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Abstract—Automatic Dependent Broadcast-Surveillance (ADS-
B) was introduced to increase the safety of air travel. Since
then it has proven to be a useful source of air traffic data for
academic research because it is publicly available. Another source
of information are the communications between air traffic control
(ATC) and aircraft. Methods are (being) developed to enhance the
existing radio communications with digital text messages. These
are not publicly available while access to these could further the
research in this field.

The lack of publicly available machine-readable ATC data
hinders research in the field of air traffic management. Therefore
the objective of this study is to develop a method that uses open-
source data to infer ATC commands. This two-part exploratory
study is presented to address this objective.

The first part explains the rule-based analysis used to infer
ATC commands. This method uses a set of rules to detect lateral
and vertical changes by approaching the ADS-B data as a time
series. This approach can detect changes using the turn rate and
rate of climb which can correspond to ’heading’, ’direct to’ and
’altitude’ commands. It was not possible to detect changes in
speed due to the variability in the wind.

The second part of this paper tests the found method in an
air traffic simulator. For 111 flights, ADS-B data was gathered
using the OpenSky network. The previous method was applied
to this data to create a list of possible ATC commands. For
every unique flight, two flight plans were made. The first was
based on the found list of commands. The second flight plan used
the original ADS-B data. These flight plans were simulated and
differences between trajectories were used to test the fidelity of
the rule-based analysis.

The results showed that the mean absolute horizontal error
was below 15km for 75% of the flights and the mean absolute
vertical error was below 100m for 75% of the flights. A remark-
able correlation was found between the availability of ADS-B
data points along the trajectory and the error in the horizontal
distance. When more datapoints are available a smaller error in
horizontal distance is observed.

It was found that a method could be developed using a rule-
based analysis that produces a list of possible ATC commands.
The could be done for both lateral and vertical commands, but
not speed commands.

Index Terms—Air Traffic Control (ATC), Air Traffic Manage-
ment (ATM), ATC command detection, ADS-B, change detection,
aircraft trajectories.

I. INTRODUCTION

Automatic Dependent Surveillance-Broadcast (ADS-B) was
introduced to enhance safety while flying and has been
mandatory in Europe since 2020. It sends out aircraft state
information every second to inform others of its location and
direction. Everyone with an ADS-B antenna can pick up this
signal and upload the data to one of the existing ADS-B data
networks. The open nature of the data makes it a commonly

used resource for academic research, enabling the estimation
of specific aircraft parameters[1] or identifying anomalous
flights[2].

However, not much research has been performed using this
data in the context of air traffic control. Air traffic control
produces large amounts of data. While part of this data is
accessible to the public, like ATC radio communication, most
data is not open source. In particular, controller-pilot datalink
communication (CPDLC)1, a communication system that al-
lows ATC and pilots to communicate using data messages,
is not available. This data could be used to feed machine
learning models to predict ATC controller commands. Since
the CPDLC is not available for public use, other methods have
to be developed to obtain publicly available ATC commands.

Having publicly available ATC command data allows further
research on the topic of ATC. Methods could be developed to
detect possible or likely collision areas, hidden ATC habits,
cross-airspace effectiveness, or a method could be developed
to filter ATC commands from trajectory data. To address
the issues described earlier, the objective of this research is
formulated as follows: is it possible to infer ATC commands
from ADS-D data?

This study consist of two main parts. The first part explains
in detail how a rule-based analysis is used to detect changes in
the lateral and vertical plane. Further explanation is given on
how the changes can infer ’heading’ and ’altitude’ commands
and how further analysis can infer ’direct to’ commands.
’Speed’ commands were not detectable due to the variability
in wind conditions. The second part uses the found ATC
commands to perform a simulation to test their accuracy. This
experiment compares two flight plans. The first is made based
on the original ADS-B data and the second is made using
the commands found via the rule-based analysis. Differences
between the two trajectories are used to evaluate the method-
ologies.

For this study, only the high-altitude cruise phases of
flights are considered. At these altitudes changes in trajectories
are most likely to be ATC commands due to the class A
designation for those airspaces.

This paper starts with summarising related work in sec-
tion II. Section III and section IV present the data sources
and preprocessing steps taken respectively. Section V exam-
ines three different methods and presents the results found
during the examination. The experiment to test the accuracy

1https://www.eurocontrol.int/function/datalink
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is explained in section VI. The results of the experiment are
presented in section VII and are discussed in section VIII.
Section IX presents the conclusion and section X suggests
recommendations. The paper closes with two examples of the
presented work in section XI.

II. RELATED WORK

This section elaborates on related work of the scientific use
of ADS-B in general and other methods to detect air traffic
commands or changes in data. The first section focuses on
extracting information from raw ADS-B data. Section II-B
explains the practices of air traffic control. The next sections,
section II-C and section II-D, cover clustering techniques
and anomaly detection methods, respectively, and their ap-
plications to trajectory data in aviation. Section II-E presents
change point analysis and its application to trajectory data.
The last section discusses the latest research for converting
ATC radio automatically into machine-readable data.

A. Extracting information from ADS-B data

Raw ADS-B data can be processed to infer flight informa-
tion that is not explicitly available in the data. Two examples
are discussed which are relevant for the current study, both
presented by Sun, Ellerbroek and Hoekstra [3][4]. The first
method paper uses fuzzy logic to determine the flight phase
of the given datapoint. Based on the height, velocity and
rate of climb, a flight phase can be determined. These flight
phases can be then be used to determine change points for the
vertical movement of aircraft. The same papers also provide
a method to distinguish unique flights from raw ADS-B data
using clustering algorithms. It was found that DBSCAN[5]
provides the best method to extract flights from a large set of
ADS-B data.

B. ATC practices

ATC practices need to be taken into consideration during
this study. Therefore a summary of heading, speed and altitude
commands is given. This summary is simplified to the core
messages that are used in basic ATC messages. Note that this
is based on the common practices of ATC in the Netherlands
[6].

Heading changes are commonly given in two different
formats. 1) Aircraft can be given the ’direct to xxx’ command.
This command directs an aircraft to fly directly to a waypoint.
2) Aircraft can be commands such ’fly heading xxx’ or ’turn
left/right heading xxx’. This command tells the pilot to fly
a heading between 0 and 360°. In this study, the assumption
will be made that these two commands are the only heading
commands given. It will also be assumed that the ’direct to’
command will most likely be given, as this study focuses on
the cruise phase of flights.

Speed changes can be only be given in two formats.
These are either ’at pilots discretion’, meaning that the pilot
is allowed to fly at the desired speed. Or ATC may state
’increase/reduce speed xxx knots’, directing the pilot to fly
at a set speed. In practise, speed change commands are rare

during the cruise phase. Therefore the assumption is made that
aircraft will fly close to the most efficient speed (in relation
to the wind).

Altitude commands are commonly given in the
’climb/descent to FLxxx’ format. Since aircraft are always
assigned to a flight level to maintain vertical separation, it
can be assumed that any change in altitude is either directed
by or approved by ATC.

C. Trajectory Clustering
Clustering methods are applied throughout the field of air

traffic studies. These clustering methods have the ability to
group similar trajectories to infer flows, based on known or
unknown parameters. Yuan et al. [7] surveyed and summar-
ised several clustering algorithms applied for moving object
trajectories and trajectory similarity or distance metrics. Two
clustering techniques have been selected.

The first is DBSCAN, which is previously used to cluster
trajectories for various purposes [2, 8–10]. This clustering
method has already seen a lot of use in the field and is readily
available in the scikit-learn python package[11]. However, it
cannot take trajectory data directly as an input. Therefore,
Principal Component Analysis (PCA) is often used to alter
the trajectory data such that it can be used with DBCAN.
PCA is also available in the scikit-learn package.

The second trajectory clustering method is spectral cluster-
ing. Enriquez [12] has created an algorithm based on spectral
clustering to work directly with trajectory data, omitting the
need to modify the data beforehand.

It was found that the detection of ATC commands was not
possible using clustering methods. Individual ATC commands
have a too small effect to be noticeable using clustering. Fur-
thermore, all trajectories have been altered by ATC and thus,
no comparison can be made between altered and unaltered
trajectories.

D. Anomaly detection
Anomaly detection focuses on identifying data deviating

from the standard. A paper published by Basora, Olive and
Dubot [13] reviewed the latest techniques in the field of
aviation. The research focused mostly on techniques that work
with unlabelled data, as this is mostly the case when working
with aircraft trajectory data. Olive et al. [14] use anomaly
detection methods to detect unusual flight behaviours on the
approach to Toulouse airport. These anomalies were then
placed into context and from there it was assessed if an ATC
action could correspond with the detected anomaly. Anomaly
detection might be used in conjunction with clustering tech-
niques to identify odd patterns in ADS-B data. The patterns
might be linked to ATC commands. It was also found that
anomaly detection does not work to detect ATC commands,
since ATC commands are not anomalies and are present in all
trajectories.

E. Change point analysis
Change points are point within a time series where a change

in the time series occur. Change point detection algorithms
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focus on detecting changes in the parameters that make up a
time series. The study by Truong, Oudre and Vayatis [15]
presents a selection of change point detection algorithms
and a python package named Ruptures which includes these
methods. The study uses a common framework to review
numerous algorithms that allow the reader to select the best
algorithm.

A hypothesis was made that ATC commands could be seen
as change points. Applying change point detection algorithms
to trajectories could detect ATC.

F. Automated ATC Voice Transcriptions

Research has also been conducted to use voice-recognition
software to automatically transcribe ATC voice commands into
machine-readable data. These studies are not yet finished and
are therefore not used in this study. The results of these studies
align with the goal of the current study and are therefore worth
mentioning.

Automated ATC voice transcription would allow for the
automatic detection of ATC commands by listening to ATC
radio. Srinivasamurthy et al. [16] propose an iterative model
that uses ATC voice and radar data to build up an increasing
database of ATC commands that can be used to train their
model. Their system used a semi-supervised learning frame-
work that uses speech and radar data to iteratively update
the model. Subramanian, Kostiuk and Katz [17] proposed a
method to detect anomalies in the National Airspace System
by combining ATV voice command and Traffic Flow Man-
agement data with IBM Watson’s natural language processing
capability. ATC voice commands could be used as a validation
set when using supervised machine learning methods to further
detect changes in the flight path of aircraft.

III. DATA SOURCES

This section presents a clear overview of all data used and
the respective sources. The first section presents the ADS-
B sources and other flight data. Later sections explain data
sources regarding navigational aids and airways.

A. Flight path data

Two ADS-B data sources have been used. The first source is
the Opensky ADS-B network[18]2. This organisation collects
ADS-B data and stores this in a database to be used by the
general public and research. In the current study, this database
was used in conjunction with the ADS-B receiver located at
the Faculty of Aerospace Engineering at the TU Delft, which
also provides ADS-B data.

The second data source is the Eurocontrol R&D data
release. This dataset consists of multiple tables, of which the
flights and filed flight points tables are the most important
for this study. Four sample months (March, June, September
& December) for the years 2015 to 2018 (inclusive) are
given in this release. The flights table contains all standard
information regarding scheduled flights. The filed flight points

2Information about the collected data can be found on https://opensky-
network.org/data/impala. (Accessed March 2021)

Figure 1. The initial database layout

Figure 2. The final database layout

table contains flight points of a flight in latitude and longitude
coordinates and the altitude at that point.

To couple these databases together, the Opensky aircraft
database is used. The Opensky ADS-B dataset uses the
ICAO24 identifier as unique key for aircraft, and the Euro-
control R&D release uses the registration as unique key.
The Opensky aircraft database stores both identifiers and is
therefore used to couple the previous database together. A
schematic overview is given in fig. 1. To make computation
easier, a simpler database structure is set up, which is shown in
fig. 2. This omits the need for the aircraft database by adding
the Eurocontrol ID to every ADS-B message.

B. Navigational aids

Two navigation aids (navaid(s)) databases are used: The
Traffic[19] database and Bluesky[20] database. Waypoints are
filtered using the Eurocontrol dataset to only include waypo-
ints used for en-route navigation. The filed flight points are
planned according to waypoints and therefore have datapoints
on the locations where these waypoints are located. Selecting
only the locations where the planned altitude is above FL200
and filtering the databases based on these locations, a subset
of waypoints was created. This subset contains only waypoints
used during cruise. A counter for each waypoint was included
to enable further filtering when necessary.

C. Airways

Airway information is contained in the traffic database, the
BlueSky simulator and in the Eurocontrol R&D data release.
However, the naming of the airways across the data sources
is inconsistent. Therefore the Eurocontrol airspace charts[21]
were used as a control dataset.

IV. DATA PREPROCESSING

This section presents an overview of all preprocessing steps
taken. Preprocessing is necessary because raw ADS-B data
contains noise and possible outliers. Removing these lead to
a more accurate detection of ATC commands.

In total 4 preprocessing steps are applied to the data. The
first step is flight extraction, where individual flights are
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selected from the ADS-B data. The second step is to discard
any outliers found within the found flights. The third step
is to augment the data with the flight phase. The last step
is to lower the noise level by smoothing the data. Several
smoothing methods and suggested and tested. The complete
data processing pipeline can be found in Appendix B.

A. Flight Extraction

ADS-B was not intended to be used to study trajectories but
as a safety feature. Therefore ADS-B messages do not always
contain information about the flight currently being performed
but do always contain their ICAO24 identifier. Since an aircraft
can fly multiple flights every day, there is a need to extract
flights from the ADS-B data, to study trajectories.

Flight extraction is done using data from the Eurocontrol
R&D dataset. The flights table contains the ’Actual Off-Block
Time’ and the ’Actual Arrival Time’. These timestamps are
used to determine when the aircraft was in the air and which
flight it was performing. When the Eurocontrol data was
not available, the methods using DBSCAN proposed by Sun,
Ellerbroek and Hoekstra [3][4] were used.

B. Outlier Detection

The second step is to remove outliers from the data. Outliers
are points where a datapoint was captured that is not within the
main part of the trajectory. These points can have a negative
effect on further analysis due to the large time differences
between points. To remove outliers, DBSCAN is used as
proposed by Sun, Ellerbroek and Hoekstra [4]. The parameters
were set at 50 for MinPTS and 500 for ε. Outlier points are
not used for any further analysis.

C. Phase Identification

The third step is to add the flight phase (cruise, climb,
etc.) to the ADS-B data. The proposal by Sun, Ellerbroek
and Hoekstra [3] is followed to add these. By adding the
flight phase to the ADS-B, identifying the en-route phase of a
trajectory is quicker. This is done by identifying the first and
last points of the flight which are identified as en-route and
selecting everything in between. The flight phase is also used
to detect changes in altitude, by detecting points where one
flight phase changes to another.

D. Data Smoothing

The data gathered by the OpenSky network is real-world
data and therefore it is subject to noise. To get more reliable
results, a low noise level is preferred. In current literature, data
is smoothed according to the needs of the research. Therefore,
several smoothing functions are proposed and tested to see
which is the best at removing noise from the data. The methods
are given below and can be divided into two categories. The
first 5 methods (1-5) are point-based smoothing functions.
They do not consider the time at which the datapoint was
taken. The last 3 methods (6-8) are time-based and do consider
the time at which the datapoint was taken.

1) Exponential smoothing

2) Rolling mean
3) Rolling median
4) Rolling Gaussian window
5) Subsampling
6) Time-based resampling first
7) Time-based resampling mean
8) Time-based resampling median

To test these methods, a sample of all trajectories was taken
and the different methods were applied to the turn rate, stand-
ardised altitude and standardised speed. For every trajectory
and every smoothing function, the standard deviation was
calculated. This is shown in fig. 3. Additional figures for
trajectories can be found in Appendix C, fig. 22.

From this analysis, it was concluded that the time-based
resampling median was the best option. This was chosen due
to the low standard deviations found when applying this to
the sample trajectories and the median metric has the unique
property to dismiss one-off extreme outliers (1 data point with
an altitude of 30 km where the local average is 10 km). A
window size of 10 seconds was selected because it was the
best trade-off between high temporal accuracy and minimising
the amount of noise in the signal.

V. METHODOLOGY

To detect ATC in ADS-B data, a rule-based analysis was
used. This method is based in the fact that air traffic is very
regulated and mostly standardised. By observing and detecting
the resulting patterns of these standardised methods, the ori-
ginal ATC command may be recovered. By setting up rules,
these patterns can be detected in the ADS-B data. This section
proposes a method to detect track angle changes, and in its
extension, ’direct to’ commands. The same method is applied
to detect changes in speed. The results and why this was not
possible will be discussed in section V-C. Lastly, a method
using the identified flight phase is used to detect altitude
changes. Other methods of detecting changes were considered,
but they could not be used to detect ATC commands. These
can be found in Appendix A.

A. Track angle change detection

Before changes can be detected in the data, the track angle
first has to be calculated. This is done by applying the great
circle equations to the resampled positional data. This gives
the track angle from each datapoint to the next. The ADS-
B data also contains the track angle, but this contained more
noise in the dataset used in this study. Therefore the choice was
made to calculate it using the aircraft coordinates. By taking
the derivative with respect to time, the ∆track (or turn rate)
can be calculated. This metric is the basis of the track angle
change detection. For the detection method, three algorithms
were tested.

1) K-sigma rule. This method standardises the given signal
and detects values above a given threshold, in this case,
K.
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Figure 3. Standard deviations of trajectories for different values of different smoothing functions

2) Turn rate threshold. This method, as used by Gariel,
Srivastava and Feron [9], uses a threshold value to detect
turns.

3) Change point detection. Turns result in changes in the
track angle and turn rate signals. These changes can be
considered to be change points. The python packages
Ruptures[15] contains several algorithms that can detect
change points and thus detect turns.

Due to missing values in the data, Ruptures was unable to
detect change points. The variability in track angles and turn
rates across the trajectories also required that the penalty value
had to be tuned for every trajectory. Therefore the choice was
made to disregard Ruptures for this study. This method might
still prove useful when used with consistent data or on slices
of trajectories.

The other two algorithms were tested to determine a good
rule for the detection of changes in the track angle. This
was done experimentally using plots such as fig. 4. More are
found in Appendix C. The K-sigma rule has the advantage
that a false detection due to noise is filtered out, but it has
trouble detecting small changes. The turn rate has the exact
opposite, where it can detect small changes, but also can
falsely identify noise as a turn when the signal is particularly
noisy. Combining both of these metrics, a rule can be set up
where noise can be ignored while detecting small changes.
This rule is set at:

Turn rate ≥ 0.2 ∨ (Turn rate ≥ 0.1 ∧ sigma ≥ 2)

A check is done to identify a single turn point from multiple
datapoints. This is done by checking if a turn is detected at
points xt−1 and xt+1. If so, point xt will also be identified as
a turn. The last step is to check whether the actual track angle
before and after a turn has significantly changed. A difference
of 1° was chosen to be the minimum required value. Detected
turns with smaller changes are considered to be too small to be
an ATC command. These neglected differences can be caused
by fine-tuning of the aircraft settings, wind effects, noise in
the data, or other reasons.
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Figure 4. Top figure: The calculated track angle of a random flight. The
markers show where the detection methods detect a change.
Middle figure: The standardised ∆track, with reference lines at 2 & 3.
Bottom figure: The ∆track, with reference lines at 0.1 & 0.2.

Information regarding the detected turn, such as Eurocontrol
ID, time, latitude, longitude, track angle before, track angle
after, and more, is stored.

B. Direct to detection

Now that turn points have been identified, ATC commands
can be inferred. Since this study is focused on the cruise of
aircraft, ATC will most likely direct aircraft with the use of
waypoints. Here some assumptions are made: 1) Waypoints in
a filed flight plan will take priority over regular waypoints. 2)
Waypoints near a detected turn are the most likely candidate.
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Figure 5. The search area for waypoints. The green area represents the area
where waypoint are searched for. Values are: α = 1°, dl = 500, 100km,
dt = 5km. Only one side (left) of the search area is visualised here.

3) If no waypoint is near the turn, then the first waypoint
is selected along the trajectory if no turn was taken. 4) If
no waypoint is detected still, the furthest waypoint along
the trajectory after the turn is selected. The following list
summarises the assumptions based on the hierarchy as stated
before.

1) Waypoint in flight plan near turn
2) Waypoint in flight plan in heading before next turn
3) Waypoint in flight plan in heading after current turn
4) Waypoint near turn
5) Waypoint in heading before next turn
6) Waypoint in heading after current turn
7) Heading change

This prioritization is applied at every detected turn point. To
determine if a waypoint is near a detected turn, an offset
of 5km is used. To speed up the search, the waypoints are
preselected using a 0.2° offset in both latitude and longitude.
To determine if a waypoint is in the heading of the aircraft
before or after a turn a defined area is scanned, which is
visualised in fig. 5. This area contains a transverse offset from
the heading of 2km (dt) and uses an extra angle of 1°(α) to
search. This method was chosen because the calculated head-
ing could contain errors or small deviations. When searching
far ahead of detected points, these small deviations could grow
to a significant error. When a turn is detected, the track angle
before and after the turn is analysed. For the before part, a dl
of 100km is used. After the turn, dl is set at 500km.

C. Velocity change detection

To detect changes in the velocity, the same approach was
taken for changes in the track angle. A test was performed
to test whether the ground speed from ADS-B data or the
calculated ground speed yielded the best potential for detecting
changes. The results can be seen in in fig. 6. This shows that
the ground speed given by the ADS-B data contains less noise.
This test also shows that the resample median results in a
low standard deviation. A window of 10 seconds was chosen
to remain consistent with the resampling method chosen for
detecting track angle changes.

After the initial analysis, it was found that the deviations in
speed were too variable for any of the detection methods to
work. As shown in fig. 7, no distinct changes can be seen in the
data. Places, such as the sudden jump in the pink line, might
indicate a speed change, but this could not be determined due
to several factors. 1) Aircraft during cruise try to optimise
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Figure 6. The calculated standard deviation of the acceleration of the aircraft.
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Figure 7. Top figure: Speed profile of 10 flights using ADS-B ground speed.
Middle figure: the deviation of the speed from the mean speed. Lower figure:
The calculated acceleration.

the fuel burn and therefore fly mostly at a constant speed. 2)
Changes in the wind might speed up or slow down an aircraft.
3) Changing the altitude of an aircraft might move the aircraft
into another wind region, changing the ground speed, while the
aircraft flies at the same airspeed. 4) Changing the heading of
an aircraft will alter the behaviour of the wind on the aircraft.
Due to the broad range of possibilities, the choice was made
that this direction was not to be further explored in this study.

D. Altitude change detection

To detect changes in altitude, the flight phases were used.
Since a change in flight phase means the aircraft is changing
its current vertical velocity, it can be used to identify when
the aircraft is changing its altitude. To ensure that a transition
of flight phases is not an outlier, a check was employed where
at least a number datapoints have to be different in flight
phase before and after the possible change. For this check, a
difference of 1 to 5 datapoints was tested. Plots such as fig. 8
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Figure 8. Several trajectories are shown with shifts of 1 to 5 applied to the
phase. Blue colour means ’cruise’ and orange are other phases.

Table I
TABLE STRUCTURE CONTAINING THE ALTITUDE CHANGE INFORMATION

’From cruise’ ’From non-cruise’

1 Time, Altitude, FL, etc... Time, Altitude, FL, etc..

2 Time, Altitude, FL, etc... Time, Altitude, FL, etc..

3 etc...

were used to select the final value. It was found that 1 or
2 different datapoints are inadequate since these still identify
too much noise as a phase shift. Therefore a value of 3 was
chosen.

After the identification of the phase shifts, a table can
be made where information is stored at the timestamps of
the phase change, assuming an aircraft goes from ’cruise’
to ’non-cruise’ to ’cruise’. The table structure is given in
table I. Information regarding the timestamp, the altitude,
the flight level, and the current phase is stored at every
detected phase change. This is augmented with metadata such
as the Eurocontrol ID of the flight to allow easy storage and
identification.

VI. EXPERIMENT

To test how accurate the found ATC commands are, a
simulation is performed. As previously mentioned, the rule-
based analysis was able to create a list of possible ATC com-
mands. These commands are compared against a simulated
flight based on the original ADS-B data.

First, the goal and set-up of the experiment are discussed.
Secondly, all independent, dependent, and control variables
used in the experiment will be presented. These form the basis
of the results and discussion presented in sections section VII
and section VIII.

A. Experiment goal & set-up

The goal of this experiment is to test the following hy-
pothesis: A rule-based analysis can infer ATC commands

Table II
DATA USED FOR SIMULATION

City pair Carriers Flights per carrier

EHAM, LEBL KLM, TRA, VLG 12, 10, 18

EDDF, LPPT DLH, RYR, TAP 8, 6, 12

EGLL, EDDM BAW, DLH 9, 9

LFPG, EKCH AFR, EZY, FDX, SAS 14, 3, 5, 5

using the turn rate and flight phase from ADS-B data. To
test this hypothesis BlueSky is used. A comparison can be
made by simulating a flight based on the ATC commands and
comparing it against a simulated flight based on the ADS-B
data.

For this experiment, 4 city pairs were selected where the
OpenSky network has sufficient coverage3. A date was chosen
of which data was available in the Eurocontrol R&D release.
This was 26 July 2018.

To query OpenSky more effectively unique aircraft (tail
numbers) are selected (OpenSky works with ICAO24 iden-
tifiers, which are unique per aircraft). Between every city
pair, the number of flights (different callsigns) are counted for
each tailnumber. For every carrier, the top 2 tailnumbers are
selected. The carrier and the number of flight per carrier can be
found in table II. Different carriers were chosen to diversify
the used flight plans, making the results less dependent on
flight plans. In total 111 flights were selected. An overview
is presented in table II and exact flight numbers are given in
Appendix F. The raw ADS-B data is visualised in fig. 9. Gaps
on the map indicate that no ADS-B message from this area
was captured by ADS-B receivers connected to the OpenSky
Network.

The ADS-B data was preprocessed, as described in sec-
tion IV. Further filtering was performed to select only the
cruise period. This was done by identifying the first and
last datapoint identified as cruise and selecting all datapoints
in between. An additional filtering step was implemented
to exclude all trajectories of which the filed flight plan (as
delivered to Eurocontrol) is too different from the actual flown
path. If the starting point of the cruise phase is more than 30km
removed from the flight plan, the flight is discarded. This is
done to ensure that flights used are without anomalies. The
last step was to detect the ATC commands in the trajectories
using the rule-based analysis described in section V.

B. Independent variables

The independent variables are factors that are deliberately
manipulated between the different experimental setups to see
the effect of that manipulated factor on the experiment. As
previously mentioned, this experiment is to test how the detect
ATC compare against the original ADS-B data. Therefore,
every flight was simulated twice. The first flight (the simulated
flight) is solely based on the gathered ADS-B data. The second

3https://opensky-network.org/network/facts
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Figure 9. The augmented ADS-B data gathered from the OpenSky database for the 111 flights used in the experiment, coloured by the destination airport.
Note that there are 3 gaps in the data. Above the north border of Portugal and Spain, the southern part of the Bay of Biscay, and the centre of France. In
these gaps, no ADS-B messages were captured by the OpenSky network.

flight (the reconstructed flight) is made using the found ATC
commands.

The following subsections explain how the two different
flights are simulated. The creation of the flight plan is ex-
plained, as well as the starting and ending of a flight. The
process of adding one aircraft to the simulation is explained
since the process is similar for all flights.

1) Simulated flights: When the simulated flight is added to
the simulation, the first datapoint in the ADS-B data is used.
This contains the latitude, longitude, altitude, and track angle

of the aircraft. This information is used in BlueSky (input
related to speed are discusses later) to add an aircraft to the
simulation.

After the creation, the flight plan is added based on the
ADS-B data. To reduce the computational time, the amount of
datapoints is reduced using the Ramer-Douglas-Peucker (RDP)
algorithm. The algorithm is applied to the [latitude, longitude]
array of ADS-B data. A reduction value of 10−3[-] is used,
which corresponds to a maximum deviation of 132m at 50°
latitude. The remaining datapoints are used to create a flight
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Table III
DEPENDENT VARIABLES AND UNITS

Variables Unit

Horizontal difference km

Track angle difference °

Vertical difference m

Table IV
CONTROL VARIABLES

Variables Value Comment

Aircraft speed 250 [kts] Given as CAS

Aircraft type B788 [-]

Wind speed 0 m/s

Waypoints - Added from Traffic package
if not in BlueSky database

plan, by adding every point as a unique waypoint in the flight
plan. Where ADS-B data is missing, a straight line will be
flown between the last available point and the next available
datapoint. The destination airport is added as final waypoint.
The aircraft is removed from the simulation at the timestamp
of the last ADS-B datapoint.

2) Reconstructed flights: The reconstructed flight uses the
detected ATC commands to form a flight plan. These ATC
commands are generated by applying the rule-based analysis,
as described in section V, to the original ADS-B. The aircraft
is added to the simulation in the same manner as the simulated
flight, using the same parameters. After that, the flight plan
is created using the found ’direct to’ commands, with the
destination airport being added as the last waypoint. During the
flight, the aircraft is given ’direct to’, ’heading’, and ’altitude’
commands at the timestamps at which the command was
detected in the ADS-B data. The aircraft is also removed from
the simulation at the timestamp of the last ADS-B datapoint.

C. Dependent variables

Dependent variables are measurements taken from BlueSky
to compare the differences between experimental conditions.
Data is gathered using the built-in datalogger tool, which
can log data from multiple sources within BlueSky. For this
experiment, only data regarding the aircraft objects is gathered.
The datalogger was set to collect data every 10 seconds of the
simulation. This time was chosen, such that it matches the
smoothing method chosen.

The captured data, summarised in table III, allows for
both lateral and vertical comparisons between the simulated
flight and the reconstructed flight. The CAS was collected
for verification purposes as speed is a fixed control variable
(discussed later).

D. Control variables

Control variables are paramters that influence the experi-
ment but are held constant, such that they do not affect the
experimental results. An overview of all the control variables

can be found in table IV. As previously mentioned, the speed
variable was fixed, because this could not be detected (see
section V-C). To make a fair comparison the speed of the
aircraft was fixed at 250kts CAS. CAS is independent of
altitude and can therefore be added to the aircraft at any height.

Other control variables are the aircraft type, wind, and
waypoints. BlueSky requires an aircraft type to be given upon
creating an aircraft. This was set as a Boeing 787-8 (B788)
because the simulation needed aircraft that could reach FL400.
The wind was set at 0kts, to not affect the simulation at all.
Waypoints were added to BlueSky if these were not already
in the database. These were added before any aircraft were
initialised.

VII. RESULTS

This section covers the results from the experiment presen-
ted in section VI. At every timestamp, the simulated ADS-
B flights are compared to the reconstructed flights. First, the
horizontal results will be presented followed by the vertical
results. These results will be discussed in the next section,
section VIII.

A. Horizontal

At every timestamp, the horizontal distance between the
simulated and reconstructed flight is calculated. The results
can be found in fig. 10a. As seen in the figure, the flights
between EDDF and LPPT have the highest horizontal distance
error, with errors as large as 100km. These flights also have
the biggest gap in available data as shown by the lighter
coloured lines. Between 1000 & 2000 seconds, errors start to
accumulate before slowly sloping back. Errors starts to grow
before or during the gaps and continue to grow throughout the
data gaps. The second biggest errors are between EHAM and
LEBL. The other 2 city pairs have a much lower and more
consistent horizontal error. These errors are around 10km error
with an outlier peaking at 25km.

The same plot has been made for the difference in track
angle. This can be seen in fig. 10b. The large differences
in horizontal distance error do not directly translate to large
track angle errors. However, the variability of the track error
is larger. This is due to the integrator like relationship between
the track angle and the horizontal difference.

For both measurements, the mean absolute error (MAE) is
calculated. The MAE for the horizontal distance error can
be seen in fig. 11. This figure shows the same results as
seen before. A stark difference can be observed for flights
going towards EDDF. The average is twice as high as for
flights to LPPT. This is further discussed in the next section
(section VIII). Another observation is that the overall average
MAE is around 5km, and the 75th percentile is just below the
10km mark.

The MAE of the track angle difference is shown in fig. 12.
The overall average MAE is a little below 3° and the 75th

percentile is just above 4°. The track angle does not follow the
same pattern as the horizontal distance. Flights towards EDDF
have the highest MAE, 6° on average, followed by the flights
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(a) The horizontal error between the simulated flight and the reconstructed flight.
Every colour indicates a city pair. Lighter coloured lines indicate that ADS-B was not
available at these timestamps.
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(b) The track angle error between the simulated flight and the reconstructed flight.
Every colour indicates a city pair. Lighter coloured lines indicate that ADS-B was not
available at these timestamps.

Figure 10.

towards EHAM. Since the flights towards EHAM are shorter,
the erroneous track angle has less time to integrate. The extra
availability of data points also provides more options for
correcting errors. This effect can also be seen when comparing
flights towards LPPT and LEBL. These have roughly the same
track angle spread, while the horizontal distance error is twice
as low for flights towards LEBL.

Fig. 13 shows the correlation between the number of detec-

ted changes in the lateral plane and the MAE of horizontal
distance. It is determined that no clear correlation can be
observed from this plot. Fig. 14 does the same, but for the
MAE in track angle difference. This shows a positive trend,
meaning that a more complex trajectory (more turns) has a
larger error in the track angle difference.
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Figure 11. The mean absolute error (MAE) horizontally between the
simulated flight and the reconstructed flight. Every color indicates a city pair.
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Figure 12. The mean absolute error (MAE) between the track angles of the
two aircraft. Every color indicates a city pair.
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Figure 13. The mean absolute error of the horizontal distance difference
against the number of detected changes in the lateral plane.
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Figure 14. The mean absolute error of the track angle difference against the
number of detected changes in the lateral plane.

B. Vertical

The vertical error is calculated by subtracting the altitude
of the reconstructed flight from the simulated flight. This is
also done at every timestamp. Looking at fig. 15, it can be
seen that overall the errors are less sporadic when compared
to the horizontal errors. There are certain time slots where
errors are more common. These exist mostly towards the
beginning and the end of a trajectory. The exception on this
being LEBL, where the differences occur after a quarter of the
flight, although these don’t persist for the entire flight. These
results and their causes will be discussed in the next section.

In fig. 16 the MAE of the vertical error is presented. It can
be seen that differences between city pairs are less pronounced.
For every destination, the 75th percentile is below the 125
meter mark. On average the 75th percentile is below 100m.

Another noticeable feature is the low error scores for EDDF
and especially for LPPT. This is in contrast with the results
in the lateral plane. This will be discussed in the following
section.

Fig. 17 shows the correlation between the number of detec-
ted changes and the vertical MAE. A positive correlation is
observed from the data. This suggests that more changes in the
vertical plane will lead to more MAE. This is expected since
a more complex vertical profile is harder to precisely follow
and more prone to errors compared to a simple profile.

VIII. DISCUSSION

This section discusses the results presented before. First, the
horizontal results are discussed. Secondly, the vertical results.
For both sections, the sources of the errors will be discussed
first, after which the results will be discussed along with any
correlations between these two.

A. Horizontal results

For errors in the horizontal results, 3 general error sources
have been identified. These will be explained below.

The first error source is missing data. Because the data
is missing, no detection of turns can be performed, and no
commands can be inferred. Because no commands are given,
the reconstructed flight path will steer an aircraft towards the
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Figure 15. The vertical error between the simulated flight and the reconstruc-
ted flight. Every color indicates a city pair. Lighter colored lines indicate that
ADS-B was not available at these timestamps.

next detected ATC command, which may not be the actual
next ATC command.

The second source is the detection of a wrong waypoint.
This happens most commonly when a waypoint in the original
flight plan is near the turn, but it is not the waypoint where the
original aircraft is going. If this is the only waypoint (in the
flight plan) that is detected, it negatively influences the error.

The third source of errors are long sections of straight
flight, after which the data stops. Data is available, but no
turns are detected along the straight sections. This means that
no commands are given to the reconstructed flight and small
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Figure 16. The mean absolute error (MAE) vertically between the simulated
flight and the reconstructed flight. Every color indicates a city pair.
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Figure 17. The mean absolute error (MAE) vertically between the simulated
flight and the reconstructed flight against the number of detected changes in
the vertical plane.

errors can integrate over time.
As an example fig. 18 is given. In this case, the waypoint

BSN is deemed to be the most likely candidate for the turn
detected at DIDOR. This is because BSN is in the filed
flight plan. However, in hindsight, the aircraft got a direct to
ATLEN or UVUDO. ATLEN wasn’t detected because this is
outside the search area (depicted by the red lines) and UVUDO
was not selected because it is not in the flight plan. This
example also shows that a potential turn at ATLEN was not
detected due to missing data and therefore no other commands
were detected. After BSN, the aircraft flew straight towards
the destination (LPPT). The simulated aircraft followed the
original ADS-B points, with straight lines between the missing
data. Other examples are given in Appendix E.

A broader view of the results shows that the horizontal
difference error is the largest for the flights between EDDF
and LPPT. The flights towards EDDF have the largest error
and start to accumulate between 1000 & 2000 seconds. This
can also be observed in the track angle error, where the
track angles deviate from the 0 line and remain there. The
return flights have a similar (although not as obvious) trend in
horizontal distance after the 3000 seconds mark. This effect
may partially be explained by the lack of data points over the
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Figure 18. A flight between EDDF and LPPT and the reconstructed flight
points. The blue line is the original ADS-B data. The orange line is the
reconstructed flight. The light blue line with dots is the filed flight plan. The
orange line with dots is the actual flown points (from Eurocontrol) and the
red lines are the search area for waypoints.

Bay of Biscay and the north of Portugal as shown in the plots
by the lighter coloured lines and in fig. 9. Two other effects
at play here are the relative sparsity of waypoints over the sea
and the larger amount of time spent flying. Fewer waypoints
mean that a good detection is less likely. Waypoints can be
further away than the 500km search area used, or just outside
the 1° envelope. The longer time spent flying means that small
errors in the track angle have the time to integrate into large
horizontal difference errors.

Other city pairs, EDDM-EGLL & EKCH-LFPG, have smal-
ler errors and also do not have any gaps in the original ADS-
B data. Therefore changes could be detected along the entire
trajectory. These changes could be formulated into possible
ATC commands to create a better matching flight plan. These
flights are also mostly over land, where waypoints are more
abundant than above sea. This makes a good detection more
likely. These flights are also shorter, meaning that small errors
don’t have as much time to integrate.

Fig. 13 plots the MAE of the horizontal distance against
the found number of lateral changes. No clear correlation
can be made between these two. This is in contrast when
comparing the number of detected changes against the track
angle. This is shown in fig. 14. This shows a positive trend.
The reasons why the horizontal distance may not observe
this behaviour are numerous. The track angle can differ to
reduce the horizontal distance. There may not be enough time
for track angle differences to integrate into large horizontal
distance errors. Other factors, such as missing data or detection
of wrong waypoints may have more influence on the horizontal
distance than the track angle.

B. Vertical results

Errors in the vertical plane can be attributed to three major
factors. The first is a missed detection. The flight phases can be

Figure 19. The altitude profile of flight 216919497. This graph shows both
an error introduced by using the RDP algorithm. This is seen at 37500ft in
the simulated flight data. It also shows a missed detection in the original data
after 38000ft.

scrambled, such that no clear distinction can be made where a
phase change occurs. Since this change is missed, no command
is given to the aircraft.

The second source can be due to errors in the original
ADS-B data. These errors can be small, but sometimes can
be large. When these points are used to make a flight plan for
the simulated flight, the simulated flights will follow these.
Since this is mostly one single point, the altitude will return
to the correct state afterwards. This creates a triangle-shaped
extrusion as seen in a trajectory towards EDDM. This can be
seen in Appendix E, fig. 27.

The last source of errors is the use of the RDP algorithm.
This was applied to the positional data of the ADS-B to
reduce the number of data points for the simulation to make.
These datapoint are used as waypoints in the simulation.
BlueSky tries to optimise the altitude while being restricted to
these waypoints. This combination can produce a stair pattern
instead of a smooth climb or descent.

An example of the above errors can be seen in fig. 19. Here
two of three examples can be seen. The RDP induced error
can be seen around an altitude of 37500ft. A datapoint here
was used for the creation of the simulated flight. Therefore
a plateau can be seen in the orange dots around this altitude
instead of a smooth ramp as the blue. The second error is
a missed detection. After FL380 the original ADS-B data
does not increase as rapidly as before. The flight phases here
oscillate between climb and cruise. The cruise phase was
misidentified due to this oscillation and thus the command
for FL380 was given to the reconstructed flight. Two more
examples are given in Appendix E.

Flights toward EDDF, EDDM, EHAM, and LFPG are the
flights with the most errors. These mostly occur at the end of
the flight, suggesting it may be due to the busy airspace above
Northern France, the Netherlands, and western Germany. This
can complicate descent sequences and make it harder to
reproduce a flight plan. This statement does not hold for
EGLL, while the southeast of England is also considered to
be a busy airspace.
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The last noticeable feature is that the flight towards LEBL
has errors that start after a quarter into the flight. One flight
continues to have this error, while the rest of the flights being
only temporary erroneous. An altitude command at this point
might explain why this occurs. For some flights, this is better
detected and converted into ATC commands than for others,
creating this pattern.

Overall the results indicate that the found ATC commands
can reproduce the original trajectory. It does become harder
to follow as the altitude profiles become more complex as
was shown in fig. 17. Furthermore, enough datapoints need to
be available. When no datapoints are available in the original
ADS-B data, no ATC commands can be detected and errors
start to grow.

IX. CONCLUSION

This study used past ADS-B data to detect ATC commands
in trajectory data. The ATC commands focused on were:
altitude change commands, heading change commands, ’direct
to’ commands and speed change commands.

A preliminary analysis has been conducted to find which
smoothing function was able to remove noise from ADS-B
most effectively. It was found that time-based resampling and
selecting the median of the sample performed best. This is
because time-based resampling provided the best reduction
in noise. Furthermore, the added benefit of the median is
that single big outliers are discarded. Three window sizes
were tested for resampling. The 10 second window was the
best trade-off between keeping high temporal accuracy and
minimising the noise level.

A rule-based analysis was able to detect lateral and vertical
changes in the ADS-B data. Lateral changes were identified by
using the turn rate of an aircraft. A combination of a threshold
value and a K-sigma value is used to identify turns. Changes
in the identified flight phase were used to detect changes in
altitude. It was also found that detecting speed changes is not
possible using this method. Effects of the wind on the speed
produced a significant level of noise and variations in the speed
data.

The rule-based analysis was further expanded upon by
adding a second rule-based framework to distinguish track
angle changes into ’heading’ commands and ’direct to’ com-
mands. This framework searches for waypoints along the
trajectory of aircraft and uses a cone-shaped area to search
for waypoints. This was used before a turn started and after
the turn ended.

A selection of aircraft trajectories was subjected to the
rule-based framework. The found ’heading’, ’direct to’ and
’altitude’ commands are then combined to create a flight plan.
This flight plan is compared against another flight plan based
on the original ADS-B data. The comparison was done by
simulating both flight plans in BlueSky. Differences between
the two flight plans are used to test the fidelity of the found
method. The results showed that the mean absolute error
(MAE) of the horizontal distance was less than 10km for the

75th percentile of flights. It was also less than 4° in track
angle difference and around 80m in vertical distance error.

It was found that that method still has several sources
of errors. For the lateral plane, these include missing data,
detection of wrong waypoints, and wrong sizing of the search
area. Each of these can cause errors and when multiple of
these occur at the same time they will enhance each other,
making the reconstruction error larger. A notable feature in
the lateral plane was the effect the complexity of a trajectory
has on the errors. While a positive correlation was found with
the track angle, this did not directly translate to the horizontal
distance error. Other factors such as missing data, integration
time, or a return to normal trajectory has a larger effect on
this error than the complexity.

In the vertical plane, it was found that a more complex
altitude profile resulted in larger reconstruction errors. Since
more options for errors are available in a complex profile,
more errors will be made. Sources of errors can be generalised
to faulty datapoints, missed detections, or the RDP algorithm
induced errors.

This paper set out to test if it was possible to detect ATC
commands in part ADS-B data. It was found that a rule-
based framework could form a list of possible ATC commands
and that these ATC commands could successfully recreate the
original aircraft trajectory if enough ADS-B data is available
along the entire trajectory and the data is of sufficient quality.
However, the method proposed in this paper is not perfect
and several recommendations can be made to improve the
proposed method.

X. RECOMMENDATIONS

Several recommendations can be made for further study of
this topic.

• A method of increasing the accuracy over an area with
sparse ADS-B data may be to adjust the parameters for
detecting waypoints, as presented in section V-B. The
length and width of the search area could depend on the
availability of ADS-B data.

• ATC can usually only control aircraft within their own
FIR. That is why a lot of waypoints are defined on the
borders of FIRs. These mark certain points where aircraft
can cross from one FIR to another. When determining
waypoints for the ’direct to’ commands, these boundary
waypoints should be given prioritisation.

• Another suggestion for finding more accurate waypoints
might be by using the frequency of waypoints as guid-
ance. In section III-B a method is given to determine
waypoint usage by airlines by counting how many times
a waypoint is used in a flight plan. Waypoints with a
higher count could be given priority when looking for
’direct to’ commands.

• Further analysis may be done on temporary shifts in track
angle. These temporary shifts are changes that only occur
for a short amount of time before restoring to the previous
angle. These occurrences may be ATC commands that
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redirect an aircraft to avoid another aircraft, before being
sent back to their original flight plan.

• A more in-depth look may be given to airways. In an
airspace without FRA, these airways may still be useful.
The original goal could be accomplished and any change
from the airways could be an ATC command. These
airways could also be used as a reference for clustering
algorithms or anomaly detection algorithms. This baseline
might reduce the amount of data needed to reach the
required level of precision.

XI. APPLICATIONS

This section presents two sample applications of the pro-
posed framework and tries to show some applications that
might arise from being able to detect ATC changes.

A. Connecting Live ATC radio and ADS-B data

The MUAC ATC radio was compared to the found com-
mands by the presented framework. The Opensky database
was queried to select one hour of data on the 28th of May,
2021. It was found that between 12:00 and 13:00 UTC, a total
of 655 aircraft flew above 7500m in the MUAC airspace. The
Opensky database was queried again to retrieve the ADS-B
data from this region. The ATC recording were downloaded
from www.liveatc.net. All recordings from the MUAC region
were combined into one audio file.

The ADS-B was processed using the methods presented
in this paper and was simulated in BlueSky to visualise
the situation. Instead of giving the aircraft a set of com-
mands, the detected changes in track angle and altitude are
displayed in the console of BlueSky. If the audio file is
played together with the BlueSky simulation a comparison
can be made. The files for these can be found on Github:
https://github.com/Brentebol/LiveATC_bluesky.

B. Airspace analysis for MUAC controlled airspace

The second application tested is an analysis of the MUAC
upper airspace. For this analysis, the ATC commands detection
framework presented in this paper is applied to ADS-B data
collected in the MUAC airspace. 5 days of data (2 to and
including 6 of July 2018) gathered by the TU Delft receiver
was used to visualise hotspots of changes in the upper airspace.
Both lateral changes and vertical changes were visualised and
can be found in Appendix H.

One example of a noticeable hotspot is the waypoints
located on the Dutch-English border. A lot of aircraft made
turns just after or before crossing the borders. This can be due
to the different routing methods. The MUAC airspace allows
for free routing, where the English airspace is more strict with
following waypoints.
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A
Other investigated potential ATC command

detection methods

A.1. Clustering
clustering of trajectories based on similarities was examined to detect ATC commands. Outliers or differences
in trajectories could be due to ATC commands. Two types of clustering were tested. The first methods use
clustering algorithms to cluster groups of trajectories together. The second used the data from the Eurocon-
trol R&D to group trajectories together based on Eurocontrol data.

A.1.1. Clustering algorithms
Two clustering methods were tested for this study. Using PCA and DBSCAN as proposed by [1, 2] and spectral
clustering as proposed by [3]. Both PCA and DBSCAN are included in the Scikit-learn Python package [4]. The
spectral clustering algorithm from [3] was applied since it has been adjusted to work directly on trajectory
data.

A.1.2. Clustering by Eurocontrol data
Data from the Eurocontrol R&D release can be used to cluster certain flights together. The flights table con-
tains information such as departure airport, destination airport, operator, aircraft type, which all can be used
to group certain trajectories.

A test was performed on one day of Lufthansa flights in the MUAC airspace to establish if this method had
any potential for detecting ATC commands. DBSCAN, spectral clustering and clustering by destination air-
port were applied to the dataset. It was found that these clustering methods did not meet the requirements
to detect ATC commands. There are several reasons for these. 1) Every flight has been given ATC commands,
therefore no unaltered trajectories exist and no difference can be found between altered and unaltered tra-
jectories. 2) Clustering methods can not distinguish between the small differences that an ATC command can
give a trajectory. 3) Depending on the trajectories selected, the parameters of the clustering algorithms have
to be changed because of the differences between trajectory types (all same direction versus all scattered).

A.2. Airways
This method uses airways as guidelines for aircraft. The hypothesis was that aircraft will mostly likely follow
their flight plan. This flight plan is in turn made using airways. Any deviations from this flight plan, may be
an ATC controllers given commands to the aircraft. To test this hypothesis, the MUAC airspace was studied.
Airway data was taken from sources mentioned in III-C. The Eurocontrol airspace charts [5] were used as
qualitative verification.

It was found that none of the available data sources had the accuracy to be used for this kind of analysis,
as seen in fig. A.1. Airways were named inconsistently, the airways did not overlap or contained errors that
made these unusable. It was also concluded that, MUAC uses free routing airspace (FRA), which encouraged
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Figure A.1: Several airways (L602, l603, L604, l608, UL610, N872, N873) are plotted using three different databases.

ATC and airlines to fly direct routes through the airspace, leaving airways in this area unused. Therefore this
approach was dropped for this study.
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Figure C.1: Different smoothing functions are applied to a single flight (Eurocontrol ID 218912709). Data gathered by the TU Delft ADS-B
receiver.
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Figure C.2: A sample of 5 trajectories are used to determine the values for the detection methods. The top figure is the trajectory, with
the dots being different detection methods. The middle figure is the standardize ∆track, with guidance lines at 2 & 3 sigma. The lower
figure is the ∆track, with guidance lines at 0.1 & 0.2





D
Navaid detection

Figure D.1 visualises the search area of the used to determine the navaids as described by section V-B. In the
figure below, the flight starts in France, near the border with Belgium. From here, the flight continues over
the Netherlands to fly towards it end goal: Copenhagen.

The trajectory starts with a small change at ADUTO towards TOLEN. At TOLEN, the aircraft turns right to-
wards Denmark. Here the aircraft also deviates from its planned flight path to fly a more direct route. At
DEGUL (unreadable due to overlap with other waypoints) where it makes another turn towards the endpoint
of its cruise phase. In total 3 turn are detected in this trajectory. For these the detection table is given in
table D.1.
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30 D. Navaid detection

Table D.1: Waypoints found for flight Eurocontrol id 219079713

Turn Most
likely
way-
point

Waypoint
in flight
plan
near
current
turn

Waypoint
in flight
plan in
heading
before
next
turn

Waypoint
in flight
plan in
heading
after
current
turn

Waypoint
near
current
turn

Waypoint
in
heading
before
next
turn

Waypoint
in head-
ing after
current
turn

Track
angle
before
turn
(deg)

Track
angle
after
turn
(deg)

0 ADUTO ADUTO FERDI,
HELEN

FERDI,
HELEN,
TOLEN

ADUTO FERDI,
HELEN

FERDI,
HELEN,
TOLEN,
STD,
ZANDA,
BETUS,
ANDIK,
UN-
EXO,
VALAM

26.5

1 TOLEN TOLEN TOLEN FERDI,
HELEN,
TOLEN

TOLEN TOLEN,
STD,
EKROS

FERDI,
HELEN,
TOLEN,
STD,
EKROS,
SPY,
GOMKU

26.8 24.0

2 DEGUL DEGUL AMRAK EEL,
KUBAT,
LUGUM,
GOLEN,
DEGUL,
MALID,
LISBU

24.4 43.9

3 KOR KOR DEMIR,
KESUR,
OSKEV,
IBNIL,
KOR,
GATMA

47.9 57.3
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Figure D.1: A single trajectory (Ectrl id: 219079713) with the search area for navaids visualised. The blue arrow indicates the start of
the trajectory. Red lines indicate the search area right after a turn. Purple lines indicate the search area before a turn. The green line
represent the ADS-B data. The green line with big dots is the scheduled flight plan.
Note: The waypoints in the extended flight plan are also included. These are not shown for readability purposes.





E
Breakdown of errors in simulation

Figure E.1: Flight 219058962 towards LEBL. At the end of the original
ADS-B data, a long section of straight flight is flown. In this section
no turns are detected. The reconstructed flight turn towards its des-
tination after the last waypoint has been flown. Which is ETAMO in
this flight. DEGOL and LAPRO are outside of the search area and
therefore not considered for direct to commands. Most likely PPG
was the given direct to command, given the track angle of the origi-
nal ADS-B trajectory.

Figure E.2: flight 218929651 towards EDDF. This flight contains no
datapoints over the bay of Biscay. Here two turns should be made
when looking at the actual flight point (light orange line with dots).
Since these turns are missing. The next ATC commands was used.
This was a direct to LUTAX. Since no flight points were detected right
after the turn above France, and this was the furthest when extend-
ing the turn.
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Figure E.3: Altitude profile of flight 21906410. A faulty datapoint was
used to simulate the flight in BlueSky, resulting in the flight profile
above.

Figure E.4: Altitude profile of flight 21906410. The RDP algorithm
creates a step pattern in the simulated flight (orange).
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E.1. Flights for simulation
Table E.1: Flights that are used in the simulation

ADES AC Operator Registration Icao code Callsign Eurcontrol id
EDDF DLH DAISF 3c6666 DLH42A 218915923

DLH23C 218929651
DAISN 3c666e 218947171

218963067
RYR EIDAN 4ca1d4 218870080

218966852
EIDLX 4ca303 219067967

TAP CSTNU 4951d5 218869224
218913360

TAP576N 218977347
219010659

FHBAL 39840b TAP572C 218984315
TAP572C 219017273

LPPT DLH DAISF 3c6666 DLH72W 218909125
DLH07M 218922057

DAIWA 3c666e 218938350
218952826

RYR EIDAN 4ca1d4 218863324
RYR911J 218959666

EIDLX 4ca303 219060908
TAP CSTNU 4951d5 218876321

TAP579 218919368
218984458

TAP579 219017682
FHBAL 39840b TAP571 218992730

TAP571 219025804
EDDM BAW GEUOD 40093d BAW948M 218928654

BAW950M 219066569
GEUPC 400803 BAW948M 219029054

BAW952M 219040013
BAW960M 219078834

DLH DAIPF 3c6606 DLH1MF 219016410
DLH4MC 219042097

DAIWA 3c66e1 DLH1MF 218886814
DLH4RJ 219033053
DLH6TN 219063320



36 E. Breakdown of errors in simulation

Table E.2: [Continued] Flights that are used in the simulation

ADES AC Operator Registration Icao code Callsign Eurcontrol id
EGLL BAW GEUOD 40093d BAW949L 218932918

BAW951L 219072187
GEUPC 400803 BAW949L 219034155

BAW961L 219084335
DLH DAIPF 3c6606 DLH1LC 219010955

DLH9MF 219036416
DAIWA 3c66e1 DLH1LC 218881351

DLH6MM 219027581
EHAM KLM PHBXA 484130 KLM86N 218934677

KLM86N 219001956
KLM88T 219081107

PHBXC 484132 KLM1670 218939152
KLM76T 218951487
KLM1670 219045231

TRA PHHSG 484f6d TRA13R 218885687
TRA132K 218963887

PHXRD 4841db TRA13R 219047326
TRA132K 219064324
TRA13R 219078198

VLG ECMGY 344699 218866661
VLG83NA 218899511
VLG83NA 218929694
VLG83NA 218994575

ECMRF 3453c3 VLG83WG 218886968
VLG83WG 218917857
VLG83WG 218953949
VLG83NA 218960644
VLG83NA 219028019

LEBL KLM PHBXA 484130 KLM85J 218929497
KLM85J 218996738
KLM79K 219075278

PHBXC 484132 KLM65H 218932819
KLM75K 218945735
KLM65H 219033809

TRA PHHSG 484f6d TRA85B 218878261
TRA89A 218958418

PHXRD 4841db TRA85B 219038676
TRA89A 219058962
TRA85B 219071455

VLG ECMGY 344699 218870240
VLG83PJ 218904769
VLG83PJ 218932785
VLG83PJ 219000479

ECMRF 3453c3 VLG83VF 218891694
VLG83VF 218922113
VLG83VF 218956533
VLG83PJ 218967508
VLG83PJ 219033558
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Table E.3: [Continued] Flights that are used in the simulation

ADES AC Operator Registration Icao code Callsign Eurcontrol id
EKCH AFR FGKXS 392af2 AFR15HH 218907555

AFR15HH 218936708
AFR15HH 219037697
AFR15HH 219071491

FGUGH 3950c7 218868752
AFR105H 218944716
AFR91PP 218998941
AFR105H 219079713

EZY OEIJD 44015a EZY53ZT 219051007
OEIJZ 440128 EZY53ZT 218887890

EZY53ZT 218981920
FDX N923FD acc9d0 FDX5182 218924342

ad8b94 FDX5182 218991236
ad8b94 FDX5182 219057767

SAS OYKAS 45ac33 SAS64K 219068659
OYKBL 45ac4c 218871752

SAS1560 219017869
LFPG AFR FGKXS 392af2 AFR185R 218941691

AFR185R 219076763
FGUGH 3950c7 218873841

AFR83SJ 218949669
AFR88FE 219003935
AFR83SJ 219084597

FDX N972FD ad8b94 FDX5181 219022097
FDX5181 219089760

SAS OYKBL 45ac4c 218866573
SAS559 219013703
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E.2. Additional simulation results
This section will provide the mean squared error (MSE), the root mean squared error (RMSE), the normalised
root mean squared error (NRSME) and the mean absolute error (MAE) of the performed simulation. The
NRSME is calculated by dividing the RMSE by the average error.
The plots are done for the horizontal error and the vertical error.

E.2.1. Horizontal distance error
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Figure E.5: Mean squared error of the horizontal distance,
grouped by destination airport (ADES).
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Figure E.6: Normalised root mean squared error of the horizontal
distance,
grouped by destination airport (ADES).
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Figure E.7: Normalised root mean squared error of the horizontal
distance,
grouped by destination airport (ADES).
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Figure E.8: Mean absolute error of the horizontal distance,
grouped by destination airport (ADES).
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E.2.2. Vertical error
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Figure E.9: Mean squared error of the vertical error,
grouped by destination airport (ADES).
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Figure E.10: Root mean squared error of the vertical error,
grouped by destination airport (ADES).
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Figure E.11: Normalised root mean squared error of the vertical er-
ror,
grouped by city pair.
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Figure E.12: Mean absolute error of the vertical error,
grouped by destination airport (ADES).
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E.2.3. Track angle error
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Figure E.13: Mean squared error of the track angle error.
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Figure E.14: Root mean squared error of the track angle error.
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Figure E.15: Root mean squared error of the track angle error,
grouped by city pair.
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Figure E.16: Root mean squared error of the track angle error,
grouped by destination airport (ADES).
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E.2.4. Empirical cumulative distribution functions
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Figure E.17: The empirical cumulative distribution function of the
absolute horizontal distance error, colored by city pair.
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Figure E.18: The empirical cumulative distribution function of the
absolute horizontal distance error, colored by destination airport.
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Figure E.19: The empirical cumulative distribution function of the
absolute track angle error, colored by city pair.





F
Upper airspace analysis

This section presents the results when the proposed rule-based analysis is applied to several days of ADS-B
in the upper airspace above the Netherlands. Both the changes in heading and changes in altitude are given
in fig. F.1 and fig. F.2 respectively.

For the heading a noticeable line (PERDI to TOLEN) can be seen crossing from France into the Netherlands.
Also clearly highlighted is the boundary between the Dutch FIR and the English FIR at LAMSO and RAVLO.
Another highlighted square above the North sea contains REFSO, a point where a lot of aircraft turn towards
EGLL.

The changes in altitude are less common. A noticeable feature is the birght colored area around FERDI, which
overlap a bit with heading change map. The rest is much more spread out over the entire airspace.
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Figure F.1: Detected heading changes in the upper airspace above the Netherlands. Every square represent an area of 0.1° by 0.1° and the
color represents the amount of detected changes in the area.
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Figure F.2: Detected altitude changes in the upper airspace above the Netherlands. Every square represent an area of 0.1° by 0.1° and the
color represents the amount of detected changes in the area.
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1
Introduction

The last decades have seen a steady increase of air traffic and the rise of superior technologies. The ability to
process large amounts of data has enabled the field of AI to become a dinner-table topic. The aviation sector
embraced this increase as well and started to collect more data to improve the safety and efficiency of the
sector. A major step was the introduction of ADS-B (Automatic Dependent Surveillance-Broadcast.

ADS-B data contains the location, altitude and the id of the aircraft and can be received by anyone with an
ADS-B antenna. Previously, this kind of data was sent every 5 to seconds using the mode-c and mode-s
transponders. With the introduction of ADS-B data, the temporal resolution has decreased to every sec-
ond[6]. This data transmission has made air traffic control more precise. It also enables separation advice
systems such as ACAS1. The increased accuracy also improved the capabilities of, among others, statistical
data analysis and machine learning techniques.

One research gap that is currently getting more attention, is the detection of anomalous events in past ADS-
B data. Clustering algorithms and machine learning techniques have been used to detect events such as
firefighting, to go-arounds. However, as of yet, no method has been suggested that can identify basic air
traffic control (ATC) commands in the past ADS-B data. Since aircraft leave this ’breadcrumb’ trail, a method
could be developed to detect where and what ATC commands have been given.

This report presents an exploratory research project that uses the ADS-B data to determine where, when
and possibly what ATC command is given. Several approaches have been identified, including statistical
time series analyses, airway usage and big data techniques. When ATC commands are identified they are
compared against historical, waypoint and flight path data to predict whether such a change was an ATC
command or a procedural command. This report suggests a validation strategy to determine how accurate
and robust the detection method is.

Identifying commands in the airspace might be helpful in different situations. Finding ATC commands can
help identify the workload or habits of the ATC controller, the complexity of the airspace, or it can provide a
test and validation set for other machine learning algorithms.
Looking further into the future. A method might be developed that ’strips’ these ATC commands from the
ADS-B data. This could simulate an airspace where no ATC is/was present. This simulation could be used to
evaluate automates separation systems or to train ATC students.

1.1. Scope
The subject of the thesis will be to investigate whether it is possible to detect ATCo actions from ADS-B data
that are being sent by the aircraft.

The scope of the research will encompass the en-route flight phase of an aircraft in the Maastricht Upper Area
Control (MUAC) airspace. This is due to the ADS-B data available, more on this in section 2.2. Only commer-
cially scheduled flights will be used for this research. Furthermore, the ATCo actions that are searched for are

1https://www.skybrary.aero/index.php/Airborne_Collision_Avoidance_System_(ACAS)
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heading changes, direct to, speed and altitude changes.

1.2. Research questions
The main research question of this thesis is:

To what extend is it possible to identify ATCo actions from past flight data and to simulate aircraft
trajectories when these commands are filtered out?

This main research question can be subdivided into multiple subquestions. Each of these questions needs to
be answered for this thesis to make any significant contributions to the current literature regarding ATC.

1. Which detection method can best identify changes in ADS-B trajectory data?

2. To what level can these changes be coupled to existing ATC procedures?

3. How can the difference between an ATC command and a procedural change be identified?

4. How accurate are these found ATC commands?

1.3. Outcome & contribution
The outcome of this research project should be a method that produces a scenario where flights are passing
through the MUAC airspace on their current trajectory, without any ATC intervention during the flight. This
method can then be applied to any upper area control airspace to produce the same results. This scenario
would allow for automatic separation systems to be tested on modified real data instead of synthetic data.
The results themselves can say something about the complexity of an airspace of reveal habits in ATC.

1.4. Report structure
The section will describe the structure of the report. In chapter 2 relevant literature, current practises and ad-
ditional background information is presented. Chapter 3 will describe what preprocessing steps were done
to ready the data for the actual analysis. The experimental set-up is discussed in chapter 4. Here, the ex-
perimental directions are discussed and preliminary finding regarding the directions. It will also discuss the
validation strategies for this research. In chapter 5 the results are presented that have been found so far. These
are thus far only present for the rule-based analysis. Chapter 6 will present the next steps that will be taken
after this report and the overall planning of the research. This report will be concluded in chapter 7.



2
Literature review

In this chapter, relevant literature and background information will be presented. In will start with the cur-
rent practises in ATC and how changes to aircraft are relayed. Next, a more in-depth look will be taken into
the main data source this thesis is going to use. Section 2.2 will explain what ADS-B data is and what currently
can be achieved with it. Next, section 2.3 will describe how these ATC practises can be translated into rule-
based detection methods by using time-series analyses. Section 2.4 will take a look into the current clustering
techniques used to group different flights with a similar flight profile. It also discusses some of the prepro-
cessing steps needed to use these clustering algorithms efficiently. In section 2.5 two papers have explained
that automatically transcribe ATC radio commands use machine learning models. In the next section, sec-
tion 2.6, several methods are described, which can detect anomalous trajectories based on an ensemble of
trajectories. The last section will detail all the data and data sources, what are the sources, and where these
come from. This is section 2.8.

2.1. ATC practises
When making these rules, the current ATC practices have to be taken into consideration. These practices
differ for different commands to the aircraft. This thesis will stick to the basic commands and the practices
that surround these commands.

First, heading changes. Heading changes are most commonly given in two different ways. Aircraft can be
given the ’direct to’ command. This command tells the captain of an aircraft to fly directly to a waypoint. This
is usually to cut off a section of the planned trajectory that is a longer way around. The next command is the
’fly heading xxx’, where x is a heading between 0 and 360. This tells the aircraft to fly that exact heading. In
this thesis, the assumption will be made that these two commands are the only heading commands given. It
will also be assumed that the ’direct to’ command will most likely be given in the current scope of the thesis.

Next are the speed changes. Speed changes can be only be given in two ways (in the current airspace). These
are either ’at pilots discretion’, meaning that the pilot is able to fly at the desired speed. Or the speed is given
in ’reduce/increase speed 250 knots’. This tells the pilot to adjust their speed to the specified velocity. It can
be assumed that aircraft in MUAC airspace will fly at the most efficient speed (in relation to the wind) and
that speed change commands are uncommon.

Lastly, the altitude change commands. Altitude commands are most commonly given in the ’climb/descent
to FL200’ format. The height in feet is the flight level (FL) x 100 (FL180 = 18000 foot). Flight level commands
are always given as multiples of 10 (FL160, FL170, or FL 180). Since aircraft are always assigned to a flight level
in order to maintain vertical separation, it can be assumed that any change in FL id due to the ATC.

2.2. ADS-B data
ADS-B is short for Automatic Surveillance Dependent Surveillance-Broadcast. It is a method of automatically
transmitting data from the aircraft to nearby receiver stations.[7] The message is send encoded and can be
encoded to extract the actual data. This is described by Sun et al.[8]. An addition to this is the pyMode-S,
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Table 2.1: Parameters received by the TU Delft ADS-B antenna

Parameter Unit Accuracy Example Remark
ICAO24 - - 406AE9 Hexadecimal aircraft identifier.
Unix timestamp s 10 ms 1527897600.29
Latitude deg 1 mdeg 51.61093
Longtude deg 1 mdeg 5.73479
Altitude ft 25 ft 28000
Ground speed kts 0.01 kts 417.0 Send with extended message.
Track deg 290 0.01 def Send with extended message.
Rate of climb ft/s 64 ft/s 128 Send with extended message.

Callsign - - TOM23X
Send as extra value, not always
included in extended message.

Flight id - - cb59a5b4
Identifier for flights. Not used
in this thesis because of unreliability.

which is also developed by sun et al.[9]. This is a python package that can decode captured ADS-B messages.

An entire network of ADS-B is set up by the Opensky Network[10]. This network provides open access to
ADS-B and mode-s data to increase the security, reliability, and efficiency of air space usage.

For this research, a dataset was provided by the Delft University of Technology. This dataset contained de-
coded messages collected by an antenna atop the faculty. The information contained in the message can be
found in table 2.1.

ADS-B data has been used extensively in research, because of its open nature. Several of these applications
are given below.

2.2.1. Flight extraction
ADS-B data does not differentiate between different flights. It always sends the identifier of the aircraft and
sometimes the callsign of the flight the aircraft is performing. However, this callsign cannot be used as an
identifier for several reasons. 1) It is too sparsely available to use it directly, 2) the callsign of the aircraft can
change, both due to technicalities or for other reasons. An example is when KLM changed the callsign of their
747-400 aircraft for retirement1.

Sun et al.[11] proposed a method to use clustering algorithms to extract flights from the dataset. Sun et al.
tested BIRCH and DBSCAN as clustering algorithms to separate data points based on the ICAO address and
the timestamp. The DBSCAN method has been further refined by Sun et al. [12] to better tune the clustering
parameters. A benchmark test was performed where the parameters of DBSCAN were varied. The cluster-
ing algorithm was applied to a dataset with the known amount of flights, in order to extract the best set of
parameters.

2.2.2. Flight phase identification
ADS-B can be used to identify the flight phase of an aircraft. Sun et al.[sun] proposed a method using fuzzy
logic to extract this data based on the altitude, RoC, and speed. This method suggests a percentage for each
possible type of phase (ground, climb, descent, cruise). The type of phase with the highest score is selected
for this data point.

This method is later adjusted and refined by Sun et al.[12] to also include a ’level’ flight phase. Sun et al. also
added extra logic that only allows for valid phase transitions. An aircraft cannot go from ’cruise’ to ’ground’,
but has to pass ’descent’ in order to get to ’ground’.

2.2.3. Aircraft performance modeling
ADS-B data can be used to estimate the performance metrics of aircraft. In his paper, Sun uses a stochastic
total energy model to estimate the drag polar coefficients[13]. Hrastovec et al. used data collected by air
traffic control centers to estimate aircraft performance using a machine learning model[14]. This has since

1https://simpleflying.com/klm-final-boeing-747-retirement/
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been evolved into an open-sourced aircraft performance model that can be used by anyone in the scientific
community[15].

2.3. Rule-based time serie analysis
Rule-based detection tries to determine a set of rules that can provide a basis to detect changes in trajectories.
These rules are based upon the premise that trajectories are a form of time series and the changes to these
time series are based on ATC practices, as described in section 2.1. The hypothesis is that a set of rules can be
applied to these time series that can predict whether a change in the trajectory has happened and if it was an
ATCo command or not.

Three methods have been selected to detect changes in time series. The first is using the ruptures python
package [16]. This package contains multiple change point detection algorithms, which can be imported into
Python. Changepoint detection focuses on detecting changes in the parameters that make up a time series.
The second method is using the k-sigma rule. When applying this method to the change in direction of the
aircraft, the outliers can suggest a change in aircraft heading. The third is taken from Gariel, Srivastava, and
Feron [2]. In this paper, a method is mentioned for detecting turning points based on the turn rate of aircraft.

When comparing the results of the detection step with information about waypoints and historical data from
the same callsign (or airport pair and carrier) an approximation can be made if a certain detection was a
procedural one or this was an ATCo action.

Altitude change analysis
In addition to the time series rule-based method described above, another approach was taken for the change
in altitude. This approach used the information gained from the flight phase, as described in section 2.2.2
and section 3.3. Since flight phases have already been identified in trajectories, transitions could indicate the
presence of an ATC command. This has to be verified with the Eurocontrol flight path to check whether the
change was planned ahead or not.

2.4. Trajectory clustering
Clustering is an unsupervised technique that can group together data points. When a group of data points is
given, clustering algorithms can be used to classify data points into certain groups. This can also be applied
to trajectories, although not directly. In order to cluster trajectories, they have to be altered. The considered
clustering techniques and trajectory processing methods are described below.

2.4.1. Clustering algorithms
In order to obtain quantitative data from aircraft trajectories, trajectories can be grouped together in sets of
trajectories that are alike. These groups are called flows. This allows comparisons between different flows or
to compare single trajectories against the flow mean. Aircraft can be assigned to flows based on their current
flight path and, in conjunction with other environmental data, a short-term 4D prediction can be made[17]
or an ETA for landing can be estimated[18].
A review of clustering algorithms and trajectory similarity/distance measures is given by Yuan et al. [19].
In this paper, seven clustering algorithms were described and reviewed in addition to six trajectory similari-
ty/distance metrics. Another review paper by Basora, Olive, and Dubot [20] summarizes clustering algorithms
with respect to their abilities to detect anomalies.

Three clustering methods for trajectory clustering were considered. Two of these use clustering methods,
DBSCAN & spectral clustering and the third uses information gained from the Eurocontrol data set.

DBSCAN
The first clustering method considered is DBSCAN. DBSCAN (Density-based spatial clustering of applications
with noise) was first proposed by Ester et al. [21]. DBSCAN clusters points together based on the euclidean
distance between points and the number of points within that distance. An example is shown in fig. 2.1, here
three different points are identified.

1. Core points. A point is considered a core point if at least MinPts are within the reachable distance ε.
Shown as points around A.
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Figure 2.1: Visualisation of DBSCAN, with minPts = 3. Points around A are core points. Point B and C are not core points, but reachable
from A. Point N is noise. source: 2

2. Non-core points. Non-core points are points reachable by at least 1 core point. Non-core points are
considered part of the cluster. These are point B & C in fig. 2.1.

3. Noise. If a point can not be directly reached by a core point it is considered as noise, as shown by point
N.

DBSCAN is controlled by two parameters. The first is minPts. This is the minimum amount of points that
need to be reachable by a point, for it to be a core point. The second is ε, this is the distance that is reachable
from a core point. Shown by the circles in the figure.

The benefits of DBSCAN are numerous. It is used in literature as shown Murça et al. [1] and Gariel, Srivastava,
and Feron [2]. It is also easily implemented using the Scikit-learn python package[22] and the understanding
of the parameters is intuitive.
The downside is that trajectory data cannot be directly inputted. Therefore a dimensionality reduction such
PCA has to be applied to the trajectory data before DBSCAN can be applied.

Spectral clustering
The second clustering algorithm was spectral clustering. It is used by Enriquez [3] to determine persistent
flows. It also is available as a clustering algorithm from Scikit-learn[22]. This however cannot take trajectory
data as input. Therefore the architecture as described by Enriquez was used. The spectral clustering method
presented uses the values of the second-largest eigenvector of the Laplacian matrix L of Wi , j to partition the
different trajectories into clusters. Here, Wi , j is a reduced representation of all the trajectories. By recursively
calling the spectral cluster method on the results, until a stopping criterion is met, it divides the input into
more and more clusters.
How to construct this similarity matrix is presented in the latter part of section 2.4.2. The matrix L is con-
structed by subtracting the diagonal matrix Wi , j from D , with D = ∑n

j=1 Wi , j . In pseudo-code this look like
the folling section:

def SpectralCluster (W, wmin ) :
D = sum( Wij , ax is = i ) #sum W over i
L = D − W
v = second smallest eigenvector of L
i l = np . where ( [ v < 0 ] ) #Get indi ces where v < 0
i r = np . where ( [ v >= 0 ] )
i f stop ( W[ i l , i l ] ) > wmin:

SpectralCluster (W[ i l , i l ] , wmin)
else :

save i l #found a c l u s t e r
i f stop ( W[ i r , i r ] ) > wmin:

2https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg
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SpectralCluster (W[ i r , i r ] , wmin)
else :

save i r #found a c l u s t e r

This results in an array where the indices correspond to i in Ti and the value corresponds to the cluster. The
stop function can be a user-defined function. Enriquez used the ratio of maximum distances max(W i .,i .)

max(W ) to
determine when the algorithm should stop.

The benefit of spectral clustering is that no dimensionality reduction or feature extraction has to be per-
formed in order to cluster flights together. Only subsampling of the trajectories.
The disadvantages of spectral clustering are that no flight can be identified as noise. Trajectories also have to
be subsampled into an even amount of points in order to make a similarity matrix. The method is also slower
than DBSCAN and the parameters are less intuitive.

Filtering on Eurocontrol metadata
The last clustering method considered is using the Eurocontrol data given to filter the flights. This dataset
is described better in section 2.8.2. The clustering methods can be done by filtering on other data, such as
airports, cities, operators, or aircraft types.

2.4.2. Dimensionality reduction & similarity parameters
Several dimensionality reduction techniques and similarity parameters are found in the literature. Both Ba-
sora, Olive, and Dubot [20] and Yuan et al. [19] have presented review papers in which these are summarized
and compared. Based on their information and the current practices in other literature these conclusions
were made.

Principal component analysis - DBSCAN
For the clustering using DBSCAN, principal component analysis (PCA) was chosen as reduction technique.
This method is used by [2, 17] in conjunction with DBSCAN. PCA can be considered as a feature extraction
method. Its goal is to identify the most relevant information and map this onto a feature space. This feature
space is a lower-dimensional space than the original data. Principal components (PC) are orthogonal axes
and depicts along which axes the original data has the most variance. The first PC shows the data with the
most variance, the second PC (orthogonal to the first) shows where the data has the second most variance,
etc... An example here is shown in fig. 2.2. The top-ranking PC will be used for the clustering algorithm.
To be more precise, the method of Wang, Liang, and Delahaye [17] was used. It is suggested to augment the
trajectory data with several other parameters, such as the distance from a point to the center of the map R, the
corner of the area considered D , and the angular position to the reference point Φ. Also, the sine and cosine
values of the heading were included to avoid the discontinuity at 0 and π. Next, all the data is normalized to
[0,1] to scale everything. In the final step, the trajectories are resampled to n point. Appending all the data
gives a vector representation T of a trajectory.

T = [
l at∗, lon∗, al t∗,R∗,D∗, si n()∗,cos()∗

]
Every parameter now consist of n normalised points. And every row consist of n ·7 points. This is done for
every trajectory and the PCA is applied on the resulting data set.

Similarity matrix - spectral clustering
For the clustering using spectral analysis, the proposed method of using similarity matrix, constructed using
a Gaussian kernel, as proposed in the same paper by Enriquez [3] was used.
In the paper, the trajectory is also represented in a singular vector form T , but only the latitude and longitude
parameters are used. The latitude and longitude data is normalised to [0,1], creating x, y . The trajectory is
then uniformly subsampled at m times. This creates a vector in the following format.

Ti =
[
(x1, y1)(i ), (x2, y2)(i ), . . . , (xm , ym)(i ),

]
Here, (xk , yk )(i ), correspond to the normalised position of the aircraft i at time k.
A similarity matrix W ∈ R(n×n) is constructed, where the entries are calculated using the Gaussian kernel

3http://www.statistixl.com/features/principal-components/
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Figure 2.2: Visualisation of PCA. PCA finds the axis along which the data has the most variance. Source: 3

below.

Wi , j = e−
||Ti −T j ||2

2σ2

Notice that there is a user-defined parameter, σ. This is a local scaling parameter that determines the width
of each cluster. Once the similarity matrix has been made, it can be used as the input for spectral clustering.

2.5. Automated ATC voice transcriptions
Research has been conducted to use voice-recognition software to automatically transcribe ATC voice com-
mands into machine-readable data. This would allow for the automatic detection of ATCo actions by listening
to ATC radio. This can either be done using a dedicated radio or via other open sources4.

Srinivasamurthy et al.[23] proposed an iterative model that uses ATC systems to build up an increasing database
of ATC commands that can be used to train their model. Their system used a semi-supervised learning frame-
work that uses speech and radar data to iteratively update the model.

Subramanian et al.[24] proposed a method to detect anomalies in the National Airspace System by combin-
ing ATV voice command and Traffic Flow Management data and IBM Watson’s natural language processing
capability.

ATC voice commands could be used as a validation set when detecting ATCo commands from ADS-B data. It
can also be used as a training set when using supervised machine learning methods to further detect changes
in the flight path of aircraft.

2.6. Detecting anomalies in trajectories
A more generalized concept of this thesis has already been worked on. Three papers have been found, in
which different methods are used to detect anomalies in past ADS-B data. Also, a review paper has been
found which state-of-the-art detection methods are summarized.

In the first paper, Olive et al. [25] uses a variational autoencoder (VAE) to detect anomalous aircraft trajecto-
ries. VEA is a type of neural network that reduces the dimensionality of the given data and tries to restore the
reduced data to the original data[26]. The model reduces the data to a set of distributions in order to make
the predictions more robust, hence the variational part. The difference between the reconstructed data and
the original data is called the reconstruction error.

4Examples: www.liveatc.net, www.broadcastify.com
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To start, a cluster of flights or an area has to be selected. These flights are then preprocessed and fed into
the VAE to train the model. Once the network has been sufficiently trained, the flight can be tested using the
network. The value of the reconstruction error represents how different the flight is from the ’normal’.

The second paper, Olive et al. [27] uses a variety of data, including ADS-B data, to identify a series of events.
These events include, but are not limited to: Take-off and landing, go-arounds, firefighting missions, test
flights, and important for this thesis, direct to’s.
Olive et al. use flight plan data to infer where the aircraft might have received ’direct to’ command, by com-
paring the difference in true track and aircraft bearing with respect to the waypoint. A long interval of time
without a navigational point may suggest an ATC command. Also, some pitfalls have been identified. These
are: 1) long-haul flights might target far away waypoints, making the criteria less reliable. 2) If two (or more)
waypoints are aligned, it is difficult to know which point was detected. And 3), flight management systems
are able to follow parallel routes during transatlantic flights.

The last paper, written by Basora, Olive, and Dubot [20] reviews classical and state-of-the-art anomaly detec-
tion techniques and their (if any) application to aviation. The paper includes techniques such as traditional
data-driven methods, neural networks, and temporal-logic based learning. Extra focus is put on unsuper-
vised techniques, due to their relevance in the aviation domain. The paper concludes by summarizing the
anomaly detection methods and their use in the aviation domain.

2.7. Trajectory prediction
An area of interest in the ATM research field is to predict the locations of aircraft in the future. A prediction
can better aid in separating aircraft or indicate to ATC when an aircraft is touching down.

Several studies have already been conducted in this field.
Wang, Liang, and Delahaye [17] proposed a short-term 4D to predict the ETA of aircraft landing at Beijing
airport. The method used a neural network (NN) that is trained independently on different clusters. It was
found that the NN was robust and outperformed multiple linear regression models, which were used as a
baseline.

In the follow-up paper, Wang, Liang, and Delahaye [28] 5 different neural network architectures were evalu-
ated. All of these were deep neural networks and only differ in the number of layers. It concludes that deep
NN’s outperform shallow NN’s, but should not be too deep. The latter won’t be able to generalize as well.

Dek [18] uses ADS-B data, weather data, and runway availability to predict the arrival times of aircraft landing
at Amsterdam. He compares aircraft performance models, long short-term memory neural networks, deep
neural networks, and gradient boosting machines to predict the ETA of aircraft at Amsterdam. It was found
that the latter outperforms the other tested methods.

An entirely different method of predicting aircraft arrival times is using the Bluesky air traffic simulator by
Hoekstra and Ellerbroek [29]. Bluesky is equipped with aircraft performance models, and also compatible
with BADA 3. These contain aircraft performance parameters and allow Bluesky to better simulate the be-
havior of aircraft.

2.8. Data & data sources
The data used for this experiment comes from different sources en contains multiple different datasets. This
section will explain what data is used and isn’t used, where it comes from and what the data is used for.

There are 3 main databases used in this thesis. The first one is the ADS-B database from the faculty of
Aerospace engineering at the TU Delft. The second database is the dataset from Eurocontrol. The third
dataset is included in the Traffic python library.

2.8.1. TU Delft ADS-B data
ADS-B data (or Automatic Dependent Surveillance-Broadcast) is a message that is sent by every aircraft. The
Delft University of Technology has an antenna with which it can receive ADS-B messages. These messages
are stored on a server, which can be accessed when one has a TU Delft log in.

Due to the location of the receiver, it can receive most of the ADS-B signals that are given in MUAC airspace,
and over the south-eastern part of the United Kingdom. A visualization is shown in fig. 2.3.
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Figure 2.3: ADS-B datapoints captured over 1 day. Source:[11]

Every message contains the ICAO24 address of the aircraft, which is unique to the aircraft. The UNIX times-
tamp of the message, the position of the aircraft in latitude and longitude, and the altitude of the aircraft.
Sometimes more information is sent which contains the ROC (Rate of Climb), the ground speed, the track
angle, the flight id, and the callsign.

2.8.2. Eurocontrol flight data
The Eurocontrol dataset contains information about all commercial flights that enter or use Eurocontrol
airspace. Eurocontrol has released the flight data for the years of 2015 to 2018 with 4 fixed sample months
(March, June, September, December) for R&D purposes. Only for the year 2018 the month of June was avail-
able to the TU Delft.

The data consist of 4 main datasets. These are the ’flights’, ’flight points’, ’flight airspaces’ and ’ATM envi-
ronment data’. Only the first two of these are used or planned to be used (as of the time of writing) in this
research.
The first dataset contains information about the flights. An overview of several parameters can be seen in
table 2.2. The most important parameter here is the ECTL_ID. This parameter will be used to identify flight.
An overview of the ’flight points’ data is given in table 2.3. These values are available for both the filed flight
points as for the actual flown flight points.
The third dataset, ’flight airspaces’, contains the entry and exit times of AC for different FIR’s (flight infor-
mation region) and AUA (ATC unit airspace). The last dataset contains environmental data, which refers to
the structure of the airspace. It contains data about the AIRAC’s (aeronautical information regulation and
control), the routes (or airways), and FIRs.

Since the ADS-B package provided to the TU Delft contains the entire year of 2018, the choice was made to
use the month of June in 2018 as the period of interest.

2.8.3. OpenSky aircraft database
The OpenSky database[10] contains information about the aircraft itself. Most importantly, it contains the
icao24 addresses and registration numbers of most aircraft. This provides a connection between the ADS-B
data and the Eurocontrol data and allows these 2 datasets to be combined.

The dataset contains a lot more information that is not used for this thesis. It contains information about the
owner of the aircraft, the aircraft type & model, and the manufacturer of the aircraft.
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Table 2.2: Selection of parameters available in the Eurocontrol Flight dataset

Parameter Description
ECTL_ID Flight identifier
ADEP ICAO code departure airport
ADES ICAO code destination airport
Filed off-block Time Time of departure (UTC) based on last filed flight plan
Filed arrival Time Time of arrival (UTC) based on last filed flight plan
Actual off-block Time Time of departure (UTC) based on ATFM-updated flight plan
Actual arrival Time Time of arrival (UTC) based on ATFM-updated flight plan
AC Type ICAO aircraft code
AC Operator ICAO airline code
... ....

Table 2.3: Parameters available in the Eurocontrol flight points dataset

Parameter Description
ECTL_ID Flight identifier.
Sequence no. Numeric value representing the order of points
Time Over Time (UTC) of crossing point
Flight level Flown flight level at point
Latitude -
Longitude -

2.8.4. Navigational aids data
Navigational aids (navaids) are any marker that aids an aircraft in traveling. These can be physical aid, such
as VORs, DMEs, or even large arrows. Navaids can also be non-physical points, usually called ’waypoints’ or
’fixes’. These points are defined by GPS coordinates. Another form of a navaid is an airway. Airways are routes
in the sky along predefined waypoints. Four databases were found which contain navaids. Two of these are
digital packages and can be easily accessed through Python, while the third is a digital document and cannot
be accessed as easily. The final sources of data are the aeronautical maps published by Eurocontrol.

Traffic library
The traffic library[30] is a package that can be imported into the python coding language. The package comes
with a database that contains data about airports, airways, waypoints, and FIRs. All of these can be readily
accessed as classes in Python or the raw data can be accessed otherwise.

Bluesky
BlueSky[29] is an open-source Python-based air traffic simulator. It can visualize, analyze and simulate air
traffic. It is a self-contained program that can be modified by adding plugins to customize the simulator to
the needs of the user. It contains a database of waypoints, airways, and airports that can be used to better
analyze air traffic data.

Electronic aeronautical information package (eAIP)
The electronic aeronautical information package (eAIP) contains information about the waypoints and air-
ways for every country. It is a standardized form of keeping the information about everything in the airspace
of the country. A reference page can be found on the website of Eurocontrol[31]. It contains the information
of all waypoints, airways, airports, fir, communication lines and much more. The only information that is
used from this is the waypoints database. Since it can’t be accessed in bulk, every waypoint has to be looked
up manually.

Eurocontrol cartography charts
Eurocontrol provides maps for the airspaces [5] it regulates. This map provides information about waypoints
and the airways. Although it does not contain the information about the location of these digitally. This serves
as a validation of the other databases.
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Final combination
A combination of all these sources was compiled to provide a tailored solution for use in this research. This
was done for several reasons. 1) The navaids databases did not allow for easy selection of a few, upper
airspace, navaids. 2) Initial plots have shown that flights in MUAC airspace can have ’direct to’ commands
for waypoints in British airspace and vice versa. 3) MUAC is designated as a ’free route airspace’. A set of
waypoints is given and each waypoint is designated as an exit, entry (or both), or intermediate point. Airlines
can plan their route from any entry to any exit via any intermediate point. 4) In practice, turns have been
found at waypoints that were not in this free route list and have therefore been added anyway.

This list of waypoints is a continual process. Waypoints have also been divided into different groups to allow
easy selection for plotting. When this list (or selection) of waypoints is asked, the waypoints are plotted from
one or both of the databases.



3
Data preprocessing

This chapter will present the step taken to preprocess the data. Firstly, section 3.1 will describe how flights
are extracted from the raw ADS-B data using a clustering algorithm. It will also present how to detect outlier
points using the same clustering mechanism and the use for these outlier points. Section 3.2 will present how
the ADS-B data is coupled with the Eurocontrol dataset. It will also describe the data formatting of the ADS-B
data after it has been coupled to allow filtering and searches based on the Eurocontrol dataset. Section 3.3
will describe how flight phases are determined for every extended ADS-B message. Section 3.4 will describe
how the scope of the research is translated into a filter for flights and what parameters are used for this filter.

3.1. Finding unique flights
The raw ADS-B data itself contains no data specifying flights. It only gives us what aircraft is flying where
at what time. Therefore a method has to be used to extract the flights from the data. This identification of
unique flights is based on the work of Sun et al. [11][12] as described in section 2.2.1. A slight modification
was used for the identification of flights. The Eps parameter was set at a value of 30 minutes to include more
points that would otherwise be labeled as noise, while Min_Pts was not changed from the value of 50. The
value of 30 minutes was chosen because the turnaround time of aircraft is 30 minutes or longer. The inclusion
of these points increases the number of points that can be used later on to identify the ’heading to’ given or
the ’direct to <waypoint name>’.

3.1.1. Outlier detection
To further refine the data, outliers in each flight were determined. For this, the method of Sun et al.[12] was
directly followed. DBSCAN was used with parameters set at 50 for Mi nPTs and 500 for E ps. This gave each
flight a set of core points and a set of outlier points. These core points will be used for further analysis, while
the outlier points will only be used to provide extra context for the flight.

3.2. Combining the ADS-B data and the Eurocontrol data
To utilize the given ADS-B data fully and gain more contextual knowledge it can be coupled with the Euro-
control dataset. To do so, the unique keys have to be identified first. The ADS-B data uses the ICAO24 address
to identify aircraft. The Eurocontrol datasets use the EC T L_I D to identify flights. The Eurocontrol entries
also contain the AC Registration of the aircraft performing the flight, thus identifying the unique aircraft. To
combine these, the OpenSky Aircraft Database[10] is used. Figure 3.2 shows the connecting schematic of the
simplified databases.

Several assumptions are made during the connecting process.

1. The data is not complete.

2. Each aircraft has one ICAO24 address & and one registration code

3. Each aircraft can have multiple flights
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Figure 3.1: Identified flights for ICAO24 Addresses. Black dots are noise points

Figure 3.2: Database connections

Figure 3.3: The finalized database connections
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Figure 3.4: ADS-B points, Eurocontrol windows and the overlap of these two.

4. A flight cannot have more than one ICAO24 address associated with it

The effect of the first assumption is that flight identification has a chance to misidentify flights. The analysis
further used flights where the ADS-B data could successfully be coupled to a EC T L_I D . After the flights for
a unique ICAO24 address (unique aircraft) have been found, the AC registration will be found in the aircraft
database. This code will be used to select all flights from the Eurocontrol flights database, which are flown by
this registration code.

Now that all identified flights from the ADS-B data and all Eurocontrol flights have been selected, they need to
be coupled. This is done based on the time. The Eurocontrol flights database contains the ’Actual off-block
time’ and ’Actual on-block time’ (actual means: including delays, postponements, or early arrivals/depar-
tures). These will be used to identify which ADS-B points are allocated to which EC T L_I D .

In essence, every ADS-B timestamp will be checked if it falls in the window of time given by the Eurocontrol
Flight Database. If this is true, the EC T L_I D will be added to the ADS-B entry. If not, the ADS-B will remain
unaltered. To speed up the process an assumption has been made. If the first and last points of an identified
flight fall within the window, all points will receive EC T L_I D . This results in a database structure like fig. 3.3.
Please note that the Flight Phase will be explained in section 3.3.

A visualization of the previous is given in fig. 3.4. A random selection of flights is shown here. Here the green
windows are the Eurocontrol time windows. The blue points are the raw ADS-B points and the orange points
are the ADS-B points, that are identified within a Eurocontrol window. As shown in the picture, not all identi-
fied flights are connected to a Eurocontrol time window and vice versa. The ADS-B points are gathered above
the Netherlands, and therefore Eurocontrol flights that do not fly over the Netherlands don’t have any ADS-B
data points. Also, the missing data can be seen, as some identified flights can’t be assigned to an EC T L_I D .

3.3. Identifying of the flight phase
Identification of flight phases is done based on the research of Sun et al.[11]. Sun et al. use fuzzy logic to ex-
tract the flight phase of an ADS-B timestamp based on the information in the message. For this, the extended
ADS-B message is used. The fuzzy logic used altitude, rate of climb, ground speed to calculate the most likely
flight phase. An example is given in fig. 3.5. Once the flight phase is calculated is added to the ADS-B data as
shown in fig. 3.3.
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Figure 3.5: Altitude of a flight over time with different phases identified

3.4. Filtering flights
As stated before, the scope of this thesis will encompass the en-route flight phase in the MUAC airspace.
Therefore the flights will have to be filtered. The MUAC airspace extends from 24,500 feet to 66,000 feet above
the Netherlands, Belgium, Luxembourg, and the west part of Germany[32]. Therefore the following filters
were used. The minimum altitude of a flight must be above 20,000 feet and every flight must contain over 500
data points. This is to ensure that 1) no cruise and descent stages are used, 2) the largest section of the flight
is spent in the en-route phase, and 3) enough data points exist to perform analysis on.

3.5. Data analysis
This section will present some additional data analysis on the ADS-B data and other data to provide some
extra context. It will take a look into the ADS-B messages received and the different types. About how much
overlap all the databases have, and what the effect is of preprocessing and filtering the data.

Figure 3.6 shows the amount of data that has been collected per day. It also shows how the distribution
of different kinds of messages. Of the gathered messages, 69% contained the extended messages and 10%
contained the callsign of the flight.

Since multiple different data sources are used and these are not fully complete, an overview of completeness
is given in fig. 3.7. This figure shows how much of a database can be found in another database.

In fig. 3.8 the amount of points is shown after the flight phase identification, the flight clustering, and Euro-
control database coupling. More than 98.5% of all points could be allocated to a flight and around 85& of all
points could be allocated to a Eurocontrol flight (or ECTL_ID). After applying the filter only 18% of all data
points remained. For data points with a Eurocontrol ID, this was 20%.

Figure 3.9 presents the amount of unique values found in the ADS-B after the Eurocontrol data has been
added to it. This figure shows that the amount of unique callsign is higher than the amount of detected flight,
which is, in turn, more the amount of coupled Eurocontrol IDs. The filtering also has consequences on the
number of unique values found in the data. This is reduced to between 11% to 14% for all parameters.
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4
Experimental set-up

This chapter will describe the experiment and how it will be set-up. To start, section 4.1 will describe the
main experimental set-up and how the research questions are translated into actionable steps. Section 4.2
will describe the main experimental directions taken and some preliminary conclusions regarding these di-
rections. In section 4.3, two validation methods will be presented and compared. This chapter closes with
the limitations of the experiment in section 4.4.

4.1. Main experiment
The main experiment proposed in this thesis will try to answer all the questions proposed in section 1.2. The
main experiment is to find out if ATCo actions can be identified within past ADS-B data. This can be broken
down into several actionable steps.

1. Find a detection method that can identify changes within ADS-B data.

2. Combine these changes with flight plan information to make a distinction between procedural changes
and non-procedural changes.

3. Couple the non-procedural changes to existing ATC commands and procedures.

Before the experiment can be deemed a success or a failure, the results have to be validated. This is explained
in depth in section 4.3, but a summary will be given. The changes will be applied to a flight plan and be
simulated in Bluesky. A validation simulation will also be run using the original ADS-B data. The difference
in these simulations can be calculated using similarity metrics. The resulting values can tell how similar or
different the amended flight plan is to the original flight path.

4.2. Experimental directions
Several research directions are taken to find out which work and which don’t. The first will be rule-based anal-
ysis. This uses set rules to determine ATCo actions. The second uses airways and the deviation of aircraft from
these airways to determine if ATCo actions are given. The third concept was to determine ’company routes’
from historical data and use these as airways. ’Company routes’ are routes that are used quite commonly by
an airline.

4.2.1. Rule-based analysis
This subsection will focus on the rule-based analysis. The goal is to try to set up a rule to detect changes in the
current trajectory of the aircraft. Changes can be detected in the heading, speed, and altitude of an aircraft.
Since the flight phase identification is already done, it can be used to determine the change in altitude.

Background information
Trajectory information can be seen as a time series, as it is displayed as information over time. Therefore,
time series analysis methods may be used to determine changes in the trajectories. Information about these
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parameters is already given in the extended ADS-B data, but can also be calculated from the standard infor-
mation. To extract the best possible information, it was chosen to apply the smoothing function on the first
source of data, namely the positional data or the given value in the extended data.

Not every parameter is the same and should be treated the same. Both heading and speed are continuous
values, as they can be any value in a certain range. This range is (0,360) for the heading. For the speed, this
value is dependent on the aircraft, the carrier, and the wind. This makes setting a definitive range undesirable.
Altitude is a different parameter, as it is given in discrete values as mentioned in section 2.1.

The information received is real data and therefore subject to noise. Noise can be implemented into the
system in many different ways. To reduce the noise level, a time series can be smoothed. The underlying
assumption is that noise is a fast signal and that looking at a longer time-scale will reduce the effect of the
noise. Therefore, smoothing functions are presented that have the property of a low-pass filter.

Smoothing functions
Six different smoothing functions are tried and tested to determine which smoothing function works best.
Every smoothing function also had 3 parameters which are tested in the smoothing function itself. All of
these functions exhibit the property that they act as low-pass filters. Two distinctions can be made. The first
three smoothing functions keep the length of the data constant, while the latter three decreases the number
of points when smoothing is applied. The second distinction is whether the time is taken into account. The
first four functions don’t consider time and look only at the points. The latter two resample based on the
timestamp in the data. More detailed explanations are given below.

1. Exponential smoothing: α= 0.2, 0.4, 0,7
Exponential smoothing is a low pass filter that cancels out the higher frequency perturbation by using
a formula that recalculates the next value, based on the old. The formula is: St =αx(t )+xt−1(1−α)

2. Rolling mean: n = 5, 10, 20
The rolling mean methods calculates the average value of a window with size n and puts it back in
place. For every point it takes the next n/2 points and previous n/2 (rounded up), calculates the mean
and places it back. It can be represented by the following equation. This method is included in the
pandas rolling function. 1

xt = 1

n

n/2∑
i=−n/2

xt+i

3. Rolling Gaussian: n = 5, 10, 20, σ= 1
The rolling Gaussian methods is essentially a weighted rolling mean. It uses a Gaussian window instead
of a uniform one to smooth the time serie. Every point is multiplied by a value based on the Gaussian
distribution. This method is included in the pandas rolling function.1
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4. Subsampling: n = 5, 10, 20
Subsampling takes a sample every n steps and creates a new time serie from the original data. The new
serie is smaller in size, since not every sample is used. This function smooths the data, since higher
frequency disturbances are lost.

5. Time-based resampling first: t = 5s, 10s, 20s
Time based resampling uses the timestamp parameter in the ADS-B data to resample the data. This
is done using the pandas resample function2. A new column is generated based on the timestamp.
Pandas then group all value that fall within window t together. The ’first’ part takes the first value after
t to represent the window.

6. Time-based resampling mean: t = 5s, 10s, 20s
The same resampling method is used as with the ’resample first’ method, but now the new value is
the average of all values that are within the time window. This is also done using the pandas resample
function.2

1https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html
2https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html
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Detection methods
Three different detection methods were selected in section 2.3. These are described in more detail below.

1. K-Sigma rule
The K-Simga rule is based on the statistics of the standard deviation (σ). In this method, the mean (µ)
and the standard deviation are calculated from the time derivative data of the trajectory. The rule states
that if a point xt is further from the mean than kσ a significant change is detected. Mathematically this
is represented as: (xt −µ) ≥ kσ

2. Ruptures Pelt method
This detection method comes from the Ruptures package. The PELT package is based on the work of
Killick et al.[33]. This method was chosen because it has a linear computational cost, searches for an
exact solution, and requires no prior knowledge of the number of changes in the data.

3. Turn rate
The turn rate method is used by Gariel, Srivastava, and Feron [2] to detect turning points in the San
Francisco area. The method is based on a single value of the turn rate and is set experimentally. This
method has been adopted and changed for this purpose. The constant value remains, but at a different
level, because aircraft en-route tend to turn a lot less sharp.

Some problems were found with the ruptures package when combining it with different smoothing func-
tions. Some smoothing functions return NaN values. The ruptures package can’t handle these values and
thus returns every single point as a breakpoint. Therefore it was chosen not to use the ruptures package on
the smoothing functions where NaN values would be included.

4.2.2. Airway-based analysis
This direction has the hypothesis that aircraft follow mostly available airways and only deviate from these
when an ATCo gives a command to change from these airways. For this, the upper airways as set out by
Eurocontrol are used.

An argument why this hypothesis might not work is the free route airspace in MUAC airspace. Free route
airspace means that aircraft do not have to follow specified airways, but can plan routes via ’open’ waypoints.
These waypoints are designated as Entry, Exit, or Intermediate points. Furthermore, when the airspace allows
it, direct through flights are allowed.

A test was done to see which of the 3 online databases is the best. Seven airways were chosen as test routes.
These consist of ’upper’ route - indicated with start letter ’U’ - and normal routes. These seven were chosen
because they are long airways that cross the Dutch airspace. The airways are L602, l603, L604, l608, UL610,
N872 & N873. They are shown in fig. 4.1.

As shown in fig. 4.1, these airways do not line up. Nor are they the same as in the charts issued by Eurocon-
trol[5]. Therefore it was chosen to not further pursue this direction.

4.2.3. Historical based analysis
This direction was enabled because a lot of ADS-B data is available. The idea was to use this data to search
for deviations in the trajectories based on two different methods.

• Explain company routes

• Explain using clustering -> refer to literature -> A lot has already been done in this field, therefore this
direction is less interesting.
Also not directly in scope

• Current status of this project.

This research direction was proposed because of the large amount of ADS-B data available. A year’s worth of
ADS-B data was available for this thesis, in combination with a month of Eurocontrol data. Therefore several
ideas sparked to use this data to detect anomalies in the trajectory data, as mentioned before in section 2.6.

Company routes
Every airline has to file a flight plan before every flight. By comparing a lot of flight plans together a ’company
route’ could be identified. Company routes are routes that are preferred routes by an airline and therefore
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Figure 4.1: Seven different airways plotted from three different databases

often planned. By comparing the actual flight data against these routes, anomalous flights can be identified.
Essentially this creates carrier-specific airways. By comparing the deviations of the aircraft from this airway
anomalous trajectories can be found.

Trajectory clustering
Two detection methods that use trajectory clustering methods were hypothesized. The first method tries to
identify clusters of aircraft trajectories and uses the outliers to detect anomalous flights. However, it was
reasoned that this detection method could not detect small changes such as ATC commands. This is based
on further analysis of current literature as shown in section 2.6.

The second method was to use clustering to identify ’flows’. Flows are collections of trajectories that can be
clustered together that are persistent for longer amount of times. These flows could then be used as another
alternative to airways. The middle of these flows could be used as a guide, to which other trajectories in the
flow could be compared. However, the same argument as before is raised. Small deviations might not be
detected at all.

4.3. Validation strategies
A ground truth is not available for this thesis. Controller Pilot Data Link Communications (CPDLC) was not
available from Eurocontrol to validate the changes found directly. Therefore, other validation strategies were
considered.

Transcribing ATC voice commands by hand Since ATC voice commands can be listened to freely a method of
validating was to record a section of the voice commands given by MUAC. This could be manually transcribed
into machine-readable data and used as a validation set. Several limitations of this came up. The LiveATC
archives are accessible for free for 30 days and the Broadcastify Archive is available for one year. The ADS-B
and Eurocontrol dataset available is currently June 2018, which is more than a year ago at the time of writing
(March 2021). Furthermore, the voice commands are hard to hear for the untrained ear.
Current data can also be gathered using the Opensky Network. This provides ADS-B data with a resolution of
10 seconds (for non-registered users). When combining the recording of voice commands and live tracking,
a new dataset can be generated that includes both ADS-B data and voice commands that can act as ground
truth.
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Figure 4.2: Validation strategy for applying detected changes to original flightplan

Table 4.1: List of validation metrics

Metric Unit
Cross-track error m
Along-track error m
Altitude error m
Horizontal error m
Others -

Another approach was to simulate the aircraft in Bluesky using the original flight plans and modifying these
with the detected ATCo actions. The resulting flight paths could be compared to the actual ADS-B data gath-
ered. Differences between the two tracks could be measured using metrics such as cross-track error, along-
track error, altitude difference, horizontal difference, and heading difference.
Caution has to be taken when the actual flight plan is too different from the filed flight plan. When a flight plan
has already significantly changed before the aircraft reaches MUAC airspace the flight is no longer useable. A
flowchart of this validation strategy is given in fig. 4.2.

The second validation strategy is chosen to validate the performance of the model. This model has several
advantages. The first is that idea behind the thesis is to simulate aircraft trajectories without ATC commands
in Bluesky. Using Bluesky is therefore a logical choice. Secondly, the validation can be done for multiple
flights or multiple days efficiently and is not dependent on manual work to prepare a different validation.
The last advantage is that Bluesky is an open-source project and can therefore be used and modified by any-
one, making it flexible to different airspaces. The major disadvantage of using this strategy is that no direct
comparison to actual ATC commands can be made. The metrics used during the validation process can be
found in table 4.1. There can still be added to this list of metrics.
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4.4. Limitations
The main limitation of this thesis is that no CPDLC is available to validate the model. A ground truth dataset
could serve as a training set for supervised machine learning models and as a validation set for the current
approaches.



5
Preliminary results

This section will present and discuss the results found so far in this thesis. It will first describe the results
found by investigating the rule-based analysis. The progress is shown for heading, altitude, and speed. It also
describes the current progress for the historical based analysis in section 5.2.

5.1. Rule-based results
The results of the rule-based analysis can be found below. Several steps were taken to find a good rule or set
of rules from the proposed methods in section 4.2.1.

5.1.1. Heading change detection
The first step for detecting changes in the heading included testing the smoothing function. Initial parame-
ters set for the detection methods were also used for extra context. The result for the heading can be seen in
fig. 5.1, where the k-sigma rule is shown. Other detection methods are shown in appendix A.
This figure shows one flight (Eurocontrol id: 218897382) with all 6 smoothing functions applied including all
different values of the function. It also shows the results found (if any) by the K-Sigma rule detection method
(where sigma = 3). This plot was made for 10 randomly selected flights.
The smoothing function was also applied to the ’trk’ parameter found in the ADS-B data and on the heading
data, which was calculated from the position data in the ADS-B data.

From this figure, several conclusions about the smoothing functions could be made.

1. The ’exponential smoothing’, ’rolling mean’ and rolling ’Gaussian smoothing’ functions give too much
noise to be considered as good candidates.

2. The calculated heading provides better temporal accuracy than the ’trk’ data and therefore provides
better accuracy in predicting changes.

3. The ’resample mean’ method provides the most robust results.

4. From the ’resample mean’, the resampling rate of 10 seconds provides the best results. Small enough to
provide good insight, but large enough to filter out small deviation.

Therefore the ’resample mean’ with a value of 10 seconds was chosen for the smoothing function.

A small conclusion could also be made for one of the detection methods. The ruptures packages cannot
handle missing data. As a result, it returns a ’true’ value at every data point.

To check the detection methods a new plot was made, as seen in fig. 5.2. This plot consists of three subplots.
The first subplot is the heading angle with 3 different data sources: smoothed calculated heading, raw ’trk’
data &smoothed ’trk’ data. The latter two only act as a reference. It also contains some scatter points con-
necting to the figures below.
The second subplot is the standardized absolute change in heading angle. This acts as a guide plot for tuning
the k-sigma parameter. It has guidelines at values 2 and 3.
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Figure 5.1: All smoothing parameter applied to the flight with Eurocontrol ID 218897382 to calculate the heading. Detection method
shown is kSigma.
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Figure 5.2: Detailed look at detection methods kSigma and Turn rate



76 5. Preliminary results

6200 6400 6600 6800 7000 7200 7400 7600 7800
Time (s) +1.52791e9

210

220

230

240

250

260

Sp
ee

d 
(m

/s
)

Calculated speed
Given speed (gs)

Figure 5.3: The two different methods of determining the aircraft speed. No smoothing functions are applied.

The third subplot shows the absolute change in heading angle and is used as a guide for tuning the detection
parameter. The thresholds here are at 0.2 °/s and 0.1 °/s.

Shown in fig. 5.2 are three different flights. The top flight has one visible change in the middle of its flight. The
second flight has no clear change in the heading and contains visible noise. This indicates that the aircraft
was flying straight during this flight. The bottom flight contains 2 quick turns, first to the right then back to
the left. It also contains some visible noise. In total 10 randomly selected flights were inspected to determine
a set of rules that was able to detect the heading change.

The k-sigma method has a disadvantage when the aircraft is flying in a straight line. Since no real ’big’ de-
viation is encountered, the standard deviation is small. This allows for the noise points to be considered as
changes. The turn rate threshold has the disadvantage that slow corners might not be identified because the
parameter is set too high. Therefore a combination was of these two was considered. A combination would
allow heading changes to be detected while minimizing the effects of noise.

A rule was experimentally set. This rule consist of the following logic

Turn rate ≥ 0.2∨ (Turn rate ≥ 0.1∧ sigma ≥ 2)

5.1.2. Speed change detection
For speed changes, the same method to heading was used. The ground speed given from the data and speed
calculated from the latitude and longitude positions were used. However, due to the noise in the latitude and
longitude values, the calculated values were noisy. This can be seen in fig. 5.3. Smoothing functions were
applied to the positional data, as had been done for calculating the heading data. These figures can be found
in appendix A. Figure A.4 shows the values from the calculated speed. These values regularly exceed 1000m/s
and are therefore considered to be unusable. The same approach was taken for the ground speed gained from
the ADS-B data. There can be found in fig. A.5. Here the smoothing function was applied to the ground speed
data. This produced cleaner data. Note that the entries where no data was found are excluded from this plot.
To better understand which smoothing combinations work well and which don’t a simple statistical analysis
was done.

In fig. 5.4 the standard deviation of the acceleration is plotted on a log scale. These show a massive difference
in resulting smoothing parameters. In the left figure, the results are given for the smoothing of the latitude
and longitude positions. Since the standard deviation is higher for some smoothing functions, it means that
these do not smooth the result, but instead enlarges the noise of the signal. The best smoothing function for
the calculated speed is the subsampling method.
For the given ADS-B data, a smaller scale was needed to better identify the results. Therefore fig. 5.5 has
a y-scale limited to 0.2. Here is shown that the smoothing function have lower values than the raw data.
This means that the smoothing of the raw data results in a signal with less noise. Even with the improved
smoothing when the ADS-B data is used, no conclusion could be drawn. More analysis has to be done to find
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Figure 5.5: The standard deviations of 10 flights, smoothed by different combinations. Limited on the y-axis to 0.2.
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Figure 5.7: Altitudes, phases and phase shifts for 10 flights

a good combination to correctly identify changes in the speed of an aircraft. These analyses include testing
smoothing functions on calculated speed and analyzing more flights.

• Apply smoothing function to calculated speed. Not altering the positional data might improve the re-
sulting signal. This can be seen in the subsampling method already since this has the lowest standard
deviation.

• Analyse more flight. The current flights might not contain speed changes. These speeds are plotted in
fig. 5.6.

5.1.3. Vertical rate change detection
At the time of writing, only one of the two proposed methods for detecting changes in altitude has been
implemented. This is the method where phase transitions are used as an indicator for altitude changes. An
example of this is shown in fig. 5.7. The red crosses indicate where a phase change has been detected.

This method is not yet fully robust, as can be seen by several red crosses in the middle of a flight, without the
flight moving to a new flight level. Some adjustments have to be made to avoid these false positives. This can
be done by sampling a larger area of phases, or by using checking the altitude data and looking for distinct
changes in flight level.

5.2. Historical data analysis
For the historical based analysis, only a trial with clustering was performed. Both DBSCAN and spectral
clustering were implemented as a test. Flights flown by Lufthansa, departing from Frankfurt airport were
clustered together to test if the clustering methods work. The results can be seen in appendix B.

Here the differences between the two algorithms can be seen. DBSCAN allows for noise. This is shown in
fig. B.1 as black. These trajectories could be not assigned to a group. On the other hand, spectral clustering
does not allow for noise. It groups the extra-long trajectories, as by the light blue dots in fig. B.2. These are
more different than the other trajectories.

Further tuning and testing has to be done before these clustering techniques can be properly used for anal-
ysis. However, this method may be redundant, since the rule-based detection provides much promise in
identifying ATC commands. Previous literature also provides several methods to identify anomalous events
in ADS-B data through the use of various methods.



6
Planning

This chapter will present the planning of the thesis after this preliminary report. In section 6.1 the next steps
of this thesis will be explained. Section 6.2 will present the overall timeline of this report and accompanying
Gantt chart.

6.1. Steps to be taken
This section will describe the next steps for this report. It will start more detailed with the steps that are taken
right after this preliminary report and work towards the broader end goals.

The next steps are to finish the rule-based analysis part of the experiment, as described in section 4.2.1. This
includes the following.

• Heading change analysis

1. After a change has been detected, retrieve the old and new heading.

2. Search along the route if a waypoint is crossed. This may indicate a ’direct to’ command.

3. Compare change to the filed flight plan to check if the change was procedural or not.

4. Couple the findings to the datapoint where the change was initially detected.

• Altitude change analysis

1. Make the current method more robust to reduce the effect of single (or a small number of) false
phase change(s).

2. Find the old and new altitude.

3. Compare change to the filed flight plan to check if the change was procedural or not.

4. Couple the findings to the datapoint where the change was initially detected.

• Speed change analysis

1. Apply the smoothing function to the calculated speed. Check this against the current methods to
determine the best possibility for change detection

2. Include more flights in the analysis. The current flight might not have any (significant) speed
changes to be detected.

3. If no significant changes are detected. Conclude that speed detection may not available with the
current data.

4. Else, compare to the filed flight plan, couple finding with data points.

• Check if the above commands are given at the same point in time and combine these if they do.
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When these steps are completed a framework has to be made, that can quickly scan any flight trajectory and
return any changes it has found.

The next step is to start the validation of the results. This is also described in section 4.3, but will be sum-
marized here. The ADS-B data need to be converted to Bluesky scenarios. Two scenarios will be made that
will simulate the raw ADS-B data and the filed flight plans, amended with the found changes. Both scenarios
will be run in Bluesky and the data will be analyzed using metrics as along-track error, cross-track error, and
altitude error (among others). Based on the analysis of these results, a conclusion can be drawn regarding
how the change detection analysis performs.

6.2. Project planning
A Gantt chart has been made to track the progress of the thesis and to guide further work. The Gantt chart can
be found in appendix C. The work has been divided into 5 major work packages, which correspond to 5 major
steps taken in this research project. These are: 1) reviewing literature, 2) preprocessing data, 3) following the
research directions and exploring data, 4) validating the found results, and 5) reporting the findings.
A more detailed plan has been given for the research directions since these took the most amount of time.



7
Conclusion

This report presents the literature study into the field of detecting ATC commands in past ADS-B data and
the progress made at the time of writing. Using ADS-B data a lot of information can be gained. However, no
method has been proposed to detect basic ATCo actions and commands in past ADS-B data. Finding these
actions can help to determine the complexity of the airspace, hidden habits of ATCo. It can also be helpful for
other machine learning models, as it can be used as extra input or as training or validation data. Furthermore,
if a simulated airspace can be generated where these commands are not present, a new ’stripped’ airspace
scenario can be made. This could be used to train automated separation software or to train ATC students.

Current literature presents many different ways to extract knowledge from ADS-B data or to add extra con-
text. A statistical model can infer the flight phase of an aircraft, state-of-the-art model has been proposed
to identify anomalies in aircraft trajectories or even to predict the ETA of aircraft entering the CTA of an air-
port. However, no definitive tool or paper is found that addresses detecting the actions of ATC. One specific
reference is found where turn rates were used to detect the start of a STAR, however, this was not researched
since it wasn’t the goal of the paper. To add to the current literature a tool or method shall be delivered that is
accurate, easy to use, and preferably quickly computed.

Several preprocessing steps are presented to add extra context and information to the ADS-B data. Several
of these steps are presented in previous literature. When combined with the Eurocontrol R&D dataset, a
dataset is gained with more context. This allows to select flights based on carrier, airport (destination and/or
departure), and more.

To achieve the goal of detecting ATCo actions several steps had to be taken. The first step was to limit the
area of research for this thesis. It was chosen to use the en-route phase of aircraft within the Maastricht
Upper Area Control. The main reason for this choice was the availability of the data and the relatively simple
airspace. Secondly, several directions were identified where information about changes in trajectory could
be found. These were using time series analysis, using airways, or using historical data (or big data) analysis.
It was concluded that the time series analysis had more potential and was less computationally expensive,
and therefore the best choice. Several smoothing functions were selected and tested to reduce the noise in
the data. This allowed for better detection of changes in the ADS-B data. The next step is to use the flight
plan information, provided by Eurocontrol, to check if the change detected was a procedural change or a
non-procedural change.

Next, a validation strategy was proposed. The method chosen uses the BlueSky air traffic simulator to sim-
ulate a new airspace scenario. This scenario is made using the detected non-procedural change and the
original flight plan. By combining these a new flight plan is made. Simulating the new flight plan(s) and com-
paring the results against the known ADS-B data, gives a measure if the detected ATC commands are valid.
Several metrics have been proposed to calculate the error between the new flight plan and ADS-B data.

Results of the discussed smoothing functions and detection methods are presented. It was found that re-
sampling the ADS-B data with a resolution of 10 seconds was the best smoothing function. A rule was also
presented in order to detect changes in the heading. This rule is:
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Turn rate ≥ 0.2 or ( turn rate ≥ 0.2 and sigma ≥ 2 )
For changes in the altitude, transitions in the earlier found flight phase were used. This produced positive
results, but the method has to be further tuned to reduce the effect of noise.
It was found that the statistical analysis proposed does not yet work for speed changes. Several options are
presented as possible alternatives.

To finish the report, several next steps have been presented and a global planning in the form of a Gantt
chart. These next steps form a roadmap from the current status of the research to a finished and validated
tool. These steps include finalizing the time series analysis, checking the detected change with the flight
plans, starting the validation process, and analysing the final results.
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Figure A.1: All smoothing parameter applied to the flight with Eurocontrol ID 218897382 to calculate the heading. Detection method
shown is turn rate method.
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Figure A.2: All smoothing parameter applied to the flight with Eurocontrol ID 218897382 to calculate the heading. Detection method
shown is the ruptures pelt method.
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Figure A.4: The speed of flight 218897382 (Eurocontrol id) as calculated from the latitude and longitude data.
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Figure A.5: The speed of flight 218897382 (Eurocontrol id) from the ADS-B data.
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Figure B.1: Clustering result using PCA and DBSCAN. Departures from Frankfurt by Lufthansa for one day.



93

ABAMI

ADUTO

AMGOD

AMSAN

ANDIK

ARCKY

ARNEM

ARTER

BAM

BASNO

BATAK

BEDUM

BERGI

BETEX

BITBU

BUB

CIV

COL

DEMUL

DENOX

DENUT

DHE

DIBIR

DIK

DOBAK
EEL

EHN

EVELI

FERDI

GESLO

GILTI

GMH

GODOS

HELEN

HMM

IDOSA

JUIST

KENUM

KOK

KOLAG

LARAS

LIRSU

LNO

MAS

MATUG

MIMVA

NIK

NOR

PAM

PETIK

RAPIX

REDFA

REMBA

RKN

RTM

SASKI

SOMVA

SONEB

SPY

AGISU

ARDEN

BELOB

BREDA

DELOM

DINAN

GASTU

HSD

KUDIN

LAMSO

LENDO

LONAM

LWD

MAVAS

NAVPI

NIKIL

NOSPA

RENDI

RITAX

SOGRI

TEBRO

TOLEN

SUPUR

TOPPA

NORKU

PODIP

TULIP

SUSET

WOODY

MEDIL

PITES

KONAN

VALKO

TENLI

RINIS

SUMUM

XAMAN

WELGO

SPI

SISGA

LUGUM

SOPOK

RAVLO

NILEM

ABAMI
ABILU

ABNED

ADKUV

ADUTO

AGISU

AMGOD

AMRIV

AMSAN

ANAVI

ANDIK

ARCKY

ARDEN

ARNEM

ARTER

BASNO

BATAK

BEDUM

BELOB

BERGI

BETEX

BITBU

BREDA

DELOM

DEMUL

DENOX

DENUT
DIBIR

DINAN

DISRA

DIXAT

DOBAK

DOMEG

DOTOB

ELPAT

EVELI

FERDI

GALSO

GASTU

GESLO

GILTI

GIRVI

GISEB

GODOS

HELEN

IBNOS

IDOSA

INLOD

JUIST

KENUM

KOLAG

KOMOB

KONAN

KONOM

KUDIN

LAMSO

LARAS

LENDO

LINTU

LIRSU

LONAM

LUGUM

LUSOR

MALYK

MATUG

MAVAS

MAXUN

MEBIX

MEDIL

MIMVA

MISGO

MOMIC
NAPRO

NARSO
NAVPI

NIGUG

NIKIL

NILEM

NIRDU

NOGRO

NOR

NORKU

NOSPA

ODVIL

PARYD

PETIK

PITES

PODIP

RAPIX

RASCA

RAVLO

REDFA

REMBA

RENDIRINIS

RITAX

RORUS

RUBUT

SASKI

SISGA

SOGPO

SOGRI

SOMVA

SONEB

SOPOK

SUMUM

SUPUR

SUSET

TACHA

TEBRO

TENLI

TOLEN

TOPPA

TORNU

TULIP

VALAM

VALKO

VELED

WELGO

WOODY

XAMAN

XEBOT

DIK

EHN

AMS

BAM

BUB

CIV

COL

DHE

DIK

EEL

GMH

HDR

HMM
HSD

KOK

LNO

MAS

NIK

NVO

PAM

RKN

RTM

SPI

SPL

SPY

AMS

BAM

BUB

CIV

COL

DHE

DIK

EEL

EHV

GMH

HDR

HMM

KOK

LNO

LWD

MAS

NIK

NVO

PAM

RKN

RTM

SPI

SPL

SPY

EHV

FRT

LWD

Figure B.2: Clustering result using specral clustering. Departures from Frankfurt by Lufthansa for one day.
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