TUNING HYBRID INCREMENTAL
DYNAMIC INVERSION CONTROL
LAWS USING Hq, LOOP-SHAPING

LEONARDO ENCARNAGﬁO | Master's Thesis in Aerospace Engineering

]
TU Delft






Tuning Hyorid
ncremental Dynamic

nversion Control Laws
USING Hee LOOD-SN2PING

Thesis Report

by

L eonardo eEncarnacao

to obtain the degree of Master of Science
at the Delft University of Technology
to be defended publicly on May 8th, 2025 at 09:00
Thesis committee:
Chair: Dr. ir. Erik-dan van Kampen
Supervisors: Dr. Eng. Spilios Theodoulis
Dr. ir. Tijmen Pollack

External examiner: Dr. ir. Xuerui Wang
Additional examiner: Dr. ir. Gertjan Looye

Place: Faculty of Aerospace Engineering, Delft
Project Duration: March, 2024 - May, 2025
Student number: 5845157

Cover image: illustration of the Grumman X-29 experimental aircraft by Vasco Viegas, 2025.

An electronic version of this thesis is available at https://repository.tudelft.nl/.

Faculty of Aerospace Engineering - Delft University of Technology


https://repository.tudelft.nl/

T Delft

U D e I ft University of
Technology

Copyright © Leonardo Encarnagéao, 2025

All rights reserved.



Abstract

Nonlinear Dynamic Inversion (NDI) control techniques provide a conceptually simple and modular control
framework, making it an attractive technique for designing flight control laws with shorter design cycles.
However, its lack of inherent robustness guarantees shifts the burden of the design from the synthesis
to the analysis part. Conversely, H., Loop-Shaping provides controllers with robust stability guarantees.
This work proposes a novel framework leveraging the # ., Loop-Shaping Design Procedure to optimise a
structured linear variant of Incremental Nonlinear Dynamic Inversion (INDI) control, a Hybrid IDI controller.
The Hybrid IDI controller consists of a blend between classical model-based DI and sensor-based IDI.
The proposed methodology is validated through the design of a pitch-rate controller for NASA’s X-29
experimental aircraft. Results demonstrate that the approach achieves robustness guarantees comparable
to standard full-order H, controllers while maintaining the simplicity and modular architecture of NDI-like
structures, thereby combining the advantages of both techniques.

Keywords: Robust control, H-infinity Loop-Shaping, Generalised stability margin, Nonlinear Dy-
namic Inversion, Incremental Nonlinear Dynamic Inversion, Hybrid Incremental Nonlinear Dynamic
Inversion, Flight control.
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Introduction

Flight Controls are a fundamental aspect of modern aircraft, which rely on full-authority digital fly-by-wire
(FBW) flight control systems for safe and efficient operation. It contributes to enhancing the aircraft's
natural stability and control characteristics, decreasing pilot workload, and improving the overall safety of
flight transportation.

The General Dynamics F-16 was the first fighter aircraft intentionally designed to be slightly aerody-
namically unstable, also known as Relaxed Static Stability (RSS), which made it rely entirely on active
stabilisation by the flight control system for safe operation (Droste & Walker, 2010). Ever since, FBW flight
control systems have become indispensable for ensuring the operability of fighter jets, designed for agility
and supermaneuverability, at the cost of stability (Gal-Or, 1990). Consequently, the development of robust
flight control laws for fighter jets (and other aircraft) presents a highly compelling and challenging research
domain.

For decades, linear design and analysis techniques have formed the foundation of the divide-and-
conquer approach in control design (Balas, 2003). This includes classical methods such as pole placement
and root locus analysis, as well as modern multivariable control techniques like LQR/LQG and #H .-synthesis,
which address the multi-input-multi-output (MIMO) nature of flight control (Balas, 2003; Blight et al., 1994;
Honeywell Technology Center, Lockheed Martin Skunk Works and Lockheed Martin Tactical Aircraft
Systems, 1996). These methods enable the design of control laws that effectively meet requirements
within a linear time-invariant (LTI) framework. However, due to the inherently nonlinear nature of system
dynamics, addressing robust performance often requires multiple local designs and employing interpolation
or scheduling strategies (Rugh & Shamma, 2000). While this approach has long been standard in industry
and has led to numerous successes, such as the F-22 Raptor and the Eurofighter (Kim et al., 2023), it
remains an intensive and time-consuming process.

Nonlinear Dynamic Inversion (NDI) and its incremental counterpart (INDI) emerged as alternatives to
the traditional divide-and-conquer paradigm (Enns et al., 1994). By leveraging the concept of feedback
linearization, NDI-based controllers inherently address the nonlinear nature of system dynamics, resulting
in self-scheduling control laws (Khalil, 2002). This approach provides a transparent and modular framework
for flight control design, enabling the decoupling of airframe-dependent and flying-qualities-dependent
components. Its conceptual simplicity and modularity make it particularly attractive for designing flight
control laws with shorter development cycles. However, the lack of inherent robustness guarantees
requires rigorous a posteriori analysis to ensure robustness criteria are met, effectively shifting the design

1



1.1. Report Structure 2

burden from synthesis to analysis (Hyde & Papageorgiou, 2001). Despite this challenge, the increasing
adoption of NDI has led to its implementation in state-of-the-art aircraft such as the Lockheed Martin F-35
Lightning Il strike fighter jet (Canin, 2019; Harris, 2018).

Conversely, within the realm of ., Robust Control, ., Loop-Shaping provides controllers with
robust stability guarantees without requiring explicit uncertainty models (McFarlane & Glover, 1992). The
designer shapes the broken-loop response magnitude based on classical insights using weighting filters
and then makes use of H..-synthesis to maximise robust stability against normalised coprime factor (NCF)
uncertainty (McFarlane & Glover, 1992). Therefore, it can be said that this method reconciles classical
control methods such as loop-shaping with H, optimisation. These tools emerged around the same time
as NDI techniques, rendering the approach comparably modern, and also enable, to some extent, the
decoupling of airframe-dependent and flying-qualities-dependent components (Limebeer et al., 1993). The
method has been successfully demonstrated in a flight test campaign with the VAAC Harrier (Hyde, 1995)
and with the Bell 205 helicopter (Postlethwaite et al., 2005). This LTI control technique can be extended to
LPV control as done in a later flight test campaign with the VAAC Harrier in G. Papageorgiou and Glover,
1999; G. Papageorgiou et al., 2000.

The recent advent of non-convex, non-smooth formal synthesis techniques allowed solving H..-
synthesis problems, unstructured in nature, under structural constraints (Apkarian & Noll, 2006a). These
advances allow control law structures to be specified a priori, ensuring greater flexibility in controller design.
As a result, modern robust control synthesis methods facilitate the systematic robust design of structured
controllers, such as PID and NDI-based control laws, expanding the applicability of #..-synthesis and
unlocking new possibilities for robust control in practical applications (Apkarian & Noll, 2017).

The present study aims to combine the # ., Loop-Shaping Design Procedure (LSDP) to optimise linear
variants of NDI/INDI control, referred to as Dynamic Inversion (DI) and Incremental Dynamic Inversion
(IDI), using non-smooth non-convex formal synthesis techniques. The goal is to take advantage of the
conceptually simple and modular control framework of NDI/INDI controllers while addressing its inherent
absence of robustness guarantees by employing a robust H., control synthesis procedure. The proposed
methodology is validated by designing a digital pitch-rate controller for NASA’s X-29 experimental aircraft
in a severely unstable flight condition.

1.1. Report Structure
The thesis is organised into eight additional chapters, each building on the concepts and findings of the
previous ones.

Chapter 2 entails a literature study of 4., control, namely H., Loop-Shaping, and NDI/INDI control.
From the identified research gap in the literature review, a research proposal is outlined to answer the
research objective and the research questions.

Chapter 3 lays the theoretical foundation by providing a concise description of the underlying principles
of Dynamic Inversion and H., Loop-Shaping control. Building on this foundation, Chapter 4 offers an
in-depth analysis of G. Papageorgiou and Polansky, 2009, identified as one of the most relevant articles in
Chapter 2 on the topic of combining Dynamic Inversion with #., Loop-Shaping.

Chapter 5 delves into the robustness properties of various Dynamic Inversion methods, including
Model-Based, Sensor-Based, and Hybrid-Based approaches, providing insights into the advantage of
using Hybrid-based architectures. Following this, a novel approach for tuning a Hybrid Incremental Dynamic
Inversion (IDI) controller using the H., Loop-Shaping Design Procedure is introduced.
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Chapter 6 demonstrates the application of the proposed methodology by tuning a Hybrid IDI pitch-rate
digital controller for NASA’s X-29 experimental aircraft. Extending this work, Chapter 7 explores the
potential for applying the procedure to Multi-Input Multi-Output (MIMO) systems and investigates the
implications of using non-diagonal weighting filters in the tuning process.

The thesis concludes with Chapter 8, which addresses the research questions posed at the outset,
summarises the study’s main findings, and presents recommendations for future research.



Research Proposal

2.1. Literature Review

This chapter aims to provide a literature review of Nonlinear Dynamic Inversion (NDI) Control and H
Loop-Shaping Control. After this chapter, it should come naturally that these two methods represent
sensible approaches to the design of flight control systems and that there is a lot of potential in combining
these two methods. The research gap, objective, questions, and project plan for this thesis should follow
logically.

2.1.1. Practical Considerations for the Application of Linear and Nonlinear Control

Techniques

The adoption of digital fly-by-wire flight control systems by fighter aircraft and civil aircraft has become
a standard in the industry. The methods applied to the design of flight control laws for fighter jets have
experienced an evolution, from SISO classical control methods used for the F-16 (Figure 2.14), to more
advanced multivariable control law design techniques, such as Eigen-structure Assignment for the F-22
Raptor (Figure 2.1), LQ control for the JAS-39 Gripen (Figure 2.2), differential PI gains for the Eurofighter
(Figure 2.3), simplified Dynamic Inversion control for the T-50 (Figure 2.4), and, more recently, Nonlinear
Dynamic Inversion techniques for the three versions of the F-35 Lightning Il (Figure 2.8) (Kim et al., 2023).
With the exception of the latest, all the other techniques are linear control techniques that loosely fall within
a linearization-based gain-scheduling approach. Thus, linear control techniques have demonstrated a
long and successful history of practical application in fighter jet flight control systems.

Due to the need to design control laws for three different versions, each with different mission re-
quirements and aerodynamic characteristics, the Lockheed Martin control law team chose a methodology
with a control structure that could support all versions. The three versions are the F-35A conventional
takeoff and landing (CTOL) variant, the F-35B short takeoff and vertical landing (STOVL) variant, and the
F-35C carrier-based variant (CV). In light of these requirements, the NDI approach emerged as the chosen
approach since it can directly accommodate system nonlinearities, avoid the need for time-consuming
gain scheduling, and its modular approach allows it to be easily transferable across different versions,
making the design process more streamlined and cost-effective. Despite these advantages, the control
team had to deal with challenges in the computing demand of the algorithms, the invertibility of the system,
numerical stability and sensitivity to unmodeled dynamics and practical limitations on the size of the model
that can be embedded in the software (the F-35 onboard models consist of approximately 3 million data

4
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Figure 2.1: Lockheed Martin F-22 Raptor Figure 2.2: Saab JAS 39 Gripen [Credit Tuomo
[Credit US Air Force (USAF)]. Salonen / SIM Finnish Aviation Museum].

points) (Harris, 2018). In order to simplify and accelerate the control law software development process,
MATLAB® Autocode was used to auto-generate code. In this process of designing NDI control laws, the role
of the control law engineer changes from focusing on developing gain schedules based on linear models
to understanding the aerodynamics of the aircraft, developing the onboard model, and also working as
an embedded software engineer, responsible for software development in accordance with established
industry standards for safety-critical systems (Canin, 2019; Harris, 2018).

Another good reference on the industry perspective and practical considerations of different control
methods is given in the work of Magni et al., 1997. It presents an extremely detailed overview of the
main conclusions of the Research Civil Aircraft Model (RCAM) initiative, a collaborative effort of European
Industry and Academia, organised by the Group for Aeronautical Research and Technology in Europe
(GARTEUR). The goal of this project was to advance flight control technology by providing a standardised
model for researchers to develop and test robust flight control designs and analyse them in relation to
industrial experience and practices. Naturally, as this project dates back to the 90s, some of the comments
are no longer applicable, but they offer a lot of valuable insights into the challenges of a wider adoption
of H, robust control tools at the time and the slight preference for NDI tools from a practical viewpoint.
Among the tested techniques, applications of u-synthesis and H., Loop-Shaping are found, and other
techniques, like the Multi-Objective Parameter Synthesis (MOPS) by the German Aerospace Centre (DLR),
stand out.

Despite the acknowledgement of the results of H., tools entries as among the best, the author
summarizes a few points that might limit its adoption in industry: requirement of advanced mathematical
knowledge, lack of visibility and high complexity of the control structure, implementation issues due to the
need of discretizing high-order controllers and re-design challenges in case the aircraft dynamics’ models
are modified (Magni et al., 1997). On the other hand, the MOPS approach does not face these issues.
This technique can include various types of design objectives and make use of multi-objective synthesis
tuning by min-max parameter optimisation. As it is applicable for every structure that can be described
mathematically, and every requirement can be used as long as it can be expressed mathematically by a
cost function, it was deemed one of the best approaches (Joos, 1999).

Additionally, Magni et al., 1997 also reviews the main outlooks of the High Incidence Research Model
(HIRM) design challenge. The HIRM was also a European initiative focused on enhancing the understanding
of fighter aircraft behaviour at high angles of attack. The design entries included approaches such as LQ
control, a combination of Nonlinear Dynamic Inversion and LQG, Robust Inverse Dynamics Estimation
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(RIDE), p-synthesis and #H., Loop-Shaping.

From these approaches, the main conclusions from the evaluation team (flight control designers from
British Aerospace Military Aircraft, SAAB Military Aircraft and British Aerospace Dynamics) on the NDI
with LQG approach and #., Loop-Shaping are highlighted. The NDI approach is deemed as handling the
time response requirements well, but as robustness requirements are not addressed directly, it possibly
leads to multiple design iterations. For the H., Loop-Shaping, similar conclusions to the ones described in
the RCAM initiative were found: issues associated with the mathematical theory challenges and lack of
state-space block’s visibility, but, on a positive note, the degree of commonality with classical control (loop
shaping principles) and sound theoretical linear robustness guarantees were highlighted.

The authors of Magni et al., 1997 argue that different control approaches can be organised into three
categories according to the design philosophy employed. The first one is the control theory approach, which
is centred around the use of a theoretical control synthesis method, such as #.,-synthesis. The second
one is the flight physical approach, which is centred around the flight dynamics, mission requirements
and physical reasoning. NDI and INDI control would fall within this category. Finally, there is the process-
oriented approach, which focuses on the design process and the design engineer by making use of
automation software tools. The MOPS approach is an example of the latter approach.

The primary motivation behind the aeronautical industry’s adoption of advanced flight control design
methods is driven by economic considerations. As engineers face increasing demands to develop control
laws more quickly for increasingly complex systems, they naturally seek more efficient and automated
design approaches. Such improvements aim to streamline the design process, making it faster and more
cost-effective, while continuing to ensure the highest standards of safety. Therefore, for a new flight
control method to be accepted by any industrial flight control systems design community, it is essential
that it integrates well with their existing design process. Additionally, practical considerations, such as
implementation in the aircraft’s flight control computer, must be thoroughly addressed. Motivated by this,
controllers based on u-synthesis and H., LS were deemed too ‘academic’ at the time, as the lack of
visibility and high complexity of the control structure was considered a big issue for practical applications.
In this context, the adoption of NDI control laws for the F-35 Joint Strike Fighter Program (JSF) might be
easily understood.

The practical challenges that limited the use of # ., control in industry in the 1990s have since been
overcome. Research efforts towards H,, static output-feedback control (Gadewadikar et al., 2007; Gade-
wadikar et al., 2006) and the continuous research efforts towards non-smooth # ..-synthesis (Apkarian &
Noll, 2006a) have resulted in the development of tools for the design of structured controllers under the # .
framework, now publicly available for control engineers via MATLAB® hinfstruct and systune. The advent
of these tools, namely hinfstruct, was essential to the success of the Rosetta mission of the European
Space Agency (Apkarian et al., n.d.). In 2011, following the failure of a thruster, new attitude control
systems were urgently needed. The mission’s original software proved inadequate for designing these
replacements; it was the employment of hinfstruct that ultimately enabled the successful development
of new, reliable attitude controllers. Thus, the majority of barriers to the practical implementation and use
in the industry of H,-synthesis methods described in Magni et al., 1997 are no longer an issue. Similar to
how the MOPS technique was deemed as a process-oriented approach, H..-synthesis is, today, also a
process-oriented approach, though anchored in a sound theoretical mathematical background. The main
challenge left to the designer is how to translate multiple system requirements, such as ideal time-domain
responses, certification requirements (for instance, minimum gain and phase margins), and others, into
frequency-domain requirements in the form of weighting filters needed in the #..-synthesis process.
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Figure 2.3: Eurofighter Typhoon [Credit Chris Figure 2.4: KAI T-50 Golden Eagle [Credit
Lofting]. Philippine Air Force (PAF)].

2.1.2. Motivation for Linear Flight Control Techniques and LPV Extensions

Linear control techniques have been widely studied and accepted in flight control applications. As practical
applications of flight control have to cover a wide flight envelope, the most standard approach is to use
gain scheduling based on local linear designs of LTI systems obtained from the Jacobian linearization of
the nonlinear dynamics around chosen operating points.

In this case, the gain-scheduled controller, referred to as Linearization-Based Gain-Scheduling (LBGS),
can be obtained based on ad-hoc interpolation methods. These methods vary in complexity and include
controller switching, controller blending, ZPK interpolation, transfer function coefficient interpolation,
state-space matrix interpolation, observer/state feedback interpolation, and other interpolation schemes
(Theodoulis, 2008).

While the increased linear control theory maturity, especially with the development of robust # ., tools,
allows the design of linear controllers with robustness guarantees in the linear domain, translation to
robustness guarantees in the nonlinear domain of the interpolation-based gain-scheduled controller is
not assured. In this context, the interpolation procedure for the construction of the global gain-scheduled
is critical since robust local linear designs can even result in instability of the closed-loop system. Thus,
without an appropriate theoretical analysis, these gain-scheduled controllers come with no guarantees on
the performance, robustness, and even nominal stability (Shamma & Athans, 1991).

In the 80s and 90s, there was an increased interest in studying the stability and robustness guarantees
of LBGS. The work of Shamma and Athans, 1991 establishes conditions for which robust stability and
performance of parameter-varying linear systems in the context of gain-scheduling are guaranteed. Namely,
it demonstrates that the gain-scheduled controller’'s desirable feedback properties for all parameters’ frozen
values are maintained if the parameter time variations are sufficiently slow. Another very relevant work
is the benchmark paper of Nichols et al., 1993 for the gain-scheduled autopilot of an air-to-air missile,
which proposes conditions for the gain-scheduled controller realisation to avoid hidden coupling terms.
The existence of these hidden coupling terms is detrimental since they can result in the instability of the
closed-loop system. The full theoretical results are later given by the work of Lawrence and Rugh, 1995.
Moreover, the work of Stilwell and Rugh, 1999 develops a method of interpolating LTI controllers with
observer state feedback structures that guarantees closed-loop stability of the Linear Parameter-Varying
system within a certain range of variation rates of the scheduling vector. Posteriorly, in Stilwell and Rugh,
2000, the same authors generalise these results to two other cases: state space matrix interpolation and
interpolation of stable coprime factors of transfer functions.

In many cases, the absence of robustness guarantees of the nonlinear gain-scheduled controller is ad-
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dressed by a thorough a-posteriori robustness analysis of the controller. In order to verify that the controller
meets performance and robustness requirements across the flight envelope, Monte Carlo simulations of
hundreds or thousands of operating points with perturbations on the aerodynamics coefficients, addition of
wind gust disturbances, and consideration for other effects are often used. Other robustness tests, for
instance, include the linearization of the total open loop of the system plus the gain-scheduled controller
in order to inspect its stability margins for frozen values of time. Moreover, another important aspect to
consider is that linear analysis tools are quite well-established, especially compared to nonlinear ones. In
fact, aerospace industry safety certification requirements are often based on linear methods, such as gain
and phase margins, which can readily be met with # . linear control tools.

While the previous approach to gain-schedule control falls within the divide-and-conquer design philoso-
phy, alternative approaches were developed in the late 80s and 90s, referred to as Linear Parameter-Varying
(LPV) gain-scheduling. These methods make use of LPV plant descriptions of the nonlinear dynamics,
allowing the direct synthesis of a gain-scheduled controller rather than its construction from a family of local
linear controllers designed based on LTI plants. The great advantage of LPV control is that it offers the
potential of both stability and performance guarantees, both within the neighbourhood of selected operating
conditions and throughout transient phases. However, this approach can introduce a certain degree of
conservatism into the control solution. These methods widely employ the £5 norm as a performance
measure since this enables a degree of continuity with linear ., control. Consequently, LPV control can
be seen as an extension of linear #,, control to LPV systems (Leith & Leithead, 2000; Rugh & Shamma,
2000).

There are multiple approaches to LPV control design, such as small-gain LFT (Apkarian & Gahinet,
1995) and Lyapunov-based LPV approaches, namely, Quadratic Lyapunov function approaches (Apkarian
et al., 1995) and Parameter-dependent Lyapunov function approaches (Wu et al., 1996). These techniques
have found application in multiple high-performance aircraft, such as the F-14 (Balas et al., 1997), F-16
(Lu et al., 2006), F/A-18 (Balas et al., 1999) and the VAAC Harrier (Figure 2.7) (G. Papageorgiou & Glover,
1999; G. Papageorgiou et al., 2000). More recently, LPV control was also flight-tested in the Cessna
Citation Il (Figure 2.12) aircraft (Weiser et al., 2020).

As a final remark, it is important to acknowledge that the popularity of nonlinear control techniques,
such as Nonlinear Dynamic Inversion and Incremental Nonlinear Dynamic Inversion, motivated some
scepticism towards the merits and successes of linear control and gain-scheduled approaches (Kim et al.,
2023). Nevertheless, the discussion above supports the idea that LBGS is a practical and effective method
for nonlinear control design and that LPV control design extensions, despite the increased complexity,
present systematic tools for the design of flight control laws with stability and performance guarantees. For
a thorough treatment of the 80s and 90s developments in LBGS and LPV control design, the reader is
invited to read the two survey papers of Leith and Leithead, 2000 and Rugh and Shamma, 2000.

In this context, it is important to stress some articles that acknowledge the usefulness of robust control
tools to analyse and synthesise NDI/INDI control laws, a design philosophy that will be followed in the
present work. The work of Hyde and Papageorgiou, 2001 recognises the conceptual simplicity of NDI
control laws but also the fact that the technique gives no robustness guarantees, proposing the use of
frozen point and LPV methods to analyse the stability properties of NDI control. More specifically, it makes
use of a normalised coprime factor stability test for the frozen point analysis, a concept which directly ties to
H ., Loop-Shaping control, and an £, extension of this test for LPV analysis. Later, C. Papageorgiou and
Glover, 2005 extends the robustness analysis tests of NDI control laws by making use of quasi-LPV models
and considering the presence of time-varying and parametric uncertainty. These tests are formulated as
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linear minimisation problems subject to LMI constraints and solved via a gridding procedure, providing
sufficient conditions for the analysis of the nonlinear system’s performance in the presence of bounded
disturbances and uncertainty. More recently, the work of Pollack, 2024 challenges the recent claims
about the increased robustness of INDI control laws over NDI laws by employing p-analysis to linear
variants of those techniques (DI and IDI control). The research demonstrates that the two techniques
have complementary robustness properties, and, as such, a hybrid schematic which combines both can
be leveraged to augment the robustness properties of the inversion inner loop. Moreover, a u-synthesis
approach is developed to systematically tune the Hybrid IDI controller in light of non-smooth, multi-objective
Ho-synthesis.

Several conceptual bridges can be established between these articles. The articles point out that
the advantages of NDI control laws lie in their architectural value and modular simplicity. However,
recognising the lack of robustness guarantees, H, linear synthesis and analysis tools and LPV extensions
are proposed to address this issue. In this context, the idea of leveraging the H ., Loop-Shaping Design
Procedure to tune a Hybrid IDI control law arises. Going back into the three design philosophy categories
of control methods mentioned in the previous section, this concept fulfils the three of them: it is a flight
physics approach in terms of its controller structure, it is a control theory approach in terms of how the
gains of the controller are optimized using the H, Loop-Shaping, and it is a process oriented approach
in the sense that many aspects are automated using systune and the designer interacts more with the
process by translating the design requirements to frequency domain ones and weighting filters.

Figure 2.5: NASA F/A-18 High Alpha Research Figure 2.6: McDonnell Douglas F/A-18 Hornet
Vehicle (HARV) [Credit NASA]. [Credit USAF].

2.1.3. Robust Flight Control Framework

Historical Background and Developments in # ., Control

Control theory had its origin in the 40s, a time referred to as the classical control era, where methods
like Bode plots, root locus, frequency domain analysis, and SISO loops were used to design controllers.
Classical control comes to its limits when controllers for multivariable systems with high internal coupling are
to be designed. Consequently, time-domain modern control methods were developed during an “elegant”
modern control era, which had its origins in the 60s. It has its foundation in state space methods, which
are used to design optimal controllers such as Linear Quadratic Regulators (LQR) and Linear Quadratic
Gaussian (LQG), which consist of multivariable control synthesis techniques. However, with great optimism
and overconfidence came a rude surprise: the fundamental problem of system uncertainty was largely
ignored by modern control theorists, which led to supposedly ‘optimal’ controllers with poor performance,
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or even instability, in real-world applications due to high sensitivity to modelling errors. In fact, in the 70s,
John Doyle, a PhD student at the time, demonstrated that the traditional LQR guaranteed margins vanish
when an estimator is introduced, as it occurs in the case of the full LQG, with a Kalman filter in the loop
(Doyle, 1978)".

Robust Control Theory originated in the 70s and was born out of the realisation of the inherent flaws of
time-domain modern control methods. Robust control, or in other words, # ., control design and analysis
methods are direct and natural developments of the classical frequency domain control techniques still in
use by much of the aerospace industry today (Balas, 2003). It can be seen as a return to the frequency
domain philosophy of classical control, with the primary development being to allow for truly multivariable
design in the presence of system and signal uncertainty. The theory is based on minimising the ., norm.

The H, problem was formally presented by Zames, 1981, but the origins of the # ., can be traced back
to the 1960s when the same author discovered the small gain theorem (Zames, 1966). In the last decades,
the H ., problem was solved multiple times, in the sense that the problem was progressively solved from a
least complex one, with a full-order unstructured controller, to a more complex one, with a controller under
structural constraints (Apkarian & Noll, 2006a). The first (extremely unpractical) solution to the problem
presented by Doyle, 1984, and later refined by Glover and Doyle, 1988 and by the celebrated DGKF paper
Doyle et al., 19892, shows that the 7., problem requires the solution of two Algebraic Riccati Equations
(ARES). In 1994, Gahinet and Apkarian, 1994a gave a solution for the ., problem by reducing it to Linear
Matrix Inequalities (LMIs). In the same year, lwasaki and Skelton, 1994 also provided a similar solution to
the H ., problem in terms of LMIs. Both AREs and LMIs solutions result in full-order controllers, but the latter
suggested the possibility of using LMIs to synthesise reduced-order controllers. However, synthesising
a reduced-order controller leads to Bilinear Matrix Inequalities (BMIs) rather than LMlIs, resulting in a
non-convex minimisation problem, which, at the time, did not guarantee global convergence (Apkarian &
Noll, 2006a). Moreover, BMI approaches run into numerical difficulties even for problems of moderate
size (Apkarian & Noll, 2006a). In Apkarian and Noll, 2006a, the H ., problem was finally solved for the
structured reduced-order case with non-smooth optimisation techniques. This solution became available
to control engineers in 2011 via the MATLAB® hinfstruct tools and later in 2015 via MATLAB® systune.
The significance of this discovery is profound and was considered to be the ‘holy grail’ of robust control
synthesis. Before, synthesised full-order controllers had to go through a process of model-order reduction
to ensure implementability in the design. Today, a control engineer has at his disposal the tools to directly
synthesise structured and reduced controllers. For instance, the very much cherished in industry PID
controllers are structured controllers that can now be optimised under the H,, framework instead of tuned
using heuristic techniques such as Ziegler Nichols (Ziegler & Nichols, 1942) or others.

H.. Control Methods

H ., control has been widely used to design flight controllers, especially for fighter jets. Amidst the different
‘H~, methods, three deserve to be highlighted: #., mixed sensitivity, u-synthesis, and H., Loop-Shaping.

Mixed sensitivity H.., consists of shaping the singular values of various closed-loop transfer functions
through the use of weighting filters. Control system requirements, like attenuation of low-frequency
disturbances at the plant output, minimisation of high-frequency actuator usage, and robust stability to
additive uncertainty at high frequencies, among other requirements, can be translated to desired closed-

"This bold and disruptive work, published at the IEEE as the paper with the shortest abstract ever, earned him quite the ‘reputation’
at the time.

2|n the inControl Podcast, Doyle jokingly says this is a really bad paper and advises his students not to read it.
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loop transfer functions. The filters are then carefully designed to reflect these objectives, and then a
controller K is synthesised based on a ‘H., minimisation problem to meet those criteria.

In Voulgaris, 1988 and later in Voulgaris and Valavani, 1991, Mixed sensitivity ., control was used to
design a longitudinal MIMO controller for an F-18 High Alpha Research Vehicle (HARV) at an operating
point within the high “alpha” regime. In Ikeda et al., 1990, mixed sensitivity control was applied to the
longitudinal dynamics of a fighter aircraft, and the results were compared to the LQG design. In Garg and
Ouzts, 1991 and Garg, 1993, mixed sensitivity was applied on a supersonic short take-off and vertical
landing (STOVL) to operate in transition flight. In Chiang et al., 1993, a mixed sensitivity # ., controller
was designed for a supermaneuverable fighter flying the Herbst manoeuvre.

The structured singular value, 1, introduced by Doyle, 1982, is a powerful tool for analysing robustness
performance with a certain controller. The above result defines a test for stability (robustness measure) of a
closed-loop system subject to structured uncertainty in terms of the maximum structured singular value of a
particular part of the closed-loop system (Bates & Postlethwaite, 2002). This structured singular value can
also be used for controller synthesis in a process called p-synthesis, which aims at directly satisfying the
specifications imposed by p in terms of robustness performance. It can allow for the synthesis of controllers
that are less conservative than those produced with either # ., Loop-Shaping or Mixed Sensitivity, but care
must be taken. For example, the D — K iteration, a sub-optimal method that combines ., and p-analysis,
does not guarantee joint convexity (for both K-step and D-step) and, consequently, the iterations may
converge to a local optimum (Skogestad & Postlethwaite, 2005). Furthermore, the computational burden
of the algorithms that compute the exact value of 1 is an exponential function of the size of the problem,
which can be problematic for large systems (Bates & Postlethwaite, 2002).

Inthe late 90s, Paul et al., 1997 and Tu et al., 1999 used u-synthesis to design a robust lateral-directional
flight controller for a tailless fighter aircraft and the F/A-18 fighter (Figures 2.5 and 2.6), respectively.
More recently, p-synthesis has found many application cases in the design of flight controllers for UAVs
(Michailidis et al., 2018; Panza et al., 2020).

H., Loop-Shaping Control

H ., Loop-Shaping has its foundation in the concept of Normalised Coprime Factorisation (NCF) of linear
systems introduced by Vidyasagar et al., 1982 and Vidyasagar and Kimura, 1986. Posteriorly, Glover
and McFarlane, 1988, McFarlane et al., 1988, and McFarlane and Glover, 1990 expanded the concept of
NCF Robust Stabilisation, which consists of finding the controller K that robustly stabilises a plant to NCF
uncertainty. H., Loop-Shaping is formally defined in McFarlane and Glover, 1992 (and hence the also
common designation of McFarlane-Glover Loop-Shaping). This method uses shaping filters W; and W,
on the plant G to obtain a desirable loop (gain) shape in terms of its Singular Values, and then applies NCF
Robust Stabilisation. Therefore, it can be said that this method reconciles classical control methods such
as Loop-Shaping with H ., optimisation. The described Loop-Shaping Design Procedure (LSDP) was then
extended from a 1DOF to a 2DOF by Limebeer et al., 1993. The 2DOF LSDP, with the extra DOF given
by the independent design of the pre-filter gain, allows the trade-off of robust stability and performance
properties of the closed-loop system.

‘H~, Loop-Shaping design method has several properties that make it particularly interesting to address
control problems for aerospace applications: no gamma iteration, robustness to unstable perturbations
and uncertainty in the location of lightly damped resonant poles, no pole-zero cancellations of the stable
plant poles, clear management of conflict specifications around crossover, balanced robustness and
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Figure 2.7: VAAC Harrier XW175 [Credit Figure 2.8: F-35A Lightning Il Joint Strike
Bedford Aeronautical Heritage Group]. Fighter [Credit USAF].

performance properties at the plant input and output, and can be implemented as an exact plant observer
plus state feedback, which can lead to simplified gain-scheduling (Bates & Postlethwaite, 2002).

One of the most challenging aspects of the procedure is the design of the weighting filters 17/; and W5.
The work of Hyde, 1995 provides a method to design diagonal filters 1, and W5, which works particularly
well for plants with dominant diagonal terms. However, since diagonal weights do not work particularly well
for plants that have strong cross-coupling between channels, the design of the weights for such plants can
be difficult and time-consuming. The work of G. Papageorgiou, 1998 addresses these issues by proposing
a systematic procedure to design non-diagonal filters 1/; and W5, which allows the designer to specify the
desired loop shape more accurately as he exploits more degrees of freedom.

The H., Loop-Shaping Design Procedure has been used to design flight control laws for fighter
jets. In Hyde and Glover, 1993, a flight control law for the longitudinal motion of a Harrier jump jet has
been developed using H., Loop-Shaping. Following this, G. Papageorgiou and Glover, 1999 and G.
Papageorgiou et al., 2000 extend the procedure to LPV gain-scheduling and flight-tested it in the Harrier
jump jet. In Bates and Postlethwaite, 2002, a multivariable wing-leveller flight controller for a linearised
model of the lateral dynamics of an F-16 aircraft is designed using both a static #., Loop-Shaping controller
and LQ optimisation, and the results are compared. Again, in Bates and Postlethwaite, 2002, an H,
Loop-Shaping controller is used to design a centralised, integrated flight and propulsion control system
for the VAAC Harrier aircraft (WEM model), considering the longitudinal and lateral control problems
simultaneously. Recent approaches to H., Loop-shaping control of fighter aircraft are scarce. However,
H~ Loop-shaping has found a Iot of recent applications to the design of robust agile vehicle control, which
shares some similarities with fighter aircraft in terms of longitudinal control. In Friang et al., 1998, the
control of a bank to turn a missile with very lightly damped bending modes is synthesised using H..
Loop-Shaping, and robustness against large modelling uncertainties is investigated using the v-tool. A
systematic methodology for the synthesis of global gain-scheduled controllers for nonlinear time-varying
systems, using reduced-order, static ., Loop-Shaping controllers, whose set of operating points is chosen
based on the gap metric, is presented in Theodoulis and Duc, 2009. In Kanade and Mathew, 2013, the
performance of an H., Loop-Shaping and an H., Mixed-Sensitivity controller is analysed when applied to
a pitch model of a rocket. Finally, a gain-scheduled structured ., Loop-Shaping autopilot is designed for
spin-stabilized canard-guided projectiles in Séve et al., 2017.
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2.1.4. Nonlinear Dynamic Inversion Control Framework

Historical Background and Developments in NDI Control

Nonlinear Dynamic Inversion (NDI), also known as Feedback Linearisation among the control community,
was developed as an alternative to the divide-and-conquer paradigm, which results in gain-scheduled
controllers. The general idea of NDI control law is to transform selected input-output channels into a chain
of integrators by using state feedback information (hence the designation Feedback Linearisation). This
inner dynamic inversion loop linearises the nonlinear dynamics, transforming the nature of the system from
nonlinear to linear. As a result, an outer virtual control loop may employ linear control design methods to
control this linearised system, resulting in a self-scheduled controller.

Inspired by Meyer and Cicolani, 1975, the work on state-space linearisation of scalar-input systems by
Brockett, 1978, solutions for general multi-input systems established by Su, 1982, and the work on zero
dynamics by Byrnes and Isidori, 1984 laid the theoretical foundations for what would be later be known as
Nonlinear Dynamic Inversion control.

However, it was around the early 1990s that NDI flight control started to take off. The Honeywell
Technology Centre in Minneapolis, MA, USA, took a fundamental role in that aspect, with the works of
Elgersma, 1988, Bugajski et al., 1990, Bugajski and Enns, 1992, and Snell et al., 1992. Later, in 1996, a
combined research effort by Honeywell Technology Centre, Lockheed Martin Tactical Aircraft Systems,
and Lockheed Martin SkunkWorks led to the release of the design guidelines for various multivariable
flight control methods, including NDI (Honeywell Technology Center, Lockheed Martin Skunk Works and
Lockheed Martin Tactical Aircraft Systems, 1996). Furthermore, Honeywell developed a proprietary tool,
MACH (Multi-Application Control), for the systematic design of NDI control laws for aerospace applications
(Balas, 2003). The success of this methodology led to its adoption in the STOVL X-35 version (Figure
2.9) as part of the Joint Strike Fighter (JSF) program, and later to the Lockheed Martin F-35 Lightning Il
production aircraft (Canin, 2019; Harris, 2018; Walker & Allen, 2002).

Classical NDI Control

The aforementioned development of Nonlinear Dynamic Inversion control falls within the classical NDI
control. It is a model-based approach that requires an On-board model (OBM) of the system dynamics to
do the inversion.

One of the main advantages of NDI control is that it allows for a direct treatment of nonlinear systems.
The dynamic inversion inner loop allows the system to be treated from an outer loop perspective as a
chain of integrators (whose order depends on the relative degree of the plant). This means that a single
virtual control law may be employed to control the system throughout the entire flight envelope. The fact
that this controller results in a self-scheduled controller can lead to shorter design cycles. Moreover, NDI
enables the decoupling of the control design’s airframe-dependent and flying qualities-dependent parts.
Therefore, it can be seen as a transparent and modular approach to flight control design, allowing re-use
and easier adaptation of the control design across different flight control problems. Besides the already
mentioned ones, the multiple case applications for the X-38 Space Station Crew Return Vehicle (Figure
2.10) (Valasek et al., 2001), large flexible aircraft (Gregory, 1998), and helicopters (Enns & Keviczky, 2006)
verify the success of this methodology.

Nevertheless, several aspects require consideration. First of all, the model-dependency nature of
this dynamic inversion approach implies precision and accuracy of the OBM. As a result, an unreliable
OBM can lead to poor dynamic inversion and, consequently, poor flight control system performance.
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Secondly, the NDI control framework does not provide a priori robustness guarantees (G. Papageorgiou &
Polansky, 2009). This does not mean that it can not be made robust (G. Papageorgiou & Polansky, 2009);
however, it might require further robust analysis and redesign to meet closed-loop requirements. Thirdly,
one fundamental assumption made when designing a DI control is the need for the zero dynamics of the
system to be stable (Byrnes & Isidori, 1984). This is particularly important for fighter jet aircraft as they
often exhibit a non-minimum phase zero behaviour at particular flight conditions (Hauser et al., 1992).

Figure 2.9: Lockheed Martin X-35 concept Figure 2.10: NASA X-38 Space Station Crew
demonstrator [Credit USAF]. Return Vehicle [Credit NASA].

Incremental Nonlinear Dynamic Inversion (INDI) Control

Incremental Nonlinear Dynamic Inversion (INDI) is an incremental approach to the classical model-based
NDI. This approach attempts to solve NDI detailed and accurate model dependency by using sensor
measurements of the state derivatives (hence the alternative designation of sensor-based (SB) INDI). As a
result, the only onboard model information required is the plant control effectiveness, making the control
law design less expensive and time-consuming.

Its origin traces back to the work of Smith, 1998 at the UK Defence Evaluation and Research Agency
(DERA) in 1998. Dedicated flight test trials with the VAAC Harrier by the DERA were run to assess the
potential of this new method, and the results turned out promising. This method was further studied in
terms of its potential for fault-tolerant control in Bacon et al., 2000, Bacon and Ostroff, 2000, and Bacon
et al., 2001. The work of Sieberling et al., 2010 from the Delft University of Technology marks the revival
of the sensor-based INDI approach, which had been relatively dormant in the past years. It showed that
robustness to aerodynamic model uncertainty comes at the expense of increased sensitivity to sensor
delay, which can be tackled with a predictive filter. This study was followed by other researchers at TU
Delft working on further developing the theory (Koschorke et al., 2013) and exploring other applications
(Acquatella et al., 2012; Simplicio et al., 2013). Given its advantages and the described progress, INDI
control has found its application to many flight control problems, from VTOL UAVs (Lombaerts et al.,
2020; Raab et al., 2018; Smeur et al., 2020) to helicopter applications (Pavel et al., 2020), and flight test
campaigns on the PH-LAB Cessna Citation Il (Grondman et al., 2018).

As mentioned before, SB INDI aims to retain the advantages of NDI control while decreasing the model
dependency of NDI. However, a drawback of this method is that it has relatively small stability robustness
margins against singular dynamic perturbations, like time delays, compared to model-based NDI (Pollack
& Van Kampen, 2023; Van't Veld et al., 2018). For instance, the work of Cordeiro et al., 2022 describes
how actuator or filter dynamics affect the time delay margin of SB INDI, and the work of Huang et al., 2022
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details how control effectiveness mismatch influences it. Smeur et al., 2016 tackled this issue, introducing
the concept of signal synchronisation. Despite the recognised success of the approach, the question
of how to improve the robustness properties of SB INDI remains, to the authors’ knowledge, an open
question.

Figure 2.11: SIMONA research simulator Figure 2.12: Cessna Citation Il PH-LAB [Credit
[Credit TU Delft). TU Delft].

Hybrid Incremental Nonlinear Dynamic Inversion

The limitations of SB INDI led to the idea of reintroducing model information of the bare airframe dynamics
in the form of a complementary augmentation element, a method designated by Hybrid INDI (Pollack &
Van Kampen, 2023). The concept was originally proposed by Jiali and Jihong, 2016, used in Yang et al.,
2020, and formulated in Kim et al., 2021 and Kumtepe et al., 2022. The work of Pollack, 2024 marks a
significant step in the development of this method by quantitatively assessing the robustness properties of
the different inversion structures, like NDI, SB INDI, and Hybrid INDI. It also proposes a structured way to
design the synchronisation filter of the INDI controllers under a robust control framework using p-synthesis.
Finally, the properties, limitations, and advantages of each of the three inversion-based methods are
demonstrated with a case study design of a C* controller for a simulation model of the Boeing 747-100/200
using a multi-objective structured robust H.-synthesis against mixed uncertainty to optimise the design
parameters of each control architecture.

2.1.5. Combination of Dynamic Inversion Control with Robust Control
Despite the surprisingly lack of research towards combining H ., synthesis methods with DI control, these
ideas are not exactly new. This section describes multiple approaches to the topic found in the literature.

The first attempt at combining both frameworks can be traced back to Adams and Banda, 1993, which
proposes the use of dynamic inversion in combination with u-synthesis and p-analysis to design a lateral
directional flight controller for an F-16 Variable Stability In-Flight Simulator Test Aircraft (VISTA) model.
The idea consists of designing a desired equalised inner loop (based on the regulated dynamics of a
central plant with an LQR) across the flight envelope through dynamic inversion on the first step. In the
second step, an outer loop compensator is designed to achieve the required flying qualities and robustness
using u-synthesis.

Following up on this work, Reigelsperger and Banda, 1998 extends it to the longitudinal case. Dynamic
uncertainty weighting filters are introduced to the actuators and sensors in the u-synthesis framework, and
a command pre-filter is added. Nevertheless, the general guidelines of designing first a desired equalised
inner loop with DI and an outer loop with u-synthesis are maintained.
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Fer and Enns, 1997 apply feedback linearisation (dynamic inversion) in combination with Loop-Shaping
LQR design to achieve a nonlinear regulation law with locally optimal LQ full-state feedback properties.
The regulated output matrix C (referred to in the study as H) has a free parameter, which can be tuned to
obtain a desired loop shape at the plant input. This approach is applied to a nonlinear short-period model
of the F-18 HARV. Under this framework, the point is made that by equating the Loop-Shaping LQR gains
to the feedback linearisation gains, the nonlinear feedback linearisation control laws result in a closed-loop
system with both local guaranteed stability and robustness properties in terms of gain and phase margins
of LQR.

In Smit and Craig, 1998, the authors propose a methodology that uses the ideas of plant-desired
equalised inner loop developed by Adams and Banda, 1993. However, in the second step, instead of
pu-synthesis, H., Loop-Shaping is used to design the outer loop controller. The case study consisted of a
lateral/directional axis flight control system for an unmanned air vehicle. To the author’s knowledge, this
last method is the first formal attempt at combining H ., Loop-Shaping control with Nonlinear Dynamic
Inversion control.

Furthermore, Tierno and Glavaski, 1999 designs an H., Loop-Shaping compensator for a fixed
architecture control law based on a dynamic inversion of the short-period model. This procedure has
its application in high-performance twin jet models. The #., controller designed takes the place of a
standard phase lead compensator and aims at improving the robustness of the DI controller due to possible
additional unconsidered dynamics.

An extensive work on this subject was developed by Hyde and Papageorgiou, 2001. The authors
analyse the stability of NDI-based flight controllers with frozen point analysis (i.e. Linear Time-Invariant
(LTI) analysis) and LPV analysis. In this setup, normalised coprime factor uncertainty is used as the basis
for both methods, and the case study is carried out in DERA Harrier WEM (Wide Envelope Model). The
analysed NDI methods encompass standard NDI, Honeywell NDI (particular implementation of NDI by
Honeywell Technology Centre and Lockheed Martin Skunk Works), P+1 NDI, Robust Inverse Dynamics
Estimation (RIDE) resembling an SB INDI control approach, u-synthesis NDI like the one described in
Adams and Banda, 1993, and a novel approach of cascading NDI with an # ., compensator in the inner
loop.

The work of Valasek et al., 2001 suggests a new way to address robustness issues in DI control by
using an outer-loop Linear Quadratic Gaussian controller to add robustness to the Dynamic Inversion
inner loop. This approach is used to design a lateral-directional controller for the X-38 vehicle, and the
performance and robustness of the synthesised controller are evaluated using a time domain performance
criterion proposed by Ghaoui et al., 1992. In this method, the desired dynamics of the DI controller are
specified by the LQG through a Loop-Shaping process.

An alternative way to feedback linearisation is described in Guillard and Bourles, 2000. Instead of
classical feedback linearisation, which is used by NDI and INDI methods, the authors propose to transform
the original nonlinear system by feedback into its linear approximation around a given operating point.
It is argued that this method allows for maintaining the good robustness properties obtained by a linear
control around this operating point and can be combined with H, type control laws. Thus, it is referred
to as robust feedback linearisation. Posteriorly, in Franco et al., 2006, the same authors, together with
other researchers, extend the previous work by combining the McFarlane-Glover ., controller with robust
feedback linearisation. This method and the classical feedback linearisation NDI are applied to a magnetic
bearing system control case, and the results are compared.
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G. Papageorgiou and Polansky, 2009 proposes a new method to tune dynamic inversion controllers
using McFarlane-Glover (H.,) Loop-Shaping. The method is used to design a pitch axis control for an LTI
Boeing 747 model, obtained by trimming and linearising a high-fidelity model of the Boeing 747 (Figure
2.13) for a certain dynamic pressure. In its essence, this work aims at finding an equivalence between DI
control and McFarlane-Glover Loop-Shaping so that a DI controller can be tuned in the H ., Loop-Shaping
framework, which comes with robustness guarantees. The selection of the OBAC (On-board-Aircraft
dynamics) is based on the highest stability margin obtained with the McFarlane-Glover Loop-Shaping
controller from the different operating points of the flight envelope. Posteriorly, the desired dynamics
parameters of all design points are designated using the desired dynamics parameters of the OBAC. A
key aspect of this work is that, similarly to the work of Fer and Enns, 1997, the regulated output matrix C' is
a free parameter tuned in the synthesis process for robustness.

Figure 2.13: British Airways Boeing 747-400 [Credit Adrian Pingstone, Public Domain].

More recently, in Lesprier et al., 2014, researchers at ONERA make use of the key insights provided
by the robust feedback linearisation method in Guillard and Bourles, 2000 to present a new methodology
combining partially linearising inner-loops with structured and robust outer-loops, designed using a non-
smooth multi-model H ., optimisation approach. At first, the method is used to synthesise a longitudinal
controller for a nonlinear longitudinal civil aircraft model. Then, the same method is used to synthesise a
lateral controller based on a nonlinear lateral aircraft model. Finally, the longitudinal and lateral controllers
are tested on a realistic landing application.

In the same year, Lanzon et al., 2014 used the same method of robust feedback linearisation combined
with H ., Loop-Shaping to design a flight controller for a quadrotor subject to rotor failure.

More recently, a paper was presented by Demirkiran et al., 2024 that extends the work of G. Papageor-
giou and Polansky, 2009 to the design of a pitch rate controller for a fighter aircraft with a feed-forward
modification to address handling qualities. Internal stability, robustness, and handling qualities of the flight
control law augmented system are analysed in addition to Monte Carlo-type uncertainty analyses to assess
robustness.

Discussion

As was described above, there were some efforts towards combining the ., framework from Robust
Control Theory and Dynamic Inversion control from Nonlinear Control Theory after both frameworks
became recognised as sensible approaches to the design of flight controllers. However, perhaps motivated
by a division in the design philosophy, there seems to be a distinction between the robust control ‘mafia’
and the nonlinear control ‘mafia’, and the research on the combination of these methods has not exactly
been developed as one would expect.
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The most promising approaches entail the combination of ., Loop-Shaping and Dynamic Inversion.
In all cases, Dynamic Inversion is not approached from a global perspective of linearising the nonlinear
dynamics to behave like a chain of integrators (like NDI and INDI approaches), but rather from a linear DI
standpoint.

One of the approaches (Guillard and Bourles, 2000) employs a robust feedback linearisation to transform
the nonlinear system into a linear system equal to the linear approximation of the original nonlinear system
around a nominal operating point. The authors argue that classical feedback linearisation, which brings
the system to Brunovsky canonical form, is vulnerable to uncertainties and has infinite equilibrium points
and no physical meaning (two different nonlinear systems with the same dimensions will have the same
Brunovsky form), making it difficult to obtain a robust controller. On the other hand, the authors prove that
the robustness properties of the controller obtained by the method of McFarlane—Glover Loop-Shaping for
the linearised system are kept when this controller is applied, together with the robust feedback linearisation,
to the nonlinear system by making use of the concept of “local W-stability”. The method is applied to a
magnetic bearing control system case, and the robust feedback linearisation is compared with the classical
feedback linearisation (both using a linear 7, Loop-Shaping controller and weighting filters such that the
frequency response of the broken-loop gain L; and L, for both cases is similar). The results of the case
study highlight that under parametric variations, robust feedback linearisation can maintain a response
close to the nominal one, while classical feedback linearisation does not, and it even results in an unstable
response under some combinations of parametric variation.

The other approach from G. Papageorgiou and Polansky, 2009 focuses more on finding an equivalence
between DI control and McFarlane-Glover Loop-Shaping control. By finding this equivalence, a DI controller
can be synthesised under the #., Loop-Shaping framework, which comes with robustness guarantees.
An interesting concept of this approach is that the inverted model (C), also referred to as the On-Board
Aircraft (OBAC), can be different from the output matrix C, as it is a non-standard tuning parameter
resulting from the McFarlane-Glover Loop-Shaping synthesis. In this work, 12 LTI Boeing 747 TRue
AirCraft (TRAC) models have been generated by trimming and linearising a high-fidelity nonlinear model at
approximately the same dynamic pressure but for different combinations of Mach number, altitude, mass,
and centre-of-gravity location. Then, the tuned DI with McFarlane-Glover Loop-Shaping is used to design
12 controllers (one for each model). Then, each controller is used on the other TRAC models, and the
controller that performs better (in terms of the generalised stability margin) in the worst-case scenario
is chosen as the OBAC. All the other TRACs use the inverted dynamics (C hat) of the OBAC. With this
procedure, all the TRACs achieve the desired performance. As a result, even if this approach does not
result in a self-scheduled controller like NDI and INDI do, it allows for a systematic design approach which,
given the linear ., control design framework, comes with robustness guarantees. Nevertheless, in this
work, the feedforward and integral gain of the DI are constrained to f. + =1 such that the transfer
function from y. to y corresponds to a first-order model. When more demanding handling qualities are
required, like in the case of fighter jets, this may not suffice. For this reason, Demirkiran et al., 2024
addresses this limitation by modifying the feedforward to address the handling qualities of a fighter jet.

On the other hand, the work of Pollack, 2024 also constitutes a central piece approach to the design of
nonlinear dynamic inversion with robust control considerations. Unlike the previously described approach,
Hybrid INDI falls within a global perspective of linearisation of the nonlinear dynamics. However, the author
focuses on H, robustness assessments to perform quantitative comparisons of the robust stability and
performance characteristics of model-based (classical NDI), sensor-based INDI, and Hybrid INDI flight
control laws in a linear context. This is done by studying the characteristics of these different inversion
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strategies in the frequency domain and analysing the broken-loop response at the plant input resulting from
the different inversion strategies. Furthermore, the different design parameters of each control law are
designed using multi-model, multi-objective # ..-synthesis. The analysis of the fundamental robustness
properties of the inversion strategy (inner loop) of nonlinear dynamic inversion control is quite a relevant
topic. As Hyde and Papageorgiou, 2001 states in their work when analysing an inner loop NDI with an
outer loop H, controller designed independently: “It is not always possible to correct for a poorly
designed inner loop with an outer loop”. A parallel can be established between the additional filter
augmentation techniques required for IDI control and the process of Loop-Shaping in the H ., Loop-Shaping
control, which raises the question about the possibility of combining Hybrid IDI with the ., Loop-Shaping
Design Procedure. In contrast to the p-synthesis approach used in Pollack, 2024, which relies on explicit
uncertainty modelling and iterative D — K optimization, the H ., LSDP has direct connections with classical
control concepts and provides robustness against a general description of uncertainty (NCF), making it
easier to learn and use. In this context, the goal would be to use the # ., LSDP to optimise the different
Hybrid IDI gains.

2.1.6. Handling qualities

The nature of the operational mission is directly linked to the formulation of the flight control law design
goals. In this context, Anonymous, 1990 specifies aircraft class designation (I-IV) and identifies different
flight phases (A-C). Under these criteria, the F-16 Fighting Falcon (Figure 2.14) and the NASA’s X-29
experimental aircraft (Figure 2.15), the two aircraft models used in the present study, fall within the Class
IV and Flight Phase Category A. Flying qualities are defined as "those characteristics of the complete air
vehicle/system which allow the pilot/operator to perform to his/her satisfaction the flying tasks required to
safely accomplish the mission, with an acceptable workload, while operating in the real world environment
for which it is intended to operate” (Anonymous, 2002). The flying quality levels can be classified into three
different levels (I-1ll), and it is desired to accomplish Level | satisfactory flying quality levels across the
operational flight envelope.

Figure 2.14: General Dynamics F-16 Fighting Figure 2.15: Grumman X-29 Experimental
Falcon [Credit USAF]. Aircraft [Credit NASA].

Based on this, Anonymous, 1990 describes desired modal response characteristics. These modal
parameters are given as Low Order Equivalent System (LOES) models of the desired response of certain
controlled variables to pilot demands. The Control Anticipation Parameter (CAP) is one of the most
important LOES-based pitch criteria, and it will be one of the criteria used to define the performance criteria
the longitudinal controller should be able to attain. In his dissertation, Gibson, 1999, the author of the
Gibson Criteria, presents core discoveries of his new methodology for the handling qualities design of
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control laws. The insights provided by his new methods and his analysis of the CAP criteria will be used to
design the requirements on the short-period frequency ws,, damping (;,, and numerator time constant
T,,. The 2DoF LSDP explicitly attempts to meet the performance requirements imposed by these ideal
response models.

2.2. Research Proposal
2.2.1. Research Gap

In the previous section, a thorough literature review of robust control theory was conducted, with a special
focus on #H ., Loop-Shaping and Nonlinear Dynamic Inversion theory with application to the design of flight
control laws for aircraft. Both methods are popular and have proven successful in the design of flight
control laws. However, they are the result of different philosophies: DI control is the product of time-domain
thought, and # ., Loop-Shaping is the product of frequency-domain thought (G. Papageorgiou & Polansky,
2009). Both methods have established strengths, which naturally raises the question of how to combine
both frameworks. In an attempt to answer this question, several authors delved into this problem around
the time H ., control and Nonlinear Dynamic Inversion control became popular approaches to flight control.
However, the recent advent of non-smooth, non-convex H,-synthesis tools, which enable the design of
optimal controllers under structural constraints, opened the door for numerous research opportunities.

The work from G. Papageorgiou and Polansky, 2009 constitutes a centrepiece on how to combine both
approaches. However, the robustness implications of the equivalence established between DI control and
McFarlane-Glover Loop-Shaping still need further consideration to assess if the robustness guarantees
of McFarlane-Glover Loop-Shaping are preserved with this approach. This constitutes the first identified
research gap.

The work from Guillard and Bourles, 2000 proposes an alternative to the classical feedback linearisation
of NDI and INDI methods, which the author designates robust feedback linearization. According to the
author, this method preserves, to some extent, the controller’s robustness properties obtained by the H,
Loop-Shaping process on the linearised system when this controller is applied, together with the robust
feedback linearisation, to the nonlinear system. However, this method has found little application in the
design of flight controllers. This constitutes the second identified research gap.

Finally, the work from Pollack, 2024 sheds new light on the robustness assessment of the properties of
the different inversion strategies (model-based NDI, sensor-based INDI, and Hybrid INDI) and proposes a
multi-model, multi-objective H ..-synthesis to optimise the different design parameters of the controllers.
Given the parallel established between the design of the filter augmentation techniques of IDI control,
taking into consideration the nominal loop shape and the H., LSDP, the question is raised whether there is
a way to synthesise the Hybrid IDI gains under this framework. This constitutes the third identified research
gap. As this approach heavily relies on the use of more modern, non-smooth, non-convex H.,-synthesis
tools, multiple research extensions arise, such as 2DoF multi-objective structured #., Loop-Shaping.

2.2.2. Research Objectives
The general goal of this thesis is to investigate how to combine robust control and nonlinear dynamic
inversion control with application to flight controls. As a result, the first research objective is defined as:
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Research Objective |

To investigate how ., Loop-Shaping and Nonlinear Dynamic Inversion control can be com-
bined with application to flight control laws.

However, given the broadness of possible approaches to the problem, the conducted literature review
served as a way to identify suitable approaches to the problem. From the identified research gap, the
following additional research objectives are defined:

Research Objective |

To investigate the robustness implications of the proposed method by G. Papageorgiou and
Polansky, 2009 to tune a Dynamic Inversion controller using McFarlane-Glover Loop-Shaping.

Research Objective |

To investigate the potential of synthesising Hybrid IDI control laws under the #., Loop-Shaping
Design Procedure framework using non-smooth non-convex #.,-synthesis.

Research Objective |

To investigate the potential of using Robust Feedback Linearisation with H., Loop-Shaping
applied to a flight control problem and how it compares with classical NDI/INDI approaches.

2.2.3. Research Questions
Taking into consideration the research objectives, the research questions can be defined as:

Research Question 1 |

To what extent does the proposed procedure to combine # ., Loop-Shaping and a struc-
tured Dynamic Inversion controller preserve the robustness guarantees of #., Loop-
Shaping control?

1.1. How can the inverted model C be used to configure extra degrees of freedom to DI-based
architectures to address robustness?

1.2. How can the procedure be extended to a 2DoF setup and address handling qualities
requirements?
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Research Question2 |

How can a Hybrid IDI structured controller be optimised using the #., Loop-Shaping
Design Procedure?

2.1. What are the robustness implications of the hybrid inversion scheme?

2.2, What are the robustness implications of designing a controller based on the virtual law
location?

2.3. How can the H., Loop-Shaping problem be framed as a non-smooth, non-convex H..
problem under the structural constraints imposed by Hybrid IDI architectures?

2.4. How can the design procedure be extended to include model-following requirements in
accordance with flying and handling qualities?

2.5. To what extent can the procedure be used to develop a digital pitch-rate (SISO) controller
for a highly unstable aircraft?

2.6. What parallelism can be established between the proposed procedure and the stability
assessment of Dynamic Inversion-based control laws using coprime factors in Hyde and Papa-
georgiou, 20017?

2.7. How can the procedure be extended to a MIMO case?

Research Question 3 |

How can Robust Feedback linearisation be combined with # ., Loop-Shaping for flight
control applications?

3.1. What are the robustness implications of this inversion approach compared to standard
NDI/INDI approaches?

3.2. How can the increase of robustness over linear #., Loop-Shaping implementations be
quantified?

2.2.4. Research Plan

The research plan is divided into three different phases. The first focuses on recreating the results of
G. Papageorgiou and Polansky, 2009 and assessing the robustness implications of the proposed method
to tune a Dynamic Inversion controller using McFarlane-Glover Loop-Shaping. The second dives into the
potential of synthesising Hybrid IDI control laws under the H ., Loop-Shaping Design Procedure framework
using non-smooth, non-convex H.-synthesis. The midterm deliverable should encompass the results
from analysing G. Papageorgiou and Polansky, 2009 and have a preliminary approach to the optimisation
of Hybrid IDI gains using the H., LSDP. In the third phase, the practical implementation of the latter
procedure to design longitudinal flight control laws for the X-29 aircraft should be considered. Depending
on the implications of the results, a choice will be made between expanding on this research or addressing
Research Question 3. The research culminates in the Dissemination, in which the report is submitted and
the defence is prepared. The detailed Gantt Chart of the project is displayed in Figure 2.16.
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Theoretical Background

The present chapter aims to present the reader with the necessary theoretical background to grasp all the
concepts described throughout the rest of the thesis. The use of the nomenclature G and P to refer to the
plant’s dynamics is used interchangeably, as often found in formal robust control synthesis and practical
flight control applications.

3.1. Robust Control Framework

The robust control framework can be summarised by means of the generalised interconnection structure
shown in Figure 3.1. The goal is to design a control law K that suppresses the effects of uncertainty,
captured by the A-block, on control system performance. These considerations can be formulated in terms
of minimisation of system norms (# or H., norms), forming the basis for multivariable control techniques.
In this context, the task of the control engineer is more about the interaction with the set of design objectives
and requirements, whereas the controller tuning is the result of a formal synthesis algorithm that minimises
the specified system norm.

uAa ya

A 4

A 4

K

A

Figure 3.1: Generalised control diagram.
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3.1.1. Singular Value Decomposition
Any [ x m constant complex matrix G can be decomposed into its singular value decomposition (Bates &
Postlethwaite, 2002):

G=Uxv# (3.1)

where ¥ is an | x m matrix with £ = min(l, m) non-negative singular values o;, arranged in descending
order along its main diagonal (the other entries are zero). The singular values are the positive square roots
of the eigenvalues of G¥ G, where G* is the complex conjugate transpose, i.e.

Uis an | x [ unitary (U = U~') matrix whose columns are the output singular vectors of u;, with the
vectors u; orthonormal. V is an m x m unitary matrix whose columns are the input singular vectors v;,
with the vectors v; orthonormal.

To make the concept of singular values clearer, consider the following geometric interpretation:

U U
0.96 1.72 T 0.6 —-08] 3 0] (0.8 0.6 | v
G = =UXV" =
2.28 0.96 0.8 0.6 0 1] (0.6 —0.8] w2

Any real matrix G of dimension 2 x 2 maps a unit circle into an ellipsoid, where the singular values
o of G correspond to the lengths of semi-axes of the ellipsoid. The output singular vectors w;, where
U = [u1 us], correspond to the mutually orthogonal directions of the semi-axes of the ellipsoid, while the
input singular vectors v;, where V' = [v; 5], correspond to the directions in the unit circle which are then
mapped to u; vectors of the elipsoid with gain ¢;, such that Gv; = o;u; (Bates & Postlethwaite, 2002).

Input Directions 5 Output Directions
- |
5 o = B.00
2|7 U2

1k

> 0Ff

Sk

21

-1.5
L L L _3 L L L
05 0 05 1 -2 0 2
X X

Figure 3.2: Geometric interpretation of singular vectors.

Naturally, these concepts also extend to higher-dimensional matrices and vectors: instead of a unit
disc, there is a sphere or hypersphere, and the ellipsoid becomes a hyperellipsoid.
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Consider now the frequency response of a system G(jw). At each frequency w;, it is possible to
perform a singular value decomposition of G(jw;). Then, if the values of the singular values o are plotted
across frequency, it is possible to directly visualise how ¢ varies across frequency, but also the maximum
@ and minimum ¢ of the entire system. This is important to understand the concept of H., norm.

3.1.2. System’s Norms

System norms play a central role in multivariable control techniques, particularly the H., and s norms,
which refer to two different Hardy spaces. H., refers to the Hardy space with functions that are analytic
and bounded in the open right-half plane. The real rational subspace of H, is denoted by RH ., which
consists of all proper and real rational stable transfer matrices. Similarly, - refers to the Hardy space
with functions that are analytic in the open right-half plane. The real rational subspace of #, is denoted by
R*H2, which consists of all strictly proper and real rational stable transfer matrices.

The H, norm of a stable, strictly proper system G(s) can be defined as:

+o0 too
IGs)ls 2 V = [ leGl d - ¢ [ Trace(@) 16 L)) de 3.3

where the Frobenius norm || x || » of a general complex matrix A is defined as:

IAllF £ |ai ;| = /Trace(AH A) (3.4)

2%

The lack of an interpretation of the #, system norm as an induced norm, however, is a fundamental
disadvantage in the context of robust stability using the Small Gain Theorem (Bates & Postlethwaite,
2002).

The H, norm of a stable multivariable LTI system G(s) is defined as the peak value over frequency of
the largest singular value of the frequency response G(jw):

1G(3)loe = max o(G(jw)) (3.5)

This norm is induced by the L, signal norm, which means for an LTI system with input w, output =z and
transfer function matrix G(s):

1G($) oo = sup 12012

P @z (3.6)

Thus, minimisation of the # ., norm of a system corresponds to minimising the energy of the worst-case
output signal vector, i.e. the output energy is minimised over all non-zero finite energy input signals.

3.1.3. Formal Statement of the 7., Control Problem
Given a real rational transfer matrix of the plant P(s) and a space K of real rational transfer matrices K (s),
named the controller space, find the optimal solution K* € K to the following problem:
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K <4+

Figure 3.3: Standard LFT model of the ., control problem.

minimize || T—. (P, K)| .

subjectto K stabilizes P internally (3.7)
Kek

where the plant P(s) has a state-space representation of the form:

T = A.’E+B1’LU+BQU A Bl BQ
P:<z=Ciz+ Diyw+ Digu P(s): | Oy | Dy1 Dy (3.8)
y = Cox + Doyw + Dosu Cy | Da1 Dao

where x € R"= is the state, u € R™« the control, y € R"™ the measured output, w € R"» the exogenous
input, and z € R™= the regulated output.

Solutions of the H.-control problem in the full-order case, i.e. within the space Ky, of full-order
controllers, where K¢, = R¥N and N £ n2 + ng(ny + ny) + nyn,, are convex optimisation problems.
The solution to these optimisation problems can be computed via Algebraic Riccati Equations (ARES)
(Zhou et al., 1996) or via Linear Matrix Inequalities (LMIs) (Gahinet & Apkarian, 1994b), but the resulting
controller is unstructured (Apkarian & Noll, 2017). For the sake of succinctness, the general #, solution
will not be provided, and rather, the focus will be merely on the H., Loop-Shaping solution. Nevertheless,
the reader is invited to read Zhou et al., 1996 for more details on the general #H, solution.

3.2. Robust Stability and Uncertainty Models

The generalised control diagram displayed in Figure 3.1 can be rearranged into the N — A description in
Figure 3.4, where N represents the known part of the system (plant and controller) and A represents the
uncertainty present in the system.

The uncertain closed-loop transfer function from w to z (2 = F(A)w) is related to N and A by an upper
Linear Fractional Transformation (LFT) (Skogestad & Postlethwaite, 2005):

F = Fy(N,A) = Nog + Not A(I — N11A) "INy (3.9)

If only robust stability is required for analysis, it is possible to rearrange the system in Figure 3.4 as the
one in Figure 3.5, where M = Ny, is the transfer function from the output to the input of the perturbations.
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Figure 3.4: N A structure for robust performance analysis.

A €

UA ya

—» M

Figure 3.5: M A structure for robust stability analysis.

Assuming that the nominal closed-loop in Figure 3.4 is asymptotically stable and that A is a complex
unstructured uncertainty block, the Small Gain Theorem dictates that (Bates & Postlethwaite, 2002):

The closed-loop system in Figure 3.4 is stable if and only if

s 1 ! y
J(A(]w))<E(N11(jw) = (o) v (3.10)

The above result defines a test for stability (and thus a robustness measure) for a closed-loop system
subject to unstructured uncertainty in terms of the maximum singular value of the matrix N;; (Bates &
Postlethwaite, 2002).

3.2.1. Unstructured Uncertainty

Unstructured uncertainty refers to a type of uncertainty which assumes unknown yet bounded uncertainty
models. For an unstructured uncertain block A(s) that satisfies ||A(s)|| < 1, the uncertain model G,,(s)
can be modelled in various ways (Skogestad & Postlethwaite, 2005):

+ Additive uncertainty: G, = Gy + walAa

Multiplicative input uncertainty: G, = Go(I + wrAj)

Multiplicative output uncertainty: G, = (I + wo2Ao)Go

« Inverse additive uncertainty: G, = Go(I — w;jal;a)~"

« Inverse multiplicative input uncertainty: G, = Go(I — w;rAir)~!

« Inverse multiplicative output uncertainty: G, = (I — w;02i0) *Go

Over the set of multiple unstructured uncertainty descriptions, there is one additional one whose
properties stand out: coprime factorisation.
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Coprime Factorisation

Coprime factorisation is another form of representing unstructured system uncertainty, which has many
advantages over additive and multiplicative uncertainty and leads directly to the # ., Loop-Shaping Design
Procedure, which is at the heart of the present work.

Given a system G, the left coprime factorisation is given by:

G(s) = M~(s)N(s) (3.11)

where M (s) and N (s) are stable coprime functions. The stability condition dictates that:

« N(s) must encompass all the right-half plane (RHP) zeros of G(s)
« M(s) should include all the RHP poles of G(s)

The coprimeness condition ensures that N (s) and M (s) have no common RHP zeros, thereby prevent-
ing pole-zero cancellations when forming M—l(s)N(s). In other words, coprimeness requires the existence
of stable transfer functions or matrices, denoted as U(s) and V (s), such that the following equation holds:

M(s)V(s)+ N(s)U(s) =1 (3.12)

where [ represents the identity matrix.

Introducing the operator M* defined as M*(s) = MT(—s), G(s) = M~'(s)N(s) is called a normalized
left coprime factorization iff:

MM*+ NN* =1 (3.13)

From this description of a plant G, an uncertain plant model G, can be written as (McFarlane & Glover,
1990):

Gp={(M+Ay) (N +Ax) : ||[Ax Apr]lloo < €} (3.14)

where Aj; and A are stable unknown transfer matrices which represent the uncertainty in the nominal
plant model G (see Figure 3.6).

\ 4

AN(3) AM(S)

A

u > N(s) M~1(s)

v
<

Figure 3.6: Coprime factor uncertainty representation of an uncertain plant model G,,.

Despite the fact that this model appears to have a less physically intuitive description of uncertainty
than additive and multiplicative uncertainty, it has a number of important advantages, such as (Bates &
Postlethwaite, 2002):
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« Since it is not constrained to be a stable transfer matrix, it can be used to represent a situation where
parameter variations result in a stable system becoming (open-loop) unstable.

+ It allows for a sensible description of uncertainty in the locations of lightly damped resonant poles.

3.2.2. Structured Uncertainty

Structured uncertainty descriptions are more precise than unstructured descriptions and may model
uncertainty directly on the parameters of the system, such as mass, inertia, and aerodynamic coefficients.
This is referred to as parametric uncertainty.

Parametric uncertainty is quantified by assuming that each uncertain parameter is bounded within some
region [amin, @maz], Which results in the following uncertainty description (Skogestad & Postlethwaite,
2005):

ap, =a(l+r,A) (3.15)

where @ is the mean parameter value, 7o = (tmaz — @min)/(Qmaz + @min) is the relative uncertainty in
the parameter, and A is any real scalar satisfying |A| < 1.

3.2.3. Structured Singular Value Robustness Measure 1

In cases where it is possible to generate more structured models of uncertainty, i.e. A has structure, it is
possible to reduce the level of conservatism in the robustness analysis. This motivated the introduction of
the Structured Singular Value (SSV) u, defined as:

p(M) & 1 _
min{ky,|det(I — k., MA) = 0 for structured A,5(A) < 1}

(3.16)

where M corresponds to the block in Figure 3.5, and A = diag{A;} denotes a set of complex matrices with
o(A) < 1 and with a given block-diagonal structure. A value of ;» = 1 means there exists a perturbation
with (A) = 1, which is just large enough to make I — M A singular. A larger value for 1 is undesirable as
it means that a smaller perturbation makes I — M A singular, while a smaller value of y is positive. The
SSV value p forms the basis for the # ., p-synthesis control technique (Skogestad & Postlethwaite, 2005).

3.3. H., Loop-Shaping

3.3.1. NCF Robust Stabilization

H~, Loop-Shaping is anchored in the concept of NCF robust stabilisation, that is, to design a controller
which not only nominally stabilises the nominal plant G but also robustly stabilises the entire set of NCF
perturbed plants G,,.

The NCF robust stabilisation theorem dictates that the controller K (s) which robustly stabilises the
family of NCF perturbed plants G, (s) for all NCF perturbations A(s) with |A(s)||cc = [[AN An]lleo < €
satisfies the following two conditions (McFarlane & Glover, 1990):

* The controller K (s) internally stabilizes G(s)
~K(I, + GK)"*M~!
(I, + GK)"'M~!

IN
m‘

 The following condition holds:
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> An(s) | Aus) e
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Figure 3.7: NCF perturbed plant G, with controller.

It is possible to demonstrate with some manipulations that the NCF robust stabilisation can be rewritten
as a 4-block problem, as follows (Zhou & Doyle, 1998):

So SoG
-KS, -T;

<els e (3.17)

~K(I, + GK)"*M~!
(I, +GK)"'M~!

[e )

where the obtained closed-loop 2 x 2 system is basically the transfer function from the output and input
disturbance [d, d;]* to the system and controller outputs [y u]”, respectively:

do I : > Y
|
d; — |
! —» U
: |
| |
|
: >®—> G(s) —>® .
| |
. )
U Yy

Figure 3.8: NCF robust stabilisation written as a 4-block problem.

What makes NCF robust stabilisation particularly appealing is that the maximum stability margin €4,
or the minimum performance level ~,,,;, can be computed directly from:

1
2

i = e = (1| [ W[} = rocezt, (3.18)

where || - ||z denotes the Hankel norm, p denotes the spectral radius, and for a minimal state-space
realisation (A,B,C,D) of G, Z and X are the unique positive solution to the following algebraic Riccati
equations:
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(A-BS™'DT'C)Z+ Z(A-BS™'DTC)r — ZCT"R™'CZ+BS™'BT =0 (3.19)

(A-BS™'DTC)TX + X(A-BS™'DTC) - XBS™'BTX + CTR™'C =0 (3.20)

where R and S are defined as:

R=I1+DD", S=I1+D"D (3.21)

The formulae simplify considerably for a strictly proper plant, i.e. when D = 0. The H, controller can
be parameterised in infinitely different ways, according to the choice of the Youla Parameterisation @
(Zhou et al., 1996). If the Youla Parameterisation @ is set equal to 0, the solution to the central controller
is obtained for a specified suboptimal v > ~ymin:

_ |A+BF +43(LT)"'ZCT(C+ DF) 4*(LT)~'zCT

K (3.22)
BTX -pT

F=-S"YDTC + BTX) (3.23)

L=(1-I+XZ. (3.24)

However, robust stabilisation against NCF uncertainty alone is of limited practical value because it
does not allow the designer to specify any performance requirements (McFarlane & Glover, 1992). The
multiple control requirements are reflected by the broken-loop response of the controlled system. The H .,
Loop-Shaping Design Procedure (LSDP) leverages exactly this property to present a systematic way of
designing robust controllers.

In a first step, the plant is shaped with weighting filters W, and W, such that the shaped plant G, =
WoGW, accommodates the desired Loop-Shaping response. In the second step, a robust controller K,
is computed, which robustly stabilises the shaped plant G, with respect to NCF uncertainty. It is possible
to demonstrate that the degradation of the initial loop shape caused by the # ., controller K, is limited
and, therefore, the weighting filters 1W; and W, translate directly to the fulfilment of design requirements.

3.3.2. Design Requirements

An appropriately designed control system must satisfy a set of design requirements. Apart from closed-loop
stability, certain closed-loop relationships should meet some frequency domain criteria. Consider the
following one-degree-of-freedom feedback configuration:
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r Ki(s) G(s) Y

Figure 3.9: Generalised feedback configuration.

which has the following closed-loop transfer functions:

y SOG SO _To TO dl
Up S; -KS, —-KS, KS,| |d,
= (3.25)
U -7, —-KS, —-KS, KS, n
e -S,G  —S, T, So r

The general design requirements impose the following:
« Disturbance rejection and reference tracking

— Reduce the effect of disturbances d;, d, to y (S,G,S,) and to u,, (S;,K.S,)
— Reduce the ’effect’ of r to the tracking error e (S,).

* Noise attenuation

— Reduce the effect of noise n to u, y (K.S,, T,)

+ Control signal reduction
— Reduce the effect of d; and d,,, r to u (T}, KS,)

Therefore, meeting the design requirements boils down to adequately shaping the ’gang of six’ CL
transfer functions S;, S,, T;, T,, S,G and K S,. Some design requirements can have a conflicting nature,
since it is not possible to simultaneously make [S,] < 1 for disturbance rejection and 7[7,] < 1 for noise
attenuation, given that S, + 7, = I. Nevertheless, different design objectives are often important over
different frequency ranges, meaning that feedback controller design is a problem of managing trade-offs
between conflicting design objectives. For instance, disturbance rejection and reference tracking are
typically important at low frequencies, while noise attenuation is often relevant only at high frequencies.

At low frequencies, disturbance rejection and reference tracking dictate that:
* Fromd, —yandr — e: 7[S,] <« 1

* From d; — u,: 7(S;] < 1

« From d; — y: 7[S,G] < 1

* From d, — u,: 7[KS,] < 1

At high frequencies, noise attenuation dictates:

* Fromn — y: 5[T,] < 1

« Fromn — u: 5[KS,] < 1
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3.3.3. Fundamental Trade-offs in terms of L

The fundamental design trade-offs presented above can be written in terms of the input and output open-
loop transfer matrices L; = KG and L, = GK. The derivations are retrieved from Zhou et al., 1996 and
make use of the following properties:

(A = ﬁ (3.26)
o) ~1< = T o) +1 (3.27)
Given that:
o150] =21, + L) = 7 o (3.28)
then, using Equation 3.27:
! <7 [So] < _ with L, = GK (3.29)
oL +1 oL — 1
Similarly, for S;:
Q[Li1]+1 SE[Si]gmwith L,=KG (3.30)

At low frequencies, this results in:

T[S < 1ea[L,]>1
TS <leall]>1

Nevertheless, as shown in Section 3.3.2, disturbance rejection at low frequencies still requires that
7[S,G] < 1and 5[K S,] < 1.

Assuming K and G are invertible:
7[S,G] = T((SoGK)K '] =5[T,K '] =5[(I, — So) K] (3.31)
Using the fact that 5[S,] < 1 and 5[K '] = 1/g[K], for frequencies 0 < w < wy, this reduces to:

75,G) ~ ﬁ (3.32)

Hence, to obtain 7[S,G| < 1, large control gains ¢[K] > 1 is required (for instance, integral control).

For K S,, using the following simplifications:

TKS,] =7(GTH(GKs,)] =G To] = 7(G™' (I, — S,)] (3.33)
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and using the fact that 7[S,] < 1 and 7[G~!] = 1/¢[G] for frequencies 0 < w < wy, this reduces to:

1

GKS,| ~ 2[C]

(3.34)

Hence, to obtain [KS,] < 1, a large plant gain (sufficient control authority) is required, and this
relationship is independent of the controller.

Therefore, for low frequencies to guarantee good disturbance rejection and tracking qualities, it is
necessary to have:

« Sufficient control authority o[G] > 1
« High open-loop gain ¢[L,] > 1, o[L;] > 1
+ High control gain ¢[K] > 1

Similarly, for the high-frequency w;, < w < 400 requirements, using the following SV property:

1- E[Lo] < Q[Ip + Lo] <1+ E[Lo] (3.35)
or, after inverting:
L 58 <— 1 withL, = GK (3.36)
T+o(L,] ~ 7 = 1-5[L,] °T '

it is possible to bound T, as:

GT,) = T[LoSs] < T[L,o|T[S,) (3.37)
Then, from Equation 3.36:

gl <1e7o[L,) <1 (3.38)

which is a necessary condition for noise attenuation at high frequency.
In order to meet the condition o[- K S,] < 1, notice that:
7[KS,) < 5[K]a]S,] (3.39)

Using Equation 3.36 and the fact that 7[L,] < 1 at high frequency, then 7[S,] ~ 1 and thus:

G[KS,] <T[K] (3.40)
Therefore, for high frequencies to guarantee good noise attenuation and low control action, it is
necessary to have:

* Low open-loop gain ¢[L,] < 1, g[L;] < 1

* Low control gain ¢[K] < K4, @assuming K., is not too large.
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As a result, in order to meet all the design requirements, it is necessary to have an adequate plant which
provides enough control authority, an open-loop response as exhibited in Figure 3.10 and an appropriate
controller structure to ensure high gain of K at low frequencies (integral action) and reduced control action
at high frequencies (through low-pass filters). In general, assuming the control engineer is given a feasible
task (the plant G has enough control authority), meeting all the design requirements boils down to having
an adequate open-loop gain response and control structure. The ability to translate multiple closed-loop
design requirements into just two open-loop responses offers a significant advantage to control designers.
This simplification forms the foundation of classical Loop-Shaping methods and serves as the cornerstone
of the more advanced H., Loop-Shaping Design Procedure (LSDP).

Crossover

\
6(PK) N - - Robust stability
: Ny - Actuator activity
- Noise attenuation

- Robust performance
- Disturbance rejection
- Plant stabilization

Figure 3.10: Singular value loop specifications for a successful design. Retrieved from Pollack, 2024.

3.3.4. H., Loop-Shaping Design Procedure

The H ., Loop-Shaping Design Procedure, originally proposed by McFarlane and Glover, 1992, leverages
the concepts of classical Loop-Shaping and the H ., machinery to design controllers which robustly stabilise
a plant with respect to coprime factor uncertainty. The procedure is described as follows:

1. Shape the open-loop plant G, with frequency-dependent weights 1W; and W5, according to closed-
loop objectives (recall the discussion in Sections 3.3.2 and 3.3.3). The nominal plant G and the
shaping functions Wy, W, are combined to form the shaped plant, G, where G, = WoGW;. ltis
assumed that W, and W5 are such that G, contains no hidden modes.

Figure 3.11: Step 1 - Shaping the open-loop plant G with W; and W5.
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2. Robust stabilisation:

(a) Compute the ¢,,,, associated with the shaped-plant G:

¥ ) -l

where M,, N, define the normalized coprime factors of G, such that G, = M 'N, and M, M} +
NSN;‘ = 1I. f epae << 10Or~,;n >> 1go back to step 1 and adjust W, and Ws. In fact, practical
guidelines suggest that v should be below 4 (Hyde, 1995). Therefore, if v > 4, the designer
should also go back to step 1 and adjust the weighting filters.

~ 2
(I + G K)~ M ‘

<1
H

K stabilizing

A —1 H
€mar = Vmin — ( inf

(3.41)

(b) Select a sub-optimal € < €, Or, in other words, v > ~,,:» and synthesize the robust stabilizing
controller K, that minimizes the following H ., norm (recall the solution in terms of two AREs in
Section 3.3.1):

<el=n (3.42)

oo

Usg >®—> Wi (s) > G(s) > Wa(s) —>® Ys

Figure 3.12: H ., Loop-Shaping as a 4-block problem.

3. Construct the final feedback controller K by combining the H., controller K, with the shaping
functions Wy and W, such that K, = W K, W>. When tracking of a reference signal r is required,
there are three options for the choice of K, in the loop: placed in the forward path, the feedback
path or implemented in the observer form. For a more thorough discussion on this topic, refer to
G. Papageorgiou, 1998.
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U Yy
> G(s)
— Wals) f— —Ku(s) —] Wals) -
K(s)

Figure 3.13: Final implemented robust controller consisting of K, = W7 K., W5.

The theoretical basis for H., LS is that K., does not modify the desired loop shape significantly at
low and high frequencies if 7 is not too large. Therefore, the shaping of G via W; and W, corresponds to
shaping the loop gains GK; and K G. Moreover, all closed-loop transfer functions can be bounded in
terms of G, W1, W2 and ~ (Zhou et al., 1996). The bounds on L, and L; are given by:

At Low-Frequencies (where ¢(A) =5(A)/a(A)):

o(Lo) = 0(GK;) = 0(Gs)a(Keo) /c(Wa) (3.43)

(L) = o(KG) > a(Gs)a(Kuo)/c(Wh) (3.44)
At High-Frequencies:

G(Lo) = 7(GKs) <7(Gs)7(Koo)c(W2) (3.45)

(L) = 7(K.G) < 5(Ga)(Koo)e(W1) (3.46)

This demonstrates that bounds on ¢ (K ,) and (K ) are required to obtain a bound on the deterioration
of the loop shape at low-frequency and high-frequency, respectively.

It is possible to bound ¢(K,) by (McFarlane & Glover, 1992):

Q(Gs) Y 72 -1
K) > . Vw such that o(G,) > 21 3.47
0(Kw) oGV T 11 w a(Gs) > Vv (3.47)

Furthermore, if the loop shape G has very large gain at low-frequency o(G,) >> /+? — 1, then tighter
bounds can be derived (McFarlane & Glover, 1992):

c(W2)—1) (3.48)
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Similarly, it is also possible to bound (K, ) by (McFarlane & Glover, 1992):

2-1+70 1
7(Ks) < i +(Gs) Vw such that 5(G,) <

C1-3(Gs)vrr -1 72 -1

Moreover, if the loop shape G has very low gain at high-frequency 7(G;) << \/7127_1 then (McFarlane
& Glover, 1992):

(3.49)

F(KL) S VA2—1 as o(Gy) = 0= 5(L,) <7(Gy) (c(vvg)\/y2 - 1) (3.50)

Similar reasoning can be used to derive tighter bounds for o(L;) and (L;) analogous to the ones in
Equation 3.48 and 3.50.

Besides, assuming ¢(G;) >> 1 at low-frequency and 7(G,) << 1 at high-frequency, the following
upper bounds for the “gang of six” closed-loop transfer functions can be computed (McFarlane & Glover,
1990):

Table 3.1: Upper bounds on the different closed-loop transfer functions at Low-Frequency (LF) and
High-Frequency (HF) (McFarlane & Glover, 1990).

Objective LF Upper Bound HF Upper Bound
oy = _ 7
7(50) =7 (I + GK) ) e W)2(a) 1)
F(K.S,) =7 (Ku(I, + GK,)™) 76((‘2’)0 V& (W15 (W)
(1) = 7 (K.G(I, + K.G) ") Ye(Wh) V7 (G (Wh)a (W2)
_ _ 1 v _
7(5,G) = ((Ip + GKj) G) W 77 (G)e(W2)
(S;) =7 ((Im + K;G)™1) 14+ ye(Wh) ~ye(Wh)
7(T,) =7 (GK(I, + GK,)™") ye(W3) 1+ ye(W3)

The non-deterioration of the open-loop response after the robust controller K, is added is a key aspect
of the procedure. Since the weighting filters 17/; and W, embed multiple competing design goals, such as
disturbance rejection, robustness, noise attenuation, and the crossover frequency, the non-deterioration
properties guarantee that the controller does not undo or significantly compromise the design intent
captured in the shaped plant.

As a final remark on the H., LSDP, notice how the Loop-Shaping is done without explicit regard for
the nominal phase information. This means that closed-loop stability requirements are disregarded at the
initial stage. Overall, the design procedure is both simple and systematic, assuming only elementary
knowledge of Loop-Shaping principles by the designer (Zhou & Doyle, 1998).

3.3.5. Guaranteed Robustness Properties of NCF Robust Stabilisation

Glover et al., 2000 has demonstrated that the Robust Stability to NCF uncertainty, evaluated through the
coprime factor singular value robustness measure v = ¢! as described in Equation 3.42 can also be
interpreted in terms of classical gain and phase margins for SISO and MIMO systems.
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» SISO Case:

+€

1
) dB < GMyes < 20log 1 (1 + 6) dB (3.51)

1
—20|Og 10 ( 1

— €

—2asine deg < PM,.s < 2asine deg (3.52)

* MIMO Case, assuming diagonal weighting matrices (Glover et al., 2000):

€ 1—c¢

—%0log 10( 1‘:6> dB < GM,.; < 20log 10( HE) dB (3.53)

—asinedeg < PM,.s < asine deg (3.54)

Therefore, € is a measure of how much simultaneous gain and phase variation the system can tolerate,
and for the MIMO case, these margins are halved. This leads to guaranteed Nichols exclusion regions,
which are extremely useful for flight control applications. Thus, the fact that H ., Loop-Shaping comes with
guaranteed phase and gain margins makes it an appealing control technique for flight control laws design.

3.3.6. Connections to the gap metric and the v-gap metric

The operator norm can be a poor measure of the distance between systems with respect to feedback
control system design (Zhou & Doyle, 1998). This motivated the introduction of the gap metric into the
control literature by El-Sakkary, 1985 and, subsequently, the v-gap metric by Vinnicombe, 2000 as more
appropriate tools for the study of uncertainty in feedback systems. These metrics quantify the distance
between (potentially unstable) systems, even when they have different numbers of right-half-plane (RHP)
poles.

The gap metric is defined as follows (El-Sakkary, 1985):
5,(Py, Py) = maz {S(Pl, P),5(Ps, Pl)} (3.55)
where S;, represents the directed gap, which is computed as:

My
N,

. , M,
5,(P1,Py) = inf [ (3.56)

QEH~ N

oo

and where P; = Nlel and P, = NQMQ]L are normalized right coprime factorizations.

An important connection between the uncertainties in the gap metric and the uncertainties characterised
by the normalised coprime factors is that a ball of uncertainty in the directed gap is equivalent to a ball of
uncertainty in the normalised coprime factors (Georgiou & Smith, 1989).

However, unlike the v-gap metric, a shortcoming of the gap metric 4, is that it is not easily related to
the frequency response of the system. The v-gap metric has a clear frequency domain interpretation and
can, in general, be computed from the frequency response. The v-gap metric between two plants P; and
P, can be computed directly from the system transfer matrices without first finding the normalised coprime
factorisations as (Vinnicombe, 2000):

5,(Py, P5) = max H(I PP V(P — Po) (I + plp;)—l/QH (3.57)
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provided that det(I + Py P;) has the right winding number (Zhou & Doyle, 1998).

For both metrics, the following robust performance result holds (Zhou & Doyle, 1998):

arcsin(b(P,, K3)) > arcsin(b(Py, K1)) — arcsin (6 (Py, P2)) — arcsin(6( ) (K1, K2)) (3.58)

where b(P, K) refers to the generalised stability margin of the standard feedback interconnection between
plant model P and controller K:

-1 -1

I
{ ](HKP)‘1 1 K] (3.59)
P

oo

K

I]U+PKY1P ﬂ

o0

and corresponds to the ¢ value, or y~!, associated with the NCF robust stabilization problem, i.e., the
inverse of the gain from disturbances on the plant input and output to the input and output of the controller
in Figure 3.12.

This result can be interpreted as follows: suppose that a nominal plant P; is stabilised by a controller
K, with stability margin b(Py, K;). Then, if P; is perturbed to P, and K is perturbed to K5, the stability
margin is degraded by no more than the above formula. However, since the v-gap metric is always less
than or equal to the gap metric, its predictions using the above robustness results are tighter (Zhou &
Doyle, 1998).

3.4. Non-Convex Optimization

The full-order solutions of the H .-control problem, computed via AREs or LMIs, are unstructured in nature
(Apkarian & Noll, 2017). A downside is that it does not allow for control law structures to be specified a
priori, which is often required in engineering practice. This motivated the development of non-convex,
non-smooth formal synthesis techniques, which allow the solution of the ., problem under structural
constraints (Apkarian & Noll, 2006a). The framework of non-smooth H..-synthesis was proposed by
Apkarian and Noll, 2006a and can be described as follows:

Assuming that K (k) is structured with parameter « € R", and that Dy, = 0 in Equation 3.8, then the
closed-loop transfer channel w — =z in Figure 3.3 has the following state-space representation:

Ty (P.K(r)) = | TR BUE(K) (3.60)
C(K(k)) D(K(k))
Then, the H,-objective function in Equation 3.7 becomes:
min f (k) £ min | T, (P, K (k)| o
" " (3.61)

— minmaxa (C(K(n)) (jwl — A(K(K))) " B(K (k) + D(K(n)))

Kk weR

which is a non-smooth, non-convex function, which, in addition, is not defined everywhere. Its domain
D; ={rk € R": f(k) < oo} contains the internally stabilizing set:

D, ={r € R": K(k) stabilizes P internally} = {k € R" : A(K(k)) stable} (3.62)
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The non-smooth, non-convex H., problem can be solved by local function minimisation based on
generalised gradients, and the tools to solve such a class of problems became available to the general
public in 2011 through MATLAB® hinfstruct (Apkarian & Noll, 2017; Gahinet & Apkarian, 2011). The
introduction of this tool marked a paradigm shift in the way controllers are synthesised, since it allows
for structured controllers, such as PID controllers, to be formally optimised instead of tuned (Apkarian &
Noll, 2017). Following this breakthrough, multiple extensions of the method were incorporated to MATLAB®
systune (Apkarian et al., 2014), such as multi-objective H,/H ., synthesis (Apkarian et al., 2008), multidisk
design problems (Apkarian & Noll, 2006b; Apkarian et al., 2014), and limited frequency intervals (Apkarian
& Noll, 2007). Other relevant developments include the concept of inner approximation to handle parametric
uncertainty (Apkarian et al., 2015) and new applications to systematic gain scheduling (Gahinet & Apkarian,
2013). In this context, systune, which became available in 2015, can be seen as a successor of the
hinfstruct tool. One of the key features that differentiates it from its predecessor is that it enables
multi-model, multi-objective synthesis consisting of soft control objectives f(x) and hard constraints g(x)
(Apkarian et al., 2014):

mﬁin < E[max fi(n)> such that ( max g,(k) < 1> (3.63)

i€[1,...,n¢] JE[L,...,ng]

which can be described in terms of the closed-loop map from signals w to z T,,_, . as:

W] —————Pp| —————p =1
W2 ——— P ———p 22
5 P(s) 5
Wp, ——————Pp] ——p %n
u Y

K(s,k) |

Figure 3.14: H . -synthesis against multiple requirements.

min max || T, s, (K (s, ) |

(3.64)
subject to max || T, -, (K (s, ))|| < 1.
J

where « is the vector of tunable parameters and || - || denotes either the #, or the 5 norm. This introduces
greater flexibility to the formal robust synthesis of structured controllers, helping bridge the gap between
formal robust control and control engineering practice.

3.5. Nonlinear Dynamic Inversion

3.5.1. Introduction

Nonlinear Dynamic Inversion (NDI), also known as Feedback linearisation among the Control community,
was developed as an alternative to the divide-and-conquer paradigm, which results in self-scheduled
controllers Enns et al., 1994. The general idea of NDI control law is to transform selected input-output
channels into a chain of integrators by using state feedback information (hence the designation Feed-
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back linearisation) (Khalil, 2002). This inner dynamic inversion loop linearises the nonlinear dynamics,
transforming the nature of the system from nonlinear to linear. As a result, an outer virtual control loop
may employ linear control design methods to control this linearised system, resulting in a self-scheduled
controller. This approach results in a transparent and modular framework for flight control design, enabling
the decoupling of airframe-dependent and flying-qualities-dependent components as demonstrated in
Figure 3.15.

Flying qualities dependent Airframe dependent
I

=)

- 1
Virtual Contrgl > >
control / allocation

A

|

I

|

|

! On-board Sensor
| model N processing [
|

|

|

T

|

Figure 3.15: Basic NDI control structure, evidencing the modular nature of the control architecture. Figure
recreated from Pollack, 2024.

3.5.2. Model-Based NDI

Classical NDI, which will be referred to as Model-based (MB) NDI, relies on On-Board (OBM) models of the
plant dynamics to transform selected input-output channels into a chain of integrators of relative degree p
according to the principles of feedback linearization.

Consider a multi-input, multi-output, input-affine, nonlinear system ¥ with n states and m inputs
described by:

5. )1 (3.65)

where x € R” represents the state vector, © € R™ the input vector, y € R™ the observation vector and

T
f, G, and h are smooth mappings. Writing the system relative degree as p = |:p1’ . ’pm:| , the output
dynamics can be described as (Wang et al., 2019):

L5 ha () L, L5 ha(x) ... Ly, L7 ha(2)

tﬁ/—\
>
Il

+

<

p : ) -_1 ) '_1 (3.66)
Efm B () Eglﬁfm b () .. Egmﬁfm hn ()
a

a(z) + B(z)u

where Cf;hi and Cgiﬁf;lli represent repeated Lie derivatives of the function h; along the vector fields f and
gi, With g; being a column vector of the matrix G (Khalil, 2002).
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The first-order Lie derivative is defined as (Khalil, 2002):

" Oh(x
£ih(e) = Vh(a) f() = 3 O (367)
i=1 ¢
where V is the gradient operator and Vh(z) is defined as:
Oh(x . . (s
Uhie) = P _ [ on L opt)] (3.68)

Repeated (nested) use of the operation is possible:

0

Lhhia) = £ [£57 h(@)] = ¥ [£5 ()] 10) = o

{E’;_lh(:r)} F(2) (3.69)

which completes the definition of the Lie derivative terms in Equation 3.66.

For model-based NDI, Equation 3.66 can be used directly to construct a control law that linearises the
input-output dynamics to a set of }_." | p; integrators. Assuming that the control effectiveness matrix 53(z)
is invertible, the following control law is obtained:

u= B (z)[v— &) (3.70)

where a(z) and B(z) represent on-board model estimates of «(z) and B(z), respectively, and v € R™
is the pseudo-control vector generated by an auxiliary control law that is designed to meet the control
objectives.

Considering a system with relative degree p = 1, such that y(*) = g, the control scheme can be
represented as done in Figure 3.16.

V] Z L,

Figure 3.16: Model-based NDI implementation.

In the absence of On-Board model (OBM) uncertainty and disturbances, the closed-loop relationship
between v and y is given by % Dynamic inversion allows the design of the feedback regulator and
the feedforward element using linear design methods to shape the desired dynamics. In principle, a
single virtual control law can achieve the desired dynamics globally, i.e. over the full operating domain.
Nevertheless, there are several aspects that jeopardize this principle (Pollack, 2024):
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» The basic NDI framework does not provide a priori robustness guarantees. This does not mean
that NDI-based control laws cannot be made robust; however, it does imply that robust design
analysis and clearance must still be performed using additional insights based on, for example, local
evaluations for individual flight conditions. Effectively, this results in shifting the burden of the control
laws design from the synthesis to the analysis part. The lack of integration of a priori robustness
in the synthesis can result in the need to redesign the control laws, thus making the overall design
process longer.

* The presence of high-order dynamics associated with, e.g. finite bandwidth actuators, sensor process-
ing, and filtering, and the limitation of control authority, leads to non-ideal inversion. Consequently, if
the virtual control law is designed to shape the desired dynamics based on an incorrect closed-loop
relationship between v and y, then the inversion error will propagate through the actual dynamic
behaviour of the closed-loop system.

* The controlled variable (CV) that is inverted must be selected such that the zero dynamics are
stable and behave satisfactorily. These zero dynamics refer to the part of the system that cannot be
controlled through the selected CV (Khalil, 2002).

» The requirement for full-state feedback for the inversion often requires the use of observer-based
solutions or other estimation techniques, as not all vehicle states may be available. A typical flight
control example is air data variables such as angle-of-attack and angle-of-sideslip. The state estimator
is represented in Figure 3.16 via the F'(s) block and its design may have a significant impact on
the inversion path - factors not explicitly accounted for during the derivation of the inversion - and
therefore have a significant impact on overall robustness and performance of the control law.

3.5.3. Sensor-Based INDI

Incremental Nonlinear Dynamic Inversion (INDI), referred to here as sensor-based (SB) INDI, seeks to
address the robustness limitations of model-based NDI in an alternative way. Instead of relying on robust
virtual control design, it circumvents the dependence on detailed and accurate airframe models by utilising
direct sensor measurements of state derivatives instead. Consequently, control allocation is the only part
of the control law that requires On-Board Model information, thus making it less expensive to implement
than model-based NDI.

In order to obtain the incremental form (INDI), a common procedure is to make use of the Taylor
expansion of the output dynamics around the system state at time ¢ — At, where At represents the
sampling time interval (Wang et al., 2019). Denoting this condition by the subscript 0 for ease of notation
yields the following expression:

) B
Y0 — ) 4 () + B(z)u] <$ - xo) + B(zo) (u — uo) + Ry (3.71)
or o VA \W—/A

where R, represents the expansion remainder. Consequently, the time-scale separation assumption can
be leveraged to design the incremental control input Au, which assumes that all state-dependent and
residual terms can be neglected (Grondman et al., 2018). This is often argued as justified in the case of
high sampling rates and high-bandwidth actuators. The control law is completed by adding the control
vector ug to the resulting incremental term:

u=u0+3_1(x0)[y—yép)]. (3.72)
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Thus, itis demonstrated that model information about «(z) is not required, as the control law is computed
using sensor feedback from the previous control vector and the derivative of the control variable.

5 A I Uemd u
B(x) u : Act(s) Yoy

L L

Feed- Feedback
forward regulator

Uo

U ——> - —

Figure 3.17: Sensor-based INDI implementation.

Defining ¢M5 = & (x) and £5B = y— B(x)u, as the signals in the inversion path for model-based nonlinear
dynamic inversion (MB) and sensor-based incremental nonlinear dynamic inversion (SB), it is demonstrated
that in the absence of uncertainty and disturbances of the On-Board model (OBM) (Pollack, 2024):

az) = — B(z)ug (3.73)
51\45 &SB

However, the fact that the above equality only holds in the absence of uncertainty and disturbances is
a direct indication that the different inversion schemes possess different robustness properties. Pollack
and Van Kampen, 2023 highlights that these different robustness properties can clearly be understood
by analysing the open-loop response of an MB and an SB dynamic inversion schematic with the same
virtual control law controller. The authors demonstrate that SB inversion schemes result in an elevated
open-loop response compared to MB ones, resulting in higher gain at low frequencies but also higher and
often prohibitive crossover frequencies. The higher gain at low frequencies helps to understand the reason
why Incremental Nonlinear Dynamic Inversion (INDI) is often claimed as more robust against aerodynamic
model uncertainties. However, robustness at higher frequencies is penalised due to the insufficient roll-off.
This helps to explain why unfiltered implementations of INDI control are often unsuccessful (Grondman
et al., 2018). Practical implementations of SB INDI control require filtering via synchronised low-pass filters
H, as described in Figure 3.18 (Pollack, 2024):

T erea(s) = He(s)[sy(s) — B(z)u(s)] (3.74)
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Figure 3.18: Sensor-based INDI implementation with synchronised low-pass filter H..

3.5.4. Hybrid-Based INDI

Pollack, 2024 suggests that reintroducing model information of the bare airframe dynamics in the form of a
complementary augmentation element can lead to increased robustness of the control law. This concept
was originally proposed in Jiali and Jihong, 2016 and formulated in Kim et al., 2021 and Kumtepe et al.,
2022 as a Hybrid INDI approach. However, the formal definition of a scaled complementary filter (SCF)
hybrid scheme, which will be used throughout the present study, originates from Pollack, 2024; Pollack
et al., 2024 and can be defined as:

SHB(S) =(1- KCHC(S))5MB<S) + KCHC(3)§SB(3)
= MP(s) + K He(s)(€MP (s) — €57 ()
= gMB(S) + KCHC(S)BE(S)

—— ——

*

3

(3.75)

€

where K. is a scaling gain € [0, I] C R™*" and H. is a filter element € RH >,

Given the relationships in Equation 3.75, Hybrid INDI can be interpreted as a standard model-based
NDI with additional error compensation. Correspondingly, Hybrid INDI collapses to purely model-based
NDI design when K. = 0 and to a sensor-based INDI if K. = 1 and the bandwidth of H.(s) is made
sufficiently large since ¢78(s) — ¢98(s).

Figure 3.19 illustrates the Hybrid INDI control scheme. In INDI control schemes, feedback on the input
signal B(x)u is necessary. There are two possible sources for input feedback: using feedback on the
actuator position uq or internal Control Command (CC) feedback. The principle behind CC feedback relies
on the approximation CC' ~ B(z)uo, which can be explained as follows:

U= Gaur(s)B~H(x)CC = CC ~ B(z)u (3.76)

assuming ideal or close to ideal actuators such that G,.; ~ I. Therefore, measuring the input ¢ and using
input feedback B(x)uo for the control law is equal to simply using CC feedback. In reality, actuators have
internal dynamics, and therefore, CC is merely an approximation of B(:c)uo. However, the fact that CC
feedback is a location inside the control law itself makes it conceptually simpler to implement and does
not require additional sensor measurements. Furthermore, the work of Pollack, 2024 suggests that little
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Figure 3.19: Hybrid-based INDI implementation.

limitations in terms of robustness of the control law result from this choice of input feedback signal. Thus,
either choice for input feedback is valid.

Since the hybrid design allows navigating between model-based and sensor-based inversion schematics,
it can be interpreted as an extra degree of freedom to modify the open-loop gain response and, thus, help
address robustness. The main challenge with NDI-based control laws is how to tune the different elements
in order to achieve a robust design given the inexistence of a priori robustness guarantees.

Flying qualities dependent Airframe dependent IE

Feed- .| Feedback Control > v

forward | regulator allocation
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Inversion
compensa.

AN On-board |, |
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Figure 3.20: General description of a Hybrid INDI control schematic. The yellow blocks refer to the
tunable elements to achieve a robust design, while the blue blocks refer to airframe-dependent blocks.



H~o Loop-Shaping for Dynamic Inversion
Control: A Critical Perspective

This chapter is devoted to the analysis of the work of G. Papageorgiou and Polansky, 2009 since it proposes
a methodology to combine Dynamic Inversion with H ., Loop-Shaping Control, thus making it a relevant
and rare article. First of all, the proposed methodology will be presented, followed by an analysis of the
multiple assumptions made. It will be shown that these assumptions lead to the proposed methodology
not having the guarantees of the #., LSDP. As a result, this chapter aims to demonstrate that combining
Dynamic Inversion with ., LSDP is still an open question.

4.1. Analysis of the Proposed Method

This section aims to explain the procedure proposed by G. Papageorgiou and Polansky, 2009 to combine
Dynamic Inversion with H, Loop-Shaping (or McFarlane-Glover Loop-Shaping). Some block diagrams
are recreated from the ones presented in the paper.

4.1.1. DI Control
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Figure 4.1: DI controller with a novel approach to the model used to derive the inversion. Block diagram
recreated from G. Papageorgiou and Polansky, 2009.

As outlined in Chapter 3, the architecture of a Dynamic Inversion (DI) controller is structured with
two loops: an inner inversion loop and an outer loop that imposes the desired dynamics. The inner loop
attempts to invert the system dynamics so that the resulting closed-loop behaviour equates to an integrator
(assuming a plant with relative degree one) or a chain of integrators (for a system with a relative degree
greater than one). Meanwhile, the outer loop aims to define the desired closed-loop performance and

49
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address robustness. For the remainder of the chapter, a plant model with a relative degree of one will be
considered. In order to derive the control law for DI architectures, the first step is to define the controlled
variables and differentiate them once. Consider, for instance, a SISO LTI plant model P = [A, B, C, 0] of
relative degree one. The initial step in deriving the inversion involves (G. Papageorgiou & Polansky, 2009):

y=Cr=

(4.1)
y=Ci=CAx+ CBu

where x € R"” represents the state of the system, y € R corresponds to the output and controlled variable,
and u € R denotes the control input. Following this, the next step is to equate the derivative of the
controlled variable 5 to the output of the desired dynamics ¢ and subsequently solve for the control input
u (G. Papageorgiou & Polansky, 2009):

y=y'=
CAz + CBu=y' = 4.2)
u=(CB)™ ! (§* — CAz)

where 7¢ € R represents the output of the desired dynamics, typically referred to in other studies as the
virtual control v. In the ideal scenario where no plant model uncertainty is present and assuming zero initial
conditions, the inversion process effectively cancels out the system dynamics, ensuring the integrator-like
response of the closed-loop transfer function from 5¢ to 4. For SISO systems, C'B is a non-zero scalar, but
for multi-input multi-output (MIMO) systems, C'B is not necessarily a square or invertible matrix. Addressing
the inversion of C'B falls under the domain of control allocation, which is out of the scope of the present
thesis. Several options are available for selecting the desired dynamics; however, to maintain consistency
with the work of G. Papageorgiou and Polansky, 2009, the one shown in Figure 4.1 is used:

i = Kyfi (y° —y)

(4.3)
yd =Ky (@i + fey° —y)

where z; is the integrator state and y© is the commanded output. Thus, assuming no plant model uncertainty
and zero initial conditions (G. Papageorgiou & Polansky, 2009):

y:Kb(l'i+fcyC_y) =
i+ Kyy = Kyy + K foy© =
§+ Ky + K¢ fiy = Ko foy© + K2 fiy° =

< choose f. + & = 1> (4.4)
fe

(S + bec) (S + Kb?) y= bec (3 + Kb:]]::z) yc =

Yy _ Kyf.

y° s + Ky fe.

where s is the Laplace operator.

Conventionally, with DI controllers, the designer enjoys some degrees of freedom to address robustness
and meet closed-loop requirements, such as the virtual control law and the command path, which together
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constitute the desired dynamics, and the choice of the controlled variable y. In the work of G. Papageorgiou
and Polansky, 2009, another degree of freedom is introduced: the inverted model. In aerospace contexts,
this is referred to as the On-Board AirCraft (OBAC) model. While it shares the same state-space dynamics
as the nominal plant model P (i.e. identical A and B matrices), its output matrix C' might differ from the
plant one. This output matrix is introduced in G. Papageorgiou and Polansky, 2009 as a non-standard
tuning parameter which can be used to improve robustness and is depicted as C. Naturally, it is often
sufficient to choose C' = C, but in case a different C is selected, the nominal transfer function from ¢ to y
will not be equal to an integrator, as, effectively, it results in a different controlled variable (CV).

A 4

(OB)_I,fCKb
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— (CB) K} [
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?

Figure 4.2: The four ‘gains’ of a typical DI controller. Block diagram recreated from G. Papageorgiou and
Polansky, 2009.

4.1.2. H. Loop-Shaping

In this section, a brief review of H,, Loop-Shaping will be given in order to make the following discussion
clearer. The procedure boils down to two different steps: first the plant P is augmented with frequency-
dependent weights W, and W5, such that the shaped plant P, = W, PW; has a desired open-loop response;
in the second step, an H., controller is synthesized, which minimizes the following H., norm:

. w1 21 . I -1 A -1
min — = min (Ip+PsKoo) |: Ip PS i| S’V =€ (45)
stab Ko woy 29 stab K _Koo

Py(s)

w1 —-—> 21

wo :

> 22
] ) 4 U Y ) 4

Us > Wl(s) » P(S) > WQ(S) Ys

—Koo(s) [«

Figure 4.3: NCF robust stabilization problem written as mixed sensitivity 4-block problem.

According to G. Papageorgiou and Polansky, 2009, while standard ., controller synthesis typically
involves solving a pair of coupled Riccati equations, the H., Loop-Shaping can be divided into three stages.
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The first stage involves solving a normalised LQ problem, which takes the shaped plant P, as input and
yields the state feedback matrix F' solution, as shown in Figure 4.4. The LQ problem is formulated as:

min )/ (2 + 23) dt (4.6)
0

20€ %L [0,00

where z; = P;z,. In the second stage, the ¢ associated with the shaped plant P, is computed. In the final
stage, the values of P;, F', and ¢ are used to compute the observer gain matrix L depicted in Figure 4.4.

" Wils) () ” Wi(s) : G(s) > Y
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A

Figure 4.4: Observer-based structure for the ., LSDP controller.

This odd description of the ., Loop-Shaping solution deserves special attention since it is the genesis
of the limitations of the proposed procedure. If the integral in Equation 4.6 is expanded as done in Equation
4.7:

; 2 2 ; 2 2
min 21 +23)dt = min / +u)dt
29€ Lo [0,00)/0 ( 1 2) us €25[0,00) Jo (y )

= min / ((Cszs)?® +u2) dt
0

us €L2[0,00)

min / (xSTCSTC'SxS + uZus) dt
us €25[0,00) Jo

= min / (2T Qzs + ul Ru,) dt  (with@Q = CTCyand R =1),
us €ZL2[0,00) Jo

then the final form can be recognised as a standard LQR problem with an optimal controller F' given by the
solution to the following Algebraic Riccati Equation (ARE):

ATX + XA, — (XB)R ' (BIX)+Q =0

(4.8)
F=RYBTX)=BTX

While it is true that parallelisms can be established between LQ control and # ., Loop-Shaping control,
they possess obvious differences. This motivates a thorough analysis of the equivalences between H .,
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Loop-Shaping and a special case H. problem in Section 4.1.3 to better understand the described .,
solution.

4.1.3. Equivalence between 7., LSDP and an equivalent Loop-Shaping 7, control
The analysis of the work of G. Papageorgiou and Polansky, 2009 raised the discussion about a possible
equivalence between H., LSDP and an equivalent Loop-Shaping > control, or, in other words, a special
case LQG.

For a shaped plant P, given by:

P, = WoGW, = (4.9)

the Algebraic Riccati equation (ARE’s) of H., Loop-Shaping control are given by (McFarlane & Glover,
1990; Sefton & Glover, 1990):

(4.10)

ATX + XA, — (XB.)(XB,)" +CICi =0
AZ 4+ ZAT — (20T (zCcT)T + B,BT =0

For the LQG case, the Riccati equations are given by (Zhou & Doyle, 1998):
ATX +(ATX)T —(XB)R"Y(XB)T+Q=0 @.11)
AZ + (AT 2)T — (zCT\W (2T + W =0 '

In the case where LQG is applied to a shaped plant P, and setting R =V = I, Q = CIC, and
W = B,BT, the LGQ Riccati equations coincide with the ., Loop-Shaping ones in 4.10. This specific
choice of the R, V, @ and W matrices and considering the plant P(s) as being the same as the shaped
plant P,(s) = W5(s)G(s)W1(s), boils down to an equivalent representation of the closed-loop system
T (s) of the H,, Loop-Shaping problem and of the special case 5 problem (see Figures 4.5, 4.6 and
4.7).

However, since one is the solution of an 5 problem (minimization of the ||T,,.(s)|2 norm) and the
other the solution of an ., problem (minimization of the ||T},,(s)||oc norm), control differences appear in
the way the controller is constructed.

By its nature, the LQG controller has an observer-based structure, i.e. the internal states of the controller
are estimates of the plant states. Assuming that the controller is proper and has the following state-space
structure:

K = (4.12)
then the LQG controller can be constructed as follows:
A—BsB*X —ZC:Cs ZC*
Kroc = (4.13)
-B*X 0
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Figure 4.6: Special case LQG which results in the same T, as the one in H, Loop-Shaping.
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Figure 4.7: 1., Loop-Shaping with controller with observer-based structure.

The H, controller, on the other hand, can be parameterised in infinitely different ways, according to
the choice of the Youla Parameterisation (Zhou et al., 1996). If the Youla Parameterisation @ is set equal
to 0, the solution to the central controller is obtained:

A-BB:X +(I -y 2(I+X2))'zC:Cy (1 —~HI+X2)T)" 1z
KHoecentral = B x 0 (414)

This controller is referred to as the central one. This controller is unstructured, which means that
the internal states of the controller are not estimates of the states of the plant, as in a controller with an
observer-based structure.

However, a particular advantage of H., Loop-Shaping control is that it can be written in an observer-
based form, similar to the LQG one:

Ay — BB*(I —7~2(I + XZ))"'X — ZC*Cy  ZC*
Konbserver - ) (415)
Bl —~ I+ XZ)'X 0

The terms highlighted in blue evidence the commonalities between the LQG control solution and the
H~ Loop-Shaping one. On one hand, the controller state feedback matrix C), of the LQG solution is
equal to the one from Kpy__ccnirqi- However, in the LQG case, the internal states of the controller zy,
would correspond to the estimates of the states «, of the shaped plant P,. For the unstructured X, case,
however, it would correspond to the internal states of the controller, where x;, # z;. The differences
between the two controllers are clear.
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On the other hand, when the H., Loop-Shaping controller is written in its observer-form, it can be
clearly seen that “the controller is a normalized LQG observer with optimal state-feedback Fyr; =
—B:(I —~v72(I + XZ))"1X” (Sefton & Glover, 1990), where X and Z are the solutions to the Riccati
equations in 4.10 and Fy; corresponds to C}, in 4.12.

As a result, when Papageorgiou and Polansky establish the parallelism between the LQ control (in
4.6) and H., Loop-Shaping, in terms of OF control, the equivalence is present in the way the C} matrix
of the controller K is constructed for the LQG and the H, LS central controller (which is unstructured).
However, the procedure requires an observer-based structure, which the #H., Loop-Shaping central
controller does not exhibit. On the other hand, if the H ., Loop-Shaping is constructed in its observer-based
form, then the C} matrix is computed differently than in the LQG case. Therefore, it is difficult to explain
the characterisation of the 4., controller synthesis provided by G. Papageorgiou and Polansky, 2009,
particularly the first step in Equation 4.6.

The previous discussion on the output feedback solution of #, and H., LS control is relevant since
many flight control applications are output feedback problems. For instance, even the solution proposed in
G. Papageorgiou and Polansky, 2009 introduces an AoA estimator in the pitch-rate DI controller, shifting
the nature of the problem from state feedback to output feedback. Nevertheless, conceptually, DI control
is, in its nature, a state feedback approach. According to Khargonekar and Shim, 1994, the state feedback
controller which maximises the stability of a plant subject to uncertainty in its normalised right coprime
factors is a LQR gain. It is of interest to explore the ramifications of this state-feedback solution in future
studies.

This discussion highlights the differences between the #, and #., OF control solutions and provides
the necessary context to understand the limitations of the approach proposed in G. Papageorgiou and
Polansky, 2009 and described below.

4.1.4. Tuning a DI Controller using McFarlane-Glover Loop-Shaping
This section is devoted to explaining the proposed method from G. Papageorgiou and Polansky, 2009 to
tune a DI controller using H., LS. The sequential steps are as follows:

Procedure by G. Papageorgiou and Polansky, 2009 to tune DI controllers using # ., LS. The
enumerated steps are quoted verbatim from G. Papageorgiou and Polansky, 2009:

1. With respect to Figure 4.3, set W = 1 and shape the plant model P with W, = K, + Ii The

proportional gain is used to specify the desired rise time, and the ratio of the two gains is used
to specify the desired settling time.

2. Solve the normalized LQ problem 4.6. Denote the resulting state feedback matrix by F =
[F; F.], where F; multiplies the integrator state of W, and F, multiplies the state or state
estimate of P.

3. Choose K}, and compute C, f;, and f. (the remaining parameters in Figure 4.2) from F;, K,
and K,,. Since K} does not affect the achieved feedback properties, it is chosen to normalise
one of the elements of C.

4. If a state estimator is required, i.e. a complete state measurement is not available, then
compute ¢. If e < 0.4, then go back to Step 1 and modify the integral and/or proportional
gains. First, try reducing the ratio of the two gains to reduce the phase lag around cross-
over. If this is not sufficient, then reduce the proportional gain. If ¢ > 0.4, then compute the
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McFarlane—Glover Loop-Shaping observer gain matrix or design a state estimator using some
other method.

The described steps, together with block diagram manipulations, allow mapping F, and the
gains of W, to the four gains of the DI controller presented in Figure 4.2. From Figure 4.4, by
defining W, =1, W5 equal to a Pl and assuming full state feedback (removing the state estimator), it
is possible to rewrite the block diagram as the one in Figure 4.8. By noting that the proportional path
of the W, weight is not part of the feedback signal to the controller and expanding the command

pre-filter, we arrive at Figure 4.9. To complete the block manipulation, the following lemma is
required:

Lemma stated without proof in G. Papageorgiou and Polansky, 2009:

Lemma 1 Given a SISO plant model P of relative degree one and with P(j0) # 0. Solve
the normalised LQ problem 4.6 with P, = (K,, + K,/s)-P. If a solution exists, then

F?P=1, Typy(jO)Fi=-1,  det(A+ BF,)#0

Under the assumption that F; = —1, then Figure 4.9 can be reworked to Figure 4.10. Finally, it

is possible to compute the desired DI parameters by equating the gains of Figures 4.10 and 4.2 as
follows:

E, =(CB)! (_OA - KbC) = OBF, = —CA - K,C =

A (4.16)
C=-K,C(A+BF,)"", [det(A+ BF,)# 0 from Lemma 1]

CBK,

= 4.17

fo="% (4.17)
CBEK,

_ i 4.18

=" (4.18)
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Figure 4.8: Step 1 of the block diagram manipulations. Block representation from G. Papageorgiou and

Polansky, 2009.

In the original work from G. Papageorgiou and Polansky, 2009, Lemma 1 is stated without proof, but
given its importance to the derivations, Section 4.3 provides further insights into its implication in the
procedure. In the steps of the procedure, Papageorgiou and Polansky mention that, according to Step 3,
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Figure 4.9: Step 2 of the block diagram manipulations. Block diagram recreated from G. Papageorgiou
and Polansky, 2009.
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Figure 4.10: Final step of the block diagram manipulations. Block diagram recreated from
G. Papageorgiou and Polansky, 2009.

LQ theory provides the stability margins at the plant input of LQR control. Furthermore, they mention that
in the case a state estimator is needed, the degradation of the stability margins can be arbitrarily bad, as
demonstrated in the landmark study about the absence of robustness guarantees with LQG regulators in
Doyle, 1978. In that case, they recommend the use of the McFarlane—Glover (H.,) Loop-Shaping state
estimator or an estimator ‘close’ to the McFarlane—Glover Loop-Shaping estimator so that robustness
margins ‘close’ to the ., Loop-shaping control are expected.

First of all, it is not detailed what is meant by an estimator ‘close’ to the McFarlane—Glover Loop-Shaping
estimator. Moreover, this description of the controller obtained in Step 3 reveals that the state feedback
controller is computed based on LQ theory, i.e. H, theory. In light of the discussion conducted in the
previous section, the use of the state feedback controller from LQ theory with an ., estimator computed
posteriorly based on ¢ leads to the H ., LS central controller solution. However, as this is an unstructured
controller which does not exhibit an observer-based structure, it does not make sense to use it in the
context of DI control. Curiously, in the article, Papageorgiou and Polansky use the state feedback matrix
from LQ optimisation (assuming full state feedback) but introduce an arbitrary AoA estimator, which results
in the absence of any a priori robustness guarantees, as commonly found with output-feedback 5 control.
Effectively, the only commonality with ., LS control appears to be the first step, where the plant is shaped
with weighting filters.

4.2. Verification of the Assumptions Made

In this section, the discussion provided above will be verified by recreating some of the article’s results.
From the 12 LTI short-period models of a Boeing 747 listed in the original source, the plant which yielded
the best-performing DI controller was model number 8, and consequently, that was the model chosen for a
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more thorough analysis in the article. Therefore, the same plant model is chosen in this work, which has
the following dynamics:

e Zo 1 ! 0 —0.666 1 ! 0
= + 0= + 0 (11)
q M, M, q Ms —0.947 —0.653 q 1.349
The W; filter, a Pl controller, was selected following the guidelines in the paper, such that the zero

of W5 is set to 2 rad/s and |W, P| = 1 at 3 rad/s. The obtained gains for the W filter and the gain of the
shaped plant (P; = W, P) are presented below.

Singular Values (dB)

-60 I I I = )
1072 1071 10° 10 102 103
Frequency (rad/s)

Figure 4.11: Open-Loop gain of G, evidencing the 0 dB gain at 3 rad/s.

Table 4.1: Values of the Pl W filter

Parameter K, K;
Value 1.723 3.446

Furthermore, the special case LQG controller, the unstructured and the observer-based # ., controller
are presented below:

~1.255 0 1.284 | 1.255
—0.3074 —0.666 0.4703 | 0.3074

Kroc = (4.19)
~2.38  —0.1678 —5.459 | 1.031

-1 0.5776  —2.246 0

—bH68.7 0 —976.4 | 568.7
—143.1 —-0.666 —245.5 | 143.1

KHoounstTct = (420)
—542 —0.1678 —935.2 | 540.6

-1 0.5776  —2.246 0
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—1.255 0 1.284 | 1.255
—0.3074 —0.666 0.4703 | 0.3074

Ky obs = (4.21)
—680.7  340.1 —1503 | 1.031

—-503.8  252.8 —1112 0

The inclusion of the LQG and #H., LS controllers’ solution is done to maintain the generality of the
discussion of the previous section about the commonalities and differences between the controllers;
nevertheless, as Papageorgiou and Polanksy assume the full-state feedback solution, only the matrix
C}, from the controllers is required to recreate the results. If the value of C}, from the LQG or the H.
unstructured controller (notice that C}, is the same even though the controllers are not the same) is used to
derive the different DI parameters (this is referred to as the Tuned DISE controller) according to formulae
4.16, 4.17, 4.18, then the values presented in Table 4.2 are obtained.

Table 4.2: Verification outcome of the procedure outlined in G. Papageorgiou and Polansky, 2009.

Obtained Tuned DISE  From G. Papageorgiou and Polansky, 2009

K, 3.9354 3.93
fi 0.3002 0.297
f. 0.5906 0.59
¢ [-0.2520 1] [-0.248 1]

From the table above, it can be observed that the results were successfully recreated and that the
deviation in the results can be attributed to rounding differences in intermediate computations. Having
done this, it is important to note that the state feedback matrix from LQ optimization, F = [F; F, F,]
corresponds to the Cj matrix of the K¢, since it is assumed it multiplies the states of the plant. The
pitch rate is assumed to be measured, and the angle of attack is estimated based on model information,
which introduces an estimator in the controller. If one would recreate the procedure using the Cj matrix of
the H ., Loop-Shaping controller written in an observed-based way, then:

F =C) =[-503.8 252.8 — 1112 (4.22)

and following the equations in 4.16, 4.17 and 4.18, it would result in the DI gains illustrated in Table 4.3,
which confirms that the equivalence between both methods does not hold when the # ., Loop-Shaping
control solution is used.

Table 4.3: Discrepancy in the DI gains using the C}, matrix of the observer-based # ., Loop-Shaping.

Ho equivalent Obtained Tuned DISE

Ky 990.1599 3.9354
fi 0.0023 0.3002
Je 4.7415e-06 0.5906

¢ [510.6672 1] [-0.2520 1]
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4.3. Further Insights to Lemma 1
According to Lemma 1, the gain associated with the integrator state always equals -1. Since the fact that

this gain is -1 is central to the derivations at hand, it is of interest to understand the implications of this
lemma.

In order to understand the principles behind this lemma, it is important to note that the post-compensator

filter W5 is a Pl with a transfer function equal to:

- Kps—i—KZ-
n S

Wi(s) (4.23)

Thus, the original system P, given by:

HEER NN

—_—— —_——
A B

is augmented by W5, such that P, = W, P, where the state-space of W, can be formulated as:

T; = AWziCi + szy

(4.25)
21 = Cw,z; + Dw,y
and the state-space of P; as:
X Aw, 0 By, x; 0
al=| 0 Z, 2, a |[+]0 |6
q 0 M, M, q My
X S (4.26)
Z
z1=| Cw, 0 Dy, @
Cs q

A single transfer function has infinitely many state-space formulations that all describe the same input-
output relationship, as the transfer function does not uniquely determine internal states in a state-space
model. Thus, the choice of the internal state of the state-space model of the W, can lead to a different
representation of W5 and, consequently, P,. The reason why this is relevant will be made clear. However,
for the remainder of this derivation, it is assumed that Ay, = 0.

Choosing the integrator state x; to be equal to K - % - ¢, the following state-space representation of P
is obtained:
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Z; 0 O K; T; 0
a |=10 Z, Z, o |+]0 |6
q 0 M, M, q My
X o (4.27)
Z;

As mentioned in Equation 4.10, to compute the feedback controller, one needs to compute the solution
to the following ARE:

ATX + XA, — (XB,)(XB,)  +CIC, =0 (4.28)

The feedback controller can then be computed from:

F,=|F, F, F,]=-B/X (4.29)

By noting that B, has the structure as shown in system 4.27, and that the solution for the Riccati matrix
X > 0 has a full-block structure:

X1 X X3
X - X21 X22 X23 (430)
X311 X3z X33

then, the feedback gain on the integrator state F,, can be computed as:

F, = [ —MsX31 —MsX3s —MsXs3 ] = Frz = —M;sX31 (431)

Solving the ARE for the system 4.27, considering X symmetric and real, yields the following solution to
X31 and, consequently, to F,:

1 1
Thus, it is shown how the integrator state’s -1 gain described in Lemma 1 arises. The question that
arises is whether this lemma holds for a different state-space realisation of the same transfer function of
the PI structure of 1W,. Considering the generic state-space system 4.26 with Ay, = 0 and solving again

the ARE, the solution is:

Cw. Cw.
X3; = —2 hus F,, = —M;—= = —Cy, 4.
31 A and thus F,, s 3, Cw, (4.33)

This means that the same transfer function of W5, under a different state-space realisation, leads to
a different value for F;,. As a result, if one wants to have F,, = —1, one needs to define the integrator
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state exactly as done in 4.27. However, this is not necessarily problematic. If Figure 4.10 is inspected, it is
possible to observe that the necessary assumption is that the gain on the integrator path of ¢ (referred to
as y in the figure) needs to be the same as the one in the path of the integrator of ¢.,,,q (referred to as . in
the figure). Thus, by defining z; = ¢, the following realization is obtained:

0 1
Zo 7, Bi=|0|, C=|K 0 K] (4.34)
M, M,

5

Q

For this realization of W5, the solution to X3; will be equal to % and thus F,, = — K. In this case, F;,
is already the gain on the entire path of ¢ and looking back to how G. Papageorgiou and Polansky, 2009
defines the integrator state z;, it is possible to observe that although F,, = —1, since z; = K;'q, the actual
gain on the integrator path of g is K; - F,, = K; - —1 = — K. Thus, choosing a different realisation of W5,

which leads to a different definition for the integrator state x;, has no implications in the procedure.

4.4. Discussion

The current chapter serves as a motivation for the path chosen throughout the rest of the thesis, from the
various possible approaches to combining Dynamic Inversion with ., Loop-Shaping control identified
in the literature study in Section 2.1. It has been demonstrated that in the OF case, the results from
G. Papageorgiou and Polansky, 2009 would fall into the same pitfalls of %5 control and, consequently,
LQG control, which, as demonstrated by Doyle, 1978, come with no robustness guarantees. In fact, with
this procedure, a designer must test their controller margins after the design, like one would need to do
for either LQG or Dynamic Inversion control. The only equivalence to H ., Loop-Shaping control is in the
first step, where the plant is augmented with shaping filters. Considering an observer-based structure, if
the H ., Loop-Shaping controller is used, then the equivalence with DI control does not hold, as shown in
Table 4.3.

In an attempt to find a possible equivalence between both approaches that could leverage the advan-
tages of each method while mitigating its limitations, it is concluded that an alternative procedure should
be considered. This does not mean that this procedure does not offer a lot of potential, since the idea of
making the choice of the controlled variable free by making the matrix C' a tunable parameter appears to
give an extra degree of freedom to the DI controller structure, and thus, an extra degree of freedom to
attain a robust design.

However, for this thesis’s scope, the DI controller’s structure will be restricted to cases where C' = C' to
maintain the physical insight of the integrator behaviour of the transfer function from 3¢ to y. These are
model-based inversion, sensor-based inversion, and a relatively new hybrid inversion scheme configuration
approach. Similarly, a hybrid inversion scheme introduces more degrees of freedom to the inversion to
address robustness, just like making C' not necessarily equal to C does; nevertheless, unlike the C tunable
parameter, where robustness and nominal performance are closely tied, the extra DoF introduced in the
hybrid inversion approach to address robustness is independent from closed-loop nominal behaviour. The
main goal consists of replicating the design philosophy of Pollack, 2024, where the various elements of a
Hybrid IDI controller (virtual law controller and inversion gains) are left as tunable elements and are then
optimised based on a linear robust control synthesis method: p-synthesis. In the present thesis, the goal
is to use the H, Loop-Shaping Design Procedure instead to optimise the Hybrid IDI controller.



Combining Ho, LSDP with Dynamic
Inversion Control

This chapter is devoted to a study of the fundamental robustness properties of linear dynamic inversion
approaches, such as Model-Based Dynamic Inversion, Sensor-Based (Incremental) Dynamic Inversion
and Hybrid-Based (Incremental) Dynamic Inversion. The goal is to obtain a better understanding of the
robustness implications of the different inversion strategies and analyse what connections can be made to
H~, Loop-Shaping Control. The scope of the analysis is limited to the short-period dynamics of the open-
access simulation model (low-fidelity version) of the General Dynamics F-16 (Russell, 2003). Following
this, the acquired insights are used for the development of a novel approach to combine #.., Loop-Shaping
with a DI structured controller. This approach employs the use of H., LSDP and non-smooth optimization
techniques to solve the H ., synthesis problem under structural constraints to optimize the controller.

5.1. Robustness Implications of Different Inversion Strategies

This section will analyse the broken-loop gain of different inversion strategies (Model-Based, Sensor-Based
and Hybrid-Based) at the plant I/O. This analysis is often disregarded in the DI framework, but the work of
Pollack and Van Kampen, 2023 suggests its usefulness in understanding the fundamental robustness
trade-offs of the different Dynamic Inversion strategies (refer to the discussion in Section 3.5). One of the
most interesting takeaways is that the information provided by the p-analysis can also be extracted from
simply analysing the broken-loop gain at the plant input (Pollack & Van Kampen, 2023). This is one of the
main reasons that motivated the research on the combination of the # ., LSDP with Dl-based controllers.

However, to isolate the effect of the different inversion strategies on the broken-loop gain and to
evidence that robustness properties of (I)NDI remain dependent on the nature of the open-loop plant, a
similar analysis is performed considering only the inversion loop and multiple flight conditions. For the
study in question, the flight envelope displayed in Figure 5.1 is considered, and the actuator model used is
a first-order model with w,.; = 20.2 rad/s.

64
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Figure 5.1: Flight-envelope considered.

5.1.1. Model-Based Inversion

Considering an ideal model-based inversion scenario, where it is assumed that there is access to ideal
measurements of both the pitch-rate ¢ and the angle-of-attack (AoA) « as displayed in Figure 5.2, it is of
interest to analyse the broken-loop gain at the plant I/O (the locations represented with the vertical bars)
and the closed-loop relationship v — y for each flight condition. The results are displayed in Figure 5.3.

v

\ 4
Q
&

Figure 5.2: MB inversion schematic considering that measurements of all states are available.

As expected, at the virtual control location v, the system exhibits the % behaviour at low to intermediate
frequencies (see Figure 5.3), with an additional roll-off at high frequencies due to the actuator dynamics
(unaccounted for in the inversion). However, the broken-loop gain at the plant I/0 varies with flight condition,
which confirms the fact that the robustness properties are local properties that are flight condition-dependent.
Moreover, inversion alone is not sufficient to warrant desired broken-loop responses according to classical
loop-shaping guidelines (Skogestad & Postlethwaite, 2005), which highlights the importance of the virtual
law controller in guaranteeing a robust design.
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Figure 5.3: Broken-loop response at the plant I/O and closed-loop relationship between v and ¢ for
different flight condition points using MB DI.

Accurate measurements of air data angles are often difficult to obtain, especially in high-speed conditions
(Honeywell Technology Center, Lockheed Martin Skunk Works and Lockheed Martin Tactical Aircraft
Systems, 1996). Therefore, it is preferred to make use of inertially derived estimations of the angle-of-attack
(AoA) . The a estimator introduced is based on a combination of measured pitch rate with the short-period
force equation (G. Papageorgiou & Polansky, 2009), resulting in the following definition of the estimated
states & (see the short-period state-space definition in Equation 6.1):

P(s) a(s)=[ 2% 1] g(s) (5.1)

#(5) = [a(s) a()]

The introduction of the estimator effectively makes the nature of the problem SISO (see Figure 5.4),
resulting in equal broken-loop responses at the plant input and output.

I I
v (€B)F —"0pl Act(s) > Gs) H——>1
I —_ I
I I
I I
I I
I I
I I
| ; : |
| CA < F(s) < \
I I

v % SN

Figure 5.4: MB inversion schematic with AoA « estimator.

In this scenario, at the virtual control law location v, the transfer function from v to ¢ is still close to %
even though there is a distortion of the gain at low frequencies due to the introduction of the estimator.
The response in terms of the broken-loop gain at plant I/O in Figure 5.5 is similar to the one in Figure 5.3,
and as such, similar conclusions are retrieved.
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Figure 5.5: Broken-loop response at the plant I/O and closed-loop relationship between v and ¢ for
different flight condition points using MB DI with AoA « estimator.

5.1.2. Sensor-Based Inversion

The same analysis is conducted for a Sensor-Based inversion scheme, but the output location is disregarded
for simplicity. Since this approach makes use of output differentiation and input feedback, estimation of
the angle of attack is not necessary.

Figure 5.6: SB IDI inversion schematic.

Comparing Figures 5.5 and 5.7, it is possible to observe that SB IDI results in an elevated open-loop
response compared to MB DI, resulting in a significantly higher gain at low frequencies but also a higher
crossover frequency. This simple analysis confirms the main takeaways from Pollack and Van Kampen,
2023 that SB IDI is not necessarily more robust than MB IDI. Namely, it demonstrates how unfiltered IDI
approaches could warrant robustness issues against high-frequency uncertainty and the importance of the
synchronisation low-pass filter H.. in ensuring a robust IDI design. Moreover, it adds clarity to the typical
guidelines stating that Pl gains can be decreased in the case of SB INDI control.
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Figure 5.7: Broken-loop response at the plant I/O and closed-loop relationship between v and ¢ for
different flight condition points using SB IDI.

5.1.3. Hybrid-Based Inversion

The previous analysis has demonstrated that the robustness characteristics of a fully sensor-based IDI
are complementary to those of the classical model-based DI variant. Therefore, balanced robustness
properties can be obtained by blending both inversion techniques. The following analysis will focus on one
single point of the flight envelope (Mach = 0.6 and A = 6000 m) to illustrate that Hybrid IDI can be thought
of as a way to navigate between MB DI and SB IDI robustness properties by manipulating the scaling gain
K. and the bandwidth of the synchronizing filter H,. via wg,. The reason to focus on one single point is to
visually demonstrate in a clear and simple way how the hybrid scheme offers this extra design flexibility to
address robustness.

CA < i F(s) |e—

Figure 5.8: HB IDI inversion schematic.

For the Hybrid IDI schematic in Figure 5.8, it was assumed that ideal measurements of the actual input
u were accessible and the synchronising filter H,. was set as a second-order Butterworth low-pass filter with
cutoff angular frequency equal to wy_ . From Figures 5.9, 5.10, and 5.11, it is possible to visualise how the
Hybrid IDI inversion scheme offers extra degrees of freedom to adjust the broken-loop gain of the system
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and, hence, address robustness. As expected, by setting K. = 0, the Hybrid IDI schematic collapses
to the MB DI, while setting K. = 1 and making the bandwidth of the synchronisation filter large enough
wg, — +o0o makes it collapse to an SB IDI scheme. Setting intermediate values for the hybrid inversion
scheme (K, = 0.5 and wgy, = 40 rad/s) results in an intermediate broken-loop response between the MB
DI and the SB IDI. Therefore, the advantages of using a Hybrid IDI scheme are clearly demonstrated.
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Figure 5.9: Broken-loop gain at the plant input for  Figure 5.10: Broken-loop gain at the plant input
MB DI, SB IDI, and HB IDI with K. = 0. for MB DI, SB IDI, and HB IDI with K. =1 and
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Figure 5.11: Broken-loop gain at the plant input for HB IDI with K. = 0.5 and wy, = 40 rad/s.

5.1.4. Discussion
While the results in this chapter do not add much to the discussion conducted in Section 3.5, they do

validate in a simple yet practical way all the important takeaways about the robustness implications of
different inversion strategies.

This simple analysis raises concerns about the often-claimed “automatic gain-scheduled nature” of
(I)NDI control laws. While it is true that under ideal inversion, the closed-loop relationship between v and y
exhibits a consistent behaviour across the flight envelope, such consistency is not present where it actually
matters from a robustness perspective: at the plant /0. An analogy can be established with the LQG
controller, which has guaranteed excellent (input) margins at a location internal to the controller, but not
at the actual plant I/O, resulting in the absence of guaranteed margins for LQG regulators (Doyle, 1978).
Furthermore, from a robust control perspective, the v signal has little relevance as it concerns a signal
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internal to the controller itself. Attempting to design a robust control based on this v signal, as done in
many (I)NDI applications, fundamentally “blinds” the designer to robustness. Therefore, the robust design
of (NNDI laws still requires some form of gain-scheduling to achieve consistent robust properties, either by
employing linear H ..-synthesis tools within the divide-and-conquer paradigm (Pollack, 2024) or by making
use of LPV theory (Pollack et al., 2025).
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Figure 5.12: Hybrid IDI structure, where the green blocks refer to the tunable elements of the controller
and the yellow blocks to the plant-dependent/physical blocks of the controller; the insert shows two options
for the implementation of a scaled complementary filter (SCF) signal blending.

As a result, the discussion above justifies the use of a linear Hybrid IDI control law, which can be
combined with #..-synthesis tools. The goal is to use the H., LSDP to optimise the different hybrid gains
to design a controller with robustness guarantees. The Hybrid IDI structure is displayed in Figure 5.12.
For the sake of completeness, the input feedback case is also included in the schematic, even though
the remainder of the thesis considers only the CC feedback case. The insert highlights that the hybrid
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inversion can be implemented as a scaling complementary filter (SCF), which is advantageous since
it does not require explicit signal differentiation. Two options are displayed, with option A referring to
a second-order low-pass filter H. and option B referring to a first-order one. As previously described,
the analysis conducted in this section considered a second-order low-pass filter H., but for the following
chapters, a first-order low-pass filter H, is used to maintain commonality with the work of Pollack et al.,
2024 and since it results in a lower complexity of the control law. The virtual law controller K, is defined
as a Pl controller in series with a low-pass filter, and K, is a feedforward controller used to improve
model-following performance. More details on the structure of K, are provided in the following chapters.

Despite the fact that this linear synthesis approach drifts away from the typical global approach to the
design of (I)NDI control laws, it is important to notice that the architectural value of these incremental
laws is maintained. Nevertheless, combining DI-based architecture with the H ., Loop-Shaping have its
particular challenges:

4 )
The specific architecture of DI-based controllers imposes a certain structure on the inversion path and

closes the loop at the virtual law v location. Adding weighting filters to the open-loop plant to adjust the
open-loop response, as done in the H., LSDP, may distort the inversion path and compromise the
closed-loop relationship between v and y. On the other hand, trying to use the ., LSDP from the
virtual law location and relying on the closed-loop relationship between v and y would fail to consider the
relevant location for robustness: the plant I/O. The fact that DI-based controllers have such a specific
architecture and that the ., LSDP also exhibits less flexibility than it would be desired (requirement to

shape the open-loop response with weighting filters) requires an alternative setup of the ., LSDP.
\ Y,

5.2. Equivalence between Classic 7., Loop-Shaping and an Alterna-

tive Schematic
In Zhou and Doyle, 1998, the authors demonstrate that the classical #., LSDP can equivalently be
interpreted as the more standard ., problem formulation of minimising the ., norm of the frequency-
weighted gain from disturbances on the plant input and output to the controller input and output.

In order to demonstrate this equivalence, the steps of the derivation from Zhou and Doyle, 1998 are
recreated. Recall that the NCF robust stabilisation problem can be written as a mixed sensitivity 4-block
problem, as presented in Figure 5.13 and Equation 5.2.

I
Zl] = min { Ig ](1,,+GSKOQ)‘1[JP Gs} <yEet (5.2)

. w1
min —
stab Koo wo 29 stab Koo

Using the fact that G, = W, GW; and defining as the total controller K, = W7 K, W5, and assuming
that the weighting filters are square and invertible, it is possible to rewrite Equation 5.2 as:

oo

I _ Wy B _
Pl rGE T || = N Wi (I + GoKo) ™ Wa [ Wy aw |
“W{'K,

(53)
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Figure 5.13: NCF robust stabilisation problem written as mixed sensitivity 4-block problem.

Using the fact that the inner part W, * (I, + G,K)~" W, can be written as:

-1

(W3 (I, + WoGW1 Koo) Wa] = (I, + GK,) ™! (5.4)

and the following equivalence holds:

[ I
j2 (I, + GsKo)™ [[p Gs:| <ele
—K
- . )
_21 ] (I, + GK,)™" { Wyt Gy } <! (5.5)
—Wi K,

If the multiplications in Equation 5.5 are expanded, the following particular weighted mixed sensitivity
problem is achieved:

Wo(I, + GK) " 'Wy ! Wa (I, + GKs)"'GW;
~W K (I, + GK)"'Wy WK (I, + GK,)"'\GW,

‘ <et (5.6)

The previous result can be represented as a 4-block mixed sensitivity problem with weights on the
disturbances and plant input and output, as shown in Figure 5.14 below.
w
! (5.7)
wa

The advantage of this equivalent formulation is that it is possible to consider the inputs and outputs in
the actual plant I/O instead of the shaped plant I/O’s.

2 —W K, (L, + GK) "Wyt WK, (I, + GK,) ™ GW,

[ 2 ] - [ Wa (I, + GE,) ™ Wyt Wa (I, + GK,) ™ Gw,

As described in the previous chapter, one of the challenges of combining #., LSDP with Dynamic
Inversion is that the fundamental robustness properties are tied to the open loop at the plant I/O and not to
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Figure 5.14: Alternative structure for the NCF LSDP robust stabilisation.

the virtual control law location. Since DI techniques close the loop at this virtual location, combining it with
H~, LSDP raises concerns, as shaping the plant’s open-loop response with the filters W; and W, may
distort the inversion path.
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Figure 5.15: Leveraging alternative structure to tune Hybrid IDI controller using the #., LSDP.
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However, since this equivalent formulation allows to consider the disturbances and the outputs at
the actual plant I/O, that difficulty is overcome. Nevertheless, the fact that the feedback controller K is
constructed as K, = W, K., W5 might be undesirable when highly structured control architectures are
considered, like the one of Hybrid IDI. Despite that, it is hypothesised that if a given structured controller
Kiuer has compatible tunable elements to those of K, then K;,..; Can achieve similar results to K, by
using non-smooth optimization techniques to solve the H ., synthesis problem under structural constraints
(Apkarian & Noll, 2006a). This effectively makes the nature of the optimisation non-convex.

It has been established that there is a full-order solution for K., which minimises the H., norm from w
to z. Alternatively, the H., minimisation solution can be reimagined as: there is an optimal stabilisable
controller K, subject to W K., W5, which minimises the # ., norm from w to z. Reconsidering K, as an
appropriately structured controller K;,....¢, it is hypothesized that the minimisation of the #., norm from w
to z results in the tunable elements of K;,.,.; being configured such that Kyee — Ks and vg_,...., — Vk.-
Therefore, if the structure of Hybrid IDI Ky _;p; is compatible with K, it is expected that the multiple
tunable elements in Ky _;p; are tuned such that K _;p; — K, as displayed in Figure 5.15.

5.3. Extension to Address Flying Qualities in 2 DoF Setup
Specifications for flying qualities in manual flight control systems are typically defined using the modal
parameters of Low-Order Equivalent System (LOES) models (Anonymous, 1990). These models represent
the desired response of specific controlled variables to pilot inputs. LOES models are derived by simplifying
high-order transfer function models that encompass the complete dynamics of the aircraft, including
aerodynamics, actuator dynamics, controller dynamics, structural modes, and sensor dynamics. The
LOES parameter values are generally determined based on military or other regulatory requirements to
ensure the aircraft achieves satisfactory flight performance (Anonymous, 1990).

d; do

Figure 5.16: 1DoF Feedback Control Schematic.

di do

r—p  Ky(s) Ky(s) G(s)

Figure 5.17: 2DoF Feedback Control Schematic.
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Consider the two feedback configurations shown in Figures 5.16 and 5.17. The first is the standard
1DoF feedback, whereas the second is denominated the 2DoF. The feedback part K is designed for
nominal and/or robust stability (NS, RS) and disturbance rejection, whereas the feedforward part K is for
nominal and/or robust performance (NS, NP) (Limebeer et al., 1993). Concerning the former, the ‘gang of
six’ (S;, So, T;, Ty, SoG, KS,) depend only on the feedback controller K; and determine RS with respect
to all types of unstructured uncertainty (Skogestad & Postlethwaite, 2005). The feedforward controller K,
is used to achieve better reference tracking, since y = T,K»r, where T, = GK,(I + GK,)"! (Bates &
Postlethwaite, 2002). Given a desired reference model 7'..¢(s), one could argue that K, could be designed
simply by setting K, = T, ' T'..¢. This is not so simple, though, since T, may contain unstable zeros that,
when inverted, will give K5 unstable poles. Also, K> may be required to have a predefined structure,
typically a lead-lag structure (Bates & Postlethwaite, 2002).

In order to extend the procedure to a 2DoF setup, a tunable feedforward controller was added to the
Hybrid IDI structure and model following performance requirements were introduced via minimization of
the H, norm from y.,,q4 to 23 as shown in Figure 5.18.
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For the specific case where the control structure is that of a Hybrid DI controller, Figure 5.18 equates to
Figure 5.19. As a result, this procedure allows to systematically trade-off robustness with model following
performance, as robustness is associated with the minimization of ., norm from [w; ws]" — [21 20]T and
model following performance with the #., norm from y.,,« — z3. As the model following performance is
made more demanding, via the W,,, ¢ filter, the H., norm from [w; ws]” — [z 22]" is increased, decreasing
the robustness of the overall system. Therefore, directly in the synthesis part, the designer can trade off
these properties. More details on the working principles of designing W, s are provided in the sections

Figure 5.18: 2DoF Loop-Shaping Design Procedure.

below.
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Figure 5.19: 2DoF Loop-Shaping Design Procedure for Hybrid IDI controller structure.

5.3.1. Choice of Reference Model based on Handling Qualities

The nature of the operational mission is directly linked to the formulation of the flight control law design
goals. In this context, Anonymous, 1990 specifies aircraft class designation (I-IV) and identifies different
flight phases (A-C). Under this criteria, the F-16 Fighting Falcon and the X-29, the two aircraft models used
in the present work, fall within Class IV and the flight conditions used lie within Flight Phase Category A.
Flying qualities are defined as “those characteristics of the complete air vehicle/system which allow the
pilot/operator to perform to his/her satisfaction the flying tasks required to safely accomplish the mission,
with an acceptable workload, while operating in the real world environment for which it is intended to
operate” (Anonymous, 2002). The flying quality levels can be classified into three different levels (I-1Il), and
it is desired to accomplish Level | satisfactory flying quality levels across the operational flight envelope.

Based on this, Anonymous, 1990 describes desired modal response characteristics. These modal
parameters are given as Low Order Equivalent System (LOES) models of the desired response of certain
controlled variables to pilot demands, as follows:

1 —TeS
q(s) _ Kq (SJFTTz)e (5.8)
3e(8) 82 + 28wps + w2 '

Since the focus of this thesis is mainly on the combination of DI with ., LSDP, a very simple approach
was taken to include handling qualities into the choice of the reference model T'..¢(s). The CAP and the
Gibson Dropback Criterion were used to define the multiple parameters that comprise T, (s), similarly to
what was done in Marques, 2024.

The Control Anticipation Parameter (CAP) serves as a physical measure of an aircraft's manoeuvrability.
It reflects the relationship between the initial pitching acceleration and the steady-state normal g-force
experienced after a step input to the controls. This criterion highlights how a pilot’s ability to predict the
aircraft’s flight path response is directly tied to this ratio (Gibson, 1999). The CAP can be described in
terms of the variables of the LOES as described in Equation 5.9, and the flying quality levels are defined
accordingly as depicted in Figure 6.8.
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Figure 5.20: Control Anticipation Parameter and short-period damping ratio requirements. Retrieved from
Roskam, 1998.

oap = 10 9Wplos (5.9)
n(00) Vras

The Gibson dropback criterion is defined by limiting two key parameters: the pitch rate overshoot
ratio ‘fz—m and the ratio of attitude dropback (or overshoot, depending on the direction of the transition
when the step input is removed) to the steady-state pitch rate (Gibson, 1999). Satisfactory flying qualities
according to the Gibson dropback criteria are specified in Figure 5.22, and the relevant parameters can be
summarised as follows (Lombaerts & Looye, 2011):

1. ¢,» - maximum pitch rate;

2. q, - steady-state value of pitch rate;
3. ‘{1—“; - pitch rate overshoot ratio;
4

. DB: dropback, amount of negative transition towards final value after the step input has been
removed,
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5. OS: overshoot, amount of positive transition towards the final value after the step input has been

removed.
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Figure 5.21: Typical pitch tracking response characteristics. Image retrieved from Lombaerts and Looye,
2011.
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Figure 5.22: The criterion for the tracking task. Image retrieved from Lombaerts and Looye, 2011.
The Gibson can be described in terms of the variables of the LOES as follows:

DB/qss = To, — i—i (5.10)

Thus, by choosing a point that adheres to Level | flying qualities in the CAP criteria in Figure 6.8, and

a point that lies within the frame of satisfactory flying qualities in the Gibson criteria in Figure 5.22, the

designer sets the desired CAP,.;, & ef, (DB/¢ss)rer. From this, it is possible to solve the system of

equations in 5.11 and compute w,..; and ngrcf. Regarding the remaining parameters, K, is chosen

such that T,..; has unitary static gain, and since the reference model is a pure second-order system, the
equivalent time delay 7., is zero.
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cap = 22 To,
ras ) (5.11)
DB/qss = T92 - i
Wn,
Consequently, T, is described as:
q(s) 2 s+ ﬁ
Trey(s) = = (w,)Tos) 37— (5.12)

82 4 28wps + w2

5.3.2. Co-Design

As described in the section above, the inclusion of model-following requirements is achieved via a model-
following filter W, ; on the error signal e,..;. In this context, it is more intuitive to interpret the relevance of
W‘} as it is the filter that sets the bounds for the transfer function from y.p,q4 t0 e, given that:

m

The inverse of the model following filter, Wyg}, is a high-pass filter. The designer has the freedom to set
the DC gain, the filter bandwidth and the high-frequency gain. The lower the DC gain and the higher the
bandwidth, the better the model-following performance. The high-frequency gain typically corresponds to a
frequency region beyond the relevant range, so its role is not as critical in the model-following performance.
The model following filter W,,;(s) can be defined as follows:

y(s)

y(:m,d(s)

23(8)
ycmd(S)

Tref(s) —

<[z

‘ oo

(5.13)
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Choosing the different filter parameters often requires managing conflicting trade-offs and might require
some iterations to strike a desired balance between performance and robustness. Inspired by the work of
Pérez et al., 2022, this motivated the idea of using a co-design procedure, where the filter parameters are
tunable parameters optimised in parallel together with the minimisation of the ., norm in Equation 5.13.

In order to do so, the block diagram structure in Figures 5.23 and 5.24 is imposed in MATLAB® Simulink,
with a complete overview depicted in Figure 5.25.

The DC gain of WTgl is given by g, the peak gain is mainly associated with M and the bandwidth with
the value w. Choosing the desired value for the DC gain is often trivial: -40 dB is often sufficient, thus,
any value below that yields good steady-state tracking. Therefore, the choice of the parameter A is set
by the designer and is not part of the co-design optimisation routine. Nevertheless, since the DC gain is
given by % and not merely A, the A parameter should be set with an idea of the lower bound for w. The w
and M parameters are optimised such that the value of w is maximised and the value of M is minimised,
and hence, the bandwidth of W,;} is maximised and the peak value is minimised. The minimisation of the
. norm of the model-following constraint in Figure 5.23 is set as a HardGoal in MATLAB® systune, while
the minimisation of i,, — 0, and iy; — oy, displayed in Figure 5.24, are set as SoftGoals (Balas et al.,
2022). Notice that the value of w and M of the soft constraints is the same as the one that integrates the

model-following filter W,,, ;. Therefore, the non-smooth # ., optimization aims to maximize the bandwidth



5.3. Extension to Address Flying Qualities in 2 DoF Setup 80

Yerr » - » w 23

@

Figure 5.23: Implementation of the model-following filter W,,,#(s) in MATLAB® Simulink.
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Figure 5.24: Implementation of the co-design parameters W and M in MATLAB® Simulink.

and minimize the peak value of Wrg}, thus making the model-following requirements tighter, while still
ensuring that the transfer function y.,,q — ey is bounded by W;}.

Nevertheless, some additional tricks are necessary to make the co-design procedure work. Given the
non-convex nature of the optimisation in MATLAB® systune, it is necessary to include bounds on the values
of the model-following filter tunable parameters to limit the subset of the solution space (Pérez et al., 2022).
Consequently, a lower bound is defined for the value of w and a certain range for the admissible values
of M. Moreover, to make the co-design SoftGoals “competitive” with the one associated with the NCF
robust stabilisation (SoftGoal with value «) an ideal value is set for w and M, such that the minimisation
of the H., norm is as follows:

[iw = 0wllo < ! (5.15)
Wideal
line = omll oo < Midear (5.16)

By implementing the SoftGoals as described above, not only w is maximized, and M minimized, but
deviations from the ideal values are penalized in such a way that results in SoftGoals > 1if M > Mg
and w < w;geqi- This can be seen as a trick to scale the co-design constraints and is necessary since
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Figure 5.25: Overview of the co-design procedure to tune a Hybrid IDI using H., LSDP and including
model-following requirements.

v, the value for the other SoftGoal, typically ranges from 2 to 4. In a scenario where the trade-offs
between performance and robustness come into play, the value of the three SoftGoals (one for the NCF
robust stabilization and two for the co-design) should yield similar values, as the optimization attempts to
maximize the robustness of the system and hence minimize ~, but at the same time seeks to stretch the
model following parameters the maximum it can for the associated robustness level. From this point on,
demanding more performance via increasing the w;4.,; and decreasing M, ,.,; Will also increase ~ and,
thus, decrease the overall robustness of the system.
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5.3.3. Remarks on Controller Structure

In Chapter 3, it was demonstrated that besides an adequate open-loop gain response, it was also necessary
to have certain controller gain properties, namely, ¢[K] > 1 at low frequencies and ¢[K] < K., at high
frequencies (under the assumption that K, is not too large). Having 7[K| < K., at high frequencies
is particularly important, given that in this frequency range, [K.Sy] < 5[K], and ensuring a low [K Sy] is

critical for control signal reduction and noise attenuation.

These relationships point out the fact that choosing an adequate controller structure is central to
ensuring a successful design. More specifically, the inclusion of low-pass filters is of the utmost importance
since it contributes to reducing the controller gain at high frequencies. However, many NDI/INDI control
implementations seem to disregard this aspect. If a Pl structure is considered for the virtual law, it is
possible to infer that the gain of this controller at high frequency is given by:

K
lim K, +

i
s—+00 S -

K, (5.17)

Consequently, a Pl alone does not ensure ¢[K| < K,,q., given that the value of K, will often be
significantly higher than the desired K,,,... For that reason, the virtual law controller K, was chosen to be
a Pl in series with a low-pass filter, as follows:

(5.18)

51\{5

CA [&— F(s)

A

Figure 5.26: Parallel nature of the control structure of DI-based control schemes.

Nevertheless, given the parallel architecture of DI-based control schemes, this alone is not sufficient to
guarantee 7[K| < K.q.. Consider, for the sake of simplicity, an MB scheme (K. = 0), such that only the
blue path in the inversion schematic in Figure 5.26 is relevant. As can be seen, the control signal u is both
a function of the virtual control law path (in red) and of the inversion path (in blue). Therefore, even if the
structure of K, is such that for high frequencies, K,(+o00) — 0, if the gain in the inversion path Kj;,,,(s) is
not low in this frequency range, then & [K] will also not be, given that:

lim |K(s)| = lim |—(CB) " (Ky(5) + Kino(s))| & lim | — (CB) " Kinu(s)| (5.19)

s—+oo s——+oo s—+oo

where K;,,(s) is given by the gain in the inversion path CAF(s).

Notice that given the SISO nature of the problem, the discussion greatly simplifies, since |K(s)|
corresponds to 5[K(s)], and that is why Equation 5.19 makes use of the gain of the transfer function
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instead of the singular values. For a MIMO case, the relationships are more complicated, but a similar
conclusion is to be expected.

Accordingly, the inversion path also plays a key role in ensuring low controller gain at high frequencies.
However, most of the elements of the inversion path are model-related and, therefore, fixed, with the
exception of the estimator F'(s). This demonstrates that the designer can exploit this degree of freedom to
help address the issue of G[K] at high frequencies. This was not done for the present thesis, but it is highly
recommended that the implications of the estimator on the controller gain be explored further in future
studies. Instead, a simple estimator was used, which uses the short-period dynamics model information to
estimate the angle of attack «, as described in Equation 5.1.

It is, therefore, possible to infer that the low-pass on K, is not sufficient to guarantee low controller
gain at high frequency (despite the fact that it contributes positively to the latter fact). However, this issue
has limited solutions due to the typical control structure of DI-based control laws. One solution would be,
for instance, to move the low-pass filter to after the virtual control sum signal, such that it affects the entire
control signal path. However, in doing so, the inversion path would be distorted. As a result, the choice was
made to maintain the low-pass filter in the virtual control law. Moreover, in digital design implementations,
the use of anti-aliasing filters at the output of the plant actually contributes to solving the issues described
above since it essentially acts as a low-pass filter in the control signal path.

5.3.4. Standard EMF (Explicit Model Following) DI control architectures

The Hybrid IDI feedforward term proposed in the present research deviates from what is commonly found
in literature for NDI and INDI controllers, which normally make use of an Explicit Model Following (EMF)
architecture, as shown in Figure 5.27 (Grondman et al., 2018; Kolesnikov, 2005; Miller, 2011). However,
the concept of EMF heavily relies on the assumption that ¥ = % as it is demonstrated below. For a
moment, consider the following closed-loop relationship £ = 7(s). It can be proven that:

WE) ) (s Ku(s)
voma(®) — ) TR ) () (5.20)
which implies:
W) s (st Els)
vema(®) O T IR S ) (.21)
This equality only holds if:
1) (5 Ko(s)) = 1+ Ko(s) - nfs) & n(s) = (5:22)

which means that model matching is only guaranteed under ideal inversion, in which case, ideal model
following performance is independent of the virtual control law. However, inversion distortions are introduced
either by the estimator F', by the fact that the actuator model is not taken into consideration in the MB
inversion, or due to the synchronisation LPF H, (Pollack, 2024). Therefore, either a purely model-based
setup (K. = 0), a purely sensor-based one (K. = 1) or a hybrid one will always have elements in its
inversion path contributing to inversion distortion.

Nevertheless, the work of Pollack, 2024 derived explicitly how the error signal transfer function %

can be made arbitrarily zero by using the inversion compensation, increasing the open-loop gain by tuning
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Figure 5.27: Explicit Model Following DI control architecture.

the virtual control law or by a combination of both. This dual effect demonstrates the multi-loop robustness
functionality of INDI control laws and justifies the success of Explicit Model-Following architectures.

Part of the motivation for not using an EMF setup is related to the fact that it is desired to stay more
in line with the common 2DoF ., LSDP approach. Moreover, due to the uncertainty faced about the
possibility of combining a DI control structure with the H., LSDP, the addition of the feedforward element
makes it possible to decouple the robustness of the system from the model following requirements. The
designer can first consider only robustness (minimization of the ., norm from [w; ws]” — [21 22]7) and
tune K,, K. and H.. Then, in the second step, tune K, for the model following the performance. As such,
more degrees of freedom are given to the controller to address robustness, and since the entire procedure
is built upon the hypothesis that the feedback part of Ky _;pr — K, then, it is of the utmost importance to
guarantee that these degrees of freedom are present. Nevertheless, when the method is implemented in a
single stage, as proposed above, it also plays a role in achieving the desired model following performance
since the feedback elements appear in the forward path of the controller. However, on a conceptual
level, if to achieve a certain model following performance, the robustness is largely compromised, the
designer always has the option to increase the order of the feedforward controller (which only influences
performance, and not robustness). This makes the tuning of the feedback elements K,,, K. and H,
less constrained and, consequently, it is expected that robustness improves, as these parameters can
more freely be configured such that Kg_;p; — K.

Consequently, the addition of a feedforward element for model performance stays more within the
realm of robust control applications. In addition, given the novel nature of the proposed procedure, it
was considered that the approach which yields more degrees of freedom to achieve a successful design
was more appropriate for this initial study. It is, however, highly recommended that combinations of EMF
architectures be combined with the procedure proposed in this work in future studies.
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5.4. Framework for Tuning DI Controllers Using the LSDP

As a result of the discussion and deep insight obtained conducted in the previous sections, the current
section provides a framework to tune Dynamic Inversion Controllers (Model-Based, Incremental Sensor-
Based and Hybrid schematics) using the # ., Loop Shaping Design Procedure.

The first step of the ., LSDP is to translate all the design requirements (often time-domain require-
ments) to frequency-domain ones. This first step involves deciding on the LOES for flying qualities (in this
case, T,.5) according to handling qualities guidelines. The designer can then set the desired crossover
frequency based both on the closed-loop bandwidth of T..; and on the limitations imposed by RHP poles
and zeros (Skogestad & Postlethwaite, 2005).

After deciding on the crossover frequency for G, the general guidelines of LSDP should be followed to
compute Wy and W, i.e., W7 should comprise of PI controllers to boost the low-frequency gain (integrator)
and reduce the slope around cross-over (through the Pl zero at Ifgp ), and W5 should contain low-pass filters
for gain attenuation at high frequencies. It is important to highlight that 17/; and W5 will not incorporate
the final controller, and so their complexity can be increased without increasing the complexity of the final
controller, whose structure is fixed to one of the selected Dynamic Inversion strategies. On one hand, this
allows for a better shape of the open-loop plant, but on the other hand, it is important to keep in mind that
the procedure builds on the hypothesis that K;,.... — K, which means that unnecessary inflating the
order of the filters can lead to a design which is incompatible with the tunable elements in the structured DI

controller.

After shaping the plant, the theoretical v,,;, associated with the shaped plant G, = W>,GW; can be
computed. According to literature, an adequate value for ~,,;, lies between 1 and 4 (Hyde, 1995). If
an acceptable value for ~ is obtained, then, under the assumption that K;,...; is compatible with K, a
non-smooth H., minimization together with the schematic presented in Figure 5.15 can be leveraged to
optimise the different controller elements in systune. As an initial verification, the designer should only
use a 1DoF controller (considering only robustness) to check whether the structure of the DI is compatible
with the standard full-order solution of H., LSDP given by K. If, for instance, ~,,,;,, is 2.5, and the result of
the optimization gives 2.7, then it can be said that Kp; is close to K (in general, the v produced by the
structured DI controller will be higher than the sub-optimal v associated with the full-order solution K).
If an unreasonable value for ~ is obtained, then either the filters W; and W5 need to be redesigned or
more flexibility needs to be added to the DI controller, as, for instance, increasing the order of the virtual
controller K, or taking advantage of a hybrid inversion structure.

Under the assumption that the 1DoF design achieved satisfactory results, the 2DoF scheme can be
used to design a DI controller which is not only nominally and robustly stable but also capable of achieving
nominal and robust performance according to handling qualities requirements. This step requires that
the designer set the desired bandwidth w;4.,; and peak value M; ., of WT;} and employ the co-design
procedure described in Section 5.3.2.

The above discussion can be summarised as follows:
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Benchmark for tuning DI-based controllers using the #., LSDP

1. Choose the reference model T,..; based on handling qualities requirements;

2. Choose the desired crossover frequency w,. according to 7;..; and eventual RHP poles and
zeros of the open-loop plant G;

3. Select W, and W, to achieve a desired open-loop response G, = WoGW1%;

4. Choose the DI structure (MB, SB or HB)"? and employ the structure in Figure 5.15 to tune the
controller using the 1DoF # ., LSDPe-.

5. Implement the 2DoF architecture in Figure 5.19 and employ the co-design procedure to optimize
the model-following filter W,,,; parameters in parallel with the rest of the optimization<.

@ At the end of this step, compute ~,,: associated with the shaped plant G, = WoGW;. It should

be below 4 according to design guidelines (Hyde, 1995). If not, redesign W, and W5.
It is expected that the Hybrid-based architecture yields better results, given the additional

degrees of freedom to adjust the open-loop response.
¢ For a successful design, the obtained ~ should be close to v,,:, @s v — 7,p: results in

Kprjipr = WiKooWa.
4 The designer sets a fixed A, related to the low-frequency gain of W;}, and sets an ideal

bandwidth w;4.,; and a maximum peak value M;,..;- The co-design procedure returns an
optimised value for w and M.

b




X-29 Pitch Rate Controller Design

The previous chapter presented a methodology to combine # ., Loop-Shaping with a Dynamic Inversion
schematic. In this chapter, this methodology will be used to develop a pitch-rate controller for NASA’s X-29
experimental aircraft. The X-29 constitutes a particularly interesting case study since its highly unstable
configuration poses a great challenge to the design of flight control laws. For this reason, the X-29 aircraft
was one of the examples provided by Gunter Stein in his “Respect the Unstable” Bode Prize lecture (Stein,
2003). Thus, if the proposed procedure enables the designer to systematically address robustness and
performance trade-offs for a highly unstable plant with limited stability margins, then this demonstrates
the potential applicability of the developed method for tuning DI controllers with guaranteed robustness
margins.

6.1. X-29 Model

The X-29 is a former NASA research aircraft featuring a forward-swept wing design, developed to explore
potential aerodynamic benefits made possible by advanced composite materials engineered for aerody-
namic efficiency. The wings are swept forward instead of aft, and a large canard surface was positioned
close to the main wing to leverage beneficial aerodynamic interactions (Webster & Purifoy, 1991).

Since the centre of pressure (CoP) is located ahead of its centre of gravity (CoG), the airplane is
open-loop unstable. A positive pitch motion increases the generated lift, which acts through the CoP —
CoG offset to produce a positive pitch moment, further increasing the angle of attack and leading to a
divergent (unstable) pitch attitude. While designed to be modestly unstable in the transonic and supersonic
flight regimes, the X-29 exhibits a more accentuated instability at subsonic speeds. This is the result of
a basic aerodynamic phenomenon that moves the centre of pressure of a lifting surface sharply aft as
speeds go from sub- to supersonic. The associated short-period linearised dynamics of the X-29 exhibit
two roots, one stable and one unstable, with the unstable real pole reaching values as large as +6 rad/s
(Stein, 2003).

6.1.1. Open-Loop Analysis

The flight condition (M = 0.9 and altitude = 8000 ft) chosen for the controller's design is extremely
challenging due to the plane’s violent instability and the aforementioned limitations. The linearised state-
space models for different flight conditions can be retrieved from Bosworth, 1992. However, given that
there are 3 different longitudinal inputs - a canard, a symmetric flap, and a strake flap (see Figure 6.1) - the

87
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27 ft 2.44 in. —™

Figure 6.1: Three-view drawing of the X-29A airplane depicting the various control surfaces. Image
retrieved from Kehoe et al., 1990.

Figure 6.2: Grumman X-29 flight tests [Credit NASA].

control allocation problem adds an extra degree of complexity to the problem. Therefore, the short-period
dynamics model from Lavretsky and Wise, 2024 was used, where a linear combination of the 3 inputs is
used to achieve a single virtual input ¢., which makes the nature of the problem SISO:

. Za Zq de _ _
«Q _ A 1+ o o n T 5, = 2.241  0.9897 « n 0.2331 5
q M, M, q Ms, 44.74  —0.9024 q —45.93
6.1)

In order to model the actuator dynamics, a second-order transfer function was used (Lavretsky & Wise,
2024):

o be(s) w? B 702
Gaetl8) = T = 2w T wZ ~ 52+ (2)(0.7)(70)s + 702 (6.2)
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Figure 6.3: Open-loop response of the X-29 short period dynamics.
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Figure 6.4: Pole-zero map of the X-29 short period dynamics.

As can be observed in Figure 6.4, the open-loop system has an unstable pole at p = 5.12 rad/s. This
unstable RHP pole imposes a lower bound on the allowed bandwidth, with an approximate bound of
w, > 2p (Skogestad & Postlethwaite, 2005). Therefore, the crossover frequency of the shaped plant G,
should be made to be at least w. > 2p = 10.24 rad/s.

6.2. Continuous-Time Design

In this section, the procedure outlined in Chapter 5 will be used to optimise the gains of a Hybrid IDI
continuous pitch-rate controller for the X-29. First, an initial verification of the procedure will be conducted
without including any model-following requirements, and, upon the verification of its success, a 2DoF
Hybrid IDI controller will be tuned, including model-following requirements using the co-design procedure
described in Section 5.3.2.
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6.2.1. Initial Verification

In order to boost the low-frequency gain of the open-loop response, have a -20 dB slope around crossover,
and have the crossover frequency at the desired value of 10.2 rad/s, W, was set as a PI, while, for simplicity,
W5 was set to 1.

K, Kps+K; Ky(s+K;/K,) _0.24183(s + 8.166)

S S S S

Wiy =Kp,+ (6.3)

The obtained shaped plant, given by G, = G, W} fulfils the desired shaping, as can be observed in
Figure 6.5. In order to assess if the following shaping of the plant is compatible with a robust design, a
suboptimal ~;;, was computed with a tolerance of 1e-3 from the optimal ~,,;, associated with the shaped
plant G,. The obtained value for v, is equal to 2.3181, which corroborates that the shaped plant is
compatible with a robust design since it is below 4 as suggested in the # ., LSDP guidelines (Hyde, 1995).
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Figure 6.5: Shaping the open-loop plant G,; with T/, to achieve desired crossover frequency
requirements.

As an initial verification step, the procedure is implemented without any model following requirements
in order to assess if the structure of the Hybrid IDI is compatible with the standard #., Loop-Shaping
controller K. This boils down to the implementation described in Figure 5.15, and the results are presented
in Table 6.1.

Table 6.1: Optimization gains of the Hybrid IDI using the H., LSDP.

Optimization Virtual Control Inversion Loop
Parameter Yeh v K, K; Wip K, W,
Value 2.3181 2.3622 | 12.7882 36.2545 52.12 | 0.3060 80.62

As can be observed, the obtained ~ is similar to ~;, which attests to the success of the optimization.
If we first inspect the Bode plots of the full-order H, LS controller and the tuned Hybrid IDI, it becomes
evident that they are virtually identical, as demonstrated in Figure 6.6. Moreover, examining the obtained
open-loop gain at the plant input in Figure 6.7 confirms that their open-loop responses are also nearly
identical. Therefore, it is demonstrated that under the hypothesis that the Ky-;pr has a compatible
structure to that of K, the non-convex #., synthesis displayed in Figure 5.15 results in v — ~, and
Kyg-ipr — Ks.
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Figure 6.6: Gain and Phase comparison of standard full-order ., controller and tuned Hybrid IDI.
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Figure 6.7: Open-Loop gain at plant input of standard full-order ., controller and of the tuned Hybrid IDI.

6.2.2. 2DoF Continuous-Time Design

After verifying the compatibility of the procedure, the next step is to address the model following requirements.
Given that the crossover frequency was set to 10.2 rad/s and that the reference model T;.. should have
a compatible bandwidth (Skogestad & Postlethwaite, 2005), the following points in the CAP and Gibson
criteria were chosen:

15.2(s + 5.527)
2+ (2)(0.6)(9.17)s + (9.17)2

Tref - (64)

The procedure outlined in Section 5.3.2 is then implemented to include the model following requirements
via a co-design procedure, and the control architecture used is the one depicted in Figure 5.25. The results
of the optimisation are presented in Tables 6.2 and 6.3.
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Figure 6.10: Reference model T;..; chosen according to the CAP and Gibson criteria.

Table 6.2: Filters setup and optimisation result of the Tuning Goals.

Shaping Filters NCF Rob. Soft Goal | Co-Design Soft Goals | MF Hard Goal
Parameter Wi Wy Yeh y We M, Wing
Value 0.24183(s + 8.166) 1 | 2.3181 2.7452 2.7452 2.7452 0.9999
S
Table 6.3: Optimisation gains of the Hybrid IDI using the # ., LSDP.
Virtual Control Inversion Loop Feedforward MF Filter W,
Parameter K, K; Wip K. wH, Kyy A, We M,
Value 9.6493 39.3402 45 | 0.3963 67.24 % 0.3 54.6394 0.9608

From the optimisation results, it can be observed that the deterioration of the ~-value is higher than
in the 1DoF case presented in Table 6.1. This is expected given the imposition of the model-following
requirements. Nevertheless, the obtained ~ is still reasonably close to ~,;, which hints at a successful and
robust design.
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The co-design TuningGoals have the same value as the ~, which corroborates that these constraints
were adequately scaled to be competitive with the NCF robustification one (recall the discussion in Section
5.3.2). In order to achieve this scaling, the desired bandwidth value was set to w.,,.,, = 150 and the
desired peak value was set to M., ,, = 0.35. The optimised values for w. and M. will, of course, never
reach these desired values and the amount by which it violates this (soft) constraint is given precisely by
the value of the co-design TuningGoals. If the designer were to increase w.,,,,, and decrease M., ,
more, the values for the three soft constraints would increase, making ~ larger, but the optimized value
of w, would increase and M, would decrease. In other words, the designer would be demanding higher
model-following performance from the system, which would come at the cost of robustness. Defining we,,.,,
and M.,, ., (and even A.) might require some iterations to strike the desired balance between robustness
and performance. It is important to stress that inadequately scaling the co-design goals by setting a
.00, @nd a high M., . will lead to poor model-following performance, since from an optimization
perspective, minimization of v, and thus, robustness, is more easily achieved when the model-following

requirements are less demanding.

even

low w, deal

The low-pass pole wy,, of the virtual control law K, was manually set to 45 rad/s in an ad hoc manner, as
this frequency lies above the crossover frequency but well within the controller bandwidth. This parameter
was selected a priori, as it simplifies the optimisation process by reducing the number of parameters to
be tuned. The PI gains are relatively high, which is justified by the severe instability of the open-loop
system, necessitating large control signals for stabilisation. The optimisation takes full advantage of the
Hybrid inversion structure, as can be seen by the intermediate value for the K. gain. With respect to the
feedforward element, the condition 7,4 > 7,44 indicates that it speeds up the system response to satisfy
the model-following requirements.

In order to get a more complete picture of the performance of the tuned controller, the famous “gang-of-
six” closed-loop relationships, the open-loop response and how it compares to the desired shaped plant,
the model-following performance, and the classical and disk-based margins will be analysed.

From the input and output broken-loop response (L; and L,) in Figure 6.11, it can be observed that they
have a similar shape to the shaped plant G;. This is a typical property of the ., LSDP and once again
hints at the success of the design procedure to tune a Hybrid IDI using the ., LSDP. The cross-over
frequency w. = 12 rad/s is at a slightly higher frequency than the one set by G, which was w,, , = 10.2
rad/s, but it is still at a quite reasonable value. All the CL transfer functions exhibit a desirable response,
with the exception of K'S,. As described in Chapter 3, at low frequencies, K S, depends only on the
open-loop plant G. At high frequencies, on the other hand, it depends mostly on K, and it is required to
have low controller gain, such that ¢[KS,] < o[K] <« 1. This motivated the inclusion of a low-pass filter in
K,(s), but due to the parallel nature of the Hybrid IDI architecture, this alone is not sufficient, as explained
in Section 5.3.3. This is the reason why K S, does not roll off at high frequencies. When a more complete
approach to control design is taken, with the inclusion of digital effects, the inclusion of an anti-aliasing
filter will solve this issue, as it is shown in the following Section 6.3.

In terms of step-tracking performance, the pitch rate response to a step input closely matches the
reference model T,..; response, as can be observed in Figure 6.12. The model following error is tightly
bounded by WTZ}, as can be seen in Figure 6.12. This is expected, given the model-following hard
constraint value of 0.9999. Given that T;..; was chosen based on level 1 handling qualities requirements,
the fact that the pitch-rate response closely matches T;..; suggests that predicted level 1 handling qualities
are achieved. However, the present work did not go beyond this analysis in terms of predicted handling
qualities since it is not the primary scope of the research. It is therefore highly recommended that this
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aspect is further studied in future research.
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The classical gain and phase margins adhere to the golden rule for certification of a minimum Gain
Margin of + 6dB and minimum Phase Margin of + 45° (Dobos-Bubno & Hartsook, 1977; Seiler et al.,
2020). The disk-based margins also exhibit healthy values.
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Figure 6.13: Classical margins for the continuous-time tuned Hybrid IDI controller.
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Figure 6.14: Nichols plot and Disk-based margins for the continuous-time tuned Hybrid IDI controller.

Table 6.4: Classical and Disk-based margins for the continuous-time Hybrid IDI design.

. Disk-based
Classical
S-T(c=0) S(c=1) T(oc=-1)
GM (dB) -8.80 6.93 12.58 3.93
PM (°) 51.01 41.52 44 .98 33.22

The discussion and the results presented above demonstrate a successful and robust Hybrid IDI
controller. However, it will be demonstrated in the following section that when digital effects are included,
the continuous-time results are overly optimistic.
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6.3. Digital Design

In the previous section, it was demonstrated that a continuous-time design of the pitch-rate controller
yielded acceptable results, given the system’s limitations. However, control laws are usually implemented
in digital form on modern aircraft. These digital, or discrete-time, controllers include discretisation effects
that are not considered during a continuous-time design (Stevens et al., 2015).

The simplest way to approach digital control design is to transform a designed continuous-time controller
to a discrete-time controller using continuous-to-discrete transformation methods, such as the bilinear
transformation (BLT) or the matched pole-zero technique. This continuous controller redesign approach
has the advantage of allowing the sampling period T' to be chosen only after designing the continuous
controller. However, controller discretisation methods, such as those based on the bilinear transform
(BLT), are approximations. As a result, the sampling period 7' must be sufficiently small to ensure that the
digital controller closely replicates the performance of the original continuous design (Astrém & Wittenmark,
1997).

Another approach is to take into consideration the properties of the sampling process and also the
computational delays by modifying the continuous-time controller to include continuous-time approximations
of these digital effects. Given that in this procedure, the effects of discretisation are considered (to a certain
extent), the discretisation of the modified continuous controllers results in a digital control with improved
performance. This is the approach used throughout this section (Stevens et al., 2015).

In order to simulate a digital controller, the scheme shown in Figure 6.15 is used. There are multiple
elements used to simulate the interaction between a continuous-time plant and a discrete-time controller,
such as zero-order hold (ZOH), computational delays, and analogue-to-digital (A/D) converters. The idea
behind the modified continuous-time controller design is to model these effects using continuous-time
transfer function approximations.

The Zero-Order Hold is a D/A hold device, required to reconstruct the commanded signal u.,,4 from a
sampled u..,q,, and its effect, together with the sampler, can be approximated by:

1—e 5T
Anti-aliasing filters are introduced using, usually, analogue circuitry in order to prevent aliasing effects
of high-frequency measurement noise. These filters are introduced after the measuring devices and before

the samplers, and take the form of simple low-pass filters given by:

H, =2 (6.6)
s+ a

The delay associated with a computational time of A has the following transfer function:

Geomp(8) = e, (6.7)

In order to design a continuous controller which takes into consideration these multiple discretisation
and anti-aliasing effects, these are re-imagined as being part of the plant to be controlled. However, the
approximations of the ZOH and of the computational delay are not rational; thus, Padé approximants of
e~*2 and e~*T are used to approximate these effects via rational transfer functions. The higher the order
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of the transfer function used, the better the approximation. For this reason, higher order transfer functions,
as opposed to the typically first order used in many applications, of the computational delay and the ZOH
plus sampler, respectively, were used (Stevens et al., 2015):

(sA)2/20 — 2sA /5 + 1
(sA)3/60 + 3(sA)2/20 + 35A/5 + 1

Gco’mp (5) - (68)

—(sT)*/840 + 23(sT)% /840 — sT /14 + 1
(sT)3/120 + (sT)2/14 4+ 3sT/7 + 1

Gos(s) = (6.9)

Therefore, by including all of these effects directly into our continuous-time design, in the final step,
when the tuned continuous-time controller is discretised using the BLT method (also referred to as Tustin’s
method), the final digital controller will have a better performance. It is important to notice that the anti-
aliasing filter is usually implemented using analogue circuitry, thus making it part of the plant, while Gor.p(s)
is not explicitly implemented since it is a model of the computation delay and Go;(s) is implemented by the
ZOH and the sampler.

Figure 6.15: 2DoF 7., Loop-Shaping Design Procedure for Digital Hybrid IDI controller structure.

6.3.1. “Respect the Unstable”: A Cruel Lesson on the Fundamental Limitations of

Control Systems and Conservation of Dirt

In his Bode Prize lecture, Gunter Stein discussed the importance of the Bode Integrals in understanding
the fundamental limitations associated with the control task. The integral in Equation 6.10 applies to stable
plants, while the one in Equation 6.11 applies to unstable plants. These integrals can be interpreted as
conservation laws. They explicitly indicate that a specific quantity, the integrated value of the logarithm of
the sensitivity function’s magnitude, remains constant under the influence of feedback. These relationships
apply to every controller, regardless of how it was designed. Enhancing sensitivity in one frequency
range comes at the cost of sensitivity deterioration in another frequency range, and the price to be paid is
higher in case the plant is open-loop unstable (Stein, 2003).
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/OO In[S(jew)| dw = 0 (6.10)
0

N,

/ooln|5(jw)|dw:7r~zije(pi) (6.11)
0 i=1

Stein proposes that this quantity being conserved, the integrated log of sensitivity magnitude, be called
“dirt”. As a result, a control engineer’s task is, in Layman’s terms, that of a ditch digger: to shove dirt from
a certain frequency to another frequency to meet certain requirements, as illustrated in Figure 6.16. In this
context, when a designer employs more abstract tools, such as linear quadratic Gaussian (LQG), H,
or another method, it can be seen as remotely operating a ditch-digging machine which moves the dirt
according to the set of weights specified by the designer, as exemplified in Figure 6.17 (Stein, 2003).
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Figure 6.16: Sensitivity reduction at low frequency  Figure 6.17: Sensitivity shaping automated by
unavoidably leads to sensitivity increase at higher modern control tools. Image retrieved from Stein,
frequencies. Image retrieved from Stein, 2003. 2003.

For unstable plants, the integral relationship in 6.11 dictates that the area above the 0 dB is at best
equal to 7 times the sum of the real part of the unstable poles of the plant. Consequently, the more unstable
the plant is, the higher the area above 0 dB. One has to wonder about the possibility of just spreading the
“dirt” across the infinite frequency to make the layer extremely thin, thus making the peak of the Sensitivity
function close to 1. Unfortunately, the harsh reality is that in control, there is no such thing as “free lunch”.
There is an upper bound frequency up to which the designer can pile dirt up, named available bandwidth
Q.. The available bandwidth, as defined by Stein, 2003, is “the frequency up to which we can keep GK (jw)
close to a nominal design and beyond which we can only guarantee that the actual loop magnitude will
attenuate rapidly enough”. This is an a priori constraint imposed by the physical hardware.

As previously discussed, RHP poles dictate lower bounds on the crossover frequency, and, conse-
quently, also on ;. Furthermore, performance requirements might also impose a lower bound for 2.
Therefore, the region where the “dirt” can be piled up is limited according to the performance requirements
and the physical hardware. The more the performance requirements and the worse the physical hardware,
the shorter the frequency region. Given the integral relationship in 6.11, for a violently unstable plant, there
is a minimum peak value M, for the sensitivity function, as demonstrated in Figure 6.18.
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The prototype sensitivity shape, idealised as a piece-wise continuous straight-line approximation,
displayed on a log-log plot in Figure 6.18, can be defined as (Grauer, 2025):

Maw =y <y

1S(jw)| =4 My, O <w<Q (6.12)

1, Qy <w

Defining > Re(p) = p, and substituting the straight-line approximations of the sensitivity function in
Equation 6.12 into Equation 6.11 allows the Bode sensitivity integral to be written as:

951 Qa 0
/ In’MS(w)‘dw—i—/ |n|MS|dw+/ In|1l|dw = 7y, (6.13)
0 95 o Q.

These integrals evaluate to:

O [IN(M,) — 1] + (R — ) IN(M,) + 0 = 7p,,, (6.14)

from which the peak sensitivity M, can then be solved for as:

(6.15)

]\/[s =exp |:W:|

Qa

The X-29 was one of the examples Stein, 2003 used to demonstrate the power of the Bode integral
to understand the physical limitations of a system. He considered a flight condition where the plane was
even more unstable, with a pole at 6 rad/s and then used the physical hardware information of the sensors,
control processors, actuators, aerodynamics and airframe structures (fuselage bending modes) to establish
Q.. The limiting factor was established as being the aircraft's mechanical structure and the sampling
rate of its computers, which determined 2, to be approximately 40 rad/s. More recently, the work of
Grauer, 2025 offers a new perspective on the computation of 2,. Stein then used the unstable nature
of the plant and the performance requirements to choose 2; equal to 3 rad/s. Based on this frequency
region and using the relationship in 6.15, the resulting smallest sensitivity penalty M, is approximately
1.75. Itis well known that traditional phase margins are given in terms of the peak of the sensitivity function
M, by PM = 25m'1(ﬁ). Therefore, a PM of 35° is the largest phase margin attainable for the flight
condition at hand and gi\/en the hardware limitations. This value is below the golden rule of 45° of PM
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and 6 dB of GM for certification (Dobos-Bubno & Hartsook, 1977), which led to the necessity of creating
special certification requirements for this experimental aircraft to fly. The contractor decided to relax the
requirements to 4.5 dB and 30°—assuming all known high-order dynamics were accounted for in the
analysis — while the U.S. government flight test team opted to mandate flight-measured stability margins,
setting minimum margins of 3 dB and 22.5° (Clarke et al., 1994).

This means that, irrespective of the chosen control technique to design a flight controller for X-29,
regardless of whether it is LQG, H., or some other control technique, the maximum that can be achieved
is limited. It is noteworthy that this study did not entail the computation of a single controller. Nevertheless,
the designer possesses a comprehensive understanding of the maximum achievable performance of any
controller that may be developed for the system.

For the continuous design, good results were obtained for the classical gain and phase margins (-8.8
dB of GM and 51°). However, these were obtained by spreading the “dirt” of the sensitivity function across
a large frequency interval, resulting in a smaller peak value of the sensitivity function, as can be seen
in Figure 6.11. In reality, when the physical limitations of the hardware are considered, the discussion
presented above evidences that the continuous-time results are overly optimistic, as it does not consider
the fundamental limitations that impose a lower available bandwidth ©2,. When considering a digital design,
the limitations imposed by the sampling rate of the computers appear, which contribute to limiting the
available bandwidth ©,. As such, the “dirt” can not be spread thin across a large frequency interval,
resulting in a larger peak value for the sensitivity function and, hence, smaller guaranteed gain and phase
margins. The limitations imposed by structural dynamics were not considered in the scope of this research.

6.3.2. 2DoF Digital Design

As mentioned before, the X-29 is a prime example of how hardware limitations impose limits on what the
control system can achieve. The On-Board flight computer had an 80 Hz sampling rate, which was split
in half for each control channel: longitudinal and lateral (Bosworth, 1992). As a result, the longitudinal
controller had a sampling frequency of 40 Hz, or, in other words, a sampling time 7' = 0.025s. Additionally,
NASA reports claim that the computational delay A was, on average, 10 ms (Bosworth, 1992). Given that
the sampling frequency for the longitudinal controller channel is 40 Hz, the Nyquist frequency is equal to
20 Hz. Thus, the anti-aliasing cutoff frequency was selected to be 19 Hz, just below the Nyquist frequency.
Furthermore, as standard guidelines point out, the maximum frequency of the controller poles should
be well beneath the Nyquist frequency. The maximum pole frequency was set to 12.5 Hz, which is still
relatively high given the Nyquist frequency, but it was considered that the challenge and the limitations of
the problem at hand required so to achieve a controller with good performance.

Given the challenges that arose due to the reduced sampling rate available to control a highly unstable
aircraft, the feedforward order was increased to a second-order transfer function, given by:

(s+ 2z1)(s + 22) K (s 4+ 2z1)(s + 22)

= 6.16
s2 + 28wns + an s2 + (2)(1)(wma$)3 =+ w72naw ( )

Kypp(s) = K

where the poles of the feedforward controller were fixed to the real axis at the maximum allowed frequency
Wmae = 12.5 Hz = 12.5 - 27 rad/s. Due to the high-frequency nature of these poles, which will appear as
closed-loop poles of the system, their effect is negligible. This leaves 2 zeros, which can be used to cancel
out undesired dynamics and achieve a better model following response.
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Furthermore, the pre-compensator filter 1/; was slightly adjusted in order to increase the +,;, associated
with the shaped plant G, by moving the zero of W to a slightly lower frequency. The new W is given by:

~0.25519(s + 7.166)
S

Wy

(6.17)

The non-smooth ., minimisation optimization tool in systune was then employed as displayed in
Figure 6.15, and the results are presented in the tables below.

Table 6.5: Filters setup and optimisation result of the Tuning Goals for the digital design.

Shaping Filters NCF Rob. Soft Goal | co-design Soft Goals | MF Hard Goal
Parameter Wi Wo Yeh 5 We M, Wit

0.25519(s + 7.166)

S

Value 1 | 2.9030 3.3501 3.3501 3.3501 1.0000

Table 6.6: Optimisation gains of the digital Hybrid IDI using the LSDP with model-following requirements.

Virtual Control Inversion Loop Feedforward MF Filter Wi, ¢
Parameter Kp Kz Wip Kc W, Kff Ae We Me
10.85(s2 + 28. .
Value 9.86 27.99 4500 | 0.38 78.54 0.85(s” + 28.67s + 573.70) 0.36 26.86 1.17
(s+ 78.54)2

From the optimisation results, it can be seen that even with the adjustment of the W, filter, the inclusion
of the digital effects led to a deterioration of the maximum achievable ~,;, with an increase from 2.3181 to
2.9030. The obtained ~ is relatively higher than ~,;, but still within the acceptable interval of 1 to 4.

Just as in the continuous-time optimisation, the co-design TuningGoals have the same value as . Given
the robustness challenges that arose from the limited sampling time, the model-following requirements
had to be relaxed. The desired bandwidth value was set to w,,,. ,, = 90 and the desired peak value was
setto M., ., = 0.35, which reflects a lower value for w,,,. ,, compared to the continuous-time optimization.
Making w,,.,, larger would result in an even higher value for -y, so a compromise was made between
robustness and performance.

Similarly, the low-pass pole w;, was manually set to 45 rad/s. The integrator gain K; of the Pl has been
reduced, which comes at the cost of reduced performance to increase robustness. The proportional term
K, and the inversion gains K. and wy_ present values similar to the previous optimisation. As described
above, the poles of the feedforward element Ky, were set at the maximum allowed frequency and thus
have little impact on the response of the system. The motivation for this decision comes from the fact that
the earlier optimisations, where the location of the poles was unconstrained, resulted in the placement of
the stable poles at extremely high frequencies. The relevant elements to be analysed are the location of
the zeros of K, as they can be used to cancel the undesired dynamics of the closed-loop system and,
thus, improve the model-following performance.

Figure 6.19 illustrates the Pole-Zero map of the closed-loop system with and without the feedforward
controller. The closed-loop system without the feedforward element corresponds to the transfer function of
an input signal r entering the system after the feedforward element, while the transfer function from ¢....a — ¢
corresponds to the closed-loop transfer function of the closed-loop system with the feedforward element.
Since both the Hybrid IDI feedback elements and the feedforward elements were tuned simultaneously
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Figure 6.19: Pole-Zero map of the closed-loop system without the feedforward (» — ¢) and with the
feedforward element (¢.ma — 9)-

for both robustness and model-following performance, it is challenging to isolate the contribution of the
feedforward to performance. Nevertheless, from Figure 6.21, it is possible to attest to the success of the
feedforward element in achieving good model-following performance.
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Figure 6.20: Gang of six and broken-loop results for the digital Hybrid IDI controller.



6.3. Digital Design 103

1.6 -
__1
141 0L-- —Wmf
_U(mferr)
1.2+
-10 ¢+
1t i)
S
-20 +
wn
0.8+ 3 /
® /
0.6 Z-30
o
! >
0.4 C — -
! ) -40 -
0.2
50 L J
0 —(res 0
o 'Tref
-0.2 s s s \ | -60 \
0 0.5 1 1.5 2 2.5 10°

Frequency (rad/s)

Figure 6.21: Step-tracking performance and model following error for the digital Hybrid IDI controller.

One aspect that deserves attention is the fact that the K'S, response now fulfils the high-frequency
requirement o[KS,] < 1. This is the result of the anti-aliasing filter, which acts as a low-pass filter. In
this context, the reader may question the relevance of the low-pass element in K,(s). However, the
anti-aliasing LPF pole is placed at frequencies slightly below the Nyquist frequency (in this case, 19 Hz,
which is approximately 119 rad/s), while the maximum controller bandwidth is usually set way below this
value. The 45 rad/s value for wy, is well within the controller bandwidth and is important to contribute to
control signal attenuation at more intermediate frequencies.
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Figure 6.22: Classical margins for the digital Hybrid IDI controller.
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Figure 6.23: Nichols plot and Disk-based margins for the digital Hybrid IDI controller.

The performance deterioration of the system can be analysed through the input and output broken-loop
response. Compared to the previous optimisation, this decrease is attributed to the reduction in K; gain,
which results in a lower gain at low frequencies in the digital design. The deterioration of the performance
can also be attributed to the relaxation of the co-design goals, which resulted in WQ.} having a larger DC
gain, smaller bandwidth and higher peak value.

Table 6.7: Classical and Disk-based margins for the digital Hybrid IDI design.

. Disk-based
Classical
S-T(c=0) S(c=1) T(oc=-1)
GM (dB) -7.76 5.63 6.83 3.63
PM (°) 35.01 34.77 31.59 30.11

Even so, the fact that the digital effects and the hardware limitations constrain the available bandwidth
Q., means that there is a smaller region to pile up the “dirt”. This can be seen in the sensitivity plot,
where the sensitivity rolls off at a lower frequency than before and exhibits a higher peak value of M;.
Consequently, the robustness of the system is severely impacted. This justifies the higher ~ value and the
decreased classical and disk-based gain and phase margins below the typical requirement of 45° of PM.
The obtained value for the PM of 35° is in accordance with the X29's stability margins measured explicitly
in flight (Gera & Bosworth, 1987), as can be observed in Figure 6.24.
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Figure 6.24: Flight-measured pitch-axis Bode plot of two different control law iterations for the X-29. Even
the updated controller only had around 35° of PM. Image retrieved from Gera and Bosworth, 1987.

6.3.3. Discrete-Time Implementation of the Hybrid IDI controller

After the synthesis of the continuous-time Hybrid IDI controller with the inclusion of continuous-time models
of the digital effects, the last step is to transform the continuous-time controller to a discrete-time controller.
In order to do so, the bilinear transform, also known as Tustin’s method, was used using the sampling time
of T, = 25 ms based on the X-29 sampling rate.

Taa = 10ms oo oo oo oo oo

G(s)
Transport Delay Fmmmm
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ; B 1 Sampler
1 Ut | w 'Y Yr y(k)
Yemd ﬂ Kps(2) }—»Q?—»{ K,(2) J\/ —‘Lb{ Glaer(s) H Gap(s) }}—»{ alias(s) ZOH }—
Y O | |
: : 1 T, =25ms
|

discrete
) derivative

Discrete Controller
running at T = 25 ms

Figure 6.25: Implementation of the digital Hybrid IDI controller in MATLAB® Simulink.
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Figure 6.25 illustrates how the discrete-time Hybrid IDI controller was implemented in Simulink. The
plant dynamics G(s) and the anti-aliasing filter are implemented as continuous-time blocks. In order to
simulate the sampler, a ZOH block is implemented with a sampling time of T, = 25 ms. The Hybrid IDI
controller is a discrete subsystem with the same sampling time of T, = 25 ms. In order to differentiate the
output signal, the discrete derivative block is used, and given the internal Control Command (CC) feedback
structure, a Delay block is used on the CC signal with a delay length equal to one time step.
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Figure 6.26: Two alternative ways of synchronising measured outputs with the computed input by the

control system. In case A, the computed control signal to be applied at time ¢;,; makes use of signals

measured at time ¢;. On the other hand, in case B, the control signals are computed and immediately
applied. Image retrieved from Astrém and Wittenmark, 1997.

As described in Astrém and Wittenmark, 1997, to compute the control signal at a certain time ¢,
based on measured variables at a previous time t;, there are two possible approaches. For the first
one, case A, the signal measured at time ¢, is used to compute the control signal to be applied at time
tr+1, which means that the computational lag is fixed to be exactly one time-step cycle 7. The second
approach, case B, consists of changing the control signal as soon as the computation is made, which
effectively results in a computational lag equal to the computational delay Ty.;. Given the relatively high
sampling time T, of the discrete-time controller, the second option for the synchronisation of inputs and
outputs was chosen. In order to simulate this in Simulink, a transport delay block was used with T;;.; = 10
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ms, which results in u,4.; being delayed in comparison with w4, which, in turn, is synchronized with y(k).
Consequently, measurements at a time ¢, are used to produce an input command at time ¢, + Ty.;, thus
simulating the case B approach.

To analyse the nominal performance of the discrete-time Hybrid IDI controller, pitch-rate step-inputs
with amplitude equal to 5°/s were provided as a command signal y.,,,q resembling a doublet manoeuvre.
The same exact y.,,q is provided to the modified continuous-time Hybrid IDI controller in Section 6.3.2,
simulated in continuous-time. The pitch-rate response can be observed in Figure 6.27, and a zoomed-in
portion of the response is displayed in Figure 6.28. The results show that the discrete-time implementation,
despite the similar rise and settling time, results in a larger overshoot. This can be explained by the fact that
the ZOH and the computational delay continuous-time models used for the synthesis were approximations
that do not perfectly match the discrete-time implementation of these blocks. Furthermore, this specific
implementation of the CC signal contains an internal delay (see the delay block in the CC signal path in
Figure 6.25), which is unaccounted for in the design. This, together with the low sampling rate compared
to other fighter flight control applications, typically between 50 and 80 Hz (Kim et al., 2024), contributes to
the differences observed between the discrete-time controller and its continuous-time approximation.
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Figure 6.27: Pitch rate response of discrete-time Figure 6.28: Zoomed in pitch rate response of
Hybrid IDI controller and comparison with discrete-time Hybrid IDI controller.
continuous-time controller with modelled digital
effects.

Nevertheless, if the input u response of the discrete-time Hybrid IDI is compared with the continuous-
time one, it is possible to observe in Figure 6.29 that the differences are minimal. Figures 6.30 and 6.31
highlight the correct implementation of the synchronisation issue described above.

Overall, the discrete-time Hybrid IDI controller implementation evidences the success of the used
approach to optimise the digital controller: modify the continuous-time controller to take into account
discretisation effects, optimise it using the procedure described in Chapter 5 and then discretise the optimal
continuous-time controller. The differences in the response of the discrete controller to the continuous
counterpart can be attributed to the low sampling rate, the approximation nature of the ZOH and the
computational delay of continuous-time transfer functions.
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Implementation-wise, multiple improvements can be made to decrease the controller complexity and
better match the closed-loop response of the modified continuous-time design and the digital controller.
The use of a SCF structure, as described in Figure 5.12, would avoid the explicit discrete differentiation of
the output feedback, decreasing the controller complexity. The Hybrid IDI schematic can also be rewritten
equivalently, removing the algebraic loop associated with the CC signal and, thus, the delay on that signal
path in the discrete controller. This leads to the following control law (Pollack et al., 2024):

Uema(s) = (CB) ™' Ce(s)(v(s) = [1 = KcHe(s)|€mp — [KeHe(s)]sy) (6.22)
where C.(s) = (1 — K.H.(s))~'. Considering a first-order low-pass filter H,.(s) = Sf;f, and, conse-
quently, that C.(s) = ‘;Jr(ffiﬁf)wf then it is possible to rewrite Equation 6.22 as:

Uema(s) = (CB) ™ (Ce(s)v(s) — Ce(s)[KHe(s)]sy — Ea)

54wy Kowy (6.23)

=(©B)™! <s+(1—KC)wa(S) - msy - §MB) = (CB) ™' (v" — &umn)
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Figure 6.32: Equivalent Hybrid IDI structure without CC feedback, where the green blocks refer to the
tunable elements of the controller and the yellow blocks to the plant-dependent/physical blocks of the
controller; the insert shows a simplified implementation of the control law which does not require explicit
differentiation of the output variable.

This boils down to the equivalent regulation formulation of the Hybrid IDI control law using CC feedback
from Figure 5.12 as the one depicted in Figure 6.32. To avoid confusion, please note that, despite the
similar notation, the auxiliary regulation term C.(s) and the Control Command feedback signal CC refer
to different concepts. Similarly to the description of a scaled complementary filter (SCF) signal blending
implementation in Figure 5.12, it is also possible to implement this control law in a simplified way, as
described in the insert in Figure 6.32. This results in an equivalent control law that does not require explicit
differentiation or CC feedback.

An aspect that deserves attention in future studies is the analysis of the performance of the discrete-time
controller with a more complete nonlinear dynamics model. The current analysis is restricted to the use of
a linear model for the actuators and the short-period dynamics, which can yield overly optimistic results, as
it does not consider the actuators’ position and rate limits and their potential interaction with the nonlinear
aerodynamic forces and moments. Including these factors in the analysis could provide a more realistic
evaluation of the controller’'s performance, particularly under extreme flight conditions or during aggressive
manoeuvring, where nonlinear effects become significant.

6.4. Discussion and Conclusion

To further elaborate on the proposed procedure to tune Hybrid IDI controllers using the H., LSDP, the
block manipulation presented in Figure 6.33 is used (recall that throughout the procedure, it was assumed
that W, and W5 are invertible).

The closed-loop implementation reduces to simply having the controller Ky _;p; and the plant G,
as the introduced filters perfectly cancel with their respective inverses. However, by considering the
disturbances and outputs entering the specified locations, the standard # ., LSDP framework is recovered,
wherein the controller K*_ is computed to robustify the shaped plant given by W,GW;. Referring back to
the proposed procedure, it was assumed that Ky _;p; — W7 K, W5, implying that in the ideal scenario
where Kg_rpr = W1 K, Wa, then KX = W, 'W, K, ,WoW, ' = K.,. However, since Kg_rp; is highly
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Figure 6.33: Equivalent closed-loop representation with addition of “dummy” filters and its respective
inverses.

structured, it serves only as an approximation to K, = W; K., W5, and thus it is necessary that the structure
of Ky _py is sufficiently ‘rich’ such that K%, — K, and, therefore, ¢ — ¢,,:. Nevertheless, when the #.,
norm from [d, d;]T — [ys us]T is computed using this equivalent closed-loop representation, the resulting
~v-value matches exactly with that obtained during the synthesis procedure. This consistency underscores
the validity of the proposed method for tuning structured controllers, specifically the Hybrid IDI controller,
while maintaining the robustness guarantees of H, LS.

Hyde and Papageorgiou, 2001 makes use of a similar concept to analyse the robustness of different DI
controllers. The idea of the article is to generalise the analysis to any linear controller K, regardless of the
design method, using the NCF stability test, which is inherently integrated into the synthesis process of
H~, LSDP.

The approach involves transforming the controller and the plant into an equivalent normalised coprime
factor controller and its corresponding weighted plant, as illustrated in Figure 6.33. The goal is to determine
diagonal weights W3, W, such that W{lKW{l becomes the optimal normalised coprime factor controller
for the weighted plant W,GW,. This is achieved by solving (Hyde & Papageorgiou, 2001):

. ] w I ) 1%
min | Tisel. = min (1-GK)[ 1 @] 2=
Wi, Wa Wi1,Wa Wl_l K

oo

where d consists of [d, d;]T, e consists of [y, us]” and W7, W, are restricted to being diagonal, stable and
minimum phase. If the same values for W, and W are used, then ¢, yields the same e value obtained from
the structured H., minimisation. Nevertheless, as the analysis tool searches for W, and W, weights such
that the structured controller K = K, for the associated shaped plant G, W; and W5 are potentially very
high order terms, but the resulting ¢, = ¢,,;. This is something the synthesis procedure proposed in this
study can not guarantee, as the synthesized controller K is computed from chosen W, and W, weights,
and so one can only hope that the structure of K is ‘rich’ enough such that K — K,,; and, therefore,

€ — €opt-

The authors then make use of this tool to analyse the robustness of different dynamic inversion
controllers: NDI with a P gain in the virtual law control, referred to as Standard NDI, NDI with a Pl in the
virtual law control, referred to as P+l NDI, and what the authors refer to as Robust Inverse Dynamics
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Estimation (RIDE), which is essentially an unfiltered INDI controller. Their results demonstrate that both
the Standard NDI and the RIDE controller give very poor results in terms of ¢, while the P+I NDI gives
acceptable results. The fact that a simple proportional gain as the virtual control law gives poor robustness
is in line with the discussion conducted in Chapter 5. Moreover, the fact that the RIDE controller also gives
poor robustness is in accordance with the research results of Pollack, 2024, which demonstrated that INDI
is not necessarily more robust than its model-based counterpart and that its success in achieving a robust
design is dependent on the use of a synchronization filter H.. It is, therefore, natural that an unfiltered
implementation of INDI results in a controller with poor robustness.

Since its value remains primarily from an analysis standpoint, the designer must employ some
method/guidelines to design the virtual control law and “hope” that the a-posteriori analysis using this
tool confirms a successful robust design. The significance of the 1, and W, filters is also less clear in
this scenario, as they are computed only after the synthesis of the controller. On the other hand, the
procedure described in this study retains the core purpose of 17; and W, in shaping the open-loop
plant and, given a successful design, bounds the broken loop gain at the plant I/O. Moreover, the synthesis
results in a v = ¢! value, which ties directly to the robustness of the system to NCF uncertainty, and the
closer the values of € and ¢, the closer the obtained controller K is to the optimal LS controller K.
The gap €4qp = €opt — € is a direct indication of how ‘optimal’ the obtained controller is compared to the
optimal full-order H ., LS controller. Overall, the procedure effectively allows the designer to tune DI
controllers with a priori robustness guarantees.



X-29 Lateral-Directional MIMO Controller
Design

The previous chapter presented a methodology to combine # ., Loop-Shaping with a Dynamic Inversion
schematic. More precisely, the Hybrid IDI controller structure was tuned from a # ., Loop-Shaping synthesis
point of view. Nevertheless, the design and tuning of pitch-rate controllers may successfully employ simpler
classical tools, such as Bode plots, root locus, frequency domain analysis, and SISO loops (Skogestad
& Postlethwaite, 2005). The limitations of these more classical methods become evident for MIMO
applications, since the classical loop-at-the-time control comes to its limits when addressing systems with
high internal coupling, as it limits full exploitation of the concepts of directionality associated with these
systems. This motivated the origin of synthesis tools to address the multivariable nature of the problem,
from which H, control stands out. Therefore, it is only logical to assess the potential of the procedure with
a MIMO system.

This chapter aims to explore how the procedure can be extended to a MIMO case and evaluate the
potential of the design philosophy. Given the complexity of the task at hand, this chapter aims primarily
to start and open up the discussion rather than close it, which means that the results in this section are
predominantly preliminary and deserve further investigation. In order to demonstrate the expandability of
the procedure to a MIMO Hybrid IDI control architecture, a lateral-directional controller for the X-29 was
designed with the chosen control variables being the roll rate p and yaw rate r.

One of the main challenges of H., Loop-Shaping is precisely how to design the shaping filters W,
and Ws. For SISO cases, this part is somewhat trivial since shaping the singular value of a SISO system
corresponds to adjusting the gain of a single transfer function and without explicit regard to the plant
phase, as opposed to classical loop shaping. However, for MIMO cases, the task is more complex since
the singular values (MIMO ’‘gain’ of the system) are associated with the directionality (input and output
directions) of the system. This often implies a process of trial and error to come up with satisfactory filters
W1 and W, such that the shaped plant G given by W>GW; meets the desired shape (G. Papageorgiou,
1998). Hyde, 1995 provides a systematic method to design diagonal filters W, and W5, which works
particularly well for plants with dominant diagonal terms. However, as G. Papageorgiou, 1998 describes:

“Experience gained with designing # ., Loop-Shaping controllers indicates that diagonal weights do
not work well with plants that have strong cross-coupling between channels. The task of choosing W; and
W, for such plants can be difficult and time-consuming if done in an ad-hoc manner. Furthermore, there is

112
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no guarantee that the desired loop shape will be achieved.”

In this same work, G. Papageorgiou, 1998 proposes a systematic procedure to design non-diagonal
filters W1 and W5, which allows the designer to specify the desired loop shape more accurately as he
exploits more degrees of freedom. This work has caught little attention within the robust control community,
despite the implications that it has on making the design of the shaping filters more straightforward and
systematic. For this reason, the present chapter will also dive into this methodology and the implications it
has when integrated with the proposed procedure, which combines the H., LSDP synthesis with Hybrid
IDI control structures.

Consequently, this chapter is structured as follows: Firstly, the methodology for the design of non-
diagonal filters proposed by G. Papageorgiou, 1998 will be reviewed and re-created and used to systemati-
cally shape the plant for the lateral-directional control task. Secondly, the implications of using non-diagonal
filters to shape the plant, which in the standard # ., LSDP integrates the final robust controller K, and
to tune the Hybrid IDI lateral-directional controller, whose structure philosophy builds on decoupling the
action on the multiple channels, will be discussed. Finally, diagonal weights W; and W5 will be used to
tune a Hybrid IDI lateral-directional controller for the X-29 for a certain flight condition, using the procedure
described in Chapter 5.

7.1. Open-Loop Analysis of the X-29 Model

The linear state-space equations governing the lateral-directional dynamics of the X-29 at a flight condition
of 20,000 ft altitude and Mach 0.7 were obtained from Bosworth, 1992. The two control inputs are the
differential flap 6, and the rudder ¢,. (Bosworth, 1992). The controlled variables are the roll-rate p and
yaw-rate signals r.

Y, Y, Y, Ys, Ys,
Vz Vo Vo 1 ’B VLO ‘jo 5
=| Ly L, L, p | +| Ls, Ls 6“
7 Ns N, N, r N5, N, "

ISy

—0.1596 0.07150 —0.9974 —0.0005980 0.0006718 5
= —-15.20 —2.602 1.106 p |+ 1.343 0.2345 [ ]

6.840 —0.1026 —0.06375 r 0.08974 —0.07097
Pole Damping  Frequency (rad/s) Time Constant (s)
—2.45 x 10° 1.00 x 10° 2.45 x 109 4.08 x 1071
—1.87x 1071 +2.77% 6.72 x 1072 2.77 x 109 5.36 x 109
—1.87x 1071 —2.77i 6.72 x 1072 2.77 x 10° 5.36 x 10°

Table 7.1: X-29 lateral-directional poles at 20000 ft and Mach 0.7.

From Table 7.1, the roll subsidence mode can be identified from the single real negative root, while the
Dutch roll mode can be identified from the stable complex conjugate pair of roots.

The aileron and rudder actuator dynamics are modelled using fourth-order transfer functions retrieved
from Bosworth, 1992:
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Figure 7.1: Singular Value Decomposition of the open-loop plant GG,; including the X-29 lateral-directional
dynamics and actuators.

(54.1%)(71.4%)

Gs.(5) = Gs,(s) = (52 +2(1.53)(54.1)s + (54.1)2)(s2 + 2(0.735)(71.4)s + (71.42))

(7.2)

The resulting open-loop plant G,;, which incorporates the actuator and the lateral-directional dynamics,
has the singular value decomposition illustrated in Figure 7.1.

7.2. Procedure to Compute Non-Diagonal Weights
For clarity, the steps taken to recreate the approach will be stated below, but it is important to stress that
the procedure is the original work of G. Papageorgiou, 1998.

Procedure by G. Papageorgiou, 1998 to compute Non-Diagonal Weights for the # ., LSDP.
The enumerated steps are quoted from G. Papageorgiou, 1998:

Consider a linear time-invariant scaled nominal plant model G with m inputs and p outputs. To make
the following steps simpler, it is assumed that m = p, i.e. the plant G has the same number of inputs
and outputs. The first step of the procedure is to determine the desired loop shape. Afterwards,
the singular values need to be isolated in a way such that o;(i = 1, ..., m) denotes the *" singular
value of G and varies smoothly with frequency. This means that o, is not necessarily the maximum
singular value across frequency, but rather the ordering is such that it tracks the SV continuous
lines across frequency. The ordering of the singular values of G is according to the order at w = 0:

Yo =diag(o1,...,0m) (7.3)

Every o, is associated with a transfer function f;. The desired ‘" singular value of the weighted
plant is o;| f;|. Hence, the gain of f;, denoted by |f;|, is how the designer specifies the desired loop
shape. Itisimportant to note that f; is restricted to be a unitin RH ., i.e. f; cannot contain integrators.
This translates to the designer choosing a diagonal transfer matrix W = diag(f1, ..., fm), such that
the desired singular values of the weighted plant are:

SES = SeW = diag(oy, . .., 0m) x diag(|fil,- .., | fml)- (7.4)
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W is split into two diagonal transfer matrices II, T such that W = III". T reflects the desired
conditioning and singular values of W, and II the desired conditioning and singular values of W5.
Note that the designer is free to choose T' or II equal to the identity. Besides, there should be
no pole/zero cancellations between II and I' so as to not unnecessarily inflate the order of 11 and
I'. Following this, stable and minimum phase weights, 1W; and W5, are computed that shape the
open-loop plant such that the singular values of the weighted plant are close to:

ECCIYZS :HEGF:diag(0'1|f1‘,...,Um‘me. (75)

Computing W; and W5:

In the first step of the proposed design procedure described above, two stable and minimum
phase diagonal transfer matrices II, I" were chosen, reflecting the desired conditioning and singular
values of W, and Wy, respectively. This section describes how to compute stable and minimum
phase non-diagonal weights W; and W5 so that the singular values of the weighted plant are close
to &, ie.

|O’Z(W2GW1)7O'7|‘]C7H Sﬂ, W:L...,m, (76)

where ( is a function of frequency and 5 > 0, Vw.

1. Choose a frequency range [wr,, wg] that contains the dynamics of G around the target closed-
loop bandwidth and grid the range. At each frequency of the grid, perform a singular value
decomposition of G(jw)

G(jw) = Ug(jw)Za(jw)V (jw)", (7.7)

such that the ordering of the singular values in ¥ is uniform across the considered frequency
range. This means that each singular value as a function of frequency varies smoothly with
frequency. This ensures “continuous variation” of the elements of V" across [w;,,wy] when
the all-pass factors up to which V' is unique are carefully selected.

By “continuous variation” it is meant continuous variation when the grid is infinitely dense. It
is assumed that all the dynamics of Us and V' are contained in the frequency range |[w;,,wg];
this can be easily verified. If not, the designer must increase the frequency range.

2. Fitatransfer function to each element Vj; of V' (j, k = 1,...,m), without restricting the transfer
functions to be stable and minimum phase. Denote the resulting transfer matrix by V. The
better the fit, the smaller the value of §

GV (jw) = V(jw)] <8, Vw. (7.8)

The above inequality ensures that V is close to V outside the frequency range [wr,wr].

3. W =IIT, with II = diag(my, ..., mm) and T’ = diag(y1, - . . , ). If 8 is small 05 (GVT) ~ o4]7i],
but VT is not necessarily minimum phase and stable. Obtain a co-spectral factorisation of
¥ =VIr(Vr)™:
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VID(VD)™ = W, Wy, (7.9)

where W, denotes the co-spectral factor of ¥, Wy~ (s) = W{'(—s) and W;, W, ' € RH.. The
co-spectral factorisation can be obtained using the formulae given in Francis, 1987. Thus, W,
is stable and minimum phase and o;(GW;) = 0;,(GVT). Consequently, W; is the required
weighting filter.

4. To compute W5, perform an SVD of GW; at each grid point:

GWl(jw) = U(.jw)EGWl (jw)VGW1 (jw)*7 (7.10)

and fit transfer functions to the elements of U. Denote the resulting transfer matrix by UU. Then
take a spectral factorisation of UTI™IIU™ to obtain the weighting filter W,. Note that step 1
has to be repeated for GW7, as U (jw) # Ug(jw) because V is only an approximation of V.

As indicated in step 1, the designer must ensure that the elements of VV (and U in step 4) vary
“continuously” across the frequency range [wr,, wg], 0 that the fit obtained in step 2 is sensible. This
requires that the ordering of the singular values is uniform across the frequency range considered
in combination with careful selection frequency by frequency of the all-pass factors up to which V' is
unique. The MATLAB® svd tool arranges the singular values in decreasing order and, consequently,
it cannot be used directly. However, svd can be modified to guarantee uniform ordering of the
singular values across [wy,wp] by looking at the singular vectors frequency by frequency. If
G(jw) has distinct singular values, then V' is determined up to a right diagonal all-pass factor
¢ = diag(e’?, ..., e/%) with all §; € R (Horn & Johnson, 2012). If the designer ensures that the
ordering of the singular values of G is uniform across the grid, and solves the 2-norm minimisation:

aZ”’it =arg moin Ve, — vwk+17,;eja||2 (7.11)

at each pair of grid frequencies (wy, wi+1), where v,,, ; denotes the ith column of V (jws), then

post-multiplying V (jwg+1) by the all-pass factor LG guarantees “continuous variation”
of the elements of V. It is straightforward to show that minimization 7.11 has an analytic solution:

gy = =2y i Vi) (7.12)

According to G. Papageorgiou, 1998, the procedure can be used in two different ways:
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1. The designer directly designs non-diagonal weights that shape the singular values of the scaled

open-loop plant. However, since the weights are fully populated, it is difficult to intuitively reduce the
actuator usage. If the weights were diagonal instead, one could directly adjust the filter associated
with the actuator with the large usage. Designing non-diagonal weights directly might require the
engineer to modify the input scaling or change the shape of one or more of the singular values of the
weighted plant. Thus, it removes some of the designer’s insight and makes the tuning process less
transparent.

The designer adds the proposed designed procedure after initially designing diagonal weights 1/ and
Ws. The first step is to assess if the diagonal weights meet the control system design specifications.
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In case they do not, the non-diagonal weights are designed using the procedure for the weighted
plant W,GW;. According to Papageorgiou, this is a more intuitive approach as it allows for better
trade-off robustness properties at the plant input and output. For instance, if robustness to input
multiplicative uncertainty is poor and W is ill-conditioned, then the condition number of W; - a
diagonal weight - must be decreased and a non-diagonal W, designed to maintain similar nominal
tracking performance.

More details about the procedure and the guarantees associated with it can be found in the original
work of G. Papageorgiou, 1998.

7.2.1. Design of 7{,, Loop-Shaping Controller using Non-Diagonal Filters
This section is devoted to the use of the procedure described above to design a H., Loop-Shaping
controller using non-diagonal filters for a lateral-directional controller for the X-29 aircraft.

The first step is to choose the desired shape for the open loop. The most important decision is the
choice for the crossover frequency w., which was chosen to be compatible with the reference models for
the roll-rate and yaw-rate response. The reference model for the roll-rate response and for the yaw-rate
response was set as second-order models due to the inherent second-order response of the closed-loop
system with a Pl and the % closed-loop relationship between v and y from the dynamic inversion.

w? 82
Tpor = n - 7.13
fo 7 2 2wns + w2 24 (2)(0.707)(5)s + 82 ( )

2 2
Tys. = Wi _ g (7.14)

24 28wps+ w2 s2+(2)(0.707)(5)s + 52

Based on these reference models, the desired crossover was set to lie between 6 and 10 rad/s. In
order to leverage the procedure for the design of non-diagonal weights, the plant was first shaped by
diagonal weights. In this preliminary shaping, W; was set as a diagonal block of Pls and 1, was set as a
diagonal block of first-order low-pass filters:

Kp, (s+Ki; /Kp,) 0 40(s+4) 0
Wiy = - (7.15)
) 0 Kpy (s+Kiy/Kp,) 0 40(s+4)
Wip 45

s+wllpl O s+45 0
Waiiag = = (7.16)

Wipy 45

0 St+wip, 0 s+45

As can be seen in Figure 7.2, shaping the open-loop plant G,; with the diagonal filters W, and
Wa,.., did not produce the desired shape G. The frequency at which the highest and the lowest singular
value cross the 0 dB line is starkly different, and the lowest singular value exhibits insufficient low-frequency
gain and an undesirable flat response in the interval w €[0.1 1] rad/s. With this weighting filter structure, it
was difficult to avoid these issues, even after iteratively adjusting the filter gains on a trial-and-error basis.

However, it suffices as an initial shape of the OL response. The procedure described above is then
employed to design an additional non-diagonal W,", such that the shaped plant exhibits the desired
open-loop frequency response, where W, is given by:
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Figure 7.2: SVD of the open-loop plant G,; and of the initially shaped plant G with diagonal weights.

Sdiag

Wi(s) = Wiy, ()W) (s) (7.17)

The first step of the procedure is to select individual transfer functions f;(s) that shape the OL-response
0:(Gs) = o, f; of the plant to behave as G, .. Given that the plant was initially shaped by diagonal filters,
the “new” open-loop plantis G,,,, = Wa,,,,GaW1,,,,. In order to address the issues of this initially shaped
plant, the individual singular value lines are isolated, and then the individual transfer functions f;(s) are
selected such that o; f; results in the desired shaping. Based on the SV of G, in Figure 7.3, f; was set
as:

f1=0.2
fi= 544 (7.18)
fa= s+0.1

which results in the desired SV lines illustrated in Figure 7.4.
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Figure 7.3: Isolating the continuous Singular Values of the initial shaped plant G, -
As demonstrated in Figure 7.4, it is different to multiply the plant G,; with diagonal blocks containing
the individual transfer functions f; in its diagonals than it is to individually adjust the singular value lines

with f;. The goal of the procedure is now to compute a non-diagonal W;" such that G W, has an

Sinitial
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Figure 7.4: Desired Singular Values and difference to simply multiplying the plant G,; with IT and T".

SVD equal to the desired SV lines depicted in blue in Figure 7.4.

Providing IT and I to the algorithm replicating the procedure in MATLAB®, the outcome is the non-diagonal
filter W1". Figure 7.4 illustrates the open-loop response of Wy, G W1,,., Wi . As can be seen in Figure
7.5, the open-loop response successfully matches the specified desired shaping.

100
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Figure 7.5: SVD of G,,,, W, matching with the desired SV.

However, W, is typically a very high-order weighting filter (order 85 in this case) as the order depends
on the order used to fit V(jw) and the higher the order, the better the fit. Since it is impractical to implement
such a high-order weighting filter, ;" (s) is model-order reduced a posteriori.

Using balanced truncation techniques, the minimum order W' (s) could be reduced while still yielding
a good approximation in terms of o(G.,.., Wi | ~ o[G,,.,Wi] was order 3, resulting in the following
non-diagonal weighting filter state-space description:
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0.1388 —0.3080  0.2352 0.007016  —0.01504
0.1515  0.4096  1.837 | —0.0007371 0.002762
Wi = B\ 1 o6oa 4288 —0.8005 | —0.000274  0.01728 (7.19)
Ok | D 14.33  28.99 —20.28 02551  —0.07017
| 2107 1474 6.961 04024 0.8806 |

or, alternatively, the following transfer function block:

0.25512(54-0.5779) (5% +5+5.323) —0.070165(s+8.499) (s2—1.0415+2.201)
(5+0.1)(524+0.42965+7.771) (5+0.1)(5240.42965+7.771)
+ _
Wi . (s)= (7.20)
—0.40242(54+4.157) (5% 40.23295+7.856) 0.88959(s4+4.011) (5% +0.26085+7.883)
(s+0.1)(52+0.42965+7.771) (5+0.1)(52+0.42965+7.771)

The SVD plot of the full-order and the reduced-order W, (s) in Figure 7.6 illustrates that they match
accurately until around 1000 rad/s. The fact that they differ beyond this frequency is not problematic, given
that it is a frequency well above the available system bandwidth. To further validate the reduced-order
Wi (s), the open-loop response of the plant shaped with the full-order and the reduced-order is compared
in Figure 7.7. As can be seen, they are identical, which attests to the validity of the reduced-order model.
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Figure 7.6: SVD of the full-order W, resulting from the procedure and a model-reduced Wf:ed.

It has been demonstrated that the procedure was successfully understood and recreated to design a
non-diagonal additional weighting filter " to further improve the shaping of a previously shaped plant
G, with diagonal filters W, ,,, . and W, . What remains to be seen is whether the final shaped plant is
compatible with a robust control design using the H., Loop-Shaping.

The obtained suboptimal v > v,,:, associated with the shaped plant GG, computed with a tolerance of
1e-3, was 2.5401. This value lies well within the practical guideline that states that v should be below 4
(Hyde, 1995). The full-order H ., controller K, was then computed by solving the 2 AREs. The resulting
broken-loop response at the plant input L; and at the plant output L, of the controlled system is displayed
in Figure 7.8.

The order of the open-loop plant together with the order of the weighting filters results in a full-order
‘Hoo controller of significant order, given by order(K) = ng + 2n;1 + 2ns; in this case, ng = 11 (order 3



7.2. Procedure to Compute Non-Diagonal Weights 121

100

;

+
—Gy,, Wi
50 —G

Sdiag Wied)|

-100

Singular Values (dB)

-150

1072 10 10° 10! 10 10
Frequency (rad/s)

Figure 7.7: Comparison of the SVD of G wit

Sdiag lrea®

Wi and G

Sdiag
lateral-directional dynamics and order 8 actuator model), n; = 5 (order 3 non-diagonal weighting Wf;ed
and order 2 W1, ) and ny = 2 (order 2 W5, ), resulting in the order of the controller being 25. Given
that in this section, the main goal is not the practical implementation of the controller, its value will not be
presented. The reader can, however, use the values presented above for G, W1,,,,, Wa,,,, and Wlted to
recreate it.
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Figure 7.8: Broken-Loop response at the plant I/O of the full-order H ., Loop-Shaping controller
associated with the shaped-plant G Wit

Sdiag lred”

The results demonstrate that the broken-loop responses L, and L; closely match those of G, a key
indicator of a successful and robust H ., Loop-Shaping Design Procedure (LSDP). This alignment reflects
the effectiveness of the method, particularly given the small v value achieved. Furthermore, these findings
underscore not only the robustness of the approach but also its capability to simplify the design process
for weighting filters, making it more systematic and accessible.

While NDI-like control laws philosophies rely on model and sensor information to invert the dynamics in
a closed-loop fashion, this procedure for the design of non-diagonal filters makes use of the plant’'s model
information as a way to modify the singular values in an open-loop fashion, since the weights contain an
internal model of the singular vector matrices V' (jw) and U(jw). Nevertheless, what is interesting about
the non-diagonal filters’ procedure is that it connects more directly with the robust control theory since
robustness properties lie at the plant 1/0.
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7.3. Tuning a Hybrid IDI Controller Using the LSDP with Non-Diagonal

Filters

Essentially, NDI-like architectures aim to decouple the system dynamics via inversion so that channels can
be treated individually. In the case of the Hybrid IDI, the tunable elements which can be used to address
robustness are the virtual controller and the scaled complementary filter in the inversion. Both these
elements are diagonal blocks whose design philosophy often relies on treating the channels separately.
However, the decoupling of the dynamics is achieved in terms of the closed-loop relationship between the
virtual control signal v and the output y, and not in terms of the open-loop gain at the plant input and output.
More precisely, even if the closed-loop decoupling makes it possible to design the virtual controller for the
roll-rate p channel and the yaw-rate r channel separately, each controller will affect the singular values of
the open-loop gain at the plant input and output, and hence affect robustness. This implies that even if
the diagonal entries of the virtual control law controller are able to manipulate the decoupled closed-loop
relationships between y.,,4 and y, they might be insufficient to provide the desired open-loop response at
the plant I/O. When dealing with coupled systems, such as lateral-directional flight dynamics, the concept
of directionality associated with the input and output singular vectors plays an important role.

The non-diagonal filters resulting from the procedure contain an internal model of V(jw) and U(jw),
which allows it to ‘invert’ the dynamics in an open-loop sense. For the Hybrid IDI to be able to replicate the
Ks =W KW, it would be necessary that the tunable elements of the Hybrid IDI controller can be tuned
such that Kg_rp; — K. As a result, choosing the virtual control law to be a diagonal block of Pls and the
scaled complementary filter parameters fully decoupled, such that:

KPTJ + ;T’ 0

Ko (s) = (7.21)

0 Kp'r‘ + I(Sir

K. 0
K, — , (7.22)
0 K.,
H. 0 =T 0
H(.(S) _ p (S) _ s+wlpp (723)
0 H.(s) S

will impose structural constraints that may limit the possibility for Ky ;p; to be configured to mimic K
and yield a satisfactory ~, that is, a robust design.

In order to assess this, the weighting filters W, and W, defined in Section 7.2.1 were used together with
the Hybrid IDI structure displayed in Figure 5.15 to tune its elements using the H.-synthesis in systune.

Since the the controlled variables are roll-rate p and yaw-rate r, thatis y = P , and the inversion
T

requires full-state feedback, a g estimator is introduced using the model information:

B(s) = ﬁ Yo/Ve Yi/V—1] H (7.24)

r

Y
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The estimated states & can now be defined as:

Yy /Vo Y, /Vo—1
s=Yg/V, s=Yg/V,

Z(s) = |B(s) p(s) r(s)rzF(s) y(s) = 1 0 (7.25)
0 1

Consequently, the gain on the inversion path associated with model-based inversion &,,5 can be
defined as:

Vs/Vo YolVo Yo/Vo—1| | P

0 s—Yg/V, s—Yg/V,
Evp(s)=C AF(s)= 001 Lg L, L, 1 0 (7.26)
T Ng Np N, 0 1
A F(s)

while the error signal compensation e; can be defined as:

. e K., 0 H.,(s) 0 s 0
ec(s) = | *"| = KcHe(s)eg(s) = y—CC —¢&yp(s) | (7.27)
ez, 0 K. 0 H. (s) 0 s
K. H.(s) eg(s)

where CC =~ CBu.

Table 7.2: Optimisation gains of the Hybrid IDI lateral-directional controller using the LSDP with
non-diagonal W;.

Optimization Virtual Control Inversion Loop
Parameter Yeh v K,, K,. K;, K;, Wip,  Wip, K., K., WH,  WH,,
Value 25401 5.5796 | 5.7313 3.9807 26.7594 20.6121 45.00 45.00 | 0.8639 0.9959 9.0438 1.357

150

—G,
—L,
—L;

100

50 E

-50

Singular Values (dB)

-100

-150

-200 ' ! ! ! )
102 10! 10° 10! 10? 10°
Frequency (rad/s)

Figure 7.9: Broken-Loop response at the plant I/O of the Hybrid IDI controller tuned using the H., LSDP
with non-diagonal weights.
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Figure 7.10: Comparison of the SVD of the full-order H, controller K, and the Hybrid IDI Kg_;p;.

The results of the optimisation are presented in Table 7.2. As can be seen, the obtained ~ value is
considerably above -, and is higher than the maximum recommended value of 4, which indicates poor
robustness. The fact that 1, requires significant integral action (1, is comprised of W1, . which has
an integrator and ;" which further boosts the low-frequency gain of the shaped plant G,) justifies the
close to 1 values for K.. In other words, given the need to achieve such high gain at low-frequencies
the optimisation requires not only the integral action in the virtual control law but also maximising the
incremental nature of the inversion scheme. This can be seen in Figure 7.10, where the # ., LS controller
K, has a higher slope (in magnitude) than -20dB between 0.01 and 1 rad/s and so, as Ky _;p; is tuned
so that Ky_;p; — K, it results in double integral action at low frequencies. In doing so, the H. filter
bandwidth is made sufficiently low in order to ensure adequate roll-off at high frequencies. However, a
consequence of the relatively small bandwidth of H, is that the stability margins around crossover are
degraded, which helps justify the large ~ value obtained (Pollack, 2024).

If the broken-loop response at the plant I/O is analysed in Figure 7.9, the higher gain at low frequencies
compared to the full-order #, solution for the same shaped plant G (recall Figure 7.8) is confirmed.
Besides, compared to the ., solution, the Hybrid IDI controller seems to result in a more aggressive
transition around the crossover region, i.e. a steeper slope around crossover (compare L, and L; from
Figure 7.8 and Figure 7.9). As mentioned above, this can be attributed to the relatively small bandwidth of
H..

Overall, it is demonstrated that if the structure of the Hybrid IDI is not compatible with K, = W, K Wa,
then tuning a Hybrid IDI using the H., LSDP is unfruitful. This limitation is not only attributed to the
procedure but also to the H ., LSDP itself. The fact that the # ., LSDP has two separate steps, the design
of weighting filters and the synthesis of the robust controller K., makes it challenging to impose a specific
a priori structure to K. As the designer increases the complexity of the weighting filters to achieve a
better shape of the open-loop plant, so does the complexity of K. A possible solution is to increase the
complexity of the Hybrid IDI controller, namely, increasing the order of the virtual controller K, or by making
K., H. and K, full-blocks instead of diagonal. In this case, by making the structure of the Hybrid IDI more
‘rich’, it increases the compatibility with K, = W, K, W5. This, however, requires more research in future
studies.
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7.4. Tuning a Hybrid IDI Controller Using the LSDP with Compatible

Diagonal Filters
As was demonstrated in the previous section, having compatible filters with the structure of Hybrid IDI
is extremely important. This is due to the fact that the methodology of tuning a Hybrid IDI with the H
LSDP has its foundation on the premise that the structured controller K;_;p; has a compatible structure
to W1 K., W5 so that the tunable elements of Ky_;pr can be configured such that

Ky_1pr » WiKWa (7.28)

Thus, only diagonal W; consisting of Pls was chosen, and, for simplicity, W, was set to identity. In
general, W5 is chosen to be a low-pass filter (G. Papageorgiou, 1998), like it was done in section 7.2.1.
However, since in this procedure, it is required that W; and W, be invertible, it often involves adding
“‘dummy zeros”, i.e. minimum-phase zeros at very high frequency, such that the blocks become invertible.
However, it was found that these zeros on W, degraded the performance of the #,-synthesis, and so, it
was decided to simply set W, to identity. This is one aspect that deserves more careful consideration in
future research.

7.4.1. Choosing 1V

Unlike the SISO case addressed in Chapter 6, the choice of W in a MIMO setup is particularly challenging.
Given that the lateral dynamics are coupled, successfully following the guidelines proposed by Hyde, 1995
(which addressed a longitudinal model with dominant diagonal terms) proved to be challenging. Similar
guidelines were followed to the ones in 7.2.1 to shape the open-loop plant, but the choice of W; involved
a lot of trial and error and did not provide a way to accurately adjust the crossover frequency. The final
choice for W; was:

K, (S+Ki /Kp ) 10(s+7)
1 - 1 1 0 - 0
W, = _ (7.29)
0 Ky (5+Kiy /Kpy) 0 80(s+3)

which resulted in the following shaped plant:
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Figure 7.11: SVD of the shaped-plant GG, using diagonal weights.
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From the resulting shaped plant, a few remarks can be made. The first one is that the lowest singular
value o does not have sufficiently high gain at frequencies between 10! and 2 rad/s. In order to address
this, a low-frequency pole could be added to boost the gain at these frequencies, and another zero around
crossover to compensate for the increase in the slope introduced by the additional pole. However, given
the fixed structure of the Hybrid IDI, adding a low-frequency pole to W, (besides the already existing
integrator pole) would essentially require the inversion compensation scheme to use as much incremental
action as possible, i.e., setting K. = 1, limiting the effect the inversion scheme could provide in addressing
robustness, as was demonstrated in the previous section. Besides, it is not clear what element of this
Hybrid IDI could mimic the effect of the second zero introduced in W, when most tunable elements are
already constrained. In order to evaluate the compatibility of the shaped plant G, with a robust control
design, the suboptimal v, < v Was computed with a tolerance of 1e-3. The resulting v, = 2.3742
demonstrates that the shaped plant is indeed compatible with a robust design as dictated by the H,
Loop-Shaping theory.

Table 7.3: Optimisation gains of the 1DoF Hybrid IDI lateral-directional controller using the LSDP with

diagonal .
Optimization Virtual Control Inversion Loop
Parameter Yeh 01 K,, K, K;, K;, Wip, Wip,. K., K., WH,,  WH,,
Value 23742 27139 | 8.6098 4.1224 23.7803 7.5605 45.00 45.00 | 0.4860 0.1142 78.54 54.65
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Figure 7.12: Broken-Loop response at the plant Figure 7.13: Broken-Loop response at the plant
I/O of the full-order H ., controller K using I/O of the 1DoF Hybrid IDI controller using
diagonal weights. diagonal weights.

However, analysing the broken-loop response at the plant I/O displayed in Figure 7.13, the low gain of
the shaped plant G at low frequencies results in an even lower gain of the broken-loop gain. In fact, this
even leads to the lowest singular values crossing the 0 dB line at around 10~! rad/s, which anticipates a
slow response of the yaw channel (the lowest singular value is primarily associated with the yaw channel).

To evaluate the preceding statement, the closed-loop response of the Hybrid IDI controller, tuned solely
for robustness, is presented in Figure 7.14. This initial design excludes both model-following requirements
and a feedforward element. The results confirm the anticipated significantly slow response of the yaw
channel. While cross-coupling effects are reduced, they are not entirely eliminated due to inversion
distortions. Furthermore, these effects are also influenced by the slow dynamics affecting the yaw channel.

The inclusion of a feedforward element and model-following performance requirements is expected to
improve the closed-loop response of the controlled system. The H.,-minimisation problem displayed in
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Figure 7.14: Model-following performance of the 1DoF Hybrid IDI controller using diagonal weights.

Figure 5.19 is used to tune the 2DoF Hybrid IDI. The results of the optimisation are displayed in Tables

7.4,7.5and 7.6.
Table 7.4: Filters setup and optimisation result of the Tuning Goals.
Shaping Filters NCF Rob. Soft Goal Co-Design Soft Goals MF Hard Goal
Parameter Wi Wo Yth vy We, M., We,. M., Wing, Wing.
T0(s+7) 0
Value [ ’ I 2.3181 3.1309 3.1309 3.1309 3.1309 3.1309 | 0.9999 1.0000
0 80(5‘-%—3)

Table 7.5: Optimisation gains of the inversion and virtual control law of the Hybrid IDI using the #., LSDP.

Inversion Loop

Kc,‘ chp wHCr

Virtual Control

Parameter K,, K, K; K; Wip, Wip, K.,
Value 6.9573 1.8360 27.3910 7.8324 45.00 45.00 | 0.5397 0.9872 78.54 4.988

Table 7.6: Optimisation gains of the feedforward element of the Hybrid IDI and of the model-following filter
parameters using the ., LSDP.

Feedforward MF Filter W,,, s
Parameter Kyy, Ky, A, A, We, We,. M., M.,
Value 1‘81’&;8;2%%;;;3‘7) Ly fj_g;;fgg;‘33> 04111 0.2214 143.7295 79.8492 2.1916 2.1916

The obtained ~ value adheres to the typical guidelines for #., LSDP, and given all the model-following
requirements, its deviation from -, is acceptable. The large K., value can be explained by the model-
following requirements requiring a larger open-loop gain at low frequencies. The relatively low value for
the bandwidth of H,._ is in accordance with what is expected from large (close to 1) K. gains. The large
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values for the bandwidth w. of the model-following filters W,,,;, and W, suggest that desirable model-
following performance was attained. This is confirmed by analysis of Figure 7.17, which demonstrates that
the roll-rate and yaw-rate responses closely match the respective reference models. The performance
improvement can be explained primarily by the action of the feedforward element, but the elevated broken-
loop response at lower frequencies (compare Figures 7.13 and 7.15) also contributes to the latter fact. The
cross-coupling effects are minimal, but undesired slow dynamics still appear in the r.,,q — p channel. In
the tuning process, no consideration was given to these cross-coupling effects since the inversion scheme
should inherently eliminate them. In reality, there will always be some residual inversion error, resulting in
these cross-coupling effects, but the fact that they are quite reduced attests to the fact that they do not
require further attention in the tuning phase.
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Figure 7.15: Broken-Loop response at the plant I/O of the 2DoF Hybrid IDI controller using diagonal
weights.
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weights.
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Figure 7.17: Model-following performance of the 2DoF Hybrid IDI controller using diagonal weights.

Analysing the “gang-of-six” closed-loop relationships in Figure 7.16 reveals that despite the apparent
healthy shapes for most of them, K'S, presents itself as extremely problematic. At low frequencies, it
is required that a[K Sy is low (refer to the discussion in Section 3.3.2), and this essentially boils down
to having large plant gain, i.e. sufficient control authority. However, what is observed is that o[K Sy] is
extremely high as a consequence of the lack of control authority on the yaw channel (observe the low-value
for o[G ] at low-frequencies in Figure 7.1). As a result, despite the apparent robustness of the system, the
controller will produce large control signals, resulting in saturation of the actuators and possibly instability.
To demonstrate this, linear time-domain simulations of pitch-rate and yaw-rate doublet manoeuvres are

displayed in Figures 7.18, 7.19, 7.20 and 7.21.
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Figure 7.18: Time-domain simulation of the
pitch-rate p and yaw-rate r response to a pitch-rate
doublet manoeuvre.
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Figure 7.21: Time-domain simulation of the inputs
d, and ¢, to a yaw-rate doublet manoeuvre.

From the time-domain simulations, it is possible to confirm the extremely large control signals, which
are unrealistic in practical implementations. In Figure 7.18, it is possible to observe that the transient
response on the yaw-rate channel r results in a deviation from the reference signal r,.. s, which due to
the integrator term in K, and the incremental nature of the inversion, results in a continuously increasing
desired acceleration v,.. This, associated with a plant with low control authority on the yaw-rate channel,
will produce large rudder commands, as seen from the 4 to 8 seconds time interval in Figure 7.19. On the
other hand, requiring tracking on the yaw-rate control channel will also produce extremely large rudder
commands due to the low control authority on the yaw-rate channel, as seen in Figures 7.20 and 7.21.

The lack of control authority on the yaw-rate channel can be directly observed in the second row of the
control effectiveness matrix C'B:

1.3430
0.0897

0.2345

(7.30)
—0.0710

which demonstrates that large control deflections are required to produce acceleration on the yaw-channel
7. Alternatively, if an SVD of the inverse of the control effectiveness matrix (CB)~! is considered, it is
possible to infer that one singular value clearly dominates over the other, namely the one associated

with the input v, — e and output 4, demonstrating, once more, the issues associated with the yaw-rate
channel:

T
0.6099  2.0154 —0.1686 0.9857| |11.7351 0 0.0560  0.9984
(CB) '= =Uxvl=
0.7712 —11.5421 0.9857  0.1686 0 0.7324| |—0.9984 0.0560
(7.31)
where (recall the definition of e from Equation 7.27):
Oapa _q |vp— €
" =(CB) » (7.32)
Orppna vp — €
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Saturation and rate limits of the actuators are aspects that are not considered in the presented linear
H., LSDP to tune a Hybrid IDI controller and, when dealing with plants with control authority deficiencies,
can lead to unsuccessful control synthesis. If the time-domain simulations considered the actuator limits
established in Bosworth, 1992, poor robustness and performance are expected. Once again, the lessons
of Stein, 2003 on the importance of acknowledging the plant limitations for a successful control design task
are demonstrated.

7.5. Discussion and Conclusion

The present chapter highlighted the potential of the use of the procedure presented in G. Papageorgiou,
1998 to systematically design non-diagonal weighting filters W, and W5, which produce the desired shaping
in the context of the # ., LSDP. The procedure was successfully recreated and used to design a H .,
controller for the lateral-directional dynamics of the X-29 at a particular flight condition. Preliminary results
of combining non-diagonal weights with the tuning procedure of the Hybrid IDI using the H., LSDP did not
yield satisfactory results.

Nevertheless, it has been demonstrated that the choice of the X-29 lateral-directional dynamics was
an unfortunate choice due to the lack of control authority on the yaw channel. The low-plant gain at low
frequencies required essentially double integrator action to adequately shape the open-loop plant, which,
given the Hybrid IDI structure, imposed K. ~ 1, resulting in robustness challenges, i.e. a large v value.

The use of diagonal weights proved to be more compatible with the Hybrid IDI structure. The H., LSDP
tuning of the Hybrid IDI yielded an acceptable « value, and the included model-following requirements
were successfully met. Therefore, while the obtained ~ value for the Hybrid IDI controller is higher than ~;,
associated with the full-order ., LS controller, the Hybrid IDI controller enjoys a good level of visibility and
low complexity in the controller structure, favourable aspects to its implementation in a real aircraft system.
However, the lack of control authority on the yaw channel resulted in large control signals unfeasible in
practical applications due to actuator position and rate limits. The importance of understanding the lessons
taught by Stein’s Bode Prize lecture (Stein, 2003) on the fundamental limitations of control is then apparent.
This highlights the importance of adequately analysing the open-loop plant at hand and its limitations, since
most of these limitations can be immediately identified in this first stage, before even any control synthesis.

The current work did not, by any means, invalidate the idea of using non-diagonal weights with a Hybrid
IDI structure. It still holds its potential, but it requires the selection of a more adequate MIMO plant in future
studies to better assess its compatibility. Furthermore, the effects of the multiple Hybrid IDI elements in a
MIMO context still need to be better understood. While the work of Pollack, 2024 explicitly derived the
effects of the various elements of the Hybrid controller structure on the broken-loop response at the plant
input L;, that was done for a SISO plant. It is expected that in a MIMO scenario, the effects of directionality
play an important role. Therefore, some asymmetry is expected in how the scaled complementary filter
elements on each individual channel affect the overall broken-loop response at the plant 1/O.

Overall, it was demonstrated how the procedure to tune Hybrid IDI control laws using the H ., LSDP
can be extended to MIMO plants. In future research, it would be valuable to assess the procedure in a
MIMO plant which does not exhibit the control authority issues that the chosen X-29 lateral-directional
model does.



Conclusions & Recommendations for
Future Work

8.1. Conclusion

The present study’s research objective was to investigate how to combine ., Loop-Shaping and Nonlinear
Dynamic Inversion control with application to fighter aircraft flight control law design. The study proposed a
novel framework leveraging the # ., Loop-Shaping Design Procedure to optimise a structured linear variant
of Incremental Nonlinear Dynamic Inversion (INDI) control, a Hybrid IDI controller. Results demonstrate
that the approach achieves robustness guarantees comparable to standard full-order # ., controllers
while maintaining the simplicity and modular architecture of NDI-like structures, thereby combining the
advantages of both techniques. Thus, the research objective has been accomplished.

8.1.1. Revisiting the Research Questions
1. To what extent does the proposed procedure to combine #,, Loop-Shaping and a struc-
tured Dynamic Inversion controller preserve the robustness guarantees of 7/, Loop-Shaping
control?

The analysis of the work of G. Papageorgiou and Polansky, 2009 in Chapter 4 demonstrated that the
proposed equivalence between H., Loop-Shaping and Dynamic Inversion controller is only present
in the first step, where the plant is augmented with weighting filters. The methodology to tune the DI
controller was successfully recreated, but it was demonstrated that the controller solution presented
falls within the realm of H, optimal control. It is also shown that using the observer-based # .,
Loop-Shaping controller to tune the DI controller yields very different results than the ones presented
in the paper. Thus, the proposed procedure does not exactly equate the # ., Loop-Shaping Design
Procedure to DI control, which results in the absence of a priori robustness guarantees of the H .,
LSDP.

2. How can a Hybrid IDI structured controller be optimised using the ., Loop-Shaping Design
Procedure?

* What are the robustness implications of the hybrid inversion scheme?

The robustness characteristics of a fully SB INDI are complementary to those of the classical
model-based NDI variant. As a result, balanced robustness properties can be obtained by blend-
ing both inversion techniques in a hybrid inversion scheme. Therefore, since hybrid inversion

132
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schemes allow navigating between model-based and sensor-based inversion schematics, they
can be interpreted as an extra degree of freedom to modify the open-loop gain response and,
thus, address robustness.

What are the robustness implications of designing a controller based on the virtual law
location?

The analysis conducted in Chapter 5 challenges the often-claimed “automatic gain-scheduled
nature” of (I)NDI control laws. While it is true that from the virtual law location, dynamic inversion
schemes result in consistent closed-loop responses across the flight envelope, robustness at
the plant I/O remains plant-dependent. Therefore, designing a controller based on the virtual
law location fundamentally blinds the designer to robustness considerations. In fact, from a
robust control perspective, the virtual control law signal v has little relevance as it concerns
a signal internal to the controller itself. This discussion supports the use of linear variants of
NDI/INDI to design robust controllers using linear H..-synthesis tools.

How can the 7/, Loop-Shaping problem be framed as a non-smooth non-convex %,
problem under the structural constraints imposed by Hybrid IDI architectures?

Zhou and Doyle, 1998 demonstrates that the classical ., LSDP can equivalently be interpreted
as the more standard # .., problem formulation of minimising the H., norm of the frequency-
weighted gain from disturbances on the plant input and output to the controller input and output.
This allows rewriting the ., problem such that the total controller K, = W1 KW, appears
explicitly outside of the plant P(s). Consequently, it is possible to frame it as a non-smooth,
non-convex H., problem where K is assumed to be a structured Hybrid Incremental Dynamic
Inversion controller.

How can the design procedure be extended to include model-following requirements in
accordance with flying and handling qualities?

The framework is extended to 2DoF control by including a feedforward element to the Hybrid
IDI controller for nominal and robust performance. Flying qualities and handling qualities
specifications are derived from Anonymous, 1990 and implemented in terms of the modal
parameters of LOES models via reference models T...;. Nominal and robust performance is
specified via minimisation of a weighted # ., norm of the error signal between the output and
the reference model signal. Multi-requirement #..-synthesis in MATLAB® systune was used to
employ a co-design approach where the controller and the model-following filter parameters are
optimised simultaneously, making the overall procedure more streamlined.

To what extent can the procedure be used to develop a digital pitch-rate (SISO) controller
for a highly unstable aircraft?

The design of a digital pitch-rate controller for the X-29 aircraft constitutes a very interesting
case study, given the highly unstable nature of the plane and the hardware limitations. It has
been demonstrated that the tuned Hybrid IDI using the ., LSDP and a modified-continuous
design achieves robustness properties comparable to the ones found in other studies about
the design of control laws for the X-29. Furthermore, the procedure offers a systematic and
transparent way to trade-off robustness and performance.
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* What parallelism can be established between the proposed procedure and the stability
assessment of Dynamic Inversion-based control laws using coprime factors in Hyde and
Papageorgiou, 2001?

The stability assessment using coprime factors in Hyde and Papageorgiou, 2001 results in an
equivalent y-value to the one obtained from the tuning procedure of Hybrid IDI control laws
using H.., provided the same weighting filters 1, and W, are used. Nevertheless, as the
analysis tool from Hyde and Papageorgiou, 2001 searches for 1¥; and W, weights such that the
structured controller K = K, for the associated shaped plant G, W; and W, are potentially
very high order terms, but the resulting ¢, = €,,¢. This is something the synthesis procedure
proposed in this study can not guarantee, as the synthesized controller K is computed from
chosen W and W, weights, and so one can only hope that the structure of K is ‘rich’ enough
such that K — K,,: and, therefore, ¢ — ¢,,:. However, while the former remains a robustness
analysis tool, the latter is a synthesis tool which results in a v = ¢! value, which ties directly
to the robustness of the system to NCF uncertainty, and the closer the values of € and ¢,
the closer the obtained controller K is to the optimal LS controller K,,,. Furthermore, in the
procedure proposed in this work, the filters W, and W, retain their core purpose of shaping the
open-loop plant and, given a successful design, bound the broken loop gain at the plant I/O.
On an additional note, the findings in Hyde and Papageorgiou, 2001 regarding the robustness
of various DI controllers align with those in Pollack and Van Kampen, 2023 and Chapter 5,
reinforcing the notion that sensor-based incremental dynamic inversion is not necessarily more
robust than model-based dynamic inversion schemes.

* How can the procedure be extended to a MIMO case?

H., LSDP can be directly extended to a MIMO case, with the greatest challenge being the
design of the weighting filters W, and W,. While Hyde, 1995 proposes a systematic approach
to designing diagonal weights, the fact is that diagonal weights might not work as well with
plants that have strong cross-coupling between channels. The non-diagonal weights procedure
by G. Papageorgiou and Glover, 1997 offers a truly systematic approach to the design of
weighting filters, which avoids the trial-and-error nature of choosing diagonal weights. Using
diagonal weights with the procedure proposed in this study yielded good synthesis results,
while non-diagonal weights produced negative but still inconclusive results. Unfortunately, the
severe lack of control authority of the lateral-directional X-29 model prevents a comprehensive
assessment of the potential benefits of non-diagonal weighting filters. For MIMO applications,
another question that is raised is to what extent the scaled complementary filters in the hybrid
inversion scheme should be a diagonal block or if there are advantages to making K. and
H, full-blocks. While this preliminary study raises some relevant questions, the inconclusive
nature of the study dictates that more research on this area should be conducted with a more
appropriate aircraft model.
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3. How can Robust Feedback linearisation be combined with 7{., Loop-Shaping for flight control
applications?

The research on optimising Hybrid IDI controllers using the # ., LSDP by framing the problem as
a non-smooth, non-convex # ., problem under structural constraints opened numerous research
directions. Given the limited time frame for the thesis work, it was not possible to address this
last research question without compromising the research on the previous one. Nevertheless, the
knowledge acquired in this study supports the immense potential of this research direction. The
concept of robustness feedback linearization promises a direct connection to linear H..-synthesis
methods, namely H ., Loop-Shaping. In this framework, tools such as the gap metric and the v-gap
metric can be leveraged to adequately choose the LTI point around which the robust feedback
linearization is performed. The following chapter provides a more extensive assessment of the
potential of the control technique.

8.1.2. Concluding Remarks

The main research contribution of the present work can be succinctly described as rearranging the H,
Loop-Shaping problem such that increased flexibility to the controller is introduced, i.e. working around
the explicit presence of W, and W, as part of the final controller, in a way compatible with non-smooth
non-convex H..-synthesis under controller’s structural constraints in MATLAB® systune.

Writing the H ., Loop-Shaping as a 4-block problem leads directly to a description compatible with
non-smooth, non-convex H..-synthesis (recall Figure 3.14 and Equation 3.64). However, the weighting
filters W, and W, are absorbed into the plant P, and thus the structure can only be imposed on K, and
not on the total controller K, = W, K, W> (see Figure 8.1). Nevertheless, rewriting the problem such that
the disturbances enter the plant at its input and output allows isolating the full controller K out of the plant
P. As a result, controller structural constraints can now be imposed on the total controller (see Figure 8.2).
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Figure 8.1: ., Loop-Shaping 4-block problem under controller structural constraints on K.
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Figure 8.2: H., Loop-Shaping equivalent problem under controller structural constraints on
K, =W K Ws.

In order to extend the H., LSDP to include model-following requirements in accordance with flying
and handling qualities while leveraging the power of modern tools for multi-objective H., synthesis, a
co-design procedure is leveraged to simultaneously optimise the controller and the model-following filter
W, parameters. Under this framework, the reference model T is how the designer specifies flying
and handling qualities requirements. The description of this H, problem is displayed in Figure 8.3 and
Equation 8.1:

min  max { W, Tz (K (s, 5))||

Wy Tugsza (K (5,5)) | HT[M]A[“] (K(5:) Hoo}

ws Z5

oo’

(8.1)

subjectto || T, =, (K(s, k)| <1

where the co-design parameters w, M € k, Wg, = Wigear and Wg,, = 1/M;4e.q correspond to
weightings to scale the co-design constraints to be competitive with the NCF robust stabilization one, and
Widear @Nd M;4eq; COrrespond to parameters set by the designer.

It is important to notice that under this framework, K () can be selected to be any structured controller,
such as the PID controllers widely celebrated in the industry (Astrém & Hagglund, 1995) or the increasingly
popular Nonlinear Dynamic Inversion and Incremental Nonlinear Dynamic Inversion controllers (Kumtepe
et al., 2022). The proposed framework offers a systematic and transparent methodology to design
flight control laws with robustness guarantees while offering flexibility for the control structure to
be chosen a priori.
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Figure 8.3: General description of non-smooth non-convex #.,-synthesis under controller structural
constraints against multiple requirements using the ., LSDP and a co-design procedure for
model-following requirements.

8.2. Recommendations for Future Work

8.2.1. Gain-Scheduling and LPV Control

In the present work, the robust synthesis of (I)NDI control laws was performed on a divide-and-conquer
LTI basis. Consequently, the nonlinear nature of the plant is not reflected in the tuning process. One of the
appealing properties of NDI is that gain scheduling is handled systematically and transparently. So, its
fundamental advantage is lost by taking a step back and focusing on linear synthesis and implementation.
However, as Pollack, 2024 demonstrated (and the present work corroborates), although the NDI control
law is automatically scheduled, it is not scheduled in terms of robustness at the location of the plant,
and so different controller design parameters may be needed as a function of the operating point from a
robustness perspective.
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Nevertheless, it is expected that the structure of (I)NDI leads to its design parameters exhibiting smaller
variations across different flight conditions, demonstrating that reduced gain scheduling is necessary. This
property was highlighted in Pollack, 2024 (even though the Boeing 747 used for the case study is not
particularly nonlinear), but further exploration is recommended to verify it using the proposed methodology
of integrating the hybrid control structure with the H., LSDP approach.

Furthermore, to move away from the LTI divide-and-conquer, diving deeper into the topic of structured
Linear Parameter-Varying (LPV) synthesis is recommended. The key idea of LPV control and g-LPV
stemming from state transformation or other techniques is to model the nonlinear dynamics of the plant
over the flight envelope as a linear parameter-varying system of the form:

{i—A@ﬂ+B@W (8.2)

y=C(p)z + D(p)u

where A, B, C, D are continuous (possibly nonlinear) matrix valued functions of p, and p is the vector
of external scheduling variables. When the scheduling variables correspond to the system states, as is
common in aerospace applications, the model is referred to as a “quasi-LPV” system. If such a quasi-LPV
(9-LPV) model can be developed, and the scheduling variables are constrained within a specified range,
controller synthesis procedures can be applied to design an LPV controller. This controller ensures
guaranteed closed-loop stability and performance across the defined operating envelope (Leith & Leithead,
2000; Rugh & Shamma, 2000).

G. Papageorgiou and Glover, 1999 designed a robust gain-scheduled controller based on parameter-
dependent Lyapunov functions and #., Loop-Shaping, using a “quasi-LPV” model of the longitudinal
dynamics of the HIRM. This LPV control system was then taken into flight in the VAAC Harrier (G.
Papageorgiou et al., 2000). The research objective would be to leverage H.,-synthesis non-smooth
optimisation techniques to design a structured LPV Hybrid INDI (Pollack et al., 2025) while incorporating
H., Loop-Shaping as demonstrated in G. Papageorgiou and Glover, 1999 and Prempain, 2006.

8.2.2. Robust Feedback Linearization

Throughout this work, the nature of the control structure was constrained to more classical philosophies of
feedback linearization (even though the idea of a hybrid approach is relatively new, its core principle is to
navigate between a more classical model-based inversion scheme and a sensor-based one). It has been
established that the core principle of feedback linearisation is to bring the nonlinear system to a Brunovsky
canonical form. Even in a linear approach to dynamic inversion, the principle remains. However, as was
shown in multiple instances, this architecture poses challenges to the combination with the #., LSDP.
Designing a ‘linear’ control law from the virtual location (i.e. looking to the Brunovsky canonical form of the
system) “blinds” the designer to where the robustness properties of the system lie: at the actual plant input
and output. Consequently, designing a robust controller for such architectures proved to be challenging.

Despite the promising results for the procedure proposed in Chapter 6 for dealing with SISO systems,
observations in Chapter 7 suggested potential shortcomings of restricting one to the control structure of a
Hybrid IDI when dealing with MIMO systems with coupled dynamics. Moreover, during the public defence
of the doctoral thesis of Pollack, 2024, a member of the jury suggested that, in the context of robust control,
it might be preferable to design the inversion so that the aircraft behaves like an average LTI point. This
approach would ensure that the feedback-linearised dynamics retain a physical interpretation, as opposed
to transforming the system into Brunovsky form. Such a suggestion is in agreement with the conclusions
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drawn from this thesis. In fact, in the literature study conducted in Chapter 2, two promising articles
(Guillard and Bourles, 2000 and Franco et al., 2006) were identified that corroborated the limitations of
classic feedback linearization and proposed an alternative approach to feedback linearization, compatible
with H ., Loop-Shaping, which do precisely that. It seems only natural, then, to spend some words to dive
deeper into this work.

Franco et al., 2006 proposes a linearising control law that transforms a nonlinear system into its linear
approximation around an operating point. The approach is anchored in the fact that it produces only a
small transformation in the natural behaviour of the system, a key aspect to achieving a robust design. For
the sake of clarity, consider the following description and derivation provided in Franco et al., 2006 about
classical feedback linearization and robust feedback linearization:

Robust Feedback Linearization by Franco et al., 2006. The derivations and differences
between Robust Feedback Linearization and Classical Feedback Linearization are quoted
verbatim from Franco et al., 2006:

Consider the following nonlinear system with n states and m inputs described by:

&= f(x)+g@)u=flx)+ > gilx)u (8.3)
i=1
where z € R™ denotes the state, u € R™ is the control input, and f(z), g1(x), ..., gm(x) are smooth

vector fields defined on an open subset of R™. Assume that this system satisfies the conditions for
T

feedback linearization: there exists a vector A(z) = [ M(z) - An(2) } , formed by functions

i (x) with relative degree r; such that r; + - - - + r,,, = n, and the decoupling matrix of this system,

given by

Lg1L?_1>\1(I) LgmL?_lAl(x)
M(z) = : : (2)

Lo, Ly A(@) -+ L, L A ()
is invertible. The output of system 8.3 is chosen as y(x) = A(z). The goal is to linearise this
system by feedback in a neighbourhood of an operating point x chosen, without loss of generality,
as zo = 0. Assuming that the state is available for control purposes, the two different feedback

linearization techniques can be described as follows.
Classical feedback linearization is accomplished by using a linearizing control law of the

form u.(xz,w) = ac(r) + Bc(x)w, where w is a linear control, and a diffeomorphism z. =
T

de(x), With  ac(z) = —M*I(:Jc){L;l/\l(x) L}m)\m(x)] , Be(x) = M~ '(x), ¢l (z) =

T(2) - ¢F (2) |, and o7 (@) = [ Xi(@) Lyhie) - Ly ~'Ax) |- The resuiting lin-

ear system is:

T, = Acx. + Bow (8.4)

where A, and B, are the matrices of the Brunovsky canonical form. The notation used here is in
accordance with the one used in Franco et al., 2006, but the underlying principles are the same as
the ones in Section 3.5.2.

On the other hand, for robust feedback linearization, the linearised system has the form:
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T, = Az, + Bv (8.5)

with A, = 9,.f(0) and B,. = ¢(0), which corresponds to the linear approximation of the nonlinear
system 8.3.

The implementation of robust feedback linearization is achieved through a linearizing control law
given as u(z,v) = a(z) + B(z)v, where v is a linear control, and a diffeomorphism z, = ¢(x),
with a(z) = ae(x) + Be(x) LT ¢, (2), B(x) = Be(z)R7L, ¢(z) = T 1¢.(x), L = —M(0)dr(0), T =
9:¢.(0), and R = M~1(0). The functions «a(z), 3(x), and ¢(x) satisfy

8,0(0) = 0, B(0) = I, and 8,6(0) = I. (8.6)

The author then uses the concept of “local 1/ -stability” to prove that the robustness properties of the
McFarlane-Glover control (for linear systems) are maintained when used together with the robust feedback
linearization to the nonlinear system. The concept of “I¥-stability” will not be discussed in detail, but more
details can be found in the original articles Guillard and Bourles, 2000 and Franco et al., 2006.

This allows the designer to design a H., Loop-Shaping controller based on the LTI model of the
operating point, following standard guidelines. Indeed, the designer can even make use of the procedure
outlined in Section 7.2 to systematically design non-diagonal filters 1, and W5 without worrying about the
implications of compatibility with the structure of more traditional model/sensor-based dynamic inversion
controllers. The question then becomes how to choose the operating point. For that, given the connections
of H, Loop-Shaping to the v-gap metric, a central point on the flight envelope can be chosen such that
the worst case v-gap metric between this point and the other points of the flight envelope is the lowest.

us @ Y Ys
o RFL — Wi(s) o P(s) > Wa(s) 2 9

Figure 8.4: Implementation of the robust feedback linearization together with the McFarlane-Glover
controller. Recreated from Franco et al., 2006.

It is expected that with this procedure, the flight envelope region, which guarantees closed-loop
stability, is expanded (when compared to simply using the linear ., Loop-Shaping controller) and that the
performance of the controller is improved in the nonlinear domain.

8.2.3. Other Recommendations
+ Assess variation of gain-scheduled (linear) Hybrid IDI parameters across a flight envelope:
Since the proposed procedure is based on linear H.,-synthesis methods, it still falls within the divide-
and-conquer paradigm, which means that to cover the flight envelope, gain-scheduling is required.
However, the modular architecture of the dynamic inversion controller is expected to present some
advantages in this regard. It is of interest to explore how the gain-scheduled Hybrid IDI parameters



8.2.

Recommendations for Future Work 141

vary across the flight envelope and reflect on the differences from a purely nonlinear implementation
(Hybrid INDI).

Exploit the Scaled Complementary Filter (SCF) control architecture to simplify implementation:
The SCF control architecture avoids explicit differentiation of the output feedback, which decreases
the controller complexity and eases the implementation of the flight control laws.

Validate the procedure to tune Hybrid IDI control laws using the ., LSDP with a flight test
campaign: Validation of this novel procedure to tune Hybrid IDI controllers requires its use in a
full-cycle development of control laws, from linear synthesis, to nonlinear simulations, to finally
flight test campaigns. A myriad of issues might arise in nonlinear simulations or actual hardware
implementations that are not contemplated in linear control synthesis and analysis. Thus, only by
doing this is it possible to attest to the potential of the technique to design modular and robust flight
control laws.

Improve the way Handling Qualities are incorporated into the reference model 7;..;: In the
current work, the choice of the reference model T..; is based on the CAP and the Gibson criteria.
However, as this was not the primary research goal, a very superficial approach was taken into
consideration. There are, however, other criteria that can be considered. Furthermore, in future
studies, pilot assessments during flight test manoeuvres should also be taken into consideration
when assessing HQ levels.

Improve the structure of the model-following filter IV/,,, ; for objective separation of the param-

eters influence: As it stands now, the DC gain of W,;}(s) is given by g, and since w is a tunable
element of the filter in the co-design procedure, fixing the DC gain requires a priori knowledge of
the optimized value of w. It would be advisable to restructure the model-following filter such that the

designer can directly set the DC gain of an}(s) via the A parameter.

Use of EMF (Explicit Model Following) DI control architectures: The Hybrid IDI feedforward term
proposed in the present research deviates from what is commonly found in the literature for NDI and
INDI controllers, which generally make use of EMF architectures. This was justified on the basis
that the feedforward element allows the decoupling of the robustness of the system from the model
following requirements, which is extremely useful in this initial study on the technique. However,
having demonstrated the procedure’s success in tuning a pitch-rate Hybrid IDI controller, the next
step is to assess if equally successful results can be attained with an EMF architecture.

Further study on expanding the procedure to a MIMO case: The unfortunate choice of a MIMO
plant with severe control authority deficiencies did not allow for fully grasping the potential of using
non-diagonal weighting filters. Future studies should continue research in this direction with an
adequate MIMO plant to better assess the compatibility of Hybrid IDI structures and non-diagonal
weighting filters. Moreover, the effects of the scaled complementary filter elements on the broken-loop
response at the plant I/O still need to be better understood, and the potential of using full-block
structures on these elements should be further studied.
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Abstract: Nonlinear Dynamic Inversion (NDI) control techniques provide a conceptually simple
and modular control framework, making it an attractive technique for designing flight control
laws with shorter design cycles. However, its lack of inherent robustness guarantees shifts the
burden of the design from the synthesis to the analysis part. Conversely, H., Loop-Shaping
provides controllers with robust stability guarantees. This work proposes a novel framework
leveraging the H., Loop-Shaping Design Procedure to optimize a structured linear variant of
Incremental Nonlinear Dynamic Inversion (INDI) control, a Hybrid IDI controller. The Hybrid
IDI controller consists of a blend between classical model-based DI and sensor-based IDI. The
proposed methodology is validated through the design of a pitch-rate controller for NASA’s X-
29 experimental aircraft. Results demonstrate that the approach achieves robustness guarantees
comparable to standard full-order H,, controllers while maintaining the simplicity and modular
architecture of NDI-like structures, thereby combining the advantages of both techniques.

Keywords: Robust control, H-infinity Loop-Shaping, Generalized stability margin, Incremental
Nonlinear Dynamic Inversion, Hybrid Incremental Nonlinear Dynamic Inversion, Flight control

1. INTRODUCTION

Nonlinear Dynamic Inversion (NDI) and H. Loop-
Shaping are two popular control techniques that found
application in the field of flight controls. However, they
are the result of different philosophies. While NDI con-
trol is the product of time-domain thought, the H.,
Loop-Shaping is the product of frequency-domain thought,
where the plant model uncertainty can be naturally and
systematically treated (Papageorgiou and Polansky, 2009).
What is attractive about NDI control is that it is concep-
tually simple and enables a modular approach to control.
Motivated by this, NDI control has found application in
Lockheed Martin F-35 Lightning IT strike fighter jet (Har-
ris, 2018). On the other hand, H, Loop-Shaping (LS) al-
lows the design of control laws with robustness guarantees
(Hyde and Glover, 1993). With the advent of the systune
tool in MATLAB® the H., machinery can now be used
to optimize highly structured controllers (Apkarian and
Noll, 2006). Given the absence of robustness guarantees
of NDI controllers (and its Incremental INDI variant),
it is of interest to explore the possibility of leveraging
the H, Loop-Shaping Design Procedure (LSDP) to tune
NDI/INDI controllers with robustness guarantees (Papa-
georgiou and Polansky, 2009).

The structure of this paper is as follows: Section 2 provides
a comprehensive overview of the theoretical foundations of
NDI and H, LS. Section 3 introduces the novel framework
that combines these two methodologies. In Section 4, the
proposed approach is applied to design a pitch-rate con-
troller for the X-29 aircraft. Finally, Section 5 discusses the
wider significance of the procedure, reinforcing its poten-
tial to design IDI controllers with robustness guarantees.

2. THEORETICAL BACKGROUND
2.1 Nonlinear Dynamic Inversion Control

Nonlinear dynamic inversion control laws make use of the
principles of feedback linearization to transform selected
input-output channels into a chain of integrators of relative
degree p. Consider the nonlinear system with n states and
m inputs described by:

. {I = f(x) + G(I)uv (1)

y = h(z),

where the state vector x € R™, the input vector u € R™,
the observation vector y € R™, and smooth mappings f,
G, and h.

Writing the system relative degree as p = [p1,...,pm]7,
the output dynamics can be described as (Wang et al.,
2019):

L"lhl Lo, L7 'ha(z) -+ Ly, LF 'hy ()

Lo, Ly b () -+ Lg, L™ hp ()
L2a T) + B(z)u

(2)

where L’Jihi(ac) and LgiL’;_lhi(x) represent repeated Lie

derivatives of the function h; along the vector fields f and

gi, with g; being a column vector of the matrix G (Khalil,
2002).



For traditional feedback linearization, this expression can
be used directly to construct a control law that linearizes
the input-output dynamics to a set of Y."  p; parallel
integrators. Assuming that the control effectiveness matrix
B(x) is invertible, the following control law is obtained:

U= B_l(x) [y(”) - d(x)] (3)

where the onboard model estimates of a(z) and B(x) are
represented as &(z) and B (x), respectively. Here, v € R™
is the pseudo-control vector generated by an auxiliary
virtual control law designed to meet control objectives.

To obtain an analogous control law in incremental form,
a Taylor expansion of the output dynamics around the
system state at time ¢ — At can be performed (Wang et al.,
2019), where At represents the sampling interval. Denoting
this condition by the subscript 0 for ease of notation yields
the expression:

0 +B
y(P):yép)+ [Oé(x)a (x)u] (Z'*.CEO)+B(I’0) (’LL*UO)+R1,
xr OT \_X_./

(4)
where R; represents the expansion remainder. Conse-
quently, the time-scale separation assumption can be lever-
aged to design the incremental control input Aw, which
assumes that all state-dependent and residual terms can
be neglected (Grondman et al., 2018). This is often argued
as justified in the case of high sampling rates and high-
bandwidth actuators.

The control law is completed by adding the control vector
ug to the resulting incremental term:

u:u0+3_1(x0)[u—y(()p)]. (5)

Note that compared to its nonincremental counterpart
from Equation 3, the resulting control law does not require
any model information on «(x) but uses only sensor
feedback of the previous control vector and the derivative
of the control variable instead.

Consider, for simplicity, a system with relative degree
p = 1, such that y») = y. Defining M5 = () and 57
=9y — Bug as the signals in the inversion path for model-
based (MB) nonlinear dynamic inversion and sensor-based
(SB) incremental nonlinear dynamic inversion, we have in
the absence of On-Board model (OBM) uncertainty and
disturbances (Pollack, 2024a):

a(z) = g — B(x)ug (6)
N~
EMB €SB

However, the fact that the above equality only holds in the
absence of uncertainty and disturbances is a direct indica-
tion that the different inversion schemes possess different
robustness properties. Pollack and Van Kampen (2023)
highlight that these different robustness properties can
clearly be understood by analysing the open-loop response
of a MB and a SB linear dynamic inversion schematic with
the same virtual control law controller. In order to stay
closer to this framework, the rest of the present work will

also adopt a linear version of nonlinear dynamic inversion,
which will be referred to as simply Dynamic Inversion (DI).
The authors demonstrate that SB inversion schemes result
in an elevated open-loop frequency response compared to
MB ones, resulting in higher gain at low frequencies, but
also higher and often prohibitive crossover frequencies.
The higher gain at low-frequencies helps to understand the
reason for which Incremental Dynamic Inversion (IDI) is
often claimed as more robust against aerodynamic model
uncertainties. However, robustness at higher frequencies
is penalized due to the insufficient roll-off. This helps to
explain why unfiltered implementations of IDI control are
often unsuccessful. Practical implementations of SB IDI
control require filtering via synchronized Low-Pass Filters
(LPF) H. (Grondman et al., 2018):

Efitrerca(s) = He(s)[sy(s) — Bu(s)] (7)
Pollack and Van Kampen (2023) suggests that reintroduc-
ing model information of the bare airframe dynamics in the
form of a complementary augmentation element can lead
to increased robustness of the control law. This concept
was originally proposed in Jiali and Jihong (2016) and
formulated in Kim et al. (2021) and Kumtepe et al. (2022)
as a Hybrid INDI approach. However, the specific blend of
model-based M5B and sensor-based ¢5F inversion used in
the present work originates from Pollack (2024a); Pollack
et al. (2024b) and can be defined as:

EHB(S) =(1- KCHC(S))EMB(S) + KCHC(5)§SB(S)
= MP(s) + K He(s)(€MP(s) = €58(s))  (8)
= gMB(S) + KCHC(S)Q(S)

where K is a scaling gain € [0,1]. Given the relationships
in Equation 8, Hybrid IDI can be interpreted as a standard
model-based DI with additional error compensation. Cor-
respondingly, Hybrid IDI collapses to purely model-based
design when K. = 0, and ¢75(s) — ¢9B(s) if K. = 1 and
the bandwidth of H.(s) is made sufficiently large.

Since the hybrid design allows navigating between model-
based and sensor-based inversion schematics, it can be
interpreted as an extra degree of freedom to modify the
open-loop gain response, and thus help address robustness.

2.2 Hy, Loop-Shaping Control

The H, LSDP, originally proposed by McFarlane and
Glover (1992) leverages the concepts of classical Loop-
Shaping and the H,, machinery to design controllers which
robustly stabilize a plant with respect to Normalized Co-
prime Factor (NCF) uncertainty. It is a two-step proce-
dure, where in the first step the plant is shaped with
weighting filters W7 and W5, and in the second step, a
robust controller K., is computed which robustly sta-
bilizes the shaped plant Gy, = WoGW; with respect to
NCF uncertainty. The first step is essential since robust
stabilization alone is of limited practical value because it
does not allow the designer to specify any performance
requirements (Skogestad and Postlethwaite, 2005).

The robust controller K, is a stabilising controller which
minimizes the following H., norm:
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Fig. 1. NCF robust stabilization problem written as mixed
sensitivity 4-block problem.
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The lowest achievable value 7,:n, is given by (Glover and
McFarlane, 1988):

—1
2

_ 2 1
Tonin = € = { 1IN M|5} 7 = (14+p(X2)%, (10)
where || - ||z denotes the Hankel norm, p denotes the spec-
tral radius, and X and Z are the solutions to the associated
Algebraic Riccati Equations (ARE’s). The suboptimal full-

order K, can be computed from v, where v < Y4, and
the 2 ARE’s.

3. TUNING A DI-STRUCTURED CONTROLLER
USING THE LSDP

In Zhou and Doyle (1998), the authors demonstrate that
the classical H,, LSDP can equivalently be interpreted as
the more standard H, problem formulation of minimising
the H., norm of the frequency-weighted gain from distur-
bances on the plant input and output to the controller
input and output (see Figure 2).

In order to demonstrate this equivalence, recall that the
NCF robust stabilization problem can be written as a
mixed sensitivity 4-block problem, as presented in Figure
1 and Equation 9.

wq » W;l(s)

> Wa(s) —» =

wils) > 7

,,,,,,,,,,,,,,,,,,,,,,,

Fig. 2. Alternative structure for the NCF LSDP robust
stabilization.

Using the fact that Gy, = WoGW; and defining as the
total controller Ky = W1 K W5, and assuming that the
weighting filters are square and invertible, it is possible to
rewrite Equation 9 as:

H[ Wy 1KJ NI +GoKo)” 1;;2[W e (11)

H[—Ip }(IﬁGsKoo)l[Ip G

oo

Using the fact that the inner part Wy ' (I, + G Koo)' Wy

can be written as:

Wy (I, + WaGWi Koo) Wa] ' = (I, + GK,) ™", (12)
and the following equivalence holds:
H{_Ip ](Ip+GsKOO)_1[Ip G <e'lse
> (13)
e o o]

If the multiplications in Equation 13 are expanded and
defining Ly = (I, + GK;)~!, the following particular
weighted mixed sensitivity problem is achieved:

<e!

-1
L

Wo L GW,
~-W K, LWt

~-W 'K, L.GW;

The previous result can be represented as a 4-block mixed
sensitivity problem with weights on the disturbances and
plant input and output, as shown in Figure 2.

WoL GW;

[zj _{— ! —WfII;SLsGWJ Bj (15)

The advantage of this equivalent formulation is that it is
possible to consider the inputs and outputs in the actual
plant I/0, rather than the shaped plant 1/O’s.

One of the challenges of combining H,, LSDP with Dy-
namic Inversion is that the fundamental robustness prop-
erties are tied to the open-loop gain at the plant I/0O, and
not to the virtual control law location. Since DI techniques
close the loop at this virtual location, combining it with
H., LSDP raises concerns, as shaping the plant’s open-
loop response with the filters W7 and W5 may distort the
inversion path.

WoL Wt
W, K, LW,

However, since this equivalent formulation allows to con-
sider the disturbances and the outputs at the actual plant
I/0, that difficulty is overcome. Nevertheless, the fact
that the feedback controller K, is constructed as Ky, =
W1 Ko W5 might be undesirable when highly structured
control architectures are considered, like the one of Hybrid
IDI. Nevertheless, it is hypothesised that if a given struc-
tured controller K-t has compatible tunable elements
to those of K, then K4 can achieve similar results to
K, by using non-smooth optimization techniques to solve
the H, synthesis problem under structural constraints



Fig. 3. Leveraging alternative structure to tune Hybrid IDI
controller using the H,, LSDP.

(Apkarian and Noll, 2006). This effectively makes the
nature of the optimization non-convex.

It has been established that there exists a full-order so-
lution for K., which minimizes the H,, norm from w
to z. Alternatively, the H,, minimization solution can
be reimagined as: there is an optimal stabilizable con-
troller K, subject to W1 K W5, which minimizes the H,
norm from w to z. Reconsidering K as an appropriate
structured controller Kgipyet, it is hypothesized that the
minimisation of the H,, norm from w to z results in the
tunable elements of Kguer being reconfigured such that
Kstruet = Ks and vx,,.., — VK. In order to leverage this
concept to tune the Hybrid IDI controller, the structure
in Figure 3 was used in systune. The various components
of the Hybrid IDI Ky _;pr are defined in Section 4.

4. DESIGN OF PITCH-RATE CONTROLLER FOR
THE X-29

The X-29 is a forward swept-wing former NASA research
airplane, which was built to demonstrate basic aerody-
namic performance improvements that might be gained
from new composite materials. It constitutes a particularly
interesting case study due to its fundamental control limi-
tations, which awarded it as one of the examples provided
by Gunter Stein in his very famous “Respect the Unstable”
Bode Prize lecture (Stein, 2003).

The flight condition (M = 0.9 and altitude = 8000
ft) chosen for the controller’s design is very challenging
due to the plane’s violent instability. The aircraft has
3 longitudinal inputs: a canard, a symmetric flap and
a strake flap. However, for simplicity, the short-period
dynamics model used is retrieved from Lavretsky and Wise
(2024), where a linear combination of the 3 inputs is used
to achieve a single virtual input ., which makes the nature
of the problem SISO:

HR s A K

where Z, = —2.241 s7', Z, = 0.9897, M, = 44.74 s72,
M,=-0.9024 571, Zs;=—0.2331 57!, and M;=—45.93 52

In order to model the actuator dynamics, a simple second-
order transfer function was used (Lavretsky and Wise,
2024), with w, = 70 rad/s and &, = 0.7.

The open-loop system has an unstable pole at p = 5.12
rad/s. This unstable RHP pole imposes a lower bound on
the allowed complementary sensitivity 17" bandwidth wgr,
with an approximate bound of w. > 2p (Skogestad and
Postlethwaite, 2005). Therefore, the crossover frequency of
the shaped plant G4 should be made to be at least w, >
2p = 10.24 rad/s. In order to boost the low-frequency gain
of the open-loop response, obtain a -20 dB slope around
crossover, and attain the desired crossover frequency value
of 10.2 rad/s, W was set as a PI, while, for simplicity, Wo
was set to 1.

K;  0.24183 - (s + 8.166
W]_ == Kp + ? == ( )

17
: (1)
The obtained shaped plant, given by G5 = G, W; fulfils
the desired shaping, as can be observed in Figure 4.

In order to assess whether the following shaping of the
plant is compatible with a robust design, a suboptimal
Yeh > Ymin 1S computed with a tolerance equal to 1e-3. The
resulting v, = 2.3181 adheres to the common guideline
that sets an acceptable range for v between 1 and 4 (Hyde
and Glover, 1993).

Subsequently, the non-convex H.,-minimisation problem
in Figure 3 is implemented in systune to optimize the
Hybrid IDI parameters: K,(s), H.(s) and K.. The virtual
law controller K, (s) is defined as a PI controller in series
with a first-order LPF, the synchronizing filter H.(s) is
also a first-order LPF and K. is a scaling gain € [0,1].

Ko (s) = Ky (s+ Ki/K,)  wy
v S S+ wyp

(18)

(19)
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Fig. 4. Frequency response of open-loop plant G, and
shaped plant Gj.
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Furthermore, given that DI control requires full-state feed-
back for the inversion, a simple angle-of-attack estimator
based on the short-period model information is introduced.

i(6) = a0 0" = F(5) alo) = | S22 )
(20

Moreover, notice that instead of using feedback on the
actuator position v = 4., ., internal Control Command
(CC) feedback is used (refer to Figure 3). In IDI control
schemes, feedback on the input signal C'Bu is necessary.
Assuming ideal actuators, the input signal is equal to the
commanded input u = Ueng, which implies:

U= Uema = (CB)"'CC = CC = CBu (21)
In reality, actuators have internal dynamics, and therefore
CC is merely an approximation of C'Bu. However, the fact
that CC feedback is a location inside the control law itself
makes it conceptually simpler to implement and does not
require additional sensor measurements. Furthermore, the
work of Pollack (2024a) suggests that no limitations in

Table 1. Optimization of the various Hybrid
IDI parameters using the H,, LSDP.

Optimization Virtual Control Inversion Loop
Parameter Yeh 5 Ky K; wip Kec WH,
Value 2.3181 23622 | 12.7882  36.2545 52.12 | 0.3060 80.62

terms of robustness of the control law result from this
choice of input feedback signal.

The results of the optimization are presented in Table
1. As can be observed, the obtained ~ is similar to
Y¢n, which attests the success of the optimization. If we
first inspect the Bode plots of the full-order H., LS
controller and the tuned Hybrid IDI it becomes evident
that they are virtually identical as demonstrated in Figure
5. Furthermore, examining the obtained open-loop gain
at the plant input in Figure 6 confirms that their open-
loop responses are also nearly identical. Therefore, it is
demonstrated that under the hypothesis that the Kg_rpr
has a compatible structure to that of K, then the non-
convex H,, synthesis displayed in Figure 3 results in
v — vn and Kg_1pr — K.

5. WIDER SIGNIFICANCE OF THE PROCEDURE

To further elaborate on the proposed procedure to tune
Hybrid IDI controllers using the H,, LSDP, the block dia-
gram presented in Figure 7 is used (recall that throughout
the procedure Wi and Wy were assumed invertible).

The closed-loop implementation reduces to simply having
the controller Ky_;p; and the plant G, as the intro-
duced filters perfectly cancel with their respective inverses.
However, by considering the disturbances and outputs
entering the specified locations, the standard H., LSDP
framework is recovered, wherein the controller K% is com-
puted to robustify the shaped plant given by WoGW;.
Referring back to the proposed procedure, it was as-
sumed that Ky_;pr — W1 K Ws, implying that in the
ideal scenario where Ky_jpr = W1 KWy, then KZ =
WlelKooWgW{l = K. However, since Ky_rpr is
highly structured, it serves only as an approximation to
Ky = W1 K, Ws, and thus the only guarantee is that
K* — K. Nevertheless, when the H, norm from
[dodi]T — [ysus]? is computed using this equivalent
closed-loop representation, the resulting ~-value matches
exactly with that obtained during the synthesis procedure
displayed in Table 1. This consistency underscores the
validity of the proposed method for tuning structured
controllers, specifically the Hybrid IDI controller while
maintaining the robustness guarantees of H,, LS.

Us d; do Ys

Fig. 7. Equivalent closed-loop representation with addition
of “dummy” filters and their respective inverses.



Papageorgiou and Hyde (2001) make use of a similar con-
cept to analyse the robustness of different DI controllers.
The idea of the article is to generalise the analysis to any
linear controller K, regardless of the design method using
the NCF stability test, which is inherently integrated into
the synthesis process of H,, LSDP.

The approach involves transforming the controller and
the plant into an equivalent NCF controller and its cor-
responding weighted plant, as illustrated in Figure 7.
The goal is to determine diagonal weights W7, W5 such
that W, ' KW, ! becomes the optimal controller for the
weighted plant WoGW;. This is achieved by solving (Pa-

pageorgiou and Hyde, 2001):
Wo I
Wit | K|®

A 1

)
0o €u

. T g i
i el = iy, 2

xU—GKYWIGﬂWEl

m)

where d consists of [d, d;]T, e consists of [y us]T and W7,
W5 are restricted to being diagonal, stable and minimum
phase. The authors then make use of this tool to analyse
the robustness of various DI controllers. Thus, its value
remains primarily from an analysis standpoint.

If the same values for W; and W, are used, then ¢,
yields the same e value obtained from the structured H.,
minimisation. Nevertheless, the analysis tool searches for
potentially very high order W7 and W5 weights such that
the structured controller K = K for the associated shaped
plant G, and hence €, = €;,. This study’s synthesis pro-
cedure cannot guarantee this, as the synthesized controller
K is computed from chosen W; and W5 weights; thus one
can only hope that the structure of K is ‘rich’ enough such
that K — K, and, therefore, ¢ — ¢;,.

On the other hand, this study’s procedure retains the core
purpose of W7 and W5 in shaping the open-loop plant and,
given a successful design, bound the broken-loop gain at
the plant /0. Moreover, the synthesis results in a v = ¢!
value, which ties directly to the system’s robustness to
NCF uncertainty, and the closer the values of € and ey,
the closer the obtained controller K is to the optimal LS
controller K. Therefore, the procedure effectively allows
designers to tune DI controllers with a-priori robustness
guarantees.

6. CONCLUSION AND FUTURE WORK

This study presented the design of a longitudinal control
law for the X-29 aircraft, combining the H,, LSDP with
a Hybrid IDI structure. The framework leverages Ho,
optimization to tune a highly structured controller with
the robustness guarantees of H,, LS. The procedure is
not constrained to the specified control architecture of a
Hybrid IDI and applies to other structured controllers with
a compatible structure to that of Ky = W1 K, Ws. Future
studies should address the extension to 2DoF controllers,
incorporating model-following requirements according to
handling qualities, as well as considerations for a digital
implementation. Furthermore, they should also analyse
the variation of the gain-scheduled Hybrid IDI parameters
across a flight envelope and reflect on the differences from
a purely non-linear implementation (Hybrid INDI).
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