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ABSTRACT

MRI as a medical diagnostics tool is still unavailable to the majority of the developing world. Therefore the
design and development of new low-cost hardware are essential. The design of gradient coils corresponding
to this hardware is necessary for conventional imaging and reconstruction methods to be used.

The target field method, which was originally developed to deal with longitudinal main magnetic fields, is
applied to a transverse field, as produced by a Halbach permanent magnet array. Using this method current
densities for gradient fields in the three spatial directions are derived. Subsequently, using stream functions,
wire patterns for the three gradient coils are determined. These are verified using a commercial magneto-
static solver. Furthermore, one of the gradients is constructed to validate the performance of the method.

The measured fields are in good agreement with the simulations and their prescribed target fields. This
confirms that the proposed method provides a reliable way to design and manufacture gradient coils for
various requirements. Based on the experimental review of the constructed coil three optimized gradients
are proposed for the low field MRI system developed at the LUMC in cooperation with the TU Delft. The
method can also be readily generalized to other geometries and requirements due to the robust fundamental
physical basis and accuracy with respect to computer simulations.
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1
INTRODUCTION

Hydrocephalus is a disease that is frequently encountered in sub-Saharan Africa. More than 200.000 infants
suffer from this disease every year [1]. The disease causes buildup of excess cerebrospinal fluid (CSF) inside
the brain, which can be fatal if left untreated. The fluid will normally flow free around the brain and through
its ventricles. With hydrocephalus the CSF is not absorbed in the bloodstream and builds up inside the brain.
In order to treat hydrocephalus a shunt can be surgically placed which drains the excess fluid [2]. Placing
these shunts requires knowledge of the location and severity of the fluid buildup which is acquired through
imaging or surgery. Common non-invasive procedures for imaging the brain are computed tomography (CT),
magnetic resonance imaging (MRI) and ultrasound. CT and MRI are expensive techniques and both are not
widely available in Africa [3]. Ultrasound is an inexpensive alternative but can only be used up to about 6
months after birth when the skull bone has not completely fused.

At this moment CT is the standard for imaging hydrocephalus in developing countries. After shunt place-
ment a child needs multiple followup scans, which results in a radiation burden. MRI scans do not utilize
ionizing radiation and are therefore associated with less risk. Moreover, a low resolution scan could be suf-
ficient in order to obtain the information required for diagnosis and shunt placement. This is illustrated in
Figure 1.1 which shows an MRI image of a diseased and a healthy brain. The dark tissue inside the brain in
the left part of the figure represents the excess fluid.

MRI is a technique designed in and for the developed world. The technique is moving towards more de-
tailed and specific images and is getting more expensive. There is however a certain urgency for an affordable
robust solution in developing countries. In November 2017 an open source project to develop a low cost MRI
scanner (<50.000$) was therefor initiated. The system is meant for the diagnosis and treatment of the above
mentioned condition. It also needs to work in the environment of a developing country like Uganda. This
means that the device and its components should preferably be low maintenance, robust and portable.

Figure 1.1: Two MRI brain scans. One brain with hydrocephalus (left) and one healthy brain (right). The dark area inside the brain on
the left scan show the enlarged ventricles containing CSF build up [4].
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2 1. INTRODUCTION

The project is split up into two different designs with the same goal. One is being developed at the Lei-
den University Medical Center (LUMC) in close collaboration with the Technical University Delft (TUD). The
other is being developed by the Pennsylvania State University (Penn State) in the USA. In addition the project
also has partners in Uganda where the system will eventually be used. The primary difference between the
two systems is the magnet design. In conventional MRI the main magnetic field is very strong. This is due to
the signal to noise ratio (SNR) being proportional to the magnetic field strength. This strong field is generated
with superconducting coils. The superconductivity is obtained by cooling the coils to extremely low temper-
atures using liquid helium. This makes the system very expensive. Both Penn State and the LUMC remove
these super conducting coils resulting in a low field MRI system. Penn State uses resistive coils to generate
the main magnetic field. The version developed in the Netherlands uses permanent magnets. In addition to
the magnet, all other MRI components are redesigned in order to fulfill the low cost requirement and work
with the nonstandard magnetic field. This work will focus on the gradient coils.

Gradient coils are a vital component in MRI. They create the spatial encoding which is essential for image
reconstruction. Gradient coils can be thought of as very low frequency antennas. They work in the near field
and create desired perturbations in the main magnetic field. Designing gradient coils for the low field system
brings a number of challenges:

• The gradient field direction should correspond to the direction of the main magnetic field. The per-
manent magnet design of the LUMC system has a different magnetic field direction with respect to a
conventional MRI.

• The coils need to operate at low power in order to be deployed in a low resource infrastructure. Also the
heating of the coils is undesired as this will influence the permanent magnets.

• The dimensions of the gradient coils need to be relatively small to fit inside the low field system.

• The total cost of the gradient coils need to be kept as low as possible. Furthermore, it would be prefer-
able if these coils can be built locally.

These challenges require us to reinvent the gradient coil for the purpose of this system. This work contains
all the steps from deriving the equations meant for designing a gradient coil to the construction and testing
of the coil. In the remaining part of this chapter we give background information on gradient coil designs
and end with an overview of the system. In Chapter 2 we derive the equations that form the backbone of
this thesis. The derivation starts from first principles and ends with one equation describing each gradient
coil. In Chapter 3 we implement the equations and verify their working. In addition, the performance of the
resulting gradient coils is examined. A gradient coil producing a linear field along the bore of the axis is then
designed specifically for the low field system. This coil is also built and tested. The end of this chapter holds
the recommended designs for all these low field gradient coils. The conclusions and recommendations of the
total work can be found in Chapter 4.

1.1. GRADIENT FIELDS IN MRI
The spatial encoding required to obtain information on where the signal in space originated from is created
by the gradient fields. These fields create a change in resonance frequency of hydrogen protons in the human
body. This resonance frequency is proportional to the magnetic flux density and is given by

f = γB. (1.1)

The gyromagnetic ratio γ is a nuclei specific constant. We can obtain frequency encoding by creating known
perturbations in the main magnetic field (B0). These variations are usually small in terms of the main mag-
netic field strength and are chosen to vary linearly with position. Hence the name gradient fields. Linear
fields are chosen in order to use the Fourier transform during the reconstruction process [5]. These fields are
created in three orthogonal directions in order to distinguish a point unambiguously in space. Each direction
has its own gradient coil which can be controlled independently. The fields generated by the gradient coils all
point in the B0 direction and vary in strength in the Cartesian x,y or z direction.

Creating a gradient field solely in the direction of the main magnetic field is not possible. The Maxwell
equations state that additional components called concomitant fields are also created. In general these com-
ponents can be ignored if the they are small compared with the main magnetic field [6],[7]. In this work the
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concomitant field values were not found significant. More background information on the physics and se-
quences of MRI can be found in [8]. Information on MRI systems and components can be found in [9].

In gradient coil design we want to obtain linear varying fields with a certain field strength inside the vol-
ume of interest (VOI). This while minimizing the power dissipation and inductance. This is easier said than
done as some of these parameters are conflicting with each other. In the next part these design parameters
and their importance to the low field system will be discussed.

The current supplied to the gradient coils is directly proportional to the gradient field strength which can
be written as

G = ηI (1.2)

Values of the gradient strength are often in the regions of 10mT/m. The gradient field strengths need to be
chosen high enough to overcome the unknown inhomogeneities of the main magnetic field. The parameter
η (T/m/A) is the efficiency of the gradient coil. This is the amount of field generated with 1A of current. The
required current is also inversely proportional to the amount of turns. As the spreading of the field is propor-
tional to r 2, the required current also varies in the same manner.

The inductance of the coil is influenced by the amount of turns and the concentration of current density.
This influences the rise time of the gradient coils. If the inductance becomes larger more energy is stored,
consequently it takes longer for the gradient coils to reach their desired field value. Having a low inductance
is important when sequences are used that require fast switching gradients. The inductance is proportional
to r 5 [10].

The power dissipation of the gradient coils is equal to P = I 2R. The resistance of the coil can be influenced
by the amount of turns as well as the size and the type of conductor. The resistance can be assumed to be
proportional to the radius of the coil. This makes the power dissipation proportional to r 5. In conventional
coil designs driving currents of more than a hundred ampere are quite common. In order to deal with the
resulting heating large water cooled conductors are often used to synthesize the gradient coils.

The low field system primarily uses spin echo sequences which do not require fast switching gradients.
Having a low inductance is thus of less importance in comparison with conventional MRI. Power dissipation
is our main concern. It is needless to say that large complex water-cooled gradient coils are undesired for an
MRI system that is meant for a low resource setting. Furthermore, the fields that the permanent magnets ex-
ert are temperature dependent. Heating of these magnets can influence the image quality and even damage
the system. Keeping the current low is thus our main concern. The relatively small bore size of the low field
system helps our low power requirement. Moreover, the imaging volume is smaller than with conventional
MRI as we are primarily interested in imaging the head.

Gradient coils can be designed in various ways. Methods using discrete and distributed windings can be
distinguished. With the first, winding positioning is used to remove higher order terms in the Taylor series.
Canceling specific terms will lead to a linear field. These are simple but effective methods which have given
reasonable coil designs. With these methods accurate position of the turns is crucial. Furthermore, the per-
formance when deviating from the central line has been found to be poor. With distributed winding methods
turns are placed to approximate a continuous current density. These methods yield coils with a better gradi-
ent efficiency, more design freedom and a lower inductance due to the current density being more spread out.
This current density can be obtained in various ways. The most popular approach is the target field method
proposed by Turner [11]. This method gives more physical insight with respect to other design approaches.
The computation time is short because Fourier analysis of simple structures like a cylinder or plane is used.
Furthermore, the target field method has extensions which are used often in state of the art gradient coils.
Minimum inductance [12], minimum power [13] and constrained length [14] are mostly used. The target
field method will be adopted in this work. More information on the alternative design methods can be found
in the review papers [15],[16].



4 1. INTRODUCTION

1.2. SYSTEM OVERVIEW
The Halbach array which creates the main magnetic field is shown in Figure 1.2. The figure shows the coor-
dinate system adopted in this work. The magnetic field is created by positioning small magnets in a Halbach
orientation. The superposition of these magnets creates a near homogeneous field in the direction perpen-
dicular to the bore. This direction corresponds with the x-direction. This means the gradient fields need to
have their magnetic field oriented in this direction. The magnet creates a central field strength of 50.54mT.
We want to image in a 20cm diameter of spherical volume (DSV) [17]. The gradient coils need to fit inside
the low field magnet system. We want to place the gradient coils as close as possible to the imaging domain.
Figure 1.3 shows a cross section view of the magnet. The blue square denotes where the shim coils of the
low field magnet are located. The red square shows a section of 20x370mm where the gradient coils can be
placed. The RF-coil can fit inside the 270mm bore which leaves approximately 250mm of space for imaging.

The gradient coils should fit in the cavity mentioned above and will be designed to a maximum length of
350mm leaving room for the connecting wires and ports. The required field strength is set at 10mT/m. The
region where spatial encoding can be applied is required to be 200x200x150mm (x,y,z). The gradient coils
should not heat up the magnets while running imaging sequences.

B0

ො𝐱

ො𝐲

ො𝒛

Figure 1.2: The low field magnet system. The system consists of 2948 permanent magnets in a Halbach configuration. The direction of
the main magnetic field B0 is shown with an arrow and is transverse to the bore. Courtesy of T. O’Reilly (LUMC)
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270

506

370

20

Figure 1.3: Cross section of the low field magnet, the blue rectangle indicates the space where the shim coils are positioned. The red
region shows where the gradient coils can be placed this is a region of 370x20mm. All dimensions in the figure are in millimeters.
Courtesy of T. O’Reilly (LUMC)





2
GRADIENT COIL DESIGN:

THE TARGET FIELD APPROACH

The target field field approach is a powerful and versatile method used in gradient coil design. It was first
proposed by Robert Turner in 1985 [11]. The method describes a relationship between a desired gradient
field and a surface current density that generates it. The obtained current density can be approximated by
current carrying tracks or wires resulting in a gradient coil.

The target field approach is an inverse source problem. The source corresponding to a prescribed field
needs to be found. This problem type is generally ill-posed. This means that there can be many solutions, the
solutions can be unstable or there are no solutions at all. What makes the target field approach so powerful
is that a solution results in single equation for each coil. This is realized by exploiting cylindrical symmetry,
Fourier analysis, and properly selecting the target fields.

The original approach proposed by Turner is meant for conventional MRI. The derivation is carried out
in cylindrical coordinates and the target field component is taken along the bore. In this work, however,
we are interested in a Halbach setup and the magnetic field component that is perpendicular to the bore
is of interest. This component is composed of two cylindrical components and, consequently, the present
target field analysis will run along different lines compared with the standard approach that is followed for a
magnetic field component that is directed along the bore axis.

In Section 2.1 we present the basic magnetic field equations and derive the basic relations between the
various magnetic field components and the surface current densities that generate this field. Subsequently,
we describe the desired target fields in Section 2.2. How to realize surface current densities that produce
these desired fields is discussed in Section 2.3 and converting these current densities into current paths using
stream function theory is discussed in Section 2.4.

2.1. DERIVATION RELATIONSHIP TARGET FIELDS AND CURRENT DENSITY
The target field equations will be derived for the configuration shown in Figure 2.1. The figure shows a cross
section of an infinitely long cylinder extended in the z-direction. Two regions can be distinguished: region I
inside the cylinder with radius a and region II outside this cylinder. The surface current density Js (a,φ, z) that
produces the field is confined to the surface of the cylinder. The goal of this section is to find a relationship
between the magnetic flux density and the surface current that produces it. There are no sources present in
region I and II as these are confined to the surface. In addition, time variations of the gradient coils and fields
allow us to restrict ourselves to the basic magnetostatic field equations

∇·B = 0, (2.1)

∇×B = 0. (2.2)

Clearly, the magnetic flux density is divergence and curl free in regions I and II. The first equation is auto-
matically satisfied if we write the magnetic flux density as the curl of a vector potential A, while the second
equation is automatically satisfied if we write the magnetic flux density as the gradient of a scalar potential
Φ. Both approaches can be followed, of course. Here we consider the second approach and write the flux
density as

B =−∇Φ. (2.3)

The function Φ is the scalar magnetic potential and is expressed in Vs/m. Substituting Equation 2.3 into 2.1
results in Laplace’s equation for the potential

∇2Φ= 0, (2.4)

7



8
2. GRADIENT COIL DESIGN:

THE TARGET FIELD APPROACH

x

y

z

r

𝜙

𝑥, 𝑦, 𝑧 , (𝑟, 𝜙, 𝑧)

Region I

Region II

a

Figure 2.1: The configuration used to derive the target field equations

which holds in region I and in region II. Given the cylindrical structure of our configuration, it is advantageous
to write Equation 2.4 in cylindrical coordinates. We have

∂2Φ

∂r 2 + 1

r

∂Φ

∂r
+ 1

r 2

∂2Φ

∂φ2 + ∂2Φ

∂z2 = 0. (2.5)

Moreover, the infinite length of the cylinder makes the configuration invariant in the z-direction and the fields
must be 2π-periodic in the φ-direction as well. We can take advantage of these two geometrical properties by
introducing a two-dimensional Fourier transform

Φ̃m(r,k) =
∫ ∞

z=−∞

∫ π

φ=−π
Φ(r,φ, z)e− j mφe− j kz dzdφ, (2.6)

with k ∈ R and m ∈ Z labels the discrete angular Fourier modes. The inverse Fourier transform that corre-
sponds to the above forward transform is given by

Φ(r,φ, z) = 1

4π2

∫ ∞

k=−∞

∞∑
m=−∞

Φ̃m(r,k)e j mφe j kz dk. (2.7)

It is easy to verify that the Fourier transform is linear and the transform has the following properties with
respect to differentiation

∂

∂φ

F←→ j m, (2.8)

∂

∂z
F←→ j k. (2.9)

Another important property that will be used later on is the modulation property. Multiplying by e j nφ, with
n an integer, corresponds to an angular modulation, which transforms into

Φ(r,φ, z)e j nφ F←→ Φ̃m−n(r,k). (2.10)

Finally, using Euler’s formula, the modulation property and the fact that the Fourier transform is linear, we
have

Φ(r,φ, z)cos(φ)
F←→ 1

2

[
Φ̃m−1(r,k)+ Φ̃m+1(r,k)

]
, (2.11)

Φ(r,φ, z)sin(φ)
F←→ 1

2 j

[
Φ̃m−1(r,k)− Φ̃m+1(r,k)

]
. (2.12)
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This Fourier transform can now be used to solve the differential equation. Applying the forward transform to
Equation 2.5 and using properties 2.8 and 2.9 results in

∂2Φ̃

∂r 2 + 1

r

∂Φ̃

∂r
− Φ̃(

1

r 2 m2 +k2) = 0. (2.13)

Multiplying the above equation by r 2 and using the substitution Φ̃m(r,k) = F̃m(|k|r ) = F̃m(u), with u = |k|r >
0, results in the differential equation for modified Bessel functions [18]

u2 d2F̃m

du2 +u
dF̃m

du
− (m2 +u2)F̃m = 0, (2.14)

which has the general solution

F̃m(u) =αm(k)Im(u)+βm(k)Km(u), (2.15)

where Im is the modified Bessel function of the first kind and order m, Km is the modified Bessel function
of the second kind and order m, and αm(k) and βm(k) are coefficients not dependent on r . The following
properties are of importance:

|Im(u)|→∞ as u →∞ (2.16)

and
|Km(u)|→∞ as u → 0. (2.17)

Since all physical quantities are bounded, we observe from the above limiting forms that we have to setβm(k)
to zero for the general solution in region I, whileαm(k) must be set to zero for the general solution in region II.
Consequently, we have

Φ̃I =αm(k)Im(|k|r ), (2.18)

and
Φ̃I I =βm(k)Km(|k|r ). (2.19)

The components of the magnetic flux density can be found using Equation 2.3 as

B(r,φ, z) =−∇Φ=−∂Φ
∂r

r̂ − 1

r

∂Φ

∂φ
φ̂− ∂Φ

∂z
ẑ . (2.20)

Applying the Fourier transform and the corresponding differentiation properties results in

B̃ m(r,k) =−∂Φ̃
∂r

r̂ − 1

r
j mΦ̃φ̂− j kΦ̃ẑ . (2.21)

Equation 2.18 can be substituted into Equation 2.21 in order to find the components of the magnetic flux
density in region I

B̃ I
r =−|k|αm(k)I ′m(|k|r ), (2.22)

B̃ I
φ =− j

m

r
αm(k)Im(|k|r ), (2.23)

B̃ I
z =− j kαm(k)Im(|k|r ). (2.24)

The prime in Equation 2.22 indicates the derivative of the modified Bessel function with respect to its argu-
ment. Similarly, for region II we substitute Equation 2.19 in Equation 2.21 from which it follows that

B̃ I I
r =−βm(k)K ′

m(|k|r )|k|dk, (2.25)

B̃ I I
φ =− j mβm(k)Km(|k|r ), (2.26)

B̃ I I
z =− j kβm(k)Km(|k|r ). (2.27)

The next step involves using the electromagnetic boundary conditions to find a relationship between the
expansion coefficients αm(k),βm(k) and Js . These boundary conditions are given by

lim
r↑a

n̂ · B̃
I = lim

r↓a
n̂ · B̃

I I
, (2.28)
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lim
r↓a

n̂ × B̃
I I − lim

r↑a
n̂ × B̃

I =µ0 J̃ s . (2.29)

The first boundary condition states that the normal components of magnetic flux density must be continuous
across the surface of the cylinder with radius r = a. The second boundary condition states that the difference
between the tangential components of B̃ is determined by the surface current density.

Since the r component of the magnetic flux density is normal to the cylindrical surface, Equation 2.28
becomes

lim
r↑a

B̃ I
r = lim

r↓a
B̃ I I

r (2.30)

and substituting the corresponding fields from Equation 2.22 and 2.25 into the above leads to the following
relation between the expansion coefficients

αm(k)Im(|k|a) =βm(k)Km(|k|a), (2.31)

which can be summarized as

βm(k) =αm(k)
I ′m(|k|a)

K ′
m(|k|a)

. (2.32)

The second boundary condition (Equation 2.29) is used to find a relationship between the expansion coeffi-
cient and the current density. The magnetic flux density has two tangential components with respect to the
cylinder surface, namely, B̃φ and B̃z . For the z-component we have

lim
r↓a

B̃ I I
φ − lim

r↑a
B̃ I
φ =µ0 J̃ m

s:z , (2.33)

while for the φ-component we obtain

− lim
r↓a

B̃ I I
z + lim

r↑a
B̃ I

z =µ0 J̃ m
s:φ. (2.34)

Starting with Equation 2.33 and substitution Equation 2.23 and 2.26 results in

j m
[
αm(k)Im(|k|a)−βm(k)Km(|k|a)

]=µ0a J̃ m
s:z . (2.35)

from which we observe that

J̃ m=0
s:z (r,k) = 0 k ∈R. (2.36)

Finally, substitute Equations 2.24 and 2.27 in Equation 2.34 to obtain

− j k
[
αm(k)Im(|k|a)−βm(k)Km(|k|a)

]=µ0 J̃ m
s:φ(r,k) (2.37)

from which it follows that we must have

J̃ m
s:φ(r,k = 0) = 0 m ∈Z. (2.38)

Using Equations 2.35 and 2.37 we can find a relationship between J̃ m
s:z and J̃ m

s:φ. Explicitly, we have

ka J̃ m
s:z +m J̃ m

s:φ = 0 (2.39)

This is the continuity equation in the spatial Fourier domain. Now using the inverse Fourier transform we
can obtain

∂Js:z

∂z
+ 1

a

∂Js:φ

∂φ
= 0. (2.40)

This is the continuity equation for the current density. Which can be written as

∇· Js = 0 (2.41)

The relationship between the expansion coefficientα and the current density can now be found. Substituting
Equation 2.32 in Equation 2.37 gives

j kαm(k)
Im(|k|a)K ′

m(|k|a)− I ′m(|k|a)Km(|k|a)

K ′
m(|k|a)

=µ0 J̃ m
s:φ (2.42)
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and using the Wronskian of the modified Bessel function [18], the numerator of the above equation can be
written as

Im(|k|a)K ′
m(|k|a)− I ′m(|k|a)Km(|k|a) =− 1

|k|a . (2.43)

Substituting the above into Equation 2.42 and rewriting for αm(k), we arrive at

αm(k) =− j aµ0
|k|
k

K ′
m(|k|a) J̃ m

s:φ. (2.44)

The expansion coefficientβm(k) can be found using the above equation and Equation 2.32, explicitly we have

βm(k) =− j aµ0
|k|
k

I ′m(|k|a) J̃ m
s:φ. (2.45)

These expansion coefficients can easily be found in terms of the z-component of the current density using the
continuity equation. As the focus of this work lies on the design of gradient coils, region I is only of interest.
Region II can be used for shielding purposes [10]. The components of the magnetic flux density in region I
are now found as follows. The coefficient αm(k) (Equation 2.45) is substituted in Equations 2.22, 2.23, and
2.24. The inverse Fourier transform is then applied resulting in

B I
r = j aµ0

4π2

∫ ∞

k=−∞

∞∑
m=−∞

k J̃ m
s:φI ′m(|k|r )K ′

m(|k|a)e j kz e j mφdk, (2.46)

B I
φ =− aµ0

4π2r

∫ ∞

k=−∞

∞∑
m=−∞

m
|k|
k

J̃ m
s:φIm(|k|r )K ′

m(|k|a)e j kz e j mφdk, (2.47)

B I
z =−aµ0

4π2

∫ ∞

k=−∞

∞∑
m=−∞

|k| J̃ m
s:φIm(|k|r )K ′

m(|k|a)e j kz e j mφdk. (2.48)

The magnetic flux density oriented in the x-direction is found using the following equation

B I
x = B I

r cosφ−B I
φ sinφ. (2.49)

Before moving on and finding an expression for the current density the following section will discuss the
target fields which will be prescribed.

2.2. TARGET GRADIENT FIELDS
The fields chosen in this section simplify the target field approach. The total desired magnetic flux density
inside the bore of the magnet can be written as a sum of the main magnetic field and the gradient field terms

B (x, y, z) = B0x̂ + (xgx + y g y + zgz )x̂ . (2.50)

Here, B0 is the main magnetic field and is assumed to be homogeneous inside the volume of interest. The
gx , g y , gz terms are the gradient field strengths in Vs/m3 or T/m corresponding to the three gradient coils.
These field strengths are multiplied by the coordinates x,y and z to generate linearity.

The target fields will be defined on the surface of a cylinder with infinite length and radius b < a and not in
a volume as one would expect. This is done in order to allow inversion of the target field equations. Choosing
a different target cylinder radius will not change the wire pattern. The gradient fields are written in cylindri-
cal coordinates in Equation 2.51. Vector plots showing the behavior of these target fields are shown in Figure
2.2. The figure shows the desired behavior for each target field on a cylinder surface. It should be observed
that the target fields of the x- and y-gradient are independent of z, the z-gradient is independent of φ. Using
cylindrical coordinates the target fields can be written as

G x,y,z (b,φ, z) =


b cos(φ)gx x̂ x-gradient
b sin(φ)g y x̂ y-gradient
zgz x̂ z-gradient

(2.51)

In order for the gradient coils to be physically feasible and not of infinite length, the fields should only behave
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B0 B0 B0

Figure 2.2: Vector plots of the desired gradient fields. From left to right: the x- and y-gradient on a cylinder with radius b are constant
with respect to z. The z-gradient as seen from a top view, constant with respect to φ.

as shown in Figure 2.2 inside a certain desired region. The length of this region in the z-direction is denoted
with the parameter d . The field should go to zero outside this region. To obtain this behavior the following
function is introduced

Γ(z) = 1

1+ (z/d)n . (2.52)

This is a smooth block-like function and the target fields from Equation 2.51 will be multiplied by it. The func-
tion is equal to one inside the desired region making the x- and y-gradient independent of z, as is required.
The parameter n should be an even integer. Choosing a higher value for n will stretch the region d and make
the function sharper. For the z-gradient the following function arises due to the multiplication by z:

Γz (z) = z

1+ (z/d)n . (2.53)

This function behaves linearly within the region with length d . Higher n again result in a faster decay and a
longer desired region. Important to note is that in order to satisfy Equation 2.38 the z-dependent part of the
target field must satisfy the following equation

G̃(0) =
∫ ∞

z=−∞
G(z)dz = 0. (2.54)

The above holds for the function Γz . This is not the case with Γ. In order for the Fourier transform to converge
it needs to be altered slightly. By adding Γ as negative side-lobes with half the desired length on both sides we
obtain an equation that satisfies the above relation. This can be written as

Γx y (z,d) = Γ(z,d)− [Γ(z −α,0.5d)+Γ(z +α,0.5d)] . (2.55)

When choosing α ≥ 3d this satisfies Equation 2.54. The functions Γx y and Γz are plotted in Figure 2.3 for
different n.

The functions allow easy alteration of the desired region length through the parameter d . In addition, n
gives freedom in the design with respect to the accuracy of the desired region and how fast the field is required
to go to zero. For short coils, n can be chosen large in order for the field taper off faster. Choosing larger n also
has drawbacks, high current densities are needed to force the field to zero outside the desired region. This
can result in a design which is not physically feasible due to the coil turns being too close together. The target
fields can now be written as
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Figure 2.3: The functions used to shape the target fields in the z-direction for different values of the sharpness parameter n. On the left
the function used for the x- and y-gradient, on the right-hand side the function used for the z-gradient.

G x,y,z (b,φ, z) =

Γx y (z)b cos(φ)gx x̂ x-gradient
Γx y (z)b sin(φ)g y x̂ y-gradient
Γz (z)gz x̂ z-gradient

(2.56)

At a later stage, the Fourier transform of these target fields will be required. Using the modulation property of
the Fourier transform, these transforms are given by

G̃
m
x (k) =

{
Γ̃x y (k)gxπbx̂ m = 1,−1
0 otherwise,

(2.57)

G̃
m
y (k) =


− j Γ̃x y (k)g yπbx̂ m = 1
j Γ̃x y (k)g yπbx̂ m =−1
0 otherwise,

(2.58)

G̃
m
z (k) =

{
Γ̃z (k)gz 2πx̂ m = 0
0 otherwise,

(2.59)

where Γ̃x y (k) and Γ̃z (k) are the one-dimensional Fourier transforms of Γx y (z) and Γz (z), respectively. Having
these transforms available, we are now in a position to apply the target field method.

2.3. GRADIENT COILS FOR LOW FIELD MRI
What remains is substituting the target fields and rewriting the equations in terms of the current density.
The relationship between the current density and the target field can be written in terms of the cylindrical
components found earlier

Bx = Br cosφ−Bφ sinφ. (2.60)

All the work from here on is done in region I. Substituting Equations 2.46 and 2.47 into the above and taking
the target field on a cylinder with constant radius b results in

Bx (b,φ, z) = j aµ0

4π2

∫ ∞

k=−∞

∞∑
m=−∞

k J̃ m
s:φI ′m(|k|b)K ′

m(|k|a)cos(φ)e j kz e j mφdk

+ aµ0

4π2b

∫ ∞

k=−∞

∞∑
m=−∞

m
|k|
k

J̃ m
s:φIm(|k|b)K ′

m(|k|a)sin(φ)e j kz e j mφdk.

(2.61)
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This is the forward operator with which the magnetic flux densities in the x-direction can be found corre-
sponding to a prescribed current. This equation will now be inverted. Before doing so, however, we first
introduce the quantities

P̃ m(k) = aµ0kI ′m(|k|b)K ′
m(|k|a), (2.62)

Q̃m(k) = m
aµ0

b

|k|
k

Im(|k|b)K ′
m(|k|a). (2.63)

Since the modified Bessel functions are identical for opposite but equal order [18] the following properties
can be distinguished

P̃ m(k) = P̃−m(k), (2.64)

Q̃m(k) =−Q̃−m(k). (2.65)

In addition, Q̃0 = 0. Substituting P̃ and Q̃ into expression 2.61 yields the following

Bx (b,φ, z) = j

4π2

∫ ∞

k=−∞

∞∑
m=−∞

J̃ m
s:φP̃ m cos(φ)e j kz e j mφdk

+ 1

4π2

∫ ∞

k=−∞

∞∑
m=−∞

J̃ m
s:φQ̃m sin(φ)e j kz e j mφdk.

(2.66)

Applying the Fourier transform to the above equation and using the modulation property results in

B̃ m
x (k) = j

2

[
J̃ m+1

s:φ P̃ m+1 + J̃ m−1
s:φ P̃ m−1

]
+ 1

2 j

[
J̃ m−1

s:φ Q̃m−1 − J̃ m+1
s:φ Q̃m+1

]
, (2.67)

which can be also be written as

B̃ m
x (k) = j

2

[
J̃ m+1

s:φ

(
P̃ m+1 +Q̃m+1)+ J̃ m−1

s:φ

(
P̃ m−1 −Q̃m−1)] . (2.68)

The right-hand side is now dictated by the modes of the magnetic flux density. Due to modulation even
numbered modes of the magnetic flux density result in odd modes of the current density. In the following
sub-sections the target gradient fields G̃m

x,y,z stated in Section 2.2 are substituted. This makes the equation
specific to the corresponding gradient coil.

CURRENT DENSITY Z-GRADIENT
The z-gradient has a non-zero solution for the mode m = 0. This main mode causes the odd numbered modes
m = ±1 on the right-hand side. For all other modes G̃z = 0. The modulation then determines that only the
odd numbered modes on the right-hand side can influence the main mode. This can be shown by taking m
odd: m = 2n +1, resulting in even current density modes

G̃2n+1
z = j

2

[
J̃ 2n+2

s:φ

(
P̃ 2n+2 +Q̃2n+2)+ J̃ 2n

s:φ

(
P̃ 2n −Q̃2n)]

. (2.69)

In the above equation G̃2n+1
z is zero for all n. The equation is only satisfied if all even modes of the current

density are set to zero. This leaves the odd numbered modes of the current density. The substitution m = 2n
is made in order to only consider the odd modes on the right-hand side. Equation 2.68 is written as

G̃2n
z (k) = j

2

[
J̃ 2n+1

s:φ

(
P̃ 2n+1 +Q̃2n+1)+ J̃ 2n−1

s:φ

(
P̃ 2n−1 −Q̃2n−1)] . (2.70)

Starting with n = 0, for which G̃2n
z (k) has a non-zero solution

G̃0
z (k) = j

2

[
J̃ 1

s:φ

(
P̃ 1 +Q̃1)+ J̃−1

s:φ

(
P̃−1 −Q̃−1)] . (2.71)

The assumption is made that J̃ m
s:φ is an even function of m.

J̃ m
s:φ = J̃−m

s:φ . (2.72)
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From this it follows that Js:φ is automatically an even function of φ. Using the above property and the ones
stated in 2.64 and 2.65, the following can be written

J̃ 1
s:φ =− jG̃0

z

P̃ 1 +Q̃1
. (2.73)

The same can be done for the mode n = 1. Starting again from Equation 2.74 and substituting the corre-
sponding modes

0 = j

2

[
J̃ 3

s:φ

(
P̃ 3 +Q̃3)+ J̃ 1

s:φ

(
P̃ 1 −Q̃1)] . (2.74)

This higher order mode has a relationship with the main mode. The above can be rewritten as

J̃ 3
s:φ =− P̃ 1 −Q̃1

P̃ 3 +Q̃3
J̃ 1

s:φ. (2.75)

Taking n = −1 results in the same equation as written above. This confirms the even assumption made in
equation 2.72. Substituting Equation 2.73 into the above results in

J̃ 3
s:φ = P̃ 1 −Q̃1

P̃ 3 +Q̃3

jG̃0
z

P̃ 1 +Q̃1
. (2.76)

The following is found for n = 2

J̃ 5
s:φ =− P̃ 3 −Q̃3

P̃ 5 +Q̃5

P̃ 1 −Q̃1

P̃ 3 +Q̃3

jG̃0
z

P̃ 1 +Q̃1
. (2.77)

It can be concluded that all uneven modes of the current density are excited. The current density can thus be
obtained by taking the summation of the inverse Fourier transforms with respect to these odd modes. The
equal modes but opposite sign result in a cosine term. An apodization function T (k) is introduced

T (k) = e−2(kh)2
. (2.78)

This Gaussian can be seen as the regularization function which assists the Fourier transform to converge.
Numerical experiments show that h = 0.1 gives reasonable convergence. The φ component of the current
density can be written as

J z
s:φ = j

1

2π2

∞∑
n=0

(−1)n+1 cos
[
(2n +1)φ

]∫ ∞

k=−∞
G̃0

z (k)T (k)

P̃ 1 +Q̃1

n∏
m=0

P̃ 2m−1 −Q̃2m−1

P̃ 2m+1 +Q̃2m+1
e j kz dk. (2.79)

The superscript indicates that this is the current density corresponding to the z-gradient. Using continuity
Equation (2.40) for the current density we can find the z-component of the current density as

J z
s:z =

1

2π2a

∞∑
n=0

(−1)n+1(2n +1)sin
[
(2n +1)φ

]∫ ∞

k=−∞
1

k

G̃0
z (k)T (k)

P̃ 1 +Q̃1

n∏
m=0

P̃ 2m−1 −Q̃2m−1

P̃ 2m+1 +Q̃2m+1
e j kz dk. (2.80)

It will become clear that the modes which have a non-zero solution for the gradient fields will play a dominate
role, these will be called the main modes. Taking only this main mode (n = 0), substituting P̃ and Q̃ and the
target field results in the following

J̃±1
s:φ(k) =− j

gz

aµ0

2πΓ̃z (k)T (k)
|k|
k K ′

1(|k|a)
[|k|I ′1(|k|b)+ 1

b I1(|k|b)
] (2.81)

Taking the inverse Fourier transform of this mode

J±1
s:φ(a,φ, z) =− j

gz

aµ0

1

4π2

∑
m=±1

∫ ∞

k=−∞
2πΓ̃z (k)T (k)

|k|
k K ′

1(|k|a)
[|k|I ′1(|k|b)+ 1

b I1(|k|b)
]e jφme j kz dk. (2.82)

This can be written as

J±1
s:φ(a,φ, z) =− j

gz

πaµ0
cos(φ)

∫ ∞

k=−∞
Γ̃z (k)T (k)

|k|
k K ′

1(|k|a)
[|k|I ′1(|k|b)+ 1

b I1(|k|b)
]e j kz dk (2.83)

The current densities and stream functions for all three gradient coils corresponding to the main mode are
summarized in Table 2.1.
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CURRENT DENSITIES X- AND Y-GRADIENT
The x- and y-gradient target field have a non-zero solution for the modes m =±1. This leads to even modes
on the right-hand side. Only the even modes of the current density play a part for the x- and y-gradient. The
substitution m = 2n +1 is made in order to ensure this, leading to the following

G̃2n+1
x,y (k) = j

2

[
J̃ 2n+2

s:φ

(
P̃ 2n+2 +Q̃2n+2)+ J̃ 2n

s:φ

(
P̃ 2n −Q̃2n)]

. (2.84)

The modes n = 0 and n =−1 yield non-zero solutions for the magnetic flux density. Starting with n = 0

G̃1
x,y (k) = j

2

[
J̃ 2

s:φ

(
P̃ 2 +Q̃2)+ J̃ 0

s:φ

(
P̃ 0 −Q̃0)] . (2.85)

J̃s:φ is now said to be an even function of m. Furthermore, J̃ 0
s:φ is set to zero because this current density

results in current loops in the φ-direction ( J̃ 0
s:z = 0). These currents are responsible for the z-components

of the magnetic field. This is a concomitant component which we are not interested in. Applying these two
properties we arrive at

G̃1
x,y (k) = j

2
J̃ 2

s:φ

(
P̃ 2 +Q̃2) , (2.86)

which can be written as

J̃ 2
s:φ =−2 j

G̃1
x (k)

P̃ 2 +Q̃2
. (2.87)

Taking the mode n = −1 leads to the same result as above for the x-gradient because G̃1
x = G̃−1

x . For the y-
gradient however G̃1

y =−G̃−1
y . This will be important when adding the modes. Moving on to the higher order

modes, substituting n = 1 gives

0 = j

2

[
J̃ 4

s:φ

(
P̃ 4 +Q̃4)+ J̃ 2

s:φ

(
P̃ 2 −Q̃2)] . (2.88)

Again a relationship with the main mode is found. Rewriting the above for J̃ 4
s:φ

J̃ 4
s:φ =− P̃ 2 −Q̃2

P̃ 4 +Q̃4
J̃ 2

s:φ, (2.89)

and substituting J̃ 2
s:φ, we obtain

J̃ 4
s:φ = 2 j

P̃ 2 −Q̃2

P̃ 4 +Q̃4

G̃1
x (k)

P̃ 2 +Q̃2
. (2.90)

The general solution for the current density can be created by taking all even modes of the current density
into account. The equal modes but with opposite sign result in a cosine term for the x-gradient

J x
s:φ = j

1

π2

∞∑
n=0

(−1)n+1 cos
[
(2n +2)φ

]∫ ∞

k=−∞
G̃1

x (k)T (k)

P̃ 2 +Q̃2

n∏
m=0

P̃ 2n −Q̃2n

P̃ 2n+2 +Q̃2n+2
e j kz dk. (2.91)

Using the continuity equation, the z-component is found to be

J x
s:z =

1

π2a

∞∑
n=0

(−1)n+1(2n +2)sin
[
(2n +2)φ

]∫ ∞

k=−∞
1

k

G̃1
x (k)T (k)

P̃ 2 +Q̃2

n∏
m=0

P̃ 2n −Q̃2n

P̃ 2n+2 +Q̃2n+2
e j kz dk. (2.92)

The y-gradient is similar to the x-gradient only the summation of the equal modes but opposite sign result in
a sine term

J y
s:φ =− 1

π2

∞∑
n=0

(−1)n+1 sin
[
(2n +2)φ

]∫ ∞

k=−∞

G̃1
y (k)T (k)

P̃ 2 +Q̃2

n∏
m=0

P̃ 2n −Q̃2n

P̃ 2n+2 +Q̃2n+2
e j kz dk. (2.93)

The z-component is found to be

J y
s:z =− j

1

π2a

∞∑
n=0

(−1)n+1(2n +2)cos
[
(2n +2)φ

]∫ ∞

k=−∞
1

k

G̃1
y (k)T (k)

P̃ 2 +Q̃2

n∏
m=0

P̃ 2n −Q̃2n

P̃ 2n+2 +Q̃2n+2
e j kz dk. (2.94)
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2.4. STREAM FUNCTIONS
The current density derived in the previous section will now be approximated using discrete current paths in
order to create a gradient coil. This is done using stream functions. These functions are commonly used in
aero- and hydrodynamics to obtain information on the flow of particles [19]. In this case the flow of particles
will be the flow of charged particles. The objective is to obtain a function that combines the two current
density components Js:φ and Js:z . The functions will assist with the current path placement. In this section
the stream functions for the current density on the cylinder surface will be derived. Furthermore, some useful
features of the stream function will be shown. At the end the stream functions for the three gradient coils are
given.

Equation 2.41 shows us that the current density can be written as the curl of a vector potential. This vector
potential is defined as the stream functionψ(φ, z) =ψ(φ, z)r̂ with units ampere. This can be written as

Js =∇×ψ(φ, z)r̂ . (2.95)

Computing the curl of the stream function results in

Js = ∂ψ

∂z
φ̂− 1

a

∂ψ

∂φ
ẑ . (2.96)

This can be written out in components as

Js:φ = ∂ψ

∂z
, (2.97)

Js:z =− 1

a

∂ψ

∂φ
. (2.98)

Substituting Equations 2.97 and 2.98 into Equation 2.40 shows that the stream function indeed satisfies the
continuity equation. The stream function can thus be obtained through integration. The integration constant
that arises can be determined using the continuity equation.

The current density J s is tangential to a streamline in every point. If we take a vector du tangent to the
current density vector the cross product has to equal zero

du × Js = 0. (2.99)

In cylindrical coordinates du and Js can be written in the following components

du = r̂ dr + φ̂r dφ+ ẑdz, (2.100)

Js = r̂ Js:r + φ̂Js:φ+ ẑ Js:z . (2.101)

The current density was defined on the cylindrical surface with the radius equal to a. The r component of
the current density is equal to zero. Computing Equation 2.99 results in

Js:z adφ− Js:φdz = 0, (2.102)

This can be rewritten as
dz

dφ
= Js:z a

Js:φ
. (2.103)

This is the differential equation for a streamline on the cylinder surface. Now it will be shown how the stream
function relates to this streamline. Taking the derivative of the stream function and using the chain rule

dψ= ∂ψ

∂φ
dφ+ ∂ψ

∂z
dz. (2.104)

Substituting equations 2.97 and 2.98 into the above expression results in

dψ=−a Js:z + Js:φ. (2.105)

For curves on which ψ is constant its derivative equals zero. Substituting this, we obtain

0 =−a Js:z dφ+ Js:φdz, (2.106)
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THE TARGET FIELD APPROACH

𝜓 = 𝑐1 + ∆𝜓

𝜓 = 𝑐1

𝜙

𝑧

𝐽𝑠:𝑧
𝐽𝑠:𝜙

𝑱𝒔
𝑙

Figure 2.4: Two streamlines and the current density that flows between them.

which is equal to the differential equation for the streamline defined earlier

a Js:z

Js:φ
= dz

dφ
. (2.107)

It can thus be concluded that constant values of the stream function represent streamlines. And that the
current density is tanget to these lines at every point. these lines are tangent to the current density vector in
every point.

The following shows the relationship between the streamlines and current. Suppose there are two stream-
lines having constant values for the stream function c1 and c1 +∆ψ. Between the two streamlines there is a
current density flow denoted by the vector Js . The flow between the two streamlines can be thought of as a
stream tube through which the flow is constant. Figure 2.4 shows this topology. The current flowing in the
tube can be calculated in the following manner. First a line in the z-direction is taken between the two stream-
lines. We have shown that the current density is conservative on the cylinder so there is no path dependency.
The current is equal to the current density passing through the line this can be computed by integrating the
components of Js normal to the line which is written as

I =
∫

l
Js:φdz. (2.108)

Substituting Equations 2.97 gives us

I =
∫

l

∂ψ

∂z
dz. (2.109)

When inserting the boundaries this can be written as

I =
∫ c1+∆ψ

c1
dψ. (2.110)

Computing the integral we find
I =∆ψ. (2.111)

The current between two streamlines is thus equal to the difference in streamline level. The current density
between two streamlines can be approached by placing a conductor between the two streamlines. The cur-
rent value being equal to the difference in streamline amplitude. The gradient coil should preferably be built
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using a single wire or path. This can be done by keeping the difference between stream function value of ad-
jacent streamlines constant. Resulting in constant current and distributed paths. This is achieved by contour
plotting the stream function and placing current paths between these lines. The current paths can then be
connected in series to form a coil.

The value of the stream function dictates the current direction. This can be deducted from Equation 2.95.
r̂ points out of the cylinder surface. With the right-hand rule it can be shown that a positiveψ corresponds
to a counterclockwise current, negativeψ corresponds to clockwise current.

The winding patterns can be obtained by integration of Equations 2.91, 2.93 and 2.83. The integration
constant is found to be zero. This results in the stream functions written below

ψx (φ, z) = 1

π2

∞∑
n=0

(−1)n+1 cos
[
(2n +2)φ

]∫ ∞

k=−∞
1

k

G̃1
x (k)T (k)

P̃ 2 +Q̃2

n∏
m=0

P̃ 2n −Q̃2n

P̃ 2n+2 +Q̃2n+2
e j kz dk, (2.112)

ψy (φ, z) = j
1

π2

∞∑
n=0

(−1)n+1 sin
[
(2n +2)φ

]∫ ∞

k=−∞
1

k

G̃1
y (k)T (k)

P̃ 2 +Q̃2

n∏
m=0

P̃ 2n −Q̃2n

P̃ 2n+2 +Q̃2n+2
e j kz dk, (2.113)

ψz (φ, z) = 1

2π2

∞∑
n=0

(−1)n+1 cos
[
(2n +1)φ

]∫ ∞

k=−∞
1

k

G̃0
z (k)T (k)

P̃ 1 +Q̃1

n∏
m=0

P̃ 2m−1 −Q̃2m−1

P̃ 2m+1 +Q̃2m+1
e j kz dk. (2.114)



Table 2.1: Equations corresponding to the main mode

Gradient Surface current density Stream function

J x
s:φ =− j

bgx

πaµ0
cos(2φ)

∫ ∞

k=−∞
Γ̃x y (k)T (k)

|k|
k K ′

2(|k|a)
[|k|I ′2(|k|b)+ 2

b I2(|k|b)
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k K ′
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J z
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3
IMPLEMENTATION

In this chapter the implementation of the target field method will be discussed. This is everything from com-
puting the stream functions to building the physical coil. MATLAB® R2018b (MathWorks, inc.) is used to
compute the stream functions found in the previous chapter. The possibilities and limitations of the numeri-
cal model are discussed in Section 3.1. The magnetostatic solver in CST Studio Suite® (Darmstadt, Germany)
is then used to simulate the computed coils. The target field method is verified and the performance of the
gradient coils is discussed in Section 3.2. The design, construction process and validation of the z-gradient
coil is treated in Section 3.3. In Section 3.4 recommendations are made with respect to the designs of the
gradient coils for the low field system.

3.1. MODEL UTILIZATION
In order for the inverse Fourier transform of the stream functions (Equations 2.112, 2.113 and 2.114) to con-
verge apodization is required. This filters out the higher order modes when computing these equations.
Therefore only the main modes of the stream functions as shown in Table 2.1 are considered in this chap-
ter. This can be done without loss of generality.

In order to obtain physical feasible coils the desired length d should be chosen larger than a quarter of the
radius. The target field cylinder radius (b) needs to be chosen smaller than a since the fields were considered
in region I. All even integer values can be chosen for the parameter n. The apodization parameter h depends
on the size of the coil and the resolution taken. Choosing h = 0.1 results in reasonable current values for the
low field coil dimensions.

The stream functions are two-dimensional functions defined on the surface of a cylinder. The current
paths are obtained by contour plotting the stream function and placing current paths in between these con-
tour lines. The current amplitude is obtained by taking the difference in value of the neighbouring contours.
The 2D patterns can be transformed to a 3D Cartesian coordinate representation. Figures 3.1, 3.2 and 3.3
illustrate this for the three gradient coils. In this general case 5 contours per minimum/maximum are taken.
The desired length d is chosen to be equal to a, the radius of the coils. The parameter n governing the sharp-
ness of the target field in the z-direction is chosen to be 8. These parameters are selected to give a general
impression of the gradient coils. The figures on the left show the normalized stream functions and the cor-
responding current paths. The black contours represent paths with counterclockwise currents as they are
placed on yellow surfaces which are positive stream function values. The red contours represent paths with a
clockwise current direction. The figures on the right show a 3D representation of the coils.

The coil patterns can directly be related to the stream functions. The target field functions Γz and Γx y

determine the behavior in the z-direction. Γz is an odd function of z which creates an odd stream function
in this direction. For the x- and y-gradient Γx y determines the z-direction behavior. This is an even function
resulting in even stream functions. The middle loop creates the desired field. The outer two loops correspond
to the side-lobes of Γx y . The sine and cosine terms create the φ behavior. Two loops can be distinguished for
the z-gradient due to the cos(φ) term. Four loops can be distinguished for the x- and y-gradients correspond-
ing to the cos(2φ) and sin(2φ) terms. The only difference between the x- and y-gradient is the 90 degree shift
in the φ-direction.
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Figure 3.1: The left figure shows the normalized stream function and corresponding current paths of the x-gradient. Yellow
corresponds to positive stream function values, blue to negative. The right figure is the 3D representation of the left figure.
Black corresponds to counterclockwise red to clockwise.

Figure 3.2: Showing the same as the figure above but for the y-gradient.

Figure 3.3: Showing the same as the figures above but for the z-gradient.
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The length of the gradient coil is an important constraint for the low field system. This length can be influ-
enced by changing certain parameters. Starting with the z-gradient: Increasing the desired length parameter
d stretches the coil in the z-direction as is to be expected. Figure 3.3 shows that for a target field of desired
length d the coil realization is about 3.5d . This minimum length can be decreased by increasing the parame-
ter n. A sharper target field is then prescribed resulting in denser wire patterns at the edges of the coil. This is
the result of the higher current density required to obtain the target field. Figure 3.4 shows the z-gradient coils
when taking different values for n. The right-hand side of Figure 3.4 shows a coil where n = 26, this squeezes
the coil to a length of approximately 2.5d . A disadvantage of creating a shorter coil is that the current required
for a specific field strength increases. The turns at the edges of the coil are in opposite direction. These are
now closer to the imaging volume and will subsequently decrease the target field values. The difference in re-
quired current between n = 6 and n = 26 is approximately 20% more. For the x- and y-gradient coil n can also

Figure 3.4: The difference in coil lengths caused by changing the target field parameter n.

be increased to shorten the coil. Here the required current is not influenced by n. This is due to the change
in wire pattern not being in the direction of the linear behavior. For all three coils increasing the number of
streamlines will result in more dense wire patterns and also slightly increase the length of the coil. In general
it can be said that a coil with a length larger than 2.25d can physically be built.

Implementing the stream functions into MATLAB® and extracting the contours results in a visual repre-
sentation of the gradient coils. The stream functions can be related to the coils and the coil structures adjust
as expected to changes in the target field. In the next section CST® will be used to verify the target field model.

3.2. CST SIMULATIONS
The design software CST® is controlled with MATLAB® using visual basic commands[20]. An interface be-
tween the two is created which automatically builds the coils in CST® using the coordinates supplied by
MATLAB®. This allows fast simulations of different structures. The influence of changing certain variables is
then easily tested. The interface is a powerful tool for the gradient coil design.

For the simulations a magneto-static solver is used. The same current is applied to all paths separately.
This is equivalent to connecting the current paths in series. When building the coil the paths connecting the
adjacent current loops will be created in such a way that they cancel as much as possible. This makes the
simulation of separate contours realistic. Simulations including connecting paths were also done, but this
did not lead to observable differences. The boundary is a perfect electric conducting (PEC) box placed at a
distance of 15cm around the coil. This represents the Faraday cage of the low field system.

VALIDATION OF THE MODEL
The three gradient coils from Figures 3.1, 3.2 and 3.3 are converted to CST and a 3D field map is obtained
for the three gradient coils. Figure 3.5 can be used to clarify which planes are considered. Figure 3.6 shows
a surface plot of the x-component of the magnetic flux density. These figures correspond to the x- and z-
gradient coils. The y-gradient is equivalent to the x-gradient but rotated 45 degrees and is for that purpose left
out. The intensity plot shows that the colors change gradually with position as is expected from the desired
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Figure 3.5: The z-gradient coil with the different planes that are distinguished.

linear behavior. In order to verify the model the simulated fields will be compared to the target fields. The
target field is prescribed on a cylinder with radius b = 0.5a. The simulated field values on a line in the z-
direction on this cylinder are displayed. This should result in Γx y (z) for the x-gradient and Γz (z) for the z-
gradient. Normalized plots of the simulated and target field are shown in the top of Figure 3.7. The simulated
fields are in reasonable agreement with the prescribed target fields and appear to be smoothed versions of it.
This is due to the apodization. Another important result is obtained when removing the outer loops of the x-
and y-gradient positioned at˜±4d . This is done after computing the stream functions and obtaining a value
for the current. The resulting simulated field taken on a line on the cylinder in the z-direction is shown with
the black dotted line in the top right figure. The desired part of the target field is still obtained. This means
the gradient coil can be made shorter after a value for the current is obtained. To confirm the behavior in
the φ-direction the field values are taken on a line around the cylinder. For the x- and y-gradient this should
result in a sine and cosine respectively. For the z-gradient the amplitude should be constant. The bottom
plots in Figure 3.7 show that this desired behavior is obtained for the x- and y-gradient. For the z-gradient
there is a small ripple. This is caused by the fields in the xy-plane which are shaped oval, due to the geometry
of the coil.

Figure 3.6: CST simulation results for z-gradient (left), the x- (right). The figures are intensity plots of the x-component of the magnetic
flux density. Yellow represents positive, blue negative field values.
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Table 3.1: Efficiency of the size normalized gradient coils fed with 1A of current and 5 turns per minimum/maximum. The second
column shows the efficiency η. The third column the total length l of the current paths for five turns per quadrant. The last column
shows η divided by the total length l . The side loops of the x- and y-gradient coil were not considered in these calculations.

Gradient η [µT/m/A] l [m] η / l [µT/m2/A]

z-gradient 4.16 128 0.0325
x/y-gradient 6.67 111 0.0601

The values of the current obtained from the model result in the prescribed target fields when fed into the
simulated coils. With the z-gradient the current values are influenced by the apodization. For the x- and y-
gradient the computed current values are not as susceptible to changing the apodization parameter h. This
has to do with the linear behavior not being in the apodization direction. It was seen that changing n gives a
different value for the current and in simulations it was confirmed that the field strength changes accordingly.
When increasing n the target field pattern is more difficult to obtain due to the apodization filtering this sharp
behavior. Choosing higher n is an adequate way to decrease the coil length, however one should not expect
the sharp transitions in these target fields to be accurately obtained.

COIL PERFORMANCE
Now that the working of the model is confirmed the performance of the coils can be examined. In Figure 3.6
the same color scale is used for the surface plots. The simulations are done with the same number of turns
per coil and are fed with a unit current. The figure indicates that the x-gradient coil generates a stronger field
with the same current and number of turns with respect to the z-gradient. To obtain a measure for this the
coil efficiencies will be compared. The gradient efficiency (η) is the amount of field that is produced with a
unit current when the radius a = 1m and d = a. This measure is however dependent on the number of turns
N . In order to correct for this the length of the current paths is calculated and η is divided by the total length.
This results in an efficiency measure per unit length of coil. Table 3.1 shows these values for the different
gradient coils. For the x- and y-gradient coil only the middle coils are taken into account. It can be observed
that these coils perform significantly better than the z-gradient coil. The same gradient field strength can be
obtained with less material. This will result in a lower resistance and inductance for the x- and y-gradient
coils.

Another performance measure is the linear uniformity of the gradient field. The intensity plots in Figure
3.6 show that the field is not uniformly linear throughout the desired region. When considering the field
values on lines in the corresponding coil direction the field should vary linearly. Taking different lines in the
same direction within the desired region should result in the same field values. Figure 3.8 shows the field
values on these lines for the two gradients. It becomes clear that the z-gradient behaves poorly with respect
to the x-gradient which shows almost no deviation from the central line. Another thing to observe is that the
linear regions for the x- and y-gradients extend to the bore of the gradient. The peaks shown in the left figure
correspond to the radius of the coil being reached. For the z-gradient coil the prescribed linear region of d is
obtained. Spatial encoding can be performed in a region of approximately 1.5d .

Figures 3.9, 3.10 and 3.11 show the error with respect to the central line for the three planes. The values
shown on the contours are percentages of this error. The red dotted line shows the central line from which
the error is computed. The first thing to notice is that for all three planes the error contours are closer to the
central line for the z-gradient. This makes the volume in which spatial encoding can be performed without
distortions smaller. The left error plot of Figure 3.9 shows the error contours are oval. This corresponds to
the small ripple found when taking values on a circular line around the target cylinder. The error plots are
intrinsic to the coils. The x- and y-gradient have their linear behavior towards the coil they can thus make
use of the spreading of the field further away from the coil. With the z-gradient coil this is not the case as
the linear variation is along the bore. This problem is not easily solved, the field will always become larger
moving towards the coil. When using slice select this is problematic as straight slices will not be excited.
With 3D imaging it is expected that this problem can be partially solved in a post processing step for a known
gradient field due to larger volumes being excited.
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Figure 3.7: The verification of the target field model with the CST simulations. The top figures show the simulated (blue) and prescribed
(red) Γz and Γx y respectively. Furthermore, the dotted line in the top right figure shows the field values for the x-gradient coil when only
the center coil is taken into account. The lower figures display the simulated field values taken on a line around the target field cylinder.
This should result in flat behavior for the left figure and a cosine for the right figure.
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Figure 3.8: Field values taken on lines for the two gradient coils. The lines are taken in the direction of the linear behavior.
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Figure 3.10: Error plots as described above but taken for the xz-plane.
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3.3. GRADIENT COIL CONSTRUCTION
A Prototype of the z-gradient coil is constructed. This is the most difficult coil with respect to performance
and wire pattern. Due to this the coil is chosen to be the one closest to the imaging volume. The goal is to
design a coil that can be implemented into the low field system as described before. This physical verification
is important in order to know how well the CST simulation resembles reality and what challenges arise when
building a gradient coil for this low resource setting.

Due to the physical dimensions of the low field magnet the gradient coil can have a maximum length of
350mm. A desired linear region of 150mm in the z-direction is requested as this region is long enough to
image a brain. The three gradient coils can have a maximum combined thickness of 20mm. The simulation
results show that it is possible to create a coil with these dimensions. However it will be pushing the target
field method to its limits.

Without changing the dimensions of the coil the field strength can be increased by increasing the driving
current (I) and the amount of turns. The power scales with I 2 and the inductance increases when adding more
turns. The imaging sequences which the gradients are meant for do not require fast switching of the fields.
Having a small inductance is thus of less importance. Limiting power dissipation is more urgent because the
heating of the gradients can influence the magnetic field exerted by the permanent magnets. In addition,
low power requirements are preferable in a low resource setting. For this reason 14 turns are chosen. This
amount fits on the coils without adjacent turns overlapping. In order for the wires to fit on the cylinder
the design parameter n is chosen to be 26. The required field strength is set to 10mT/m. The model states
that approximately 30A is needed to obtain the required field strength, but only 10A is available as a driving
current. Three layers are thus required in order to reach the target field strength. The resulting simulated coil
can be seen in Figure 3.12. The figure shows that the wires are indeed closely spaced near the edges of the
coil in order to obtain the requested performance.

The conducting paths can be synthesized using different materials and techniques. Wires or a conducting
sheet is used in most cases. For wires, a gradient coil can be hand wound using solid copper wire. A mold
in which the wires can be placed in combination with epoxy or an equivalent bond can be used to keep the
wires in place. When constructing a coil out of a sheet of copper the streamlines can be cut out. This results
in conducting tracks between streamlines which vary in width. The patterns can for instance be cut out
using a waterjet-cutter or a milling machine. The coordinates of the streamlines can be programmed into
these machines creating a very accurate representation of the patterns. The sheet can then be bent around a
cylinder resulting in the gradient coil.

Figure 3.12: The z-gradient coil simulated in CST. This is the coil that is physically built. The intensity plot of the magnetic flux density
in the xz-plane is also shown as an illustration.
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0.80 mm 

Figure 3.13: The left figure illustrates the schematic of the mold which will hold the wires. This is one eighth of the gradient coil. The
right figure shows the profile of the slots which will fit three wires on top of each other. The dimensions of the slot are also given in the
figure.

Both techniques have their benefits. Cutting out a sheet is how the state of the art gradient coils are con-
structed. A larger surface area is exploited decreasing the resistance and consequently the power requirement
and joule heating. However the machines used in this process are expensive and are unlikely to be available
in a low resource setting. For a prototype a hand wound design using wire may be more appropriate. Due to
the small bore the power consumption weighs less heavy than for instance with conventional MRI bore sizes.
Also the low available current will require multiple layers and shielded wires can be placed directly on top of
each other. Furthermore, everything can be made in house and the materials and process are less expensive.
Lastly The structural strength is expected to be better with the wire model due to the molds holding the wires.
The choice was therefore made to use wires. Copper wire with a diameter of 0.8mm is chosen as it is easily
manipulated.

Accurate positioning of the wires is important to acquire the correct target field. The switching of the field
creates forces on the wires which can cause the wire to be displaced. In order to deal with this a 3D printed
mold is designed which holds the wires in place and ensures correct positioning. The molds are created in
CST by extruding the current paths into a flat surface. Figure 3.13 shows a schematic of this mold. At the edges
of the coil the margin between the wires is too small to create a wall between them. Moreover, a connection
to the other paths needs to be made. For this purpose a rectangle is extruded in this area. The right-hand
side of Figure 3.13 shows a schematic of the slots, three wires can fit on top of each other. The slots are more
narrow at the top creating a click mechanism. Due to the light flexibility of the PLA printing material this
works very nicely, the wires can be pressed in and will stay put. The appropriate dimensions of the slots were
found by making a prototype with different slot sizes. Additional glue is used as a safety precaution. The mold
has a height of 5mm making it possible to fit another two coils around the prototype in a later stage. Various
printing techniques, printers and materials were considered. The best printing technique was found to be on
the back with support underneath the print. The Ultimaker 3 extended 3D printer created the best quality
prints. One print would take 1.5 days to complete. It was found that the quality of the slots and the result-
ing click mechanism is important in order to ease construction. The molds resulting from different printing
techniques are shown in the left of of Figure 3.14.

The molds are positioned on a plexiglas cylinder with a diameter of 270mm. The wire is then placed
inside the slots. Approximately 120m of wire was required. This corresponded to the current path length
calculated with MATLAB®. The construction took about 30 hours, this was mainly due to half the molds not
having the click mechanism making the construction very difficult as wires tended to pop out of the mold.
The material costs of the z-gradient coil were approximatelye30 without the plexiglas cylinder. The resulting
coil is shown in Figure 3.15.
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Figure 3.14: The left figure shows the resulting molds created with three types of printing techniques. The mold on the right laying on its
back is the one with the best slots. The right figure shows the 3D printing process.

Figure 3.15: the left figure shows the molds mounted on the plexiglas cylinder. The right-hand side figures show the finished z-gradient
coil from different angles.
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TESTING AND RESULTS
The magnetic flux density of the prototype obtained in the simulations is compared with a field map created
using a multipurpose 3-axis measuring robot [21]. An arm is mounted on the robot which can move through
the bore of the gradient and can hold a field probe. The AlphaLab inc. Gauss meter model GM2 with a high
stability probe is used to make the measurements [22]. The test setup is shown in Figure 3.16. The measured
field has a diameter of 220mm, a length of 360mm at a resolution of 10x10x10mm. The coil is fed with a
DC power supply which feeds the coil continuously with 2.1A of current. During the measurement the coil
temperature stayed constant at 30°C. A background field map is created to correct for the fringe fields of the
nearby MRI scanner and the undesired fields generated by the power supply. Creating a field map takes 6
hours.

Figures 3.17 and 3.18 show two slices of simulated field next to the measured field. It can be observed
that the measured field closely corresponds to the simulated field. The field strength as well as the shape
are in agreement with the simulations. Figure 3.19 shows the field values on a line through the middle of
the bore for the target, simulated and measured fields. The CST simulations correspond very well to reality.
The construction method can therefore be concluded to be accurate. The region where the field is linear is
approximately 150mm, the region where spatial encoding can be applied is 200mm. Figure 3.19 shows two
dips (at z =−50mm and z =+60mm) in the measured field values. This is suspected to be due to the supplied
current drifting during the measurement. The locations of the artifacts correspond to the moments in time
when this happened.

The resistance of the coil equals 3.86Ω. The inductance is measured to be 1.37mH. When running spin
echo imaging sequences and feeding the coil with 10A the coil shows no heating. With a turbo spin echo
sequence an insignificant amount of heating can be observed. These measurements were done in an open
environment. Additional testing needs to be done when placing the coil in an area where airflow is confined.

The measured field of the constructed gradient coil corresponds to the simulated target field. The resis-
tance and inductance of the coil are fairly high. A thicker wire diameter can be used to lower the resistance.
The high value of the inductance can be attributed to the 3 layers of wire needed to supply the magnetic field
strength. Layers can be taken off by increasing the driving current or lowering the requirement for gradient
field strength. Relaxing the parameter n will also slightly decrease the required current. Using these lessons
the following section holds the proposed designs of all of the gradient coils for the low field system. Also the
conclusions of this chapter are drawn.

Figure 3.16: The test setup: The gradient coil is fed by the power supply which can be seen on the left. The robot arm with the Gauss-
meter moves through the bore of the gradient coil mapping the field.
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Figure 3.17: Surface plots of the simulated (left) and measured (right) z-gradient coil data. The middle slice of the xz-plane is displayed.

Figure 3.18: Surface plots of the simulated (left) and measured (right) z-gradient coil data. A slice at z = 0.5d in the xy-plane is displayed.
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Figure 3.19: Field values on a line through the center of the bore of the measured, simulated and target field. The dips in the measured
field at z=-50 and z=+60 are likely to be due to drift in the power supply.

3.4. CONCLUSIONS AND RECOMMENDED DESIGNS
The implementation of the target field equations in combination with the direct link to the simulation tool is
shown to be a powerful method for gradient coil design. The implemented target field model was verified to
create the target fields. We observed that the x- and y-gradient coils performed better with respect to linear
uniformity and efficiency than the z-gradient coil. We built a prototype for the z-gradient coil and we can
conclude that the construction technique created an accurate representation of the simulation results. The
field maps obtained from CST® can thus also be used for post processing purposes. From the prototype it
was found that both the inductance and the resistance can be improved. This resulted from the relatively low
driving current of 10A that the coil was designed for. In addition, the wire diameter could have been chosen
larger to decrease the resistance.

To create more design freedom the gradient amplifier is modified to supply a maximum of 30A with a load
of 0.5Ω. Two layers are taken off creating a one layer design. This will significantly reduce the inductance,
resistance and thickness of the coil. However due to the power dissipated being proportional to I 2 heating will
become significant. To compensate for this a thick wire diameter of 1.5mm is chosen. Table 3.2 shows the wire
length, resistance and power dissipation for the prototype and the proposed design using the same amount of
turns. The table shows a reduction of power dissipation, resistance and wire length which will consequently
decrease the inductance. The thicker wire is more difficult to bend making the construction by hand more

Table 3.2: Top row shows the length, resistance and required power for the prototype. The bottom row shows this for the proposed design
when only changing the amount of layers and the wire thickness.

l [m] R [Ω] P [W]
3 layers, 0.8mm wire , I=10 120 3.8 380 W
1 layers, 1.5mm wire, I=30 40 0.384 346 W

challenging. Moreover, the adjacent wires will overlap at the edges of the coil. By relaxing the desired region
parameter d and the sharpness parameter n the required current decreases and the wires can fit next to each
other. Decreasing n also makes the coil more efficient. Even with creasing d and n the region where spatial
encoding can be applied can still be kept larger than 150mm. The chosen coil parameters and resulting
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Table 3.3: The parameters and performance measures for the proposed gradient coils. The wire thickness chosen is 1.5mm.

Gradient N n d [mm] a [mm] η [mT/A/m] l [m] R[Ω] P [W ]

z-gradient 14 16 140 272/2 0.37 38 0.37 329
y-gradient 12 30 155 277/2 0.8 42 0.40 162
x-gradient 12 30 155 282/2 0.8 43 0.41 165

performance indicators are shown in Table 3.2. It can be observed that the expected power dissipation of
the proposed coil is 15% less than the initial prototype. Furthermore, the material cost, thickness and the
inductance is decreased. The Figures in the appendix show the simulation results and error plots for this
specific coil. We can conclude that this coil can create a linear region of approximately 100mm and that
spatial encoding can be applied in a region of 190mm. In a diameter spherical volume (DSV) of 100mm the
linear uniformity error is already more than 20%.

The x- and y-gradient are more efficient. These coils are designed to create the desired field of 10mT/m
using less than 20[A] resulting in less power dissipation. The parameters chosen are shown in Table 3.3. The
parameters d and n are chosen high so that the flat region of Γx y is as large as possible and the adjacent wires
nearly overlap at the edges of the coil. This does not influence the current required. Figures corresponding
to these designs can be found in the Appendix. From these figures it can be concluded that a linear region of
200mm is easily obtained. Furthermore, both transverse coils have a linear uniformity error of approximately
5% in a DSV of 150mm

The simulation results turned out to be reproducible with the proposed construction method. It is advised
that the next gradient coils are also constructed using this approach. The support printed underneath the
mold made the 3D printing process slow. In the future we can experiment with printing flat molds that can
be bent either by adding structural weaknesses or by heating the molds. Extra care needs to be taken with
respect to the placement of the wires not being effected by the bending process. For the x- and y-gradient coil
the printing of the molds is expected to be more efficient. The molds can easier be printed in sections. Also
the prints use less surface area.

If the bore size were to increase power dissipation could become an issue. It is advised to investigate the
construction using conducting sheets. It should be noted that skin effects and the capacitance between the
sheet layers should be investigated prior to the construction. Alternatively the molds could also be made from
plastic getting rid of the time consuming 3D print process. The coils then still need to be hand wound. It
would be beneficial if the gradient coils could be extended in length in the z-direction. In a newer version of
the magnet it is advised to leave room for longer gradients coils which could even extend the length of the
magnet. The z-gradient coil efficiency can be increased with 20% by relaxing the parameter n. Additional
turns would fit on the coil which would reducing the power requirement and make it more efficient. For
the x- and y-gradient coils d could be increased to improve the linear uniformity region. In general we can
conclude that increasing the length while keeping the requirements the same can decrease the inductance
due to the current density being less concentrated.





4
CONCLUSION AND RECOMMENDATIONS

In this work we have shown how to design gradient coils for a Halbach permanent magnet system. The
method described creates cylindrical gradient coils meant for a main magnetic field direction perpendicu-
lar to the bore. We have shown successfully that it was possible to use the target field method for the design of
these gradients. The result was captured into one equation per gradient coil. We used the method to simulate
and build gradient coils for the LUMC low field MRI system.

The first step in deriving the target field equations was finding a forward equation. This equation de-
scribes the magnetic flux density resulting from a certain current density. We found this by deriving the basic
relations between the various magnetic field components and used the boundary conditions to introduce the
current density. The magnetic field component was then composed from two cylindrical components.

To invert the forward equation the target fields were constrained to the surface of a cylinder. Further-
more, the gradient fields were defined in such a way that the Fourier analysis simplified to using only a few
modes. Finally a Gaussian apodization function was introduced in order for the numerical Fourier transform
to converge. Inverting the forward equation resulted in three sets of equations which described the current
densities specific to the gradient coils. This showed us that it was possible to find the current densities corre-
sponding to these specific field orientations using the target field approach.

Using stream function theory the current density was approached by discrete current paths. We showed
that the wire patterns could be obtained by taking contours of the stream functions and placing paths be-
tween these contours. A value for the current was obtained by taking the difference in value between the
neighbouring contours. This resulted in one stream function per gradient coil. Using MATLAB® we computed
winding patterns corresponding to different target fields. The MATLAB® results showed us that the gradient
coils resulting from the equations were physically realizable. Moreover, the winding patterns adapted accord-
ingly to changes in the target field parameters.

An interface with the antenna simulation software CST® was created. With this tool simulated fields cre-
ated by the gradient coils could be compared with the requested target fields. We observed that target fields
were indeed produced by the gradient coils. The simulation tool also made it possible to obtain information
on the performance of the coils. It was found that the coil which produced the gradient field along the bore
performed poorly with respect to the others. The efficiency of the transverse coils was shown to be twice as
high.

A prototype of the z-gradient coil was designed specifically for the low field system. From the simulation
we found that the design specification could be met. However the length constraint in combination with
the desired imaging region was not easily obtained. A longer coil would have been more efficient but unfor-
tunately did not fit in the low field system. We then built the coil by hand winding copper wire into molds
created with a 3D-printer. The gradient field of the constructed coil was mapped using a measuring robot.
The field map that we obtained corresponded to the simulated fields. The measured inductance and resis-
tance of this gradient coil were found to be too high. At the end of the thesis final designs were proposed
resulting in three gradient coils that can be synthesized and should perform as desired for the low field sys-
tem. Spatial encoding in a region of 210x210x150mm (x,y,z), is expected to be obtainable. With the x- and
y-gradients the linear uniformity error is shown to be small in this region. For the z-gradient coil this error is
larger and additional post-processing steps need to be taken in order to correct for this.

35
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The following can be considered with respect to future work. The target field theory knows certain ex-
tensions which are used quite commonly in state of the art gradient coils. With the work presented in this
thesis coils can be made that fit the requirements of the low field system. The minimum inductance exten-
sion would become useful when using imaging sequences that require fast switching gradient fields. The
minimization of power will be required when moving to larger bore sizes.

Improvements with respect to the power efficiency and linear behavior inside the imaging volume can be
obtained by creating longer gradient coils. Doing this can improve the efficiency of the z-gradient coil up to
20%. In addition, the field inside the imaging domain can be made more linear. For the x- and y-gradient
coils the linear homogeneity can also be improved by creating a longer coil. Moreover, the inductance of the
gradient coils is expected to be less due to the current density not being concentrated near the edges of the
coil.

Temperature testing of the constructed gradient coil has been done on an elementary level. This gave a
good indication with respect to the amount of heating. More tests in a confined area are however advisable.
In the future the calculated power dissipation can then be used as a figure to indicate the amount of heating
a coil will endure.

The influence and potential coupling of the designed gradient coils with the RF-receiver coil was not con-
sidered in this work. It could be that shielding between these two coil system is required in order for the coils
not to interact with one and other.

Lastly we advise to investigate the construction of the gradient coils using conducting sheets. This can
reduce the required power due to more surface area being used. Furthermore, these sheets can be mass pro-
duced, will take up less space and we expect the construction accuracy to be high. Eddy currents and the
capacitive effects between the sheets needs to be investigated prior to the design of these type of coils.

Everything considered we believe we have created a design method that will bring the low field project one
step closer to creating a fully working MRI system to detect hydrocephalus in Uganda.



A
SIMULATION RESULTS FINAL GRADIENT

COIL DESIGNS

This appendix chapter holds the simulation results of the proposed gradient coils. These coils are designed
for the low field system. The table below shows the parameters used during the simulations. This is followed
by the figures showing the wire patterns, linear regions, surface plots and the linear uniformity error. This
gives a total picture of the designed gradient coils.

Table A.1: The parameters and performance measures for the proposed gradient coils. The wire thickness chosen is 1.5mm.

Gradient N n d [mm] a [mm] η [mT/A/m] l [m] R[Ω] P [W]

z-gradient 14 16 140 272/2 0.37 38 0.37 329
y-gradient 12 30 155 277/2 0.8 42 0.40 162
x-gradient 12 30 155 282/2 0.8 43 0.41 165
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Figure A.1: Two dimensional view of the wire patterns for the x-gradient coil. Red contours correspond to a clockwise direction. Black contours the counterclockwise
direction direction.

Figure A.2: Left 3D pattern of the x-gradient coil. Right the xy-plane surface plot.
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Figure A.3: left figure shows two lines, red shows the linear behavior when taking values on a the red dotted line shown in the right figure. The blue line shows the
behavior along the bore axis. This gradient coil is fed with 20[A]. The right figure shows an error plot of the xy-plane.
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Linear uniformity error yz-plane, x=0.5a
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Figure A.4: Linear uniformity error plots of the x-gradient coil. Left corresponds to the xz-plane, right to the yz-plane at x=0.5a.
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Figure A.5: Two dimensional view of the wire patterns for the y-gradient coil. Red contours correspond to a clockwise direction. Black contours the counterclockwise
direction direction.

Figure A.6: Left 3D pattern of the y-gradient coil. Right the xy-plane surface plot.
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Figure A.7: left figure shows two lines, red shows the linear behavior when taking values on a the red dotted line shown in the right figure. The blue line shows the
behavior along the bore axis. This gradient coil is fed with 20[A]. The right figure shows the linear uniformity error plot of the xy-plane.
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Figure A.8: Linear uniformity error plots of the y-gradient coil. Left corresponds to the xz-plane at y=0.5a, right to the yz-plane. The error was taken with respect to
the red dotted lines.
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Figure A.9: Two dimensional view of the wire patterns for the z-gradient coil. Red contours correspond to a clockwise direction. Black contours the counterclockwise
direction direction.

Figure A.10: Left 3D pattern of the z-gradient coil. Right the xz-plane surface plot.
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Figure A.11: Left figures shows the linear behavior when taking the values at the middle of the coil along the axis of the bore. This gradient coil is fed with 30[A]. The
right figure shows the linear uniformity error of the xy-plane.
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Figure A.12: Linear uniformity error plots of the z-gradient coil. Left corresponds to the xz-plane, right to the yz-plane. The error was taken with respect to the red
dotted lines.
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