
Advances in Graph Signal
Processing

Fast graph construction & Node-adaptive
graph signal reconstruction

by

Maosheng Yang

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday August 24, 2020 at 14:00 PM.

Student number: 4797396
Project duration: November 25, 2019 – August 24, 2020
Thesis committee: Prof. dr. ir. G. Leus, TU Delft, supervisor

Dr. E. Isufi, TU Delft, daily supervisor
Prof. M. Loog, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

PREFACE

This thesis is prepared to fulfill the requirements for obtaining a M.Sc. degree in Elec-
trical Engineering from Delft University of Technology. The project has been carried out
from November 2019 to August 2020 in the group of Circuits and Systems in the Depart-
ment of Microelectronics.

This thesis focuses on the topic of data science and signal processing over graphs.
Data science has covered many real-world scenarios, like recommender systems, social
media platforms, and road/water/sensor networks. As the amount of data grows ev-
eryday, efficient data processing is needed. Researchers have shifted their attention to
graph domain. Graph signal processing has gained the attentions of signal processing
community in the last decade. It can process signals on an irregular domain, and is a
promising tool to deal with the real-world high-dimensional data.

In the first part of this thesis, we aim to solve the problem of graph construction in
big data scenario, which is critical for practical tasks, like collaborative filtering in recom-
mender systems, spectral embedding or clustering in learning algorithms. We achieve to
accelerate the data-driven graph construction algorithms by relying on an approxima-
tion technique for large matrix multiplication, diamond sampling. We show its potential
in real problems by extensive experiments. In the second part, we improve the perfor-
mance of the graph signal reconstructions by exploiting the local properties of graph sig-
nals. We propose a node-adaptive regularization with an improved degree of freedom,
so a more general signal smoothness assumption is allowed. Different regularization
weights design methods are proposed to achieve its best performance. By comparing it
with Tikhonov regularization, we observe its superiority in graph signal reconstruction
and interpolation, also in graph signal sampling.

Through-out the thesis, we involve knowledge in the fields of, statistical signal pro-
cessing, estimation and detection, graph signal processing, optimization theory, and
recommender systems, and spectral clustering.

I hope that this thesis is of interest to you and give an insight of my contributions to
the field of data science and signal processing.

3

ACKNOWLEDGMENT

At this moment, it is one more step closer for me to obtain my Master of Science degree. I
would like to express my gratitude to my three beloved and respectful supervisors. With-
out their help, this thesis work is not able to be done well during these nine months.

First, to my daily supervisor, Elvin Isufi, who has been making every effort to guide
me in research. He keeps at least one meeting per week with me, even in this difficult
pandemic situations and gives very detailed and clear comments on my work, though I
don’t always agree. Also, he often encourages me to build my confidence and helps me
in many other matters. Doing research with you is a fun trip and I’m happy to work with
you in the next five years. Thank you, Elvin!

I would also like to thank Professor Geert Leus for his great supervision. From time
to time, he has been commenting my work very detailed. He also supports me to make a
careful decision about my future choices. From him, I see what kind of researcher I want
to be in the end. It would be such a great opportunity to work with you in the future.

And Mario, as a PhD student, has been always nice to me like a good friend. Besides
giving me very professional suggestions, his attitude to research also impressed me and
drove me to work harder. I wish to keep work with you.

Studying in TU Delft was impossible for me without the scholarship from Microelec-
tronics department, which is a big fortune for me not only at the moment. I would like
to say, Thank you, to Microelectronics department, TU Delft.

Lastly, I want to show my love to all my friends and my family. Without your support
and trust, I am not able to obtain all my achievements.

Maosheng Yang
Delft, the Netherlands

6 August 2018

5

NOMENCLATURE

Graph theory

A or W Graph adjacency matrix

B Graph incidence matrix

L Graph Laplacian

S Graph shifting operator

G (V ,E) Graph G with nodes set V and edges set E

Ni Neighbors of node i

deg(i) Degree of node i

Linear algebra

(·)> Matrix transpose

(·)−1 Matrix inverse operation

λ(A) Eigenvalue λ of matrix A

‖·‖0 `0 norm

‖·‖1 `1 norm (sum norm)

‖·‖2 `2 norm (Euclidean norm)

‖·‖∗ Nuclear norm of a matrix

Rn Real vector space of real n-vectors

1 All-ones vector

A Â B Matrix A−B is positive definite

A º B Matrix A−B is positive semi-definite

I Identity matrix

S n×n+ Set of positive semi-definite matrices of dimensions of n ×n

¯ Hadamard product or element-wise product

ρ(A) Spectral radius matrix A

7

8 NOMENCLATURE

det(·) Determinant of a matrix

supp(·) Support of a matrix

tr(·) Trace operation

Other Symbols

E(·) Expectation operation of a random variable

O (·) Order operation

cov(·) Covariance matrix of a random variable

nnz(·) Number of non-zeros operation

sgn(·) Sign operation

Mathematical objects

X Matrix X

x Vector x

x∗i The i -th column of matrix X

xi∗ The i -th row of matrix X

x Scalar x

xi The i -th element of vector x

Xi j Entry (i , j) of matrix X

Sets

∩ Intersection

∪ Union

∈ Belong to

C Set of complex numbers

R Set of real numbers

Rm×n Set of real-valued matrices of dimensions m ×n

X Set

⊂ Strict subset

⊆ Subset

CONTENTS

Preface 3

Acknowledgment 5

1 Introduction 13
References . 15

I Graph construction 19

2 Background 21
2.1 Introduction to graph construction . 21

2.1.1 Literature review . 23
2.2 Diamond sampling . 23

2.2.1 Binary case. 24
2.2.2 General case . 26
2.2.3 Main results of diamond sampling 27

2.3 Collaborative filtering . 29
2.3.1 Rating prediction of user-based collaborative filtering 29

2.4 Spectral clustering . 30
References . 31

3 Diamond sampling based similarity graph construction 35
3.1 ε-ball neighbor graph construction . 35

3.1.1 Smoothness guarantee. 36
3.1.2 Error analysis in diamond sampling based ε-N graph construction . 37

3.2 kNN graph construction . 38
3.3 Butterfly sampling . 38

3.3.1 Bipartite graph representation of cosine similarity matrix 38
3.3.2 Butterfly sampling . 39
3.3.3 Relation with exact butterfly counting 39

References . 40

4 Numerical results and conclusion 43
4.1 ε-N and kNN graphs . 43

4.1.1 Amazon automotive reviews . 43
4.1.2 MovieLens 10 millions . 44

4.2 Performance in rating prediction . 47
4.2.1 Movie recommendation . 47
4.2.2 Rating prediction . 48

9

10 CONTENTS

4.3 Spectral clustering . 49
4.4 Conclusion . 51
References . 52

II Graph signal reconstruction 53

5 Background 55
5.1 Introduction . 55

5.1.1 Literature review . 55
5.1.2 Outline of Part II . 56

5.2 Graph signal processing. 57
5.2.1 Graph signal variation . 57
5.2.2 Graph shift operator . 57
5.2.3 Graph Fourier transform . 57
5.2.4 Graph signal bandwidth . 58
5.2.5 Graph filtering . 58
5.2.6 Graph Laplacian denoising, Tikhonov regularization 59

References . 60

6 Node-adaptive graph signal regularization 63
6.1 Node-adaptive regularizer . 64
6.2 Bias-variance trade-off . 65
6.3 Implementation . 67
6.4 Weight design . 68

6.4.1 Enhanced Prony’s method . 69
6.4.2 Semi-definite relaxation . 69
6.4.3 min-max method . 71

6.5 Numerical results . 72
6.5.1 Synthetic data . 72
6.5.2 Molene data set . 74
6.5.3 NOAA data set . 76

References . 77

7 Node-adaptive regularization based graph signal sampling 79
7.1 Introduction . 79

7.1.1 literature review . 79
7.1.2 Basics . 80
7.1.3 Interpolation via Tikhonov regularization 81

7.2 Greedy graph signal sampling. 82
7.2.1 Cost functions discussion based on Tikhonov solution. 82
7.2.2 Tikhonov estimate based greedy graph signal sampling [10] 83

7.3 Node-adaptive estimate based greedy graph signal sampling 85
7.4 Numerical experiments . 85
7.5 Conclusion and discussions. 88
References . 88

CONTENTS 11

8 Conclusion & future work 91
References . 92

A Appendix of Part I 93
A.1 Proof of Theorem 1 . 93
References . 94

B Appendices of Part II 95
B.1 Important lemmas and theorems . 95
B.2 Proof of Lemma 5 . 96
B.3 Proof of Theorem 2 . 97
B.4 Proof of Corollary 1 . 98
B.5 Simplifying the cost function for problem (6.18) 98
B.6 A detailed expression of the cost function in (6.20) 99
References . 99

C A simple node-adaptive graph regularization weights design 101
C.1 Revisit node-adaptive graph signal regularization. 101

C.1.1 NA graph signal regularization from constant transform 102
C.1.2 Constant transform based NA weight design 103

C.2 Numerical results . 103
C.2.1 Synthetic data . 103
C.2.2 Effect of the number of realizations 105
C.2.3 Real data . 106

C.3 Discussion and conclusion . 107
C.3.1 Future work . 109

C.4 Conclusion . 110
References . 110

1
INTRODUCTION

As the demand of dealing with large amount of data increases rapidly, recent research
has been shifted from dealing with the typical low Euclidean regular dimensional data,
e.g., 1D time signals, 2D images, to irregular high dimensional data [1]. In particular,
graphs are able to represent these high dimensional data because they model objects
by nodes and relationships between entities by edges. These data come from practical
networks like, Facebook or Twitter [2], sensor networks, transport/road networks and
so on [3, 4]. On the other hand, other types of real data, like the customer’s online shop-
ping record [5], authorship attribution in online bibliography libraries [6, 7], and protein-
protein interaction networks [8, 9], can also be modeled as data sit on a graph.

Graph modeling has gained more and more attention in data science, and is proven
to be beneficial as well. In the machine learning community, the main tasks (semi-
)supervised learning [10–12], and spectral clustering [13, 14], spectral embedding, have
been carried out over networks. In deep learning, the conventional neural networks have
been generalized to Graph Neural Networks (GNN) [15–21]. In the signal processing
community, Graph Signal Processing (GSP) [22–24] has emerged, where regular domain
techniques, e.g., filtering, sampling, reconstruction, and so on, have been developed
over networks as graph filtering, graph signal sampling and graph signal reconstruction
[25, 26]. In addition, in many real-world data science applications such as recommen-
dation systems [27, 28], some performance improvement has been made from both GSP
and GNN perspective [29–31].

However, we are still facing many challenges in these directions. For instance, ef-
ficiency needs to be improved to deal with the massive amount of data. Some graph
signal processing methods can be further improved by exploiting the properties of the
underlying graph. Current algorithms have scalability issues. Or in online or real-time
application scenarios, the more involved dynamic adaptation is required, e.g., the un-
derlying graph topology may change, the data sit on the networks is steaming. Many
recent work has been dedicated into meeting these challenges [12, 22–24, 29].

13

14 INTRODUCTION

RESEARCH STATEMENT
In this thesis work, we focus on the following challenging situations:

• In the data science applications of recommendation systems, spectral embedding,
and spectral clustering, a similarity graph is important and necessary for the fur-
ther processing. However, with the rapid growth of data amount, computing or
building a similarity graph is getting more and more challenging. An efficient sim-
ilarity graph construction is needed in the context of big data processing.

• In graph signal processing, the current graph signal reconstruction algorithms heav-
ily rely on the global signal smoothness prior. This is not always true, since some
graph signals only vary locally. The latter prevents us from improving the recon-
struction performance to the next level.

To face the above two challenges, the following two research questions are proposed:

• How to construct a similarity graph fast and efficiently when having large amount
of data? This is a common and necessary question in the applications, like col-
laborative filtering in recommendation systems, spectral clustering, and spectral
embedding. Part I of this thesis is committed to answer this question by leverag-
ing matrix approximation techniques, which avoids directly computing the matrix
multiplication by sampling.

• How can we improve graph signal reconstruction by exploiting local signal varia-
tion. In Part II of this thesis, we propose a new graph signal regularization frame-
work to enable a more flexible signal smoothness assumption, with a significant
improved performance.

THESIS OUTLINE
• Part I: Graph construction

– Chapter 2-Background: The goal of this chapter is to prepare the background
knowledge for our approach in later chapters. We first introduce the gen-
eral question of similarity graph construction and review the state-of-the-art
work. Then we recall the main technique, diamond sampling [32], that will
be used to develop our fast graph construction method. Lastly, we introduce
two popular applications, namely, collaborative filtering in recommendation
systems and spectral clustering.

– Chapter 3-Diamond sampling based graph construction: This chapter con-
tains the main results of our approach. We use diamond sampling to approx-
imate matrix multiplications during similarity graph construction. We study
its stability properties and discuss how to further improve its efficiency in
some special cases.

– Chapter 4-Numerical results and conclusion: We conclude the first part with
extensive numerical results on real-world data. Then, we recall the main as-
pects of this part and discuss future research directions.

REFERENCES 15

• Part II: Graph signal reconstruction

– Chapter 5-Background: we review the basics of graph signal processing, mainly
the graph signal reconstruction methods. In particular, the most common
approach, Tikhonov regularization [33] is reviewed, as well as its bias-variance
trade-off, which motivates the road map of our method.

– Chapter 6-Node-adaptive graph signal regularization: In this chapter, we un-
veil our approach and propose node-adaptive graph signal regularization.
We conduct the bias-variance trade-off to show its superior reconstruction
performance compared with the Tikhonov regularization. Then, we study
how to deign the regularization parameters in a mean squared error (MSE)
sense. Finally, we conduct experiments with synthetic and real-world data.

– Chapter 7-Node-adaptive regularization based graph signal sampling: Nodes
subset selection is important when the signal observation can not be col-
lected from all nodes; i.e., graph signal sampling, which is strongly related
to graph signal reconstruction. In this chapter, we conduct the greedy sub-
set sampling based on the node-adaptive regularization, which outperforms
Tikhonov regularization based.

– Chapter 8-Conclusions and future work: We conclude the node-adaptive graph
signal regularization and propose future research directions.

REFERENCES
[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, A comprehensive sur-

vey on graph neural networks, IEEE Transactions on Neural Networks and Learning
Systems (2020).

[2] M. A. Russell, Mining the social web: Analyzing data from Facebook, Twitter,
LinkedIn, and other social media sites (" O’Reilly Media, Inc.", 2011).

[3] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and W. Hong, Model-
driven data acquisition in sensor networks, in Proceedings of the Thirtieth interna-
tional conference on Very large data bases-Volume 30 (2004) pp. 588–599.

[4] K.-M. Lee, B. Min, and K.-I. Goh, Towards real-world complexity: an introduction to
multiplex networks, The European Physical Journal B 88, 48 (2015).

[5] M. C. Scroggie, M. E. Kacaba, D. A. Rochon, and D. M. Diamond, System and method
for providing shopping aids and incentives to customers through a computer net-
work, (2000), uS Patent 6,014,634.

[6] S. Segarra, M. Eisen, and A. Ribeiro, Authorship attribution through function word
adjacency networks, IEEE Transactions on Signal Processing 63, 5464 (2015).

[7] A. Mehri, A. H. Darooneh, and A. Shariati, The complex networks approach for au-
thorship attribution of books, Physica A: Statistical Mechanics and its Applications
391, 2429 (2012).

16 REFERENCES

[8] U. Stelzl, U. Worm, M. Lalowski, C. Haenig, F. H. Brembeck, H. Goehler,
M. Stroedicke, M. Zenkner, A. Schoenherr, S. Koeppen, et al., A human protein-
protein interaction network: a resource for annotating the proteome, Cell 122, 957
(2005).

[9] J.-F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, N. Li, G. F. Berriz,
F. D. Gibbons, M. Dreze, N. Ayivi-Guedehoussou, et al., Towards a proteome-scale
map of the human protein–protein interaction network, Nature 437, 1173 (2005).

[10] X. Zhu and A. B. Goldberg, Introduction to semi-supervised learning, Synthesis lec-
tures on artificial intelligence and machine learning 3, 1 (2009).

[11] X. J. Zhu, Semi-supervised learning literature survey, Tech. Rep. (University of
Wisconsin-Madison Department of Computer Sciences, 2005).

[12] S. Chen, F. Cerda, P. Rizzo, J. Bielak, J. H. Garrett, and J. Kovačević, Semi-supervised
multiresolution classification using adaptive graph filtering with application to in-
direct bridge structural health monitoring, IEEE Transactions on Signal Processing
62, 2879 (2014).

[13] U. Von Luxburg, A tutorial on spectral clustering, Statistics and computing 17, 395
(2007).

[14] A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algo-
rithm, in Advances in neural information processing systems (2002) pp. 849–856.

[15] E. Isufi, F. Gama, and A. Ribeiro, Edgenets: Edge varying graph neural networks,
arXiv preprint arXiv:2001.07620 (2020).

[16] F. Gama, E. Isufi, G. Leus, and A. Ribeiro, From graph filters to graph neural net-
works, IEEE Signal Processing Magazine; Special Issue on Graph Signal Processing:
Foundations and Emerging Directions. (2020).

[17] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-
Guzik, and R. P. Adams, Convolutional networks on graphs for learning molecular
fingerprints, in Advances in neural information processing systems (2015) pp. 2224–
2232.

[18] F. Gama, E. Isufi, G. Leus, and A. Ribeiro, Graphs, convolutions, and neural net-
works, arXiv preprint arXiv:2003.03777 (2020).

[19] P. Liang and N. Bose, Neural network fundamentals with graphs, algorithms, and
applications, Mac Graw-Hill (1996).

[20] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, The graph
neural network model, IEEE Transactions on Neural Networks 20, 61 (2008).

[21] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, Convolutional neural network ar-
chitectures for signals supported on graphs, IEEE Transactions on Signal Processing
67, 1034 (2018).

REFERENCES 17

[22] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerg-
ing field of signal processing on graphs: Extending high-dimensional data analysis
to networks and other irregular domains, IEEE Signal Processing Magazine 30, 83
(2013).

[23] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst, Graph signal
processing: Overview, challenges, and applications, Proceedings of the IEEE 106,
808 (2018).

[24] E. Isufi, Graph-time signal processing: Filtering and sampling strategies, Ph.D. the-
sis, Delft university of technology (2019).

[25] S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovacevic, Signal denoising on graphs
via graph filtering, in 2014 IEEE Global Conference on Signal and Information Pro-
cessing (GlobalSIP) (IEEE, 2014) pp. 872–876.

[26] Y. Tanaka, Y. C. Eldar, A. Ortega, and G. Cheung, Sampling on graphs: From theory
to applications, arXiv preprint arXiv:2003.03957 (2020).

[27] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, Collaborative filtering recom-
mender systems, in The adaptive web (Springer, 2007) pp. 291–324.

[28] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, Evaluating collaborative
filtering recommender systems, ACM Transactions on Information Systems (TOIS)
22, 5 (2004).

[29] W. Huang, A. G. Marques, and A. R. Ribeiro, Rating prediction via graph signal pro-
cessing, IEEE Transactions on Signal Processing 66, 5066 (2018).

[30] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, Session-based recommendation
with graph neural networks, in Proceedings of the AAAI Conference on Artificial In-
telligence, Vol. 33 (2019) pp. 346–353.

[31] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, Graph neural networks for
social recommendation, in The World Wide Web Conference (2019) pp. 417–426.

[32] G. Ballard, T. G. Kolda, A. Pinar, and C. Seshadhri, Diamond sampling for approx-
imate maximum all-pairs dot-product (mad) search, 2015 IEEE International Con-
ference on Data Mining (2015), 10.1109/icdm.2015.46.

[33] C. Groetsch, The theory of tikhonov regularization for fredholm equations, 104p,
Boston Pitman Publication (1984).

http://dx.doi.org/10.1109/icdm.2015.46
http://dx.doi.org/10.1109/icdm.2015.46

I
GRAPH CONSTRUCTION

19

2
BACKGROUND

In many data-science and machine learning applications, e.g., spectral embedding, spec-
tral clustering, link prediction, and collaborative filtering, a similarity graph is required
before processing [1–6]. The construction of such graph is necessary because most data
are collected without the underlying topology being known, unless connected in ad-
vance. As reviewed in [7], most of the network topology identification works rely on
solving an optimization problem to estimate the graph Laplacian. This is challenging
due to its high computational complexity, especially when the data dimension is of or-
der up to millions of points. As the demand for big data processing emerges, improving
the efficiency of the similarity graph construction is a timely challenge [8].

In the first part of this thesis, we build a similarity graph from large dimensional data
in an efficient way. Before we dive into the proposed methods, we first review the similar-
ity graph construction approaches. Then, we introduce and develop the main technique
used in our method, an efficient approximation of large matrix product by sampling pro-
cedure, diamond sampling [9]. Lastly, we briefly review the collaborative filtering in rec-
ommender systems and spectral clustering for the experiments in the later chapters.

2.1. INTRODUCTION TO GRAPH CONSTRUCTION
A graph G = (V ,E) is made up of a set of vertices (nodes) V = {1, . . . , N } and a set of edges
E that connect the nodes. We consider a data matrix X ∈RN×M , where N is the number of
nodes and M the dimension of the features in data. A weight matrix W is assigned to the
graph to measure the link strength of each edge, which is usually the pairwise relations
between the nodes. The edges can be directed or undirected, Wi j 6= 0 if existing an edge
between nodes i and j , and zeros otherwise. Determining the edge set and the weights
is the main task of the graph construction.

A similarity score measures the distance between features vectors sit on different
nodes. An example of feature vectors is each user’s preference on different movies. Pop-
ular choices are cosine similarity, Pearson’s correlation, partial correlation, Hamming
distance and so on [8]. In this work, we only focus on cosine similarity, which has been

21

22 2. BACKGROUND

widely used in text mining, information retrieval, and bioinformatics [4, 10, 11]. Cosine
similarity is simple and endows with real meaning, i.e., it measures the angle difference
of two vectors and it is defined as

Ci j =
x>i x j

‖xi‖2‖x j ‖2
, (2.1)

where xi ∈RM is the row feature vector on node i . If the data matrix is normalized along
the rows, i.e., the norm of each row is one, then we can compute a fully connected cosine
similarity matrix as

C = XX>, (2.2)

where we do not differentiate the normalized data matrix and unnormalized one, and
we will specify if it is normalized for clarity. The next step is to determine the edge set
by sparsifying this fully connected similarity matrix C, since it improves efficiency, inter-
pretation, and robustness [8]. There are different ways to determine the edge set, e.g.,
k-nearest neighbors and ε-ball neighborhood, minimum spanning tree, Gabriel graph
[8]. In this work, we focus on the following two most common ones:

• ε-ball neighborhood (ε-N). With a predefined threshold ε, the ε-N method only
preserves edges with weights larger than ε. This strategy is commonly used in both
brain networks and gene coexpression networks [8, 10, 12, 13]. Regarding the co-
sine similarity matrix C, this implies looking for entries larger than threshold ε; i.e.,
if Ci j ≥ ε, then edge ei j exits, otherwise, no. It can also be seen as searching the
top-T entries corresponding to the number of qualified entries, which avoids se-
lecting the threshold. We will discuss both ways. We use operator ε(·) to indicate
the ε-N search.

• k-nearest neighbors (kNN). For each node, the kNN method preserves the edges
with a weight in the top-k similarity scores. If a node i is within the kNN of a node
j , then edge ei j exists. Regarding the cosine similarity matrix, this implies looking
for the top-k entries in each vector-matrix multiplication, xi X> for each node i .
We use kN N (·) to indicate the kNN search operation.

In both settings, a sparse graph structure is desired for learning algorithms to be efficient
[8, 14]. After the edge set is determined by either the ε-N or the kNN method, we can
determine the edge weights directly by the similarity scores (i.e., cosine similarity here),
that is, W = ε(C) or W = kN N (C). The weights can also be redefined by other measures,
for instance, the Gaussian kernel (also called heat kernel or RBF kernel). Applying these
methods is not our focus and we shall not discuss them further.

The graph construction procedure is relatively simple. First, select edges based on
the similarity scores between each pair of nodes. Then, assign the weights. However,
when the dimension of the data is large, the pairwise similarity score evaluation is ineffi-
cient. The cosine similarity has a computational complexity of order O (N 2M), therefore,
it is impossible to conduct a matrix product as in (2.2). Our main goal is to construct
a graph based on cosine similarity measure when the data dimension N and M is ex-
tremely large in an efficient way.

2.2. DIAMOND SAMPLING 23

2.1.1. LITERATURE REVIEW
To build similarity graphs efficiently, the authors of [10] have proposed an efficient NN
descent method with arbitrary similarity measures. The method is based on local search
and has a complexity of order O (M N 1.14) corroborated empirically. However, this method
is only applied to small dataset upto dimension of 100 for kNN graph construction.
Starting from dimension of 50, it starts to fail as dimensionality grows. Locality Sensi-
tive Hashing (LSH) is another successful method, where the hash functions have been
designed for a range of different similarity measures [15, 16]. However, the computa-
tional cost remains high for achieving accurate approximation. Authors in [12] proposed
a L2Knng method to prune the search space using L2 norm bounds. Other methods
are based on product quantization or k −d generalized random forests [17]. Some re-
cent methods [18–20] based on proximal graphs, such as small-world navigable graphs,
and coarsely approximate the kNN graphs with various levels of computational costs.
Bus most of these methods rely on high-performance computing tools, such as MapRe-
duce or L2Knng [12]. Instead, our method stands out because it is independent of such
tools. Beyond efficient kNN graph construction, [14] proposed a novel graph construc-
tion method through exploring the auction algorithm, which is as fast as kNN method. A
novel sample dependent approach of graph construction is proposed in [21], but it aims
to improve the parameter (ε or k) selections, which is not our focus.

In the efficient ε-N similarity graph construction, [13] proposed TOP-DATA by lever-
aging the monotone property of cosine upper bound to efficiently prune item pairs with-
out computing their exact cosine values. Later on, a max-first traversal strategy is used to
further reduce the space complexity. The execution time is indeed reduced but the com-
putation time is not, and no accuracy is evaluated through out the work. The work in
[11, 22] rely on high performance computing tools, e.g., hadoop, MapReduce. The work
in [11] can deal with big data but is limited to binary data only. Our proposed method
can deal with general data.

2.2. DIAMOND SAMPLING
In this section, we introduce diamond sampling to approximate large matrix multipli-
cations [9]. Consider the fundamental problem: find the top-T largest entries in the
product C = A>B, given two matrices A = [a1, . . . ,am] ∈ Rd×m and B = [b1, . . . ,bn] ∈ Rd×n .
When m = 1, this problem reduces to the MIPS (maximum inner produce search) prob-
lem [9].

Diamond sampling is an index sampling method to sample pair (i , j) with a proba-
bility proportional to the dot product ci j = ai ·b j . With enough samples, we want to find
the top-T largest entries of C. Figure 2.1 illustrates the idea. Suppose the real product of
two matrices A and B is the matrix in Figure 2.1. Without actually computing this result,
we expect to build an indicator to reflect the greatness of each entry value in the product
result. For example, an ideal indicator for Figure 2.1 shows how big the entry value is by
different colors; the darker the color, the bigger the value. We observe the value at entry
(1,1) is the largest. Then, we would just compute the vector inner product a>

1 b1, if only
the largest entry is of interest.

Carrying this idea, we avoid computing the matrix product directly, but design the in-
dicator to represent the matrix product value entry-wise. Therefore, we need to develop

24 2. BACKGROUND

Figure 2.1: Illustration of diamond sampling to approximate the matrix product, where the colors in the indi-
cator represent the values, the darker the bigger.

a strategy such that obtaining the indicator takes less computational effort compared
with the direct inner product. Note this method only works for situations where we are
interested in a small amount of top entries (i.e., the number of interest is much smaller
than the total entries, T ¿ M N), which corresponds to the preferred sparse structure in
ε-N or kNN graph construction.

The early work along with a similar idea is wedge sampling for MIPS problem pro-
posed by Cohen and Lewis [23], the indicator of which has a value at entry (i , j) pro-
portional to ai ·b j . Diamond sampling can sample a pair (i , j) such that the indicator
is proportional to (ai · b j)2, requiring less samples, and computation time [9]. In the
following, we follow the work in [9] to detail diamond sampling.

2.2.1. BINARY CASE

Let us first consider two binary matrices A ∈ {0,1}d×m and B ∈ {0,1}d×n and their product
A>B = C ∈ Rm×n . Then, we can represent the product as a tripartite graph on m +d +n
nodes as in Figure 2.2a. Let us further define the neighbor sets for a left node i , a middle
node k and a right node j

N A
i = {k ∈ [d]|aki = 1}, N A

k = {i ∈ [m]|aki = 1},

N B
j = {k ∈ [d]|bk j = 1}, N B

k = { j ∈ [n]|bk j = 1},

where aki is the entry (k, i) of matrix A, others likewise. The node degrees can be defined
as

degA
i = |N A

i | = ‖a∗i‖1, degA
k = |N A

k | = ‖ak∗‖1,

degB
j = |N B

j | = ‖b∗ j ‖1, degB
k = |N B

k | = ‖bk∗‖1,

where a∗i and b∗ j are the i -th row vector of matrix A and j -th row vector of B, and ak∗
and ak∗ are their k-th columns, respectively; and ‖·‖1 is the `1-norm.

In Figure 2.2a, the left nodes, indexed by i correspond to the columns of A; the right
indexed by j correspond to the columns of B; and the middle nodes indexed by k, rep-
resent the common rows of A and B. An edge (i ,k) exists if aki = 1. With this tripartite
graph interpretation, we can see that ci j equals the number of common neighbors of
nodes i and j : ci j = |{k|k ∈N A

i ∩N B
j }|.

Wedge sampling [23]. If a middle node k has a neighbor i on the left and a neighbor j
on the right, we call (i ,k, j) a "wedge". This wedge implies ci j ≥ 1. There are exactly ci j

2.2. DIAMOND SAMPLING 25

i

k

j

(a) A wedge (i ,k, j).

i

k

j

k‘

(b) A three-path (k ′, i ,k, j).

i

k

j

k‘

(c) A diamond (k ′, i ,k, j).

Figure 2.2: Binary matrix product represented as a tripartite graph, where left red color represents the column
indices of A, middle blue color represents the common row indices shared by A and B and right green color
represents the column indices of B. An edge linking i and k (or k and j) means aki = 1 (bk j = 1).

distinct wedges connecting pair (i , j), see Figure 2.2a. From a statistical perspective, a
wedge connecting (i , j) can be selected randomly with probability proportional to ci j .

Diamond sampling [9]. A diamond (k ′, j ,k, i) in Figure 2.2c, formed by two wedges
connecting the same endpoints (i , j). If nodes k and k ′ are the same, there are c2

i j di-

amonds connecting pair (i , j). Thus, a diamond (k ′, j ,k, i) for pair (i , j) can be selected
randomly with a probability proportional to c2

i j . To find the largest dot products for a

given sampling budget, we can first sample diamonds randomly with fixed probabilities,
then count the number of diamonds connecting each pair (i , j). The pair with the largest
number of diamonds will likely have the largest dot product.

However, directly sampling a diamond is complicated. So, we first find a random
three-path of the form (k ′, i ,k, j) as in Figure 2.2b. If this path is closed and forms a
diamond as in Figure 2.2c, then it is counted, otherwise, not. Samples are independent
from each other.

Algorithm 1 Diamond sampling with binary inputs

Input: Matrices A ∈ {0,1}d×m and B ∈ {0,1}d×n , number of samples s, all zeros matrix
X ∈Rm×n .

Output: Indication matrix X ∈Rm×n .
1: for (k, i) ∈ [d]⊗ [m] do
2: wki ← degA

i degB
k

3: end for
4: for l = 1, . . . , s do
5: sample (k, i) with probability wki /‖W‖1

6: sample j from N B
k

7: sample k ′ from N A
i

8: xi j ← xi j +bk ′ j

9: end for
10: postprocessing (see Algorithm 2)

Algorithm 1 completes the above procedure. In Line 2, each edge (i ,k) is assigned
a weight equal the number of three-paths for which (i , j) is the center, i.e., degA

i degB
k .

Thus, the weight matrix W measures the frequency of each edge being on the left side

26 2. BACKGROUND

i

k

j

k‘

(a) Sample a center edge
(k, i) ∝ wki .

i

k

j

k‘

(b) Sample a right node j ∈N B
k .

i

k

j

k‘

(c) Sample the last node k ′ ∈N A
i .

Figure 2.3: Diamond sampling process.

of a three-path, and it shares the same sparsity as matrix A. In Line 5, we first sample a
center edge (k, i) with a probability proportional to wi j , as shown in Figure 2.3a. Then
we sample a node k ′ and j from the neighbors of k in A and B, i.e., N B

k , N A
i , respectively,

as shown in Figures 2.3b and 2.3c. This yields a uniform random three-path. If the three-
path (k ′, i ,k, j) is complete, then a diamond is sampled, i.e., bk ′ j = 1, otherwise, bk ′ j = 0.
So, matrix X stores the number of diamonds connecting each pair (i , j) as xi j , i.e., the
indicator. The larger entry xi j , the larger the matrix product ci j .

Algorithm 2 Postprocessing

Input: Indices set matrix X for non-zero entry set, Ωs = {(i , j)|xi j > 0}, number of top
entries required t , and the product computation budget t ′ > t .

Output: An approximation of C by computing only the top-t entries.
1: Extract the indices of the top-t ′ entries of X in setΩt ′
2: C ← all zeros matrix of size m ×n
3: for (i , j) ∈Ωt ′ do
4: ci j ← a>

i b j

5: end for
6: Extract the top-t entries of C

Furthermore, we follow Algorithm 2 to find the top-t largest entries. Suppose there
is a budget of t ′ ≥ t dot products. LetΩs be the set containing the indices of all nonzeros
in X andΩt ′ the set containing the top-t ′ entries in X. Line 1 takes a sorting of at most s
items, and generally many fewer 1 (nnz(X) ¿ s). Then, we compute the top-t ′ entries in
C. Finally, we sort these t ′ values and extract the top-t ones.

2.2.2. GENERAL CASE

We generalize diamond sampling for two real-valued matrices A ∈Rd×m and B ∈Rd×n in
Algorithm 3. In this case, the entry of the weight matrix W is defined as

wki = |aki |‖a∗i‖1‖bk∗‖1.

This weight measures again the frequency of each edge being on the left side to form
a three-path. In the sampling procedure, the same idea is followed. First, we find a

1The nonzeros induced by sampling will concentrate on the entries with large values.

2.2. DIAMOND SAMPLING 27

three-path, then check if this three-path completes a diamond. But after the center is
sampled, in Lines 6 and 7, the sampling is non-uniform and more complex compared
with the binary case. The postprocessing remains the same.

Algorithm 3 Diamond sampling with general inputs

Input: Matrices A ∈Rd×m and B ∈Rd×n , number of samples s, all zeros matrix X ∈Rm×n .
Output: Indication matrix X ∈Rm×n .

1: for (k, i) ∈ [d]⊗ [m] do
2: wki ←|aki |‖a∗i‖1‖bk∗‖1

3: end for
4: for l = 1, . . . , s do
5: sample (k, i) with probability wki /‖W‖1

6: sample j from N B
k with probability |bk j |/‖bk∗‖1

7: sample k ′ from N A
i with probability |ak ′i |/‖a∗i‖1

8: xi j ← xi j + sgn(aki bk j ak ′i)bk ′ j

9: end for
10: postprocessing (see Algorithm 2)

• Nonnegative inputs: If A and B are nonnegative, we can omit the sign operations
in Line 8. This reduces the expensive random memory accesses.

• Equal inputs (Gram matrix): If B = A, then C = A>A is symmetric. We consider the
following step before postprocessing: X ← (X+X>)/2. This guarantees a symmetric
approximation output.

2.2.3. MAIN RESULTS OF DIAMOND SAMPLING

COMPLEXITY AND SPACE [9]
Let s be the number of samples, t ′ the budget of dot products in Algorithm 3, T the
number of largest entries to search, α = nnz(A), and β = nnz(B). In the dense case, α =
md and β= nd , the total complexity is of order

O (α+β+ s log(sαβ)).

The total storage (not including inputs A and B) is

2 storage(A)+ storage(B)+5s +3t ′+3t .

The total computational cost of a direct matrix product is of order O (mnd), from which
we can see the quadratic order of diamond sampling brings efficiency for large dimen-
sional data.

EXPECTATION [9]
Diamond sampling is a random process. Thus, it is necessary to study its expectation
and variance. For a single instance of Lines 5 to 7 in Algorithm 3, we define the event

CTPk ′i k j = choosing three-path (k ′, i ,k, j).

28 2. BACKGROUND

Lemma 1. The probability that event CTPk ′i k j happens is

Pr(CTPk ′i k j) = |aki bk j ak ′i |/‖W‖1.

For the arbitrary l -th sample, we can define Xi , j ,l = sgn(aki bk j ak ′i)bk ′ j and xi j =∑s
l=1 Xi , j ,l .

Lemma 2. The expected value of the entries of matrix X is E[xi j /s] = c2
i j /‖W‖1.

CONCENTRATION BOUNDS [9]
Lemma 3. Fix ε > 0 and error probability δ ∈ (0,1). Assume all entries in A and B are
nonnegative and at most K . If the number of samples

s ≥ 3K ‖W‖1log(2/δ)/(ε2c2
i j),

then
Pr[|xi j ‖W‖1/s − c2

i j | > εc2
i j] ≤ δ.

Lemma 3 provides a concentration bound for diamond sampling. When the number
of samples is large, the probability of error is guaranteed. Lemmas in this section are
proved in [9]. We present them here for convenience. In the following, we propose our
variance study for diamond sampling.

VARIANCE STUDY OF DIAMOND SAMPLING FPR TOP-N MATRIX PRODUCT SEARCH

From Lemma 2, we see the entries of X are proportional in expectation to the square of
the actual matrix product value. However, the expectation itself does not provide insight
on stability of diamond sampling. Let us analyze the variance of xi j /s.

Lemma 4. For diamond sampling, the variance of the indicator matrix X is proportional
to the inverse of square of number of samples s, i.e.,

Var[xi j /s] ∝O (
1

s2). (2.3)

Proof. From the definition of variance, we can write

Var[xi j /s] = E[(xi j /s)2]−E2[xi j /s]. (2.4)

We note that xi j = ∑
l Xi , j ,l , where Xi , j ,l is the l -th value of Xi j drawn by l -th diamond

sampling procedure and Xi , j ,l is i.i.d. for fixed i , j and varying l . Thus, with the number
of samples increasing to infinity, i.e., s →∞, we have

xi j /s =∑
l

Xi , j ,l /s = E[Xi , j ,1] = c2
i j /‖W‖1. (2.5)

This indicates the sample mean equals the expectation asymptotically. When the num-
ber of samples is infinity, from Lemma 2, the second term equals the first term in (2.4).
Thus, the variance is zero asymptotically.

While the number of samples s is finite, the term xi j /s will converge to c2
i j /‖W‖1

with a linear convergence rate O (1/s). Thus, the variance will converge to zero with a
quadratic convergence rate O (1/s2).

This variance results indicate that with a large number of samples, diamond sam-
pling will lead to a stable approximation of the matrices product. This vanishing vari-
ance is corroborated in chapter 4.

2.3. COLLABORATIVE FILTERING 29

2.3. COLLABORATIVE FILTERING
In recommender systems, we have user-item interactions, such as ratings or purchasing
history. Users consume only a small fraction of the large library. Thus, the interactions
are sparse if we see the user-item interactions as a matrix, such as in Table 2.1.

Table 2.1: An example of rating matrix,
where U and I represents the user and item id.

U \I a b c d e f
A 5 3 1 4 2 5
B 1 2 1 3
C 3 5 1 5
D 2 1 3

Collaborative filtering models these interactions to make recommendations [3, 24,
25]. Users who have the similar tastes are likely to consume similar items, i.e., similar
users have similar ratings on the same item. This inference based on users similarity
is called user-based collaborative filtering (CF). The two primary recommendation ap-
proaches of user-based CF are:

• Rating predictions: The task here is to predict the ratings for each user-item pair.
With the observed ratings, this corresponds to a matrix completion problem. The
missing or unobserved values are predicted using training model as detailed in
subsection 2.3.1. Then by sorting the predicted ratings, we can make the top-N
recommendations for certain target users.

• Ranking prediction: In practice, it is not necessary to predict all missing values or
estimate a specific rating score for user-item pairs. Instead, we can generate the
recommendation list by a collaborative model. With a similarity matrix, we can de-
termine the top-k similar users for a target user from these neighbors preference.
Furthermore, for example, we can choose a prediction function as the average rat-
ings of the top-3 most similar users on certain item. We can also add the full rating
items from the top-5 users to the recommendation list for the target user. More
details can be seen in [25]. In the numerical experiments, we make recommenda-
tions by listing the highly rated movies by neighbors.

2.3.1. RATING PREDICTION OF USER-BASED COLLABORATIVE FILTERING
Consider a rating matrix R ∈ Rm×n with m users and n items. If we consider the cosine
similarity, the similarity score cuv between each user pair (u, v) is computed as

cuv = ru∗r>v∗
‖ru∗‖2‖rv∗‖2

, (2.6)

where ru∗ is the u-th row vector in the rating matrix. If the rating matrix R is normalized
along the rows, the full similarity matrix can be computed by C = RR>. The top-k nearest
neighbors for each user can be found by sorting the cosine similarity scores, then a kNN
user-user similarity graph can be constructed by kN N (C).

30 2. BACKGROUND

Let Pu denote the set of top-k similar users for user u. The predicted rating r̂u j of
target user u for item j is estimated as

r̂u j = r̄u +
∑

v∈Pu (j) cuv (rv j − r̄v)∑
v∈Pu (j) |cuv |

, (2.7)

where Pu(j) denotes the subset 2 rated item j from Pu , cuv is the cosine similarity score
between users u and v , and r̄u is the average rating scores of user u.

As it can be seen above, similarity plays an important role in CF and needs to be
computed per user-user pair. This is where we will use diamond sampling to speed up
the recommender systems.

2.4. SPECTRAL CLUSTERING

(a) Unclustered data. (b) Constructed similarity graph.

1

2

3

(c) Clustered data.

Figure 2.4: Spectral clustering illustration.

Spectral clustering refers to a family of unsupervised learning algorithms, that com-
pute a spectral embedding of the original data based on the eigenvectors of similarity
graph. Spectral clustering has attracted a large attention in the last two decades due
to its good performance. In general, spectral clustering comprises a similarity graph
construction, a spectral embedding, and a clustering step. The procedure is detailed in
Algorithm 4, which is the one what we use in the numerical experiments [2, 6, 26, 27].

A few comments are in order:

• In Line 2, the similarity matrix can be built by the strategy of ε-N or kNN graph.
The factor σ in heat kernel can be user-defined or learned.

• In Line 3, usually the Laplacian choices are: combinatorial graph Laplacian L =
D−W [2], the normalized Laplacian Ln = I−D−1/2WD−1/2 [6], or the random walk
Laplacian Lr w = I−D−1W [26].

• In the last two lines, after the spectral embedding, the k-means identifies cen-
troids by minimizing

∑
x∈X minx∈C‖x− c‖2, which is NP-hard [28]. One can rely

on approximations and heuristic solutions, such as Lloyd-Max heuristic algorithm
[29].

2In many cases, not all k similar users have ratings for certain item j . This is common in sparse rating matrices.
In such cases, the set Pu (j) will have cardinality less than k.

REFERENCES 31

Algorithm 4 Spectral clustering

Input: A set of N data points X ∈RN×M in dimension M and a number of desired clusters
k.

Output: A partition of the n points in k clusters.
1: For each pair of data point (i , j) in X, compute the pairwise distance di j based on a

pre-selected similarity score, such as cosine similarity.
2: Compute the similarity matrix W based on either the radius search method or nearest

neighborhood method. The weights in W can be the same as the similarity score di j

or redefined by heat kernel Wi j = exp(−d 2
i j /σ2).

3: Construct the similarity graph, and compute the graph Laplacian L, which can be
(un)normalized or transformed into a random walk Laplacian.

4: Compute the first k unitary eigenvectors U = [u1,u2, . . . ,uk]of the graph Laplacian
corresponding to the k smallest eigenvalues.

5: Embed the i -th node to xi = U(i , :), i.e., treat each row of U as a point.
6: Use k-means or k-medoids on x1, . . . ,xn to identify centroids C = (c1, . . . ,ck).
7: Construct one cluster per centroid and assign each object i to the cluster of the cen-

troid closest to xi .

When dealing with large data, every step in the algorithm will be cumbersome, graph
construction, spectral embedding and k-means. Many researchers have proposed to re-
duce the computational cost specifically for spectral clustering problem, e.g., Nystrom
approximation, landmarks [30], coarsening, coresets, and compressive spectral cluster-
ing [27, 31]. But most of them assume the graph is constructed or coarsened. We propose
diamond sampling to reduce the cost of similarity graph construction. Thus, it is suit-
able to scale spectral clustering to big data.

REFERENCES
[1] X. J. Zhu, Semi-supervised learning literature survey, Tech. Rep. (University of

Wisconsin-Madison Department of Computer Sciences, 2005).

[2] U. Von Luxburg, A tutorial on spectral clustering, Statistics and computing 17, 395
(2007).

[3] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, Collaborative filtering recom-
mender systems, in The adaptive web (Springer, 2007) pp. 291–324.

[4] A. Alexandrescu and K. Kirchhoff, Data-driven graph construction for semi-
supervised graph-based learning in nlp, in Human Language Technologies 2007: The
Conference of the North American Chapter of the Association for Computational Lin-
guistics; Proceedings of the Main Conference (2007) pp. 204–211.

[5] X. Zhu and A. B. Goldberg, Introduction to semi-supervised learning, Synthesis lec-
tures on artificial intelligence and machine learning 3, 1 (2009).

[6] A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algo-
rithm, in Advances in neural information processing systems (2002) pp. 849–856.

32 REFERENCES

[7] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, Connecting the dots: Identify-
ing network structure via graph signal processing, IEEE Signal Processing Magazine
36, 16 (2019).

[8] L. Qiao, L. Zhang, S. Chen, and D. Shen, Data-driven graph construction and graph
learning: A review, Neurocomputing 312, 336 (2018).

[9] G. Ballard, T. G. Kolda, A. Pinar, and C. Seshadhri, Diamond sampling for approx-
imate maximum all-pairs dot-product (mad) search, 2015 IEEE International Con-
ference on Data Mining (2015), 10.1109/icdm.2015.46.

[10] W. Dong, C. Moses, and K. Li, Efficient k-nearest neighbor graph construction for
generic similarity measures, in Proceedings of the 20th International Conference on
World Wide Web, WWW ’11 (Association for Computing Machinery, New York, NY,
USA, 2011) p. 577–586.

[11] W. Zhao, V. S. Martha, G. Chen, and X. Xu, Fast information retrieval and social
network mining via cosine similarity upper bound, in 2013 International Conference
on Social Computing (IEEE, 2013) pp. 940–943.

[12] D. C. Anastasiu and G. Karypis, L2knng: Fast exact k-nearest neighbor graph con-
struction with l2-norm pruning, in Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management (2015) pp. 791–800.

[13] S. Zhu, J. Wu, H. Xiong, and G. Xia, Scaling up top-k cosine similarity search, Data
& Knowledge Engineering 70, 60 (2011).

[14] J. Wang and Y. Xia, Fast graph construction using auction algorithm, arXiv preprint
arXiv:1210.4917 (2012).

[15] A. Andoni and P. Indyk, Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions, in 2006 47th annual IEEE symposium on foundations
of computer science (FOCS’06) (IEEE, 2006) pp. 459–468.

[16] Y. Kalantidis and Y. Avrithis, Locally optimized product quantization for approxi-
mate nearest neighbor search, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2014) pp. 2321–2328.

[17] Y. Avrithis, I. Z. Emiris, and G. Samaras, High-dimensional approximate near-
est neighbor: kd generalized randomized forests, arXiv preprint arXiv:1603.09596
(2016).

[18] M. Aumüller, E. Bernhardsson, and A. Faithfull, Ann-benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms, in International Conference on
Similarity Search and Applications (Springer, 2017) pp. 34–49.

[19] C. Fu, C. Xiang, C. Wang, and D. Cai, Fast approximate nearest neighbor search with
the navigating spreading-out graph, arXiv preprint arXiv:1707.00143 (2017).

http://dx.doi.org/10.1109/icdm.2015.46
http://dx.doi.org/10.1109/icdm.2015.46
http://dx.doi.org/ 10.1145/1963405.1963487
http://dx.doi.org/ 10.1145/1963405.1963487

REFERENCES 33

[20] A. Munteanu and C. Schwiegelshohn, Coresets-methods and history: A theoreticians
design pattern for approximation and streaming algorithms, KI-Künstliche Intelli-
genz 32, 37 (2018).

[21] B. Yang and S. Chen, Sample-dependent graph construction with application to di-
mensionality reduction, Neurocomputing 74, 301 (2010).

[22] M. K. Alewiwi, Efficient and secure document similarity search cloud utilizing
mapreduce, Ph.D. thesis (2015).

[23] E. Cohen and D. D. Lewis, Approximating matrix multiplication for pattern recogni-
tion tasks, Journal of Algorithms 30, 211 (1999).

[24] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, Evaluating collaborative
filtering recommender systems, ACM Transactions on Information Systems (TOIS)
22, 5 (2004).

[25] C. C. Aggarwal et al., Recommender systems, Vol. 1 (Springer, 2016).

[26] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions on
pattern analysis and machine intelligence 22, 888 (2000).

[27] N. Tremblay and A. Loukas, Approximating spectral clustering via sampling: a re-
view, in Sampling Techniques for Supervised or Unsupervised Tasks (Springer, 2020)
pp. 129–183.

[28] P. Drineas, A. M. Frieze, R. Kannan, S. S. Vempala, and V. Vinay, Clustering in large
graphs and matrices. in SODA, Vol. 99 (Citeseer, 1999) pp. 291–299.

[29] S. Lloyd, Least squares quantization in pcm, IEEE transactions on information the-
ory 28, 129 (1982).

[30] D. Cai and X. Chen, Large scale spectral clustering via landmark-based sparse repre-
sentation, IEEE transactions on cybernetics 45, 1669 (2014).

[31] N. Tremblay, G. Puy, R. Gribonval, and P. Vandergheynst, Compressive spectral clus-
tering, in International Conference on Machine Learning (2016) pp. 1002–1011.

3
DIAMOND SAMPLING BASED

SIMILARITY GRAPH CONSTRUCTION

Given a data matrix, our goal is to leverage the diamond sampling to construct a data-
driven similarity graph without computing the matrix product. Thus, it is efficient and
feasible for the large dimensions. In this chapter, we introduce the diamond sampling
based ε-N and kNN graph constructions. We also show the smooth property of the ε-
N graph by reviewing the work in [1]. Then, we study the errors in the constructed ε-N
graph. Lastly, we discuss improvements on graph construction by reviewing the butterfly
counting task for bipartite graphs. We consider cosine similarity throughout the chapter.

3.1. ε-BALL NEIGHBOR GRAPH CONSTRUCTION
The ε-ball neighbor graph construction preserves the edges with a similarity score larger
than a predefined threshold ε and makes the rest zero. This procedure preserves the top-
T (predefined, corresponding to ε) edges in the similarity matrix. Thus, using diamond
sampling is straightforward. It consists of replacing the direct matrix product AA> by
diamond sampling as shown in Algorithm 5.

The two input matrices to diamond sampling [cf. Algorithm 3] should be A>, since
we want to build a similarity matrix D of dimensions M ×M . After obtaining the indi-
cator matrix X, we symmetrize it as in Line 2. We also assume that the data matrix is
normalized, which can be done by storing the data, otherwise, normalization requires
additional efforts. After normalization, the pairwise cosine similarity measure of the
data can be represented as matrix product AA> as in (2.2). Lastly, we translate the edge
thresholding by ε into a task of looking for the top-T entries.

Providing an appropriate threshold parameter ε is usually difficult. Instead, we search
top-T strongly correlated node pairs [1, 2]. This is also more intuitive when processing
big data and indicates the sparsity rate of the similarity matrix, i.e., T /M 2. For instance,
in a 103×103 item-item pairwise similarity graph, there can be in total 106 pairwise rela-
tions, but we search for and preserve top-5% strongly correlated ones. In the following,

35

36 3. DIAMOND SAMPLING BASED SIMILARITY GRAPH CONSTRUCTION

Algorithm 5 Diamond sampling based cosine similarity ε-N graph construction.

Input: Data matrix A ∈ RM×N (normalized in the row direction), threshold ε, corre-
sponding to the top-T , number of samples s.

Output: A similarity matrix D ∈RM×M .
1: Input matrix A>, number of samples s, and T to Algorithm 3.
2: Obtain the indicator matrix X, then X ← (X+X>)/2.
3: Fine the indices of the top-T entries in X as in Algorithm 2.
4: Obtain the approximate cosine similarity matrix D of the ε-N graph, by extracting the

top-T similarity scores.

we study the properties and the accuracy of the constructed ε-N graph.

3.1.1. SMOOTHNESS GUARANTEE
This section analyzes the ε-N graph from a graph topology learning perspective based
on [1]. The work in [1] learns the graph topology from data under a smoothness prior
[3].

Given a data matrix A ∈ RM×N , we can learn a sparse graph from a complete one, in
which each node is connected to every other node with the number of edges |E | = r =
M(M − 1)/2. We aim to determine a subgraph by choosing a subset of edges, ES ⊂ E .
Denote the graph Laplacian matrix of the complete graph as L ∈SM×M , where the main
diagonal entries are all M − 1, and the off-diagonal are −1. The Laplacian can also be
expressed in terms of the incidence matrix, B = [b1, . . . ,br] ∈RM×r as

L = BB> =
r∑

p=1
bp b>

p , (3.1)

where the p-th column, bp denotes a length-m edge vector with entries [bp]i = 1, and
[bp] j =−1, and zeros elsewhere, if an edge p leaves node j and enters node i .

Consider a subgraph with T edges and |ES | = T ¿ r . We refer to this subgraph as a
T -sparse graph. We can connect this graph to L through a sparse edge selection vector
ω = [ω1,ω2, . . . ,ωr]> ∈ {0,1}r , where ‖ω‖0= T , and ωp = 1 if p ∈ ES , or ωp = 0 otherwise.
Finally we can write the Laplacian of this T -sparse graph as a function ofω, i.e.,

LS (ω) =
r∑

p=1
ωp bp b>

P . (3.2)

We can learn the graph Laplacian, i.e., the graph topology under the prior informa-
tion of the data matrix A, which can be seen as N graph signals (i.e., the signal sit on this
graph), has smooth variations on the resulting graph. Mathematically, we can formulate
the latter as

arg min
ω∈W

tr{A>LS (ω)A}, (3.3)

where W = {ω ∈ {0,1}r |‖ω‖0= T }. This is because the cost in (3.3) measures the signal
variation [4]. By inserting (3.2), we can express the cost function in (3.3) as a linear func-

3.1. ε-BALL NEIGHBOR GRAPH CONSTRUCTION 37

tion inω, i.e.,

tr{A>LS (ω)A} =
r∑

p=1
ωp tr{A>bp b>

P A}. (3.4)

Then, by introducing a length-r vector c = [c1,c2, . . . ,cr]>, with cp = tr{A>bp b>
P A}, we can

rewrite the optimization problem (3.3) as

arg min
ω∈{0,1}r

c>ω s.to ‖ω‖0= T. (3.5)

The above Boolean linear programming problem can be solved by finding the T smallest
entries of c, and the solutionωwill have entries equal to one at indices corresponding to
the T smallest entries of c, and zero otherwise. We can now link this procedure with our
work as follows.

Proposition 1. Consider a full similarity matrix C = AA>, with the given data A ∈RM×N ,
where the set [M] can be seen as the node set of a similarity graph. The solution to (3.5) se-
lects T edges between those nodes having the highest cross-correlation. We can also express
the cost function in (3.3) as

tr{A>LS (ω)A} = tr{LS (ω)C} =
r∑

p=1
ωp (b>

p Cbp), (3.6)

where C is the full data similarity matrix. As the definition of bp in (3.1), it is easy to see
that (b>

p Cbp) = [C]i ,i + [C] j , j −2[C]i , j is small if the i -th and j -th nodes are most similar.

Proof. See in [1, Sec.3]

Proposition 1 describes the validity of constructing a graph by connecting nodes that
are most similar, i.e., selecting the top-T entries in the full similarity matrix. The work
in [1] is restricted to learn the graph topology not the edge weights. The above shows
that an ε-N graph guarantees smoothness, which is preferred since the signals often vary
slowly over the graph. The latter also shows our method can be seen as an alternative to
build large-scale graphs for smooth signals,

3.1.2. ERROR ANALYSIS IN DIAMOND SAMPLING BASED ε-N GRAPH CON-
STRUCTION

In this part, we analyze the errors that could happen in the ε-N graph built by the random
diamond sampling.

Theorem 1. Given a data matrix A ∈ RM×N , where entry ai j ∈ [0,K] for all i , j . Suppose
the oracle ε-ball Neighbor graph corresponds to the top-T nonzero entries in the full sim-
ilarity matrix C = AA> with entries ci j . Denote the set of indices within the top-T entries
by T and the total set of indices by C . With s being the number of diamond sampling
steps, we can approximately build an ε-N similarity matrix D with T nonzero entries. The
number of errors (entries smaller than ε) in the entries of D satisfies

#(errors in D) < exp(−2ε4s/(K ‖W‖1)2) · (M 2 −T)+exp(−2(min(c2
i j)−ε2)2s/(K ‖W‖1)2) ·T

(3.7)
where W is the weight matrix computed in diamond sampling Algorithm 3.

38 3. DIAMOND SAMPLING BASED SIMILARITY GRAPH CONSTRUCTION

Proof. See Appendix A.1.

From Theorem 1, the errors can happen in two parts. In the top-T entries and the
remaining entries. The errors will be reduced as the number of samples s increases. The
increase of the maximal value K in A and the absolute sum of the weight matrix W will
increase the error probability. Theorem 1 indicates the number of errors in the diamond
sampling ε-N similarity matrix is limited.

3.2. kNN GRAPH CONSTRUCTION
The general idea of diamond sampling kNN graph construction is similar to ε-N graph
with cosine similarity. The key step in kNN graph construction is the nearest neigh-
bor search for each node. Given again the data matrix A ∈ RM×N with cosine similarity,
building a kNN graph implies looking for the top-k entries in each vector-matrix multi-
plication ai A> for all i , where ai is i -th row of A. The computational cost is O (N 2) plus
the cost of ordering.

• When dealing with big data (N is large while M is of medium size), this strategy is
not practical and we should rely on diamond sampling.

• When M is also large, even with diamond sampling by solving the exhaust of the
kNN search per node, the loop over the large number of nodes hurdles building a
kNN graph.

In the numerical experiments on a big dataset, we conduct the kNN search for a rela-
tively small number of the total nodes, which vindicates the first case. More develop-
ment of the diamond sampling based kNN graph construction is left for future work.

3.3. BUTTERFLY SAMPLING
Diamond sampling approximates the largest entries of two general matrix product. How-
ever, in the cosine similarity graph construction, we need to compute the self-product
of the data matrix A, i.e., C = AA>. In this sense, besides storing one less big matrix, we
can represent the matrix product by a bipartite graph instead of a tripartite one, which
brings additional benefits. The diamond sampling approximation technique can be un-
derstood by a butterfly sampling procedure. From the illustration in Figure 3.1, the tran-
sition is rather intuitive and follows diamond sampling, so we skip the details and deliver
the bipartite graph representation and algorithms directly.

3.3.1. BIPARTITE GRAPH REPRESENTATION OF COSINE SIMILARITY MATRIX

From the tripartite graph representation of the binary matrices product (C = AB>) in
Figure 2.2, the number of the wedges and diamonds connecting two nodes is propor-
tional to the matrix product entry itself and its square, respectively. However, when the
two matrices are equal, i.e., B = A, we can represent the product (C = AA>) in a bipar-
tite graph and the corresponding wedge, three-path and diamond, called a butterfly, are
shown in Figure 3.1. The wedge, three-path, and Butterfly in a bipartite graph can be
seen by mirroring the corresponding ones in a tripartite graph.

3.3. BUTTERFLY SAMPLING 39

i

k
j

(a) Wedge (i ,k, j).

i

k

k‘

j

(b) Three-path (k ′, i ,k, j).

i

k

k‘

j

i k‘

j k

(c) Butterfly (i ,k, j ,k ′).

Figure 3.1: Bipartite graph representation of the matrix product AA>.

3.3.2. BUTTERFLY SAMPLING

i

k

k‘

j

(a) Sample node i from the row
indices of A.

i

k

k‘

j

(b) Sample two nodes from the
neighbor of i uniformly.

i

k

k‘

j

(c) Butterfly (i ,k, j ,k ′).

Figure 3.2: Butterflying sampling in a bipartite graph (the sampled objects are shadowed).

From the bipartite graph representation, we sample a butterfly from to look for the
largest entries in the similarity matrix. Consider the binary case first. Algorithm 6 is a
small variant of the diamond sampling in Algorithm 1, aiming at finding the indicator
matrix which reveals the final product matrix (C = AA> ∈ RM×M). Instead of following
the exact diamond sampling procedure, i.e., "edge, three-path, diamond", we consider
the node-based butterfly sampling as in Figure 3.2. First, sample one node from left side,
then uniformly sample two of its neighbors from the right side, lastly, we sample the last
node from left side and check if a butterfly is complete.

The butterfly sampling, in Algorithm 6, can speed up the convergence procedure for
approximating the similarity graph. In Line 7, we find all potential butterflies that con-
tain nodes i ,k,k ′, which incorporate a deterministic procedure. This is different from
the diamond sampling where at each sampling procedure, one can find at most one di-
amond. These modifications can also be applied to the general case diamond sampling
in Algorithm 3 as well. In the following, we discuss how to compute the similarity matrix
exactly by counting the butterflies in the bipartite graph.

3.3.3. RELATION WITH EXACT BUTTERFLY COUNTING
Inspired by the butterflying counting problem in the bipartite graph [5, 6], we propose
Algorithm 7 to compute the similarity graph exactly based on butterflying counting. The
ground is on the bipartite representation of the similarity graph construction, and that
each wedge connecting nodes (i , j) in the bipartite graph representing an increment in
the entry ci j . The time complexity of exact butterfly counting for exact similarity ma-

40 REFERENCES

Algorithm 6 Butterfly sampling with binary input data matrix A, vertex-based

Input: Data matrix A ∈ {0,1}M×N , number of samples s, all zeros matrix X ∈RM×M .
Output: Indication matrix X ∈RM×M .

1: for i = 1, . . . , M , #rows in A do
2: wi ← (di

2

)
, where di is the degree of the node i , i.e., ‖ai∗‖1, the i -th row sum of

matrix A
3: end for
4: for l = 1, . . . , s do
5: sample node i with probability wi /‖W‖1, from the row indices of A
6: sample two distinct k,k ′ from Ni uniformly at random
7: extract the common neighbors of k and k ′ as set J ←Nk ∩Nk ′
8: for j ∈J and j 6= i do
9: xi j ← xi j +1

10: end for
11: end for
12: postprocessing (see Algorithm 2)

trix construction is not reduced, but it converts the matrix computation as a counting
problem on graphs. Lastly, we note that the algorithm is for binary matrix only. As the
butterfly counting approximation techniques are extended to large scale graphs [5, 6],
we can apply them in the similarity graph construction problem in future.

Algorithm 7 Exact butterfly counting for similarity matrix computation

Input: Binary data matrix A ∈ 0,1M×N

Output: Similarity matrix C = AA> ∈RM×M

1: if M < N then
2: set I ← {1, . . . , M }, i.e., the row indices of A
3: end if
4: for i ∈I ,k ∈Ni and j ∈Nk do
5: if j < i then
6: ci j ← ci j +1
7: end if
8: end for

REFERENCES
[1] S. P. Chepuri, S. Liu, G. Leus, and A. O. Hero, Learning sparse graphs under smooth-

ness prior, in 2017 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP) (IEEE, 2017) pp. 6508–6512.

[2] S. Zhu, J. Wu, H. Xiong, and G. Xia, Scaling up top-k cosine similarity search, Data &
Knowledge Engineering 70, 60 (2011).

[3] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, Connecting the dots: Identifying

REFERENCES 41

network structure via graph signal processing, IEEE Signal Processing Magazine 36,
16 (2019).

[4] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerg-
ing field of signal processing on graphs: Extending high-dimensional data analysis
to networks and other irregular domains, IEEE Signal Processing Magazine 30, 83
(2013).

[5] S.-V. Sanei-Mehri, A. E. Sariyuce, and S. Tirthapura, Butterfly counting in bipar-
tite networks, in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (2018) pp. 2150–2159.

[6] K. Wang, X. Lin, L. Qin, W. Zhang, and Y. Zhang, Efficient butterfly counting for large
bipartite networks, arXiv preprint arXiv:1812.00283 (2018).

4
NUMERICAL RESULTS AND

CONCLUSION

In this chapter, we corroborate diamond sampling graph construction. We consider sev-
eral different baseline dataset to build the ε-ball and kNN similarity graph. We also test
the performance in recommender system and spectral clustering. Lastly, we draw the
conclusions of Part I.

In the numerical experiments, we use the diamond sampling library [1]. It has Matlab
and C implementations. The C implementations rely on the mex interface to Matlab. For
comparison, Matlab and CSparse library [2] based exact similarity matrix computations
are included.

4.1. ε-N AND kNN GRAPHS
In the first experiment, we use diamond sampling to construct an ε-N similarity graph.
This graph is equivalent to find the top-T entries in the full similarity graph. We compare
the accuracy of an ε-N graph constructed by diamond sampling with the exact compu-
tation. This is measured by hit rate, defined as follows

Hit rate = #correct entry indices found by diamond sampling

T
, (4.1)

which measures how many relations are correctly found by diamond sampling. We also
compare the time to learn the similarity graph with different number of samples.

4.1.1. AMAZON AUTOMOTIVE REVIEWS
The first dataset is a subset from the Amazon automotive product reviews with ratings.
The number of users is 2918 and items is 1835. The number of total ratings is 17545. To
build an ε-N similarity for items, we keep the top-2000 entries, which is of sparsity 11.1%
in the full item-item similarity matrix.

In Figure 4.1, we present the results of the similarity matrix learned from diamond
sampling with respect to the exact one for different number of samples in {1× 104,2×

43

44 4. NUMERICAL RESULTS AND CONCLUSION

10
4

10
5

#samples in Diamond sampling

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

L
e
a
rn

in
g
 t
im

e
 (

s
e
c
s
)

diamond sampling

exact computation

(a) Learning time w.r.t. number of samples.

Top 2,000 11% out of 18k

10
4

10
5

#samples in diamond sampling

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it
 r

a
te

(b) Hit rate of the similarity matrix learned by di-
amond sampling w.r.t. the exact one (The yellow
shadow area is the standard deviation).

0 500 1000 1500

nz = 2000

0

200

400

600

800

1000

1200

1400

1600

1800

Exact computation

(c) Exact computation.

0 500 1000 1500

nz = 2000

0

200

400

600

800

1000

1200

1400

1600

1800

Diamond sampling based

(d) Diamond sampling with 1.5×105 samples.

Figure 4.1: ε-N graph construction performance on Amazon automotive product reviews data.

104, . . . ,30× 104}. From Figure 4.1a, when the number of samples is smaller than 30K,
diamond sampling takes less time than direct computation. If a hit rate of 80% is re-
quired as in Figure 4.1b, diamond sampling takes 50% less time. When the number of
samples increases, the standard deviation, i.e., the yellow shadow area reduces, which
vindicates that the variance of the approximation results studied by Lemma 4. Lastly, in
Figures 4.1c and 4.1d, we show the similarity graph sparsity pattern learned by the exact
computation and diamond sampling.

4.1.2. MOVIELENS 10 MILLIONS
In this section, we construct an ε-N and kNN similarity graph on a larger dataset, Movie-
Lens 10M [3]. This dataset contains more than 107 ratings on 65,133 movies by 71,567
users. The ratings are made on a 5-star scale with half-star increments. All users have
rated at least 20 movies. We build an item-item ε-N and kNN similarity graph based on
diamond sampling.

4.1. ε-N AND kNN GRAPHS 45

ε-N GRAPH

The construction performance of the ε-N graph is shown in Figure 4.2. Figures 4.2a,
4.2b, 4.2c and 4.2d show the learning time and hit rate by preserving the top-5k and top-
50k, similarity scores in the graph, respectively. When only 5k top entries are preserved,
diamond sampling takes 20% less time to achieve a 58% hit rate, while to keep the top-
50k, it is14% less time taken to achieve a hit rate of 65%. If we require a hit rate of 50%,
diamond sampling takes half the time needed by exact computation. We also observe
that the randomness of diamond sampling is negligible as the number of the samples is
large.

10
6

10
7

10
8

#samples in diamond sampling

0

10

20

30

40

50

le
a
rn

in
g
 t
im

e
 (

s
e
c
s
)

Top 5,000 0.05% out of 10M

Diamond sampling

Exact sparse computation

Exact computation with CSlib

(a) Learning time of the diamond sampling with
different number of samples.

Top 5,000

10
6

10
7

10
8

#samples in diamond sampling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
it
 r

a
te

(b) Hit rate of the ε-ball graph search learned by
diamond sampling w.r.t. the exact one.

10
6

10
7

10
8

#samples in diamond sampling

0

10

20

30

40

50

60

le
a
rn

in
g
 t
im

e
 (

s
e
c
s
)

Top 50k 0.5% out of 10M

Diamond sampling

Exact sparse computation

Exact computation with CSlib

(c) Learning time of the diamond sampling with
different number of samples.

Top 50k

10
6

10
7

10
8

#samples in diamond sampling

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
it
 r

a
te

(d) Hit rate of the ε-ball graph search learned by
diamond sampling w.r.t. the exact one.

Figure 4.2: ε-N graph construction performance on MovieLens 10M dataset [3].

kNN GRAPH

We now do a kNN search for each item to build an item-item similarity matrix. We set
k to be 20. Since this item-by-item search involves 65,133 matrix-vector multiplications
exactly or by diamond sampling, is not efficient. Thus, we only search the kNN for the
first 100 items, which is sufficient to validate diamond sampling based kNN graph con-

46 4. NUMERICAL RESULTS AND CONCLUSION

struction. The hit rate is defined as

Hit rate = #correctly identified kNN

k
. (4.2)

The hit rate and the consumed time are averaged over 100 items.

Table 4.1: Time comparison for 20NN search per user on ML 10M data

Method Time (seconds)

Diamond sampling
Number of samples in diamond sampling

200 800 3,200 12,800 51,200 204,800
0.1493 0.1495 0.1572 0.1649 0.1840 0.2434

Direct computation 17.9449
Sparse computation 0.0463

Figure 4.3: Boxplot of hit rate for 20NN search for first 100 items on ML 10M data [3]. On each box, the central
mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points. The outliers are plotted individually using
the ’+’ symbol.

The hit rate result is reported in Figure 4.3 by boxplot, where the NN found by dia-
mond sampling of each individual item out of the first 100 items is dotted. We can see
that as the number of samples increase, the accuracy of 20NN is improved. In Table 4.1,
the mean learning time of 20NN search for each user is compared between diamond
sampling with different number of samples, direct matrix-vector multiplication, and its
sparse computation run in Matlab 2019b. We see that the sparse computation takes the
least time, and diamond sampling in general takes 100 less time compared to direct com-
putation. If a median hit rate of 80% is required, diamond sampling takes around 51,200

4.2. PERFORMANCE IN RATING PREDICTION 47

samples with a time cost of 0.1840 per NN search, which is around 100 times faster than
direct computation, but 5 times longer than sparse computation. Diamond sampling
can bring a significant improvement on the computational cost when the data is not
sparse, but when the data is sparse, the simple sparse computation is still outperform-
ing.

4.2. PERFORMANCE IN RATING PREDICTION
In this section, we test the performance of the similarity matrix built from diamond sam-
pling in recommender systems. For simplicity, we only test the diamond sampling in
the context of user-based collaborative filtering (CF), which is the most commonly used
method.

The data we are using is MovieLens 100K [3], which is of medium size but sufficient to
validate the similarity graph constructed from diamond sampling for rating prediction.
The dataset consists of 100K ratings (1-5) from 943 users on 1682 movies. Each user
has rated at least 20 movies. In user-based CF, after the user-user similarity graph is
constructed, there are different ways of make recommendations or rating predictions.
We adapt two schemes in below two subsecitons.

4.2.1. MOVIE RECOMMENDATION

First, we make recommendations for the target user based on the fully rated movies by its
nearest neighbors [4]. This is a practical setting and the merchant does not necessarily
looking for specific rating values. We find the similarity graph first, then for the target
user, we find its top-k most similar users, and lastly, we make recommendations lists as
the movies rated by the neighbors with a star-5.

In this experiment, the whole dataset is 80%/20% split into training and testing data.
From the training data, we use diamond sampling to approximately compute the user-
user 5NN similarity graph. The recommendation performance is compared with respect
to the recommendation results from exact 5NN similarity graph.

To build the 5-NN similarity matrix based on diamond sampling, we set the number
of samples in the set {1× 103,1.5× 103, . . . ,15× 103}. We look for the top-10 entries for
each user, then keep the top-5 by removing the target user itself. In Figure 4.4a, we show
the recall of recommendation by diamond sampling w.r.t. the exact similarity matrix,
which is defined as the number of movies in both recommendation lists divided by the
number of recommendations based on exact 5NN graph. The results are averaged over
all users. From the hit rate curve, we see the performance by diamond sampling can be
quite close to that of computing the exact similarity matrix. This is because increasing
the number of samples in diamond sampling can achieve a better approximation of the
similarity matrix.

From Figure 4.4b, we observe that the 5NN search learning time based on diamond
sampling is much smaller than the exact search. The box-plots in Figure 4.4c and 4.4d
show the recall for the first 20 and 100 users with different number of samples. Lastly,
note that diamond sampling has potential in rating prediction, because its computa-
tional cost increases linearly with the number of samples, but its performance increases
rapidly. For example, when the number of samples increases from 1,000 to 10,000, the

48 4. NUMERICAL RESULTS AND CONCLUSION

2000 4000 6000 8000 10000 12000

#samples in Diamond sampling

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

re
c
a
ll

w
.r

.t
.
e
x
a
c
t
C

F

(a) Recall of the recommendations, diamond sam-
pling CF w.r.t. exact user CF, averaged of all users.

2000 4000 6000 8000 10000 12000

#samples in Diamond sampling

0

0.005

0.01

0.015

0.02

0.025

5
-N

N
 L

e
a
rn

in
g
 t
im

e
 p

e
r

u
s
e
r

Diamond sampling

Exact search

(b) Learning time comparison per user NN search,
averaged over all users.

(c) Relative recall of the first 20 users recommen-
dations.

(d) More details of recall of the first 100 users rec-
ommendations.

Figure 4.4: Recall of simple user-based collaborative filtering recommendation generated by diamond
sampling w.r.t. exact computation.

performance increases from 53% to 78%, but the time required for each NN search in-
creases from 0.002 to 0.0052 secs.

4.2.2. RATING PREDICTION
In user-based collaborative filtering, we can complement the user-item rating matrix by
predicting the unknown rating values. From the prediction results, we can make the
top-N movie recommendations [4].

Let Pu(j) denote the set of the top-k similar users, for which the ratings of item j
have been observed, of the target user u. The predicted rating r̂u j of target user u for
item j is estimated as

r̂u j = r̄u +
∑

v∈Pu (j) cuv (rv j − r̄v)∑
v∈Pu (j) |cuv |

, (4.3)

where cuv is the cosine similarity score between user u and v , r̄u is the average rating
score of user u.

We consider the dataset ML 100K [3], which is again split into a training set and a

4.3. SPECTRAL CLUSTERING 49

testing set in which there are exactly 10 ratings per user. With the training data, we built
a 20NN similarity graph based on diamond sampling and from exact computation, then
recommend the top-30 items based on (4.3). We compute the hit rate as the ratio of the
number of users whose recommendation lists contain at least one of the movies from
the testing data, and the total number of users [5]. Also, we compute the relative hit rate
of the recommendations based on diamond sampling with respect to the one based on
exact computation, i.e., the number of movies that are in both lists divided by 30.

2000 4000 6000 8000 10000 12000

#samples in Diamond sampling

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
it
 r

a
te

Exact search

Diamond sampling

Diamond w.r.t. exact

(a) (Relative) Hit rate of the recommendations
based on diamond sampling.

2000 4000 6000 8000 10000 12000

#samples in Diamond sampling

0.46

0.465

0.47

0.475

0.48

0.485

0.49

0.495

R
M

S
E

Exact search

Diamond sampling

(b) RMSE comparison of the predicted ratings
based on two methods.

Figure 4.5: Rating prediction based on user collaborative filtering by diamond sampling constructed and
exact 20NN similarity graph.

Figure 4.5 shows the accuracy of the rating prediction of diamond sampling with re-
spect to the exact computation. Figure 4.5a shows the hit rates of both diamond sam-
pling and the exact computation, and the relative one, which are averaged over all users.
In Figure 4.5b, the RMSE between the rating predication and the test data is shown, de-
fined as

RMSE =
√

1

#user #item

∑
(u,i)

(r̂ui − zui), (4.4)

where #user is the total number of users, #item the number of items and r̂ui and zui are
the predicted rating and the rating from test data, of user u on item i , respectively. We
observe that when the number of samples increases, the RMSE will decrease, which has
small difference with the exact results. Regarding the learning time of each kNN search,
it has the similar results as above in movie recommendations.

4.3. SPECTRAL CLUSTERING
Lastly, we conduct a synthetic experiment to find out if the similarity matrix built with
diamond sampling can perform well in spectral clustering. The goal here is to validate
diamond sampling, instead of its efficiency. We generate 200 data points in the 2D plane,
where each of them is along with a specific direction, 30o , or 60o , respectively, but con-
taminated by random noise, indicating that we have two clusters of data points. Our goal
is to partition them without supervision.

50 4. NUMERICAL RESULTS AND CONCLUSION

(a) 200 data points.

sparsity = 28% 0.0012 sec

1

2

(b) Results from exact similarity matrix with top-
28% entries.

(c) Similarity graph constructed by diamond sam-
pling.

sparsity = 3%, 0.0018 sec

1

2

(d) Diamond sampling based similarity matrix
with top-3% entries.

Figure 4.6: Toy experiments on spectral clustering.

We follow the spectral clustering method as in section 2.4 by first constructing the
similarity matrix from the data and we use the "spectralcluster" function in Matlab [6–8].
Specifically, we sparsify the exact similarity graph adjacency matrix by keeping the top-
28% entries, while for the one built by diamond sampling, only the top-3% is preserved.
This is tested to get a small number of samples as much as possible while preserving the
clustering performance. For diamond sampling, we set the number of samples the same
as the number of the nonzeros entries. This procedure takes the similar time complex-
ity as exact computation, which is not significantly improved, because the data matrix
dimension is of 200×2, too small to show the efficiency of diamond sampling.

The clustering results are shown in Figure 4.6, from which we observe that both sim-
ilarity matrices are able to cluster the data points well. Their performance is similar ex-
cept for two data points that are partitioned differently. Note that here we only showed
an instance of the diamond sampling based result, which is random and has clustering
variations on the middle fused nodes.

In Figure 4.7, we show the spectral clustering results based on exact similarity graph
and diamond sampling constructed similarity graph for 5K and 10K data points. From

4.4. CONCLUSION 51

1

2

(a) Results from exact similarity matrix for 5K
points.

1

2

(b) Results from diamond sampling for 5K points.

1

2

(c) Results from exact similarity matrix for 10K
points.

1

2

(d) Results from diamond sampling for 10K points.

Figure 4.7: Spectral clustering with 5K and 10K data points.

the experimental results, for 5K data points, it takes 30% less time to build the similarity
graph by diamond sampling (1.3882 and 0.9637 seconds, respectively), with an accu-
racy of 96.26%. For 10K data points, it takes 60% less time to build the similarity graph
(12.2968 and 4.69 seconds, respectively), with an accuracy of 99.73%. We point out that
diamond sampling is potential to reduce the computational cost in spectral clustering,
but other acceleration methods to speed up the other steps are needed as well.

4.4. CONCLUSION
In Part I, we discussed how to improve the efficiency of similarity graph construction
from data. This is an important task in many application, e.g., recommender systems,
and spectral embedding/clustering. We managed to leverage the fast matrix product ap-
proximation technique, diamond sampling, to achieve a much faster graph construction
method.

In chapter 2, we reviewed and developed diamond sampling for approximating the
maximum product search in large matrices. In chapter 3 we have proposed how to use
diamond sampling to construct cosine similarity based graph. In both chapters, a the-

52 REFERENCES

oretical study is provided as well as the background information regarding the experi-
ments. A big improvement of diamond sampling based fast graph construction algo-
rithms is in no need of high performance computing tools, compared to the state-of-
the-art. However, high performance computing can also be incorporated, as each major
sampling step in diamond sampling is independent of each other. In chapter 4, with ex-
periments on showing the performance of diamond sampling in cosine similarity based
ε-N or kNN graph construction. Diamond sampling can improve the efficiency com-
pared to the direct computation, while preserving an acceptable performance. This is
needed especially in the big data processing.

In the future, the extension of other similarity measures can be carried out. The
ground rule is to translate other measures into a matrix product. Regarding the kNN
similarity graph construction, so far we only achieved the NN search per node efficiently.
When the graph is too large, this still cannot resolve the high computational cost prob-
lem. Finally, as indicated in section 3.3, research is needed to further reduce the compu-
tational cost and storage cost for diamond sampling.

REFERENCES
[1] G. Ballard, T. G. Kolda, A. Pinar, and C. Seshadhri, Diamond sampling for approxi-

mate maximum all-pairs dot-product (mad) search, 2015 IEEE International Confer-
ence on Data Mining (2015), 10.1109/icdm.2015.46.

[2] T. A. Davis, Direct methods for sparse linear systems (SIAM, 2006).

[3] F. M. Harper and J. A. Konstan, The movielens datasets: History and context, Acm
transactions on interactive intelligent systems (tiis) 5, 1 (2015).

[4] C. C. Aggarwal et al., Recommender systems, Vol. 1 (Springer, 2016).

[5] X. Ning and G. Karypis, Slim: Sparse linear methods for top-n recommender systems,
in 2011 IEEE 11th International Conference on Data Mining (IEEE, 2011) pp. 497–506.

[6] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions on
pattern analysis and machine intelligence 22, 888 (2000).

[7] A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algorithm,
in Advances in neural information processing systems (2002) pp. 849–856.

[8] U. Von Luxburg, A tutorial on spectral clustering, Statistics and computing 17, 395
(2007).

http://dx.doi.org/10.1109/icdm.2015.46
http://dx.doi.org/10.1109/icdm.2015.46

II
GRAPH SIGNAL RECONSTRUCTION

53

5
BACKGROUND

In second part of this thesis, we focus on the signal reconstruction over graphs. This
chapter provides the background knowledge of topic, Graph signal processing (GSP)
[1],[2]. First, we review the previous work in graph signal reconstruction. Then, we
provide the graph signal processing basic knowledge to prepare for later chapters, e.g.,
graph signals, graph Fourier transform, graph filtering and so on. Finally, we conclude
the chapter by outlining the work in Part II.

5.1. INTRODUCTION
In this part, we study graph signal reconstruction. As in classical signal processing, the
task of estimating the underlying signal from noisy observations. i.e., signal denoising, is a
critical task in GSP. This is a fundamental problem and can be useful in many other prob-
lems, for instance, graph signal sampling, graph-based semi-supervised learning [1–4].
The most commonly used method is graph Laplacian denoising based on Tikhonov reg-
ularization [1, 5].

5.1.1. LITERATURE REVIEW
Over the last few years, a large amount of related research has been focused on the topic
of graph signal reconstruction [1, 2, 5–16]. Within this body of work, most of the ap-
proaches rely on solving a regularized least squares problem under a smoothness as-
sumption and Tikhonov denoising is the most common one [1],[5].

Different variants of regularized signal recovery methods find a solution at a lower
complexity cost by means of iterative and distributed methods [6–12]. For instance, [6]
proposed two local-set-based iterative methods relying on frame theory, while [8] put
forth a distributed implementation for time-varying signals. In contrast, in [7], a least
squares problem is regularized to suppress the high frequency components. Further-
more, the work in [9] generalized the classical least mean squares and recursive least
squares methods to adaptively estimate the graph signal. In [11], the problem was reg-
ularized using the signal total variation and it was solved distributively by a primal dual

55

56 5. BACKGROUND

hybrid gradient method. The authors of [12] proposed the Chebyshev polynomial ap-
proximation to solve the same problem distributively. Similarly, in [13–16], the conven-
tional smoothness measure was generalized by means of graph kernels. These graph
kernels, defined as polynomial functions of the matrix representation of the graph, al-
low to capture different structures present in the data. Finally, regarding the choice of the
regularization parameter in Tikhonov-based denoising, [5] has studied the bias-variance
trade-off controlled by this parameter as well as its optimal value, which will be reviewed
in detail later.

Although state-of-the-art successfully address the signal denoising problem, almost
all proposed methods adopt a single parameter to control the performance of the method;
that is, its fitting error and regularization cost. However, a single regularization param-
eter is insufficient to reflect the penalty locally over the graph. To see this, consider an
instance of graph Laplacian denoising, which penalizes the error fitting term with signal
smoothness measure. A scalar regularization weight can only penalize the global signal
smoothness, instead of local penalties, which are important for signals without global
smoothness, such as piecewise-smooth, piecewise-constant signals [17, 18]. This choice
limits the denoising performance and motivates us to improve the dimension of regu-
larization parameters, i.e., the degrees of freedom (DoFs).

Some initial work to increase the DoFs in the design is for instance [11]. This work
proposes to minimize the signal total smoothness by separately regularizing the fitting
error of each individual node. Despite that this approach can be considered as a multi-
parameter based regularization, it focuses on a measurement-specific regularization,
similar to a weighted least squares approach. It also does not consider the possible het-
erogeneity at node level, i.e., the parameters are related to the different measurements
rather than to the different nodes. In this part, we consider a multi-parameter regu-
larization scheme to penalize the reconstruction problem with the local graph signal
smoothness, so to obtain an improved performance.

5.1.2. OUTLINE OF PART II
This part is outlined as follows.

• In chapter 6, we propose node-adaptive (NA) or node-varying graph signal reg-
ularization. Then, we study its bias-variance trade-off and implementation. Af-
terwards, we look into how to design the regularization parameters. Finally, we
conduct several experiments to validate the NA signal regularization over graphs
on the synthetic and real data.

• Graph signal sampling is strongly related to graph signal reconstruction. As a re-
construction method, NA regularization is promising in sampling and interpola-
tion problems. In chapter 7, we first review the development in graph signal sam-
pling problem. Then, we analyze the Tikhonov regularization based method. Fi-
nally, we apply NA regularization in sampling problems and improve the interpo-
lation performance.

• In chapter 8, we conclude the second part of this thesis and propose several future
research statements.

5.2. GRAPH SIGNAL PROCESSING 57

5.2. GRAPH SIGNAL PROCESSING
Consider an undirected graph G = (V ,E), where V = {1, . . . , N } is the set of N nodes and
E the set of M edges such that if nodes i and j are connected, then

(
i , j

) ∈ E . The neigh-
borhood set of node i is Ni =

{
j |(i , j

) ∈ E
}
. The graph can be represented by its adja-

cency matrix A with entry Ai j ≥ 0 if
(
i , j

) ∈ E and Ai j = 0, otherwise. Alternatively, the
graph can also be represented by its graph Laplacian matrix L = diag(A1)−A. The graph
Laplacian is a positive semi-definite matrix and is one of the candidates of the graph
shift operator matrix S. Other candidates for S are adjacency matrix, normalized graph
Laplacian.

5.2.1. GRAPH SIGNAL VARIATION

On the vertices of G , we define a graph signal x = [x1, . . . , xN]> whose i -th element, xi ,
is the signal value on node i . The signal variation, with respect to the graph, can be
measured by the graph Laplacian quadratic form

S2(x) = 1

2

∑
i∈V

∑
j∈Ni

Ai j (xi −x j)2 = x>Lx. (5.1)

If the signal x is smooth over G , then S2(x) is small [1]. This measure is used as a reg-
ularizer to recover smooth graph signals from noisy measurements [1, 2, 5], which is
so-called graph Laplacian denoising, or Tikhonov regularization.

5.2.2. GRAPH SHIFT OPERATOR
One of the central operations in GSP is shifting a graph signal x over the graph as follows

x(1) = Sx, (5.2)

where x(1) represents the one step shifted version of signal x by S. The physical meaning
of shifting is that each node collects the information from its neighbors. Similarly, higher
order shifts can be computed recursively as

x(k) = Sx(k−1) = Sk x, (5.3)

where each node can aggregate the information from its k-hop neighbors.

5.2.3. GRAPH FOURIER TRANSFORM
The graph Fourier transform (GFT) relies on the spectral decomposition of the graph
shift operator. In this thesis, we consider graph Laplacian, which can be decomposed as

L = UΛU>, (5.4)

where U = (u0, . . . ,uN−1) is an N ×N orthonormal matrix containing eigenvectors of L,
andΛ= diag(λ0, . . . ,λN−1) is the eigenvalue matrix. We order the eigenvalues as 0 =λ0 ≤
λ1 ≤ λ2 ≤ . . . ,≤ λN−1, where the number of zero eigenvalue equals to the number of
connected components of the graph. We then define the following.

58 5. BACKGROUND

Definition 1. Graph Fourier transform (GFT): The GFT x̃ of a graph signal x sitting on the
graph G with graph Laplacian L is defined as

x̃ = U>x, (5.5)

where U is the eigenvector matrix of L.

Definition 2. Inverse graph Fourier transform (IGFT): The IGFT of x̃ is defined as

x = Ux̃, (5.6)

where U is the eigenvector matrix of L.

Definition 3. Graph frequencies: The frequencies of a graph are the eigenvaluesλ0, . . . ,λN−1

of the graph Laplacian.

The GFT of a graph signal x expands itself in the eigenspace of the graph Laplacian.
The GFT coefficients x̃ measure the expansion weight of the signal over each eigenvector.
The graph Laplacian eigenvectors act as the oscillating modes of the graph [19]. In this
sense, the GFT is a generalization of the temporal Fourier transform. Instead, the GFT
maps the signal from vertex domain to graph spectral domain. Likewise, the IGFT maps
signal from graph spectral domain to vertex domain.

5.2.4. GRAPH SIGNAL BANDWIDTH
A graph signal x is said to be low-pass if it is concentrated in the frequencies with slow-
varying eigenvectors. Similarly, a high-pass graph signal has most energy concentrated
in the graph frequencies corresponding to the fast-varying eigenvectors.

A bandlimited graph signal on G with bandwidth |F | ≤ N is and only if its GFT x̃ is
nonzeros on the limited set D of graph frequencies, i.e., the set F consists of

F = {λi |x̃i 6= 0, for i ∈ {0, . . . , N −1}}. (5.7)

5.2.5. GRAPH FILTERING
Similar to traditional signal processing, filtering can be done in GSP by weighting the
GFT of each frequency differently. For instance, if a low-pass graph signal is perturbed
by a high-pass noise, then a low-pass filtering can be used to denoise.

Definition 4. Graph filtering: A linear shift-invariant graph filter is an operation on the
graph signal with graph frequency domain output

ỹ = h(Λ)x̃, (5.8)

where h(Λ) is the graph filter response, defined as a function over the graph frequenciesΛ
to the real number set, and assigns a particular value h(λn) to each graph frequency λn .
In vertex domain, the filtering output is

y = Hx = Uh(Λ)U>x, (5.9)

with graph filter H = Uh(Λ)U>.

5.2. GRAPH SIGNAL PROCESSING 59

Definition 5. FIR graph filters: A popular choice of graph filter H is a polynomial of the
graph shift operator1, i.e.,

H,
K∑

k=0
φk Sk , (5.10)

where φk is the graph filter coefficient. The corresponding graph filter response h(λ) is

h(λ) =
K∑

k=0
φkλ

k , (5.11)

where λ is a graph frequency.

When an FIR filter is applied to a graph signal x, the nodes can compute locally the
kthe shift of x from the former (k −1)th shift, since Sk x = S(Sk−1x),. An Fir filter of order
K requires K local exchanges between neighbors and amounts to a computation and
communication complexity of O (MK) [19, 20].

In [21], an ARMA recursion on graphs to implement distributively rational graph fil-
tering, i.e., a filtering operation characterized by a rational frequency response.

Definition 6. ARMA graph filters. The building block of this filter is the so-called ARMA
graph filter of order one (ARMA1). This filter is obtained as the steady-state of the first-
order recursion

yt =ψSyt−1 +φx, (5.12)

with arbitrary y0 and scalar coefficients ψ and φ. The frequency response of the ARMA1

(5.12) is

h(λ) = r

λ−p
, subject to |p| > ρ (5.13)

with residual r =−φ/ψ, pole p = 1/ψ and ρ the spectral radius bound of S.

Given the condition of |ψρ| < 1, the recursion (5.12) achieves the frequency response
(5.13). The operation (5.12) is a distributed recursion on graphs, where neighbors now
exchange their former output yt−1 rather than the input x. The per-iteration complexity
of such a recursion of O (M).

5.2.6. GRAPH LAPLACIAN DENOISING, TIKHONOV REGULARIZATION
Through Part II, we consider the following signal model

y = x∗+n, (5.14)

where y is the noisy signal measurement, x∗ ∈RN is the smooth graph signal and n ∈RN

is zero-mean noise with covariance matrix Σ.
The graph Laplacian quadratic form is used to regularize to recover a smooth graph

signal. Specifically, if x∗ is smooth, we can reconstruct it from the noisy measurements
by solving the Tikhonov regularized problem

x̂(ω0) = argmin
x∈RN

‖y−x‖2
2+ω0x>Lx (5.15)

1In this thesis, we consider the choice of the graph Laplacian L

60 REFERENCES

where ω0 > 0 is a scalar regularization parameter. The first term in (5.15) forces the es-
timate x̂(ω0) to be close to the observed signal y (fitting term), while the second term
promotes smoothness. The trade-off between these two quantities is governed by the
scalar weight ω0. The closed-formed solution of (5.15) is

x̂(ω0) = (I+ω0L)−1 y := H(ω0)y (5.16)

where we defined H(ω0) , (I+ω0L)−1 for convenience. Note that from Definition 6, re-
cursion (5.12) is an ARMA graph filter of order one.

BIAS-VARIANCE TRADE-OFF

The smooth regularizer in (5.15) biases the estimator x̂(ω0) in (5.16). The bias b(ω0) is
given by

b(ω0) = E(x̂(ω0))−x∗ = ((I+ω0L)−1 − I)x∗ (5.17)

which is controlled byω0. Also the variance over all nodes is controlled byω0 and can be
expressed as

var(ω0) = E(‖x̂(ω0)−E(x̂(ω0))‖2) = tr(H2(ω0)Σ). (5.18)

By combining the bias and the variance, we can quantify the performance of the estima-
tor (5.16) by its MSE

mse(ω0) = E(‖x̂(ω0)−x∗‖2
2) = ‖b(ω0)‖2

2+var(ω0)

= tr((I−H(ω0))2 x∗x∗>)+ tr(H2(ω0)Σ).
(5.19)

The MSE exhibits the bias-variance trade-off imposed by the smoothness regularizer. If
the scalar ω0 is reduced, we achieve a lower bias but a higher variance, and vice-versa.
A good value for ω0 can be obtained by some traditional parameter selection methods
such as the discrepancy principle [22, 23], the L-curve criterion [24] and the generalized
cross-validation [25]. In GSP, a natural optimal parameter selection criterion is based
on the MSE, which is investigated in [5]. Parameter ω0 is found by equating the bias
contribution to the variance. This is because the MSE expression is not a convex function
w.r.t. ω0. By matching the bias and the variance term, an upper-bound of MSE can be
minimized [5].

However, since the balance between the bias and the variance is controlled from a
scalar ω0, it is often required to substantially pay in one metric for gaining little on the
other metric. Starting from the next chapter, we show how to improve this by changing
problem (5.15) to a node-adaptive regularization problem on graphs.

REFERENCES
[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerg-

ing field of signal processing on graphs: Extending high-dimensional data analysis
to networks and other irregular domains, IEEE Signal Processing Magazine 30, 83
(2013).

http://dx.doi.org/ 10.1109/MSP.2012.2235192
http://dx.doi.org/ 10.1109/MSP.2012.2235192

REFERENCES 61

[2] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst, Graph
signal processing: Overview, challenges, and applications, Proceedings of the IEEE
106, 808 (2018).

[3] J. Jia, M. T. Schaub, S. Segarra, and A. R. Benson, Graph-based semi-supervised &
active learning for edge flows, in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (2019) pp. 761–771.

[4] P. Lorenzo, S. Barbarossa, and P. Banelli, Sampling and recovery of graph signals, in
Cooperative and Graph Signal Processing (Elsevier, 2018) pp. 261–282.

[5] P. Chen and S. Liu, Bias-variance tradeoff of graph laplacian regularizer, IEEE Signal
Processing Letters 24, 1118 (2017).

[6] X. Wang, P. Liu, and Y. Gu, Local-set-based graph signal reconstruction, IEEE Trans-
actions on Signal Processing 63, 2432 (2015).

[7] S. K. Narang, A. Gadde, E. Sanou, and A. Ortega, Localized iterative methods for
interpolation in graph structured data, in 2013 IEEE Global Conference on Signal
and Information Processing (2013) pp. 491–494.

[8] X. Wang, M. Wang, and Y. Gu, A distributed tracking algorithm for reconstruction of
graph signals, IEEE Journal of Selected Topics in Signal Processing 9, 728 (2015).

[9] P. Di Lorenzo, P. Banelli, E. Isufi, S. Barbarossa, and G. Leus, Adaptive graph sig-
nal processing: Algorithms and optimal sampling strategies, IEEE Transactions on
Signal Processing 66, 3584 (2018).

[10] E. Isufi, P. Di Lorenzo, P. Banelli, and G. Leus, Distributed wiener-based recon-
struction of graph signals, in 2018 IEEE Statistical Signal Processing Workshop (SSP)
(2018) pp. 21–25.

[11] P. Berger, G. Hannak, and G. Matz, Graph signal recovery via primal-dual algo-
rithms for total variation minimization, IEEE Journal of Selected Topics in Signal
Processing 11, 842 (2017).

[12] D. I. Shuman, P. Vandergheynst, D. Kressner, and P. Frossard, Distributed signal
processing via chebyshev polynomial approximation, IEEE Transactions on Signal
and Information Processing over Networks 4, 736 (2018).

[13] A. Venkitaraman, S. Chatterjee, and P. Händel, Predicting graph signals using kernel
regression where the input signal is agnostic to a graph, IEEE Transactions on Signal
and Information Processing over Networks , 1 (2019).

[14] V. N. Ioannidis, M. Ma, A. N. Nikolakopoulos, G. B. Giannakis, and D. Romero,
Kernel-based Inference of Functions over Graphs, arXiv e-prints , arXiv:1711.10353
(2017), arXiv:1711.10353 [stat.ML] .

[15] D. Romero, M. Ma, and G. B. Giannakis, Kernel-based reconstruction of graph sig-
nals, IEEE Transactions on Signal Processing 65, 764 (2017).

http://dx.doi.org/10.1109/JPROC.2018.2820126
http://dx.doi.org/10.1109/JPROC.2018.2820126
http://dx.doi.org/10.1109/LSP.2017.2712141
http://dx.doi.org/10.1109/LSP.2017.2712141
http://dx.doi.org/10.1109/TSP.2015.2411217
http://dx.doi.org/10.1109/TSP.2015.2411217
http://dx.doi.org/ 10.1109/GlobalSIP.2013.6736922
http://dx.doi.org/ 10.1109/GlobalSIP.2013.6736922
http://dx.doi.org/ 10.1109/JSTSP.2015.2403799
http://dx.doi.org/10.1109/TSP.2018.2835384
http://dx.doi.org/10.1109/TSP.2018.2835384
http://dx.doi.org/ 10.1109/SSP.2018.8450828
http://dx.doi.org/ 10.1109/JSTSP.2017.2726978
http://dx.doi.org/ 10.1109/JSTSP.2017.2726978
http://dx.doi.org/ 10.1109/TSIPN.2018.2824239
http://dx.doi.org/ 10.1109/TSIPN.2018.2824239
http://dx.doi.org/10.1109/TSIPN.2019.2936358
http://dx.doi.org/10.1109/TSIPN.2019.2936358
http://arxiv.org/abs/1711.10353
http://dx.doi.org/10.1109/TSP.2016.2620116

62 REFERENCES

[16] A. Venkitaraman, S. Chatterjee, and P. Händel, Multi-kernel Regression For
Graph Signal Processing, arXiv e-prints , arXiv:1803.04196 (2018), arXiv:1803.04196
[stat.ML] .

[17] Y.-X. Wang, J. Sharpnack, A. J. Smola, and R. J. Tibshirani, Trend filtering on graphs,
The Journal of Machine Learning Research 17, 3651 (2016).

[18] S. Chen, R. Varma, A. Singh, and J. Kovačević, Representations of piecewise smooth
signals on graphs, in 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (IEEE, 2016) pp. 6370–6374.

[19] E. Isufi, Graph-time signal processing: Filtering and sampling strategies, (2019).

[20] M. Coutino, E. Isufi, and G. Leus, Advances in distributed graph filtering, IEEE
Transactions on Signal Processing 67, 2320 (2019).

[21] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, Autoregressive moving average graph
filtering, IEEE Transactions on Signal Processing 65, 274 (2017).

[22] O. Scherzer, The use of morozov’s discrepancy principle for tikhonov regularization
for solving nonlinear ill-posed problems, Computing 51, 45 (1993).

[23] S. W. Anzengruber and R. Ramlau, Morozov's discrepancy principle for tikhonov-type
functionals with nonlinear operators, Inverse Problems 26, 025001 (2009).

[24] P. C. Hansen and D. P. O’Leary, The use of the l-curve in the regularization of dis-
crete ill-posed problems, SIAM Journal on Scientific Computing 14, 1487 (1993),
https://doi.org/10.1137/0914086 .

[25] G. H.Golub and U. von Matt, Generalized cross-validation for large-scale
problems, Journal of Computational and Graphical Statistics 6, 1 (1997),
https://amstat.tandfonline.com/doi/pdf/10.1080/10618600.1997.10474725 .

http://arxiv.org/abs/1803.04196
http://arxiv.org/abs/1803.04196
http://dx.doi.org/10.1109/TSP.2019.2904925
http://dx.doi.org/10.1109/TSP.2019.2904925
http://dx.doi.org/10.1109/TSP.2016.2614793
http://dx.doi.org/10.1007/BF02243828
http://dx.doi.org/ 10.1088/0266-5611/26/2/025001
http://dx.doi.org/10.1137/0914086
http://arxiv.org/abs/https://doi.org/10.1137/0914086
http://dx.doi.org/ 10.1080/10618600.1997.10474725
http://arxiv.org/abs/https://amstat.tandfonline.com/doi/pdf/10.1080/10618600.1997.10474725

6
NODE-ADAPTIVE GRAPH SIGNAL

REGULARIZATION

Graph Laplacian denoising (5.15) penalizes the error fitting term with global signal smooth-
ness measure weighted by a scalar regularization weight ω0. Since all nodal values are
weighted equally, we refer to problem (5.15) as a node-invariant (NI) regularization. In
this chapter, we propose the node-adaptive (NA) graph regularization.

If the signal is globally smooth over the underlying graph, the NI regularization will
result in a good signal reconstruction performance. However, it focuses only on the big
picture, ignoring local signal detail and ultimately leading to an unsatisfactory perfor-
mance. This is particularly emphasized when the signal is not strictly smooth globally
over the underlying graph such as piecewise-smooth or piecewise-constant signals [1, 2].
In most situations, graph signals are smooth locally. This is a more general and relaxed
assumption on the signal compared to the global smoothness and is adaptive. To en-
hance the role of local detail and improve the estimator MSE, we propose a graph signal
regularization strategy that replaces the global penalty term S2(x) with a local penalty for
each node. This strategy allows each node i to weigh its own signal xi with an individual
scalar ωi . With the enhanced DoFs, we expect a better denoising performance without
increasing the complexity.

It is, however, unclear what is the new trade-off imposed by said regularizer and how
to design these node-adaptive weights ω1, . . . ,ωN to balance such a trade-off. Thus, in
this chapter, three main questions are proposed i) what is the structure of the solution of
NA Tikhonov-based denoising; ii) how does the bias-variance trade-off affects the perfor-
mance of this solution; iii) how to leverage this solution to optimally design node-depen-
dent weights.

Aiming to answer these questions, our main contributions are the following.

– We formulate the NA Tikhonov denoising problem under a deterministic signal
model (5.14), derive its closed-form solution, and study its bias-variance trade-off.
We also state two theoretical results supporting the improved performance of NA

63

64 6. NODE-ADAPTIVE GRAPH SIGNAL REGULARIZATION

weights compared to the NI weight. Specifically, we provide conditions for the NA
weights that allow for a lower mean-squared error (MSE) and variance compared
to NI Tikhonov-based denoising.

– Regarding the choice of the NA weights, we propose three methods based on min-
imizing the MSE. The first two methods leverage the famous Prony’s method from
classical signal processing as well as convex relaxation techniques. The third method
addresses the case where we have no access to the true signals, and only know their
variation bounds. We use a minimax strategy to design the weights minimizing the
worst-case performance of the regularizer. The latter method addresses scenarios
where only upper- and lower-bounds for the node signals are available.

For the sake of exposition, we solely focus on NA Tikhonov-based denoising. How-
ever, our findings can be generalized to other regularization penalties, such as any graph
shift operator based ridge regression penalty [3, 4].

6.1. NODE-ADAPTIVE REGULARIZER
Consider a vector of parameters ω = [ω1, . . . ,ωN]> ∈ RN and define the node-adaptive
Laplacian operator as

S(ω), diag(ω)Ldiag(ω) =ωω>¯L (6.1)

where ¯ is the element-wise Hadamard product. For any value ofω, the parametric shift
operator matrix S(ω) is positive semi-definite (see Lemma 9 in Appendix B.1) and has the
same support as the graph Laplacian L –properties that will result useful in the sequel.
The parameterized graph Laplacian quadratic form (6.1) has the form [cf.(5.1)]

S2(x,ω) = x>S(ω)x = (diag(ω)x)>L(diag(ω)x)

= 1

2

∑
i∈V

∑
j∈Ni

Ai j (ωi xi −ω j x j)2.
(6.2)

This quadratic form can be seen in a two-way step: first it applies a pre-weighting to each
entry xi of x using parameter wi , i.e., diag(ω)x; then computes the regular quadratic
measure in (5.1) w.r.t. Laplacian L. We can use (6.2) to recover a graph signal x∗ from
noisy measurements y by solving the convex problem

x̂(ω) = argmin
x∈RN

‖y−x‖2
2+x>diag(ω)Ldiag(ω)x, (6.3)

where the trade-off between the fitting error and the regularization term is now con-
trolled by the N parameters inω.

To see the impact of problem (6.3) on capturing local detail, suppose we are inter-
ested to recover a graph signal that is smooth only on a block of connected nodes B ⊆ V .
We can then set the respective entries in ω for all in B to be a shared value, ωi =p

ωB ,
and set all remaining entries to zero. Problem (6.3) will then seek for a graph signal that
is locally smooth on B while it fits y on the remaining nodes V \B. Problem (5.15) is
the particular case of (6.3) for B = V and ωB = ω0. This indicates our more general
local signal smoothness priors, compared to the global smoothness used in Tikhonov

6.2. BIAS-VARIANCE TRADE-OFF 65

regularization. In the sequel, we will design this parameter ω to learn the local signal
smoothness priors adaptively.

Optimization (6.3) forms our node-adaptive graph signal denoising problem and has
the optimal solution

x̂(ω) = (I+S(ω))−1 y := H(ω)y (6.4)

where we again defined H(ω) , (I+S(ω))−1 to simplify notation. Despite the similarity
with (5.16), the optimal solution in (6.4) is now governed by the vector of parameters ω
and not anymore by the scalar ω0. The latter changes the bias-variance trade-off as we
will discuss in the next section.

The optimal regularized solutions (5.16) and (6.4) can also be interpreted as graph
filtering operations [5]. In particular, (5.16) consists of filtering the measurements y with
an autoregressive graph filter with denominator coefficients (1;ω0) which is common for
all nodes [6]. The node-adaptive solution (6.4) consists of filtering y with an autoregres-
sive edge varying filter with edge varying coefficients (I;ωω>) [7]. The latter allows for a
direct efficient and distributed implementation of these approaches.

6.2. BIAS-VARIANCE TRADE-OFF
Similar to (5.19) in graph Laplacian denoising, the MSE for estimator (6.4) has the form

mse(ω) = ‖b(ω)‖2
2+var(ω) = tr((I−H(ω))2x∗x∗>)+ tr(H(ω)2Σ) (6.5)

with bias

b(ω) = ((I+diag(ω)Ldiag(ω))−1 − I)x∗ (6.6)

and variance

var(ω) = tr((I+diag(ω)Ldiag(ω))−2Σ). (6.7)

As it follows from (6.5)-(6.7), the bias-variance trade-off is now controlled by vector ω.
If all entries of ω are close to zero the bias is low and the MSE is governed by a high
variance. If all entries ofω are far from zero, the bias is large and governs the MSE, while
the variance is small. The enhanced DoFs of the NA regularizer compared to the NI one
allow us to identify an interval for ω that guarantees a smaller reconstruction variance.
This is confirmed by the following lemma.

Lemma 5. Consider the node-invariant and node-adaptive estimates x̂(ω0) and x̂(ω) in (5.16)
and (6.4), respectively. Consider also the respective variances over all nodes var(ω0) in (5.18)
and var(ω) in (6.7). If all node-adaptive weightsω= [ω1, . . . ,ωN]> satisfy

ω0 ≤ω2
i , for i = 1,2, . . . , N (6.8)

then var(ω) ≤ var(ω0).

Proof. See Appendix B.2.

66 6. NODE-ADAPTIVE GRAPH SIGNAL REGULARIZATION

While a reduced variance is useful for signal recovery, it often comes at the expense of
an increased bias. To see how sensitive the changes in the two quantities are, we illustrate
in Figure 6.1 the bias, the variance, and the MSE for the NI and NA regularizers. We
can see that there exists a region for the NA weights where both the variance and the
MSE of the NA regularizer are lower compared to those of the NI one without increasing
significantly the bias. In Theorem 2, we provide sufficient conditions on ω to identify
this region.

10-3 10-2 10-1 100 101

Optimal NI regularizer weight
0

10-4

10-3

10-2

10-1

100

101

102

bias
2
 NI

var NI

mse NI

bias
2
 NA

var NA

MSE NA

Figure 6.1: Bias-variance trade-off for recovering a graph signal with NA and NI regularizer over and Erdos-
Renyì graph and SNR = 0 dB. The detailed settings can be found in section 6.5.1. The node adaptive weights
are chosen randomly to satisfy the result in Lemma 5.

Theorem 2. Consider the measurements y = x∗+n with desired graph signal x∗ and noise
n with covariance matrix Σ. Let L be the graph Laplacian with maximum eigenvalue
λmax(L). Further, define the rank one matrix P := x∗x∗>Σ−1 and let ρ be its only non-zero
eigenvalue. Define also the rank one matrix Γ = P(I+P)−1 and let γ = ρ(1+ρ)−1 ∈ (0,1)
be its only non-zero eigenvalue. Let also mse(ω0) [cf. (5.19)] and mse(ω) [cf. (6.5)] be the
mean squared error of the node-invariant estimate x̂(ω0) in (5.16) and node-adaptive es-
timate x̂(ω) in (6.4), respectively. Then, if all node-adaptive parametersω= [ω1, . . . ,ωN]>
satisfy

ω0 ≤ω2
i , for i = 1,2, . . . , N (6.9a)

2γ≤ 1

1+ω0λmax(L)
+ 1

1+max
{
ω2

i

}
λmax(L)

(6.9b)

both the variance and the mean squared error of the node-adaptive regularizer are smaller
than those of the node-invariant one; i.e., var(ω) ≤ var(ω0) and mse(ω) ≤ mse(ω0).

Proof. See Appendix. B.3.

Condition (6.9b) is easier satisfied when the eigenvalue γ → 0, i.e., the signal-to-
noise ratio (SNR) is low, or ρ→ 0. This indicates that the NA is more powerful in harsher

6.3. IMPLEMENTATION 67

scenarios. In contrast, when γ→ 1 and, thus ρ→∞, i.e., the SNR is high, the condition
for the NA regularization to outperform NI one is hard to satisfy. This behavior is intu-
itively satisfying because we want to use regularizers when dealing with high noise level.
When the noise is low, therefore, the variance. A regularizer will only bias the estimate
and degrade the reconstruction MSE.

Corollary 1. Under the same settings of Theorem 2, condition

max
{
ω2

i

}≤ (ρλmax(L))−1, for i = 1,2, . . . , N , (6.10a)

guarantees that (6.9b) is satisfied.

Proof. See Appendix. B.4.

Corollary 1 provides an easier condition for the NA parametersω compared to those
of Theorem 2. In addition, condition (6.10) provides a clearer link between ω and the
SNR. If ρ → 0, hence γ → 0, the noise is high and the upper bound for ω2

i increases,
implying a larger weight on local smoothness is needed. If ρ → ∞, hence γ → 1, the
noise vanishes and the upper bound for ω2

i goes to zero, implying regularization should
have little effect. We shall corroborate these observations in section 6.5.1 with numerical
results.

6.3. IMPLEMENTATION
The matrix inversion in the expression of the optimal estimate x̂(ω) [cf. (6.4)] makes the
node-adaptive regularizer challenging to be implemented on large graphs or in a dis-
tributed manner. Fortunately, the inverse can be approximated with a linear cost iter-
ation w.r.t. the number of graph edges O (M), by leveraging the graph filtering equiv-
alence of (6.4); see, e.g., [6–8]. The key to such a linear cost lies in the sparsity of the
node-adaptive operator S(ω), which coincides with the sparsity of the graph [cf. (6.1)].
Because of this sparsity, the graph signal shifting operation x(1) = S(ω)x = (ωω>¯L)x has
a cost equal to the number of edges M . Moreover, this operation is local over the graph,
and the i -th signal value is given by

x(1)
i =ωi

∑
j∈Ni

Ai j (ωi xi −ω j x j). (6.11)

By exploring (6.11), we detail next how the NA filter can be implemented using the con-
jugate gradient method [9] and distributed graph filters [6, 10].

Centralized. To solve (6.4) efficiently, we first rephrase it as a linear system

(I+S(ω))x̂(ω) = y (6.12)

and then employ conjugate gradient [9] to obtain x̂(ω). For completeness, Algorithm 8
summarizes the required steps. Identifying (6.11) in Steps 7 and 9 of Algorithm 8 and
running the conjugate gradient method for T iterations yield a cost of order O (T M).

Distributed. To implement (6.4) distributively with graph filters, we start with a random
initialization x̂0 for estimate x̂(ω). At iteration τ, the distributed estimate follows the
recursion

x̂τ(ω) =−S(ω)x̂τ−1(ω)+y. (6.13)

68 6. NODE-ADAPTIVE GRAPH SIGNAL REGULARIZATION

Algorithm 8 Conjugate gradient method for solving (6.12)

1: Input: x̂(0), node-adaptive regularizer weightsω, accuracy ε, number of iterations T
2: Initialization:
3: S(ω) = diag(ω)Ldiag(ω)
4: b(0) = r(0) = y− (I+S(ω))x̂(0)

5: d(0) = dnew = r>(0)r(0)

6: while τ< T and dnew > ε2d(0)

7: c(τ) = dnew

b>
(τ)(I+S(ω))b(τ)

8: x̂(τ+1) = x̂(τ) + c(τ)bτ
9: r(τ+1) = r(τ) − c(τ)(I+S(ω))b(τ)

10: dol d = dnew , dnew = r>(τ+1)r(τ+1)

11: b(τ+1) = r(τ+1) + dnew
dol d

b(τ)

12: τ= τ+1
13: Output: x̂(ω) = x̂(τ+1)

Observing (6.11), it is seen that the term S(ω)x̂τ−1(ω) implies that nodes communicate
with their neighbors and exchange information about the previous estimate x̂τ−1(ω),
which has a cost of order O (M).

When ω satisfies the spectral norm stability ‖S(ω)‖ < 1, recursion (6.13) leads to the
steady-state (τ→∞) estimate

x̂(ω), lim
τ→∞ x̂τ(ω) =

∞∑
τ=0

(−S(ω))τy = (I+S(ω))−1y, (6.14)

which matches the optimal solution (6.4). Halting (6.13) in T iterations leads to a dis-
tributed communication and computational cost of order O (T M).

6.4. WEIGHT DESIGN
In this section, we design the NA weights ω in a minimum MSE (MMSE) sense. The
estimation error between the optimal estimate x̂(ω) [cf. (6.4)] and the true value x∗ is

e, x̂(ω)−x∗. (6.15)

We can then formulate the optimal design of ω as solving the following optimization
problem

min
ω ∈RN

E
{‖x̂(ω)−x∗‖2

2

}
, (6.16)

where x̂ is defined as in (6.4).
The inverse relation in x̂(ω) renders problem (6.16) challenging to solve in its original

form. To overcome this challenge, we first propose two methods to solve (6.16) forωwith
true signal information. Each solution relies on adopting different relaxation techniques.
Then we use the min-max strategy to adapt these two methods to a scenario where only
signal bounds are available.

6.4. WEIGHT DESIGN 69

6.4.1. ENHANCED PRONY ’S METHOD

Given the estimate x̂(ω) = (I+S(ω))−1y and the error e in (6.15), a typical approach to
design parameters in inverse relationships is to consider Prony’s modified error [11]

e′ , y− (I+S(ω))x∗, (6.17)

which is obtained by multiplying both sides of (6.15) by (I+S(ω)). Albeit not equivalent
to the true error e, minimizing the modified error e′ is easier due to the linear relation-
ship in ω and the resulting performance is often satisfactory [11]. The NA weights that
minimize the error e′ in (6.17) can be obtained by solving

min
ω ∈RN

E
{‖y− (I+S(ω))x∗‖2

2

}
s.t. ω2

i ≥ω∗
0 , for i = 1, . . . , N

(6.18)

where the constraint imposes that all entries ofω satisfy the theoretical result of Lemma 5.
Besides guaranteeing a smaller variance, we have observed that the constraints result in
a lower MSE.

The quadratic relation in the optimization variable ω in S(ω) [cf. (6.1)] makes prob-
lem (6.18) non-convex. To obtain ω, we follow a two step approach. First we define a
positive semi-definite rank-one matrix Ω,ωω> and solve (6.18) w.r.t the new variable
Ω. Then, we find a vector estimate ω̂ by performing a rank-one approximation of the
obtained matrix [12].

Rewriting (6.18) w.r.t. the new variableΩ, we obtain

min
Ω ∈S N×N

+
tr

{
(Ω¯L)2x∗x∗>

}
s.t. Ωi i ≥ω∗

0 , for i = 1, . . . , N

(6.19)

where the derivation of the cost function is reported in Appendix B.5. In (6.19), we follow
[12] and drop the non-convex constraint rank(Ω) = 1 from its definition. Then, problem
(6.19) becomes convex and solvable with off-the-shelf tools [13, 14]. We observe that
in our experiments, shown later, in all instances the returned solution from (6.19) is a
rank-one matrix.

Given thenΩ∗ from (6.19), the node-adaptive weight vectorω∗ is equal to the eigen-
vector of Ω∗ with the largest eigenvalue, multiplied with the square root of the eigen-
value. However, more sophisticated rank-one approximations are also possible [12].

6.4.2. SEMI-DEFINITE RELAXATION
Despite its simplicity, Prony’s method does not directly relate to the true error e in (6.15).
Working with the modified error might be viable when the signal-to-noise ratio (SNR)
on y is high but it might lead to a degraded performance when the SNR is low since
the uncertainty in y increases. To overcome the latter, we here propose an optimization
problem relying on semi-definite relaxation when minimizing the true error as in (6.16).
This approach follows again a two-step procedure: first, we formulate (6.16) w.r.t. the
matrix variable H(Ω) = (I+Ω¯L)−1 with Ω := ωω>, and then we obtain Ω from H(Ω)

70 6. NODE-ADAPTIVE GRAPH SIGNAL REGULARIZATION

by inversion. Finally, ω∗ can be directly extracted from Ω∗ by rank-one approximation
[12].

To start, let us recall the node-adaptive estimate x̂(ω) = (I+ωω>¯L)−1y and rewrite (6.16)
w.r.t. H(Ω) as

min
Ω,H(Ω) ∈S N×N

+
E
{‖H(Ω)y−x∗‖2

2

}
s.t. H(Ω) = (I+Ω¯L)−1 ,

rank(Ω) = 1.,

Ωi i ≥ω∗
0 , for i = 1, . . . , N .

(6.20)

where the last constraint is again following Lemma 5. The cost function in (6.20) can be
expanded further as (cf. Appendix. B.6)

E
{‖H(Ω)y−x∗‖2

2

}= tr{(H2(Ω))−2H(Ω)+ I)x∗x∗>+H2(Ω)Σ},

which depends on both the signal and noise covariance. Problem (6.20) presents two
non-convex constraints to be addressed: the inverse relationship H(Ω) = (I+Ω¯L)−1

and the rank-one constraint rank(Ω) = 1. We address the former, by leveraging semi-
definite relaxation and writing the constraint in its positive semi-definite convex form [12]

H(Ω)− (I+Ω¯L)−1 º 0. (6.21)

Further, since L, Ω, and I +Ω¯ L are positive semi-definite matrices, we can use the
Schur complement (see Appendix.B.1) to reformulate (6.21) into a convex linear matrix
inequality (

I+Ω¯L I
I H(Ω)

)
º 0.

Regarding the non-convexity of the rank-one constraint, we can relax it as in (6.19). With
these relaxation techniques, we can rewrite problem (6.20) as a convex problem

min
Ω,H(Ω) ∈S N×N

+
E
{‖H(Ω)y−x∗‖2

2

}
s.t.

(
I+Ω¯L I

I H(Ω)

)
º 0,

Ωi i ≥ω∗
0 , for i = 1, . . . , N .

(6.22)

After obtaining H∗(Ω) from (6.22), we can findΩ based on its inverse relation

H∗(Ω)(I+Ω¯L) = (I+Ω¯L)H∗(Ω) = I,

by solving the following least squares problem

min
Ω ∈S N×N

+
‖H∗(Ω)(I+Ω¯L)− I‖2

2+‖(I+Ω¯L)H∗(Ω)− I‖2
2. (6.23)

Given then the matrix Ω∗ from (6.23), we extract ω∗ by a rank-one approximation
of the matrix [12]. With the obtained NA weights ω∗, we subsequently build the filter

6.4. WEIGHT DESIGN 71

H(ω∗) = (I+ω∗ω∗>¯L)−1 and obtain the estimate x̂(ω∗) as in (6.4). The main advantage
of the semidefinite relaxation (SDR) approach (6.22)-(6.23) is that it focuses directly on
the true error (6.15) rather than the modified error (6.17). However, semidefinite relax-
ation techniques are only applicable to medium-sized graphs, i.e., graphs up to a few
hundreds of nodes.

6.4.3. min-max METHOD
As it follows from (6.18) and (6.20) both Prony’s method and the SDR method require
knowledge of signal x∗ to design the parameter vectorω. This is possible in a data-driven
fashion under the condition that the test data has a similar distribution as the training
data used for designingω. In this section, we depart from this assumption and propose a
design method forω that is independent of x∗ and only requires some side information
about the signal such as bounds on the signal evolution. The latter is simpler to get from
a small set of data or physical considerations.

Consider signal x∗ has an evolution bounded in the interval [xl,xu]. Here, xl gives
an entry-wise lower bound and xu an entry-wise upper bound. We can then design the
parameter vector ω for the estimator x̂(ω) [cf. (6.4)] as the one that minimizes the MSE
of the worst-case scenario, i.e.,

min
ω

max
x∗

E
{‖x̂(ω)−x∗‖2

2

}
s.t. x̂(ω) = (I+S(ω))−1y,

xl ≤ x∗ ≤ xu.

(6.24)

Problems of the form (6.24) are known as min-max problems. The inner maximization
seeks for a signal x∗ that leads to the worst MSE performance, while the outer minimiza-
tion finds the parameter ω that minimizes the worst MSE among all possible choices.
The two constraints basically imposeω to be a node-adaptive regularizer and the signal
to be bounded.

Differently from problems (6.18) and (6.20), signal x∗ is now an optimization variable
in (6.24) and only xl and xu are needed. There are efficient methods to solve min-max
problems of the form (6.24) such as iterative first order methods [15] or gradient descent-
ascent[16]. In the sequel, we detail how (6.24) specializes to Prony’s and SDR designs.

Following the same rationale as in (6.19), we can write the min-max enhanced Prony’s
method as

min
Ω ∈S N×N

+
max

x∗
tr{(Ω¯L)2x∗x∗>}

s.t. xl ≤ x∗ ≤ xu,

Ωi i ≥ω∗
0 , for i = 1, . . . , N .

(6.25)

Since Ω¯L is positive semidefinite, the cost function is quadratic (convex) over the in-
ner optimization variable x∗. Further, it can be shown that the maximizer of the inner
problem is at the boundaries, either x∗ = xl or x∗ = xu. To solve the outer minimization
problem w.r.t. Ω, we proceed similarly as for problem (6.19). Moreover, we can rephrase
and solve the min-max version of the SDR problem (6.22) since the cost function for the
latter is also convex in x∗. Here again, we optimize the true error [cf. (6.15)] at the price
of a higher computational complexity.

72 6. NODE-ADAPTIVE GRAPH SIGNAL REGULARIZATION

6.5. NUMERICAL RESULTS
We compare the performance of the proposed design schemes with state-of-the-art al-
ternatives and illustrate the different trade-offs inherent to node-adaptive regularization
through synthetic and real data from the Molene1 and the NOAA2 data sets. We measure
the recovering accuracy between and estimate x̂ and the true signal x∗ through the nor-
malized mean squared error NMSE = ‖x̂−x∗‖2

2/‖x∗‖2
2. In these simulations, we used the

GSP box [17] and CVX [13].

6.5.1. SYNTHETIC DATA
In the first set of experiments, we consider synthetic Erdos-Renyì graphs of N = 50 nodes
and a link formation probability of 0.5. We generated a synthetic graph signal x∗, whose
graph Fourier transform is one in the first 20 coefficients and zero elsewhere [5]. This
signal is called a bandlimited graph signal and varies smoothly over the graph; hence,
it fits the Tikhonov regularization problem (5.15). We corrupted the signal with a zero-
mean Gaussian noise with variance σ2

n , i.e., with a signal-to-noise ratio

SNR = ‖x∗‖2
2/(Nσ2

n).

We average the performance over 50 different graphs and 100 noise realizations leading
to a total of 5000 Monte-Carlo runs. This scenario is also the one used to produce the
results in Figure 6.1, where we showed that the node-adaptive regularizer can achieve
both a lower variance and MSE.

We first evaluate Prony’s method and the SDR method when the true signal is known.
Our rationale is to avoid biases induced by a training set or a performance degradation
due to selecting the worst-case scenarios. We address the latter in the subsequent sec-
tion for real data. The specific approaches we consider are:

i) The benchmark node-invariant regularizer with optimal weight ω∗
0 = O (

√
θ

λ2λN
),

where θ =
√

1
SNR , and λ2, λN are the smallest and the largest non-zero eigenvalues

of L, respectively [18].

ii) The naive node-adaptive regularizer where the weight vector ω is chosen ran-

domly to satisfy Lemma 5; i.e., ωi =
√
ω∗

0 +ω∗
0 · ci for i = 1, . . . , N , where ci is uni-

formly distributed in [0,1].

iii) Prony’s node-adaptive design, where we did not enforce the constraint of Lemma 5
in problem (6.19).

iv) The enhanced Prony method [cf. (6.19)].

v) The SDR node-adaptive design [cf. (6.22), (6.23)].

1Raw data available at
https://donneespubliques.meteofrance.fr/donneeslibres/Hackathon/RADOMEH.tar.gz

2Raw data available at
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/
climate-normals/1981-2010-normals-data

https://donneespubliques. meteofrance.fr/donnees libres/Hackathon/RADOMEH.tar.gz
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals/1981-2010-normals-data
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals/1981-2010-normals-data

6.5. NUMERICAL RESULTS 73

-8 -6 -4 -2 0 2 4 6 8

SNR (dB)

10
-2

10
-1

10
0

10
1

N
M

S
E

NI

NA Lemma 1

NA Prony

NA enh-Prony

NA SDR

KRR

(a) Denoising.

10 15 20 25 30 35 40 45 50

Number of observed nodes (S)

10
-2

10
-1

10
0

10
1

N
M

S
E

NI

NA Lemma 1

NA Prony

NA enh-Prony

NA SDR

KRR

(b) Interpolation.

Figure 6.2: (a) NMSE of different methods as a function of the SNR over an Erdos-Renyì graph. The true graph
signal is bandlimited to the first 20 graph frequencies. (b) Interpolation performance of the different methods
as a function of number of observed nodes with SNR = 0 dB over an Erdos-Renyì graph. The true graph signal
is bandlimited to the first 20 graph frequencies.

vi) The diffusion kernel ridge regression (KRR) with best-performing parametersσ2
KRR =

1 and µKRR = 10−4 [3].

Figure 6.2a shows the NMSE recovery performance of the different methods as a
function of the SNR from −9 dB to 9 dB. First, we observe that the proposed enhanced
Prony design and the SDR reduce the NMSE by one order of magnitude compared to the
optimal node-invariant approach and the KRR. In fact, as we anticipated in Figure 6.1,
even the naive random node-adaptive regularizer achieves a comparable performance
with these competitive alternatives, ultimately, highlighting the potential of the NA reg-
ularizer for graph signal recovery. Finally, we remark the need of the theoretical Lemma 5
result in Prony’s problem (6.19), which reduces the MSE by one order of magnitude. We
attribute the latter to the fact that Prony’s approaches focus on the modified error rather
than the true one. This is also evidenced by the comparison with the SDR technique,
where the enhanced Prony’s method has a worse NMSE for lower SNRs; i.e., where con-
sidering the true error is more effective to deal with large noise.

Next, we evaluate the performance of the different methods for interpolating missing
values. We consider noisy observations from the random subset M ∈ {10,15,20, . . . ,50}
with an SNR of 0 dB to show the resistance of node-adaptive regularization. From Fig-
ure 6.2b, we observe again the superior performance of the enhanced Prony and SDR
method and both of them perform close to each other. This is due to the relaxation loss
in SDR method and modified error in enhanced Prony’s method. Under different SNR
settings, their performance vary slightly. On the contrary, the naive weight setting and
the simple Prony method offer a similar performance as the benchmark NI regulariza-
tion. When the number of observed nodes is full, the NMSE results correspond to the
denoising results.

In the sequel, we experiment over data collected from real scenarios. We omit the ex-
perimental results of the node-adaptive design based on ground truth signal, since they

74 6. NODE-ADAPTIVE GRAPH SIGNAL REGULARIZATION

behave the same as for the synthetic data. Instead, we consider the earlier mentioned
data-driven and min-max scenarios.

6.5.2. MOLENE DATA SET

The Molene data set comprises T = 744 hourly temperature measurements collected
in January 2014 from N = 32 weather stations in the region of Brest, France. We treat
each weather station as a node of a graph and build a geometric distance graph in which
each node is connected to five nearest neighbors. The weight of edge (i , j) is Ai j =
exp{−5d 2(i , j)}, where d(i , j) is the Euclidean distance between stations i and j . After
removing the mean across space and time, we can view every temporal snapshot of the
temperature as a graph signal. Among the six approaches listed in the former section, we
omit the naive node-adaptive regularizer and the simple Prony’s method. This avoids
overcrowded plots since their performance trend is similar to that observed with syn-
thetic data. For the KRR, we set σ2

KRR = 5 to have the best performance for this method.
The performance criterion is again the NMSE averaged over all the 744 graph signals.
The measurements are assumed to be the true signal and we artificially add noise. We
consider 50 noise realizations per signal.

To show how the different methods behave in the ideal and in a more practical set-
ting, we considered two scenarios. First, a data-driven scenario, where half of the tem-
poral data are used to learn the node adaptive weights. Specifically, we used those data
to compute the average of x∗x∗> which can be used in the enhanced Prony design [cf.
(6.19)] and to solve the SDR problem [cf.(6.22)]. The remaining half graph signals are
used for testing. Note that in the SDR method of this scenario, to make use of the noise
covariance matrix in the objective function of (6.22), as derived in B.6, we have to design
the parameters for each of the rest testing data, since we have to compute the noise level
with given SNR for each data. To avoid doing this design for each daily data, we use a
one-day sample of the whole data to compute the noise covariance matrix needed in the
SDR method, which shall give worse results as it might achieve. Second, the min-max
method was tested where only signal lower and upper bounds are known from the data.
These are selected as the lowest and highest temperature records in this dataset. For
both scenarios, we consider the NMSE denoising performance as a function of the SNR
in the interval [−9 dB,9 dB]. Figure 6.3 shows the results. The enhanced Prony’s method
with true signals is used as a benchmark for comparison.

From Figures 6.3a, we see that the NA methods are not superior compared with NI
method. We contribute this to the inappropriate training strategy. Specifically, we ob-
serve that the enhanced Prony method degrades substantially and achieves an NMSE
similar to the NI regularizer. In the large SNR regime, it gets worse than the NI regular-
izer. This is also because when there is not too much noise present, the NA regularizer
will instead bias the estimate without the true signal information.

When the signal variation bound is available, the performance of the NA approaches
degrades by approximately one order of magnitude. Figure 6.3b further shows that the
NA algorithms still perform better than the state-of-the-art in the low SNR regime al-
though the only information is the signal variation range. We attribute the saturation
in the high SNR regime to the lack of information needed for designing the NA weights;
i.e., the NA regularizer will impose a stronger bias on the solution that is not needed to

6.5. NUMERICAL RESULTS 75

-8 -6 -4 -2 0 2 4 6 8

SNR (dB)

10
-2

10
-1

10
0

10
1

N
M

S
E

NI

NA enh-Prony

NA benchmark

NA SDR

KRR

(a) Data-driven.

-8 -6 -4 -2 0 2 4 6 8

SNR (dB)

10
-2

10
-1

10
0

10
1

N
M

S
E

NI

NA enh-Prony min-max

NA benchmark

SDR min-max

KRR

(b) Min-max.

Figure 6.3: NMSE denoising performance of the different methods as a function of the SNR in the Molene data
set. (a) Data-driven scenario. Half of the data are used to estimate the node-adaptive parameters. (b) Min-max
scenario. Only the signal evolution bounds are needed.

5 10 15 20 25 30

Number of observed nodes

10
-1

10
0

N
M

S
E

NI

NA enh-Prony

NA benchmark

NA SDR

KRR

(a) Data-driven.

5 10 15 20 25 30

Number of observed nodes

10
-1

10
0

N
M

S
E

NI

NA enh-Prony min-max

NA benchmark

SDR min-max

KRR

(b) Min-max.

Figure 6.4: NMSE interpolation performance of the different methods as a function of the number of sampled
nodes in the Molene data set. The signal-to-noise ratio is SNR = 0 dB. (a) Data-driven scenario. Half of the data
are used to estimate the signal covariance matrix. (b) Min-max scenario. Only the signal evolution bounds are
needed.

denoise the signal in the high SNR regime. Note that in the min-max strategy results of
Figure 6.3b, we report only the better result out of the two generated by using lower and
upper bounds separately.

We then evaluate the interpolation performance of different methods. We consider
noisy observations at the nodes M ∈ {2,4,6, . . . ,28,30} and SNR = 0 dB. The results are
shown in Figure 6.4. For the data-driven case in Figure 6.4a, Prony’s method degrades
significantly with a performance worse than the NI regularizer. This could be caused by
the inappropriate training and over-fitting of the training data. On the other hand, the
SDR is not obtaining satisfactory results unless the observations are collected from all of

76 6. NODE-ADAPTIVE GRAPH SIGNAL REGULARIZATION

the nodes. This is because the obtained estimate of x∗x∗> does not apply on the SDR
method for the interpolation case. In the min-max scenario, shown in Figure 6.4b, we
only make use of the signal bounds and a consistently better performance is obtained by
Prony’s method, while the SDR method behaves close to the NI regularizer.

In practical situations, with a proper prior information of graph signals, we recom-
mend to design the NA regularizer using the min-max strategy. From the above experi-
mental results, we see that in harsher situations with a lot of noise present, based on the
min-max strategy, the NA regularizer, for denoising and interpolation, will behave better
than its NI and KRR counterparts. In the next section, we corroborate the ability of the
min-max strategy on another real-world dataset.

6.5.3. NOAA DATA SET

-8 -6 -4 -2 0 2 4 6 8

SNR (dB)

10
-2

10
-1

10
0

N
M

S
E

NI

NA enh-Prony min-max

KRR

(a) Denoising.

10 20 30 40 50 60 70 80 90

Number of observed nodes

10
-2

10
-1

10
0

N
M

S
E

NI

NA enh-Prony min-max

KRR

(b) Interpolation.

Figure 6.5: (a) Denoising performance of the enhanced Prony’s method as a function of SNR with different
methods in min-max scenario. (b) Interpolation performance as a function of the number of observed nodes.
The signal-to-noise ratio is SNR = 0 dB.

The NOAA data set comprises T = 8759 hourly temperature measurements collected
across the continental U.S. in 2010 from N = 109 weather stations. Following [19], we
treated each station as a node of a seven nearest neighbor graph based on geographical
distances. We treat the signals in the same way as we did before. We measure again the
performance with the NMSE averaged over all the 8759 signals and 50 noise realizations
per signal. The parameters of all methods are the same as in the former section.

Figure 6.5 shows directly the results for the min-max method applied to denoising
and interpolation. These results correspond to the experiments conducted on Molene
weather data. We see again, from Figure 6.5a, the improved performance of the pro-
posed NA regularizer over other alternatives. In specific, we see a 3 dB SNR improve-
ment for a fixed NMSE in the enhanced Prony method, which is even larger with low
SNR values. For interpolation purposes, the number of the observed nodes are set as
M ∈ {10,15,20, . . . ,90,95}. From Figure 6.5b, we observe that with the NA regularizer, we
consistently have smaller NMSE compared to the NI regularizer and KRR. This improved
performance gets more noticeable when the number of observed nodes is larger, since

REFERENCES 77

the node-adaptive regularizer has more information to exploit the local signal behavior
to find the missing values.

REFERENCES
[1] Y.-X. Wang, J. Sharpnack, A. J. Smola, and R. J. Tibshirani, Trend filtering on graphs,

The Journal of Machine Learning Research 17, 3651 (2016).

[2] S. Chen, R. Varma, A. Singh, and J. Kovačević, Representations of piecewise smooth
signals on graphs, in 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (IEEE, 2016) pp. 6370–6374.

[3] D. Romero, M. Ma, and G. B. Giannakis, Kernel-based reconstruction of graph sig-
nals, IEEE Transactions on Signal Processing 65, 764 (2017).

[4] A. Venkitaraman, S. Chatterjee, and P. Händel, Multi-kernel Regression For
Graph Signal Processing, arXiv e-prints , arXiv:1803.04196 (2018), arXiv:1803.04196
[stat.ML] .

[5] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerg-
ing field of signal processing on graphs: Extending high-dimensional data analysis
to networks and other irregular domains, IEEE Signal Processing Magazine 30, 83
(2013).

[6] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, Autoregressive moving average graph
filtering, IEEE Transactions on Signal Processing 65, 274 (2017).

[7] M. Coutino, E. Isufi, and G. Leus, Advances in distributed graph filtering, IEEE
Transactions on Signal Processing 67, 2320 (2019).

[8] J. Liu, E. Isufi, and G. Leus, Filter design for autoregressive moving average graph
filters, IEEE Transactions on Signal and Information Processing over Networks 5, 47
(2019).

[9] J. R. Shewchuk, An introduction to the conjugate gradient method without the ago-
nizing pain, (August 4, 1994).

[10] E. Isufi, Graph-time signal processing: Filtering and sampling strategies, (2019).

[11] M. H. Hayes, Statistical Digital Signal Processing and Modeling, 1st ed. (John Wiley
& Sons, Inc., New York, NY, USA, 1996).

[12] Z. Luo, W. Ma, A. M. So, Y. Ye, and S. Zhang, Semidefinite relaxation of quadratic
optimization problems, IEEE Signal Processing Magazine 27, 20 (2010).

[13] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming,
version 2.1, http://cvxr.com/cvx (2014).

[14] D. P. Bertsekas, Convex optimization theory (Athena Scientific, 2009).

http://dx.doi.org/10.1109/TSP.2016.2620116
http://arxiv.org/abs/1803.04196
http://arxiv.org/abs/1803.04196
http://dx.doi.org/ 10.1109/MSP.2012.2235192
http://dx.doi.org/ 10.1109/MSP.2012.2235192
http://dx.doi.org/10.1109/TSP.2016.2614793
http://dx.doi.org/10.1109/TSP.2019.2904925
http://dx.doi.org/10.1109/TSP.2019.2904925
http://dx.doi.org/ 10.1109/TSIPN.2018.2854627
http://dx.doi.org/ 10.1109/TSIPN.2018.2854627
http://dx.doi.org/10.1109/MSP.2010.936019
http://cvxr.com/cvx

78 REFERENCES

[15] M. Nouiehed, M. Sanjabi, T. Huang, J. D. Lee, and M. Razaviyayn, Solving a class of
non-convex min-max games using iterative first order methods, Advances in Neural
Information Processing Systems 32, , 14905 (2019).

[16] T. Lin, C. Jin, and M. I. Jordan, On gradient descent ascent for nonconvex-concave
minimax problems, ArXiv abs/1906.00331 (2019).

[17] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Vandergheynst, and
D. K. Hammond, GSPBOX: A toolbox for signal processing on graphs, , 1 (2016),
arXiv:arXiv:1408.5781v2 .

[18] P. Chen and S. Liu, Bias-variance tradeoff of graph laplacian regularizer, IEEE Signal
Processing Letters 24, 1118 (2017).

[19] J. Mei and J. M. F. Moura, Signal processing on graphs: Causal modeling of unstruc-
tured data, IEEE Transactions on Signal Processing 65, 2077 (2017).

http://papers.nips.cc/paper/9631-solving-a-class-of-non-convex-min-max-games-using-iterative-first-order-methods.pdf
http://arxiv.org/abs/arXiv:1408.5781v2
http://dx.doi.org/10.1109/LSP.2017.2712141
http://dx.doi.org/10.1109/LSP.2017.2712141
http://dx.doi.org/10.1109/TSP.2016.2634543

7
NODE-ADAPTIVE REGULARIZATION

BASED GRAPH SIGNAL SAMPLING

Graph signal sampling is a critical task in GSP, the goal of which is to only sample mea-
surements from a subset (with a fixed cardinality of K) of graph nodes such that the
graph signal can be reconstructed with a good performance. The optimal design of this
subset is the main work in graph signal sampling. This is important in many applica-
tions, e.g., signal interpolation over graphs where the number of nodes to observe is lim-
ited, how to deploy sensors in a sensor networks, or which weather stations to observe
across the country.

This chapter focuses on graph nodes subset selection based on NA graph signal reg-
ularization. The idea is to explore the property of the NA regularizer, and then design a
greedy sampling strategy. This chapter presents an application of NA graph signal regu-
larization in the graph signal sampling.

7.1. INTRODUCTION
In this section, we first review the recent development in graph signal sampling. Then,
we provide the knowledge required for the following chapters.

7.1.1. LITERATURE REVIEW
Since graph signal sampling is strongly related to the sensor selection problem [1], tradi-
tional convex optimization based methods can be used in graph signal sampling. These
methods focus on dealing with the Boolean and nonconvex node selection vector. Usu-
ally, they first relax the Boolean selection constraints to make the problem convex, then
build the selection vector by different rounding approaches, for example, typically taking
the largest K values [1, 2], or Fedorov’s exchange algorithm [3].

Depends on the requirements, the cost functions can be different experimental de-
sign criteria, such as the MSE, the worst case variance or log-det of the error covari-
ance matrix (which are called A, E, D-optimality), and so on [2, 4]. Some authors use

79

80 7. NODE-ADAPTIVE REGULARIZATION BASED GRAPH SIGNAL SAMPLING

the so-called frame potential as the objective function [5, 6]. In [7], randomized tech-
niques by pipaging or proportional rounding are proposed to improve the optimality for
D-experimental design. Authors of [8] propose a greedy swapping for rounding for rig-
orous objectives, which can achieve a near-optimality comparable or slightly worse than
greedy method in a more efficient way.

To reduce the high computational cost of the convex relaxation based algorithms,
greedy methods based sampling techniques are proposed. The idea is to sample one
node from the available nodes greedily at each iteration so to achieve the biggest perfor-
mance improvement. The work in [9] provided the near-optimal guarantee for greedy
based graph signal sampling, where a bandlimited graph signal model is considered,
requiring the eigendecomposition of the graph Laplacian. In [10], a Tikhonov solution
based greedy sampling scheme is used for semi-supervised learning task over graphs,
which does not require an eigendecomposition. The submodularity of the Tikhonov es-
timate MSE expression is well studied, which is critical for greedy algorithm. In [11],
stochastic version of greedy methods is used to speed up the greedy sampling algo-
rithms. This is achieved by considering a random subset of the remaining nodes at each
iteration. In general, greedy sampling can achieve a suboptimality of at least 67% when
the cost function is submodular [9].

Beyond the above approaches, some researchers leverage graph properties to scale
sampling strategies to large scales. In [12], the author first partition the graph, and then
do graph signal sampling in each small clusters, which allows to extend the sampling to
a large scale. Since the most traditional signal model for sampling rely on the eigende-
composition of the graph Laplacian, the authors in [13] proposed to use the Tikhonov
solution to interpolate the graph signal, then use the techniques of truncated Neumann
series to further approximate the inverse operation involved. Later, the same authors
also used Gershgorin theorem to convert the Tikhonov solution based sampling problem
as a set cover problem [14], which significantly improved the performance and reduce
the computational complexity [15]. Both methods avoid the eigen-decomposition of the
graph Laplacian. The work in [16] provide a recent survey of graph signal sampling.

In this chapter, we are also interested in avoiding the eigen-decomposition, and ap-
plying our NA regularization to replace the Tikhonov regularization. In addition, we will
consider greedy based sampling, since it has acceptable computational cost compared
to convex relaxations.

7.1.2. BASICS

Consider a graph signal x ∈ RN defined over a graph G = (V ,E). The task is to estimate
x from its sampled noisy version yS ∈ RK , where S ⊆ V is the sampling subset. We
consider the linear measurement model

yS = Cx+n, (7.1)

where C is the binary sampling matrix of size K ×N and n is the noise with covariance
matrix Σn . Note that C>C = diag(c), where ci = 1 if node i is sampled; ci = 0 otherwise,
and we call the vector c as the sampling vector. We assume that the noise and the signal
are independent.

7.1. INTRODUCTION 81

If one is required to sample only K nodes, the graph signal sampling has the following
general problem formulation

find c from f (c),

subject to ‖c‖0= K ,

c ∈ {0,1}K .

(7.2)

The objective function f (c) can have different forms under different models. For exam-
ple, as done in [1], the objective functions based on the sparse graph spectral model re-
quire eigendecomposition of the graph Laplacian, which is not efficient when the graph
is large. In this chapter, we consider the graph signal estimate e.g., Tikhonov estimate,
based sampling under deterministic and random signal cases, i.e., the Bayesian and
non-Bayesian frameworks.

In the following, we introduce two definitions of the set functions which are used in
the greedy algorithms.

Definition 7. A set function f : 2X → R is monotone decreasing if f (S) < f (T) for all
S ⊆T ⊂X .

Definition 8 (Submodular function). A set function f : 2X →R is submodular if

f (S ∪ j)− f (S) > f (T ∪ j)− f (T) (7.3)

for all subsets S ⊆T ⊂X and j ∈X \T .

If a set function follows − f is submodular, we say f is supermodular. Submodu-
larity is a diminishing return property where adding an element to a smaller set gives
a larger gain than adding it to a greater set. The maximization of monotone increasing
submodular functions is still NP-hard, but as shown in [17], greedy heuristic can be used
to obtain a solution that is proven to have an approximation ratio of 1−1/e ≈ 63%.

Definition 9 (Stieltjes matrix). A Stieltjes matrix is a real symmetric positive definite ma-
trix with non-positive off-diagonal entries.

The graph Laplacian is a Stieltjes matrix, which will be used in later the supermodu-
larity study of the functions we use.

7.1.3. INTERPOLATION VIA TIKHONOV REGULARIZATION
The Tikhonov regularization in interpolation problems can be formulated as

x̂ = arg min
x

‖yS −Cx‖2+ω0x>Lx. (7.4)

The analytical solution can be found through setting its gradient as zero, i.e.,

x̂ = (C>C+ω0L)−1C>yS . (7.5)

When the number of samples K ≥ 1, term C>C+ω0L is invertible and positive definite,
which can be seen as follows. For the graph Laplacian L of a connected graph, the all-
one vector leads to 1>L1 = 0, and ‖C1‖2> 0 for any S ⊆ V with K ≥ 1. Further, for any
nonzero vectors u 6= 1 that are not equal to all-one vector, we have u>Lu > 0 and ‖Cu‖2≥
0. Thus, for any u 6= 0, we have u>(C>C+ω0L)u = ‖Cu‖2

2+ω0u>Lu > 0. Hence, term
C>C+ω0L is invertible and positive definite [15].

82 7. NODE-ADAPTIVE REGULARIZATION BASED GRAPH SIGNAL SAMPLING

7.2. GREEDY GRAPH SIGNAL SAMPLING
The ground rule of greedy sampling is to work with a submodular cost function in prob-
lem (7.2), since it preserves a good suboptimality for the greedy algorithms [17]. In the
following, we discuss the submodularity of the Tikhonov estimate based cost function
(7.5), then we provide the greedy sampling algorithm based on it.

7.2.1. COST FUNCTIONS DISCUSSION BASED ON TIKHONOV SOLUTION
The advantage of Tikhonov regularization solution (7.5) based graph signal sampling is
that there is no need of eigendecomposition, like what has been done based on sparse
graph Fourier coefficients model [1]. Also, it does better in terms of the tasks like sig-
nal reconstruction, interpolation, semi-supervised learning, etc [10, 15]. We discuss the
general cost functions based on Tikhonov solution (7.5) in the both deterministic and
stochastic cases.

• Assume graph signal x is deterministic. On the one hand, we can use a scalar func-
tion of covariance matrix to design the sampling set with a greedy method, which
can be related to the ratio of two submodular functions [18]. The objective func-
tion can be the trace or determinant operation, of the covariance matrix of the
estimate (7.5) as follows

Cov{x̂} = (C>C+ω0L)−1C>E(yS y>S)C(C>C+ω0L)−1. (7.6)

On the other hand, we can also use the MSE of (7.5) as the objective function to
design the sampling set, but in general the MSE expression is not well-behaved
in terms of convexity, as we have seen in subsection 5.2.6. The work in [15] pro-
posed to maximize the minimal eigenvalue of matrix C>C+ω0L, which is shown
to be equivalent to minimize the upper bound of MSE between the true signal and
Tikhonov estimate [15, Proposition 1].

Proposition 2 ([15]). Maximizing λmin(C>C+ω0L) minimizes the upper bound of
MSE between original signal x and the reconstructed signal x̂ (7.5).

Proof. See proof in [15, Proposition 1].

• Assume graph signal x is stochastic and follows a multivariate Gaussian distribu-
tion

p(x) ∝ exp(−1

2
x>Ω0x), (7.7)

whereΩ0 can be graph Laplacian L. Under this setting, (7.5) is a maximum a poste-
rior (MAP) estimator, as well as an MMSE estimator. Then we minimize the MSE,
which is the trace of the Tikhonov filter (C>C+ω0L)−1 [19]. If we minimize this
MSE expression as the graph signal sampling objective function

tr(C>C+ω0L)−1, (7.8)

then we will have a supermodular objective function which can be minimized by
greedy method with a provable suboptimality [9, 10, 17]. Under this setting, [10]
had a thorough study in the context of semi-supervised learning. We will provide
the results in the following for convenience.

7.2. GREEDY GRAPH SIGNAL SAMPLING 83

• Assume graph signal x is random but not following a Gaussian distribution like
above. Instead, we assume it follows a general distribution, with a covariance ma-
trix L. This setting can be understood from the work in [20], which is not detailed
in this thesis. Then we will have a Bayesian estimator of form (7.5). Furthermore,
it again has the same MSE expression as (7.8) that can be used as the objective
function due to its promising properties for greedy algorithms introduced in the
following.

In conclusion, the objective function tr(C>C+ω0L)−1 can be thought as a generic
choice for all the cases, which is obvious for the random cases. For deterministic cases,
maximization of the minimal eigenvalue of C>C+ω0L is a good choice, or equivalently
the minimization of λmax((C>C+ω0L))−1, which is a proxy of (7.8). Thus, we can unify
the cost function of the Tikhonov estimate based greedy sampling for graph signal. In
the following, we study the monotonic and submodular property of (7.8).

7.2.2. TIKHONOV ESTIMATE BASED GREEDY GRAPH SIGNAL SAMPLING [10]
By substituting the cost function of tr{(C>C+ω0L)−1} in the general greedy method frame-
work (7.2), we have the following optimization problem

arg min
c

tr{(C>C+ω0L)−1}

subject to ‖c‖0= K ,

c ∈ {0,1}K .

(7.9)

In the following, we aim to show the non-increasing monotonicity and supermodularity
of the objective function in problem (7.9), which guarantee the sub-optimality of the
greedy sampling.

We first study about the change of several critical term in the objective expression by
adding a sample node into the sample subset, i.e., ∆v (S).

• Term C>C+ω0L:

∆v (S) = (C>
S ∪{v}CS ∪{v} +ω0L)− (C>

S CS +ω0L)

= diag(cS ∪{v})−diag(cS)

= diag(c{v})

(7.10)

• Term H = (C>C+ω0L)−1:

∆v (S) = Hv (S ∪ {v})−Hv (S)

= (C>
S ∪{v}CS ∪{v} +ω0L)−1 − (C>

S CS +ω0L)−1

= (C>
S CS +c>v cv +ω0L)−1 − (C>

S CS +ω0L)−1,

(7.11)

where cv is a 1× N dimension row vector with one at the v-th entry. Adding a
node results in a rank-one matrix update c>v cv , and by using the matrix inversion

84 7. NODE-ADAPTIVE REGULARIZATION BASED GRAPH SIGNAL SAMPLING

Algorithm 9 Greedy method of Tikhonov estimate based graph signal sampling[10]

Input: size of sampling set K ; Tikhonov regularization parameterω0; graph Laplacian L,
#iterations T

Output: Sampling subset S

1: Initialization : S = {;}
2: while |S | < K do
3: Find v∗ = arg min v∈V /S f (S ∪ {c}) where f (S) = tr{(C>C+ω0L)−1}
4: S ←S ∪ {v∗}
5: end while

lemma1 in the first term Hv (S ∪ {v}), we have

∆v (S) = H(S)−H(S)c>v (1+cv H(S)c>v)−1cv H(S)−H(S)

=−H(S)c>v cv H(S)

(1+cv H(S)c>v)
.

(7.12)

Define the objective function f (S) = tr{(C>C+ω0L)−1}, where the subset S is in-
dicated by sampling matrix C. We can study the decrease in f (S) due to adding a new
node v to S , which we define as δv (S)

δv (S) = f (S)− f (S ∪ {v})

= tr{(C>
S CS +ω0L)−1}− tr{(C>

S ∪{v}CS ∪{v} +ω0L)−1}

= tr{(C>
S CS +ω0L)−1}− tr{(C>

S CS +c>v Cv +ω0L)−1}.

(7.13)

As we have studied in (7.12), adding a node results in a rank-one update, and by using
the matrix inversion lemma on the second term above, we have

δv (S) = tr{H(S)}− tr{H(S)−H(S)c>v (1+cv H(S)c>v)−1cv H(S)}

= tr{(H(S)c>v cv H(S))/(1+cv H(S)c>v)}

= ‖H(S)c>v ‖2
2/(1+cv H(S)c>v).

(7.14)

From this, we see that adding a new node v into the sect S leads to a positive de-
crease in the objective function. Thus, the objective function f (S) = tr{(C>C+ω0L)−1}
is monotonically decreasing (non-increasing).

From the analysis in [10, Theorem 3], we know that the objective function f (S) in
(7.9) is supermodular since the graph Laplacian L is a Stieltjes matrix. Therefore, the
objective function in problem (7.9) is monotonically non-increasing and supermodular,
which satisfies the sub-optimal conditions for greedy heuristics [17]. The greedy method
based graph signal sampling is shown in Algorithm 9.

However, the objective function in Algorithm 9 involves with a matrix inverse, which
has a cubic order of complexity. So, we exploit the properties investigated above to sim-
plify the algorithm and reduce the costs. Adding a new node into the sampling set leads

1(A+UCV)−1 = A−1 −A−1U(C+VA−1U)−1VA−1

7.3. NODE-ADAPTIVE ESTIMATE BASED GREEDY GRAPH SIGNAL SAMPLING 85

Algorithm 10 Greedy method of graph signal sampling with refinement

Input: size of sampling set K ; Tikhonov regularization parameterω0; graph Laplacian L,
#iterations T

Output: Sampling subset S

1: Initialization : S = {;}
2: while |S | < K do
3: Find v∗ = arg max v∈V /S δv (S) where δv (S) = ‖H(S)C>

v ‖2
2/(1+cv H(S)c>v)

4: S ←S ∪ {v∗}
5: H(S) ← H(S)−H(S)c>v (1+cv H(S)c>v)−1cv H(S)
6: end while

to a rank-one update and the decrease in the objective function is δv (S) in (7.14). To
minimize the objective function at each loop is equivalent to maximize the decrease in
the objective function by adding a new node [9]. Therefore, we propose the following
Algorithm 10. The similar cost reduction method is also used in [9].

7.3. NODE-ADAPTIVE ESTIMATE BASED GREEDY GRAPH SIGNAL

SAMPLING
The application of NA regularization in graph signal sampling is straightforward. Con-
sider the node-adaptive graph signal regularization for the sampling signal model

x̂N A = arg min
x

‖yS −Cx‖2+x>L̃x, (7.15)

where L̃ = diag(ω)Ldiag(ω) is positive semi-definite and has rank n −1, and it is also a
valid Stieltjes matrix. The solution of (7.15) is

x̂N A = (C>C+ L̃)−1yS , (7.16)

and we can define the NA filter HN A(S) = (C>C+ L̃)−1 = (C>C+diag(ω)Ldiag(ω))−1.
In the subset sampling problem based on the NA regularization, the cost function in

all deterministic and random model cases can be unified to be

tr{(C>C+ L̃)−1}, (7.17)

which is again monotonically non-decreasing and supermodular. By replacing the Tikhonov
estimate (7.5) by NA estimate (7.16), we simply realize the NA estimate based greedy
graph signal sampling, shown in Algorithms 11 and 12.

7.4. NUMERICAL EXPERIMENTS
In this section, we present the experimental results on the graph signal sampling based
on Tikhonov regularization and node-adaptive regularization, respectively. We compare
the performance random sampling2 and the greedy method we proposed, respectively.

2The sampling set is randomly generated.

86 7. NODE-ADAPTIVE REGULARIZATION BASED GRAPH SIGNAL SAMPLING

Algorithm 11 Greedy method of NA estimate based graph signal sampling

Input: size of sampling set K ; NA regularization parameter ω; graph Laplacian L, #iter-
ations T

Output: Sampling subset S

1: Initialization : S = {;}
2: while |S | < K do
3: Find v∗ = arg min v∈V /S f (S ∪ {c}) where f (S) = tr{(C>C + L̃)−1}, and L̃ =

diag(ω)Ldiag(ω)
4: S ←S ∪ {v∗}
5: end while

Algorithm 12 NA estimate based Greedy method of graph signal sampling with refine-
ment
Input: size of sampling set K ; NA regularization parameter ω; graph Laplacian L, #iter-

ations T
Output: Sampling subset S

1: Initialization : S = {;}
2: while |S | < K do
3: Find v∗ = arg max v∈V /S δv (S) where δv (S) = ‖HN A(S)c>v ‖2

2/(1+cv HN A(S)c>v)
4: S ←S ∪ {v∗}
5: HN A(S) ← HN A(S)−HN A(S)c>v (1+cv HN A(S)c>v)−1cv HN A(S)
6: end while

Regrading the choice of NA regularization weight vector ω, we consider the enhanced
Prony’s method from subsection 6.4.1.

In the experiment setting, we consider a synthetic Erdős–Rényi graph with 50 nodes
and 0.5 edge connection probability. We artificially add the noise to generate a 0dB SNR.
we consider the following different graph signals

• Low-pass smooth signals with its GFT is constantly one in the first 20 graph fre-
quencies, i.e., x̃i = 1, for i = 1, . . . ,20, and the rest are zeros.

• Low-pass smooth signals with decaying GFT in the first 20 graph frequencies, i.e.,
x̃i = 1

1+λi
, for i = 1, . . . ,20, and the rest are zeros.

• High-pass signals with constant GFT in the last 20 graph frequencies, i.e., x̃i = 1,
for i = 31, . . . ,50, and the rest are zeros.

• Random graph signals follow a Gaussian distribution N (0,L†).

The sampling set size is chosen to be in the set M = {5,6,7, . . . ,43,44,45}. We gen-
erate 100 noisy realizations for each type of signals. For random sampling set selection,
the sampling set is generated randomly over 50 realizations to average the performance.
For Tikhonov and NA estimate based greedy methods, the sampling sets are determined
greedily based on Algorithm 9 and 11, respectively. With the sampling sets built by ran-
dom sampling and greedy sampling based on Tikhonov estimate and NA estimate, we
average the reconstruction NMSE results over 10 rounds.

7.4. NUMERICAL EXPERIMENTS 87

5 10 15 20 25

Size of sampling set

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
M

S
E

Low-pass signal with BW=20

Tik Greedy

NA Greedy

Tik Random

NA Random

(a) Low-pass signals with constant GFT in the band-
width of 20.

5 10 15 20 25

Size of sampling set

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
M

S
E

Low-pass with exponential decaying GFTs

Tik Greedy

NA Greedy

Tik Random

NA Random

(b) Low-pass signal with exponential decaying GFT.

5 10 15 20 25

Size of sampling set

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
M

S
E

High-pass signals with BW=20

Tik Greedy

NA Greedy

Tik Random

NA Random

(c) High-pass signals with constant GFT in the band-
width of 20.

5 10 15 20 25

Size of sampling set

0

0.5

1

1.5

N
M

S
E

Random Gaussian signals

Tik Greedy

NA Greedy

Tik Random

NA Random

(d) Random Gaussian signals following N (0,L†).

Figure 7.1: The sampling performance comparison between Tikhonov estimate and NA estimate based greedy
graph signal sampling.

From the experiment results in Figure 7.1, we have the following observations:

• The performance of graph signal reconstruction from partial observations of the
noisy signals based on our NA regularization is much better than the typical Tikhonov
regularization, with either random scheme or greedy scheme. This is not surpris-
ing, since in chapter 6 we have already seen the superiority of the NA regulariza-
tion, which captures the local signal information.

• Sampling the subset with greedy approach in general can perform better than the
random sampling. The reason is because at each greedy sampling step, a node
is sampled to minimize the cost function related to MSE, while random sampling
does not optimize.

• In Low-pass signal and Random the greedy method of Tikhonov regularization be-
haves not well. This is because the Tikhonov filter matrix is close to singular or

88 REFERENCES

badly scaled numerically.

• The interpolation performance has shown the similar patterns for both non-Bayesian
and Bayesian settings though we use the same cost functions (7.9) and (7.17), re-
spectively. This supports our unified greedy sampling framework for both deter-
ministic and random signals (cf. subsection 7.2.1).

7.5. CONCLUSION AND DISCUSSIONS
In this chapter, we first develop the Tikhonov estimate based greedy algorithms. It is
partly investigated in [10], and we generalize it to both the Bayesian and non-Bayesian
setting. Different from the work in [9] where a bandlimited graph signal model is con-
sidered, we consider a Tikhonov estimate based model which does not require eigende-
composition of the graph Laplacian with a high computational cost. Then, we shift to NA
estimate based sampling, simply by replacing Tikhonov estimate with NA estimate. With
experiments on synthetic signals under both Bayesian and non-Bayesian settings, we
showed the significant improvement of the performance by NA estimate based greedy
graph signal sampling, compared to the commonly used Tikhonov estimate based.

REFERENCES
[1] P. Lorenzo, S. Barbarossa, and P. Banelli, Sampling and recovery of graph signals, in

Cooperative and Graph Signal Processing (Elsevier, 2018) pp. 261–282.

[2] S. Joshi and S. Boyd, Sensor selection via convex optimization, IEEE Transactions on
Signal Processing 57, 451 (2008).

[3] A. J. Miller and N.-K. Nguyen, Algorithm as 295: A fedorov exchange algorithm for
d-optimal design, Journal of the royal statistical society. series c (applied statistics)
43, 669 (1994).

[4] S. P. Chepuri and G. Leus, Sparsity-promoting sensor selection for non-linear mea-
surement models, IEEE Transactions on Signal Processing 63, 684 (2014).

[5] M. Fickus, D. G. Mixon, and M. J. Poteet, Frame completions for optimally robust re-
construction, in Wavelets and Sparsity XIV, Vol. 8138 (International Society for Op-
tics and Photonics, 2011) p. 81380Q.

[6] G. Ortiz-Jiménez, M. Coutino, S. P. Chepuri, and G. Leus, Sparse sampling for in-
verse problems with tensors, IEEE Transactions on Signal Processing 67, 3272 (2019).

[7] M. Bouhtou, S. Gaubert, and G. Sagnol, Submodularity and randomized round-
ing techniques for optimal experimental design, Electronic Notes in Discrete Math-
ematics 36, 679 (2010).

[8] Z. Allen-Zhu, Y. Li, A. Singh, and Y. Wang, Near-optimal discrete optimization for
experimental design: A regret minimization approach, Mathematical Programming
, 1 (2020).

REFERENCES 89

[9] L. F. Chamon and A. Ribeiro, Greedy sampling of graph signals, IEEE Transactions
on Signal Processing 66, 34 (2017).

[10] P.-Y. Chen and D. Wei, On the supermodularity of active graph-based semi-
supervised learning with stieltjes matrix regularization, in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2018) pp.
2801–2805.

[11] A. Hashemi, R. Shafipour, H. Vikalo, and G. Mateos, Accelerated sampling of ban-
dlimited graph signals, arXiv preprint arXiv:1807.07222 (2018).

[12] C. Rusu and J. Thompson, Node sampling by partitioning on graphs via convex op-
timization, in 2017 Sensor Signal Processing for Defence Conference (SSPD) (IEEE,
2017) pp. 1–5.

[13] F. Wang, G. Cheung, and Y. Wang, Low-complexity graph sampling with noise and
signal reconstruction via neumann series, IEEE Transactions on Signal Processing
67, 5511 (2019).

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms
(MIT press, 2009).

[15] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, and W. Gao, Fast graph sampling set
selection using gershgorin disc alignment, IEEE Transactions on Signal Processing
68, 2419 (2020).

[16] Y. Tanaka, Y. C. Eldar, A. Ortega, and G. Cheung, Sampling on graphs: From theory
to applications, arXiv preprint arXiv:2003.03957 (2020).

[17] B. Winer, Statistical Principles in Experimental Design: 2d Ed (McGraw-Hill, 1971).

[18] M. Coutino, S. P. Chepuri, and G. Leus, Subset selection for kernel-based signal re-
construction, in 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (IEEE, 2018) pp. 4014–4018.

[19] S. M. Kay, Fundamentals of statistical signal processing (Prentice Hall PTR, 1993).

[20] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, Connecting the dots: Identify-
ing network structure via graph signal processing, IEEE Signal Processing Magazine
36, 16 (2019).

8
CONCLUSION & FUTURE WORK

In conclusion, the second part of our work focuses on the node-adaptive graph signal
regularization, which relies on a more general prior on the graph signals. This can be
learned by designing the regularization parameters ω and more adaptive compared to
the global smoothness prior, i.e., Tikhonov regularization. With this enhanced degree
of freedom, we have shown that indeed NA regularization does better than Tikhonov
regularization in signal reconstruction and interpolation over graphs. We also studied
the bias-variance trade-off introduced by the regularization parameters. Different meth-
ods are proposed to design the NA regularization parameters to minimize the MSE, first
based on Prony’s method, then some convex relaxation techniques used. To solve the
true signal dependency problem, we proposed the min-max formulation by only using
the signal variation bounds. Afterwards, we applied the NA graph signal regularization
in the problem of greedy graph signal sampling, showing its superior performance on
different types of graph signals. Extensive experiments on synthetic and real-world data
have shown the ability of node-adaptive graph signal regularization and the validity of
different regularization parameters design methods.

FUTURE RESEARCH QUESTIONS AND STATEMENTS
1. Under stochastic signal model where the graph signals follow certain prior random

distribution, e.g., N (0,L†), the experiment results indicate that NA regularization
performs better than Tikhonov regularization in general which shall be the best in
terms of MSE, why?

Notice that in the previous experiments in Section C.1, we also compared the per-
formance of our approach on the random signals which do not agree with our
underlying deterministic model where the true signal has no prior statistical in-
formation.

Suppose the true graph signal follows a Gaussian distribution with zero mean and
L† as covariance matrix and the noise follows a Gaussian distribution N (0,σ2I).
We can find that Tikhonov regularization solution with penalty weight ω0 = σ2 is

91

92 REFERENCES

an MAP (maximum a posterior probability) estimator, an MMSE (Wiener) estima-
tor as well as, since the probability density functions of the signal and the noise
are both symmetric. However, the experiments indicate that our NA regulariza-
tion can still do better than Tikhonov regularization when the parameter is chosen
as noise variance.

2. As we have mentioned in Appendix C, in the constant transform equation (cf.(C.2))
we set the constant as 1, which is not always right. When it is too small, the regu-
larization term will be too trivial to influence the fitting term. In our experiments,
we did not tune this scalar in the synthetic data, but for the real data ones, we tune
it till obtaining a good performance. In practice, this is doable, but it is necessary
to have a proper theoretical study regarding to this scalar value level, which shall
be related to the data value level and controls the trade-off between the data fitting
the regularization term on a high level.

3. In the work of graph signal denoising based on graph neural networks [1], the
authors proposed to learn diverse graph signal priors through neural networks,
specifically unrolling the iterative algorithms into neural networks. This so-called
graph unrolling networks leverage the learning ability of neural networks to adapt
the diverse priors of graph signals so to obtain a better denoising performance.
Our proposed method does not rely on the neural networks to learn and the con-
stant transform based NA parameters design method does not rely on complex
optimizations either.

4. In the numerical experiments of chapter 7, we design the NA weights based on
enhanced Prony’s method, which requires the true signal information. In future
work, we need to carry out the NA weights design method not relying on true sig-
nals.

REFERENCES
[1] S. Chen, Y. C. Eldar, and L. Zhao, Graph unrolling networks: Interpretable neural

networks for graph signal denoising, arXiv preprint arXiv:2006.01301 (2020).

A
APPENDIX OF PART I

A.1. PROOF OF THEOREM 1
Proof. Without loss of generality, an error in the entries of D indicates the following two
cases:

• di j > ε, (i , j) ⊂C −T and ci j < ε. In contrary, d(i , j) is supposed to be 0.
The probability of this event is

Pr(di j > ε, where (i , j) ⊂C −T)

=Pr(xi j > ε2s

‖W‖1
)

=Pr(xi j −E(xi j) > ε2s

‖W‖1
−E(xi j))

=Pr(xi j > E(xi j)+δ1),

(A.1)

where δ1 = ε2s
‖W‖1

−E(xi j). Note that E(xi j) = c2
i j s

‖W‖1
, so we have δ1 = (ε2 − c2

i j) s
‖W‖1

.

Following the proof as in [1, Lemma 3], by applying the standard multiplicative
Chernoff bound of [2, Theorem 1.1], we have

Pr(xi j > E(xi j)+δ1) < exp(−2δ2
1/(sK 2)). (A.2)

Consider a worst case scenario, the minimum of δ1 is min(δ1) = ε2 s
‖W‖1

, when ci j =
0. Thus, we have

Pr(xi j > E(xi j)+δ1) < exp(−2δ2
1/(sK 2)) < exp(−2ε4s/(K ‖W‖1)2). (A.3)

The total number of errors in this case is limited by

Pr(xi j > E(xi j)+δ1) · (M 2 −T) < exp(−2ε4s/(K ‖W‖1)2) · (M 2 −T). (A.4)

93

94 REFERENCES

• di j = 0, where (i , j) ⊂ T and ci j > ε. In contrary, di j is supposed to be ci j , within
the top-T s.
The probability of this event is

Pr(di j = 0(i .e.,di j < ε), (i , j) ⊂T)

=Pr(xi j < ε2s

‖W‖1
)

=Pr(xi j −E(xi j) < ε2s

‖W‖1
−E(xi j))

=Pr(xi j > E(xi j)−δ2),

(A.5)

where δ2 = E(xi j)− ε2s
‖W‖1

= (c2
i j −ε2) s

‖W‖1
.

By following the similar procedure, we have

Pr(xi j > E(xi j)−δ2) < exp(−2δ2
2/(sK 2)). (A.6)

If we consider a worst case scenario, we have min(δ2) = (min(c2
i j)− ε2) s

‖W‖1
, for

(i , j) ⊂T . Thus, we have

Pr(xi j > E(xi j)−δ2) < exp(−2δ2
2/(sK 2)) < exp(−2(min(c2

i j)−ε2)2s/(K ‖W‖1)2).
(A.7)

The total number of errors in this case is limited by

Pr(xi j > E(xi j)−δ2) ·T < exp(−2(min(c2
i j)−ε2)2s/(K ‖W‖1)2) ·T. (A.8)

Summing the two cases above, we complete the proof.

REFERENCES
[1] G. Ballard, T. G. Kolda, A. Pinar, and C. Seshadhri, Diamond sampling for approxi-

mate maximum all-pairs dot-product (mad) search, 2015 IEEE International Confer-
ence on Data Mining (2015), 10.1109/icdm.2015.46.

[2] D. P. Dubhashi and A. Panconesi, Concentration of measure for the analysis of ran-
domized algorithms (Cambridge University Press, 2009).

http://dx.doi.org/10.1109/icdm.2015.46
http://dx.doi.org/10.1109/icdm.2015.46

B
APPENDICES OF PART II

B.1. IMPORTANT LEMMAS AND THEOREMS

Lemma 6 ([1]). Schur complement lemma : Given any symmetric matrix, M =
(

A B
B> C

)
,

the following conditions are equivalent:

• M º 0 (M is positive semi-definite);

• A º 0, (I−AA†)B = 0, C−B>A†B º 0

• C º 0, (I−CC†)B = 0, A−B>C†B º 0

Lemma 7. Let A,B,C be n×n symmetric matrices, then tr
(
(A2 −B2)C

)= tr ((A−B)(A+B)C)−
tr ((AB−BA)C) = tr ((A−B)(A+B)C) , because tr(ABC) = tr

(
(ABC)>

)= tr(CBA) = tr(ACB)1.

Lemma 8. Let A be an n ×n positive semi-definite matrix, and B an n ×n negative semi-
definite matrix, then tr(AB) ≤ 0.

Proof. Consider an eigenvalue-eigenvector equation of matrix AB as follows

ABx =λx, (B.1)

where eigenvalue λ is a scalar, and eigenvector x is a vector of length n. If we multiple
(B.1) by x>B on both sides, then

x>BABx =λx>Bx. (B.2)

The eigenvalue of AB can be represented as

λ= x>BABx

x>Bx
. (B.3)

1Due to the cyclic property of trace and tr(A) = tr(A>)

95

96 B. APPENDICES OF PART II

From [1, Theorem 7.2.7], matrix BAB is positive semi-definite independent of matrix B.
Thus, the numerator x>BABx is nonnegative. Since matrix B is negative semi-definite,
so we have the denominator x>Bx nonpositive. This results in a general nonpositive
eigenvalue λ. Thus, the trace of matrix AB is nonpositive.

Lemma 9 ([1]). Let n ×n matrices A,B be positive semi-definite, then A¯B is positive
semi-definite and λmax(A¯B) ≤ λmax(A)max {bi i } where bi i is the i -th diagonal element
of B. Since the inequality is given in the exercise part of [1], so we give the proof below.

Proof. Let λn be the maximal eigenvalue of A, then A −λn I ¹ 0. From the preceding
lemma, we have (A−λn I)¯B ¹ 0. Let x ∈Cn be a nonzero vector, then

x> ((A−λn I)¯B)x = x> (A¯B)x−λn x> (I¯B)x ≤ 0,

which leads to

x> (A¯B)x ≤λn x> (I¯B)x =λn

n∑
i=1

bi i |xi |2 ≤λnmax{bi i }‖x‖2.

If x is the eigenvector, it completes the proof.

Theorem 3 (Weyl’s Inequality[1]). Let A,B be n ×n Hermitian matrices and let the re-
spective eigenvalues of A,B and A+B be {λi (A)}n

i=1, {λi (B)}n
i=1 and {λi (A+B)}n

i=1, each of
which is algebraically ordered as λmin =λ1 ≤λ2 ≤ ·· · ≤λn−1 ≤λn =λmax. Then

λi (A+B) ≤λi+ j (A)+λn− j (B), j = 0,1, . . . ,n − i

for each i = 1, . . . ,n, with equality for some pair i , j if and only if there is a nonzero vecto x
such that Ax =λi+ j (A)x, Bx =λn− j (B)x and (A+B)x =λi (A+B)x. Also,

λi− j+1(A)+λ j (B) ≤λi (A+B), j = 1, . . . , i

for each i = 1, . . . ,n, with equality for some pair i , j if and only if there is a nonzero vector
x such that Ax = λi− j+1(A)x, Bx = λ j (B)x and (A+B)x = λi (A+B)x. If A and B have no
common eigenvector, then every inequality above is a strict one.

B.2. PROOF OF LEMMA 5
To show var(ω) ≤ var(ω0), given ω2

i ≥ω0, for i = 1,2, . . . ,n, it suffices to show

var(ω)−var(ω0) = tr(H2(ω)Σ)− tr(H2(ω0)Σ) = tr {[(H(ω)−H(ω0))(H(ω)+H(ω0))] ·Σ} ≤ 0

where the second equality comes from Lemma 7. Since matrices Σ, H(ω) and H(ω0) are
positive semi-definite by definition, from Lemma 8 it suffices to show H(ω)−H(ω0) ¹ 0
with the given condition ω2

i >ω0 for i = 1, . . . , N .
With this condition, we have ωω> º ω011>. Since diag(ω)Ldiag(ω) = ωω>¯L and

ω0L =ω011>¯L, we further have

(I+ω011>¯L)− (I+ωω>¯L) = (ω011>−ωω>)¯L ¹ 0

B.3. PROOF OF THEOREM 2 97

where the equality is because Hadamard product is distributive over addition. Then, we
left multiply both sides by (I+ω011>¯L)−1 and right multiply both sides by (I+ωω>¯
L)−1. This does not change the sign because they are both PSD. Hence, we have

(I+ωω>¯L)−1 − (I+ω011>¯L)−1 ¹ 0

H(ω)−H(ω0) ¹ 0

which completes the proof.

B.3. PROOF OF THEOREM 2
Proving mse(ω) ≤ mse(ω0) with the given conditions, is equivalent to showing∆= mse(ω)−
mse(ω0) ≤ 0. We expand the latter as

∆= tr
{

(I−H(ω))2 x∗x∗T
}
+ tr(H2(ω)Σ)− tr

{
(I−H(ω0))2 x∗x∗T

}
+ tr(H2(ω0)Σ).

Since x∗x∗T = PΣ holds by definition, by working out the above equation, we have

∆= tr{Σ (H(ω0)−H(ω)) · [2P− (H(ω)+H(ω0)) (I+P)]}.

Due to the covariance matrix Σº 0 and from the first condition (6.9a) we have also that
the filter difference is positive semi-definite H(ω0)−H(ω) º 0. Thus, it suffices to show
that

2P− (H(ω)+H(ω0)) (I+P) ¹ 0.

Further, since I+P Â 0 and invertible, we can focus on proving the smallest eigenvalue
is greater or equal to zero, i.e.,

λmin
{

H(ω)+H(ω0)−2P (I+P)−1}≥ 0.

Let us then define the matrixΓ,P (I+P)−1 and scalar γ ∈ (0,1) as its only nonzero eigen-
value for simplifying the notations. From Theorem 3, we have

λmin {H(ω)+H(ω0)−2Γ} ≥λmin {H(ω)}+λmin {H(ω0)}+λmin {−2Γ} .

So, a sufficient condition for mse(ω) ≤ mse(ω0) is

λmin {H(ω)}+λmin {H(ω0)}−λmax {2Γ} ≥ 0

where λmax {2Γ} = 2γ ∈ (0,2), and λmin {H(ω)}, λmin {H(ω0)} can be found as follows, re-
spectively. From the following eigen-decomposition

H(ω0), (I+ω0L)−1 =
N∑

i=1

1

1+ω0λi
ui u>

i

where λi is the eigenvalue of Laplacian matrix L, and ui is the eigenvector of L, we have

λmin {H(ω0)} =λmin
{
(I+ω0L)−1}= 1

1+ω0λmax(L)
.

98 B. APPENDICES OF PART II

From Lemma 9, we have

λmax
{
ωω>¯L

}≤λmax(L)max
{
ω2

i

}
,

which results in
λmax

{
I+ωω>¯L

}≤ 1+λmax(L)max
{
ω2

i

}
,

which is further followed by the lower bound of λmin {H(ω)}

λmin
{
(I+ωω>¯L)−1}≥ 1

1+λmax(L)max
{
ω2

i

} .

Finally, sufficient conditions for mse(ω) ≤ mse(ω0) are

ωi ≥p
ω0 > 0, for i = 1,2, . . . ,n

1

1+λmax(L)max
{
ω2

i

} + 1

1+ω0λmax(L)
≥ 2γ,

which complete the proof.

B.4. PROOF OF COROLLARY 1
If we simply let the following two hold

1

1+λmax(L)max
{
ω2

i

} ≥ γ,

1

1+ω0λmax(L)
≥ γ,

then we have the condition (6.9a) sufficiently satisfied. Since γ = ρ/(1+ρ) = 1/(1+ 1
ρ),

we substitute this relation into above two conditions, then we have

max
{
ω2

i

}
λmax(L) ≤ 1

ρ

ω0λmax(L) ≤ 1

ρ

ωi ≥p
ω0 > 0, for i = 1,2, . . . ,n

The second one can be omitted since max
{
ω2

i

}≥ω0, which completes the proof.

B.5. SIMPLIFYING THE COST FUNCTION FOR PROBLEM (6.18)
First we expand the inner term as follows

E
{‖y− (I+Ω¯L)x∗‖2

2

}
= E

{
tr{[y− (I+Ω¯L)x∗] · [y− (I+Ω¯L)x∗]>}

}
= E

{
tr{yyT −2yx∗T (I+Ω¯L)+ (I+Ω¯L)2x∗x∗T }

}
.

B.6. A DETAILED EXPRESSION OF THE COST FUNCTION IN (6.20) 99

Since the trace operation can be switched with expectation operation, the cost function
is equal to

tr{E(yy>)−2E(yx∗T)(I+Ω¯L)+ (I+Ω¯L)2x∗x∗T }.

Further, since E(yy>) =Σ+x∗x∗T and E(yx∗T) = x∗x∗T , the above is equivalent to

tr{Σ+x∗x∗T −2x∗x∗T (I+Ω¯L)+ (I+Ω¯L)2x∗x∗T }

= tr{Σ+ [I− (I+Ω¯L)]2x∗x∗T }

= tr{Σ+ (Ω¯L)2x∗x∗T }.

As our optimization variable isΩ, we can drop the unrelated covariance matrixΣ, which
gives the cost function in problem (6.19).

B.6. A DETAILED EXPRESSION OF THE COST FUNCTION IN (6.20)
The cost function in (6.20) is

E
{‖H(Ω)y−x∗‖2

2

}
,

which can be expressed as follows

E{tr(H2(Ω)yy>−2H(Ω)yx∗>+x∗x∗>)}.

Then we exchange the expectation and trace operator and we have the following detailed
expression of the cost function

tr{(H2(Ω))−2H(Ω)+ I)x∗x∗>+H2(Ω)Σ}.

From this expression, we can see that this cost function indeed includes the considera-
tion of both the signal and noise.

REFERENCES
[1] R. Horn and C. Johnson, Matrix Analysis, Matrix Analysis (Cambridge University

Press, 2013).

https://books.google.nl/books?id=5I5AYeeh0JUC

C
A SIMPLE NODE-ADAPTIVE GRAPH

REGULARIZATION WEIGHTS DESIGN

In Part II, we proposed the node-adaptive graph signal regularization to promote a more
general smoothness assumption on the graph signals. The parameters allow for flexibil-
ity is the NA regularization weight vector ω. The design of such vector is critical for its
performance.

As we have seen in section 6.4, the weight design methods minimizes the MSE to
design the parameters, but they are dependent on the ground truth signals. Though we
proposed the min-max formulation to adapt the methods, it has limited performance
improvement as in section 6.5. The weight design methods also heavily rely on solving
optimization problems. This is impractical in real world problems, and hurdles the NA
regularizer applicability. To make the NA regularizer more practical, we need a simple
and intuitive parameter design scheme. For example, in Tikhonov regularization, as re-
viewed in subsection 5.2.6 and [1] , the increase of ω0 will lead to a monotonic change
in bias and variance. The optimal design of ω0 does not rely on solving an optimization
problem [1].

Thus, in this chapter, we revisit the NA graph signal regularization from another
topological perspective. Then, we propose a simple NA weight design methods based
on a so-called constant transform equation. We follow it by extensive descriptive ex-
periments on synthetic and real world data. Afterwards, along with the idea of constant
transform, we give an insight of a smooth transform based graph signal processing frame-
work.

C.1. REVISIT NODE-ADAPTIVE GRAPH SIGNAL REGULARIZATION

If a graph signal is smooth over the underlying graph, then we can reconstruct it using
the graph topology knowledge. When we look at the Tikhonov regularization from an-

101

102 C. A SIMPLE NODE-ADAPTIVE GRAPH REGULARIZATION WEIGHTS DESIGN

other perspective, we can see (5.15) as

min
x

x>Lx

s.t. ‖y−x‖2≤ δ,
(C.1)

where δ is a predefined fitting error tolerance. Basically, the goal of Tikhonov regular-
ization is to minimize the signal smoothness subject to an acceptable tolerance on the
fitting error. We can see that that if a signal is constant over the graph, then we can recon-
struct this signal with great confidence by Tikhonov approach.

However, can we not rely on the smoothness assumption to reconstruct the graph
signal? Can we reconstruct a graph signal that has more high frequency components?
Or can we reconstruct a graph signal that has very random low and high frequency com-
ponents? With node-adaptive regularization, we can achieve a more general signal prior
and explore a simple way of the regularization parameters design.

C.1.1. NA GRAPH SIGNAL REGULARIZATION FROM CONSTANT TRANSFORM
The core idea to answer the previous questions is: if we transform an arbitrary signal into
a smoother version, we can use the fact that this "new" signal is smooth enough to be
reconstructed. Then, we can recover the original signal if the previous smooth transform
is known and invertible.

This smooth transform can be achieved by a nodal loading vector ωnl on the ar-
bitrary graph signal x. This transform converts the signal into a constant signal, the
smoothest signal that one can achieve. Mathematically, we essentially impose the fol-
lowing so-called constant transform equation

diag(ωnl)x = c1, (C.2)

where c is a predefined a constant. This transform is carried out by the NA regularization
parameters ω weighted over the graph signal x. If we view the NA regularization (6.3)
from the perspective of (C.1), then it is seen as follows

min
x

(diag(ω)x)>L(diag(ω)x)

s.t. ‖y−x‖2≤ δ.
(C.3)

Problem (C.3) recovers the original graph signal x by guaranteeing that its "transformed"
version diag(ω)x is globally smooth. That is, it minimizes the variation of the "trans-
formed" signal, i.e., (diag(ω)x)>L(diag(ω)x). The latter is equivalent to our proposed
node-adaptive regularization (6.3)

min
x

‖y−x‖2
2+(diag(ω)x)>L(diag(ω)x), (C.4)

where the solution has the closed form (6.4) and the fitting term and regularization term
can be traded by scaling the NA weights.

In short, our NA regularization recovers the signal without any smoothness assump-
tions by minimizing the signal variation of the loaded signal. Furthermore, if the NA
weights follow the constant transform equation (C.2), then NA regularization looks for
the signal estimate by minimizing the signal variation of a constant signal.

C.2. NUMERICAL RESULTS 103

C.1.2. CONSTANT TRANSFORM BASED NA WEIGHT DESIGN
We follow the constant transform equation (C.2) to design the NA weights. We do not
differentiate the loading vector and NA weights anymore, since they act the same role.
From (C.2), NA weights can follow

diag(ω)x = 1, (C.5)

where the all-ones vector 1 can be scaled. We refer to (C.5) as the constant transform
design. However, this is not practical as the ground truth signal x is required. To make it
practical, we replace the true signal x by its estimate x̂, that is,

diag(ω)x̂ = 1. (C.6)

What is important is to obtain a good estimate of the true signals which is inverse to the
NA parameters. We consider the following situation.

Practical consideration Suppose we have a set of noisy realizations {y1,y2, . . . ,yM }
or we have real world data recordings like the Molene weather data or NOAA tempera-
ture data in section 6.5, with dimension of N ×F , where N is the length of the data per
observation, and F is the number of observation at different time. We use a small (or
large, even all, depending on the requirements) set of the noisy observations to train NA
weights according to the following

diag(ω) = 1¯−1 (ȳ), (C.7)

where ¯−1 is the inverse Hadamard operator, i.e., the element-wise division and ȳ is the
mean of the certain number of noisy signal realizations.

This is because under the given signal model y = x+n, for deterministic case, the
mean of all noisy measurements is a minimum variance unbiased (MVU) estimator, i.e.,
x̂MV U = ȳ, which can result in a good estimate of x when the number of measurements
is properly large. As we will see later in the experiment part, with this consideration, we
can basically obtain a performance close to the design (C.5) with true signals.

Note that the constant vector 1 needs to be scaled properly with a scalar c. In cases
where the data value is large, for instance, the Molene and NOAA weather data in the real
data experiment, if we do not scale the parameters, the regularization term is trivial and
does not fit the data. In the following synthetic experiments, we set c = 1, but for the real
data ones, we tune the value of c to achieve a good performance.

C.2. NUMERICAL RESULTS
In this section, we analyze the behavior of the simple design of the NA regularization and
compare it with NI regularization.

C.2.1. SYNTHETIC DATA
First, we conduct experiments on synthetic data, where we consider multiple realiza-
tions of the noisy graph signals are available, and the mean of the realizations are used
in NI and NA estimates. The experimental setting is same as before in section 6.5. But
here we consider the following different graph signals

104 C. A SIMPLE NODE-ADAPTIVE GRAPH REGULARIZATION WEIGHTS DESIGN

• Low-pass smooth signals with its GFT is constantly one in the first 20 graph fre-
quencies, i.e., x̃i = 1, for i = 1, . . . ,20, and the rest are zeros.

• Low-pass smooth signals with decaying GFT in the first 20 graph frequencies, i.e.,
x̃i = 1

1+λi
, for i = 1, . . . ,20, and the rest are zeros.

• High-pass signals with constant GFT in the last 20 graph frequencies, i.e., x̃i = 1,
for i = 31, . . . ,50, and the rest are zeros.

• Bandlimited graph signals with bandwidth of 20, and the GFT within the band
follows a Gaussian distribution N (0,L†).

-8 -6 -4 -2 0 2 4 6 8

SNR

10
-3

10
-2

10
-1

10
0

N
M

S
E

Low-pass signals with BW=20

NI with 100 rlz

NI

NA enh-Prony

NA Simp Oracle

NA Simp with 1 rlz

NA Simp with 20 rlz

NA Simp with 100 rlz

(a) Low-pass smooth signals with constant GFT in
the bandwidth of 20.

-8 -6 -4 -2 0 2 4 6 8

SNR

10
-3

10
-2

10
-1

10
0

N
M

S
E

Low-pass signals with exponential decaying GFT

NI with 100 rlz

NI

NA enh-Prony

NA Simp Oracle

NA Simp with 1 rlz

NA Simp with 20 rlz

NA Simp with 100 rlz

(b) Low-pass smooth signals with exponential decay-
ing GFT in the bandwidth of 20.

-8 -6 -4 -2 0 2 4 6 8

SNR

10
-3

10
-2

10
-1

10
0

N
M

S
E

High-pass signals with BW=20

NI with 100 rlz

NI

NA enh-Prony

NA Simp Oracle

NA Simp with 1 rlz

NA Simp with 20 rlz

NA Simp with 100 rlz

(c) High-pass signals with constant GFT in the band-
width of 20.

-8 -6 -4 -2 0 2 4 6 8

SNR

10
-3

10
-2

10
-1

10
0

N
M

S
E

Bnadlimited signals BW=20 with random GFT

NI with 100 rlz

NI

NA enh-Prony

NA Simp Oracle

NA Simp with 1 rlz

NA Simp with 20 rlz

NA Simp with 100 rlz

(d) Bandlimited signals with random GFT in-band.

Figure C.1: Denoising performance of the simple NA weights design when many realizations are available.

For NI regularization method, we use the optimal parameter design from [1] and
we also take the enhanced-Prony method as comparisons. For our simple design of NA
regularization, we first consider the oracle design (C.5) by assuming that the true signal

C.2. NUMERICAL RESULTS 105

is available as the benchmark. Then, we consider the practical situation (C.7) by making
use of the mean of 1, 20 and 100 signals noisy realizations.

From the experiment results, shown in Figure C.1, we confirm our previous argument
that NA regularization does not necessarily rely on the global smoothness assumption.
When multiple noisy signal realizations are available, for signals with different character-
istics, no matter low-pass being smooth, high-pass being non-smooth or even random,
the NA regularization beats the NI regularization. Our simple design based on constant-
transform has a comparable performance with the best what is achieved before based
on enhanced-Prony method. When the number of noisy signal realizations improves,
we can get the performance closer to the oracle design. For high-pass signals, we ob-
serve that even with one noisy realization, we can achieve a much better performance
compared to the NI approach.

Note that all over the experiments, we also evaluated the performance of the NI ap-
proach on the mean of 100 noisy realizations for tighter comparison. We easily see that
by increasing the number of realizations, one cannot improve much on NI approach,
which is also not even comparable to our approach when the number of realizations
is properly large. Moreover, the NA estimate has at least three times better NMSE per-
formance the the simple mean of the multiple realizations, which attributes to the NA
regularization scheme.

In general, if we have many noisy measurements or realizations of one graph signal,
it is worth to have more discussions on the question of, should we consider the Tikhonov
method working on the mean of these realizations or on each one of them, then mea-
sure the NMSE? It is reasonable to consider the Tikhonov method working on each single
realization, then get the NMSE for each, and average them as a numerical NMSE mea-
sure. Regarding the results above, I reported the theoretical NMSE expression for each
method and it is close to numerical NMSE when the number of realizations are large, so
we believe that those results are valid and able to reflect the ability of our methods.

Actually we also tried the other case, applying on the Tikhonov method on the mean
of the total, (e.g. 100 in this example) realizations, since we used at most total realizations
to design the loading vector. Even in this case, our methods beat the NI regularization
when the number of realization is larger than around 10.

C.2.2. EFFECT OF THE NUMBER OF REALIZATIONS

In this section, we discuss the effect of the number of noisy realizations on the simple
NA regularization performance. We conduct several experiments and evaluate the per-
formance by increasing the number of realization two by two. The oracle design and
Tikhonov regularization on one realization and 100 realizations are used for compar-
isons.

In Figure C.2, we show the denoising performance when the number of realizations
is {1,2,4,6}. We observe that the simple design can perform well compared to the coun-
terpart, Tikhonov regularization even with 100 realizations. These results indicate that
the simple design method is robust in practice.

When the number of realizations increases gradually, the simple NA design performs
better. This is benefiting from a better estimate of the graph signals by averaging more
number of realizations. But without the simple NA design method, the mean estimate

106 C. A SIMPLE NODE-ADAPTIVE GRAPH REGULARIZATION WEIGHTS DESIGN

-8 -6 -4 -2 0 2 4 6 8

SNR

10
-3

10
-2

10
-1

10
0

N
M

S
E

Low-pass signals with BW=20

NI

NI with 100 rlz

NA Simp Oracle

NA Simp with 1 rlz

NA Simp with 2 rlz

NA Simp with 4 rlz

NA Simp with 6 rlz

(a) Low-pass signals with constant GFT in the band-
width of 20.

-8 -6 -4 -2 0 2 4 6 8

SNR

10
-3

10
-2

10
-1

10
0

N
M

S
E

Low-pass signals with exponential decaying GFT

NI

NI with 100 rlz

NA Simp Oracle

NA Simp with 1 rlz

NA Simp with 2 rlz

NA Simp with 4 rlz

NA Simp with 6 rlz

(b) Low-pass signal with exponential decaying GFT.

-8 -6 -4 -2 0 2 4 6 8

SNR

10
-3

10
-2

10
-1

10
0

N
M

S
E

High-pass signals with BW=20

NI

NI with 100 rlz

NA Simp Oracle

NA Simp with 1 rlz

NA Simp with 2 rlz

NA Simp with 4 rlz

NA Simp with 6 rlz

(c) Low-pass signals with constant GFT in the band-
width of 20.

-8 -6 -4 -2 0 2 4 6 8

SNR

10
-3

10
-2

10
-1

10
0

N
M

S
E

Gaussian random signals

NI

NI with 100 rlz

NA Simp Oracle

NA Simp with 1 rlz

NA Simp with 2 rlz

NA Simp with 4 rlz

NA Simp with 6 rlz

(d) Low-pass signal with exponential decaying GFT.

Figure C.2: Denoising performance when number of realizations is increasing.

still gives three times worse performance as observed in above synthetic results.

C.2.3. REAL DATA

In this section, we investigate the behavior of the constant transform based NA weights
design on real data. To keep the consistency, we use the Molene weather dataset and
the NOAA dataset (the former consists of a dimension of 32× 744 hourly temperature
data and the latter data has a dimension of 109×8759, see in section 6.5). This is essen-
tially different from the synthetic experiments in the last section where we have many
realizations of one signal, while now multiple observations are obtained over time. Each
observation is a separate signal, though sharing same pattern due to the physical fact.

To denoise with these data with the simple constant transform designed NA regular-
ization, we first split the whole data into the training set and the testing set. Then we
average the training data and with the mean which reveals the true signal pattern, we
use the simple constant transform equation to obtain the NA parameters by point-wise

C.3. DISCUSSION AND CONCLUSION 107

-20 -15 -10 -5 0 5 10

SNR

0

2

4

6

8

10

12

14

16

18
N

M
S

E

NI

NA Simp with 30% training data

NA Simp Oracle

(a) Molene weather data.

-20 -15 -10 -5 0 5 10

SNR

0

1

2

3

4

5

6

7

8

N
M

S
E

NI

NA Simp with 10% training data

NA Simp Oracle

(b) NOAA data.

Figure C.3: Simple constant transform based NA regularization behavior on real data.

division as in (C.7). Finally we use the trained NA parameters to denoise the remaining
testing data. The reason that we are averaging the training data, is because these obser-
vations are obtained on a fixed physical setting. It means the pattern of the observations
are similar and is able to reflect the true signal pattern. This is significant in the constant
transform equation.

Figure C.3 shows the denoising performance with respect to the different noise level,
which is added to generate SNRs of {−20 dB,−17 dB, . . . ,10 dB}. We compare with the
Tikhonov regularization with the optimal parameter setting and use the oracle constant
transform design as the benchmark. From the curves, the performance of NA regu-
larization constantly outperforms the Tikhonov method and we also observe that even
with small number of training data, the trained NA parameters can achieve performance
close to the oracle design. Note that since the data values are large in these two dataset,
we scale the trained and oracle NA parameters by hand-tuning them till a good perfor-
mance is obtained.

This indicates the practicality of our method when dealing with data like Molene
and NOAA temperature recordings. We can use certain small number of observations to
train and get a good set of NA parameters based on the constant transform equations,
then process the remaining data with NA regularization method, as we discussed in the
practical consideration.

C.3. DISCUSSION AND CONCLUSION
Inspired by the simple NA weights design, we discuss a more general GSP framework
based on smooth transform. We consider a constant signal (all nodal values are one)
over a ring graph with 16 nodes. We can use any low pass filter to denoise such signal,
for instance, typical Tikhonov denoising, as shown in Figure C.4, because the constant
signal is globally smooth over the graph.

However, if the first nodal signal value became 10 significantly without being known,
it is not clear then how to handle this situation. Since the signal global smoothness is

108 C. A SIMPLE NODE-ADAPTIVE GRAPH REGULARIZATION WEIGHTS DESIGN

true signal

0.5

1

1.5
reconstructed signal (mse=0.32624)

0.5

1

1.5

Figure C.4: Typical Tikhonov denoising of a constant signal over a ring graph with noise variance of 0.2 and
regularization parameter 0.5.

broken, our idea is to design a loading vector on the signal such that the loaded true
signal is globally smooth. As we know, a constant signal is a best choice for smoothness,
since its signal variation is zero. Then, we load the noisy measurement and denoise this
loaded (transformed) noisy signal by any smoothness-based denoising method. Finally
we can retract the original signal by the loading vector we designed.

true signal

0.5

1

1.5
noisy measurement

0.5

1

1.5

denoised by Tikhonov filter (mse=19.4706)

0.5

1

1.5
smooth transforma + Tikhonov filter (mse=0.34007)

0.5

1

1.5

10 9.8632

0.9359

2.3499

6.0965

2.3176

0.9767

9.7340

0.9443

0.8807

Figure C.5: Comparison of Tikhonov denoising and smooth transform based Tikhonov denoising of a non-
smooth signal over a ring graph with noise variance of 0.2, Tikhonov regularization parameter 0.5 and loading
vectorω following diag(ω)x = 1.

Such an example is shown in Figure C.5 and analyzed in graph spectral domain Fig-
ure C.6. In graph spectral domain, we observe that the original signal has many high fre-
quency components, while using the pure Tikhonov filter denoising, the high frequency
components will be suppressed, which degrades the performance. However, if we load
the signal such that the noisy measurements have only low frequency components, then

C.3. DISCUSSION AND CONCLUSION 109

we can achieve a good denoising performance with Tikhonov regularization such de-
noising methods relying on global smoothness. Finally, we can unload the nodal weights
to reconstruct a good estimate of the signal.

0 1 2 3 4

0

1

2

3

4

5

6

7
trus signal GFT

0 1 2 3 4

0

1

2

3

4

5

6

7
Loaded true signal GFT

0 1 2 3 4

0

1

2

3

4

5

6

7
Loaded measurement GFT

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1
Tikhonov fileter speatrum

0 1 2 3 4

0

1

2

3

4

5

6

7
GFT denoised by Tikhonov

0 1 2 3 4

0

1

2

3

4

5

6

7
GFT of smooth tsfm Tikhonov

Figure C.6: Denoising of Tikhonov method and smooth transform based Tikhonov method in graph frequency
domain.

Observations. We observe from Figure C.5 that Tikhonov regularization achieves a
high MSE around 20, while the smooth transform plus Tikhonov denoising achievers an
MSE of 0.34. More specifically, in Tikhonov denoising, we observe that the critical node
(with value of 10) influences and gets influenced by the adjacent nodes, which results
in the bad performance and is due to the global smooth assumption. Instead, a smooth
transform makes the global smoothness reliable and true for Tikhonov regularization.

C.3.1. FUTURE WORK

Finally, motivated by this, we propose the following general smooth transform based
denoising scheme, which can escape the assumption on the global signal smoothness,
shown in Figure C.7. This is left as future work. The goal of proposing it is to bridge us
to a better way of understanding our node-adaptive regularization and a simple way of
designing the NA parameters.

The smooth transform idea has some similarities with neural networks (NNs). The
seminal work of explaining the power of convolutions NNs considers scattering trans-
forms as the information processing architectures akin to CNNs [2]. For ones who are
familiar with neural networks, they are nothing but convolutions with filter banks fol-
lowed by nonlinear mapping. The reason that why NNs perform superior to the pure
convolutions, is that, on the one hand, linear filter banks can only provide the stable
information processing ability in the low frequencies; on the other hand, the nonlin-

110 REFERENCES

Figure C.7: Smooth transform based denoising framework

ear operation acts as a frequency mixer which brings part of the high frequency energy
towards low frequencies where it can be discriminated with stable filters [2]. Our NA
regularization and the smooth transform based denoising framework are along with the
similar idea, to transform the signal as low-pass, then the smoothness based methods
can be applied.

C.4. CONCLUSION
In this chapter, we mainly propose a simple NA weight design method, which relies on a
constant transformation equation. The idea of the method is, first see the NA weights as
the transforming vector, then transform the arbitrary graph signals into the smoothest
graph signal, constant signals. In this way, a simple elementwise division design method
is proposed. When multiple noisy realizations are available, the method works well, as
investigated in the synthetic and real data numerical results. Along with the similar idea,
we propose a smooth transform based GSP framework, left as future work.

REFERENCES
[1] P. Chen and S. Liu, Bias-variance tradeoff of graph laplacian regularizer, IEEE Signal

Processing Letters 24, 1118 (2017).

[2] F. Gama, J. Bruna, and A. Ribeiro, Stability properties of graph neural networks,
(2019), arXiv:1905.04497 [cs.LG] .

http://dx.doi.org/10.1109/LSP.2017.2712141
http://dx.doi.org/10.1109/LSP.2017.2712141
http://arxiv.org/abs/1905.04497

	Preface
	Acknowledgment
	Introduction
	titleReferences

	I Graph construction
	Background
	Introduction to graph construction
	Literature review

	Diamond sampling
	Binary case
	General case
	Main results of diamond sampling

	Collaborative filtering
	Rating prediction of user-based collaborative filtering

	Spectral clustering
	titleReferences

	Diamond sampling based similarity graph construction
	-ball neighbor graph construction
	Smoothness guarantee
	Error analysis in diamond sampling based -N graph construction

	kNN graph construction
	Butterfly sampling
	Bipartite graph representation of cosine similarity matrix
	Butterfly sampling
	Relation with exact butterfly counting

	titleReferences

	Numerical results and conclusion
	-N and kNN graphs
	Amazon automotive reviews
	MovieLens 10 millions

	Performance in rating prediction
	Movie recommendation
	Rating prediction

	Spectral clustering
	Conclusion
	titleReferences

	II Graph signal reconstruction
	Background
	Introduction
	Literature review
	Outline of Part II

	Graph signal processing
	Graph signal variation
	Graph shift operator
	Graph Fourier transform
	Graph signal bandwidth
	Graph filtering
	Graph Laplacian denoising, Tikhonov regularization

	titleReferences

	Node-adaptive graph signal regularization
	Node-adaptive regularizer
	Bias-variance trade-off
	Implementation
	Weight design
	Enhanced Prony's method
	Semi-definite relaxation
	min-max method

	Numerical results
	Synthetic data
	Molene data set
	NOAA data set

	titleReferences

	Node-adaptive regularization based graph signal sampling
	Introduction
	literature review
	Basics
	Interpolation via Tikhonov regularization

	Greedy graph signal sampling
	Cost functions discussion based on Tikhonov solution
	Tikhonov estimate based greedy graph signal sampling chen2018

	Node-adaptive estimate based greedy graph signal sampling
	Numerical experiments
	Conclusion and discussions
	titleReferences

	Conclusion & future work
	titleReferences

	Appendix of Part I
	Proof of Theorem 1
	titleReferences

	Appendices of Part II
	Important lemmas and theorems
	Proof of Lemma 5
	Proof of Theorem 2
	Proof of Corollary 1
	Simplifying the cost function for problem (6.18)
	A detailed expression of the cost function in (6.20)
	titleReferences

	A simple node-adaptive graph regularization weights design
	Revisit node-adaptive graph signal regularization
	NA graph signal regularization from constant transform
	Constant transform based NA weight design

	Numerical results
	Synthetic data
	Effect of the number of realizations
	Real data

	Discussion and conclusion
	Future work

	Conclusion
	titleReferences

