically, and experimentally. It then proceeds
toward how an existing bridge can be analysed numerically by extensively describing about the
modeling strategies. As the modeling strategies are more relevant for this thesis. Finally, the
research gap that this master’s thesis aims to fill is mentioned at the end.
In Chapter 3, the case study, a typical T-beam bridge called the Vecht bridge is introduced. The
description of the geometry of the whole bridge is described in this section. The geometry,
reinforcement and prestressing layout of the T-beam, cross-beam and integrated deck slab is
explained in detail in this section as well. The results from the material investigation and the
full-collapse test of the Vecht bridge is reported in this chapter. The critical load positions that
were obtained from the experimental and numerical results study are addressed here as well.
Chapter 4 is exclusively about developing a 2D Nonlinear analysis approach. Modeling of an
individual T-beam girder in the vertical plane and the integrated deck slab in the horizontal plane
is described step by step. The results from the non-linear analysis of the individual T-beam
girder and integrated deck slab are also discussed.
Chapter 5 covers the system behavior of the girder bridges. The methodology followed to
combine the two models - individual T-girder and integrated deck slab is explained here. Finally,
2D Non-Linear Finite Element Approach to find the system behavior of the prestressed T-beam
concrete bridge is presented int this chapter.
In Chapter 6 the results from the Non-linear analysis of individual girder, integrated deck slab
and the combination of both these models are compared with the already available numerical
and experimental results from the case study are discussed.
Finally, Chapter 7 summarises all the conclusions and also gives recommendations for future
research needed in this area.



2
Literature review

This chapter covers the literature review regarding the numerical assessment of the shear capacity of
prestressed concrete T-beam bridges. Firstly, various assessment strategies of existing bridges are
explained. Secondly, the modelling strategies (numerical assessment) are elaborated in detail. The
Linear Finite Element method used for analysing the bridge is introduced. Then, the modelling
approach of an individual girder (non-linear) and bridge deck is presented in this section. Also, the
methods of correlating the two models - individual girder and bridge deck using equivalent loading
technique is introduced here. The research gap related to shear deficiencies, system behaviour,
non-linear analysis and equivalent loading technique used are summarised.

2.1. Assessment Strategies of Existing Bridges
The current assessment of existing bridge structures is based on the safety conditions required for
new bridge structures. This assessment primarily checks the loads for the Ultimate Limit State (ULS)
and not for the Service Limit State (SLS). Consequently, the initial assessment of existing prestressed
concrete T-beam bridges indicates that half of the bridges do not comply with the code requirements
for existing structures in the Ultimate Limit State, as per NEN 8700 and RTD 1006 [7]. However, this
does not necessarily qualify the bridge as unsafe, since load transfer mechanisms such as
Compressive Membrane Action or arching action are not considered [3].
The shear resistance of concrete calculated using the current code (NEN-EN 1992-1-1 [7]), is
substantially reduced (depending on the combination of parameters) compared to the older code
(pre-1974) [17]. The older code approach in calculating shear resulted in very low shear
reinforcement and overestimated shear resistance. Additionally, the current detailing for stirrups
differs from older engineering practices. This discrepancy means that even if sufficient shear
reinforcement is present in prestressed concrete girder bridges, it is in some cases unclear how to
account for it in the assessment of existing structures.
It is also known that the strength of concrete increases over time, often exceeding the 28-day
compressive strength used in design calculations. Therefore, if an existing bridge underperforms in
terms of strength capacity according to the current code, several refinement options are available as
outlined by RBK [22] and NEN 8700 [18].
From referring to Figure 2.1 the following steps can be taken to refine the assessment of the existing
bridges. The refinements are divided into analytical, numerical and experimental methods. From the
analytical method, the deficit bridge can be assessed by reducing the design load by lowering the
safety level and limiting the remaining lifespan to 30 years (this corresponds to a minimum reliability
index of βrel = 3.3). Another analytical option is that the design traffic load can be reduced by fixing
the traffic lane which can reduce the critical sectional forces. If the bridge still remains deficit, an
on-site material investigation can be conducted which is sometimes proven to increase the design
value of compressive strength of concrete. This increase in concrete strength is advantageous for an
increase in shear strength. Also, Code modification recommended by the Dutch Ministry of
Infrastructure and Water Management (Rijkswaterstaat) to the Eurocode for flexural shear formula
can be used. For prestressed beams with sufficient and properly detailed stirrups, Equation 2.1

6
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allows using a prescribed fixed strut angle of θ = 30◦. Note that the additional terms for variable height
box girders are not included in Equation 2.1 as it is not relevant here.

V Rd = V Rd,s + V Rd,c (2.1)

Where the term VRd,c (i.e.) the resistance offered by the concrete is added to the resistance offered by
the stirrups VRd, s to get the total flexural shear resistance. Generally, for inverted T-beam bridges
built before 1974; the amount of shear reinforcement doesn’t comply with the code (i.e). is less than
the typical values required for shear reinforcements, or the detailing of the stirrup is not proper. The
equation 2.1 cannot be used in the above situation and only VRd,c is used for the capacity.

Figure 2.1: Methods of structural assessment refinements for existing concrete bridges (according to RBK [22] and NEN 8700
[18] ( (Reprinted from [10]))

Apart from analytical options, there are numerical methods for structural assessment of bridges.
Linear finite element analysis can be used for assessing the bridge capacity. The linear elastic finite
element model can also be improved by using advanced elements like shell or solid elements. Also,
implementing the exact positions, dimensions and stiffness of the supports in the linear finite element
model can be done.
Another numerical method to use is non-linear finite element analysis when the analytical and linear
elastic models don’t yield acceptable results. A two-step procedure is followed for prestressed
concrete bridges. Firstly, the load position that yields the maximum shear force on the bridge deck is
determined using a linear elastic model. Secondly, the shear resistance is analysed (in an individual
girder) using the non-linear finite element model. The Non-Linear often includes a sensitivity analysis.
As a last resort, if uncertainties are present – missing records, presence of structural damage like
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corrosion and cracking, or analytical/ numerical assessment concludes the bridge’s load-carrying
capacity is deficient; experimental assessment (proof loading) can be done on the bridge deck [1].

2.2. Modelling strategies
2.2.1. Linear Finite Element Method for analysing bridge
Finite element analysis (FEA) of a bridge can be performed using 1D beam elements, 2D plate
elements, or 3D solid elements. For instance, the maximum bending moment and shear force
obtained from a 3D finite element model using solid elements are smaller compared to those from a
1D model using beam elements, according to AASHTO specifications. This indicates that a 3D
structural model achieves better load distribution, behaving as a single unit, unlike a 1D model [19].
This study focused on assessing the long-term performance of a prestressed concrete T-shaped
beam using 1D, 2D, and 3D elements. The 3D model simulated a more realistic behavior of a T-beam
but required approximately 4 days to analyze, whereas the 2D and 1D models took about 1 day and 4
hours, respectively [6]. The 2D model was more accurate than the 1D models and less
computationally intensive than the 3D models. Additionally, numerical results from the 2D model were
in good agreement with experimental measurements for load/mid-span displacement and crack
opening of the reinforced concrete trough bridge. The damage pattern obtained closely matched the
experimental results [20].
However, conventional FEA typically uses linear analysis of bridge models with 1D, 2D, or 3D
elements. Linear FEA provides conservative results and lacks accuracy. To better account for the
material behavior of concrete, including cracking, lateral tensile and compressive stresses, and load
reversals, a non-linear FEA approach is recommended [14]. Despite this, there is currently no
standardised fully validated model approach for non-linear finite element analysis of existing bridge
structures.

2.2.2. Non-Linear Finite Element Analysis on girder level in vertical plane
The modelling of pre-stressed beams in Non-Linear Finite Element Analysis has been a subject of
study in recent decades. Especially studying the behaviour of beams after the cracking of concrete is
of importance. A Non-Linear Finite Element Analysis is necessary to consider the contribution of
concrete after cracking as the stiffness changes [9]. Other non-linearities that can be accounted are
slipping of reinforcement bars, concrete-concrete interfaces, concrete-reinforcement interaction,
strength degradation due to lateral cracking, strength increase due to lateral confinement, the effect of
cyclic loading, effect of high strain rates and deterioration mechanisms. Also, the type of constitutive
model used influences the final results therefore an appropriate model should be opted. The
constitutive model for concrete should be chosen in such a way that it represents the realistic
behaviour of the material in the structure. It is preferred to use exponential-type softening diagrams
such as Hordijk or exponential softening since the cracks are more localised. Also, to reduce the
mesh size sensitivity during compressive strain localisation, the stress-strain diagram with fracture
energy-based softening is recommended [14]. It is necessary to incorporate the effects that can
cause significant variation in the material models while assessing the bridge structures. The
constitutive models used for non-linear analysis of the individual girder follow the guidelines laid out
by the Rijkswaterstaat Ministry of Infrastructure and Water Management regarding NLFEA of
Concrete Structures [14] and the literature [10].
The Non-Linear Finite Element Method is a powerful numerical tool to simulate realistic loading effects
for the capacity control of critical sections and could be very useful for designing/assessing bridges.

2.2.3. Finite Element Analysis on bridge deck in horizontal plane
The bridge deck can withstand higher loads due to Compressive Membrane Action. The load-carrying
mechanisms include Compressive Membrane Action (CMA) in the bridge deck, arch action in the
beam (longitudinal direction) or transverse load redistribution to the adjacent beams in the Ultimate
Limit State [10]. CMA can significantly influence the flexural and punching shear strength of the
bridge deck but it is usually neglected in the design as well as assessment stage. Also, due to CMA,
bridge decks have a larger shear capacity than assumed in the initial design stage [3]. Hence,
quantifying such mechanisms is important to know about the realistic resistance of the bridge. In
Eurocode, the load-carrying mechanisms are not considered which could influence the resistance of



2.2. Modelling strategies 9

the structure. The following conclusions were drawn from the full-size field test conducted on the
Vecht bridge – a large discrepancy between experimental loading and analytically found resistance
(almost a factor of 2) for beams tested allowing load distribution to adjacent beams. Also, for the edge
beam tested individually, the experimental loads were much higher than the resistance found
analytically [11]. Therefore, there’s a need for further investigation of the load distribution. However, a
3D model of bridge for studying the load distribution is computationally costly. The 2D bridge deck
model of the bridge can be built using three methods.
Many plate structures in bridges cannot be designed using isotropic plate elements. This is due to the
fact that stiffeners may be present and can be different in the orthogonal directions. There are three
ways to consider the shape orthotropy in the 2D Finite Element Models refer to Figure 2.2. In model 1,
it is designed using a spatial assemblage of isotropic volume elements, but the input is very
strenuous/ complicated and the output is very extensive and complex.
In model 2, the shape orthotropy is introduced using isotropic membrane-bending elements. The
plane isotropic elements can represent both membrane action and bending quite accurately. However,
the output consists of a combination of normal force, shear force, bending moment and/or twisting
moment of total beam cross-sections; it can be difficult to interpret the result of an individual element.
In model 3, the shape orthotropy in the Finite Element model is incorporated using orthotopic plate
elements. The structure is modeled using a flat plate with orthotopic element properties. This model
is preferred when the stiffeners occur at regular intervals (in this case, the stiffeners are the T-girders).
However, the centre line of the top plate is connected to the centre line of stiffeners as opposed to
reality. After Finite Element analysis, the starting and membrane forces in the top plate can be
computed [4]. The method 2 is used for building the 2D bridge deck model in the horizontal plane due
to its simplicity in attaining the combination of normal forces, shear forces and bending moments of
the total section.

Figure 2.2: Three different levels of FE model for the same structure [4]

2.2.4. Combining the 2D Finite Element Models of the bridge deck and individual
girder

To simplify the design of the bridges in general, the concept of equivalent loading/Load Distribution
Factor is introduced. This concept helps assess how designed girders distribute loads when live
loads are placed at various locations on the bridge. This method simplifies designing multiple girders
in three-dimensional plane to designing just one girder in two-dimensional plane. For this purpose,
AASHTO recommendations provided an empirical formula for calculating Live Load Distribution
Factor (LLDF) [2]. This Live Load Distribution Factor (LLDF) recommended by AASHTO majorly
takes into account the beam spacing and a constant that depends on the the type of bridge. It was
inferred from a study that there was a deficiency in calculating shear in interior girders for box-girder
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bridges as there were not enough field measurements to support the load distribution factors provided
by AASHTO for spread box girder bridges and other types of bridges [15]. A study was also
conducted to develop the Load Distribution Factor for shear consisting of 30 bridges with varying
girder spacing, moment of inertia and span length. It was observed that the shear distribution factor
was underestimated using AASHTO LRFD. It was inferred that the LLDF majorly depended on the
spacing between girders [24].
The concrete slab and I-girder of prestressed concrete girder bridges were modelled using shell and
beam elements respectively and the Load Distribution Factor for shear is obtained from the FEM
according to AASHTO. It was found that the FEM model accurately predicted the strain compared
with the field test of seven bridges. In addition, an analytical formula was also proposed using a
parametric study and the one with the lowest sum of squares error (SSE) was chosen. The proposed
equation showed good accordance with both the FEM model and field test results [24]. There is
potential to develop an analytical formula that can predict accurate load distribution factors for
connecting the individual girder and bridge deck model.
The diaphragms (cross-beams) play an important role in the load distribution of prestressed concrete
bridges. But, the diaphragm action is not included in both live-load distribution and capacity of by
AASHTO. Theoretically, full diaphragm stiffness can be achieved by post-tensioning the diaphragm
across the bridge width. However, modelling the effects of the intermediate diaphragm on load
distributions in the Finite Element Model needs more verification/study [5].
The Load and Resistance Factor Design (LRFD) methodology recommended by the American
Association of State Highway and Transportation Officials (AASHTO) is based on the assumption of
linear elastic behaviour of concrete [2]. This approach is suitable for both the Service Limit State and
the Ultimate Limit State, which assume linear elastic behavior of concrete. However, this linear
assumption does not hold true for existing bridge structures, particularly when the concrete is cracked,
leading to a non-linear load redistribution [23].
Given this discrepancy, it is imperative to develop an accurate equivalent loading method that can
correlate the bridge deck model to individual girder models while accounting for non-linear load
redistribution effect due to cracking of concrete.

2.3. Research Gap
The conventional approach uses a linear finite element model to account for load effects and it usually
provides a conservative estimate of the strength capacity of the bridge. On the other hand, a
non-linear finite element model has the potential to predict a more realistic capacity of the existing
bridges. In previous studies using Non-Linear Finite Element Analysis, the analysis was limited to
individual beams and not system behaviour of connected T-girders like Compressive Membrane
Action (CMA) and load distribution/redistribution between T-girders. Using a full 3D finite element
model to incorporate the system behaviour of the bridge is computationally expensive and is less
preferred. Hence, a simplified 2D non-linear finite element model is becoming more common in
practice. However, in a 2D non-linear finite element analysis, the system behaviour of the structure
(i.e.). redistribution of load is not accounted for, this can significantly increase the capacity (shear
capacity) of the bridge. A simplified 2D bridge deck model which can predict both the load distribution
and redistribution effect and is comparable to the 3D Finite Element Model is developed. Also, a 2D
non-linear individual girder model which can predict the shear capacity of the full bridge system by
applying equivalent loading obtained from the 2D bridge deck model is developed.
This thesis aims to develop a staggered 2D Non-Linear Finite Element Model approach using two
models - a 2D bridge deck model for studying the load effect and a 2D individual girder model for
predicting the strength capacity. This approach combines these two models through an equivalent
loading technique, aiming to accurately predict the capacity of both a single girder and the overall
system behaviour of prestressed concrete girder bridges.



3
Case Study: Vecht bridge Introduction

3.1. Introduction to case study
The Vecht bridge was built in 1962 nearer to the town Muiden, in the province of Noord Holland, the
Netherlands. The Vecht bridge is a prestressed T-beam concrete bridge with cast-in-between decks.
It consisted of 9 simply supported spans; of which one was a movable bridge crossing over the Vecht
river refer to Figure 3.2. The bridge was initially located in A1 highway and since the highway was
rerouted, a new bridge replaced the old bridge refer to Figure 3.1. Due to this, the Vecht bridge was
available for testing before complete demolition. With the experimental data from testing the real
bridge, the numerical model being developed can be validated. The validated model can be used for
predicting the capacity of similar bridges in the Netherlands. Only the already existing bridge will be
described explicitly since the tests are conducted only on the existing bridge.

Figure 3.1: Construction of the new Vecht bridge in 1962 (right), existing bridge (left) ([21])

3.2. Description of the Vecht bridge
3.2.1. Geometry of the Vecht bridge
The Vecht Bridge is a simply supported multiple span bridge. The 9 spans had a length of 24 m each
and consisted of 15 post-tensioned beams along with cross-beams at 8 m interval. Expansion joints
are placed at the piers and abutments. The piers have a centre-to-centre distance of 24.9 m. The
centre-to-centre distance between the T-beams 1.225 m, and the total width of deck (including kerb)
is 18.40 m (see Figure 3.4). The piers consist of a continuous slender tapered wall and a rectangular
beam at the top to accommodate the bearings and support the bridge deck. The foundation of the
piers consists of a slab on closely spaced square concrete piles.

11
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Figure 3.2: Overview of Vecht bridge, span numbering and test locations, side view (top), longitudinal cross-section (middle)
and top view (bottom) (Reprinted from [10])

3.2.2. T-beam: geometry, reinforcement and prestressing
The total length of the T-beam is 24700 mm. The end block that is present at the end of the T-beam is
prefabricated and it also contains the anchorage zones of the prestressing tendons. The
prefabricated end block is connected with the T-beam by a transition piece. The intermediate
cross-beams are cast as a part of the T-beam (see Figure 3.3).

Figure 3.3: Overview of Vecht bridge, span numbering and test locations, side view (top), longitudinal cross-section (middle)
and top view (bottom) (Reprinted from [10])

The design of prefabricated prestressed T-beam is shown in Figure 3.4. The T-beam has an end block
of thickness 400 mm and it extends up to a length of 750 mm which is then followed by a transition
piece of length 1000 mm. The dimensions of the T-beam and the layout of the reinforcements and the
tendons are given in Figures 3.6 and 3.7. The T-beam has a total height of 1150 mm and the minimal
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thickness of the web is 180 mm. The shear reinforcement follow the shape of T-beam, it can also be
observed that there’s only a minimal amount of shear reinforcement present (i.e.) � 8 - 500 mm
(Figure 3.7). The profile of tendons 1 - 7 is shown in Figure 3.6, the numbering presumably follows
the order of post-tensioning of the tendons. It can also be inferred that six tendons are anchored at
the end block and the tendon number 7 is anchored in the top flange at a distance of 1902 mm from
the support. The end block and intermediate cross-beams contain � 50 ducts for transverse
prestressing tendons. Each tendon consists of 12 � 7 mm (AP = 462 mm2) in � 42 mm ducts [10].

Figure 3.4: Vecht bridge, cross-section deck, T-beam numbering (measurements in mm) (Reprinted from [10])

Figure 3.5: Vecht bridge, longitudinal section deck (measurements in mm) (Reprinted from [10])

Figure 3.6: Vecht bridge, T-beam dimensions and draped prestressing tendons 1-7 (measurements in mm) (Reprinted from
[10])
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Figure 3.7: Vecht bridge, T-beam dimensions and reinforcement layout (measurements in mm) (Reprinted from [10])

3.2.3. Cross-beam: geometry, reinforcement and prestressing
There are four cross-beams in total, two end cross-beams and two intermediate cross-beams (refer
Figure 3.5). The end cross-beams have a thickness of 400 mm and are offset by 200 mm from the
end of the T-beam. The end cross-beams contain five transverse prestressing tendons. The
intermediate cross-beams have a thickness of 500 mm and have an offset of 100 mm from the bottom
of the T-beam refer section 3.2.3. The intermediate cross-beams have a centre-to-centre distance of
8 m. They contain seven prestressing tendons in total (see Figure 3.6).

3.2.4. Integrated deck slab: geometry, reinforcement and prestressing
The integrated deck slab is present in between the T-beams and has a width of 425 mm and a
thickness of 180 mm see Figure 3.4. The T-beam and the integrated deck slabs are connected using
35 unevenly spaced transverse prestressing tendons. It can be inferred that the transverse
prestressing is more concentrated at the location of intermediate cross-beams. The prestressing
system is the Freyssinet system, same as for the T-beam Refer section 3.2.2. The reinforcement
layout consists of a longitudinal reinforcement of 4�6 and stirrups of � 6 - 400 mm.

3.3. Material Properties
The material properties are inferred from the experimental test conducted on the Vecht bridge [10].
The average concrete compressive strength of the T-beams, the integrated deck slab, and the kerb;
the strength of reinforcing and prestressing steel are found from the investigation done on the
south-western approach bridge on the third span see Figure 3.2. The results from the test
investigation are summarised in Table 3.1.

Table 3.1: Vecht bridge: concrete compressive strength and density [10]

Location fcm,cube fcma ρ
N/mm2 N/mm2 kg/m2

T-beam 106.9 87.7 2444
Integrated deck slab 73.5c 60.3 2367

Kerb 67.6 55.4 2383

fcma = 0.82xfcm,cube
c based on 21 samples (2 outliers removed)
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Table 3.2: Vecht bridge: strength of reinforcement and prestressing steel [10]

Type fy fu ϵu
N/mm2 N/mm2 %

Prestressing wire average 1505.4 1769.5 9.0
Reinforcement average 287.7 351.8 10.0

3.4. Prestressing forces
The tendon layout and the prestressing system is described in Section 3.2.2. The tendon profile of the
Vecht bridge is not given in the drawing, hence a third degree polynomial equation is used for solving
the tendon profile [10].

y = ax3 + bx3 + cx+ d (3.1)

Equation 3.1 is solved in Maple software (refer appendix B) using the following boundary conditions,

1. The coordinates at the anchorage location and half span length.
2. An angle of zero is applied at the half span length due to the symmetry of the tendon.

Note, for tendon 7 the change in tendon profile at the transition point at x = 4.5 m and x = 20.2 m from
the centre of support is disregarded as it is negligible. The profile of tendons 1 to 7 is shown in Figure
3.8.

Figure 3.8: Tendon profile of tendon 1 - 7 calculated from third degree polynomial equation (half span length)
The red dot represents the location of the change in tendon 7 profile

The prestressing force at the anchorage point is calculated assuming 20% time-dependent losses;
the working prestressing force is then calculated using,

Npw = 0.8σpi ∗Ap = 0.8 ∗ 1084 ∗ 462 ∗ 10-3 = 400.6kN (3.2)

The prestressing force calculated from the above equation is applied at both the anchorage ends of
the tendon.

3.5. Results from the full-collapse test of the Vecht bridge
The results from the connected and disconnected T-beam test is eloborated in this section. The data
is inferred from the full-collapse test done on the Vecht bridge [10]. The description of the test, failure
load, failure model and deflection at failure are elaborated in the section below. The tests listed below
will be used for validating the 2D non-linear individual girder model in the vertical plane and the
non-linear finite element approach developed for predicting the strength capacity of the connected
T-girders (system behaviour).

3.5.1. Disconnected T-beam test
For the disconnected T-beam test 4 - 7, In the disconnected T-beam test 4-7, the integrated deck slab
was sawn in the longitudinal direction for testing the individual T-beams refer to Figure 3.9. This setup
allows to understand the individual behaviour of the T-girder when a failure load is applied. The
details of the disconnected T-beam test is enumerated in Table 3.3 and Table 3.4. The failure mode
for all the disconnected T-beam test was flexural shear failure.
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Figure 3.9: Disconnected beam tests 4–7, span 2, southern Vecht bridge (measurements in mm) (Reprinted from [10])

Table 3.3: Overview of disconnected beam tests [10]

test a beam beam type structural system
mm number

4 2250 12 disconnected beam sawn
5 2250 11 disconnected beam sawn
6 2250 10 disconnected beam sawn
7 4000 9 disconnected beam sawn

Table 3.4: Results of disconnected beam tests [10]

test δu Fu failure mode
mm kN

4 79 1678 flexural shear T-beam
5 65 1703 flexural shear T-beam
6 74 1774 flexural shear T-beam
7 132 1022 flexural shear T-beam

3.5.2. Connected beam test 1
The load is applied as a concreted surface load of 400 X 400 mm at 4000 mm from the support on the
T-girder using a hydraulic jack that is positioned between the concrete deck and the steel bridge for
the full-scale collapse test of the Vecht bridge refer Figure 3.10 and Figure 3.11. For more details
regarding the full-scale collapse of the Vecht Bridge please refer [11]. This test setup is chosen
because the loading is applied at the midpoint between the cross-beams. Also, at least four beams
are present between the end of the bridge and the beam being tested, meaning that significant load
distribution between the adjacent beams can be achieved. The failure mode of the connected beam
test 1 observed was primarily shear failure of the T-girder followed by punching failure of the deck.
The details of the connected beam test 1 is enumerated in Table 3.5 and Table 3.6.
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Figure 3.10: Connected beam tests 1–3, span 4, southern Vecht bridge (measurements in mm) (Reprinted from [10])

Figure 3.11: Load application according to test setup 1 on 2D bridge deck model (Reprinted from [10])

Table 3.5: Overview of connected beam test 1 [10]

test a beam beam type structural system
mm number

1 4000 11 connected beam unchanged

Table 3.6: Results of connected beam test 1 [10]

test δu Fu failure mode
mm kN

1 21 3004 Shear T-beam
and secondary punching deck



4
Case Study: Vecht bridge - Developing

a 2D Nonlinear analysis approach

In this chapter, an elaborate description of the two Finite Element Models, (i.e.) the bridge deck and
individual girder are provided. Modeling aspects like - material properties, constitutive models and
element types used for both the bridge deck and individual girder models are explained in this chapter.
To analyse the full bridge system, a linear analysis is carried out in the bridge deck model in the
horizontal plane and a non-linear analysis is carried out in the individual girder model.

4.1. 2D FEM approach of the bridge deck in horizontal plane
This section gives a detailed overview of the Finite Element Model of the bridge deck. The integrated
deck slab is built in the horizontal 2D plane. A linear analysis is performed for the integrated deck
slab. The plate structure in the bridges can’t be handled as isotropic because the stiffness properties
are different and can vary in two orthogonal directions. The variation in stiffness properties is due to
the presence of cross-beams and different concrete materials used in the integrated deck slab. The
orthotropy of the bridge deck is handled in terms of geometrical orthotropy and not using material
orthotropy.
The modeling approach to account for the variation in stiffness and how the orthotropy is approached
in the linear bridge deck model is addressed in this section. Further, the material and meshing
properties opted are described in this section as well.
The 2D FEM model of the bridge built in the horizontal plane is only for studying the load effects such
as load distribution to adjacent T-girders of the loaded T-girder. The corresponding shear force
distribution or bending moment distribution of the loaded T-girder is then used for calculating/finding
the equivalent distributed load that can be applied to the non-linear individual girder model in the
vertical plane.

4.1.1. Constitutive modeling of concrete
As mentioned above, the material property used for the FEM model is defined as linear material
property. Because of the prestressing, all components are considered to be uncracked concrete with
a mean modulus of elasticity Ecm. The modulus of elasticity Ecm is based on the concrete class of the
corresponding structural element refer Section 3.3. The concrete material properties for T-girders,
cross-beams and integrated deck slab is defined as a linear isotropic material (using only Young’s
modulus and poison ratio) in the 2D FEM model of the bridge deck refer Table 4.1. The material
properties used in the FEM model are inferred from the material investigation done on the Vecht
bridge [10].

4.1.2. Element types and sizes
For modeling the integrated bridge deck in the horizontal plane, the deck slab is modelled as a flat
plate with orthotopic geometrical properties, and the T-girders and crossbeams are modelled as line
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Table 4.1: Concrete FEM material properties for integrated bridge deck model

T-beam
Concrete class C80/95
Young’s modulus Ecm 42244 N/mm2

Poisson ratio ν 0.15 -
Slab and cross-beam

Concrete class C55/67
Young’s modulus Ecm 38214 N/mm2

Poisson ratio ν 0.15 -

elements (refer Figure 4.1) with orthotopic geometrical properties as an input parameter refer Table
4.2, Table 4.3 and Table 4.4. The geometrical properties are calculated from the cross-section of the
T-girder and cross-beam refer to Appendix A. In this model type, the shape of the structure is not
recognised but it is defined purely based on the geometric properties. That is the integrated deck slab
is modelled using a flat plate and the T-girders and crossbeams are modelled using just a line
element refer to Figure 4.1 but with their geometric properties as an input parameter. The integrated
deck slab and the T-girder are connected at their centroids. It is worth mentioning that the integrated
deck slab connected at the centroid of the T-girder offers stiffness for bending and helps in load
distribution amongst the T-girders as well refer to Figure 4.2.
The integrated deck slab is thin, with a thickness of 180 mm, and the shear effects are less
pronounced than the bending effects. Therefore, plate bending elements are used to model the
integrated deck slab. The plate element used for the bridge deck has a uniform thickness of 180 mm
representing the integrated deck slab refer Figure 3.4. Plate bending elements are used to model the
bridge deck instead of shell elements (membrane bending elements). This is because shell elements
output separate membrane forces and bending moments for each part, rather than combining them
into the normal force, shear force, and bending/twisting moments of the entire beam cross-section.
For checking with codes, having these combined forces and moments is preferred. Calculating the
combination manually, especially for complex geometries in structural components would be
excessively strenuous.
Class I - 3D beam elements are used modelling for the T-girders, intermediate cross-beams and end
cross-beams as it is compatible with the plate bending elements for the interpolation scheme used.
The cross-section type for the class I - 3D beam elements is defined using arbitrary shape parameters
with cross-section, Moment of Inertias (Iy*, Iz* and Iyz*) and torsional moment of inertia (It) refer Table
4.2, Table 4.3 and Table 4.4.

Table 4.2: Orthotropic geometric properties of T-girder with acting width of integrated deck slab

Arbitary parametrs Values Units
Cross-section 506020 mm2

Moment of inertia Iy* 7.24685e+10 mm4

Moment of inertia Iz* 4.36019e+10 mm4

Moment of inertia Iyz* -1.6622e+10 mm4

Torsional moment of inertia It* 1.1607e+11 mm4/rad

Table 4.3: Orthotropic geometric properties of T-beam end block with acting width of integrated deck slab

Arbitary parametrs Values Units
Cross-section 608500 mm2

Moment of inertia Iy* 7.81503e+10 mm4

Moment of inertia Iz* 3.27473e+10 mm4

Moment of inertia Iyz* 0 mm4

Torsional moment of inertia It* 1.109e+11 mm4/rad

The element size used is in accordance with RTD 1016-1 [13], a smooth stress field should be
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Table 4.4: Orthotropic geometric properties of T-girder with acting width of integrated deck slab at the location of intermediate
cross beam

Arbitary parametrs Values Units
Cross-section 762500 mm2

Moment of inertia Iy* 8.39622e+10 mm4

Moment of inertia Iz* 4.27145e+10 mm4

Moment of inertia Iyz* 6.58778e+08 mm4

Torsional moment of inertia It* 1.2668e+11 mm4/rad

calculated using the maximum element size chosen. For 2D modeling of beam and slab structure, the
maximum element size should be calculated as follows Refer table 4.5.

Table 4.5: Maximum element size for beam and slab structure

Beam structure Maximum element size
2D modeling min( l/50, h/6 )
Slab structure Maximum element size
2D modeling min( l/50, b/6 )

where h is the depth, l is the span, and b is the width of the beam/slab element. According to table
4.5; the T-beam has a total height of 1150 mm meaning the maximum element size should be 192
mm. The integrated deck slab is considered as part of the top flange of the T-beam due to its acting
width, the maximum element size of 180/6 = 30 mm is not chosen. Also, the element size of 30 mm is
not feasible. Therefore, the maximum element size of 200 mm should be chosen for the Finite
Element Model of the bridge deck to calculate a relatively smooth stress field. That is a relatively
dense mesh allows sufficient modelling of stress distribution in compressive zones [14]. The element
size of 100 mm was chosen to avoid the formation of triangular elements that can cause stress
concentration at a point.
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Figure 4.1: Geometry of bridge deck model in the horizontal plane.

Figure 4.2: Representation of connection of girder with bridge deck in the FEM model.
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Figure 4.3: Top view of the meshing of bridge deck model in the horizontal plane.

4.2. Results from the bridge deck finite element model
4.2.1. Validation of the 2D bridge deck model based on the linear analysis
To check the validity of the 2D bridge deck model built in the horizontal plane, it is compared with the
already available Linear Finite Element model in the 3D plane. The bridge deck model in the 3D plane
consists of integrated deck slab and the top flange of T-beams strengthened by ribs (representing
remaining T-beams and cross-beams) refer Figure 4.4 and Figure 4.5 [10]. A unity load of F = 1000
KN is placed on T-beam 1 and 8, for the numbering of T-beams refer 4.6 at the intervals in the
longitudinal direction at a = 2, 4, 6, 8, 10 and 12 m from the centre of the support refer 4.7. The
corresponding cross-section moments obtained from the 2D bridge deck model in the horizontal
plane is then compared with the bridge deck model in 3D plane.
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Figure 4.4: Single span linear elastic FEM model, 2D slab strengthened by ribs (Reprinted from [10])

Figure 4.5: Cross-sections of T-beam without top flange (ribs in FEM model) (Reprinted from [10])
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Figure 4.6: Top view of mesh, numbering of T-beams and loaded area (Reprinted from [10])

Figure 4.7: Detail of mesh and grid of load locations (grid only shown on T-beam 1) (measurements in mm) (Reprinted from
[10])

The cross-section moment from the 2D linear Finite Element Model of the bridge deck in the
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horizontal plane is compared with the bending moment obtained from the 3D linear model of the
bridge deck. From referring to figures 4.8 and 4.9, it was calaculated that the average variation in
cross-section moment from the 2D linear bridge deck model in the horizontal plane from the 3D linear
model of the bridge was 12.1 %. The average variation of the bending moment from applying unity
load at different locations from T-beam 1 is 13.75% and T-beam 8 is 10.45% refer Table 4.6 and Table
4.7. Even though the average variation of the bending moment between 2D bridge deck model and
3D bridge deck model ranges from 10.45% - 13.75%, it is sufficient to study the load effects alone
(i.e.) distribution of loads to adjacent beams. It should be duly noted that the variation could be
caused due to uncertainty in the stiffness of the elastomeric bearing, cracks that could be present in
the structural elements which are unnoticed causing discrepancy in the load distribution effects
between FEM models and the real bridge structure. It should be duly noted there will always be a
variation in load distribution between FEM models and real bridge structure due to uncertainties in the
stiffness of the elastomeric bearing, unnoticed cracks in the structural elements, etc.

(a) Bending moment MF, T-beam 1 in 2D horizontal plane bridge
deck model

(b) Bending moment MF, T-beam 1 in 3D linear bridge model
(Reprinted from [10])

Figure 4.8: Comparison of bending moment of the 2D linear deck model with 3D linear model obtained from T-beam 1

(a) Bending moment MF, T-beam 8 in 2D horizontal plane bridge
deck model

(b) Bending moment MF, T-beam 8 in 3D linear bridge model
(Reprinted from [10])

Figure 4.9: Comparison of bending moment of the 2D linear deck model with 3D linear model obtained from T-beam 8

* x - represents the distance from the endpoint of the bridge cross-section
* a - represents the distance from the centre of the support
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Table 4.6: Bending moment for T-beam 1 with a unity load F = 1000 kN at different load locations (half span length)

Distance ’a’ 2D Bridge deck model 3D Bridge deck model Variation
(m) (kNm) (kNm) (%)
2 1132.66 1120 1.13
4 1482.67 1650 10.14
6 1537.39 1750 12.15
8 1310.35 1600 22.1
10 1642.65 2000 17.8
12 1737.58 2150 19.18

Average 13.75

Table 4.7: Bending moment for T-beam 8 with a unity load F = 1000 kN at different load locations (half span length)

Distance ’a’ 2D Bridge deck model 3D Bridge deck model Variation
(m) (kNm) (kNm) (%)
2 915.37 770 18.87
4 1078.95 1000 7.89
6 1065.14 980 7.99
8 723.39 600 17.05
10 1140.18 1050 8.58
12 1227.88 1200 2.32

Average 10.45

4.3. 2D FEM approach of a single girder in vertical plane
The individual girder element built in the vertical plane is a Non-Linear Finite Element Model. The
source of non-linearity introduced is material non-linearity (i.e.) the material properties are functions
of the state of stress or strain to account for cracking of concrete and yielding of reinforcements. The
material properties used in the non-linear girder model are explained in the section below. Also, the
meshing properties and convergence criteria used for non-linear analysis of the individual girder are
explained in the sections below.

4.3.1. Constitutive modeling of concrete
The material property used for the Non-Linear Finite Element Analysis of the individual girder is
presented in Table 4.8 and the aspects related to constitutive modeling of concrete are explained in
Table 4.9. The tensile and compressive fracture energy are calculated in accordance with RTD
1016-1 [14] and Model code 2010 [12], refer Equations 4.1 - 4.2.
The terms Gf and Gcm are in Nmm/mm2, while fcm in N/mm2.

Gf = 0.073f cm
0.18 (4.1)

Gcm = 250Gf (4.2)

The mean tensile strength and Young’s modulus are calculated in accordance with NEN-EN 1992-1-1
[7], see Equations 4.3 - 4.4. Both fctm and Ecm are in N/mm2.

f ctm = 2.12ln(1 + 0.1f cm) (4.3)

Ecm = 22[f cm/10]
0.3x103 (4.4)

For concrete, smeared crack with the total rotating crack model is adopted [8] as recommended by
RTD 1016-1 [14]. The rotating crack model is adopted instead of fixed crack model since it’s less
susceptible to stress-locking and results in lower bound failure. For tensile behaviour of concrete,
exponential-type softening diagrams are preferred since the cracks are more localised [14]. Hordijk
softening curve is used for describing the tensile behaviour in my non-linear individual girder. For
defining the compressive behaviour, parabolic stress-strain diagram is used refer Figure 4.10. The
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Table 4.8: Concrete FEM material properties for integrated bridge deck model (Reprinted from [10])

T-beam
mean compressive strength fcm 87.7 N/mm2

mean tensile strength fctm 4.83 N/mm2

fracture energya Gf 0.163 Nmm/mm2

compressive fracture energy Gc 40.83 Nmm/mm2

Poisson ratio ν 0.15 -
Young’s modulus E 42200 N/mm2

Slab and cross-beam
mean compressive strength fcm 60.3 N/mm2

mean tensile strength fctm 4.13 N/mm2

fracture energya Gf 0.150 Nmm/mm2

compressive fracture energy Gc 37.59 Nmm/mm2

Poisson ratio ν 0.15 -
Young’s modulus E 36768 N/mm2

a alternatively referred to as mode I fracture energy , i.e. GI
f

parabolic stress-strain diagram is used in order to reduce the mesh sensitivity during compressive
strain localistaion [14]. A reduced poisson ratio to account for damage due to cracking is adopted [10].
All the constitutive model used for modelling the non-linear individual girder FEM model is
enumerated in Table 4.9.

Figure 4.10: Concrete in tension and compression (Reprinted from [10])

Table 4.9: Concrete constitutive modelling (Reprinted from [10])

aspect model used
tensile behaviour Hordijk softening

compressive behaviour parabolic stress-strain diagram
tension-compression interaction Vecchio and Collins 1993

compression-compression interaction -
Poisson’s ratio damage based

equivalent length (crack-band width) Rots

4.3.2. Constituive modelling of reinforcements
The reinforcement and prestressing steel is modelled as embedded reinforcements. The advantage
of modelling reinforcements as embedded reinforcement is that the mesh line doesn’t have to
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coincide with the position of the reinforcements. Also, the embedded reinforcement increases the
stiffness of the mother element but does not increase the weight of the mother element. Therefore, all
the reinforcements and prestressing tendons are modelled as embedded reinforcements.
The curved prestressing tendons are approximated as straight lines at an interval of 250 mm solved
using the polynomial equation explained in Section 3.4. The constitute models used for defining the
reinforcement and prestressing steel are enumerated in Table 4.10.

Figure 4.11: Stress-strain diagram reinforcement and prestressing steel (Reprinted from [10])

Table 4.10: Reinforcement and prestressing steel constitutive modelling [10]

aspect model used
tensile behaviour and compressive behaviour Von Mises plasticity

hardening hypotheis strain hardening
bond-slip full bond

4.3.3. Element types and sizes
Regular plane stress elements are opted for modeling the beams. Since the individual girder is
modeled in 2D plane (x-y axis). For plane stress elements, the shear stresses perpendicular to the
x-y direction are assumed to be zero. For 2D models, the effects in the z direction aren’t considered,
in other words only in-plane stresses are allowed. The variation in the cross-section of the T-girder
refer 3.7 is introduced in the Finite Element Model using spatial thickness function, see Figure 4.14,
Figure 4.15 and Figure 4.16.
The prestressing tendons and reinforcements are modeled using the element type ’embedded
reinforcements’ refer to Figure 4.18. The embedded reinforcements are used as the strains are
calculated from the displacement field of the mother element ensuring perfect bonding between the
reinforcement and surrounding element. Embedded reinforcement allows fine meshing as the
reinforcement lines don’t influence the meshing. The profile of the curved prestressing tendon is
approximated by straight lines at an interval of 250 mm in the horizontal axis using the polynomial
equation refer section 3.4. It is more suitable to use embedded reinforcement as finer mesh sizes are
possible.
The maximum element size that can be used is 200 mm and it follows RTD 1016-1 [13]. The
minimum from 24700/50 = 494 mm and 1150/6 = 191.6 mm, (i.e.) approximately 200 mm can used
refer 4.11. However, there were formation of triangular elements which could cause stress
concentration at these points. Hence, an element size of 50 mm is chosen refer to Figure 4.12.
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Figure 4.12: Mesh of the individual girder model in the vertical plane

Reinforced elastomeric bearing (supports)
For modelling the supports, the stiffness of the elastomeric bearing is used as an interface between
the supports and the T-girder. The dimension of the elastomeric bearing are l = 306 mm, b = 206 mm
and h = 15.5 mm (layer thickness). A linear support stiffness of 475 MN/m is assumed for all the
analyses [10]. The shear modulus of the rubber G is equal to 0.9 N/mm2. The support is modelled as
a line interface and the corresponding stiffness in applied in vertical and horizontal directions, refer
Equations 4.5 - 4.6.

KY =
K

lb
=

475 ∗ 103

306 ∗ 206
= 7.54N/mm3 (4.5)

Kx =
G

h
=

0.9

2 ∗ 15.5
= 0.029N/mm3 (4.6)

Figure 4.13: Geometry of individual girder model in the vertical plane
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Figure 4.14: Spatial thickness function of T-beam girder

Figure 4.15: Spatial thickness function of intermediate beam
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Figure 4.16: Spatial thickness function of the girder in the transition zone

Figure 4.17: Variation of thickness along the T-girder

Figure 4.18: Embedded reinforcements - regular reinforcements, longitudinal and transverse prestressing tendons

Table 4.11: Maximum element size for beam structure

Beam structure Maximum element size
2D modeling min( l/50, h/6 )

Composed line elements
The composed line elements are mostly used for post-processing applications. Composed line
elements are used for calculating the Cauchy stresses and bending moments at desired loactions. All
types of elements and embedded reinforcements contribute for calculating the bending moment in the
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composed line elements. In the non-linear individual girder model, composed line elements are used
for verifying the cross-section moment [8]. These composed line elements are modeled using line
elements and are located at the centre of gravity of the T-beam (Figure 4.19) and no thickness is
assigned to the composed line.

Figure 4.19: Composed line element in individual girder

4.3.4. Solution method
Non-Linear analysis is carried out for the individual girder model. In nonlinear Finite Element Analysis,
the relation between the force vector and the displacement vector is not linear, this could be due to
either materials or geometrical nonlinearity. Since the relation between force and displacement
becomes nonlinear, the displacement mostly depends on displacement from previous step. Therefore
to attain equilibrium in nonlinear analysis, an incremental-iterative solution procedure is used. For
equilibrium iteration, two iterative methods are tested in the non-linear girder model -
Newton-Raphson and Quasi-Newton. In Newton-Raphson method, the stiffness matrix is evaluated
every iteration using the Equation 4.7 refer Figure 4.20. In the regular Newton-Raphson iteration, the
stiffness equation (Equation 4.7) is recalculated at every step. This means that each prediction is
based on the most recent known or predicted state, even if that state is not yet balanced.

Ki =
δg

δ∆U
(4.7)

where Ki is the stiffness matrix
δg is the change in out-of-balance force vector
δ∆U is the change in iterative displacement increment

Figure 4.20: Regular Newton-Raphson iteration [8]

The Quasi-Newton or Secant methods use past solutions and force imbalances to improve accuracy.
Unlike the regular Newton-Raphson method, it doesn’t recalculate the stiffness matrix each time refer
Figure 4.21. Instead, it uses known positions along the equilibrium path refer Equation 4.8.
The Newton-Raphson or Quasi-Newton method needs at least one criterion for equilibrium to be
achieved. Therefore, certain convergence tolerance is set based on the specifications recommended
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by RTD 1016-1 [14]. To attain equilibrium, it is recommended to satisfy either the energy-norm or the
force-norm see Table 4.12.

K i+1 ∗ δui = δgi (4.8)

Figure 4.21: Qausi-Newton iteration [8]

In the Quasi-Newton solution method, the stiffness of the structure is determined from its positions
along the equilibrium path. Where δui is the iterative displacement increment, and the change in
out-of-balance force vector is calculated using the equation, see Equation 4.9,

δgi = gi+1 − gi (4.9)

The line search method is adopted along with Newton-Raphson and Quasi-Newton method. Iteration
methods need a good initial guess to work. If the guess is far off, especially with strong nonlinearities
like cracking, they won’t converge. Line Search algorithms can increase the convergence rate [8].

Table 4.12: Convergence criteria [14]

Convergence criteria Tolerance
Force norm 0.01
Energy norm 0.001

4.4. Results from the single girder finite element model
4.4.1. Results from varying the solution method for non-linear analysis of 2D

individual girder model
The number of non-convergence steps and the load versus displacement curve are checked by
simulating the disconnected experimental test setup 4. The more accurate solution method that
matches the disconnected experimental test setup 4 results is chosen.
The two solution methods investigated are regular Newton-Raphson and Quasi-Newton with
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. The overview table of the step size and solution
method is specified in Table 4.13. In phase 1, either energy norm or force norm is satisfied until the
total failure load applied on the 2D individual non-linear girder. The phase 2 is extended as much as
possible; either the energy norm or force norm is satisfied. The step size used for phase 1 is 0.05
while for phase 2, it is set to 0.02. The maximum number of iterations is fixed at 100. These step
sizes and iteration limits are consistently applied throughout the non-linear analyses.



4.4. Results from the single girder finite element model 34

Table 4.13: Overview of analyses for element size and solution method

Model type Phase energy norm force norm satisfy step size solution
tolerance tolerance all norms method

T4-50-NR-2D NLFEM 1 10-3 10-2 NO 0.05 Newton
2 10-3 10-2 NO 0.02 -Raphson

T4-50-QNR-2D NLFEM 1 10-3 10-2 NO 0.05 Quasi
2 10-3 10-2 NO 0.02 - Newton

* Note the element size used is 50 mm for all the Finite Element Models

From using the regular Newton-Raphson method, it can be inferred that the non-convergence of the
point starts after the linear part. Also from Figure 4.23a, it can be seen that the non-convergence
starts from step 13 refer Figure 4.23a. However, the load versus deflection curve from the 2D
nonlinear individual girder model is comparable to the 3D nonlinear FEM model built and the
experimental results of disconnected test 4, see Figure 4.22b.

(a) Load versus deflection curve of 2D non-linear individual girder
model from using regular Newton Raphson method

(b) Comparison of load versus deflection curve of test 4. Red and
blue lines are reprinted from [10]

Figure 4.22: Load versus deflection curve obtained from Newton-Raphson solution method
The dot represents the last converged point and the square symbol indicates the start of phase 2

(a) Energy norm from using Newton-Raphson solution method (b) Force norm from using Newton-Raphson solution method

Figure 4.23: Convergence Newton-Raphson solution method

The Quasi-Newton solution used for the analyses gives a similar behavior (trend of load versus
deflection curve) when compared to the experimental results from disconnected test 4, see Figure
4.24b. Also, all the points converge until the failure load is reached (step 20) refer Figure 4.25a. The
non-converge starts only during phase 2. It can be concluded that Quasi-Newton solution method
used gives similar results when compared to the experimental result. Also, the rate of convergence is
more when compared to the regular Newton-Raphson method.
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(a) Load versus deflection curve of 2D non-linear individual girder
model from using Quasi-Newton method

(b) Comparison of load versus deflection curve of test 4. Red and
blue lines are reprinted from [10]

Figure 4.24: Load versus deflection curve obtained from Quasi-Newton solution method
The dot represents the last converged point and the square symbol indicates the start of phase 2

(a) Energy norm from using Newton-Raphson solution method (b) Force norm from using Newton-Raphson solution method

Figure 4.25: Convergence Quasi-Newton solution method
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4.4.2. Results from simulating disconnected T-beam tests
To check the Non-linear Finite Element Model of the individual girder built, the experimental test
setups related to disconnected T-beam tests (tests 4, 5, 6 and 7) were simulated in the 2D non-linear
individual girder model in the vertical plane refer Figure 3.9. The overview of the experimental test
setup of disconnected T beams is enumerated in the Table 3.3. The overview of the FEM models
used for simulating the experimental test setup is presented below.
It was also inferred from the analyses that the last converged step (step 20) from using the
Quasi-Newton solution method gave the ultimate failure load when compared to the experimental test
result. Hence, the load attained at the last converged step in the non-linear analysis will be
considered as the maximum failure load attained from the 2D non-linear individual girder model.

Table 4.14: Overview of FEM models used for simulating experimental tests

FEM Model
Used

Disconnected
T-beam test

Element
Size

Solution
Method

Model
Type

T4-50-QNR-2D NLFEM 4 50 Quasi-newton method 2D Non-linear
T4-60/180-QNR-3D NLFEM [10] 4 60/80 Quasi-newton method 3D Non-linear

T4-Experimental Result 4 - - Original structure
T5-50-QNR-2D NLFEM 5 50 Quasi-newton method 2D Non-linear

T5-60/180-QNR-3D NLFEM [10] 5 60/80 Quasi-newton method 3D Non-linear
T5-Experimental Result 5 - - Original structure

T6-50-QNR-2D NLFEM 6 50 Quasi-newton method 2D Non-linear
T6-60/180-QNR-3D NLFEM [10] 6 60/80 Quasi-newton method 3D Non-linear

T6-Experimental Result 6 - - Original structure

T7-50-QNR-2D NLFEM 7 50 Quasi-newton method 2D Non-linear
T7-60/180-QNR-3D NLFEM [10] 7 60/80 Quasi-newton method 3D Non-linear

T7-Experimental Result 7 - - Original structure

4.4.3. Disconnected beam test 4
The result from simulating the experimental test setup 4 are summarised in Table 4.15. The failure
load for the analyses is chosen as the last point converged in the non-linear analysis. The ultimate
failure attained from the 2D non-linear individual girder model is 98 % of the ultimate load attained
from the experimental test. From observing the load versus deflection curve (refer Figure 4.24b), the
curve obtained from the 2D individual girder model closely matches that of the experimental result in
the plastic region when compared to the elastic region.

Table 4.15: Results from analysis of T4-50-QNR-2D NLFEM

analysis Deflection Ultimate load
mm kN

T4-50-QNR-2D NLFEM 53.4 1658.13
T4-60/180-QNR-3D NLFEM [10] 50.6 1486

T4-Experimental Result 79 1678



4.4. Results from the single girder finite element model 37

Figure 4.26: Load versus deflection curve obtained from Quasi-Newton solution method
The dot represents the start of phase 2 and the square symbol indicates the last converged point. Red and blue lines are

reprinted from [10]

Cracking strains (cracking)
The cracking strains are observed at the load steps where there is a reduction in stiffness in the load
versus deflection curve obtained from the non-linear analysis of the 2D individual girder model in the
vertical plane. The cracks initiate from the bottom of the T-girder (flexural cracks) due to the sagging
bending moment of the T-girder refer to Figure 4.27. At this load (F = 964.4 kN), a reduction in
stiffness is observed from the load versus deflection curve refer to Figure 4.26. A major decrease in
stiffness is observed at load F = 1439.2 kN, this is because of flexural shear crack progressing from
the bottom of the beam and extending to the left support support (refer Figure 4.27b). Ultimately, the
T-girder fails due to a huge flexural shear crack extending from the location of load application to the
end support refer to Figure 4.31c and it is similar to that of the experimental test result of
disconnected T-beam test 4, see Figure 4.28.

Figure 4.28: Flexural shear failure of T-beam test 4. Intermediate cross-beam on the left side, end support on the right side
(reprinted from [10])
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(a) F = 963.4 kN, δz = 13.5 mm, Flexural crack initiation

(b) F = 1439.2 kN, δz = 33.8 mm

(c) Fu = 1572.3 kN, δu = 53.4 mm

Figure 4.27: T4-50-QNR-2D NLFEM, crack strains Eknn
(end crossbeam on the left side and intermediate crossbeam on the right side)
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Yielding of reinforcement and prestressing tendons
The stresses of both regular reinforcement and prestressing steel at failure load are given in Figure
4.29. The regular reinforcements (longitudinal reinforcements) begin yielding at a load of 1140 kN at
the bottom of the cross-section. The stirrups start yielding at a load of 1487 kN at the locations where
flexural shear cracks form between the load application point and the support, and between the load
application point and the intermediate crossbeam.
The maximum stress in the regular reinforcement Sxx = 305 N/mm2 refer to Figure 4.29b. It can also
be observed that the longitudinal reinforcement at the top is starting to yield due to compression.
The prestressing tendons start to yield at the bottom cross-section at the load level F = 1487 kN and
the maximum stress obtained in the tendons Sxx = 1570 N/mm2 at the failure load (see Figure 4.29a).
There is no fracture observed in either prestressing tendons and regular reinforcements as the
ultimate strain doesn’t exceed 0.9 ϵu (see Figure 4.11).

(a) Prestressing tendons 1-7

(b) Regular reinforcements

Figure 4.29: T4-50-QNR-2D NLFEM, stress Sxx embedded reinforcements, Fu = 1572.3 kN, δu = 53.4 mm
(end crossbeam on the left side and intermediate crossbeam on the right side)

4.4.4. Disconnected beam test 5
The results from simulating the experimental test 5 of disconnected beam is presented in Table 4.18.
The failure load calculated from the 2D non-linear girder model is 1810 kN, which is 6.28 % higher
than what was obtained from the experimental result. However, the deflection attained was half that
of the experimental test result obtained. The deflection from the 2D individual girder model varies
significantly (50 % less) from that of the experimental result. Whereas the displacement from the 3D
girder model varies by 29.7% when compared to the displacement obtained from the experimental
test setup. However, the load versus deflection curve obtained from the 2D individual girder model
closely follows both the 3D non-linear individual girder and the experimental result, see Figure 4.30.

Table 4.16: Results from analysis of T5-50-QNR-2D NLFEM

analysis Deflection Ultimate Failure load
mm kN

T5-50-QNR-2D NLFEM 131.1 1810
T5-60/180-QNR-3D NLFEM [10] 53.3 1505

T5-Experimental Result 65 1703
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Figure 4.30: Load versus deflection curve obtained from Quasi-Newton solution method
The dot represents the start of phase 2 and the square symbol indicates the last converged point. Red and blue lines are

reprinted from [10]

Cracking strains (cracking)
The cracks progress from the bottom of the T-girder at the location of the load application. The
flexural/bending cracks occur due to sagging of the T-girder refer to Figure 4.31a at F = 1064kN. At
this load step, the first reduction in stiffness is observed in the force versus deflection curve (see
Figure 4.30). The flexural shear cracks are observed when the loading is further increased (see
Figure 4.31b). Finally, the T-girder fails due to a flexural shear crack extending from the support to the
location of the load applied at the ultimate failure load of 1810 kN. The failure pattern is similar to that
of the experimental test result of disconnected T-beam test 5, refer to Figures 4.31 - 4.32.

Figure 4.32: Flexural shear failure of T-beam test 5. Intermediate cross-beam on the left side, end support on the right side
(reprinted from [10])

Yielding of reinforcement and prestressing tendons
The longitudinal reinforcement starts yielding at the bottom cross-section at the load F = 1064 kN
when the flexural crack starts to appear. The stirrups start yielding at a load F = 1419 kN at the
horizontal locations between the load application point and the support, as well as between the load
application point and the intermediate crossbeam, when the flexural shear crack occurs. At the
ultimate load Fu = 1810 kN, the maximum stress sxx obtained for the regular reinforcement is 382
N/mm2.
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(a) F = 1064 kN, δz = 16.5 mm, Flexural crack initiation

(b) F = 1419.2 kN, δz = 39.1 mm

(c) Fu = 1810 kN, δz = 131.1 mm

Figure 4.31: T5-50-QNR-2D NLFEM, crack strains Eknn
(end crossbeam on the left side and intermediate crossbeam on the right side)
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For the prestressing tendons, the tendons first start yielding at the bottom cross-section at the load F
= 1597 kN due to presence of flexural shear cracks. The maximum stress attained by the
prestressing tendons at the ultimate load (Fu = 1810 kN) is Sxx = 1576 N/mm2. The stresses of
regular reinforcement and prestressing tendons are given in Figure 4.37.
No fracture is observed in either prestressing tendons or regular reinforcements.

(a) Prestressing tendons 1-7

(b) Regular reinforcements

Figure 4.33: T5-50-QNR-2D NLFEM, stress Sxx embedded reinforcements, Fu = 1810 kN, δu = 131.1 mm
(end crossbeam on the left side and intermediate crossbeam on the right side)

4.4.5. Disconnected beam test 6
The 2D non-linear individual girder model gave a more accurate result than the 3D non-linear girder
model. The failure load attained from the 2D non-linear girder model was 80 % of the experimental
test setup. Whereas the failure load attained from the 3D non-linear girder model was 84.44 % of the
ultimate load attained from the experimental test 6.

Table 4.17: Results from analysis of T6-50-QNR-2D NLFEM

analysis Deflection Ultimate Failure load
mm kN

T6-50-QNR-2D NLFEM 39.1 1663.3
T6-60/180-QNR-3D NLFEM [10] 52.0 1498

T6-Experimental Result 74 1774
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Figure 4.34: Load versus deflection curve obtained from Quasi-Newton solution method
The dot represents the start of phase 2 and the square symbol indicates the last converged point. Red and blue lines are

reprinted from [10]

Cracking strains (cracking)
The progression of cracking in the individual T-girder is shown in Figure 4.35. The first cracking starts
from the bottom part directly beneath the application of load refer to Figure 4.35a and there is
reduction in stiffness at this load step (F = 1017 kN), see Figure 4.34. The bending crack (flexural
crack) is then extended diagonally till the position of support and intermediate crossbeam, see Figure
4.35b. The T-girder fails due to a large flexural shear crack at the ultimate load of Fu = 1663 kN which
is similar to that of the experimental test (refer Figure 4.35c and Figure 4.36).

Figure 4.36: Flexural shear failure of T-beam test 6. Intermediate cross-beam on the left side, end support on the right side
(reprinted from [10])

Yielding of reinforcement and prestressing tendons
The regular longitudinal reinforcement starts to yield at a load of F = 1017 kN, starting from the bottom
cross-section due to the sagging bending moment, consistent with the other test cases. The stirrups
start yielding at a load of F = 1570kN, specifically in the diagonals between the support and load
location, and between the intermediate crossbeam and load location. At the ultimate load of Fu = 1663
kN, the regular reinforcement reaches a maximum stress of sxx = 365 N/mm2 refer to Figure 4.41b.
The prestressing tendons also begin yielding at F = 1570 kN, starting from the bottom cross-section,
and achieve a maximum stress of 1571 N/mm2 at the ultimate load (refer Figure 4.41a).
No fractures are observed in either the regular reinforcements or the prestressing tendons.
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(a) F = 1017 kN, δz = 15.1 mm, Flexural crack initiation

(b) F = 1386.6 kN, δz = 36.5 mm

(c) Fu = 1663.3 kN, δu = 68.6 mm

Figure 4.35: T6-50-QNR-2D NLFEM, crack strains Eknn
(end crossbeam on the left side and intermediate crossbeam on the right side)
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(a) Prestressing tendons 1-7

(b) Regular reinforcements

Figure 4.37: T6-50-QNR-2D NLFEM, stress Sxx embedded reinforcements, Fu = 1663.3 kN, δu = 39.1 mm
(end crossbeam on the left side and intermediate crossbeam on the right side)

4.4.6. Disconnected beam test 7
From simulating the experimental test 7, it was observed that the ultimate failure load obtained from
the 2D non-linear individual girder model was 6.16 % higher than the experimental test result. The
failure load attained from the 3D non-linear individual girder model was 17.7% higher than the
experimental failure load attained. The load versus deflection curve obtained from the 2D non-linear
individual girder model follows more closely with the 3D non-linear individual girder model rather than
with the experimental result, see Figure 4.38.

Table 4.18: Results from analysis of T7-50-QNR-2D NLFEM

analysis Deflection Ultimate Failure load
mm kN

T7-50-QNR-2D NLFEM 89.4 1085
T7-60/180-QNR-3D NLFEM [10] 162.6 1203

T7-Experimental Result 132 1022
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Figure 4.38: Load versus deflection curve obtained from Quasi-Newton solution method
The dot represents the start of phase 2 and the square symbol indicates the last converged point. Red and blue lines are

reprinted from [10]

Cracking strains (cracking)
As observed in previous disconnected T-beam tests, cracks progress similarly, starting with flexural
cracks and evolving into flexural shear cracks. The flexural cracks initiate at the bottom of the T-girder
at a load of F=745 kN and progress into flexural shear cracks at F=958.7 kN. These cracks extend
towards the locations of the load, supports, and intermediate crossbeam. Correspondingly, a
reduction in stiffness is observed at these loads (see Figure 4.38). The failure of the T-girder is due to
the formation of huge flexural shear cracks extending between the support and the point of load
applied as well as between crossbeam and point of load applied (refer Figure 4.39).

Figure 4.40: Flexural shear failure of T-beam test 7. Intermediate cross-beam on the left side, end support on the right side
(reprinted from [10])

Yielding of reinforcement and prestressing tendons
The longitudinal reinforcements at the bottom begin to yield at load F = 798 kN due to flexural cracks
and the reduction in stiffness in the load versus deflection curve can also be observed at this load
step. The stirrups start yielding at load F = 958 kN when flexural shear cracks occur. At the ultimate
load Fu = 1085 kN, the maximum stress Sxx for regular reinforcement is 352 N/mm2 and for
prestressing steel is 1577 N/mm2 refer to Figure 4.41.
No fracture is observed for prestressing tendons and regular reinforcements as the ultimate strain is
not exceeded.
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(a) F = 745.4 kN, δz = 27.7 mm, Flexural crack initiation

(b) F = 958.7 kN, δz = 58.4 mm

(c) Fu = 1085.1 kN, δu = 89.4 mm

Figure 4.39: T7-50-QNR-2D NLFEM, crack strains Eknn
(end crossbeam on the left side and intermediate crossbeam on the right side)
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(a) Prestressing tendons 1-7

(b) Regular reinforcements

Figure 4.41: T7-50-QNR-2D NLFEM, stress Sxx embedded reinforcements, Fu = 1085 kN, δu = 89.4 mm
(end crossbeam on the left side and intermediate crossbeam on the right side)

4.5. Summary and conclusion
This section summarises the modelling approach for the 2D bridge deck model and 2D non-linear
individual girder model. The results from comparing the 2D bridge deck model with 3D bridge deck
model, optimising solution method, and comparison of 2D individual girder model with both 3D
non-linear girder model and the case study (Vecht bridge) is presented here.
Modelling of 2D bridge deck model in the horizontal plane:

• The 2D bridge deck model built using orthotopic plate element method (shape orthotropy
introduced via geometrical orthotropy and not material orthotropy) behaved similar to that of the
3D linear bridge deck model [10].

• The bending moment distribution form the 2D bridge deck model varied from the 3D bridge deck
model between 10.45 % - 13.75%. The 2D bridge deck model is sufficient for studying the load
distribution effects alone.

• The percentage variation is acceptable and sometimes unavoidable due to the uncertainty in
stiffness of the elastomeric bearing, unnoticed cracks in bridge, etc

Modelling of 2D bridge individual girder model in the vertical plane: Optimising the solution method:

• Two solution methods - Regular Newton Raphson and Quasi-Newton Raphson method is tested
in the non-linear individual girder model. It was found that more points converged when
Quasi-Newton Raphson method was used.

• Also, the load vs deflection curve obtained from using Quasi-Newton Raphson solution method
more accurately followed the load vs deflection curve obtained from the experimental result of
the Vecht bridge.

Results from the 2D non-linear girder model compared with the 3D non-linear girder model and the
disconnected beam test:

• The ultimate failure load predicted by the 2D non-linear individual girder model closely matched
the experimental test results, outperforming the 3D non-linear model. The variation in ultimate
failure load between the 2D non-linear model and experimental data was within 10% for all
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disconnected T-beam tests, except for disconnected beam test 6 where the variation reached
20%. The average variation is calculated to be 9.86%.

• However, the deflection observed varied by half of that recorded in the experimental results from
the disconnected beam tests for most of the cases.

• The reduction in load versus deflection observed in all the disconnected beam tests, from the
non-linear analyses of the 2D individual girder, is due to the progression of flexural cracks
followed by flexural shear cracks. All the individual T-girders showed failure due to flexural
shear cracks forming between the end support and the load application point. This behavior is
consistent with the experimental results obtained.

• It was also observed that both regular reinforcement and prestressing tendons started yielding
at the locations of the cracks. However, no fracture was observed in either the prestressing
tendons or the regular reinforcement, as the ultimate strains were not exceeded.



5
Correlating the individual girder

model and the bridge deck model

In this chapter, the correlation of non-linear individual girder model in the vertical plane with the linear
bridge deck model in the horizontal plane is studied. For this purpose, the results from the full-scale
collapse test of the Vecht bridge are utilised. In particular, the experimental test setup 1 is used for
comparing the results obtained. Different methods used for finding the equivalent distributed load that
can be applied on the non-linear individual girder obtained from the load distribution of the bridge
deck model in the horizontal plane is elaborated here. The most optimal method for correlating the
individual girder model and the bridge deck model is explained in this section as well. Finally, the
Non-Linear Finite Element Approach developed to assess the system behavior of the prestressed
T-girder bridge is elaborated in this chapter.

5.1. Shear resistance from the 2D bridge deck model in the horizon-
tal plane from experimental test setup 1

5.1.1. Results from linear bridge deck model from simulating experimental test
setup 1

The experimental test setup 1 is simulated in the 2D bridge deck model refer to Figure 3.10 by
applying the failure load at the location of 4000 mm from the support, see section 3.5.2.
The bending moment is maximum at the location of the load applied (i.e.). at 4000 mm from the
support as expected refer Figure 5.1. It can be inferred that the bending moment changes from
sagging to hogging at 8100 mm, this is due to the presence of an intermediate crossbeam. It can also
be observed that there’s a rather small spike at 16000 mm and this is due to the same reason
(presence of an intermediate crossbeam) refer Figure 5.2. The shear force distribution changes from
a positive to a negative value at the location of the load application (4000 mm from the support) refer
Figure 5.4. Note that the bending moment distribution and shear force distribution are obtained from
performing a linear analysis.

50
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Figure 5.1: Bending moment M on T-beam 11 between the end cross-beam on the left side and intermediate cross-beam on
the right side

Figure 5.2: Bending moment M on the whole T-beam 11
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Figure 5.3: Shear force V on T-beam 11 between the end cross-beam on the left side and intermediate cross-beam on the
right side

Figure 5.4: Shear force distribution V on the whole T-beam 11

5.2. Updating the equivalent loading of individual girder from bridge
deck

To couple the 2D linear bridge deck model in the horizontal plane to the 2D non-linear individual girder
model in the vertical plane corresponding to the loading case of experimental test setup 1. The
method used for obtaining the equivalent loading follows equilibrium equation for beams in bending
refer Figure 5.5.
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Figure 5.5: Relation scheme for bending in beams [4]

The rotation ϕ is not considered as an independent variable but as a dependent variable to the
displacement ’w’. Also, the shear deformation is much less when compared to flexural deformation;
hence it is negligible. Therefore, the equilibrium equation for beams in bending is opted. Then the
equilibrium equation reads,

∂2M(x)

∂2x
= −p(x) (5.1)

The equation 5.1 is numerically solved to obtain the equivalent loading that can be applied on the
non-linear individual girder in the vertical plane.
Another method used for obtaining the equivalent loading is using shear force distribution. The shear
force is nothing but a derivative of the bending moment M refer Equation 5.2.

V (x) =
∂M(x)

∂x
(5.2)

If we substitute this shear force in the equilibrium equation of 5.1, we obtain

∂V (x)

∂x
= −p(x) (5.3)

The equation obtained refer Equation 5.3 is then solved numerically to obtain the equivalent loading.
To summarise, the two equations - Equation 5.1 and Equation 5.3 are numerically solved to find the
equivalent distributed load that can be applied on the non-linear individual girder in the vertical plane.

5.2.1. Equivalent loading using bending moment distribution of the bridge deck
The idea of this method was to determine the equivalent distributed load for a bridge deck by
analysing the bending moment distribution after applying a failure load (point load) of 2760 kN. The
goal was to then compare the bending moment distribution, shear force distribution and total support
reaction of the non-linear individual girder model after the application of the equivalent loading with
that of the fully loaded beam in the bridge deck model and evaluate the differences.
First, the bending moment distribution of the bridge deck in the horizontal plane was obtained refer to
Figure 5.2. Using Equation 5.1, the bending moment distribution of T-girder 11 was numerically solved
to obtain the equivalent distributed load, as shown in Figure 5.6. From figure 5.6, it was observed that
peaks appeared at the locations of the end cross-beams and intermediate cross-beams. These
variations in equivalent loading were due to changes from hogging to sagging moments and with
pronounced changes resulting from the second-order differentiation equation used. Notably, a peak
occurred at 4.35m, the point load application location. Also, additional peaks occurred at 8350 mm,
16350 mm, and 24700 mm where intermediate and end cross-beams are located.
Next, the equivalent loading was applied only between the supports since reaction forces and
external forces included in the equivalent loading would nullify each other. The resulting bending
moment distribution, shear force distribution, and support reactions generated by the individual girder
model were then compared with those from the bridge deck model.
The comparison revealed that the maximum bending moment of the individual girder differed by
16.7% from the bridge deck model. Additionally, the bending moment near the cross-beam location at
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8100 mm showed a significant variation of 1900% from the bridge deck model see Figure 5.7. This
large discrepancy is likely due to numerical errors and the sensitivity of the second-order differential
equation for which the error is in the order of O(∆x2).
Finally, a substantial variation of 37.91% was noted in the total support reaction between the
non-linear individual girder in the vertical plane and the linear bridge deck model in the horizontal
plane.

Figure 5.6: Equivalent distributed load ’q’ [KN/m] obtained between the supports from moment distribution of bridge deck for
experimental test setup 1



5.2. Updating the equivalent loading of individual girder from bridge deck 55

Figure 5.7: Comparision of bending moment distribution between bridge deck and individual girder model after applying
equivalent loading from moment equilibrium equation

Figure 5.8: Comparison of shear force distribution between bridge deck and individual girder model after applying equivalent
loading from moment equilibrium equation



5.2. Updating the equivalent loading of individual girder from bridge deck 56

Table 5.1: Comparison of support reactions between individual girder and bridge deck model after applying equivalent loading
from bending moment distribution

Finite Element Model type Left support reaction [KN] Right support reaction [KN] Total support reaction [KN]
2D non-linear individual girder model 580.52 (38.60 %) 60.62 (30.07 %) 641.15 (37.91 %)

2D linear bridge deck model 945.96 86.70 1032.66

5.2.2. Equivalent loading using shear force distribution of the bridge deck
The equivalent loading is obtained from the shear force distribution of the bridge deck in the horizontal
plane using Equation 5.3. The objective was to apply this equivalent loading to the individual girder
model and compare the results (bending moment distribution, shear force distribution and total
support reaction) with the fully loaded beam in the bridge deck model.
First, the equivalent loading was derived from the shear force distribution, as shown in Figure 5.9.
This loading was applied to the individual girder model between the supports. It was observed that
the peaks were less pronounced at the locations of the left support and the intermediate cross-beam
at 8100 m (Figure 5.9). This could be due to a lower order of numerical error (error is in the order of
O(∆x)). In other words, the equivalent loading obtained from the shear force distribution is less
sensitive to numerical error.
Next, the corresponding bending moment, shear force distribution, and support reactions were
compared. It was found that the bending moment distribution from the individual girder closely
followed that of the bridge deck model, with the maximum bending moment varying by 8.67%. The
bending moment and shear force distributions obtained from the shear force-based equivalent
loading were more accurate than those obtained from the bending moment-based equivalent loading.
However, there was a significant discrepancy in the total support reaction obtained. The total support
reaction varied by 40.69% from the bridge deck model in the horizontal plane.

Figure 5.9: Equivalent distributed load ’q’ [KN/m] obtained between the supports from shear distribution of bridge deck for
experimental test setup 1
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Figure 5.10: Comparision of bending moment distribution between bridge deck and individual girder model after applying
equivalent loading from moment equilibrium equation

Figure 5.11: Comparison of shear force distribution between bridge deck and individual girder model after applying equivalent
loading from moment equilibrium equation
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Table 5.2: Comparison of support reactions between individual girder and bridge deck model after applying equivalent loading
from shear force distribution equation

Finite Element Model type Left support reaction Right support reaction Total support reaction
[kN] [kN] [kN]

2D non-linear individual girder model 570.89 (39.65 %) 41.47 (52.16 %) 612.37 (40.69 %)
2D linear bridge deck model 945.96 86.70 1032.65

5.3. Equivalent distributed load from the uniformly distributed sur-
face load applied

In order to figure out the discrepancies in the total support reaction obtained, a very simple loading
condition is applied on the linear bridge deck model in the horizontal plane. A uniformly distributed
surface load of KN/m2 is applied to the whole integrated deck slab in the bridge deck model in the
horizontal plane refer Figure 5.12. This case was chosen since all the T-girders in the bridge deck
would be uniformly loaded and would behave in the same manner. The equivalent loading is derived
using the same method as mentioned in section 5.2 - one from the bending moment distribution
obtained from the bridge deck model and another from the shear force distribution obtained from the
bridge deck model. The most optimal method for calculating the equivalent loading is chosen in such
a way the relative error is less. The following equations 5.1 and 5.3.

Figure 5.12: Uniformly distributed surface load applied on the 2D bridge deck model
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Figure 5.13: Shear force V on the T-beam after applying UDL

Figure 5.14: Shear force distribution V [KN]

Figure 5.15: Bending moment M on the T-beam after applying UDL
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Figure 5.16: Bending moment distribution M [KNm]

5.3.1. Equivalent loading using bending moment distribution of the bridge deck
The equivalent loading to be applied on the individual girder is obtained from the moment distribution
of the loaded girder namely the middle T-girder (T-girder 7) in the bridge deck model in the horizontal
plane. The equivalent loading is obtained by numerically solving the bending moment distribution
using the Equation 5.1. This equivalent loading refer to Figure 5.17 is then applied to the non-linear
individual girder.
It can be observed that the bending moment distribution between the individual girder and the bridge
deck matches accurately with very little variation (refer Figure 5.18. Similarly, the shear force
distribution resulting from the equivalent loading applied to the individual girder is compared with the
shear force distribution of the fully loaded bridge deck beam (Figure 5.19). Larger variations in shear
force are notable at the locations of intermediate cross-beams (at 8350 mm and 16350 mm) with
variations of -4.46% and 3.33% respectively.
Apart from the comparison of bending moment distribution and shear force distribution, the reaction
forces were also compared. It is enumerated in the Table 5.4. It can be inferred that the total support
reactions varies by 6.9 %.
In summary, under uniform loading conditions the total support reactions are nearly identical between
the individual girder model and the bridge deck model. The significant variation in the total support
reaction observed in previous sections 5.2.1 and 5.2.2 may be attributed to the non-uniform loading
conditions from simulating the experimental test setup 1.
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Figure 5.17: Equivalent distributed load ’q’ [KN/m] obtained from bending moment distribution of bridge deck

Figure 5.18: Comparison of bending moment distribution of individual girder with the fully loaded beam of bridge deck ’Fz’ [KN].
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Figure 5.19: Comparison of shear force distribution of individual girder with the fully loaded beam of bridge deck ’Fz’ [KN]

Table 5.3: Comparison of support reactions between individual girder and bridge deck model after applying equivalent loading
from bending moment equilibrium equation

Finite Element Model type Left support reaction [kN] Right support reaction [kN] Total support reaction [kN]
2D non-linear individual girder model 139259 (7.90 %) 142298 (5.90 %) 281557 (6.90 %)

2D linear bridge deck model 151232 151231 302463

5.3.2. Equivalent loading using shear force distribution of the bridge deck
Now, the equivalent loading is obtained using the shear force distribution obtained from the linear
bridge deck model in the horizontal plane. The formula 5.3 is numerically solved to get the equivalent
distributed load to be applied on the individual girder refer Figure 5.20. This equivalent loading is then
applied on non-linear individual girder in the vertical plane and the corresponding bending moment
distribution, shear force distribution and support reactions are compared with the linear bridge deck
model in the horizontal plane refer Figure 5.20, Figure 5.21 and Figure 5.22. It can be inferred that
the bending moment distribution and shear force distribution from the individual girder closely follow
the bending moment distribution and shear force distribution of the bridge deck model. It is even more
accurate when compared to the equivalent loading obtained from the equilibrium equation concerning
the bending moment distribution 5.2.1. The total support reaction varies by 6.58 % from the total
support reaction of the bridge deck model. It can be concluded that the equivalent loading obtained
from the shear force distribution yields more accurate results when compared to the bending moment
distribution. This further proves the fact that the equivalent loading obtained from shear force (single
differential equation refer Equation 5.3) gives numerical error in the order O(∆x) and is more accurate.
The equivalent loading obtained from bending moment distribution from the bridge deck model
(double differential equation 5.1 is less accurate since the order of error is O(∆x2)).
The total support reactions obtained from applying the equivalent loading on the non-linear individual
girder in the vertical plane from both methods (bending moment distribution and shear force
distribution) are comparable to the total support reactions obtained in the linear bridge deck model in
the horizontal plane. Since all the beams are equally loaded there is no additional force influencing
the support reactions. On the other hand, if a point load is applied on the T-beam 11 according to the
test setup 1 (refer Figure 3.10), the adjacent beams namely T-beam 10 and T-beam 12 exert an
additional downward force on the supports due to torsion. This could be the reason that explains why
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the total support reactions obtained in the individual girder model vary from 37.91 % to 40.69 % (refer
section 5.2.1 and section 5.2.2). Therefore, the effect of end crossbeam is neglected in developing
the staggered 2D non-linear finite element approach for assessing the strength capacity of the
prestressed T-girder bridges.

Figure 5.20: Equivalent distributed load ’q’ [KN/m] obtained from shear force distribution of bridge deck

Figure 5.21: Comparison of bending moment distribution of individual girder with the fully loaded beam of bridge deck ’Fz’ [KN]
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Figure 5.22: Comparison of shear force distribution of individual girder with the fully loaded beam of bridge deck ’Fz’ [KN]

Table 5.4: Comparison of support reactions between individual girder and bridge deck model after applying equivalent loading
from bending moment equilibrium equation

Finite Element Model type Left support reaction [KN] Right support reaction [KN] Total support reaction [KN]
2D non-linear individual girder model 139403 (7.80 %) 143150 (5.30 %) 282553 (6.58 %)

2D linear bridge deck model 151232 151231 302463
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5.4. State of the art 2D staggered Non-Linear Finite Element Ap-
proach developed to assess T-girder bridge

Figure 5.23: Sneha-Kostense approach 2.0
Note: The effect of end crossbeam is excluded in this approach
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From section 5.3.2, it can be inferred that when an uniform load is applied on the bridge deck the
support reaction from the individual girder after applying equivalent loading matched the support
reaction of the bridge deck model with a variation of 6.58 %. But when the experimental test setup
was simulated in the 2D bridge deck model (point load applied on the T-beam 11 refer to Figure 3.11),
the support reactions from the 2D bridge deck model and the individual girder varied by 40.69 % refer
Section 5.2.2. This means that the torsional moment from the adjacent T-girders is causing a
downward force at the location of my support causing the reduction in my support reaction obtained in
my non-linear individual girder. The torsional moment from the adjacent T-beam is transferred via the
end crossbeam present, hence the end crossbeam is removed to find an accurate equivalent loading
that can be applied to predict the system behavior of the T-girder bridge using just an individual girder.
The process to develop the 2D simplified non-linear finite element approach developed is elaborated
in the section 5.5.

5.5. Equivalent distributed load from experimental test setup 1 with-
out the influence of end crossbeams

To translate the similar loading effect of the linear bridge deck model to the non-linear individual girder
model which is comparable in terms of bending moment distribution, shear force distribution and total
support reaction - three methods were opted. Firstly, an effective loading is applied using piece-wise
function to mimic the experimental test setup 1. Then, the equivalent loading is applied with and
without the presence of crossbeams to study the influence of the crossbeams in the behaviour of
individual girder. The obtained load from the non-linear individual girder model after applying the
equivalent loading is then multiplied with a Load Factor (LF) in such a way that the maximum failure
load of the experimental test result is reached at the load step corresponding to load factor 1.0 when
the non-linear analysis is performed for the 2D individual girder since only the load effect of the fully
loaded beam from the 2D bridge deck model is translated to the 2D non-linear individual girder model.
The load versus deflection curve multiplied by load factor is then compared with the connected beam
test of the case study.
The overview of the FEM models used for obtaining the equivalent loading equation is presented in
Table 5.5.

Table 5.5: Overview of FEM models used for simulating experimental tests

FEM model used Equivalent Loading Presence of Load factor
Method crossbeam applied

T1-PW-w/o_LF Piece-wise function - No
T1-PW-w_LF Piece-wise function - Yes

T1-w/o_CB-w/o_LF Shear force distribution No No
T1-w/o_CB-w_LF Shear force distribution No Yes
T1-w_CB-w/o_LF Shear force distribution Yes No
T1-w_CB-w_LF Shear force distribution Yes Yes

5.5.1. Effective loading using piece-wise function
The failure load from the experimental test setup 1 is applied as an effective load (33.3 % of failure
load refer Table 5.7) on the non-linear individual girder model in the vertical plane. The effective load
is applied as a line load of 580 mm. The 580 mm is chosen because the area of distributed load
applied is 400 x 400 mm2 and this 400 mm is extended up to the neutral axis of the integrated deck
slab at an angle of 45◦. The load distribution length is then, 400 + 180 = 580 mm. For modelling
convenience, the line load ’q’ is applied over the length of 600 mm.
From observing the load vs deflection curve referring to Figure 5.25, the failure load obtained is very
conservative. Also, the stiffness of the girder by applying the load as piece-wise function is much less
when compared to the actual stiffness of the existing bridge refer to Figure 5.25.
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Figure 5.24: Equivalent load applied using a piece-wise function

Figure 5.25: Comparison of load vs deflection curve of individual girder using piece-wise function with the experimental result
of connected beam test 1. The blue line is reprinted from [10]

The Load Factor (LF) is 3.000
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Cracking strains (cracking)
It can be inferred that the flexural crack initiates at the load F = 750.1 kN (see Figure 5.26a) and there
is a reduction in stiffness due to the initiation of the flexural crack from the bottom of the T-girder (see
’T1-PW-w/o_LF’ line from Figure 5.25). The flexural shear cracks start to appear at the load F = 910.2
kN where there is further reduction of stiffness in the load versus deflection curve. The T-girder finally
fails at the ultimate load Fu = 1061.8 kN due to flexural shear cracks propagating from the end support
to the position of load applied and from the intermediate crossbeam to the position of load applied
(see Figure 5.26c). The crack pattern is similar to that of disconnected T-beam tests refer to Section
4.4.2. However, for the connected T-beam test, the failure is due to shear tension crack extending
from the load location to the intermediate crossbeam. Just before failure, a secondary shear tension
crack occurs between the supports and the loading position [11]. The piece-wise function used for
equivalent loading doesn’t represent the failure mechanism of the experimental test setup 1.

(a) F = 750.1 kN, δz = 27.8 mm, Flexural crack initiation

(b) F = 910.2 kN, δz = 37.5 mm

(c) Fu = 1061.8 kN, δu = 82.9 mm

Figure 5.26: T1-PW-w/o_LF, crack strains Eknn
(end crossbeam on the left side and intermediate crossbeam on the right side)

Yielding of reinforcement and prestressing tendons
The regular reinforcements start yielding at the bottom cross-section at the load F = 750.12 kN where
the bending cracks occur. The stirrups start yielding at F = 910.21 kN where the flexural shear cracks
occur. The maximum stress reached Sxx by the regular reinforcement is 352 N/mm2.
The prestressing tendons start yielding at the bottom cross-section at load step F = 1020.04 kN and
the maximum stress reached at the ultimate load is Sxx = 1562 N/mm2.
In both prestressing tendons and regular reinforcements no fracture is observed since the ultimate
strain of 0.9 ϵu is not exceeded (see Figure 4.11).
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(a) Prestressing tendons 1-7

(b) Regular reinforcements

Figure 5.27: T1-PW-w/o_LF, stress Sxx embedded reinforcements, Fu = 1061.8 kN, δu = 82.9 mm
(end crossbeam on the left side and intermediate crossbeam on the right side)

5.5.2. Equivalent distributed loading without the presence of crossbeam
The equivalent loading method obtained is without the presence of crossbeam in the 2D bridge deck
model in the horizontal plane. The percentage load taken up by the fully loaded beam and the
adjacent beams are significantly higher than the rest of the T-beams. The load taken up by the fully
loaded beam is 39.8 % and the adjacent beams are 24.7 % and 24.8 % refer Table 5.6.

Table 5.6: Amount of load taken up by the fully loaded beam and adjacent beams when no crossbeam is present

Beam number Perctange load taken
T-beam 1 -0.8 %
T-beam 2 0.4 %
T-beam 3 0.0 %
T-beam 4 -0.1 %
T-beam 5 -0.1 %
T-beam 6 -0.2 %
T-beam 7 0.0%
T-beam 8 1.0 %
T-beam 9 5.0 %
T-beam 10 24.7 %

T-beam 11 (fully loaded beam) 39.8 %
T-beam 12 24.8 %
T-beam 13 5.5 %
T-beam 14 3.4 %
T-beam 15 -3.6 %

The shear force and bending moment diagram of the 2D bridge deck without the presence of
crossbeam after applying failure load corresponding to experimental test setup 1 is presented in
figure 5.28. The equivalent loading is obtained from the shear force diagram of the fully loaded beam
(T-beam 11) in the 2D bridge deck model. The shear force is first corrected by removing the influence
of support reactions in the bridge deck model (i.e.) subtracting the support reaction from the shear
force distribution obtained and this is called as corrected shear force diagram refer Figure 5.29. The
equivalent loading is obtained from the corrected shear force diagram using the equation 5.3 refer



5.5. Equivalent distributed load from experimental test setup 1 without the influence of end
crossbeams 70

Figure 5.30. This equivalent loading is then applied at the 2D non-linear individual girder in the
vertical plane.

Figure 5.28: Bending moment and shear force diagram without crossbeam

Figure 5.29: Corrected and uncorrected shear force diagram without crossbeam
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Figure 5.30: Equivalent loading to be applied on individual girder

The load versus deflection curve obtained is then multiplied with a load factor of 2.434 to get the
system behaviour of the T-girder bridge. It can be inferred that load vs deflection multiplied with the
load factor is comparable to the experimental test result connected beam test 1 but it is still
conservative refer to Figure 5.31.

Figure 5.31: Comparison of load vs deflection curve of individual girder without crossbeam with the experimental result of
connected beam test 1. The blue line is reprinted from [10]

The Load Factor (LF) is 2.434

Cracking strains (cracking)
The crack begins at the bottom cross-section of the T-girder due to the sagging bending moment of
the T-girder (refer Figure 5.32b). At this load which is F = 909.8 kN, there is a reduction in stiffness
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(refer ’T1-w/o_CB-w/o_LF’ line from Figure 5.31). As the loading increases, there is a development of
horizontal crack towards the location of the intermediate crossbeam refer to Figure 5.32b. This
horizontal crack is similar to the crack pattern observed in experimental test 1 [10]. However, due to
the presence of a crossbeam, the shear crack propagates diagonally from the location of the applied
load to the location of the intermediate crossbeam which is not the case here (see Figure 5.40).

(a) F = 909.8 kN, δz = 15.75 mm, Flexural crack initiation

(b) Fu = 1120 kN, δu = 33.7 mm

Figure 5.32: T1-w/o_CB-w/o_LF, crack strains Ek nn
(end crossbeam on the left side and intermediate crossbeam on the right side)

Yielding of reinforcement and prestressing tendons
The longitudinal reinforcement starts yielding at the bottom cross-section at the load F = 909.83 kN
when the bending cracks start to develop. At this load, the first drop in stiffness is observed at the
load versus deflection curve, see the ’T1-w/o_CB-w/o_LF’ line in Figure 5.31. Stirrups start yielding at
F = 1120.89 kN at the location where the horizontal crack develops. The maximum stress obtained by
the regular reinforcement at the ultimate load is Sxx = 373 N/mm2.
The prestressing tendons do not reach yielding even at failure load and the stress at the ultimate load
is Sxx = 1410 N/mm2. No fracture is observed at both regular reinforcement and prestressing tendons.

5.5.3. Equivalent distributed loading with the presence of crossbeam
The equivalent loading method obtained here is with the presence of crossbeam in the 2D bridge
deck model. The percentage load taken up by the fully loaded beam and the adjacent beams are 33.3
%, 21.7 % and 22.2 % refer to Table 5.7. The load taken by the fully loaded beam with the presence
of crossbeams is 6.5 % less than the case without the presence of crossbeams.
The bending moment and shear force diagrams obtained by the fully loaded beam is presented in
Figure 5.34. To obtain the equivalent loading, the shear force is first corrected by removing the
support reaction and the jump in shear force at the location of crossbeam 5.35. This sudden increase
in shear force at the location of the crossbeam is applied as an upward vertical surface load at the
location of the crossbeam in the individual girder model in the vertical plane refer to Figure 5.37. The
figure 5.36 shows the equivalent loading with and without the presence of cross beam.
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(a) Prestressing tendons 1-7

(b) Regular reinforcements

Figure 5.33: T1-w/o_CB-w/o_LF, stress Sxx embedded reinforcements, Fu = 1234.12 kN, δu = 39 mm
(end crossbeam on the left side and intermediate crossbeam on the right side)

Table 5.7: Amount of load taken up by the fully loaded beam and adjacent beams when no crossbeam is present

Beam number Perctange load taken
T-beam 1 -2.0 %
T-beam 2 0.7 %
T-beam 3 0.2 %
T-beam 4 0.1 %
T-beam 5 0.3 %
T-beam 6 0.6 %
T-beam 7 1.5 %
T-beam 8 3.3 %
T-beam 9 6.9 %
T-beam 10 21.7 %

T-beam 11 (fully loaded beam) 33.3 %
T-beam 12 22.2 %
T-beam 13 7.9 %
T-beam 14 6.1 %
T-beam 15 -2.9 %
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Figure 5.34: Bending moment and shear force diagram with crossbeam

Figure 5.35: Jump in shear force at the location of crossbeam
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Figure 5.36: Equivalent loading with and without the effect of crossbeam

Figure 5.37: Equivalent loading with the effect of crossbeam applied as a surface load

The force versus deflection curve obtained after the application of the equivalent load on the
non-linear individual girder is then multiplied with a factor of 2.589 to get the system behaviour of the
T-girder bridge. It can be inferred that the equivalent loading applied from this method is accurate to
that of the experimental result refer Figure 5.38. Also, the ultimate failure load predicted from
T1-w_CB-w_LF is 96.5% of the failure load obtained from the experimental test setup 1 [10].
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Figure 5.38: Comparison of load vs deflection curve of the individual girder with crossbeam with the experimental result of
connected beam test 1. The blue line is reprinted from [10]

The Load Factor (LF) is 2.5896

Cracking strains (cracking)
Just like previous results, the first crack propagates from the bottom cross-section of the T-girder. At
the initiation of the first crack (F = 820 kN), there is reduction in stiffness observed from the load
versus deflection curve (refer to ’T1-w_CB-w/o_LF’ line from Figure 5.38). At further reduction in
stiffness at the load step F = 932 kN, there is still propagation of flexural cracks as opposed to other
cases where there is progression of flexural shear cracks (refer Figure 5.39b). Ultimately, the T-girder
fails due to large horizontal crack formed from the location of load applied and the intermediate
crossbeam (refer Figure 5.39c. This is exactly similar to the crack pattern observed from the
experimental test setup 1 refer to Figure 5.40.
From the experimental test 1, the failure was due to punching of deck through the T-girder and the
web of the T-girder was severely damaged approximately 1 m from the load position towards the end
position of the end support. Also, there was a large opening of shear crack in the opposite direction
towards the intermediate crossbeam prior to failure [10]. The crack pattern observed from the 2D
individual girder model refer to Figure 5.39c. It can also be seen that at 1 m from the load position,
there are shear cracks and the T-girder fails due to the formation of large shear crack between the
load position and the intermediate crossbeam (see Figures 5.40-5.41).

Figure 5.40: Shear failure of connected T-beam test 1 (intermediate cross-beam on the left side, end support on the right side
[10])
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(a) F = 820 kN, δz = 12.2 mm, Flexural crack initiation

(b) F = 932 kN, δz = 15.56 mm

(c) Fu = 1160 kN, δu = 33.9 mm

Figure 5.39: T1-w_CB-w/o_LF, crack strains Ek nn
(end crossbeam on the left side and intermediate crossbeam on the right side)
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Figure 5.41: T1-w_CB-w/o_LF, maximum principal strain E1 (intermediate cross-beam on the left side, end support on the
right side)

Yielding of reinforcement and prestressing tendons
The regular reinforcement starts yielding at the bottom cross-section at the load F = 879 kN and the
stirrups start yielding at F = 1120 kN at the location of flexural shear crack between the load position
and intermediate crossbeam. The prestressing tendons start yielding at the load step F = 1120 kN at
the location of the horizontal crack between the location of the load applied and the intermediate
crossbeam. No fracture is observed for both regular reinforcements and prestressing tendons since it
doesn’t exceed the ultimate strain.

(a) Prestressing tendons 1-7

(b) Regular reinforcements

Figure 5.42: T1-w_CB-w/o_LF, stress Sxx embedded reinforcements, Fu = 1160 kN, δu = 33.9 mm
(end crossbeam on the left side and intermediate crossbeam on the right side)

5.5.4. Comparison of equivalent loading obtained using the three methods
It can be observed that the load vs deflection curve obtained using the equivalent loading method
without crossbeam using shear force distribution is more precise than the one obtained using
piece-wise function. However, both these methods used for obtained for getting the equivalent
loading yields a conservative result. The equivalent loading obtained with the presence of crossbeam
quite accurately matches the experimental result of connected beam test 1 refer Figure 5.43.
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Figure 5.43: Comparison of load vs deflection curve of individual girder with crossbeam with the experimental result of
connected beam test 1. The blue line is reprinted from [10]

5.6. Summary and conclusion
This section summarised how the non-linear finite element approach was developed for analysing the
system behaviour of prestressed T-girder bridges.

• The support reaction obtained from applying the equivalent loading on the individual girder
model from the bridge deck model built always varies between the range 44 % to 56 % using
the bending moment distribution and shear force distribution of the fully loaded beam in the
bridge deck model with the presence of end crossbeam.

• The equivalent loading obtained using double differentiation of the bending moment from the
bridge deck model is not accurate. It is more sensitive to numerical error (i.e.), the order of error
for double differentiation is proportional to second order or O(Δx2).

• When the load is applied uniformly in the bridge deck and is translated to individual girder
through equivalent loading – the bending moment distribution, shear force distribution and total
support reaction from the individual girder accurately match that of the bridge deck model.

• However, when a point load is applied in a single girder and is translated to the individual girder
through equivalent loading – the bending moment and shear force distribution matched that of
the bridge deck model. But the total reaction obtained was half of what was obtained in the
bridge deck model.

• This huge discrepancy in the total support reaction could be due to additional downward force at
the supports in the bridge deck model caused by torsional moment from the adjacent girders
transferred by the end crossbeams.

• Therefore, the end crossbeam is removed in 2D bride deck model for obtaining the equivalent
loading method that can be applied on the non-linear individual girder that can replicate the
system behaviour of the bridge.

• The equivalent loading obtained from the peice-wise function gives a very conservative failure
load and also, the stiffness of the girder is much less when compared to the experimental result.

• The equivalent loading obtained from the shear force distribution of fully loaded beam without
the presence of crossbeam gives better results than the load applied as a peice-wise function.
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However, it still predicts a conservative failure load of the system behaviour of the T-girder
bridge.

• The equivalent loading method obtained with the presence of crossbeam from the shear force
distribution of fully loaded beam gives a more accurate prediction of the system behaviour of the
T-girder bridge.

• The crack pattern obtained from the equivalent loading method with the presence of a
crossbeam is similar to that observed in experimental test setup 1. In contrast, the crack pattern
observed in the 2D model using the piece-wise function for effective loading is similar to that of
the disconnected T-beam tests.

• As expected, the regular reinforcements and prestressing tendons start to yield at the locations
of the cracks. No fractures were observed in either the regular reinforcement or the prestressing
tendons in any of the cases.

• It can be concluded that the staggered 2D non-linear finite element approach developed
incorporating the equivalent loading method applied with the presence of crossbeam best
predicts the system behaviour of the prestressed T-girder bridges.



6
Discussion

This chapter discusses the results obtained from the 2D bridge deck model developed in the
horizontal plane and the 2D non-linear individual girder model built in the vertical plane, along with the
considerations made in this study. It also evaluates the findings from the application of the staggered
2D non-linear finite element approach for predicting the strength capacity of prestressed concrete
T-girder bridges. The results are compared with experimental data to assess the validity and
efficiency of the developed staggered 2D non-linear finite element approach.

The 2D bridge deck is built by incorporating shape orthotropy using the orthotopic plate elements
model. The orthotropy is introduced in terms of geometrical orthtropy and not material orthotropy. In
the 2D bridge deck model built in the horizontal plane, the T-girders and the integrated deck slab
connect at their neutral axis. It was inferred from the literature [3], due to Compressive Membrane
Action (CMA), the integrated deck slab is not the weakest structural element but the focus is shifted to
the T-girder. In the 2D bridge deck model built, the integrated deck slab just offers bending stiffness
and aids in load distribution/redistribution mimicking the behaviour of the real bridge structure.
However, the reduction in stiffness of the T-girder after cracking is not accounted for in the 2D bridge
deck model, which may influence the load distribution/redistribution in the integrated deck slab. This
aspect requires further study.

When the bending moment obtained from the 2D bridge deck model built was compared with the
results from the 3D linear bridge deck model [10]. It was inferred that the average variation of the
bending moment of the T-beam 1 was 13.75% (end T-girder) refer to Table 4.6. Whereas the average
bending moment variation from T-beam 8 (middle T-girder) was 10.45% refer to Table 4.7. The
discrepancy between the models could be attributed to differences in load distribution effects in 2D
and 3D Finite Element Models, with the 3D model offering better load distribution. Despite the
limitations, the variation in bending moments is comparable to the 3D linear bridge deck model,
making the 2D bridge deck model sufficient for studying load effects.
Notably, there will always be a discrepancy of around 10% with either 2D or 3D finite element models
compared to the real bridge structure due to uncertainties like elastomeric bearing stiffness and
unnoticed cracks causing non-linear load redistribution.

In the 2D non-linear individual girder model in the vertical plane, the non-linearity is introduced
through the material properties. The developed 2D non-linear finite element model of the individual
girders showed a good correlation with experimental results from disconnected T-beam tests with
predicted ultimate failure loads generally within 10% of the experimental values, see Section 4.4.2.
However, the deflection at the failure load varied significantly from both the 3D non-linear girder
model and the experimental data. This discrepancy could be because solid elements and real
structures deflect differently when compared to the 2D regular plane stress elements used.

The Quasi-Newton solution method proved more efficient, providing better convergence compared to
the regular Newton-Raphson method, with fewer non-converged steps and more accurate
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load-deflection behavior when compared to experimental results (see Section 4.4.1). This
improvement is likely due to the Quasi-Newton method’s ability to update stiffness based on previous
converged steps. The load versus deflection curve obtained from the 2D non-linear individual girder
model closely matched the load versus deflection curves of both the 3D non-linear girder model and
the experimental data. This close alignment can be attributed to the precise non-linear material
properties used which were obtained from the material investigation conducted on the Vecht bridge
[10] and the accurate modeling of the varying cross-section of the individual girder.
To combine the 2D bridge deck model in the horizontal plane with the 2D non-linear individual girder
model in the vertical plane, an equivalent loading technique was developed. This loading technique
utilised numerically solving the shear force distribution/ moment distribution of the fully loaded girder
in the 2D bridge deck model. It was observed that numerically solving the shear force distribution of
the fully loaded girder to obtain the equivalent loading is more accurate as it is less sensitive to
numerical errors (see Section 5.2.2). After applying this equivalent loading to the 2D non-linear
individual girder model and comparing it with the fully loaded girder’s shear force and bending
moment distributions from the 2D bridge deck model. A huge discrepancies in support reactions were
observed. The support reactions varied significantly ranging from 37.91% to 40.69% (see Table 5.1
and Table 5.2). This variation was due to additional downward forces exerted on the supports of fully
loaded girder by adjacent girders via end crossbeams due to torsion when point loads are applied on
the 2D bridge deck model in the horizontal plane. Hence, to obtain a more accurate equivalent
loading technique for the 2D non-linear individual girder model, the end crossbeams were omitted in
the 2D bridge deck model in the horizontal plane. Future research should consider incorporating the
effect of end crossbeam to further refine the equivalent loading technique, ensuring it accurately
reflects the system behaviour of prestressed girder bridges.

In developing the staggered 2D non-linear finite element approach, three methods were explored -
effective loading with a piece-wise function, equivalent distributed loading technique without the
presence of intermediate crossbeams and equivalent distributed loading technique with the presence
of intermediate crossbeams. It was found that the effect of intermediate crossbeams significantly
influenced the stiffness and load distribution/redistribution of the bridge deck. Also, incorporating the
effect of intermediate crossbeams in the equivalent loading technique resulted in load versus
deflection curves that closely matched the experimental data refer to Figure 5.43, since it replicated
the behaviour of the real bridge structure. Moreover, the crack strains obtained from this approach
closely resembled those observed in the experimental test reults (see Figure 5.40 and Figure 5.41).

The 2D Non-Linear Finite Element Approach incorporates simplifications to enhance computational
efficiency, typically achieving run time of the non-linear analyses between 18 - 21 minutes. Despite
these simplifications, the developed staggered 2D non-linear finite element approach accurately
predicts the system behavior and capacity of prestressed concrete girder bridges. This makes it a
practical tool for conducting preliminary assessments of bridge safety.



7
Conclusion and recommendation

This chapter summarises all the main findings of the research and recommendations for future
research work.

7.1. Conclusion
The conclusions related to answering the research questions are summarised in three sections
namely for modelling the 2D bridge model in the horizontal plane, modelling the non-linear individual
girder model in the vertical plane, and connecting the 2D individual girder model with the 2D bridge
deck model using a non-linear Finite Element Approach to assess the shear capacity of the existing
prestressed T-girder bridge.

7.1.1. 2D FEM approach of bridge deck in horizontal plane
1. The bridge deck is modelled using orthotopic plate elements model due it’s simplicity in attaining

the combination of normal forces, shear forces and bending moments of the total (section 4.1.2).
2. The integrated deck slab is modelled using plate bending element. Whereas the T-girder and

the crossbeams are modelled using class I - 3D beams by inputting their orthotopic geometric
properties respectively. The geometric properties are calculated from their corresponding
cross-section.

3. The material property of the concrete used is linear elastic material properties because all
components are considered to be uncracked due to prestressing.

4. The mesh elements size was chosen to be 100 mm to avoid the formation of triangular elements
while meshing which could cause local stress concentration.

5. The bending moment obtained from the 2D linear bridge deck model varied with the 3D linear
bridge deck model with a range of 10.45% - 13.75%. This is sufficient to just study the load
effects such as the distribution of loads to adjacent girders.

7.1.2. 2D FEM approach of single girder in vertical plane
1. The 2D girder model built in the vertical plane is modelled with non-linear material properties of

concrete, reinforcement and prestressing.
2. For modelling of reinforcements, embedded reinforcements are for the mesh line not to coincide

with the location of reinforcements.
3. The curved prestressing tendons are approximated as straight lines at 250 mm intervals.
4. The elastomeric bearing (supports) are modelled using the assumption of having linear support

stiffness 475 N/mm2. If accurate linear stiffness is applied for the supports, better results could
be obtained.

5. For the solution method used in non-linear analysis of individual girder model, the
Quasi-Newton with Broyden-Fletcher-Goldfarb-Shanno (BFSG) method along with line search
algorithm gave more accurate load vs deflection curve to that of experimental test result than
the regular newton raphson method used with the line search algorithm.
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6. Also, the number of non-converging points satisfying either the energy norm or force norm was
much lesser for the solution method Quai-Newton with BFSG.

7. The experimental test setups of disconnected beam tests were simulated in the 2D non-linear
individual girder model developed and was compared the available 3D non-linear finite element
model and the experimental test results. It was inferred that the ultimate failure load obtained
from the 2D was more accurate than the load obtained from the 3D non-linear FEM model.
However, the deflection from the 2D individual girder model were twice as high that of the
experimental results. Whereas the deflection form the 3D non-linear FEM model was
comparable to that of the experimental test results.

7.1.3. Correlating the individual girder model and the bridge deck model
1. The equivalent loading obtained using the shear force distribution of the fully loaded girder in

the bridge deck model was more accurate than the one obtained using the moment distribution
diagram since the error for double differentiation is proportional to second order (O(Δx2)). In
other words, the equivalent loading obtained from the shear force distribution is less sensitive to
numerical errors.

2. Even though the shear force distribution and bending moment distribution obtained from the 2D
non-linear individual girder model after applying the equivalent loading (obtained from shear
force distribution of fully load girder in the bridge deck model) matched accurately with the shear
force distribution and bending moment distribution of the bridge deck model. The support
reactions varied by 40.69%. This was unusual since the support reaction forces, shear force
distribution and bending moment distribution are correlated (section 5.2.2).

3. To check the discrepancy in the support reactions obtained from the 2D non-linear individual
girder model and the 2D linear bridge deck model, an uniformly distributed surface load was
applied to the whole bridge deck model. It was found that support reaction forces, shear force
distribution and bending moment distribution from the individual bridge deck model accurately
matched that of the 2D bridge deck model.

4. Also, the total support reaction from the 2D non-linear individual girder varied by only 6.58%
from that of the 2D linear bridge deck model when an uniformly distributed surface load was
applied as opposed to the application of point load replicating test setup 1 which yielded
variation in the total support reaction by 40.69% between the individual girder model and the
bridge deck model. It was concluded that the torsional moment from the adjacent girders to the
fully loaded girder (when point load is applied) caused an additional downward force at the
location of the supports in the 2D non-linear individual girder model. The torsional moment was
transferred by the end crossbeam and this effect is not translated in the 2D individual girder
model. Hence, the end crossbeam is removed to develop an accurate equivalent loading
technique.

5. The equivalent loading applied using a piece-wise function that is as a line load ’q’ of 33.3% of
the failure load of the test setup 1 over the length of 600 mm. The load versus deflection curve
obtained was very conservative (i.e.) the stiffness of the bridge deck model was underestimated
and it was not comparable to that of the experimental test result.

6. For the next case, the equivalent distributed load is obtained from the shear force distribution of
the fully loaded beam in the bridge deck model but without the presence of crossbeam. The
load versus deflection curve obtained was more accurate than the one obtained from using the
peice-wise function. However, the stiffness obtained is less because the presence of
crossbeams offers more stiffness and facilitates better load distribution and redistribution.

7. The presence of intermediate crossbeams is included in obtaining the equivalent distributed
loading from the shear force distribution of the fully loaded beam in the bridge deck model. It
was inferred that the load versus deflection curve matched even better than the case without no
cross-beam. Also, it was less conservative in terms of predicting the failure load (i.e.) the load
factor used for obtaining the failure load of the combined behaviour of T-girders was about 2.6%.
The 2D staggered non-linear finite element approach incorporating the presence of intermediate
crossbeams predicted 96.5% of the ultimate failure load of the connected T-beam test [10].

8. Overall, the simplified non-linear finite element approach can be used to predict the strength
capacity of existing prestressed concrete T-girder bridges. The 2D non-linear finite element
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approach developed is also computationally less costly compared to the 3D non-linear finite
element models used for predicting strength capacity.

7.2. Recommendations for future research
1. The 2D bridge deck model in the horizontal plane can be improved further by updating the

stiffness of concrete where it’s cracked to study the non-linear load redistribution effect which
can used in obtaining the equivalent distributed loading that can be applied.

2. The effect of the end crossbeam is neglected in the 2D non-linear finite element model
approach developed. This needs further study because the supports can withstand more load
when the end crossbeams are present, as they induce an additional downward force at the
location of the supports.

3. The 2D non-linear finite element approach should be tested on prestressed concrete girder
bridges with different geometries and layouts to verify the validity of the newly developed
non-linear finite element approach.
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A
Geometrical properties of T-beam

Vecht Bridge

The following formulas are used for calculating the sectional properties,

Momentofinertiainydirection : Iyy = Iyy(own) + y′2.A (A.1)

Momentofinertiainzdirection : Izz = Izz(own) + y′2.A (A.2)

Momentofinertiainyzdirection : Iyz = Iyz(own) + y′.Z ′.A (A.3)

Torsionalmomentofinertia : I t = Iyy + I t (A.4)
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Sectional properties of T-girder with integrated deck slab used for 2D FEM model of bridge
deck in the horizontal plane

Figure A.1: T-beam with integrated deck slab

* The dotted lines represent the simplification of the cross-section of the T-girder used for calculating
the sectional properties.
Cross-section area A = 506020 mm2

Centroid y’ = 432.388 mm
Centroid x’ = 612.5 mm
Moment of Inertia Iy = 72468535181 mm4

Moment of Inertia Iz = 43601894153 mm4

Moment of Inertia Iyz = -1.6622e+10 mm4

Torsional moment of inertia It = 1.1607e+11 mm4
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Sectional properties of End block with integrated deck slab used for 2D FEM model of bridge
deck in the horizontal plane

Figure A.2: End block with integrated deck slab

Cross-section area A = 608500 mm2

Centroid y’ = 424.0263 mm
Centroid x’ = 612.5 mm
Moment of Inertia Iy = 78150265297 mm4

Moment of Inertia Iz = 32747317708 mm4

Moment of Inertia Iyz = 0 mm4

Torsional moment of inertia It = 1.10898e+11 mm4
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Sectional properties at the location of intermediate cross-beam with integrated deck slab used
for 2D FEM model of bridge deck in the horizontal plane

Figure A.3: Location of intermediate cross-beam with integrated deck slab

Cross-section area A = 762500 mm2 Centroid y’ = 413.6196 mm
Centroid x’ = 612.5 mm
Moment of Inertia Iy = 83962179640 mm4

Moment of Inertia Iz = 42714539931 mm4

Moment of Inertia Iyz = 658777777.8 mm4

Torsional moment of inertia It = 1.26677e+11 mm4



B
Maple script used for solving tendon

profile

The boundary conditions used for solving the third degree polynomial equation in Maple for the seven
tendons are presented below,
For tendon 1,

Figure B.1: Boundary conditions used for solving tendon 1 profile

For tendon 2,

Figure B.2: Boundary conditions used for solving tendon 2 profile
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For tendon 3,

Figure B.3: Boundary conditions used for solving tendon 3 profile

For tendon 4,

Figure B.4: Boundary conditions used for solving tendon 4 profile

For tendon 5,

Figure B.5: Boundary conditions used for solving tendon 5 profile

For tendon 6,
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Figure B.6: Boundary conditions used for solving tendon 6 profile

For tendon 7,

Figure B.7: Boundary conditions used for solving tendon 7 profile
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