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A B S T R A C T

The massive integration of renewable-based distributed energy resources (DERs) inherently increases the energy
system’s complexity, especially when it comes to defining its operational schedule. Deep reinforcement learning
(DRL) algorithms arise as a promising solution due to their data-driven and model-free features. However,
current DRL algorithms fail to enforce rigorous operational constraints (e.g., power balance, ramping up
or down constraints) limiting their implementation in real systems. To overcome this, in this paper, a DRL
algorithm (namely MIP-DQN) is proposed, capable of strictly enforcing all operational constraints in the action
space, ensuring the feasibility of the defined schedule in real-time operation. This is done by leveraging recent
optimization advances for deep neural networks (DNNs) that allow their representation as a MIP formulation,
enabling further consideration of any action space constraints. Comprehensive numerical simulations show
that the proposed algorithm outperforms existing state-of-the-art DRL algorithms, obtaining a lower error
when compared with the optimal global solution (upper boundary) obtained after solving a mathematical
programming formulation with perfect forecast information; while strictly enforcing all operational constraints
(even in unseen test days).
1. Introduction

To reduce the impact of the energy sector on the environment, dis-
tributed energy resources (DERs) are being integrated into our energy
systems. Such DERs, in the form of renewable-based systems (e.g., PV
systems and wind turbines) and small-scale energy storage systems
(ESSs), provide more flexibility, enabling a more efficient operation.
Nevertheless, these DERs also increase the energy system’s complexity,
especially when it comes to defining its operational schedule. More-
over, due to their weather-dependent nature, renewable-based DERs
inherently increase the energy system’s levels of uncertainty, requiring
scheduling algorithms capable of providing fast and good-quality, but
feasible, solutions [1]. In the technical literature, two main approaches
are available to deal with the optimal scheduling of energy systems;
namely, model-based and model-free approach. A detailed literature
review is presented next.

1.1. Literature review

In general, model-based approaches rely on precise models to build
complex mathematical formulations in order to consider the energy
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system’ operational constraints. Depending on how these constraints
are modeled, the derived mathematical formulations can be classified
as linear, nonlinear programming, or dynamic programming prob-
lems [2]. In this regard, in [3], a mixed-integer nonlinear programming
(MINLP) formulation is used to determine the optimal operation of an
unbalanced three-phase energy system. In order to reduce the com-
plexity of the proposed formulations, linearizations and simplifications
are introduced. Similar work has been done in [4]. Nevertheless, the
model-based nature of these methods requires considerable precision
of the built mathematical models, which limits their performance,
especially if uncertainty is to be considered.

Generally, in model-based approaches, uncertainty is modeled ei-
ther by using a probability distribution function or by leveraging a
set of representative scenarios, leading to stochastic or robust math-
ematical formulations, such as the ones presented in [5–7]. Other
approaches, such as the one in [8], leverage a rolling time horizon ap-
proach to eliminate the forecast error when defining the DERs optimal
energy scheduling. To guarantee the feasibility of the defined schedule
under various operational scenarios, in [9], an adjustable two-stage ro-
bust optimization framework is proposed, solving simultaneously a day-
ahead scheduling and real-time regulation problem of an integrated
vailable online 31 May 2023
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Notation

The notation used throughout this paper is reproduced below for
reference.

Sets:

,,, Set of (DGs) distributed generators, EESs,
Loads and PVs.

 , Set of states, set of actions.
 Set of time steps

Indexes:

𝑖 DG unit 𝑖 ∈ 
𝑗 ESS 𝑗 ∈ 
𝑚 PV unit 𝑚 ∈ 
𝑘 Load demand 𝑚 ∈ 
𝑡 Time-step 𝑡 ∈ 

Parameters:

𝜃, 𝜃target, 𝜔 Parameters for the DNN’s 𝑄𝜃 , 𝑄𝜃target and 𝜋𝑤
𝑎𝑖, 𝑏𝑖, 𝑐𝑖 Quadratic, linear and constant parameters

associated to the 𝑖th DG operation cost
𝛥𝑡 Length discretization of the operational

time
𝛾 Discount factor
𝑃
𝐺
𝑡 , 𝑃

𝐺
𝑖 Maximum/minimum generation limit of the

DG units
𝑅𝑈𝑖, 𝑅𝐷𝑖 Ramping up/ramping down ability of the

DG units
𝑃

𝐵
𝑗 𝑃 𝐵

𝑗 Maximum/minimum charging/discharging
limit of the ESSs

𝑆𝑂𝐶
𝐵
𝑗 Maximum SOC of the ESSs

𝑆𝑂𝐶𝐵
𝑗 Minimum SOC of the ESSs

𝐸𝑗𝐵 Energy capacity of the ESSs
𝑃

𝐶 Maximum main network export/import
limit

𝛽 Electricity sell coefficient
𝜂𝐵 Energy exchange efficiency for ESSs
𝜎1, 𝜎2 Reward re-scale and constrain penalty coef-

ficients
𝜌𝑡 Electricity price for time slot 𝑡
𝑃 𝑉
𝑚,𝑡 Active power of PV systems

𝑃𝐿
𝑘,𝑡 Active power demand

Continuous Variables:

𝑃𝐺
𝑖,𝑡 Active power output of DG units

𝑃𝐵
𝑗,𝑡 Active power discharge/charge of ESSs

𝑆𝑂𝐶𝐵
𝑗,𝑡 State of charge for ESSs

𝑃𝑁
𝑡 Active power exported/imported to/from

the main network
𝛥𝑃𝑡 Active power unbalance

energy system. In [10], a chance-constrained programming model is
proposed to schedule an active distribution network incorporating
office buildings. Nevertheless, modeling the probability distribution of
uncertain data is challenging, while using a large number of scenarios
may cause a computational burden. Therefore, although capable of
providing good quality solutions, existing model-based approaches are
not adequate for handling the increased uncertainty level of renewable-
based energy systems, as their performance and efficiency mainly
2

depend on the accuracy of the used models and their approximations.
Moreover, the computational complexity of these methods increases
dramatically with the system size, imposing scalability and convergence
challenges.

To overcome this, model-free approaches have been introduced
as an alternative solution. The most promising approach is based on
the use of reinforcement learning (RL) [11], modeling the decision-
making problem as a Markov Decision Process (MDP). One of the most
interesting features of RL algorithms is that they can learn any system’s
dynamics by interaction, providing good-quality solutions guided by a
reward value used as a performance indicator [12]. Recently, deep re-
inforcement learning (DRL) algorithms have shown good performance
when solving MDPs in energy systems tasks [13], ranging from, home
energy management [14], microgrid dispatch [15], voltage regula-
tion [16], and electricity network operation [17]. Other applications
include, for instance, a standardized DRL approaches for demand re-
sponse in smart buildings [13], and learning to solve fast optimal power
flow problems using DRL algorithms, specifically the proximal policy
optimization (PPO) algorithm and imitation learning [18]. In [19],
a performance comparison of the soft actor–critic (SAC) algorithm
with a rule-based control method on the surrogate simulation model
developed by [13], is presented. In [16], the voltage regulation problem
of a distribution network is first modeled as a partial-observable MDP,
and then multi-agent DRL algorithms are leveraged to execute the
optimal solutions. In [20], a DRL approach-based proactive operation
framework is proposed to model the stochastic behavior and uncer-
tainty of solar energy for residential buildings. In [21], a DRL algorithm
is developed to solve a stochastic energy management problem con-
sidering power flow constraints, resulting in an optimal policy that
minimizes total operational cost (although operational constraints are
disregarded).

Different from the energy-related MDPs presented above, the op-
erational schedule of DERs within an energy system must enforce a
rigorous set of operational constraints to ensure a reliable and safe
operation, e.g., generation and consumption must always be balanced
during real-time operation, ramping-up and down constraints, etc.
Nevertheless, current DRL algorithms lack of safety guarantees [22], as
these constraints cannot be directly imposed in the algorithm’s formu-
lation. Different strategies to indirectly enforce operational constraints
have been proposed to overcome this. In [23], a DG unit is set as a slack
bus with unlimited generation capacity, avoiding unbalance by the
outputs of the generators controlled by DRL agents. In [24], a penalty
term is added to the reward function to guide the learning process
aiming to reduce operating costs while enforcing power balance. A
similar penalty approach has been used to enforce voltage magnitude
constraints in case the electricity network operation is considered. For
instance, [25] modeled the dispatch of PV inverters as an MDP, and
built a decentralized dispatch framework penalizing RL agents when
actions lead to voltage violations. In research [26], an on-policy RL
algorithm with eligibility traces is developed to dispatch the energy
storage system to minimize the cost and regulate voltage magnitudes. A
similar work is presented in [27]. In [28], a service assistant restoration
problem is modeled as MDP. Then, imitation learning is employed as
expert demonstrations enabling a deep deterministic policy gradient
(DDPG) agent learn a safe policy for online implementation. In [29],
a double auction market-based coordination framework is proposed to
schedule the energy trading between multi-energy microgrids. Multi-
agent twin delayed deep deterministic algorithm (TD3) is used to solve
the formulated problem, while a large penalty is imposed on the reward
function to reduce the energy unbalance. In [30], the SAC algorithm
is leveraged to control a virtual power plant to provide frequency
regulation services, penalizing any frequency deviation. Nevertheless,
although these strategies may enforce operational constraints during
training, they are either based on nonpractical assumptions or fail to
guarantee the feasibility of the defined operating schedule in real-
time, especially in cases of large peak consumption or renewable-based

generation [31].
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Table 1
Summary of research literature for DRL algorithms and constraint enforcing approaches.

Work Research problem Constraint enforcing Advantages Disadvantages Open-access

[13] Residential building energy
schedule Constraints

disregarded Simple Not realistic
Yes

[14] Microgrid operation Yes

[20] Residential buildings energy
schedule

No

[15] Microgrid operation

Penalty function Easy to implement No constraint guarantee

No

[16] Voltage regulation Yes

[18] Optimal power flow No

[21] Energy dispatch No

[24] Energy dispatch No

[31] Optimal energy system scheduling Yes

[25] PV-inverter voltage regulation No

[26] Battery schedule and voltage
regulation

No

[29] Energy trading between
microgrids

No

[28] Restoration services Imitation learning
and penalty function

Accelerating training
speed Improve the
performance

No constraint guarantee No

[23] Energy Management Unlimited slack bus Simple Not realistic Yes

[34] Energy management Safe layer Guarantee the
feasibility

Performance
deterioration Not
fully model-free

No[36] Energy hub trading Gaussian process
Safe layer

[37] Microgrid operation Action projection

[38] Distribution network operation Constrained policy
optimization

Probabilistic
guarantee feasibility

No constraint guarantee
Higher computation time No

[39] EV management
Strategies based on safe RL have also been proposed to directly
nforce operational constraints, exploiting results from different re-
earch areas, such as robot manipulation [32,33]. In [34], an action
rojection layer is implemented, correcting the action defined by the
RL algorithm via a projection operator. Unfortunately, this projection
perator degrades the DRL algorithm’s performance, as shown in [35].
n [36], safe DDPG is used for real-time automatic control of a smart
ub, while a safety net is used to estimate the feasibility of decided
ctions. A similar strategy is proposed in [37], in which the action
roposed by the DRL algorithm is used as starting point to solve a math-
matical programming formulation, ensuring constraints compliance.
n [38], a constrained policy gradient approach is proposed, updating
he parameters of the DNN model in the direction that minimizes the
ower unbalance. In [39], the same approach is used to solve an EVs
oordination problem. This policy optimization approach allows the
RL algorithm to provide a probabilistic notion of safety. Nevertheless,

easibility is paramount in energy systems operation, and it should be
ertifiable. In this regard, enforcing operational constraints during the
nline scheduling stage is a critical challenge for DRL algorithms and
t must be addressed in order to enable their wide adoption in real
ystems. A summary of the discussed research literature is presented
n Table 1. The openness and free online availability of the algorithms
iscussed here are also highlighted in Table 1.

.2. Contributions

To overcome the above-discussed limitations, this paper proposes
DRL algorithm (namely MIP-DQP) to define the optimal schedule of
renewable-based energy system, capable of strictly enforcing all the

perational constraints in the action space, ensuring the feasibility of
he defined scheduled in real-time operation. To do this, we used recent
ptimization advances for DNNs that allow their representation as a
ixed-integer linear (MIP) formulation, enabling further consideration

f any action space constraints. Such approaches have been also em-
loyed in the context of feature visualization and adversarial machine
3

learning [40]. The performance of the proposed algorithm has been
compared with other state-of-the-art DRL algorithms available in the
literature, including DDPG, PPO, SAC, and TD3 algorithms [11], to
show its effectiveness. A comparison with the optimal global solution
is also presented, obtained by solving the energy system scheduling
problem as a mathematical programming formulation considering full
knowledge of future information (i.e., consumption, dynamic prices,
and renewable-based generation). The main contributions of this paper
are as follows:

• A value-based DRL algorithm to solve the energy system schedul-
ing problem is proposed, capable of dealing with continuous
action spaces. Different from other actor–critic DRL algorithms
(e.g., DDPG, PPO, and TD3 [11]), we make use of the action-value
function approximated using a DNN, while discarding the policy
model learning used during exploration.

• An innovative online execution approach that guarantees that the
proposed DRL algorithm strictly meets all operational conditions
in the action space (e.g., the power balance constraint), even in
unseen test data, is also proposed. This is done by leveraging new
optimization results from DNNs that allow their representation as
a MIP formulation, enabling further consideration of any action
space constraints.

The rest of this paper is organized as follows. In Section 2, the
optimal energy system scheduling problem is formulated. Then, in
Section 3, the formulated problem is modeled as MDP while the pro-
posed MIP-DQN algorithm is illustrated and used to solve the optimal
energy system scheduling problem in Section 4. Simulation tests are
presented, analyzed and discussed in Section 5, while final conclusions
are presented in Section 6.

2. Mathematical programming formulation of the energy systems
scheduling problem

The structure of the considered energy system is shown in Fig. 1,
including various DERs, such as solar photovoltaic (PV), ESSs, DGs, and
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Fig. 1. Illustration of the considered energy system structure composed of various DERs, such as solar photovoltaic (PV), ESSs, DGs, and loads.
loads, while a connection to the utility grid is leveraged to address
a demand surplus or shortage problem. For tractable analysis, we
assume the day-ahead market where the electricity price of each hour
is revealed beforehand. For the energy system in Fig. 1, the optimal
energy system scheduling problem can be modeled by the nonlinear
programming (NLP) formulation described by (1)–(11). The objective
function in (1) aims at minimizing the operating cost for the whole
time horizon  , comprising the operating cost of the DG units, as
presented in (2), and the cost of buying/selling electricity from/to the
main network, as in (3). Given the output power of DG units 𝑃𝐺

𝑖,𝑡 , the
operating cost can be estimated by using a quadratic function as in
(2). The transaction cost between the energy system and the network
is settled according to Time-of-Use (ToU) prices, in which it is assumed
that selling prices are lower than the purchasing prices. In (3), 𝜌𝑡 is
the ToU price at time slot 𝑡, while 𝑃𝑁

𝑡 refers to the exported/imported
power transaction to/from the network.

min
𝑃𝐺
𝑖,𝑡 ,𝑃

𝐵
𝑗,𝑡

{

∑

𝑡∈

∑

𝑖∈

[

𝐶𝐺
𝑖,𝑡(⋅) + 𝐶𝐸

𝑡 (⋅)
]

𝛥𝑡

}

, (1)

𝐶𝐺
𝑖,𝑡 = 𝑎𝑖

(

𝑃𝐺
𝑖,𝑡

)2
+ 𝑏𝑖𝑃

𝐺
𝑖,𝑡 + 𝑐𝑖, ∀𝑖 ∈ . (2)

𝐶𝐸
𝑡 =

{

𝜌𝑡𝑃𝑁
𝑡 𝑃𝑁

𝑡 > 0,
𝛽𝜌𝑡𝑃𝑁

𝑡 𝑃𝑁
𝑡 < 0.

(3)

Subject to:

∑

𝑖∈
𝑃𝐺
𝑖,𝑡 +

∑

𝑚∈
𝑃 𝑉
𝑚,𝑡 + 𝑃𝑁

𝑡 +
∑

𝑗∈
𝑃𝐵
𝑗,𝑡 =

∑

𝑘∈
𝑃𝐿
𝑘,𝑡 ∀𝑡 ∈  (4)

𝑃𝐺
𝑖 ≤ 𝑃𝐺

𝑖,𝑡 ≤ 𝑃
𝐺
𝑖 ∀𝑖 ∈ ,∀𝑡 ∈  (5)

𝑃𝐺
𝑖,𝑡 − 𝑃𝐺

𝑖,𝑡−1 ≤ 𝑅𝑈𝑖 ∀𝑖 ∈ ,∀𝑡 ∈  (6)

𝑃𝐺
𝑖,𝑡 − 𝑃𝐺

𝑖,𝑡+1 ≤ 𝑅𝐷𝑖 ∀𝑖 ∈ ,∀𝑡 ∈  (7)

− 𝑃𝐵
𝑗 ≤ 𝑃𝐵

𝑗,𝑡 ≤ 𝑃
𝐵
𝑗 ∀𝑗 ∈ ,∀𝑡 ∈  (8)

𝑆𝑂𝐶𝐵
𝑗,𝑡 = 𝑆𝑂𝐶𝐵

𝑗,𝑡−1 + 𝜂𝐵𝑃
𝐵
𝑗,𝑡𝛥𝑡∕𝐸

𝐵
𝑗 ∀𝑗 ∈ ,∀𝑡 ∈  (9)

𝑆𝑂𝐶𝐵
𝑗 ≤ 𝑆𝑂𝐶𝐵

𝑗,𝑡 ≤ 𝑆𝑂𝐶
𝐵
𝑗 ∀𝑗 ∈ ,∀𝑡 ∈  (10)

− 𝑃
𝐶
≤ 𝑃𝑁

𝑡 ≤ 𝑃
𝐶

∀𝑡 ∈  (11)

Expression (4) defines the power balance constraint. Expression
(5) defines the DG units generation power limits while (6) and (7)
enforce the DG unit’s ramping up and down constraints, respectively.
Energy storage systems (ESSs) are modeled using (8)–(10). In this
model, the operation cost of ESSs is not considered, while ESSs are
allowed to schedule their discharge and charge power in advance.
Expression (8) defines the charging and discharging power limits, while
4

expression (9) models the state of charge (SOC) as a function of the
charging and discharging power. Expression in (10) limits the energy
stored in the ESSs, avoiding the impacts caused by over-charging and
over-discharging. Finally, the main network export/import power limit
is modeled by the expression in (11). Notice that in order to solve
the mathematical formulation described by (1)–(11), full knowledge of
future information (e.g., renewable-based generation, consumption and
dynamic prices) is required, for instance, provided via a forecasting
algorithm. The proposed DRL algorithm is able to provide good-quality
solutions with only current information, as shown later. Next, the MDP
formulation of the optimal scheduling problem is presented.

3. MDP formulation & value-based DRL

The above-presented decision-making problem can be modeled as a
finite MDP, represented by a 5-tuple ( ,, ,, 𝛾), where  represents
the set of system states,  the set of actions,  the state transition
probability function,  the reward function, and 𝛾 a discount factor.
In this formulation, the energy system operator can be modeled as
an RL agent. The state information provides an important basis for
the operator to dispatch units. We define a state at time 𝑡 as 𝑠𝑡 =
(𝑃 𝑉

𝑡 , 𝑃𝐿
𝑡 , 𝑃𝐺

𝑡−1, 𝑆𝑂𝐶𝑡), 𝑠𝑡 ∈ , while the actions, defining the schedul-
ing of the DG units and the ESSs, as 𝑎𝑡 = (𝑃𝐺

𝑖,𝑡 , 𝑃
𝐵
𝑡 ), 𝑎𝑡 ∈ . Notice

that the RL agent does not directly control the transaction between
the energy system and the main network (i.e., 𝑃𝑁

𝑡 ). Instead, after
any action is executed, power is exported/imported from the main
network to maintain the power balance. Nevertheless, a maximum
power capacity constraint exists and must be enforced i.e., (11). Notice
that if the maximum export/import limits are defined to be a low value
(as done in this paper), in most cases, the power balance constraint will
not be automatically met.

Given the state 𝑠𝑡 and action 𝑎𝑡 at time step 𝑡, the energy system
transit to the next state 𝑠𝑡+1 defined by the next transition probability
function

𝑝(𝑆𝑡+1, 𝑅𝑡|𝑆𝑡, 𝐴𝑡) = Pr
{

𝑆𝑡+1 = 𝑠𝑡+1, 𝑅𝑡 = 𝑟𝑡 ∣ 𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡
}

, (12)

which models the energy system’s dynamics. In model-based algo-
rithms, the uncertainty is predicted by a determined value or sampling
from a prior probability distribution. In contrast, DRL algorithms are
a model-free approach, capable of learning such dynamics from in-
teractions. To guide learning, a reward 𝑟𝑡 must be provided by the
environment in order for the RL agent to quantify the goodness of
any action taken. In the energy system scheduling problem, the re-
ward function (𝑠𝑡, 𝑎𝑡) should guide the RL agent to take actions that
minimize the total operating cost, while enforcing the power balance
constraint. This can be done by using the reward function

𝑡
(

𝑠𝑡, 𝑎𝑡
)

= 𝑟𝑡 = −𝜎1

[

∑

(

𝐶𝐺
𝑖,𝑡 + 𝐶𝐸

𝑡

)

]

− 𝜎2𝛥𝑃𝑡,∀𝑡 ∈  , (13)

𝑖∈
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t
c

in which 𝛥𝑃𝑡 corresponds to the power unbalance at time-step 𝑡, defined
s,

𝑃𝑡 =
|

|

|

|

|

|

∑

𝑖∈
𝑃𝐺
𝑖,𝑡 +

∑

𝑚∈
𝑃 𝑉
𝑚,𝑡 + 𝑃𝑁

𝑡 +
∑

𝑗∈
𝑃𝐵
𝑗,𝑡 −

∑

𝑘∈
𝑃𝐿
𝑘,𝑡

|

|

|

|

|

|

. (14)

n (13), 𝜎1 and 𝜎2 are used to control the order of magnitude and
he trade-off between the operating cost minimization and the penalty
ncurred in case of power unbalance. The procedure used to solve the
roposed MDP using value-based RL algorithms is presented next.

.1. DRL value-based algorithms

Define 𝑄𝜋 (𝑆𝑡, 𝐴𝑡) as the action-value function that estimates the
xpected cumulative reward given that action 𝑎𝑡 is taken at state 𝑠𝑡 and
ollowing policy 𝜋(⋅) after that. The action-value function 𝑄𝜋 (𝑆𝑡, 𝐴𝑡) can
e expressed recursively as [12],

𝜋 (𝑆𝑡, 𝐴𝑡) = E𝜋
[

𝑟𝑡 + 𝛾𝑄𝜋 (𝑠𝑡+1, 𝑎𝑡+1)|𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡
]

. (15)

Bellman’s principle of optimality states that the optimal action-value
function for an MDP has the recursive expression

𝑄∗
𝜋 (𝑆𝑡, 𝐴𝑡) = E𝜋

[

𝑟𝑡 + 𝛾 max
𝑎𝑡+1∈

𝑄∗
𝜋 (𝑠𝑡+1, 𝑎𝑡+1)|𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡

]

, (16)

which solution can be obtained by using a Temporal Difference (TD)
algorithm [41], which solves the following update rule iteratively.

�̂�(𝑆𝑡, 𝐴𝑡) ≐ �̂�(𝑆𝑡, 𝐴𝑡) + 𝛼
[

𝑟𝑡 + 𝛾 max
𝑎𝑡+1∈

�̂�(𝑠𝑡+1, 𝑎𝑡+1) − �̂�(𝑆𝑡, 𝐴𝑡)
]

, (17)

in which �̂�(⋅) corresponds to a function approximator used to represent
𝑄∗

𝜋 (⋅) and 𝛼 ∈ (0, 1] is a learning rate. Once a good quality representa-
tion of 𝑄∗

𝜋 (⋅) is obtained via �̂�(⋅), at time step 𝑡 and state 𝑠𝑡, optimal
actions 𝑎𝑡 can be sampled from the optimal policy, i.e., 𝑎𝑡 ∼ 𝜋∗(𝑠𝑡),
obtained as

𝜋∗(𝑆𝑡) = max
𝑎∈

�̂�(𝑆𝑡 = 𝑠𝑡, 𝑎). (18)

For continuous state and action spaces, the optimal action-value func-
tion 𝑄∗

𝜋 (⋅) can be approximated using a DNN i.e., �̂�(⋅) = 𝑄𝜃(⋅) with
parameters 𝜃, leading to an algorithm known as deep Q-networks
(DQNs) [42]. In this case, the iterative procedure shown in (17) can
be seen as a regression problem whose objective is to estimate the
DNN’s parameters 𝜃 via stochastic gradient ascent. In DQNs, the 𝑄𝜃
is updated using the value 𝑟𝑡 + 𝛾max

𝑎∈
𝑄𝜃𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠𝑡, 𝑎), where 𝑄𝜃target is a

target Q-function.1 Under this value definition, parameters 𝜃 can be
obtained minimizing a loss function over mini-batches 𝐵 of past data
{

(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1)
}

|𝐵|
𝑖=1. In this case, the loss definition used to train the

DQN is based on the mean squared Bellman error, defined as2

min
𝜃

|𝐵|
∑

𝑖=1

(

𝑟𝑡,𝑖 + 𝛾𝑄𝜃target

(

𝑠𝑡+1,𝑖, argmax
𝑎

𝑄𝜃
(

𝑠𝑡+1,𝑖, 𝑎
)

)

−𝑄𝜃
(

𝑠𝑡+1,𝑖, 𝑎𝑡,𝑖
)

)2
.

(19)

Notice that in continuous action spaces, the procedure used in (18)
to sample actions from the action-value function 𝑄𝜃 is not feasible
since an exhaustive action enumeration (i.e., the Max-Q problem) is
not possible. Moreover, in (18) actions constraints are completely dis-
regarded. To overcome this, we combine value-based DRL algorithms
with mixed-integer programming, as explained next.

1 i.e., a copy of model 𝑄𝜃 which parameters are updated less frequently.
his procedure helps to stabilize learning within the DRL algorithm. For a
ore detailed explanation, see [43].
2 For a more detailed derivation of the loss function in (19), see [43].
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(

Algorithm 1: Training procedure for MIP-DQN
Define the maximum training epochs 𝑇 , episode length 𝐿.
Initialize parameters of functions 𝑄𝜃 , 𝑄𝜃target , and 𝜋𝜔; Initialize
reply buffer 𝑅. ;
for 𝑡 = 1 to 𝑇 do

Sample an initial state 𝑠0 from the initial distribution
for 𝑙 = 1 to 𝐿 do

Sample an action with exploration noise 𝑎𝑡 ∼ 𝜋𝜔(𝑠𝑡) + 𝜖,
𝜖 ∼  (0, 𝜎) and observe reward 𝑟𝑡 and new state 𝑠𝑡+1. ;

Store transition tuple
(

𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1
)

in 𝑅.;
Sample a random mini-batch of |𝐵| transitions

(

𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1
)

from 𝑅.;
Update the Q-function parameters by using (19).;
Update the execution policy function parameters by using
𝜔 ← 𝜔 + ∇𝜔

1
|𝐵|

∑

𝑠∈𝐵 𝑄𝜃
(

𝑠, 𝜋𝜔(𝑠)
)

.
Update the target-Q function parameters:

𝜃target ← 𝜏𝜃 + (1 − 𝜏)𝜃target

4. Proposed MIP-DQN algorithm

The proposed DRL algorithm is named MIP-DQN and is defined
through two main procedures: training and deployment (or online
execution). The main objective of the training procedure is to estimate
the parameters 𝜃 of the DNN used to approximate the action-value
function 𝑄𝜃 ; whereas during deployment, the obtained function 𝑄𝜃 is
sed to take actions to directly operate assets within the energy system.
oth procedures are explained in detail below.

.1. Training procedure

The training process developed for the MIP-DQN algorithm is de-
cribed in Algorithm 1. This process starts by randomly initializing
he parameters of the DNN functions 𝑄𝜃 , 𝑄𝜃target . Then, interactions
ith a model of the energy system take place. In traditional valued-
ased RL algorithms, exploration is done by sampling actions from
he current estimate of the action-value function 𝑄𝜃 . However, and
s explained before, sampling actions from 𝑄𝜃 following (18) is not

a feasible procedure in continuous action spaces. Instead, we propose
to use a parameterized deterministic optimal policy 𝜋𝜔, which is also
approximated using a DNN model and randomly initialized. Similar to
other works [43,44], the policy function 𝜋𝜔, the action-value functions

𝜃 and 𝑄𝜃target , will be jointly approximated.
Within one epoch, for each time step 𝑡, a transition tuple of the form

𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) is collected and store in a replay buffer 𝑅. Then, a subset
of these samples is selected and used to update the parameters of

unctions 𝑄𝜃 , 𝑄𝜃target and 𝜋𝜔 as shown in Algorithm 1. This procedure
s iteratively done until a maximum number of epochs is reached.

Different from other DRL algorithms, such as DDPG and PPO, after
raining, we make use of the action-value function 𝑄𝜃 and discard the
pproximated policy 𝜋𝜔. Moreover, it is critical to notice that the power
alance constraint is only enforced via the penalty added to the reward
unction in (13). Thus, it is expected that at the end of the training
rocedure, such equality constraint is not strictly met. The procedure
sed to enforce constraints is developed for the deployment or online
xecution, as explained next.

.2. Deployment (online execution) procedure

After convergence of the training procedure, the action-value func-
ion 𝑄𝜃 , with fixed parameters 𝜃, can be used to take actions to
ontrol different energy resources. To do this, the problem stated in

18) must be solved. In this case, as function 𝑄𝜃 represents a DNN, in
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Fig. 2. Layer structure of the DNN used to approximate the action-value function 𝑄(𝑠, 𝑎). We denoted this DNN model as 𝑄𝜃 (𝑠, 𝑎) in Algorithm 1.
order to solve (18), we leverage recent optimization results for DNNs.
Thus, proposing a transformation of the DNN model 𝑄𝜃 into a MIP
formulation.

4.2.1. MIP for deep neural networks
Let the DNN 𝑄𝜃(𝑠, 𝑎) in Fig. 2 consists of 𝐾+1 layers, listed from 0 to

𝐾. Layer 0 is the input of the DNN, while the last layer, 𝐾 refers to the
outputs of the DNN. Each layer 𝑘 ∈ {0, 1,… , 𝐾} have 𝑈𝑘 units, which
is denoted by 𝑢𝑗,𝑘, the 𝑗𝑡ℎ unit of the layer 𝑘. Let 𝑥𝑘 refers to the output
vector of layer 𝑘, then 𝑥𝑘𝑗 is the output of unit 𝑢𝑗,𝑘, (𝑗 = 1, 2,… , 𝑈𝑘). As
layer 0 is the input of the DNN, then 𝑥0𝑗 is 𝑗𝑡ℎ input value for the DNN.
For each layer 𝑘 ≤ 1, the unit 𝑢𝑗,𝑘 computes the output vector 𝑥𝑘 below:

𝑥𝑘 = ℎ
(

𝑊 𝑘−1𝑥𝑘−1 + 𝑏𝑘−1
)

(20)

where 𝑊 𝑘−1 and 𝑏𝑘−1 are matrices of weights and biases that compose
the set of parameters 𝜃 i.e., 𝜃 = {𝑊 , 𝑏} and ℎ(⋅) is the activation func-
tion, which in this case corresponds to the ReLU function, described as:
for a real vector 𝑦, ReLU(𝑦) ∶= max{0, 𝑦}.

Based on the above definitions, the DNN of Fig. 2, with fixed
parameters 𝜃, can be modeled as a valid MIP problem by modeling the
ReLU function using binary constraints. Thus, using a binary activation
variable 𝑧𝑘𝑗 for each unit 𝑢𝑗,𝑘, the MIP formulation of a DNN can be
expressed as [40]:

min
𝑥𝑘𝑗 ,𝑠

𝑘
𝑗 ,𝑧

𝑘
𝑗 ,∀𝑘

{ 𝐾
∑

𝑘=0

𝑙𝑘
∑

𝑗=1
𝑐𝑘𝑗 𝑥

𝑘
𝑗 +

𝐾
∑

𝑘=1

𝑙𝑘
∑

𝑗=1
𝑑𝑘𝑗 𝑧

𝑘
𝑗

}

(21)

Subject to:

∑𝑙𝑘−1
𝑖=1 𝑤𝑘−1

𝑖𝑗 𝑥𝑘−1𝑖 + 𝑏𝑘−1𝑗 = 𝑥𝑘𝑗 − 𝑠𝑘𝑗
𝑥𝑘𝑗 , 𝑠

𝑘
𝑗 ≥ 0

𝑧𝑘𝑗 ∈ {0, 1}
𝑧𝑘𝑗 = 1 → 𝑥𝑘𝑗 ≤ 0
𝑧𝑘𝑗 = 0 → 𝑠𝑘𝑗 ≤ 0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

∀𝑘,∀𝑗, (22)

𝑙𝑏0𝑗 ≤ 𝑥0𝑗 ≤ 𝑢𝑏0𝑗 , 𝑗 ∈ 𝑙0, (23)

𝑙𝑏𝑘𝑗 ≤ 𝑥𝑘𝑗 ≤ 𝑢𝑏𝑘𝑗
𝑙𝑏

𝑘
𝑗 ≤ 𝑠𝑘𝑗 ≤ 𝑢𝑏

𝑘
𝑗

}

∀𝑘,∀𝑗. (24)

In the above formulation, weights 𝑤𝑘−1
𝑖,𝑗 and biases 𝑏𝑘𝑗 are fixed

(constant) parameters; while the same holds for the objective function
costs 𝑐𝑘𝑗 and 𝑑𝑘𝑗 . The ReLU function output for each unit is defined by
(22), while (23) and (24) define lower and upper bounds for the 𝑥 and
𝑠 variables: for the input layer (𝑘 = 0), these bounds have physical
meaning (same limits of the 𝑄𝜃 inputs i.e., 𝑠 and 𝑎), while for 𝑘 ≥ 1,
these bounds can be defined based on the fixed parameters 𝜃 [45].
Finally, notice that in order for the MIP formulation to be equivalent to
the DNN, ReLU activation functions must be used, as explained in [40].
6

4.2.2. Enforcing constraints in online execution
For an arbitrary state 𝑠𝑡, the optimal action 𝑎𝑡 can be obtained by

solving the MIP in (21)–(24) derived from 𝑄𝜃 . In this case, as the
decision variables are the actions 𝑎𝑡 (see (18)), the power balance
constraint in (4) as well as the ramp-up and ramp-down constraints
in (6) and (7), respectively; can also be added to the MIP formulation
described by (21)–(24). As a result, the optimal actions obtained by
solving this MIP strictly enforce all operational constraints in the action
space. This problem can be represented as,

max
𝑎∈,𝑥𝑘𝑗 ,𝑠

𝑘
𝑗 ,𝑧

𝑘
𝑗 ,∀𝑘

{(21)}

s.t. (22)–(24), (4), (6), (7).
(25)

To better understand the MIP formulation stated in (25), Fig. 3 shows a
re-interpretation of the power balance constraint in (4) as a hyperplane
that define the feasibility region (for a three dimensional space) of
the action space. Notice that such hyperplane may have different pa-
rameters for different time steps. Thus, if the hyperplane that enforces
the power balance constraint is added to the MIP formulation that
represents the DNN 𝑄𝜃 , the solution of such mathematical problem
will ensure minimum operating cost (via the maximization of 𝑄𝜃) and
enforce all action space constraints, as exemplified in Fig. 4. In this
case, this re-interpretation of the DNN as a MIP formulation offers
enough flexibility to enforce equality constraints (as well as other
constraints over the action space) for the energy system scheduling
problem, such as the power balance. Algorithm 2 shows the step-
by-step procedure used during the online execution of the proposed
MIP-DQN algorithm.
Algorithm 2: Online Execution for the MIP-DQN Algorithm
Extract trained parameters 𝜃 from 𝑄𝜃 ;
Formulate the Q-function network 𝑄𝜃 as a MIP formulation
according to (21)–(24). Add all action space constraints i.e., (4),
(6) and (7).

Extract initial state 𝑠0 based on real-time data;
for 𝑡 = 1 to 𝑇 do

For state 𝑠𝑡, get optimal action by solving (25) using
commercial MIP solvers;

5. Simulation results and discussions

In this section, simulation results and discussions are presented. A
comparison with DRL algorithms available in the literature, including
PPO, SAC, DDPG and TD3 algorithms, is also presented.

5.1. Case study and simulations setup

To test the developed MIP-DQN algorithm, an energy system con-
sisting of three DG units and an ESS is defined. The DG unit’s parame-

ters are shown in Table 2, while for the ESS, the charging/discharging



International Journal of Electrical Power and Energy Systems 152 (2023) 109230H. Shengren et al.

p

p
D
g
e
I
b

Fig. 3. Action space (grey) and feasible action space (red) illustration. Actions 𝑎1, 𝑎2, 𝑎3 refer to generic actions in a three dimension action space . For each time step 𝑡, the
ower balance constraint in (4) can be seen as the hyperplane 𝑎1 + 𝑎2 + 𝑎3 = 𝑑 that defines the feasible actions space.
Fig. 4. Visualization of the constraint space whose boundaries are formed by the hy-
erplanes ℎ𝑘

𝑗 (⋅) defined by the ReLU activation functions derived from the deconstructed
NN 𝑄𝜃 (𝑠, ⋅) as a MIP formulation, for an specific state 𝑠 and actions 𝑎1 and 𝑎2. The
rey are shows the increasing value (from darker to lighter) of ∇𝑄𝜃 . The red point
xemplifies the optimal solution of max

𝑎∈
𝑄𝜃 (𝑠, ⋅) if constraint 𝑎1 + 𝑎2 = 𝑑 is disregarded.

f such a constraint is added to the MIP formulation, the solution represented with the
lue point will be reached.

Table 2
DG units information.

Units 𝑎 [$/kW2] 𝑏 [$/kW] 𝑐 [$] 𝑃𝐺 [kW] 𝑃
𝐺

[kW] 𝑅𝑈 [kW] 𝑅𝐷 [kW]

𝐷𝐺1 0.0034 3 30 10 150 100 100

𝐷𝐺2 0.001 10 40 50 375 100 100

𝐷𝐺3 0.001 15 70 100 500 200 200

limits, nominal capacity, and energy efficiency (𝜂𝐵) are set to 100 kW,
500 kW, and 0.90, respectively. We assume that the network’s maxi-
mum export/import limit is defined as 30 kW. To encourage the use
of renewable energies, we set selling prices as half of the current
electricity prices, i.e., 𝛽 = 0.5.

One-year demand consumption and PV generation data are used
as the original data-set, sampled in hour resolution. Fig. 5 shows the
mean and standard deviation of the demand consumption and PV
generation during summer and winter for a period of 24 h, defined
as the length of one episode (𝑇 = 24). The original dataset is divided
into two additional datasets: training and testing. The training dataset
7

contains the first three weeks of each month, while the testing dataset
contains the remaining data. This allows the DRL algorithm to learn
any seasonal and weekly behavior available in the PV generation and
demand consumption data [31]. During training, the EES’s initial SOC
was randomly set. To implement our MIP-DQN algorithm, PyTorch and
OMLT (see [45]) package has been used. Default settings were used for
all the implemented DRL algorithms, as shown in Table 3. All imple-
mented algorithms are openly available in [46]. Hyper-parameters 𝜎1
and 𝜎2 are defined as 0.01 and 20, respectively, as default values. Each
test is run with five random seeds to eliminate randomness from code
implementation.

5.2. Validation and algorithms for comparison

In the research literature, DRL algorithms are usually compared
with simple rule-based or MPC-based algorithms (considering the im-
pacts of any forecasting error) [47]. Nevertheless, this procedure does
not allow us to estimate the optimality gap between current DRL
algorithms and the optimal global solution with a perfect forecast of
the stochastic variables (i.e., generation and demand consumption).
In this case, this optimal global solution with full knowledge should
be regarded as an upper boundary, as none algorithm would perform
better. Based on this, to validate and fairly compare the performance of
the proposed MIP-DQN algorithm, besides comparing the optimal DERs
schedule defined by several state-of-the-art DRL algorithms (DDPG,
PPO, TD3), we compared with the optimal global solution obtained
considering perfect forecast for the next 24 h. In this case, the optimal
global solution is found by solving the nonlinear mathematical pro-
gramming formulation in Section 2, implemented using Pyomo [48].
Notice that different from the optimal global solution, all the tested
DRL algorithms are able to make decisions only using current infor-
mation. Finally, to evaluate the DRL algorithms’ performance, the total
operating cost, as in (1), and the power unbalance, as in (14), are used
as metrics.

5.3. Performance on the training set

Fig. 6 shows the average reward, operating cost, and power unbal-
ance for the developed MIP-DQN algorithm and other DRL algorithms
during the training process. As can be seen in Fig. 6, the average reward
increases rapidly after 100 episodes of training, while the operating cost
and the power unbalance significantly decrease. This behavior during
training is typical of DRL algorithms as the DNN’s parameters are
randomly initialized, leading initially to random actions causing high
power unbalance. Throughout the training, and due to the introduction
of the penalty terms used in the reward definition in (13), the DNN’s

parameters are updated, leading to higher quality actions, reducing
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Table 3
Parameters for DRL algorithms.
Algorithm Batch size |𝐵| Learning rate Buffer size 𝑅 𝛾 Network dimension Optimizer

DDPG 256 1e−4 5e4 0.995 (64, 64, 64) Adam
SAC 256 1e−4 5e4 0.995 (64, 64, 64) Adam
TD3 256 1e−4 5e4 0.995 (64, 64, 64) Adam
PPO 256 1e−4 – 0.995 (64, 64, 64) Adam
MIP-DQN 256 1e−4 5e4 0.995 (64, 64, 64) Adam
Fig. 5. Mean and standard deviation of the demand consumption and PV generation.
power unbalance, and showing a lower operating cost. All algorithms
converged before 400 episodes. After the last training episode, the
power unbalance (presented by the average with 95% confident in-
terval) of DDPG, SAC, PPO, and TD3 are 64.8 ± 99 kW, 807 ± 121
kW, 65 ± 18 kW, 304 ± 104 kW, respectively; while a power unbalance
of 12 ± 15 kW was observed for the proposed MIP-DQN algorithm.
This result shows how the proposed MIP-DQN algorithm outperformed
other DRL algorithms during the training process. Nevertheless, and as
expected, none of the tested DRL algorithms (including the proposed
MIP-DQN) can strictly enforce the power balance; if such algorithms
are used in real-time operation, they might lead to unfeasible operation.
Next, we show how our proposed algorithm can overcome this during
online execution, even in unseen data.

5.4. Performance on the test set

After training, the DNN’s parameters of all the DRL algorithms are
fixed as shown in Algorithm 2. A performance comparison is now made
on the test set. Recall that the data on the test set is not used during
training; therefore, it has not been seen by any of the DRL algorithms.
To compare results on the test set, Fig. 7 shows the cumulative oper-
ating cost and power unbalance (which can be seen as a cumulative
error) for 10 different days using the proposed MIP-DQN algorithm, as
well as other DRL algorithms. The optimal global solution obtained by
solving the NLP formulation and considering the perfect forecast is also
presented. As can be seen in Fig. 7, during online operation and for all
10 test days, the proposed MIP-DQN algorithm strictly meets the power
8

balance constraint, while other DRL algorithms fail to deal with such
equality constraint. Notice in Fig. 7 how DRL algorithms such as DDPG
and TD3 reach a cumulative power unbalance near 0.14 MW at the end
of the test period. As a result of such high unbalances, an operating cost
of 53.3% higher than the optimal global solution is also observed. In
contrast, the proposed MIP-DQN algorithm achieves an operating cost
of 94 𝑘$, i.e., 17.6% higher than the optimal solution.

To test the performance with a higher number of test days, Table 4
presents the average cumulative error (with respect to the solution
obtained by solving the NLP formulation with perfect forecast), the
average power unbalances, and total average computational time (over
30 test days) of the proposed MIP-DQN algorithm as well as other
DRL algorithms. As can be seen, the proposed MIP-DQN algorithm
has the lowest average error, 13.7%; while strictly meeting the power
balance (and other) constraint. In contrast, algorithms such as PPO
showed poor performance reaching an error of 52.4%. As expected,
the total computational time required to execute the proposed MIP-
DQN algorithm is higher than other DRL algorithms. This increase in
the computational time is a result of the MIP formulation required
to be solved in order to enforce the equality constraint (see (25)).
Nevertheless, for this case, the proposed MIP-DQN algorithm can still
be used for real-time operation as it only requires less than 20 s for
execution. In this case, it is important to highlight that the computation
time of the proposed MIP-DQN algorithm is impacted by the size of
formulated MIP problem, which is only determined by the size of
the used Q network (layers, units of each layer, etc.) and not by the
size of the energy system (microgrid) considered. Previous research
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Fig. 6. Mean and 95% confident interval for the reward, operating cost and power unbalance for the developed MIP-DQN algorithm, as well as for other DRL algorithms, during
training. As expected, none of these DRL algorithms are able to enforce the power balance constraint.
Fig. 7. Cumulative costs and power unbalance for 10 days in the test set. The proposed MIP-DQN algorithm is able to strictly meet the power balance constraint while other DRL
algorithms fail to do so.
Table 4
Performance comparison of different DRL algorithms in a new test set of 30 days.

Algorithms Error 𝛥𝑃 [MW] Computational
time [s]

MIP-DQN 13.7 ± 0.3% 0.0 17
DDPG 47.3 ± 1.9% 0.14 ± 0.021 4.3
TD3 31.5 ± 0.7% 0.06 ± 0.011 4.9
PPO 52.4 ± 0.3% 0.15 ± 0.007 4.3

has shown that (small) neural networks can generalize well in real
environments [19,28], supporting the applicability of DRL models in
real systems.

5.5. Dispatch decisions comparison

Until now, the general performance of the proposed MIP-DQN
algorithm has been presented, highlighting its capability of strictly
9

enforcing the power balance constraint, even in unseen operational
days. Next, a comparison in terms of the scheduling of the DG units
and the ESSs is introduced. To do this, Fig. 8 displays the output
power of all the DG units, ESSs and the imported/exported power
from the network for: the proposed MIP-DQN algorithm (Fig. 8𝑏),
and the optimal solution obtained after solving the NLP formulation
considering perfect forecast (Fig. 8𝑐). Notice in Fig. 8 that when the
electricity price is high, and the net power is low, the proposed MIP-
DQN algorithm dispatches the ESSs in charging mode, and a similar
dispatch decision is observed in the optimal global solution. Notice
also that, when compared with the optimal solution, the proposed
MIP-DQN algorithm dispatched 3𝑡ℎ DG during the peak hour, which
can be considered a sub-optimal decision as the operating cost of
such DG is higher than the others. This difference in this dispatch
decision can be due to the estimated 𝑄-function, which might not be
good enough to represent the true action-value function. In this sense,
as the proposed MIP-DQN algorithm chooses actions that maximize
its 𝑄-value estimation, the largest 𝑄-value might not represent the



International Journal of Electrical Power and Energy Systems 152 (2023) 109230H. Shengren et al.
Fig. 8. Operational schedule of all DG units and ESSs defined by the proposed MIP-DQN algorithm and the optimal global solution obtained by solving the NLP formulation
considering perfect forecast.
best action for this specific state–action pair. Nevertheless, even in
executing a sub-optimal decision, the proposed MIP-DQN algorithm is
able to meet the power balance constraint, guaranteeing operational
feasibility. Finally, although differences in the dispatch decisions made
by the proposed MIP-DQN algorithm and the optimal solution can be
10
observed, it is important to highlight that the optimal global solution
is obtained considering the perfect forecast of the future generation
and demand consumption for the next 24 h, while the proposed MIP-
DQN algorithm provides dispatch decisions in an hourly basis, without
knowledge of the future values of the stochastic variables.
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Fig. 9. Average reward, operating cost, and power unbalance of the proposed MIP-DQN algorithm for different values of 𝜎2.
5.6. Sensitivity analysis

To better understand the impact of hyperparameter 𝜎2 in the reward
function in (13), Fig. 9 shows the average operating cost and power
unbalance (during training) for the proposed MIP-DQN algorithm for
𝜎2 = 20, 50, 100. As can be seen in Fig. 9, and as expected, higher values
of 𝜎2 accelerate the convergence of the proposed MIP-DQN algorithm to
rapidly reduce power unbalance, while having no apparent impact on
the convergence of the operating cost. On the other hand, lower values
of 𝜎2 seem to accelerate the convergence of the operating cost leaving
behind the convergence of the power unbalance. In general, for the
test performed, it was observed that the proposed MIP-DQN algorithm
could converge in less than 200 episodes.

5.7. Comparison with safe DDPG algorithm

A comparison with current safe DRL algorithms is also performed.
In this case, the proposed MIP-DQN algorithm is compared with a
Safe DDPG algorithm, as presented in [49]. Fig. 10 shows the average
reward (Fig. 10𝑎), operating cost (Fig. 10𝑏), and power unbalance
(Fig. 10𝑐) for the two algorithms being compared. In this case, and
as expected, both algorithms fail to enforce the power unbalance
constraint strictly during training. At the beginning of the training
stage, the Safe DDPG algorithm shows a lower operating cost and
power unbalance, and higher reward, when compared to the MIP-
DQN algorithm. This is mainly due to the trained linear safe layer
of the Safe DDPG, which projects the exploration action to a safer
one, while the MIP-DQN algorithm is free to explore the action space
regardless of the feasibility of the decided action. Nevertheless, along
with the training, the Safe DDPG algorithm fails to learn to reduce
further or eliminate power unbalance, while our proposed MIP-DQN
algorithm reduces the unbalance sharply. This behavior is mainly due
to the reward shaping of the MIP-DQN algorithm, which can learn to
11
avoid the penalty due to the power unbalance during the training.
It is important to highlight that the performance of the Safe DDPG
algorithm depends on the quality of the trained safe layer that project
the original action of the DDPG algorithm to a feasible one. In this case,
as the safe layer is a linear function, its generalization capabilities may
not be enough to learn the complex nonlinear energy system dynamic.
Thus, even after projection, the action cannot fully meet the power
unbalance constraint. Moreover, as the safe layer modified the action
during exploration, it also harms the performance of the trained RL
algorithm as shown in Fig. 10. Compared to the Safe DDPG algorithm,
the proposed MIP-DQN algorithm learns to eliminate the unbalance in
a small value after training and guarantees the feasibility during the
execution (Fig. 7).

5.8. Larger case study

To test the performance of the proposed MIP-DQN algorithm on an
energy system with multiple ESSs, an environment with three ESSs and
three DG generators is designed. For this new environment, Fig. 11
shows the average operating cost and power unbalance of the proposed
MIP-DQN algorithm as well as other state-of-the-art DRL algorithms,
during the training process. As can be seen in Fig. 11, the operating
cost and power unbalance are significantly reduced. In this case, all
tested DRL algorithms converged at around 400 episodes. The power
unbalances (presented by the average with 95% confident interval) of
the DDPG, SAC, PPO and TD3 algorithms are 97±125 kW, 533±208 kW,
45 ± 19 kW, 462 ± 98 kW, respectively. In contrast, a power unbalance
of 17 ± 22 kW was observed for the proposed MIP-DQN algorithm.
Similar to the results presented in Section 5.3 for the smaller case study
(see Fig. 6), none of the tested DRL algorithms can strictly enforce the
power balance during training. Most of the observed power balance
violations happen during peak load days, consistent with previous
results [31]. Nevertheless, the proposed MIP-DQN algorithm is able to
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Fig. 10. Mean and 95% confident interval for the reward, operating cost and power unbalance for the developed MIP-DQN and Safe DDPG algorithms.
Fig. 11. Mean and 95% confident interval for the operating cost and power unbalance for the developed MIP-DQN algorithm, as well as for other DRL algorithms, during training.
Fig. 12. Operational schedule of all ESSs and DG units defined by the proposed MIP-DQN algorithm for a larger case study composed of three ESSs and three DG units.
enforce power unbalance during the online execution, even on peak
load days, as shown next. Additionally, compared to the result of
simulations in Section 5.3, no performance degeneration is observed,
proving the scalability of the proposed MIP-DQN algorithm.

Fig. 12 shows the scheduling decisions from the MIP-DQN algo-
rithm for all three ESSs (Fig. 12𝑏) and DG generators (Fig. 12𝑐), and
corresponding SOC changes (Fig. 12𝑑) in a typical day with extreme
peak load. Notice that the power balance is strictly enforced during the
peak load day. For instance, at 19 h, the load is extremely high, and
the MIP-DQN algorithm dispatches all the ESSs in discharging mode.
12
This avoided importing electricity from the main grid as the electricity
price was high at that particular time. These results showed that the
proposed MIP-DQN algorithm learned to schedule feasible decisions for
multiple ESSs in extreme peak situations. Notice also that, at hours 3
and 4, the proposed MIP-DQN algorithm dispatches the 2𝑡ℎ DG, instead
of fully using the 1𝑡ℎ DG, which can be considered as a sub-optimal
decision because the operating cost of 2𝑡ℎ DG is higher than that of
1𝑡ℎ DG. A similar result was observed in Fig. 8. Nevertheless, even in
executing a sub-optimal decision, the proposed MIP-DQN algorithm is
able to meet the power balance constraint, guaranteeing operational
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feasibility. Thus, the proposed MIP-DQN algorithm can provide feasi-
ble dispatch decisions hourly for multiple ESSs, displaying prominent
scalability features.

5.9. Discussion

The penetration of renewable-based DERs energies significantly
increases the uncertainty and complexity of the operation of energy
systems. Existing model-based approaches may not perform well when
defining the operational schedule of DERs in real time due to their
poor accuracy and high computational time requirements. Due to this,
current efforts are put into leveraging RL algorithms’ model-free and
data-driven nature. After offline training, RL algorithms can provide
near-optimal solutions in real-time. Nevertheless, the most critical chal-
lenge to enabling RL algorithms deployment in real energy systems
scheduling frameworks is their lack of constraint enforcing guarantee.
Even though several safe RL algorithms have tackled this problem,
these approaches fail to meet the required security levels of energy sys-
tems operation [50]. In general, model-based optimization approaches
can guarantee the feasibility of the defined DERs schedule by setting
hard constraints in the mathematical formulation, which is impossible
to do in current RL algorithms.

To overcome the problem mentioned above, inspired by recent ad-
vances in deep learning and optimization research areas, we first bring
constraint enforcement in RL algorithms combining deep learning and
optimization theory. We developed a DRL algorithm, namely MIP-DQN,
that can theoretically guarantee the feasibility of the decided solution
and get the optimal solution during the online scheduling stage. To
do this, we redesigned the training and online-scheduling procedure.
The proposed MIP-DQN algorithm uses a trained 𝑄-network to approx-
imate the state–action values function. Exploration and exploitation are
executed based on a trained policy network to update the Q-network
parameters. After training, the 𝑄-network is assumed to approximate
the optimal 𝑄-values. Then, the trained 𝑄-network is extracted and
formulated as MIP formulation, which can be used to impose hard
constraints in the action space, ensuring the feasibility of the defined
schedule. In this case, the power balance constraint is used as an
example to show the effectiveness of the proposed approach. Results
showed that MIP-DQN strictly meets the power balance constraint,
showing a lower error when compared with other DRL algorithms and
the optimal global solution.

The essence of the proposed MIP-DQN algorithm is using a trained
𝑄-network as a surrogate function for the optimal operational deci-
sions. As above-mentioned, the optimality is defined by the 𝑄-network
modeled as a MIP formulation. Thus, the approximation quality of the
𝑄 network determines the proposed algorithm’s performance. In Fig. 8,
we showed that the proposed MIP-DQN could be considered a good
quality operational schedule, albeit sub-optimal. Thus, efforts to reduce
the error when compared with the optimal global solution must be
centered on increasing the quality of the approximation of the Q-values
via the used deep neural network. Additionally, the proposed MIP-
DQN algorithm still needs to integrate a penalty term into the reward
function to explore the right direction during the training process. This
introduces extra hyperparameters that also impact the approximation
performance of the obtained 𝑄-function. An alternative exploration
approach that can be used is to model the DNN as a MIP formulation
in each iteration step; nevertheless, this would imply higher training
time.

6. Conclusion

This paper proposed a value-based DRL algorithm, namely MIP-
DQN, to define the optimal dispatch decisions of multiple distributed
energy resources within a renewable-based energy system. The pro-
13

posed DRL algorithm was developed for continuous action (and state) m
spaces with the main feature of strictly enforcing all operational con-
straints in the action space during online execution, ensuring the
feasibility of the defined schedule. This is done by re-formulating the
deep neural network (DNN), used to approximate the action-value Q-
function, as a mixed-integer programming (MIP) formulation enabling
to further consider any action space constraint. Results showed that the
proposed MIP-DQN algorithm obtained near-optimal solutions, with an
error of 13.7% when compared with the optimal solution obtained with
a perfect forecast of the stochastic variables. A comparison with other
DRL algorithms was also presented, observing higher errors than the
proposed algorithm while failing to meet the power balance constraint
on unseen test days. Future work directions include implementing
plug-and-play features, considering DERs’ uncertain availability.
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Appendix

A sketch of a mathematical proof that ensures that the proposed
MIP-DQN model provides the optimal solution while strictly enforcing
linear constraints is presented below. To do this, we first assume the
feasibility to the problem presented in Section 2 and also present (and
adapt notation to match this paper) the Corollary 19, from [51] as,

Corollary 1. If the input (𝑠, 𝑎) of the Q-network is a polytope and the
DNN is a rectifier network (i.e., ReLU activation functions are used), then
the mapping from input (𝑠, 𝑎) to the output 𝑄(𝑠, 𝑎) of such a 𝑄-network is
ixed-integer representable.

The proof of Corollary 19 is available in [51]. Note that this corol-
ary implies that for any rectifier DNN, a mixed-integer formulation
xists as long as the input is bounded. The Q-network used in the
roposed MIP-DQN algorithm is a DNN with a rectifier activation
unction while the input (𝑠, 𝑎) are bounded as these correspond to

the state and action variables as presented in Section 3. We denote
the optimal solution to this MIP formulation as (𝑠∗, 𝑎∗) whose optimal
bjective function value is 𝑄(𝑠∗, 𝑎∗).

Now, the extended MIP formulation obtained by adding on top of
he MIP representation of the 𝑄(𝑠, 𝑎) an equality constraint (in this
ase, (4)) is also a feasible MIP representation. This is a consequence of
he fact that such a mixed-integer representation of 𝑄(𝑠, 𝑎) is composed
f a set of linear regions whose unions form a bounded polyhedron (or
olytope) (see Theorem 20 in [51]), which we denote this here as 
see a representation in Fig. 4). The addition of (4) to , which is also
linear constraint, does not modify its nature of a bounded polyhedron

or polytope).
By exhaustion, two cases are distinguished: In the first case, the

xtended bounded polyhedron  ′ =  ∪ (4) is empty, rendering the
olution of the MIP unfeasible, i.e., equality constraint in (4) cannot be

et. This is not possible as we assumed feasibility for the optimization
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problem. In the second case,  ′ is not empty, in which an optimal
solution exits and is feasible. If this is the case, and denoting such
optimal solution as (𝑠′, 𝑎′), such solution meets the following condition:
(𝑠′, 𝑎′) ≤ 𝑄(𝑠∗, 𝑎∗). This condition simply implies that (𝑠′, 𝑎′), by
eeting the equality constraint in (4), will at least have a 𝑞-value

hat is in the limit the same as the optimal solution 𝑄(𝑠∗, 𝑎∗). This
roves the fact that by solving the extended MIP formulation, a feasible
nd optimal solution that meets the equality constraint (4) is obtained.
evertheless, it is important to highlight that optimality here relates to

he good quality solution provided by the trained 𝑄-network.
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